[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013031596A1 - 温度測定用板状体及びそれを備えた温度測定装置 - Google Patents

温度測定用板状体及びそれを備えた温度測定装置 Download PDF

Info

Publication number
WO2013031596A1
WO2013031596A1 PCT/JP2012/071165 JP2012071165W WO2013031596A1 WO 2013031596 A1 WO2013031596 A1 WO 2013031596A1 JP 2012071165 W JP2012071165 W JP 2012071165W WO 2013031596 A1 WO2013031596 A1 WO 2013031596A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wafer
temperature measurement
plate
electrostatic chuck
Prior art date
Application number
PCT/JP2012/071165
Other languages
English (en)
French (fr)
Inventor
小坂井 守
和典 石村
剛志 渡辺
仁 河野
竜二 早原
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US14/239,352 priority Critical patent/US10502639B2/en
Priority to KR1020147003987A priority patent/KR101783362B1/ko
Publication of WO2013031596A1 publication Critical patent/WO2013031596A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements

Definitions

  • the present invention relates to a temperature-measuring plate-like body and a temperature-measuring device provided with the same, and more specifically, in-plane on a placement surface of an electrostatic chuck device for placing a plate-like sample such as a semiconductor wafer in a semiconductor manufacturing process.
  • the present invention relates to a temperature measurement plate that can easily and in real time evaluate temperature distribution, temperature rise characteristics, and cooling characteristics during temperature drop, and a temperature measurement apparatus including the same.
  • the etching technique is an important one of the microfabrication techniques.
  • the plasma etching technique capable of high-efficiency and large-area microfabrication has become the mainstream among the etching techniques. .
  • an electrostatic chuck apparatus has been used as an apparatus for simply mounting and fixing a wafer on a sample stage and maintaining the wafer at a desired temperature. Yes.
  • thermocouple hot junctions are bonded to each of the plurality of recesses scattered on the wafer surface with heat-resistant cement.
  • the wafer with the temperature sensor is placed on the mounting surface of the electrostatic chuck device.
  • a method has been adopted in which the temperature of the wafer is measured in real time with a temperature sensor while the mounted electrostatic chuck device is passed through the semiconductor manufacturing line.
  • An object of the present invention is to provide a temperature-measuring plate-like body capable of easily optimizing the in-plane temperature distribution, temperature rise characteristics, and cooling characteristics at the time of temperature fall of the mounting surface, and a temperature measurement apparatus including the same. .
  • the present inventors have provided a heating member on one main surface of the plate-like body placed on the placement surface of the electrostatic chuck device, and If a temperature measurement area for measuring the temperature of this plate-like body is provided in the area excluding the heating member on the surface, the actual temperature of this temperature measurement area, that is, the actual surface temperature of the plate-like body, is measured.
  • thermocouples It can be measured in real time using non-contact temperature measuring devices such as graphs, optical thermometers, radiation thermometers, etc., or contact temperature measuring devices such as thermocouples, and therefore the surface on the mounting surface of the electrostatic chuck device.
  • non-contact temperature measuring devices such as graphs, optical thermometers, radiation thermometers, etc.
  • contact temperature measuring devices such as thermocouples
  • the plate for temperature measurement according to the present invention is provided with a heating member on one main surface of the plate-like body, and the plate-like body in a part of the region excluding the heating member on the one main surface.
  • a temperature measurement region for measuring the temperature of the substrate is provided.
  • the temperature measurement plate is mounted on the mounting surface of the electrostatic chuck device, and is heated using a heating member provided on the temperature measurement plate.
  • a heating member provided on the temperature measurement plate.
  • the actual temperature in the temperature measurement region can be measured in real time using a non-contact temperature measuring device such as a thermograph, an optical thermometer, or a radiation thermometer.
  • a non-contact temperature measuring device such as a thermograph, an optical thermometer, or a radiation thermometer.
  • the heating member is a metal foil, and the metal foil is bonded to the one main surface via an insulating adhesive.
  • the heating member is a metal foil, and the heat transfer coefficient between the heating member and the plate is obtained by adhering the metal foil to one main surface via an insulating adhesive. Is constant.
  • the plate is made of any one of silicon, silicon carbide, silicon nitride, a group III-V compound semiconductor, and a group II-VI compound semiconductor.
  • a semiconductor wafer as a product is obtained by using any one of silicon, silicon carbide, silicon nitride, III-V compound semiconductor, and II-VI compound semiconductor as the plate. It is possible to obtain evaluation on the mounting surface of the electrostatic chuck device equivalent to the case where it is used.
  • the heating member is covered with an insulating film.
  • the insulating property of the heating member is maintained well.
  • temperature measurement using a thermograph becomes possible by covering with an insulating film.
  • the insulating adhesive includes any one of an acrylic adhesive, an epoxy adhesive, and a polyimide amide adhesive.
  • the insulating adhesive includes any one of an acrylic adhesive, an epoxy adhesive, and a polyimide amide adhesive. The stress during the process is relaxed, and there is no possibility that the heating member peels off from the plate-like body.
  • thermocouple is connected to the temperature measurement region.
  • the actual temperature in the temperature measurement region can be directly measured in real time using the thermocouple.
  • the actual surface temperature in the temperature measurement region of the plate-like body can be accurately measured in real time.
  • the temperature measuring device of the present invention includes the temperature measuring plate according to the present invention.
  • this temperature measuring apparatus by providing the temperature measuring plate according to the present invention, the in-plane temperature distribution on the mounting surface of the electrostatic chuck apparatus, the temperature rise characteristics, and the cooling characteristics during the temperature fall can be simplified in real time. It becomes possible to evaluate.
  • a heating member is provided on one main surface of the plate-like body, and the temperature of the plate-like body is set in a region excluding the heating member on the one main surface. Since a temperature measurement region for measurement is provided, a heating member incorporating the temperature measurement plate is used in a state where the temperature measurement plate is mounted on the mounting surface of the electrostatic chuck device. By heating, the actual temperature in the temperature measurement region can be measured in real time using a non-contact temperature measuring device such as a thermograph, an optical thermometer, or a radiation thermometer.
  • the actual surface temperature of this temperature measurement region can be measured in real time, and the in-plane temperature distribution on the mounting surface of the electrostatic chuck device, the temperature rise characteristics, and the cooling characteristics during the temperature fall can be simplified based on the measured values. Moreover, it can be evaluated in real time.
  • the temperature measuring plate-shaped body of the present invention since the temperature measuring plate-shaped body of the present invention is provided, an in-plane temperature distribution or temperature rise on the mounting surface of the electrostatic chuck device using the temperature measuring plate-shaped body. It is possible to easily evaluate the characteristics and the cooling characteristics when the temperature is lowered in real time.
