[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013005261A1 - 流体封入式防振装置 - Google Patents

流体封入式防振装置 Download PDF

Info

Publication number
WO2013005261A1
WO2013005261A1 PCT/JP2011/003896 JP2011003896W WO2013005261A1 WO 2013005261 A1 WO2013005261 A1 WO 2013005261A1 JP 2011003896 W JP2011003896 W JP 2011003896W WO 2013005261 A1 WO2013005261 A1 WO 2013005261A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic tongue
hydraulic pressure
fluid
plate
rubber plate
Prior art date
Application number
PCT/JP2011/003896
Other languages
English (en)
French (fr)
Inventor
堤田 讓治
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to JP2013522370A priority Critical patent/JP5543031B2/ja
Priority to PCT/JP2011/003896 priority patent/WO2013005261A1/ja
Priority to CN201180070082.1A priority patent/CN103477115B/zh
Publication of WO2013005261A1 publication Critical patent/WO2013005261A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages

Definitions

  • the present invention relates to a fluid-filled vibration isolator that is used in, for example, an automobile engine mount or suspension mount, and exhibits a vibration-proof effect based on a fluid action of a fluid sealed inside.
  • These fluid-filled vibration damping devices have a pressure receiving chamber in which a part of the wall portion is configured with a main rubber elastic body, and an equilibrium chamber in which a portion of the wall portion is configured with a flexible film, An incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and both chambers are connected to each other by an orifice passage. Then, at the time of vibration input between the first mounting member and the second mounting member, the fluid that is caused to flow in the orifice passage based on the relative pressure fluctuation caused between the pressure receiving chamber and the equilibrium chamber. The anti-vibration effect is exhibited based on the fluid action.
  • the orifice passage can exhibit an effective anti-vibration effect in the frequency range tuned in advance, but the flow resistance becomes particularly large when vibration is input in a higher frequency range than the tuning frequency. Degradation tends to be a problem.
  • Patent Documents 1 and 2 there has been proposed a hydraulic pressure absorption mechanism that absorbs pressure fluctuations in the pressure receiving chamber when a high-frequency small-amplitude vibration is input that deviates from the tuning frequency of the orifice passage.
  • a hydraulic pressure absorbing mechanism is constituted by a hydraulic pressure absorbing rubber plate disposed between the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber that are exerted on one surface of the hydraulic pressure absorbing rubber plate.
  • the hydraulic pressure absorbing rubber plate is displaced or deformed based on the pressure difference, small pressure fluctuations in the pressure receiving chamber are absorbed.
  • the hydraulic pressure absorbing rubber plate that constitutes the hydraulic pressure absorbing mechanism is used for the purpose of eliminating sudden pressure fluctuations in the pressure receiving chamber when shocking heavy load is input and preventing abnormal noise caused by cavitation.
  • An elastic tongue is formed by providing a slit penetrating in the plate thickness direction. This elastic tongue piece keeps the slit closed due to the elasticity of the hydraulic pressure absorbing rubber plate, and the elastic tongue piece receives the pressure only when a sudden pressure fluctuation is induced in the pressure receiving chamber by a shocking large load input. Excessive pressure fluctuation in the pressure receiving chamber is avoided by elastically deforming the chamber side or the equilibrium chamber side and opening the slit.
  • An object of the present invention is to provide a novel structure in which an adverse effect on vibration proof performance against normal input vibration is suppressed in a fluid-filled vibration proof device provided with an elastic tongue piece.
  • a first aspect of the present invention made to solve such a problem is that the first mounting member and the second mounting member are connected by the main rubber elastic body, and the wall portion is formed by the main rubber elastic body.
  • a pressure receiving chamber in which a part of the pressure receiving chamber is formed, and an equilibrium chamber in which a part of the wall portion is formed of a flexible film are formed, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber,
  • a hydraulic pressure absorbing rubber plate is disposed between the pressure receiving chamber and the equilibrium chamber.
  • the pressure of the pressure receiving chamber is exerted on one surface of the pressure absorbing rubber plate, and the pressure of the equilibrium chamber is exerted on the other surface of the hydraulic pressure absorbing rubber plate.
  • the pressure fluctuation in the pressure receiving chamber is absorbed based on the displacement and deformation of the hydraulic pressure absorbing rubber plate based on the difference.
  • an elastic tongue piece is formed on the hydraulic pressure absorbing rubber plate by a slit, and the slit is opened by elastic deformation of the elastic tongue piece, and the pressure receiving chamber and the hydraulic pressure absorbing mechanism are configured.
  • a short-circuit mechanism for short-circuiting the equilibrium chamber is configured, and a thick reinforcing portion is integrally formed at an intermediate portion in the length direction from the base end portion to the tip end portion of the elastic tongue piece. .
  • a vibration isolating effect based on the resonance action of the fluid flowing through the orifice passage is exhibited with respect to the low frequency large amplitude vibration in which the orifice passage is tuned.
  • the pressure absorbing function of the pressure receiving chamber based on the displacement and deformation of the hydraulic pressure absorbing rubber plate is exerted, so that a significant high dynamic spring due to substantial closure of the orifice passage is avoided. As a result, a good vibration isolation effect can be obtained.
  • the elastic tongue formed on the hydraulic pressure absorbing rubber plate is elastically deformed to open the slit, so that the pressure receiving chamber side partitioned by the hydraulic pressure absorbing rubber plate And the equilibrium chamber side are in communication.
  • a large pressure such as a negative pressure in the pressure receiving chamber is eliminated as quickly as possible, and for example, it is possible to reduce or avoid the generation of abnormal noise and vibration caused by cavitation.
  • the elastic tongue piece of the hydraulic pressure absorbing rubber plate is partially thickened to form the reinforcing portion, so that the hydraulic pressure absorbing rubber plate and the elastic tongue are formed. While avoiding a large influence on the overall spring characteristics of the piece, minute elastic deformation or irregular elastic deformation in the elastic tongue piece can be suppressed. As a result, the spring constant is made relatively small at the slit during normal vibration input that requires vibration-proofing effect due to fluid flow through the orifice passage and vibration-proofing effect due to displacement and deformation of the hydraulic pressure absorbing rubber plate.
  • the elastic tongue formed on the hydraulic pressure absorbing rubber plate may be elastically deformed under specific conditions such as its spring characteristics and the frequency of input vibration, and the shape may become unstable. It was found that there is a possibility that the anti-vibration property may be adversely affected by the elastic tongue piece being deformed in an unstable manner. Based on this knowledge, the present invention has been completed, and in the present invention, stabilization of vibration isolation characteristics can be achieved by suppressing unstable deformation that is not desired in the elastic tongue piece.
  • instability deformation and minute repetitive deformation such as resonance which are problems in the elastic tongue, are especially reinforced by reinforcing the middle part in the length direction of the elastic tongue, so that the slit at the time of heavy load input
  • the base end of the elastic tongue is supported by a hydraulic pressure absorbing rubber plate to prevent unstable deformation, and it is necessary to further increase the spring rigidity by providing a reinforcing part on the base end.
  • the deformation resistance to the slit opening operation due to the deformation of the elastic tongue piece becomes too large, which may hinder the slit opening operation.