  • FIG. 2 is a cross-sectional view taken along line AB of FIG. It is a schematic diagram which shows the temperature measuring apparatus provided with the plate-shaped body for temperature measurement of the 1st Embodiment of this invention. It is sectional drawing which shows the plate-shaped body for temperature measurement of the 2nd Embodiment of this invention.
  • FIG. 1 is a plan view showing a temperature measurement wafer (temperature measurement plate) according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AB of FIG.
  • an insulating adhesive 3 is attached to the entire surface (one main surface) 2 a of a wafer (plate-like body) 2, and a substantially meandering predetermined predetermined shape is formed on the insulating adhesive 3.
  • a heater element (heating member) 4 having a pattern is provided.
  • a substantially circular temperature measuring region 5 for measuring the temperature of the surface 2a of the wafer 2 is provided in a predetermined portion (part) of the region excluding the heater element 4 on the surface 3a of the insulating adhesive 3. Is provided.
  • heater element 4 and temperature measurement region 5 are covered with an insulating film 6 having an infrared transmittance of 80% or less.
  • 11 and 12 are voltage application electrodes provided at both ends of the heater element 4, and 13 is a notch for positioning the wafer 2.
  • the wafer 2 is a plate-like sample such as a semiconductor wafer to be a product, and it is preferable to use a plate-like sample flowing in an actual semiconductor production line as it is.
  • the wafer 2 include silicon wafers, SiC (silicon carbide) wafers, Si 3 N 4 (silicon nitride) wafers, III-V compound semiconductor wafers such as GaAs and GaAsN, and II-VI compound semiconductors such as ZnSe.
  • a wafer etc. are mentioned, and it selects and uses suitably according to the semiconductor wafer used as a product.
  • the size and shape of the wafer 2 may be appropriately selected according to the electrostatic chuck device on which the temperature measuring wafer 1 is placed, and is not particularly limited.
  • the insulating adhesive 3 is a sheet-like or film-like adhesive having heat resistance and insulating properties, and is mainly composed of any one of an acrylic adhesive, an epoxy adhesive, and a polyimide amide adhesive. It is an adhesive.
  • the thickness of the insulating adhesive 3 is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 15 ⁇ m or more and 50 ⁇ m or less.
  • the in-plane thickness variation of the insulating adhesive 3 is preferably within 10% of the thickness.
  • the in-plane thickness of the insulating adhesive 3 exceeds 10%
  • the in-plane distance between the wafer 2 and the heater element 4 exceeds 10% of the in-plane thickness of the insulating adhesive 3.
  • Variation occurs, and the in-plane uniformity of the heat transferred from the heater element 4 to the wafer 2 is reduced.
  • the in-plane temperature on the surface 2a of the wafer 2 becomes non-uniform, and the mounting surface of the electrostatic chuck device This is not preferable because the in-plane temperature distribution, temperature rise characteristics, and cooling characteristics during the temperature fall cannot be optimized.
  • the heater element 4 generates heat when a predetermined voltage is applied to the power application electrodes 11 and 12, and is made of a nonmagnetic metal foil having a predetermined pattern.
  • eight element pieces whose whole shape is a fan shape by meandering one thin metal wire are arranged around the central axis, and these are connected to form one heater element 4.
  • the pattern of the heater element 4 in FIG. 1 shows an example, and can be appropriately changed according to the processing and application of the target semiconductor wafer.
  • the heater element 4 has a constant thickness of 300 ⁇ m or less, preferably 100 ⁇ m or less, such as a non-magnetic metal foil such as titanium (Ti), tungsten (W), tantalum (Ta), molybdenum (Mo) or the like.
  • the melting point metal foil is formed by etching into a desired heater pattern by photolithography.
  • the reason why the thickness of the heater element 4 is set to 300 ⁇ m or less is that when the thickness exceeds 300 ⁇ m, the line width of the heater element is narrowed, so that the variation of the etching accuracy becomes large. This is because the temperature distribution of the wafer 2 changes and the temperature distribution on the surface of the wafer 2 cannot be measured accurately.
  • the heater element 4 is formed of a non-magnetic metal foil, the heater element does not self-heat due to the high frequency even when the temperature measuring wafer 1 is used in a high frequency atmosphere. Since it becomes easy to maintain temperature, it is preferable.
  • the temperature measurement area 5 is a substantially circular area having a diameter of 2 mm to 15 mm.
  • the temperature of the temperature measurement area 5 is measured in real time using a non-contact type temperature measurement device such as a thermograph, an optical thermometer, or a radiation thermometer. It is possible to measure with.
  • the position where the temperature measurement region 5 is formed is used to accurately know the in-plane temperature distribution, temperature rise characteristics, and cooling characteristics during temperature drop of the mounting surface of the electrostatic chuck device on which the temperature measuring wafer 1 is placed.
  • the in-plane temperature distribution of the wafer 2 is selected accurately.
  • the surface of the wafer 2 is scattered in a cross shape, and the temperature measurement regions 5 are arranged in a line at a predetermined interval.
  • the insulating film 6 is provided so that the temperature of the temperature measurement region 5 can be measured using a thermograph, and is a sheet-like or film-like Teflon having heat resistance and insulation that can be measured by the thermograph. (Registered trademark), polyimide, polyamide and the like.
  • the insulating film 6 may be any film that can measure the infrared transmittance with a thermograph, and the infrared transmittance in this case is preferably 80% or less.
  • this insulating film 6 it is possible to prevent the temperature of the thermograph itself from affecting the measured value due to the reflection of the thermograph during measurement by the thermograph.
  • the temperature measurement result varies depending on the emissivity of the object to be measured.
  • the heater element 4 and the insulating adhesive 3 and the like have the same emissivity. Thus, the temperature measurement accuracy is improved.
  • the insulating film 6 covers the heater element 4 and the entire temperature measurement region 5 here, but only the temperature measurement region 5 is covered in consideration of measuring the temperature of the temperature measurement region 5 using a thermograph. It is good also as a structure.
  • a manufacturing method of the temperature measuring wafer 1 will be described. First, a wafer 2 to be flowed to a target semiconductor production line from a plate-like sample such as a semiconductor wafer as a product is selected. Next, an insulating adhesive 3 that is a sheet-like or film-like adhesive is stuck on the wafer 2.
  • a nonmagnetic metal foil such as titanium (Ti), tungsten (W), tantalum (Ta), or molybdenum (Mo) is pasted on the insulating adhesive 3, and a desired heater pattern is formed by photolithography. Etching is performed to form the heater element 4. During this etching process, the temperature measurement region 5 is also formed at the same time.
  • this insulating film 6 is a sheet-like or film-like Teflon (registered trademark) having heat resistance and insulation in order to prevent infrared rays from being reflected on the thermograph body and the outer wall of the chamber. ), Polyimide, polyamide or the like.
  • Teflon registered trademark
  • FIG. 3 is a schematic diagram showing a temperature measuring device 21 provided with the temperature measuring wafer 1 of the present embodiment.
  • the temperature measuring device 21 is a sealed container in which the type, temperature, humidity, pressure, etc. of the atmosphere can be adjusted.
  • a thermograph 24 that can be measured is provided, and the thermograph 24 can measure the surface temperature of the electrostatic chuck device 31 accommodated in the space 23 through a window 25 formed on the top plate. It is like that.
  • the temperature measuring wafer 1 of the present embodiment is placed on the placement surface of the electrostatic chuck device 31.
  • the electrostatic chuck device 31 includes a disk-shaped electrostatic chuck portion 32 and a disk-shaped cooling base portion 33 having a thickness for cooling the electrostatic chuck portion 32 to a desired temperature.
  • the electrostatic chuck 32 may include a heater for heating a plate-like sample such as a silicon wafer.
  • the electrostatic chuck device 31 on which the temperature measuring wafer 1 is placed is placed on the space 23 at the bottom of the sealed container 22, and the atmosphere, temperature, pressure, etc. in the sealed container 22 are adjusted.
  • the vacuum atmosphere and the temperature are adjusted to 60 ° C.
  • a desired gas may be introduced into the sealed container 22 to adjust the atmosphere, temperature, pressure, and the like.
  • thermograph 24 a voltage is applied to the heater element 4 of the temperature measurement wafer 1 while measuring the temperature of the plurality of temperature measurement regions 5 of the temperature measurement wafer 1 in real time using the thermograph 24, and the temperature measurement wafer 1 is used as a semiconductor. Heat to the target wafer temperature to be reached in the manufacturing process. As a result of the measurement by the thermograph 24, the temperature rise characteristic of the wafer 2 in the temperature measurement wafer 1 is known. Therefore, the temperature rise characteristic on the mounting surface of the electrostatic chuck device 31 can be easily evaluated in real time.
  • thermograph 24 sequentially measures the temperatures of the plurality of temperature measuring regions 5 of the temperature measuring wafer 1 in real time.
  • the in-plane temperature distribution of the wafer 2 in the temperature measuring wafer 1 can be known. Therefore, the in-plane temperature distribution on the mounting surface of the electrostatic chuck device 31 can be easily evaluated in real time.
  • thermograph 24 the temperature measuring wafer 1 is cooled by the cooling base 33, and the plurality of temperature measuring regions 5 of the temperature measuring wafer 1 are measured by the thermograph 24.
  • the temperature is measured sequentially in real time.
  • the cooling characteristics in the cooling process of the wafer 2 in the temperature measuring wafer 1 can be known in real time. Therefore, the cooling characteristic in the cooling process of the mounting surface of the electrostatic chuck device 31 can be easily evaluated in real time.
  • the electrostatic chuck apparatus can be designed easily and in a short time. It became possible.
  • the insulating adhesive 3 is attached to the entire surface 2a of the wafer 2, the heater element 4 is provided on the insulating adhesive 3, and the heater element 4 is attached. Since a plurality of substantially circular temperature measurement regions 5 are provided at predetermined locations (parts) in the excluded region, and the heater element 4 and the temperature measurement region 5 are covered with the insulating film 6, the surface temperature of the temperature measurement region 5 is reduced. Based on the measured values, the in-plane temperature distribution on the mounting surface of the electrostatic chuck device and the cooling characteristics when the temperature is lowered can be evaluated easily and in real time.
  • the space 23 for housing the electrostatic chuck device 31 on which the temperature measuring wafer 1 is placed is provided at the bottom of the sealed container 22, and the sealed container 22 facing the space 23. Since the thermograph 24 is provided outside the top plate, and the surface temperature of the electrostatic chuck device 31 is measured by the thermograph 24 through the window 25 formed on the top plate, the temperature measuring wafer 1 is It is possible to simply and in real time evaluate the in-plane temperature distribution on the mounting surface of the electrostatic chuck device 31 and the cooling characteristics when the temperature is lowered. Thus, since the electrostatic chuck apparatus 31 can be measured easily, it can be used for shipping inspection and quality control of the electrostatic chuck apparatus.
  • thermograph 24 is provided outside the top plate of the sealed container 22, and the surface temperature of the electrostatic chuck device 31 is measured through a window 25 formed on the top plate by the thermograph 24.
  • a non-contact temperature measuring device such as an optical thermometer or a radiation thermometer is used, the in-plane temperature distribution on the mounting surface of the electrostatic chuck device 31 and It is possible to evaluate the cooling characteristics at the time of temperature drop simply and in real time.
  • FIG. 4 is a cross-sectional view showing a temperature measurement wafer (temperature measurement plate) according to the second embodiment of the present invention.
  • the temperature measurement wafer 41 according to this embodiment is a temperature measurement according to the first embodiment.
  • the temperature measurement wafer 1 according to the first embodiment is different from the wafer 1 for temperature measurement in that the temperature measurement region 5 is provided in a predetermined portion (part) of the region excluding the heater element 4 on the insulating adhesive 3. While the heater element 4 and the temperature measurement region 5 are covered with the insulating film 6 having an infrared transmittance of 80% or less, in the temperature measurement wafer 41 of the present embodiment, a plurality of regions corresponding to the temperature measurement region of the insulating adhesive 3 are provided.
  • thermocouple 42 is bonded and fixed to the exposed surface 2a of the wafer 2, and each of the hot contact portions 43 is heat-resistant. And insulation Is a point that was sealed with a Chakuzai 44.
  • the temperature measurement wafer 41 when a voltage is applied to the heater element 4 and the temperature measurement wafer 41 is heated to a target wafer temperature to be reached in the semiconductor manufacturing process, the temperature measurement wafer 41 is heated by the thermocouple 42.
  • the thermocouple 42 By sequentially measuring the temperature of the surface 2a of each wafer 2 in the plurality of temperature measurement regions in real time, the in-plane temperature distribution on the mounting surface of the electrostatic chuck device can be evaluated easily and in real time. .
  • the temperature measurement wafer 41 is cooled by the cooling base portion 33, the temperature of the surface 2a of each wafer 2 in the plurality of temperature measurement regions of the temperature measurement wafer 41 is sequentially measured in real time by the thermocouple 42.
  • the cooling characteristics in the cooling process of the mounting surface of the electrostatic chuck device can be easily evaluated in real time.
  • the hot contact portions 43 of the thermocouples 42 are sealed with an adhesive 44 in each of the plurality of temperature measurement regions of the exposed surface 2 a of the wafer 2.
  • the hot contact portion 43 of the thermocouple 42 may be bonded and fixed to the surface 2 a of the surface and sealed with the adhesive 44.
  • the present invention relates to a temperature-measuring plate-like body and a temperature-measuring device including the same, and more specifically, an in-plane temperature on a placement surface of an electrostatic chuck device that places a plate-like sample such as a semiconductor wafer in a semiconductor manufacturing process.
  • the present invention can be applied to a temperature measuring plate and a temperature measuring device including the same, which can easily evaluate the distribution, temperature rising characteristics, and cooling characteristics at the time of cooling in real time.
  • Temperature measurement wafer (Temperature measurement plate) 2 Wafer (plate) 2a Surface (one main surface) 3 Insulating adhesive 4 Heater element (heating member) 5 Temperature measurement region 6 Insulating films 11 and 12 Voltage application electrode 13 Notch 21 Temperature measurement device 22 Sealed container 23 Space 24 Thermograph 25 Window 31 Electrostatic chuck device 32 Electrostatic chuck portion 33 Cooling base portion 41 Temperature measurement wafer ( Plate for temperature measurement) 42 Thermocouple 43 Hot junction 44 Adhesive