  • the tip mass of the elastic tongue is increased, and the elastic elastic deformation of the elastic tongue itself may be increased. This is because the deformation reaction becomes dull and it is difficult to quickly open the slit.
  • the elastic tongue piece is integrally formed of a rubber elastic body, so that the deformation of the elastic tongue piece can be easily stabilized without increasing the number of parts or complicating the manufacturing process. This can be realized, and the adverse effect on the anti-vibration characteristics exhibited by the displacement and deformation of the movable rubber plate itself can be avoided.
  • the hydraulic pressure absorbing rubber plate is provided with a plurality of radially extending slits, and the elastic tongue piece is These are formed in the circumferential direction by being positioned between adjacent slits around the radiation center of these slits.
  • three or more slits are formed at appropriate intervals in the circumferential direction, for example, at equal intervals, so that a plurality of elastic tongue pieces having a fan-shaped flat plate shape are excellent. It can be easily formed with space efficiency.
  • a third aspect of the present invention is the fluid-filled vibration isolator according to the second aspect, wherein the fluid-filled vibration isolator is located on the inner peripheral side of a circumscribed circle connecting the tips of the plurality of slits extending radially, The reinforcing portion in the elastic tongue piece is formed.
  • each elastic tongue formed by a radial slit suppresses the adverse effect on the spring characteristics at the base end portion, and particularly each elasticity considered to be easily elastically deformed irregularly.
  • An intermediate portion in the length direction of the tongue piece can be efficiently reinforced. Therefore, the effect of preventing cavitation noise due to deformation of each elastic tongue and opening the slit when a shocking large load is input, and the orifice passage and liquid by stabilizing the deformation of each elastic tongue. It is possible to realize both the vibration-proofing effect of the pressure absorbing mechanism and the higher level of both.
  • the reinforcing portion of the elastic tongue piece is directed toward both front and back sides of the elastic tongue piece. It is constituted by a protruding rubber protrusion.
  • the elastic tongue piece has a reinforcing effect that is substantially the same on both the front and back sides, so that the elastic characteristics of the elastic tongue piece are stable, and the elastic tongue piece by the reinforcing portion The unstable deformation suppressing effect can be more effectively exhibited.
  • the reinforcing portion of the elastic tongue piece is a protrusion extending in a width direction of the elastic tongue piece. It is composed of articles.
  • the unstable deformation of the elastic tongue is efficiently suppressed without greatly degrading the deformation characteristics of the elastic tongue for opening the slit when avoiding excessive pressure in the pressure receiving chamber.
  • This is effective even when the width of the elastic tongue is large.
  • the reinforcing portion of each elastic tongue piece is formed by an annular ridge extending in the circumferential direction around the radial center of the slit. Can be formed.
  • the hydraulic pressure absorbing rubber plate is harder than the hydraulic pressure absorbing rubber plate.
  • a reinforcing plate is fixed, and a through-hole in the thickness direction is formed in the hard reinforcing plate, and the slit is provided in a portion of the hydraulic pressure absorbing rubber plate that covers the through-window, and the elastic plate A tongue piece is formed.
  • the elastic deformation of the hydraulic pressure absorbing rubber plate itself is limited by the hard reinforcing plate, thereby preventing excessive deformation and irregular deformation of the hydraulic pressure absorbing rubber plate. Therefore, the adverse effect on the vibration isolation effect of the orifice passage due to the overall excessive deformation of the hydraulic pressure absorbing rubber plate is prevented, and the intended vibration isolation effect can be obtained more advantageously. Further, since the elastic tongue pieces are also provided with the reinforcing action of the hard reinforcing plate on the base end side, the stability of the deformation mode of the elastic tongue pieces can be further improved.
  • a displacement in the plate thickness direction of the hydraulic pressure absorbing rubber plate is allowed and a displacement amount is limited.
  • the rubber plate support part which supports this hydraulic pressure absorption rubber plate is provided in said 2nd attachment member.
  • the displacement amount of the hydraulic pressure absorbing rubber plate is surely limited, thereby preventing the orifice passage from being caused by the overall excessive deformation or excessive displacement of the hydraulic pressure absorbing rubber plate.
  • An adverse effect on the vibration effect can be prevented.
  • the outer peripheral portion of the hydraulic pressure absorbing rubber plate is predetermined on both sides in the plate thickness direction.
  • the rubber plate support portion of this aspect can be realized by a concave annular groove that is supported with a gap of 5 mm.
  • a regulating plate having a plurality of through holes is provided on both sides in the thickness direction of the hydraulically absorbing rubber plate.
  • the rubber plate support portion can be realized by disposing with a predetermined gap and limiting the amount of displacement by the contact of the hydraulic pressure absorbing rubber plate to both the restriction plates.
  • the irregular deformation of the elastic tongue piece is suppressed by the reinforcing portion at the time of normal vibration input, so that the orifice passage and the hydraulic pressure absorbing rubber plate
  • the anti-vibration effect can be sufficiently secured.
  • the elastic tongue piece elastically deforms and the pressure in the pressure receiving chamber is quickly eliminated through the slit, thereby causing cavitation, etc. This problem can be effectively prevented.
  • FIG. 3 is a longitudinal sectional view showing the fluid filled type vibration damping device as the first embodiment of the present invention, and is a sectional view taken along the line II in FIG.
  • the top view of the movable member which comprises the fluid enclosure type vibration isolator.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • VV sectional view of FIG. The top view of the movable member as another form of this invention.
  • FIG. 1 shows a fluid-filled vibration isolator 10 as a first embodiment according to the present invention.
  • This fluid-filled vibration isolator 10 includes a first attachment member 12 attached to one member to be vibration-isolated and a second attachment member 14 attached to the other member to be anti-vibration connected.
  • the elastic bodies 16 are elastically connected to each other.
  • the first mounting member 12 is attached to the power unit of the automobile which is one member to be vibration-proof connected
  • the second mounting member 14 is attached to the body of the automobile which is the other member to be vibration-proof connected.
  • the power unit is supported by the vehicle body in a vibration-proof manner.
  • the vertical direction means the vertical direction in FIG. 1 which is the main vibration input direction in principle.
  • the first mounting member 12 is a highly rigid member made of a metal material such as iron or aluminum alloy, and has a substantially circular block shape. Further, a flange portion 18 that extends outward in the radial direction is integrally formed at the upper end portion of the first mounting member 12. Further, a bolt hole 20 is formed so as to open on the upper end surface of the first mounting member 12 and extend on the central axis, and a female screw is engraved on the inner peripheral surface of the bolt hole 20.
  • the first mounting member 12 is bolted to a power unit (not shown) by, for example, a mounting bolt (not shown) screwed into the bolt hole 20.
  • the second mounting member 14 is a highly rigid member formed of the same metal material as the first mounting member 12, and has a thin cylindrical shape with a large diameter as a whole.
  • a constricted portion 22 is provided at an intermediate portion in the axial direction of the second mounting member 14.
  • the constricted portion 22 includes a tapered portion 24 that gradually decreases in diameter toward the lower side in the axial direction, and an annular stepped portion 26 that widens from the lower end portion of the tapered portion 24 toward the outer peripheral side.
  • An annular step 28 that extends toward the outer peripheral side is formed at the lower end of the second mounting member 14, and an annular shaped caulking piece that extends downward on the outer peripheral edge of the step 28. 30 is integrally formed.
  • Such a second mounting member 14 is fixed to the vehicle body, for example, by attaching a bracket (not shown) that is fitted and fixed to the second mounting member 14 to the vehicle body.
  • the first mounting member 12 and the second mounting member 14 as described above are disposed on the same central axis, and the first mounting member 12 is spaced apart from the second mounting member 14 in the axial direction. Has been placed.
  • the main rubber elastic body 16 is interposed between the first mounting member 12 and the second mounting member 14 so that the first mounting member 12 and the second mounting member 14 are the main rubber elastic body. 16 is elastically connected.
  • the main rubber elastic body 16 is formed of a thick rubber elastic body having a substantially truncated cone shape. Further, a large-diameter circular recess 32 is formed in the central portion in the radial direction of the main rubber elastic body 16 so as to open to the large-diameter side end surface (the lower end surface in FIG. 1). Further, the first mounting member 12 is inserted into the small diameter side end portion of the main rubber elastic body 16 so that the lower surface of the flange portion 18 is overlapped with the small diameter side axial end surface of the main rubber elastic body 16. And vulcanized.
  • the upper portion of the second mounting member 14 and the taper portion 24 are overlapped and vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16.
  • the main rubber elastic body 16 in the present embodiment is formed as an integrally vulcanized molded product that integrally includes the first mounting member 12 and the second mounting member 14.
  • a seal rubber layer 34 integrally formed with the main rubber elastic body 16 is fixed to the inner peripheral surface of the second mounting member 14.
  • the seal rubber layer 34 is formed of a thin rubber film, and is formed so as to cover a portion extending from the inner peripheral surface of the step portion 26 to the inner peripheral portion of the step 28 in the second mounting member 14.
  • a flexible film 36 is disposed in the lower end opening of the second mounting member 14.
  • the flexible film 36 is formed of a rubber film having a thin, large-diameter, generally circular dome shape, so that elastic deformation is easily allowed.
  • a fixing metal fitting 38 is fixed to the outer peripheral edge of the flexible film 36.
  • the fixing bracket 38 has a substantially annular shape, and is integrally provided with a cylindrical fixing portion 40 and a hook-like portion 42 that extends from the upper end of the fixing portion 40 toward the outer peripheral side. Then, the outer peripheral edge of the flexible membrane 36 is vulcanized and bonded to the fixing portion 40 of the fixing bracket 38, so that the flexible membrane 36 is integrally provided with the fixing bracket 38. It is formed as.
  • the fixing fitting 38 is covered with a rubber layer integrally formed with the flexible film 36 over substantially the entire surface excluding the outer peripheral edge and the upper end surface of the bowl-shaped portion 42.
  • Such a flexible membrane 36 is assembled to the second mounting member 14. That is, the outer peripheral edge portion of the hook-shaped portion 42 of the fixing bracket 38 is superimposed on the step 28 provided at the lower end portion of the second mounting member 14 from below, and the hook-shaped portion 42 is attached to the second mounting member 14.
  • the flexible membrane 36 is fixed to the lower end portion of the second attachment member 14 by being caulked and fixed by the caulking piece 30 formed integrally with the member 14.
  • the flexible film 36 is assembled to the integrally vulcanized molded product of the main rubber elastic body 16 including the first mounting member 12 and the second mounting member 14, thereby the second mounting member. 14 is closed fluid-tightly by the main rubber elastic body 16, and the axially lower opening of the second mounting member 14 is fluid-tightly closed by the flexible membrane 36. ing. Thereby, a fluid sealing region 44 as a fluid chamber sealed from the outside is formed between the main rubber elastic body 16 and the flexible film 36 on the inner peripheral side of the second mounting member 14. .
  • incompressible fluid such as water, alkylene glycol, polyalkylene glycol, silicone oil, or a mixture thereof is sealed as a sealing fluid.
  • the sealed fluid is not particularly limited, but the viscosity is 0.1 Pa ⁇ s or less in order to advantageously obtain a vibration isolating effect based on the resonance action of the fluid flowing in the orifice passage 68 described later. It is desirable to employ a low viscosity fluid.
  • such fluid sealing does not attach the flexible membrane 36 to the second mounting member 14 (an integral vulcanization molded product of the main rubber elastic body 16 provided with the second mounting member 14). By carrying out in a compressible fluid, it can be advantageously realized.
  • the partition member 46 is accommodated in the fluid sealing area 44.
  • the partition member 46 has a thick, substantially disk shape, and is configured to include a partition member main body 48 and a lid member 50 in the present embodiment.
  • the partition member body 48 as a whole has a thick, substantially disk shape, and is formed of a hard material such as iron, an aluminum alloy, or a hard synthetic resin material in the present embodiment.
  • a notch-shaped groove 52 that opens to the upper end surface and the outer peripheral surface is formed in the outer peripheral edge of the partition member main body 48 so as to extend in the circumferential direction with a predetermined length shorter than one round.
  • an accommodation recess 54 is formed in the central portion of the partition member body 48 in the radial direction.
  • the accommodation recess 54 is formed in the partition member main body 48 at a predetermined distance on the inner peripheral side of the notch-shaped groove 52, and is a circular recess that opens upward.
  • a lower central recess 56 is formed in the central portion of the partition member body 48 in the radial direction.
  • the lower central recess 56 is a circular recess formed in the partition member main body 48 at a position substantially corresponding to the housing recess 54 in the vertical direction, and is opened downward in the axial direction.
  • the lid member 50 has a thin disk shape having substantially the same diameter as the partition member main body 48, and is formed of the same hard material as the partition member main body 48 in the present embodiment.
  • the partition member 46 in this embodiment is comprised by overlapping and combining the cover member 50 with respect to the upper end surface of the partition member main body 48 from upper direction.
  • the lid member 50 is overlapped with the partition member main body 48, so that the upper opening of the notch-shaped groove 52 is covered with the lid member 50 and opens to the outer peripheral surface of the partition member 46 in the circumferential direction.
  • a circumferential groove extending in the direction is formed using the notched groove 52.
  • the opening portion of the housing recess 54 formed in the partition member main body 48 is covered with the lid member 50, so that a housing region 58 is formed inside the partition member 46.
  • the partition member 46 as described above is disposed in the fluid-filled region 44 in the accommodated state. That is, the partition member 46 is inserted from the lower opening of the second mounting member 14, and the outer peripheral edge of the lid member 50 is brought into contact with the stepped portion 26 of the second mounting member 14 from below. At the same time, the hook-shaped portion 42 of the fixing bracket 38 is superimposed on the outer peripheral edge of the partition member main body 48 from below. Then, when the hook-shaped portion 42 of the fixing bracket 38 is fixed to the second mounting member 14 by the caulking piece 30 of the second mounting member 14, the partition member 46 becomes the stepped portion of the second mounting member 14. 26 and the hook-like portion 42 of the fixing bracket 38, and fixedly supported by the second mounting member 14. In this embodiment, the partition member 46 is inserted into the second mounting member 14 and subjected to a diameter reduction process such as an eight-way drawing on the second mounting member 14. The outer peripheral surface is brought into close contact with the second mounting member 14 via the seal rubber layer 34.