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

静電チャック装置の載置面に単に載置するだけで、製品となる半導体ウエハそのものを使用することなく、静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性を容易に最適化することが可能な温度測定用板状体及びそれを備えた温度測定装置が提供される。そのような温度測定用ウエハ(温度測定用板状体)(1)は、ウエハ(2)の表面(2a)全面に絶縁性接着剤(3)が貼着され、この絶縁性接着剤(3)上にヒーターエレメント(4)が設けられ、この絶縁性接着剤(3)の表面(3a)上のヒーターエレメント(4)を除く領域にウエハ(2)の表面(2a)の温度を測定するための温度測定領域(5)が設けられ、これらヒーターエレメント(4)及び温度測定領域(5)は絶縁膜(6)により被覆されている。

Description

温度測定用板状体及びそれを備えた温度測定装置
 本発明は、温度測定用板状体及びそれを備えた温度測定装置に関し、さらに詳しくは、半導体製造プロセスにおいて半導体ウエハ等の板状試料を載置する静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することが可能な温度測定用板状体及びそれを備えた温度測定装置に関するものである。
本願は、2011年8月26日に、日本に出願された特願2011-185124号に基づき優先権を主張し、その内容をここに援用する。
 近年、半導体製造プロセスにおいては、素子の高集積化や高性能化に伴い、微細加工技術の更なる向上が求められている。この半導体製造プロセスの中でもエッチング技術は、微細加工技術の重要な一つであり、近年では、エッチング技術の内でも、高効率かつ大面積の微細加工が可能なプラズマエッチング技術が主流となっている。
 プラズマエッチング装置等のプラズマを用いた半導体製造装置においては、従来から、試料台に簡単にウエハを取付け、固定するとともに、このウエハを所望の温度に維持する装置として静電チャック装置が使用されている。
 ところで、従来の静電チャック装置では、製品となる半導体ウエハ等の板状試料を実際に半導体製造ラインに流す際に、予め、この半導体製造ラインにおける静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性を最適な値の範囲に調整する必要があり、そこで、ウエハの表面に点在する複数の凹部それぞれに熱電対の温接点を耐熱セメントにて接着・固定した温度センサー付きウエハが提案されている(特許文献1)。
 この温度センサー付きウエハを用いて半導体製造ラインにおける静電チャック装置の製造条件を最適化する場合、この温度センサー付きウエハを静電チャック装置の載置面に載置し、この温度センサー付きウエハが載置された静電チャック装置を半導体製造ライン内を流す間にウエハの温度を温度センサーにてリアルタイムで測定する方法が採られていた。
特許第3663035号公報
 ところで、上述した従来の温度センサー付きウエハでは、静電チャック装置の製造条件を最適化するために、この温度センサー付きウエハを半導体製造ラインに実際に流してみて製造条件を最適化するという方法が採られており、したがって、温度センサー付きウエハ自体を静電チャック装置の条件最適化のために消費してしまうという問題点があった。
 また、温度センサー付きウエハの加熱を、静電チャック装置に内蔵されたヒーターを用い、あるいは半導体装置のプラズマ照射または外部ヒーターを用いて行う必要があり、静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性の最適値化のプロセスが煩雑になり、最適値化までに時間が掛かるという問題点があった。
 また、温度センサー付きウエハを半導体製造装置に実際に流すことなく使用する場合においても、温度センサー付きウエハの加熱を外部ヒーターを用いて行う必要があり、同様に静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性の最適値化のプロセスが煩雑になり、最適値化までに時間が掛かるという問題点があった。
 本発明は、上記の事情に鑑みてなされたものであって、静電チャック装置の載置面に単に載置するだけで、製品となる半導体ウエハそのものを使用することなく、静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性を容易に最適化することが可能な温度測定用板状体及びそれを備えた温度測定装置を提供することを目的とする。
 本発明者等は、上記の課題を解決するべく鋭意検討を行った結果、静電チャック装置の載置面に載置する板状体の一方の主面に加熱部材を設け、かつ、この主面上の加熱部材を除く領域に、この板状体の温度を測定するための温度測定領域を設ければ、この温度測定領域の実際の温度、すなわち板状体の実際の表面温度を、サーモグラフ、光温度計、放射温度計等の非接触式温度測定装置、あるいは熱電対等の接触式温度測定装置を用いてリアルタイムで測定することができ、したがって、静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することが可能なことを知見し、本発明を完成するに到った。
 すなわち、本発明の温度測定用板状体は、板状体の一方の主面に加熱部材を設け、かつ前記一方の主面上の前記加熱部材を除く領域の一部に、前記板状体の温度を測定するための温度測定領域を設けてなることを特徴とする。
 この温度測定用板状体では、この温度測定用板状体を静電チャック装置の載置面に載置した状態で、この温度測定用板状体に設けられた加熱部材を用いて加熱することにより、温度測定領域の実際の温度を、サーモグラフ、光温度計、放射温度計等の非接触式温度測定装置を用いてリアルタイムで測定することが可能になる。これにより、この板状体の温度測定領域における実際の表面温度をリアルタイムで測定することが可能になり、この測定値に基づき静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することが可能になる。
 本発明の温度測定用板状体において、前記加熱部材は金属箔であり、この金属箔は前記一方の主面に絶縁性接着剤を介して接着されていることを特徴とする。
 この温度測定用板状体では、加熱部材を金属箔とし、この金属箔を絶縁性接着剤を介して一方の主面に接着したことにより、加熱部材と板状体との間の熱伝達率が一定となる。
 本発明の温度測定用板状体において、前記板状体は、ケイ素、炭化ケイ素、窒化ケイ素、III-V属化合物半導体、II-VI属化合物半導体のいずれか1種からなることを特徴とする。
 この温度測定用板状体では、板状体をケイ素、炭化ケイ素、窒化ケイ素、III-V属化合物半導体、II-VI属化合物半導体のいずれか1種とすることにより、製品となる半導体ウエハを用いた場合と同等の静電チャック装置の載置面における評価を得ることが可能になる。
 本発明の温度測定用板状体において、前記加熱部材は、絶縁膜により被覆されていることを特徴とする。
 この温度測定用板状体では、加熱部材を絶縁膜により被覆したので、加熱部材の絶縁性が良好に保持される。また、絶縁膜による被覆により、サーモグラフを用いた温度測定が可能になる。
 本発明の温度測定用板状体において、前記絶縁性接着剤は、アクリル系接着剤、エポキシ系接着剤、ポリイミドアミド系接着剤のいずれか1種を含むことを特徴とする。
 この温度測定用板状体では、絶縁性接着剤を、アクリル系接着剤、エポキシ系接着剤、ポリイミドアミド系接着剤のいずれか1種を含むこととしたことにより、板状体と加熱部材との間の応力が緩和され、加熱部材が板状体から剥離する等の不具合が生じるおそれがなくなる。
 本発明の温度測定用板状体において、前記温度測定領域に熱電対を接続してなることを特徴とする。
 この温度測定用板状体では、温度測定領域に熱電対を接続したことにより、温度測定領域の実際の温度を、熱電対を用いてリアルタイムで直接測定することが可能になる。これにより、この板状体の温度測定領域における実際の表面温度をリアルタイムで正確に測定することが可能になる。