  • the partition member 46 is disposed so as to extend in the direction perpendicular to the axis in the fluid sealing region 44 and is supported by the second mounting member 14, so that the fluid sealing region 44 has a shaft with the partition member 46 interposed therebetween.
  • the direction is divided into upper and lower sides. That is, on one side (upper side) sandwiching the partition member 46, a part of the wall portion is constituted by the main rubber elastic body 16, and a pressure receiving chamber 60 is formed in which pressure fluctuation is caused when vibration is input. On the other side (lower side) across the partition member 46, a part of the wall portion is formed of the flexible film 36, and an equilibrium chamber 62 in which volume change is allowed by deformation of the flexible film 36 is formed. Has been.
  • the pressure receiving chamber 60 and the equilibrium chamber 62 are filled with the incompressible fluid sealed in the fluid sealing region 44.
  • the outer peripheral side opening part of the said circumferential groove formed in the outer peripheral part of the partition member 46 is covered fluid-tightly by the 2nd attachment member 14, and the outer peripheral part of the partition member 46 is made into the circumferential direction.
  • a tunnel-shaped passage extending in a predetermined length is formed.
  • the lid member 50 is formed with an upper communication passage 64 that opens one end of the tunnel-shaped passage above the partition member 46, and the partition member body 48 has the other end of the tunnel-shaped passage.
  • a lower communication passage 66 is formed to open the end of the lower portion below the partition member 46.
  • One end of the tunnel-shaped passage communicates with the pressure receiving chamber 60 through the upper communication passage 64, and the other end of the tunnel-shaped passage communicates with the equilibrium chamber 62 through the lower communication passage 66.
  • An orifice passage 68 that communicates the pressure receiving chamber 60 and the equilibrium chamber 62 with each other is formed.
  • the ratio between the passage length of the orifice passage 68 and the passage sectional area is appropriately set according to the rigidity of the wall spring of the pressure receiving chamber 60, so that the two chambers 60, 62 are connected through the orifice passage 68.
  • the resonance frequency of the fluid to be flowed is tuned to a low frequency of about 10 Hz corresponding to an engine shake of an automobile.
  • a movable member 70 as shown in FIGS. 2 to 5 is accommodated in the accommodating region 58 formed in the partition member 46.
  • the movable member 70 has a substantially disc shape as a whole, and is constituted by a hydraulic pressure absorbing rubber plate 72 and a hard reinforcing plate 74 as a restraining plate.
  • the hydraulic pressure absorbing rubber plate 72 is a rubber elastic body having a substantially disc shape, and its outer diameter is slightly smaller than the inner diameter of the accommodation region 58. Further, the thickness of the hydraulic pressure absorbing rubber plate 72 is also slightly smaller than the height of the accommodating area 58, and the upper and lower surfaces of the hydraulic absorbing rubber plate 72 are accommodated while being disposed in the accommodating area 58. Due to the gap existing between the upper and lower inner surfaces of the region 58, the displacement of the hydraulic pressure absorbing rubber plate 72 in the housing region 58 in the thickness direction is allowed.
  • positioning protrusions 76 that protrude with a lip shape extending in the circumferential direction are integrally formed at a plurality of locations on the circumference. The plurality of positioning protrusions 76 position the hydraulic pressure absorbing rubber plate 72 at the approximate center within the accommodation region 58, and displacement in the plate thickness direction is allowed with a small contact resistance.
  • a substantially disc-shaped hard reinforcing plate 74 is disposed in a state of being embedded in the middle portion in the thickness direction of the hydraulic pressure absorbing rubber plate 72 and is vulcanized and bonded to the hydraulic pressure absorbing rubber plate 72.
  • the hard reinforcing plate 74 is formed of a synthetic resin material, a metal material, or the like having a rigidity higher than that of the hydraulic pressure absorbing rubber plate 72.
  • the outer diameter of the hard reinforcing plate 74 is smaller than the outer diameter of the hydraulic pressure absorbing rubber plate 72, and the elastic deformation of the central portion of the hydraulic absorbing rubber plate 72 is substantially caused by the hard reinforcing plate 74. It is blocked.
  • the upper and lower elastic contact portions 78 and 78 projecting on both sides in the plate thickness direction at the outer peripheral edge portion of the hydraulic pressure absorbing rubber plate 72 positioned away from the outer peripheral side of the hard reinforcing plate 74 are It is integrally formed in an annular shape continuous in the direction.
  • the protrusion height of the upper and lower elastic contact portions 78, 78 is continuously changed in the circumferential direction, so that the outer peripheral edge portion of the hydraulic pressure absorbing rubber plate 72 is on both sides in the plate thickness direction in the circumferential direction. It is made into the wavy part extended like a wave.
  • the outer peripheral edge of the hydraulic pressure absorbing rubber plate 72 does not substantially change the dimension in the thickness direction including the upper and lower elastic contact portions 78, 78, and the center position in the thickness direction is vertically changed in the circumferential direction. It has been changed to swing.
  • the projecting tip surfaces of the upper and lower elastic contact portions 78, 78 have a shape that is smoothly waved in the circumferential direction at a constant cycle (for example, a cycle of 90 degrees in the circumferential direction) in a substantially sine wave shape. .
  • each through window 80 is formed as a circular hole, and four through windows 80 are formed at equal intervals in the circumferential direction at the radial intermediate portion of the hydraulic pressure absorbing rubber plate 72.
  • Each through window 80 is covered with a rubber valve plate 82 made of a single hydraulic pressure absorbing rubber plate 72.
  • the rubber valve plate 82 has a disk shape that spreads out with a substantially constant thickness.
  • buffer ribs 84 that are located on the inner peripheral edge portion of the through window 80 of the hard reinforcing plate 74 and project on both sides in the thickness direction are integrally formed in an annular shape over the entire circumference. .
  • the protruding height of the buffer rib 84 is set so as to protrude most outward in the thickness direction on the entire surface of the hydraulic pressure absorbing rubber plate 72.
  • each rubber valve plate 82 In the outer peripheral portion of each rubber valve plate 82, buffer ribs 84, 84 projecting from the upper and lower surfaces of the hydraulic pressure absorbing rubber plate 72 are formed, whereby the outer peripheral portion of the rubber valve plate 82 is reinforced and liquid The impact at the time of contact with the inner surface of the accommodation area 58 of the pressure absorbing rubber plate 72 is reduced.
  • a slit 86 is formed in the rubber valve plate 82.
  • a plurality of slits 86 are formed so as to extend radially outward from the center of the rubber valve plate 82 and penetrate the rubber valve plate 82 in the thickness direction.
  • three slits 86 are formed at equal intervals around the radiation center, and between the adjacent slits 86, 86 in the circumferential direction, a sector shape is formed.
  • Elastic tongue pieces 88 each having a flat plate shape are formed.
  • the radial center point of the plurality of slits 86, 86, 86 is the tip of the elastic tongue 88, and the slits on both sides of the elastic tongue 88 are centered on the radial center point.
  • a portion located on a line of an arc extending by connecting the tips of 86 and 86 is a base end portion of the elastic tongue 88.
  • Each slit 86 has a length that does not reach the outer peripheral edge of the rubber valve plate 82. In particular, in this embodiment, the length of the tip that does not reach the elastic contact portions 78 and 78 slightly. Each slit 86 is formed. Each slit 86 is closed in an initial state where no external force is applied, and both end surfaces in the circumferential direction of each rubber valve plate 82 are in the circumferential end surfaces of the rubber valve plates 82 adjacent to each other across the slit 86. On the other hand, the slits 86 are closely overlapped over the entire length. However, the slit 86 does not need to be completely closed according to the required vibration isolation characteristics, and the circumferential end surfaces of the elastic tongue pieces 88 adjacent in the circumferential direction may be slightly separated from each other. .
  • each elastic tongue 88 is integrally formed with a reinforcing portion 90 that is a partially thick rubber protrusion.
  • the reinforcing portion 90 in the elastic tongue 88 is constituted by a protrusion that extends in the width direction of the elastic tongue 88.
  • the width direction of the elastic tongue piece 88 is a direction orthogonal to the length direction extending from the base end portion of the elastic tongue piece 88 to the distal end portion, and is also a direction extending orthogonally to the slit 86.
  • the reinforcing portion 90 is formed in each elastic tongue 88 with an arc shape extending in the circumferential direction of a circle centered on the radial center of the slit 86.
  • the reinforcing portion 90 is formed in a region surrounded by a circumscribed circle connecting the tips of the radially extending slits 86 in the elastic tongue 88. Further, it is desirable that the reinforcing portion 90 is formed at an intermediate portion in the length direction from the base end portion to the tip end portion of the elastic tongue 88, and is particularly biased to the outer peripheral side from the center in the length direction. Specifically, on both the front and back surfaces of the rubber valve plate 82, elastic ridges extending continuously in the circumferential direction around the radial center of the radially extending slit 86 and having a mountain-shaped cross section are formed. By being divided, an independent reinforcing portion 90 is formed for each elastic tongue 88.
  • each elastic tongue 88 is formed in the same position and the same size and symmetrically. Thereby, the shape of the elastic tongue 88 is stabilized, and the elastic deformation effect can be sufficiently exhibited.
  • the top portion in the cross section of the reinforcing portion 90, the top portion is biased toward the outer peripheral side, and the curvature radius on the inner peripheral side is made larger than the curvature radius on the outer peripheral side of the reinforcing portion 90, and is gentle. It is inclined to.
  • the distal end portion located on the center side of the rubber valve plate 82 has a smaller width in the circumferential direction than the proximal end portion located on the outer peripheral side of the rubber valve plate 82, and is easily deformed.
  • the characteristic change exerted on the rubber valve plate 82 by the formation of the reinforcing portions 90, 90 is reduced.
  • the protruding height dimension of the reinforcing portion 90 is 30 to 100% of the thickness dimension of the elastic tongue piece 88. This is because if the reinforcing portion 90 is too small, it is difficult to obtain a sufficient reinforcing effect, and if it is too large, there is a concern about adverse effects on the elastic characteristics of the elastic tongue 88 and the like.
  • the movable member 70 having such a structure is disposed in an accommodation region 58 formed inside the partition member 46, and the movable member 70 is arranged in the thickness direction in the accommodation region 58 as described above. It can be displaced by a predetermined distance. Further, an upper through hole 96 penetrating in the axial direction is formed in the central portion of the lid member 50 constituting the upper side wall portion of the containing area 58, and the containing area 58 communicates with the pressure receiving chamber 60 through the upper through hole 96. Has been.
  • a lower through hole 98 penetrating in the axial direction is formed in the central portion of the partition member main body 48 (the bottom wall portion of the housing recess 54) constituting the lower wall portion of the housing area 58, and the lower side
  • the accommodation region 58 communicates with the equilibrium chamber 62 through the through hole 98.
  • the upper and lower through-holes 96 and 98 are both large-diameter circular holes, and the upper and lower through-holes 96 and 98 have substantially the same diameter.
  • the inner diameter of the upper and lower through holes 96 and 98 is smaller than the outer diameter of the hard reinforcing plate 74 in the movable member 70, and the region where the hard reinforcing plate 74 is disposed in the movable member 70 is the upper and lower through holes.
  • the amount of displacement of the movable member 70 in the plate thickness direction is reliably defined by contacting the outer peripheral portions 96 and 98.
  • the partition member 46 is formed with an annular groove that opens to the inner peripheral surface and extends in the circumferential direction.
  • the outer peripheral part of 70 is inserted. Since the movable member 70 is supported by the second mounting member 14 via the partition member 46 so as to be displaceable in a region where the amount of displacement is limited by contact with the inner surface of the annular groove. is there.
  • the partition member 46 constitutes a rubber plate support portion that supports the hydraulic pressure absorbing rubber plate 72 so as to be displaceable.
  • the size of the upper and lower through holes 96 and 98 is such that the rubber valve plate 82 provided in the movable member 70 is exposed to the pressure receiving chamber 60 and the equilibrium chamber 62 through the upper and lower through holes 96 and 98 in a sufficient area. Is set to be. Specifically, 50% or more, preferably 80% or more of each rubber valve plate 82 in the axial projection is preferably exposed to the pressure receiving chamber 60 and the equilibrium chamber 62 through the upper and lower through holes 96 and 98. .
  • the pressure of the pressure receiving chamber 60 is applied to the upper surface of the movable member 70 disposed in the accommodating region 58 through the upper through hole 96 and the equilibrium chamber is applied to the lower surface of the movable member 70.
  • a pressure of 62 is applied through the lower through hole 98.
  • the movable member 70 Since the movable member 70 is disposed in the accommodating region 58 so as to partition the pressure receiving chamber 60 and the equilibrium chamber 62, a relative pressure difference is generated between the pressure receiving chamber 60 and the equilibrium chamber 62 due to vibration input. Then, the movable member 70 is slightly displaced in the axial direction to constitute a hydraulic pressure absorbing mechanism that absorbs pressure fluctuations in the pressure receiving chamber 60.
  • the outer peripheral edge of the hydraulic pressure absorbing rubber plate 72 extends to the outer peripheral side with respect to the upper and lower through holes 96 and 98, and the rigid reinforcing plate 74 to which the hydraulic pressure absorbing rubber plate 72 is fixed. Is formed in a disk shape having a larger diameter than the opening regions of the upper and lower through holes 96 and 98, and the outer peripheral edge of the hard reinforcing plate 74 is located on the outer peripheral side of the upper and lower through holes 96 and 98 over the entire circumference. It has spread.
  • a short-circuit mechanism is configured to allow the pressure receiving chamber 60 and the equilibrium chamber 62 to communicate with each other with a smaller flow resistance than that of the orifice passage 68 when a shocking large load is input.
  • the short-circuit mechanism is realized by a valve structure that switches between the communication state and the cutoff state of the slit 86 by using the elasticity of the elastic tongue 88.