 本発明の温度測定装置は、本発明の温度測定用板状体を備えていることを特徴とする。
 この温度測定装置では、本発明の温度測定用板状体を備えたことにより、静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することが可能になる。
 本発明の温度測定用板状体によれば、板状体の一方の主面に加熱部材を設け、かつ前記一方の主面上の前記加熱部材を除く領域に、前記板状体の温度を測定するための温度測定領域を設けたので、この温度測定用板状体を静電チャック装置の載置面に載置した状態で、この温度測定用板状体を内蔵された加熱部材を用いて加熱することにより、温度測定領域の実際の温度を、サーモグラフ、光温度計、放射温度計等の非接触式温度測定装置を用いてリアルタイムで測定することができる。したがって、この温度測定領域の実際の表面温度をリアルタイムで測定することができ、この測定値に基づき静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することができる。
 本発明の温度測定装置によれば、本発明の温度測定用板状体を備えたので、この温度測定用板状体を用いて静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することができる。
本発明の第1の実施形態の温度測定用板状体を示す平面図である。 図1のA-B線に沿う断面図である。 本発明の第1の実施形態の温度測定用板状体を備えた温度測定装置を示す模式図である。 本発明の第2の実施形態の温度測定用板状体を示す断面図である。
 本発明の温度測定用板状体及びそれを備えた温度測定装置を実施するための形態について、図面に基づき説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
「第1の実施形態」
 図1は、本発明の第1の実施形態の温度測定用ウエハ(温度測定用板状体)を示す平面図、図2は、図1のA-B線に沿う断面図である。
 この温度測定用ウエハ1は、ウエハ(板状体)2の表面(一方の主面)2a全面に絶縁性接着剤3が貼着され、この絶縁性接着剤3上に略蛇行状の所定のパターンを有するヒーターエレメント(加熱部材)4が設けられている。そして、この絶縁性接着剤3の表面3a上のヒーターエレメント4を除く領域のうち所定個所(一部)には、ウエハ2の表面2aの温度を測定するための略円形状の温度測定領域5が設けられている。
 これらヒーターエレメント4及び温度測定領域5は、赤外線透過率が80%以下の絶縁膜6により被覆されている。なお、11、12はヒーターエレメント4の両端部に設けられた電圧印加用電極、13はウエハ2を位置決めするためのノッチである。
 ウエハ2は、製品となる半導体ウエハ等の板状試料であり、実際の半導体製造ラインに流れている板状試料をそのまま用いることが好ましい。
 このウエハ2としては、例えば、シリコンウエハ、SiC(炭化ケイ素)ウエハ、Si(窒化ケイ素)ウエハ、GaAs、GaAsN等のIII-V属化合物半導体ウエハ、ZnSe等のII-VI属化合物半導体ウエハ等が挙げられ、製品となる半導体ウエハに合わせて適宜選択使用される。
 このウエハ2の大きさや形状は、この温度測定用ウエハ1を載置する静電チャック装置に合わせて適宜選択すればよく、特に制限はない。
 絶縁性接着剤3は、耐熱性及び絶縁性を有するシート状またはフィルム状の接着剤であり、アクリル系接着剤、エポキシ系接着剤、ポリイミドアミド系接着剤のいずれか1種を主成分とする接着剤である。
 この絶縁性接着剤3の厚みは5μm以上かつ100μm以下が好ましく、より好ましくは15μm以上かつ50μm以下である。この絶縁性接着剤3の面内の厚みのバラツキは、その厚みの10%以内であることが好ましい。
 ここで、絶縁性接着剤3の面内の厚みのバラツキが10%を超えると、ウエハ2とヒーターエレメント4との面内間隔に、絶縁性接着剤3の面内の厚みの10%を超えるバラツキが生じて、ヒータエレメント4からウエハ2に伝達される熱の面内均一性が低下し、その結果、ウエハ2の表面2aにおける面内温度が不均一となり、静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性を最適化することができなくなるので、好ましくない。
 ヒーターエレメント4は、電力印加用電極11、12に所定の電圧を印加することにより発熱するもので、所定のパターンを有する非磁性金属箔からなるものである。
 ここでは、1本の金属細線を蛇行させて全体形状を扇形状としたエレメント片を中心軸の回りに8枚配列し、これらを接続して1本のヒータエレメント4としてある。なお、図1のヒータエレメント4のパターンは、一例を示したものであり、対象となる半導体ウエハの処理や用途に合わせて適宜変更可能である。
 このヒータエレメント4は、厚みが300μm以下、好ましくは100μm以下の一定の厚みを有する非磁性金属箔、例えば、チタン(Ti)、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属箔をフォトリソグラフィー法により、所望のヒーターパターンにエッチング加工することで形成される。
 ここで、ヒータエレメント4の厚みを300μm以下とした理由は、厚みが300μmを超えると、ヒーターエレメントの線幅が細くなるためにエッチング加工の精度のばらつきが大きくなり、その結果、ウエハ2の表面の温度分布が変化し、ウエハ2の表面の温度分布を正確に測定することができなくなるからである。
 また、ヒータエレメント4を非磁性金属箔で形成すれば、この温度測定用ウエハ1を高周波雰囲気中で用いてもヒータエレメントが高周波により自己発熱せず、したがって、この温度測定用ウエハ1の面内温度を維持することが容易となるので好ましい。
 温度測定領域5は、直径2mm~15mmの略円形状の領域であり、この温度測定領域5の温度を、サーモグラフ、光温度計、放射温度計等の非接触式温度測定装置を用いてリアルタイムで測定することが可能である。
 この温度測定領域5が形成される位置は、温度測定用ウエハ1が載置される静電チャック装置の載置面の面内温度分布や昇温特性や降温時における冷却特性を正確に知るために、ウエハ2の面内温度分布を正確に表すように選択される。ここでは、ウエハ2の表面に十字形状に点在しており、各温度測定領域5は、互いに所定の間隔をおいて一列に配列している。
 絶縁膜6は、温度測定領域5の温度をサーモグラフを用いて測定することができるように設けたもので、サーモグラフによる測定が可能な耐熱性及び絶縁性を有するシート状またはフィルム状のテフロン(登録商標)、ポリイミド、ポリアミド等により構成されている。この絶縁膜6は、サーモグラフにより赤外線透過率を測定することができるものであればよく、この場合の赤外線透過率は80%以下であることが好ましい。
 この絶縁膜6を用いることで、サーモグラフによる測定時に、サーモグラフの写り込みによりサーモグラフ自体の温度が測定値に影響することを防ぐことができる。また、サーモグラフを用いた温度測定では、被測定物の輻射率により温度の測定結果が変わるが、この絶縁膜6を用いることでヒータエレメント4と絶縁性接着剤3等とを同じ輻射率とすることができ、よって温度の測定精度が向上する。
 この絶縁膜6は、ここではヒーターエレメント4及び温度測定領域5全体を覆っているが、温度測定領域5の温度をサーモグラフを用いて測定することを考慮すると、温度測定領域5のみを覆った構成としてもよい。
 次に、この温度測定用ウエハ1の製造方法について説明する。
 まず、製品となる半導体ウエハ等の板状試料から目的の半導体製造ラインに流されるウエハ2を選択する。
 次いで、このウエハ2上に、シート状またはフィルム状の接着剤である絶縁性接着剤3を貼着する。
 次いで、この絶縁性接着剤3上に、チタン(Ti)、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の非磁性金属箔を貼り付け、フォトリソグラフィー法により、所望のヒーターパターンにエッチング加工し、ヒータエレメント4とする。このエッチング加工の際に、温度測定領域5も同時に形成される。