  • the pressure receiving chamber 60 and the equilibrium chamber 62 are relative to each other. Based on the pressure fluctuation, fluid flow is generated through the orifice passage 68 tuned to the low frequency range. At this time, since the relative pressure difference between the pressure receiving chamber 60 and the equilibrium chamber 62 exceeds the hydraulic pressure absorbing function due to the displacement of the movable member 70, the displacement amount of the movable member 70 is limited and substantially restrained. Therefore, the amount of fluid flow through the orifice passage 68 is effectively ensured, and the vibration isolation effect (high damping effect) based on the fluid action such as the resonance action of the fluid can be effectively exhibited.
  • the pressure fluctuation in the pressure receiving chamber 60 is released to the equilibrium chamber 62 by the fluid flow through the orifice passage 68, and the pressure fluctuation in the pressure receiving chamber 60 is remarkably increased. It won't grow. Therefore, also in the movable member 70, the slit 86 is held in a closed state against the pressure difference between the pressure receiving chamber 60 and the equilibrium chamber 62 due to the elasticity of the elastic tongue 88.
  • the orifice passage 68 is substantially cut off by an anti-resonant action.
  • the movable member 70 is allowed to be slightly displaced in the plate thickness direction based on the relative pressure difference between the pressure receiving chamber 60 and the equilibrium chamber 62, so that the pressure fluctuation induced in the pressure receiving chamber 60 is reduced to the equilibrium chamber 62 side.
  • the hydraulic pressure absorbing action that is absorbed and absorbed is exhibited. Therefore, a significant increase in the dynamic spring associated with the substantial blocking of the orifice passage 68 is avoided, and a good vibration isolation performance is exhibited.
  • the pressure variation in the pressure receiving chamber 60 is released to the equilibrium chamber 62 based on the displacement of the movable member 70, so that the slit 86 is formed. It is maintained in a substantially closed state.
  • each of the rubber valve plates 82 in the rubber valve plate 82 is based on the pressure difference between the pressure receiving chamber 60 and the equilibrium chamber 62.
  • the elastic tongue 88 is greatly deformed, and the slit 86 is opened.
  • the pressure receiving chamber 60 and the equilibrium chamber 62 are communicated with each other through the slit 86, and by the fluid flow through the slit 86, extremely significant pressure fluctuations in the pressure receiving chamber 60 can be eliminated as quickly as possible. Therefore, for example, the generation of cavitation in the pressure receiving chamber 60 can be suppressed, and the generation of abnormal noise and vibration due to cavitation can be prevented.
  • the elastic tongue 88 in the rubber valve plate 82 is partially thickened to form a reinforcing portion 90.
  • the elastic tongue piece 88 is elastically deformed to secure the characteristic of opening the slit 86, and the local deformation rigidity of the elastic tongue piece 88 is enhanced to stabilize the deformation of the elastic tongue piece 88. Yes. Therefore, when a shocking heavy load is input, the slit 86 can be opened to suppress significant pressure fluctuations in the pressure receiving chamber 60, and the orifice passage 68 such as engine shake, idling vibration, traveling booming noise, and the like can be absorbed.
  • the reinforcing portion 90 of the elastic tongue 88 is provided at an intermediate portion in the length direction of the elastic tongue 88, the elastic deformation characteristics at the base end portion of the elastic tongue 88 due to the formation of the reinforcing portion 90. And problems associated with an increase in mass at the tip of the elastic tongue 88 can be avoided. Therefore, by forming the reinforcing portion 90 as described above in the elastic tongue 88, while sufficiently ensuring the characteristics such as cavitation prevention exhibited based on the opening of the slit 86 at the time of shocking heavy load input, This makes it possible to effectively prevent the vibration-proof performance from deteriorating due to irregular deformation or resonance of the elastic tongue 88 during normal running or the like.
  • the movable member 70 in which the hard reinforcing plate 74 is fixed to the hydraulic pressure absorbing rubber plate 72 formed of a rubber elastic body is adopted, and the rubber valve plate 82 is surrounded by the hard reinforcing plate 74. It is reinforced. Since the reinforcing effect by the hard reinforcing plate 74 is also exerted on each elastic tongue 88, the deformation of the elastic tongue 88 can be further stabilized.
  • the outer peripheral side of the rubber valve plate 82 is reinforced by the upper and lower buffer ribs 84, 84, cracks at the tip portion of the slit 86 are prevented, and excellent durability can be realized. Even if a crack occurs in the tip portion of the slit 86, the growth of the crack can be prevented by the hard reinforcing plate 74 disposed on the outer peripheral side of the rubber valve plate 82.
  • the radial slit 86 configured by linear notches extending in three directions is illustrated, but the specific shape of the slit 86 is not particularly limited.
  • the elastic tongue piece can be formed by a single slit curved in a U-shape as described in Patent Document 1, or a plurality of slits that are separated from each other. It is.
  • the reinforcing portion 90 formed on the elastic tongue 88 may be formed only on one of the upper surface and the lower surface, and by adopting mutually different sizes and shapes, the upward deformation characteristics and the downward direction. It is also possible to make the deformation characteristics different from each other. Furthermore, the reinforcing portion 90 does not need to be formed over the entire length of the elastic tongue 88 in the circumferential direction as in the above-described embodiment. For example, as shown in FIGS. It is also possible to configure the reinforcing portion by one or a plurality of independent elastic protrusions 100 in the piece 88. 6 to 8, in order to facilitate understanding, members and parts having the same structure as in the above embodiment are denoted by the same reference numerals as those in the above embodiment.
  • the plurality of through windows 80 are formed in the hard reinforcing plate 74 constituting the movable member 70, but a structure in which only one through window 80 is formed may be used.
  • the hard reinforcing plate 74 is not essential in the present invention, and the movable member 70 can be constituted by a single unit of the hydraulic pressure absorbing rubber plate 72 to which the hard reinforcing plate 74 is not fixed.
  • the movable member 70 comprised by the hydraulic pressure absorption rubber plate 72 is comprised by the component independent from the partition member 46, and is supported by the partition member 46 so that a micro displacement is possible in a plate
  • the outer peripheral portion of the movable member 70 constituted by the hydraulic pressure absorbing rubber plate 72 can be fixedly supported by vulcanizing and adhering to the partitioning member 46 or holding it under pressure. is there.
  • the hydraulic pressure absorbing function can be exhibited based on the elastic deformation of the hydraulic pressure absorbing rubber plate 72.
  • the elastic contact portion 78 and the buffer rib 84 that reduce the contact impact on the partition member 46 in the hydraulic pressure absorbing rubber plate 72 are provided as necessary. It is not limited.
  • the buffer ribs 84, 84 are formed on the outer peripheral portion of the rubber valve plate 82, but in addition to or instead of them, rubber protrusions and rubber protrusions protruding from the surface of the hard reinforcing plate 74, You may provide the buffer protrusion which consists of embossing etc.
  • the upper and lower through holes 96 and 98 having large diameters are formed in the partition member 46, so that the front and back surfaces of the elastic tongues 88 formed in the movable member 70 are directly connected to the pressure receiving chamber 60 and the equilibrium.