 次いで、ヒーターエレメント4及び温度測定領域5全体を覆うように、絶縁膜6を形成する。この絶縁膜6は、サーモグラフによる測定を考慮した場合、サーモグラフ本体及びチャンバー外壁等の赤外線の写り込みを防止するために、耐熱性及び絶縁性を有するシート状またはフィルム状のテフロン(登録商標)、ポリイミド、ポリアミド等を貼着することにより形成することができる。
 以上により、温度測定用ウエハ1を作製することができる。
 図3は、本実施形態の温度測定用ウエハ1を備えた温度測定装置21を示す模式図であり、この温度測定装置21は、雰囲気の種類、温度、湿度、圧力等が調節可能な密閉容器22の底部に、温度測定用ウエハ1を載置する静電チャック装置31を収納するスペース23があり、このスペース23に対向する密閉容器22の天板の外側には、表面温度を被接触にて測定することができるサーモグラフ24が設けられ、このサーモグラフ24は天板に形成された窓25を介してスペース23内に収納された静電チャック装置31の表面温度を測定することができるようになっている。
 この温度測定装置21を用いて静電チャック装置の面内温度分布や昇温特性や降温時における冷却特性等の諸特性を測定する方法について説明する。
 まず、静電チャック装置31の載置面に本実施形態の温度測定用ウエハ1を載置する。
 この静電チャック装置31は、円板状の静電チャック部32と、この静電チャック部32を所望の温度に冷却する厚みのある円板状の冷却ベース部33とを備えている。
 この静電チャック部32は、シリコンウエハ等の板状試料を加熱するためのヒーターを内蔵していてもよい。
 次いで、この温度測定用ウエハ1を載置した静電チャック装置31を密閉容器22の底部のスペース23上に配置し、この密閉容器22内の雰囲気、温度、圧力等を調整する。
例えば、真空雰囲気、温度60℃に調整する。なお、密閉容器22内に所望のガスを導入して雰囲気、温度、圧力等を調整しても良い。
 次いで、サーモグラフ24により温度測定用ウエハ1の複数の温度測定領域5の温度をリアルタイムで測定しながら、温度測定用ウエハ1のヒータエレメント4に電圧を印加し、この温度測定用ウエハ1を半導体製造プロセスにおいて到達すべき目標のウエハ温度にまで加熱する。
 このサーモグラフ24による測定の結果、温度測定用ウエハ1におけるウエハ2の昇温特性が分かる。したがって、静電チャック装置31の載置面における昇温特性を、簡便にしかもリアルタイムで評価することができる。
 この温度測定用ウエハ1の温度が目標のウエハ温度に安定したころを見計らって、サーモグラフ24により温度測定用ウエハ1の複数の温度測定領域5の温度を、リアルタイムで順次測定する。
 サーモグラフ24による測定の結果、温度測定用ウエハ1におけるウエハ2の面内温度分布が分かる。したがって、静電チャック装置31の載置面における面内温度分布を簡便にしかもリアルタイムで評価することができる。
 次いで、温度測定用ウエハ1のヒータエレメント4への電圧印加を遮断し、冷却ベース部33により温度測定用ウエハ1を冷却しながら、サーモグラフ24により温度測定用ウエハ1の複数の温度測定領域5の温度を、リアルタイムで順次測定する。
 サーモグラフ24による測定の結果、温度測定用ウエハ1におけるウエハ2の冷却過程における冷却特性がリアルタイムで分かる。したがって、静電チャック装置31の載置面の冷却過程における冷却特性を簡便にしかもリアルタイムで評価することができる。
 この温度測定用ウエハ1を用いて静電チャック装置31の載置面の昇温過程における昇温特性及び冷却過程における冷却特性を評価した結果、静電チャック装置の設計を簡便に短時間で行うことが可能となった。
 本実施形態の温度測定用ウエハ1によれば、ウエハ2の表面2a全面に絶縁性接着剤3を貼着し、この絶縁性接着剤3上にヒーターエレメント4を設けるとともに、このヒーターエレメント4を除く領域のうち所定個所(一部)に略円形状の温度測定領域5を複数設け、これらヒーターエレメント4及び温度測定領域5を絶縁膜6にて被覆したので、温度測定領域5の表面温度の測定値に基づき静電チャック装置の載置面における面内温度分布及び降温時における冷却特性を簡便にしかもリアルタイムで評価することができる。
 本実施形態の温度測定装置21によれば、密閉容器22の底部に、温度測定用ウエハ1を載置する静電チャック装置31を収納するスペース23を設け、このスペース23に対向する密閉容器22の天板の外側にサーモグラフ24を設け、このサーモグラフ24により天板に形成された窓25を介して静電チャック装置31の表面温度を測定することとしたので、温度測定用ウエハ1を用いて静電チャック装置31の載置面における面内温度分布及び降温時における冷却特性を簡便にしかもリアルタイムで評価することができる。
 このように、静電チャック装置31を簡易的に測定できるので、静電チャック装置の出荷検査や品質管理にも用いることができる。
 なお、この温度測定装置21では、密閉容器22の天板の外側にサーモグラフ24を設け、このサーモグラフ24により天板に形成された窓25を介して静電チャック装置31の表面温度を測定する構成としたが、サーモグラフ24の替わりに、光温度計、放射温度計等の非接触式温度測定装置を用いても、同様に静電チャック装置31の載置面における面内温度分布及び降温時における冷却特性を簡便にしかもリアルタイムで評価することができる。
「第2の実施形態」
 図4は、本発明の第2の実施形態の温度測定用ウエハ(温度測定用板状体)を示す断面図であり、本実施形態の温度測定用ウエハ41が第1の実施形態の温度測定用ウエハ1と異なる点は、第1の実施形態の温度測定用ウエハ1では、絶縁性接着剤3上のヒーターエレメント4を除く領域のうち所定個所(一部)に温度測定領域5を設け、これらヒーターエレメント4及び温度測定領域5を赤外線透過率が80%以下の絶縁膜6により被覆したのに対し、本実施形態の温度測定用ウエハ41では、絶縁性接着剤3の温度測定領域に当たる複数の部分を除去して、それらの部分のウエハ2の表面2aを露出させ、この露出したウエハ2の表面2aに熱電対42の温接点部43を接着固定し、これら温接点部43各々を耐熱性及び絶縁性を有する接着剤44にて封止した点である。
 この温度測定用ウエハ41では、ヒータエレメント4に電圧を印加し、この温度測定用ウエハ41を半導体製造プロセスにおいて到達すべき目標のウエハ温度にまで加熱した時に、熱電対42により温度測定用ウエハ41の複数の温度測定領域におけるそれぞれのウエハ2の表面2aの温度を、リアルタイムで順次測定することにより、静電チャック装置の載置面における面内温度分布を簡便にしかもリアルタイムで評価することができる。
 また、冷却ベース部33により温度測定用ウエハ41を冷却しながら、熱電対42により温度測定用ウエハ41の複数の温度測定領域におけるそれぞれのウエハ2の表面2aの温度を、リアルタイムで順次測定することにより、静電チャック装置の載置面の冷却過程における冷却特性を簡便にしかもリアルタイムで評価することができる。
 なお、本実施形態の温度測定用ウエハ41では、露出しているウエハ2の表面2aの複数の温度測定領域各々全部に熱電対42の温接点部43を接着剤44にて封止したこととしたが、熱電対42は、温度測定領域5各々全部に設ける必要はなく、ウエハ2の表面2aのうち必要とされる温度測定領域のみを複数個所選択して露出させ、これらの露出したウエハ2の表面2aに熱電対42の温接点部43を接着固定し、接着剤44にて封止したこととしてもよい。
 本発明は、温度測定用板状体及びそれを備えた温度測定装置、さらに詳しくは、半導体製造プロセスにおいて半導体ウエハ等の板状試料を載置する静電チャック装置の載置面における面内温度分布や昇温特性や降温時における冷却特性を簡便にしかもリアルタイムで評価することが可能な温度測定用板状体及びそれを備えた温度測定装置に適用できる。
1 温度測定用ウエハ(温度測定用板状体)
2 ウエハ(板状体)
2a 表面(一方の主面)
3 絶縁性接着剤
4 ヒーターエレメント(加熱部材)
5 温度測定領域
6 絶縁膜
11、12 電圧印加用電極
13 ノッチ
21 温度測定装置
22 密閉容器
23 スペース
24 サーモグラフ
25 窓
31 静電チャック装置
32 静電チャック部
33 冷却ベース部
41 温度測定用ウエハ(温度測定用板状体)
42 熱電対
43 温接点部
44 接着剤