  • a plurality of small-diameter holes are formed instead of the large-diameter upper and lower through holes 96 and 98, and the pressure in the pressure receiving chamber 60 and the equilibrium chamber 62 is reduced through these small-diameter holes. It may be applied to each elastic tongue 88.
  • 10 fluid-filled vibration isolator
  • 12 first mounting member
  • 14 second mounting member
  • 16 main rubber elastic body
  • 36 flexible membrane
  • 60 pressure receiving chamber
  • 62 equilibrium chamber
  • 68 Orifice passage
  • 72 Hydraulic pressure absorbing rubber plate
  • 80 Through window
  • 86 Slit
  • 88 Elastic tongue piece
  • 90 Reinforcing part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

 受圧室の過大な圧力変動を回避等するために液圧吸収ゴム板にスリットを設けて弾性舌片を形成した流体封入式防振装置において、通常の入力振動に対する防振性能への悪影響が抑えられる新規な構造の流体封入式防振装置を提供すること。 弾性舌片88において厚肉の補強部90を一体形成する。それにより、通常の振動入力状況下において、スリット86や弾性舌片88を設けたことに起因する防振性能の低下を抑えた。

Description

流体封入式防振装置
 本発明は、例えば、自動車のエンジンマウントやサスペンションマウント等に用いられて、内部に封入された流体の流動作用等に基づいて防振効果が発揮される流体封入式防振装置に関する。
 従来から、防振装置の一種として、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結すると共に、内部に非圧縮性流体を封入して流体の共振作用等の流動作用に基づく防振効果を得るようにした流体封入式防振装置が知られている。具体的には、例えば特許第2805305号公報(特許文献1)や特開2009-275910号公報(特許文献2)に記載のものがある。これらの流体封入式防振装置は、本体ゴム弾性体で壁部の一部が構成された受圧室と、可撓性膜で壁部の一部が構成された平衡室を有しており、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、両室がオリフィス通路によって相互に連通された構造とされている。そして、第一の取付部材と第二の取付部材との間への振動入力時に、受圧室と平衡室との間に惹起される相対的な圧力変動に基づいてオリフィス通路を流動せしめられる流体の流動作用に基づいて防振効果が発揮されるようになっている。
 ところで、オリフィス通路は、予めチューニングされた周波数域では有効な防振効果を発揮し得るが、特にチューニング周波数よりも高周波数域の振動入力時に流動抵抗が著しく大きくなることから防振性能の大幅な低下が問題となり易い。
 そこで、特許文献1,2に示されているように、オリフィス通路のチューニング周波数を外れた高周波小振幅の振動入力時に、受圧室の圧力変動を吸収する液圧吸収機構が提案されている。かかる液圧吸収機構は、受圧室と平衡室との間に配設された液圧吸収ゴム板によって構成されており、液圧吸収ゴム板の各一方の面に及ぼされる受圧室と平衡室の圧力差に基づいて該液圧吸収ゴム板が変位又は変形することにより、受圧室の小さな圧力変動が吸収されるようになっている。
 また、衝撃的な大荷重入力時における受圧室の急激な圧力変動を解消させてキャビテーションに起因する異音の発生などを防止する目的で、液圧吸収機構を構成する液圧吸収ゴム板には、板厚方向に貫通するスリットが設けられて弾性舌片が形成されている。この弾性舌片は、液圧吸収ゴム板の弾性によりスリットを閉鎖状態に維持しており、衝撃的な大荷重入力で受圧室に急激な圧力変動が惹起された際にだけ弾性舌片が受圧室側または平衡室側に弾性変形してスリットを開くことで、受圧室の過大な圧力変動を回避するようになっている。
 ところが、このような従来構造の流体封入式防振装置について本発明者が検討したところ、液圧吸収ゴム板にスリットを設けることに伴い、オリフィス通路による防振効果等が要求される通常の入力振動に対する防振性能に悪影響を及ぼすおそれのあることがわかった。即ち、受圧室にそれ程大きな圧力変動が惹起されず、本来ではスリットが閉鎖状態に維持される程度の受圧室の圧力変動を生ずるに過ぎない振動入力時にも、液圧吸収ゴム板にスリットを設けたことによる防振性能の低下が認められる場合等があったのである。
特許第2805305号公報 特開2009-275910号公報
 ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、受圧室の過大な圧力変動を回避等するために液圧吸収ゴム板にスリットを設けて弾性舌片を形成した流体封入式防振装置において、通常の入力振動に対する防振性能への悪影響が抑えられる新規な構造を提供することにある。
 かかる課題を解決するために為された本発明の第一の態様は、第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、該本体ゴム弾性体で壁部の一部が構成された受圧室と、壁部の一部が可撓性膜で構成された平衡室とが形成されて、それら受圧室と平衡室に非圧縮性流体が封入されており、オリフィス通路によって該受圧室と該平衡室が相互に連通されている流体封入式防振装置において、前記受圧室と前記平衡室との間に液圧吸収ゴム板が配設されており、該液圧吸収ゴム板の一方の面に前記受圧室の圧力が及ぼされると共に、該液圧吸収用ゴム板の他方の面に前記平衡室の圧力が及ぼされることにより、それら受圧室と平衡室の圧力差に基づく該液圧吸収ゴム板の変位や変形に基づいて該受圧室の圧力変動を吸収する液圧吸収機構が構成されている一方、該液圧吸収ゴム板にはスリットにより弾性舌片が形成されており、該弾性舌片の弾性変形により該スリットが開口して該受圧室と該平衡室を短絡させる短絡機構が構成されていると共に、該弾性舌片における基端部から先端部に至る長さ方向の中間部分において厚肉の補強部が一体形成されていることを特徴とする。
 このような本態様に従う構造の流体封入式防振装置では、オリフィス通路がチューニングされた低周波大振幅振動に対してオリフィス通路を流動する流体の共振作用等に基づく防振効果が発揮される。また、高周波小振幅振動に対しては、液圧吸収用ゴム板の変位や変形に基づく受圧室の圧力吸収作用が発揮されて、オリフィス通路の実質的な閉鎖に伴う著しい高動ばね化が回避されることで良好な防振効果を得ることが出来る。更にまた、衝撃的な大荷重の入力には、液圧吸収用ゴム板に形成された弾性舌片が弾性変形してスリットが開くことにより、液圧吸収用ゴム板で仕切られた受圧室側と平衡室側とが連通状態とされる。これにより、受圧室の負圧等の大きな圧力が可及的速やかに解消されることとなって、例えばキャビテーションに起因する異音や振動の発生を低減乃至は回避することが可能となる。