Claims (7)

  1.  板状体の一方の主面に加熱部材を設け、かつ前記一方の主面上の前記加熱部材を除く領域の一部に、前記板状体の温度を測定するための温度測定領域を設けてなることを特徴とする温度測定用板状体。
  2.  前記加熱部材は金属箔であり、この金属箔は前記一方の主面に絶縁性接着剤を介して接着されていることを特徴とする請求項1記載の温度測定用板状体。
  3.  前記板状体は、ケイ素、炭化ケイ素、窒化ケイ素、III-V属化合物半導体、II-VI属化合物半導体のいずれか1種からなることを特徴とする請求項1または2記載の温度測定用板状体。
  4.  前記加熱部材は、絶縁膜により被覆されていることを特徴とする請求項1または2記載の温度測定用板状体。
  5.  前記絶縁性接着剤は、アクリル系接着剤、エポキシ系接着剤、ポリイミドアミド系接着剤のいずれか1種を含むことを特徴とする請求項2記載の温度測定用板状体。
  6.  前記温度測定領域に熱電対を接続してなることを特徴とする請求項1または2記載の温度測定用板状体。
  7.  請求項1または2記載の温度測定用板状体を備えていることを特徴とする温度測定装置。
PCT/JP2012/071165 2011-08-26 2012-08-22 温度測定用板状体及びそれを備えた温度測定装置 WO2013031596A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/239,352 US10502639B2 (en) 2011-08-26 2012-08-22 Plate-shaped body for temperature measurement and temperature measuring apparatus provided with the same
KR1020147003987A KR101783362B1 (ko) 2011-08-26 2012-08-22 온도 측정용 판 형상체 및 그것을 구비한 온도 측정 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011185124A JP5915026B2 (ja) 2011-08-26 2011-08-26 温度測定用板状体及びそれを備えた温度測定装置
JP2011-185124 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031596A1 true WO2013031596A1 (ja) 2013-03-07

Family

ID=47756088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071165 WO2013031596A1 (ja) 2011-08-26 2012-08-22 温度測定用板状体及びそれを備えた温度測定装置

Country Status (5)

Country Link
US (1) US10502639B2 (ja)
JP (1) JP5915026B2 (ja)
KR (1) KR101783362B1 (ja)
TW (1) TWI540675B (ja)
WO (1) WO2013031596A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168859A1 (en) * 2015-11-11 2017-05-17 Ricoh Company, Ltd. Ion generation device and ion detection device
JP6256454B2 (ja) * 2015-11-30 2018-01-10 株式会社デンソー ヒータプレート、このヒータプレートを用いる熱流束センサの製造装置、このヒータプレートの製造方法、及び、このヒータプレートの製造装置
KR102513443B1 (ko) * 2016-03-15 2023-03-24 삼성전자주식회사 정전 척 및 그를 포함하는 기판 처리 장치
JP2018063974A (ja) 2016-10-11 2018-04-19 東京エレクトロン株式会社 温度制御装置、温度制御方法、および載置台
JP7018809B2 (ja) * 2018-04-03 2022-02-14 東京エレクトロン株式会社 熱電対固定治具
JP7235218B2 (ja) * 2019-03-04 2023-03-08 ミネベアミツミ株式会社 流体センサ
EP3827903A1 (en) * 2019-11-29 2021-06-02 Cockerill Maintenance & Ingenierie S.A. Device and method for manufacturing a coated metal strip with improved appearance
US11774298B2 (en) * 2020-02-12 2023-10-03 Tokyo Electron Limited Multi-point thermocouples and assemblies for ceramic heating structures
CN113555293B (zh) * 2021-07-21 2023-06-27 中国电子科技集团公司第三十八研究所 硅基片式收发组件温度应力场测试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260683A (ja) * 1999-03-05 2000-09-22 Toshiba Corp 半導体装置の製造装置
JP2004228334A (ja) * 2003-01-23 2004-08-12 Komatsu Ltd 温調装置

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580388A (en) * 1993-01-21 1996-12-03 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors
JP3208029B2 (ja) * 1994-11-22 2001-09-10 株式会社巴川製紙所 静電チャック装置およびその作製方法
US6071630A (en) * 1996-03-04 2000-06-06 Shin-Etsu Chemical Co., Ltd. Electrostatic chuck
US5740016A (en) * 1996-03-29 1998-04-14 Lam Research Corporation Solid state temperature controlled substrate holder
JP3236533B2 (ja) * 1997-07-02 2001-12-10 松下電器産業株式会社 静電吸着電極装置
JP3663035B2 (ja) 1997-07-30 2005-06-22 川惣電機工業株式会社 半導体ウエハ熱処理炉用の測温ウエハ
US6222161B1 (en) * 1998-01-12 2001-04-24 Tokyo Electron Limited Heat treatment apparatus
JPH11354260A (ja) * 1998-06-11 1999-12-24 Shin Etsu Chem Co Ltd 複層セラミックスヒータ
US6256187B1 (en) * 1998-08-03 2001-07-03 Tomoegawa Paper Co., Ltd. Electrostatic chuck device
US6100506A (en) * 1999-07-26 2000-08-08 International Business Machines Corporation Hot plate with in situ surface temperature adjustment
JP2001118664A (ja) * 1999-08-09 2001-04-27 Ibiden Co Ltd セラミックヒータ
JP3273773B2 (ja) * 1999-08-12 2002-04-15 イビデン株式会社 半導体製造・検査装置用セラミックヒータ、半導体製造・検査装置用静電チャックおよびウエハプローバ用チャックトップ
DE60021850T2 (de) * 1999-09-07 2006-04-13 Ibiden Co., Ltd., Ogaki Keramisches heizelement
US6740853B1 (en) * 1999-09-29 2004-05-25 Tokyo Electron Limited Multi-zone resistance heater
US6448575B1 (en) * 1999-10-08 2002-09-10 Teradyne, Inc. Temperature control structure
ATE301916T1 (de) * 1999-11-19 2005-08-15 Ibiden Co Ltd Keramisches heizgerät
US6410172B1 (en) * 1999-11-23 2002-06-25 Advanced Ceramics Corporation Articles coated with aluminum nitride by chemical vapor deposition
JP3228924B2 (ja) * 2000-01-21 2001-11-12 イビデン株式会社 半導体製造・検査装置用セラミックヒータ
EP1274280A1 (en) * 2000-04-14 2003-01-08 Ibiden Co., Ltd. Ceramic heater
EP1225790A1 (en) * 2000-05-02 2002-07-24 Ibiden Co., Ltd. Ceramic heater
JP3859937B2 (ja) * 2000-06-02 2006-12-20 住友大阪セメント株式会社 静電チャック
KR20010111058A (ko) * 2000-06-09 2001-12-15 조셉 제이. 스위니 전체 영역 온도 제어 정전기 척 및 그 제조방법
EP1304729A1 (en) * 2000-07-19 2003-04-23 Ibiden Co., Ltd. Semiconductor manufacturing/testing ceramic heater, production method for the ceramic heater and production system for the ceramic heater
US7075031B2 (en) * 2000-10-25 2006-07-11 Tokyo Electron Limited Method of and structure for controlling electrode temperature
JP2002203663A (ja) * 2000-12-27 2002-07-19 Ibiden Co Ltd 半導体産業用セラミックヒータ
US6741446B2 (en) * 2001-03-30 2004-05-25 Lam Research Corporation Vacuum plasma processor and method of operating same
JP3582518B2 (ja) * 2001-04-18 2004-10-27 住友電気工業株式会社 抵抗発熱体回路パターンとそれを用いた基板処理装置
JP3825277B2 (ja) * 2001-05-25 2006-09-27 東京エレクトロン株式会社 加熱処理装置
EP1406472A1 (en) * 2001-07-09 2004-04-07 Ibiden Co., Ltd. Ceramic heater and ceramic joined article
JP3973872B2 (ja) * 2001-10-17 2007-09-12 住友大阪セメント株式会社 電極内蔵型サセプタ及びその製造方法
JP4008230B2 (ja) * 2001-11-14 2007-11-14 住友大阪セメント株式会社 静電チャックの製造方法
JP3936584B2 (ja) 2002-01-08 2007-06-27 荏原バラード株式会社 燃料電池発電システム
JP3963788B2 (ja) * 2002-06-20 2007-08-22 信越化学工業株式会社 静電吸着機能を有する加熱装置
JP3962661B2 (ja) * 2002-08-30 2007-08-22 三菱重工業株式会社 静電チャック支持機構及び支持台装置及びプラズマ処理装置
KR100889758B1 (ko) * 2002-09-03 2009-03-20 삼성모바일디스플레이주식회사 유기박막 형성장치의 가열용기
US6979805B2 (en) * 2003-01-08 2005-12-27 Hewlett-Packard Development Company, L.P. Fuel-cell resistors and methods
JP2004296553A (ja) * 2003-03-25 2004-10-21 Ngk Insulators Ltd 半導体製造装置用部材
JP2005136025A (ja) * 2003-10-29 2005-05-26 Trecenti Technologies Inc 半導体製造装置、半導体装置の製造方法及びウエハステージ
WO2006017070A2 (en) * 2004-07-07 2006-02-16 General Electric Company Protective cotaing on a substrate and method of making thereof
TWI281833B (en) * 2004-10-28 2007-05-21 Kyocera Corp Heater, wafer heating apparatus and method for manufacturing heater
WO2006060134A2 (en) * 2004-11-15 2006-06-08 Cree, Inc. Restricted radiated heating assembly for high temperature processing
US7705275B2 (en) * 2005-08-17 2010-04-27 Applied Materials, Inc. Substrate support having brazed plates and resistance heater
WO2007048573A1 (de) * 2005-10-24 2007-05-03 Heraeus Sensor Technology Gmbh Strömungssensorelement und dessen selbstreinigung
US7568399B2 (en) * 2006-01-05 2009-08-04 Integrated Sensing Systems, Inc. Microfluidic device
US7646581B2 (en) * 2006-01-31 2010-01-12 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck
JP5210491B2 (ja) * 2006-02-03 2013-06-12 日立オートモティブシステムズ株式会社 熱式流量センサ
JP4756695B2 (ja) * 2006-02-20 2011-08-24 コバレントマテリアル株式会社 面状ヒータ
US8226769B2 (en) * 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
US8168050B2 (en) * 2006-07-05 2012-05-01 Momentive Performance Materials Inc. Electrode pattern for resistance heating element and wafer processing apparatus
US9275887B2 (en) * 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
US7619870B2 (en) * 2006-08-10 2009-11-17 Tokyo Electron Limited Electrostatic chuck
JP2008170382A (ja) * 2007-01-15 2008-07-24 Hitachi Ltd 熱式流体流量センサ及びその製造方法
US7741584B2 (en) * 2007-01-21 2010-06-22 Momentive Performance Materials Inc. Encapsulated graphite heater and process
KR101114304B1 (ko) * 2007-02-28 2012-03-13 가부시키가이샤 야마다케 유량 센서
JP5202007B2 (ja) * 2008-01-29 2013-06-05 日立オートモティブシステムズ株式会社 熱式流体流量センサ
US8883564B2 (en) * 2009-02-12 2014-11-11 Denki Kagaku Kogyo Kabushiki Kaisha Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and LED luminescent member
JP5178598B2 (ja) * 2009-03-24 2013-04-10 日立オートモティブシステムズ株式会社 熱式流量計
JP4976469B2 (ja) * 2009-08-28 2012-07-18 日立オートモティブシステムズ株式会社 熱式湿度センサ
JP5496630B2 (ja) * 2009-12-10 2014-05-21 東京エレクトロン株式会社 静電チャック装置
JP5459907B2 (ja) * 2010-01-27 2014-04-02 東京エレクトロン株式会社 基板載置装置の評価装置、及びその評価方法、並びにそれに用いる評価用基板
JP5423632B2 (ja) * 2010-01-29 2014-02-19 住友大阪セメント株式会社 静電チャック装置
JP5107372B2 (ja) * 2010-02-04 2012-12-26 東京エレクトロン株式会社 熱処理装置、塗布現像処理システム、熱処理方法、塗布現像処理方法及びその熱処理方法又は塗布現像処理方法を実行させるためのプログラムを記録した記録媒体
TWI525743B (zh) * 2011-03-23 2016-03-11 住友大阪水泥股份有限公司 靜電夾持裝置
JP6064908B2 (ja) * 2011-09-28 2017-01-25 住友大阪セメント株式会社 静電チャック装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260683A (ja) * 1999-03-05 2000-09-22 Toshiba Corp 半導体装置の製造装置
JP2004228334A (ja) * 2003-01-23 2004-08-12 Komatsu Ltd 温調装置

Also Published As

Publication number Publication date
TWI540675B (zh) 2016-07-01
KR20140057270A (ko) 2014-05-12
JP5915026B2 (ja) 2016-05-11
JP2013046035A (ja) 2013-03-04
TW201316450A (zh) 2013-04-16
KR101783362B1 (ko) 2017-09-29
US10502639B2 (en) 2019-12-10
US20140204975A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5915026B2 (ja) 温度測定用板状体及びそれを備えた温度測定装置
US7651269B2 (en) Temperature probes having a thermally isolated tip
TWI470691B (zh) 靜電式夾持裝置
KR101718378B1 (ko) 기판 재치 장치의 평가 장치 및 그 평가 방법, 그리고 이에 이용되는 평가용 기판
KR101489104B1 (ko) 전기 소자
US10763141B2 (en) Non-contact temperature calibration tool for a substrate support and method of using the same
JP4879060B2 (ja) 基板加熱装置
KR101545282B1 (ko) 보정 기판 및 보정 방법
TW201504603A (zh) 用以量測熱通量之方法及系統
TWI533411B (zh) 用於似基板之度量裝置之熱屏蔽模組
TW486564B (en) Temperature-detecting element
JP5765609B2 (ja) 電気素子、集積素子、電子回路及び温度較正装置
JP5229241B2 (ja) 半導体製造装置における測温素子取り付け構造
Gorbachuk et al. Semiconductor Sensors for a Wide Temperature Range
JP4038135B2 (ja) 熱処理基板の温度計測方法
JP5761589B2 (ja) 電気素子、集積素子、電子回路及び温度較正装置
JP6026882B2 (ja) 加熱装置
JP2006114580A (ja) 温度測定装置及びプラズマ処理装置
Vandenabeele et al. TEMPERATURE CALIBRATION IN MICROELECTRONIC MANUFACTURING
KR20060025001A (ko) 서셉터 구조체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147003987

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828052

Country of ref document: EP

Kind code of ref document: A1