 加えて、本態様の流体封入式防振装置では、液圧吸収ゴム板の弾性舌片が部分的に厚肉とされて補強部が形成されていることにより、液圧吸収ゴム板や弾性舌片の全体的なばね特性への大きな影響を回避しつつ、弾性舌片における微小な弾性変形や不規則な弾性変形等が抑えられ得る。その結果、オリフィス通路を通じての流体流動による防振効果や液圧吸収用ゴム板の変位や変形による防振効果などが要求される通常の振動入力時に、スリットでばね定数が比較的小さくされた弾性舌片が不規則に振動や微小変形或いは共振変形することが抑えられて、弾性舌片ひいては液圧吸収ゴム板全体における形状の安定性が図られる。これにより、受圧室内圧力の速やかな吸収が要求されない通常の振動入力状況下において、スリットや弾性舌片を設けたことに起因する防振性能への悪影響が抑えられ、目的とする防振効果が有効に発揮され得るのである。
 すなわち、本発明者が検討したところ、液圧吸収ゴム板に形成された弾性舌片は、そのばね特性や入力振動の周波数等の特定条件下で弾性変形して形状が不安定になるおそれがあり、弾性舌片が不安定に変形等することよって防振特性に悪影響が及ぼされるおそれがあるとの知見を得た。かかる知見に基づいて、本発明を完成したものであり、本発明では、弾性舌片において望まれない不安定な変形を抑えることにより、防振特性の安定化を達成し得たのである。
 具体的には、弾性舌片において問題となる不安定な変形や共振のような微小な繰返し変形は、特に弾性舌片の長さ方向の中間部分を補強することで、大荷重入力時におけるスリットによる液圧解消作用を損なうことなく、効果的に抑えることができることを見いだした。蓋し、弾性舌片の基端部は液圧吸収ゴム板で支持されて不安定な変形が抑えられており、この基端部に更に補強部を設けてばね剛性を上げることが必要性に乏しいだけでなく、弾性舌片の変形によるスリットの開放作動に対する変形抵抗が大きくなり過ぎてスリットの開放作動に支障がでるおそれがある。また、弾性舌片の先端部に補強部を設けると、弾性舌片の先端マスが大きくなり、弾性舌片自体の共振的な弾性変形が大きくなってしまうおそれがあると共に、弾性舌片の初期の変形反応が鈍くなってスリットが速やかに開放され難くなるおそれがあるからである。
 また、特に、弾性舌片の補強部を、ゴム弾性体で一体形成したことにより、部品点数の増加や製造工程の複雑化などを伴うことなく、弾性舌片の変形態様の安定化が簡易に実現され得、可動ゴム板自体の変位や変形によって発揮される防振特性への悪影響も回避され得るのである。
 本発明の第二の態様は、前記第一の態様に係る流体封入式防振装置において、前記液圧吸収ゴム板には放射状に延びる複数本のスリットが設けられており、前記弾性舌片が、それらスリットの放射中心回りで隣り合うスリット間に位置して周方向に複数形成されているものである。
 本態様の流体封入式防振装置では、特に3本以上のスリットが周方向で適当な間隔をもって、例えば等間隔をもって形成されることにより、扇形の平板形状をもって複数枚の弾性舌片が優れたスペース効率をもって容易に形成され得る。
 本発明の第三の態様は、前記第二の態様に係る流体封入式防振装置において、放射状に延びる複数本の前記スリットの各先端をつなぐ外接円よりも内周側に位置して、前記弾性舌片における前記補強部が形成されているものである。
 本態様の流体封入式防振装置では、放射状のスリットで形成された各弾性舌片において、基端部分におけるばね特性への悪影響を抑えつつ、特に不規則に弾性変形し易いと考えられる各弾性舌片の長さ方向の中間部分を効率的に補強することができる。それ故、衝撃的な大荷重の入力時に各弾性舌片が変形してスリットが開かれることによるキャビテーション異音の防止などの効果と、各弾性舌片の変形態様の安定化によるオリフィス通路や液圧吸収機構による防振効果との、両者の両立が一層高度に実現可能となる。
 本発明の第四の態様は、前記第一~第三の何れかの態様に係る流体封入式防振装置において、前記弾性舌片における前記補強部が、該弾性舌片の表裏両側に向かって突出するゴム突部により構成されているものである。
 本態様の流体封入式防振装置では、ゴム突部による弾性舌片の補強効果が表裏両側で略同じとされることで、弾性舌片の弾性特性が安定して、補強部による弾性舌片の不安定な変形抑制効果がより効果的に発揮され得る。
 本発明の第五の態様は、前記第一~第四の何れかの態様に係る流体封入式防振装置において、前記弾性舌片における前記補強部が、該弾性舌片の幅方向に延びる突条により構成されているものである。
 本態様の流体封入式防振装置では、受圧室内の過大な圧力回避に際してのスリット開口のための弾性舌片の変形特性を大きく損なうことなく、弾性舌片の不安定な変形を効率的に抑えることの出来る補強部が効果的に実現され得ることとなり、特に弾性舌片の幅方向寸法が大きい場合にも有効である。例えば、放射状に延びる複数本のスリットにより各弾性舌片が扇板形状で形成される場合には、各弾性舌片における補強部が、スリットの放射中心回りで周方向に延びる環状の突条によって形成され得る。なお、本態様の突条は、弾性舌片の長さ方向で所定距離を隔てて複数本形成することも可能である。
 本発明の第六の態様は、前記第一~第五の何れかの態様に係る流体封入式防振装置において、前記液圧吸収ゴム板には該液圧吸収ゴム板よりも剛性が大きい硬質補強板が固着されていると共に、該硬質補強板には板厚方向の貫通窓が形成されており、該液圧吸収ゴム板において該貫通窓を覆蓋する部分に前記スリットが設けられて前記弾性舌片が形成されているものである。
 本態様の流体封入式防振装置では、液圧吸収ゴム板そのものの弾性変形が硬質補強板で制限されることにより、液圧吸収ゴム板の過大な変形や不規則な変形が防止される。それ故、液圧吸収ゴム板の全体的な過大変形に起因するオリフィス通路の防振効果への悪影響が防止されて、目的とする防振効果を一層有利に得ることが可能となる。また、各弾性舌片が基端側にも、硬質補強板の補強作用が及ぼされることにより、弾性舌片の変形態様の安定性の更なる向上も図られ得る。
 本発明の第七の態様は、前記第一~第六の何れかの態様に係る流体封入式防振装置において、前記液圧吸収ゴム板における板厚方向の変位を許容し且つ変位量を制限して、該液圧吸収ゴム板を支持せしめるゴム板支持部が、前記第二の取付部材に設けられているものである。
 本態様の流体封入式防振装置では、液圧吸収ゴム板の変位量が確実に制限されることで、液圧吸収ゴム板の全体的な過大変形や過大変位に起因するオリフィス通路の防振効果への悪影響が防止され得る。具体的には、例えば液圧吸収ゴム板が、前記第六の態様に係る硬質補強板を備えること等により硬質である場合には、液圧吸収ゴム板の外周部分を板厚方向両側で所定の隙間をもって支持せしめる凹形の環状溝などによって、本態様のゴム板支持部が実現され得る。また、そのような硬質補強板を備えておらず弾性変形可能な液圧吸収ゴム板の場合には、例えばそれぞれ複数の透孔を備えた規制板を、液圧吸収ゴム板の板厚方向両側で所定の隙間をもって配設し、それら両規制板への液圧吸収ゴム板の当接によって変位量を制限することでゴム板支持部が実現されうる。
 本発明に従う構造とされた流体封入式防振装置では、通常の振動入力時において、弾性舌片の不規則な変形等が補強部で抑えられることにより、オリフィス通路や液圧吸収用ゴム板による防振効果を十分に確保され得る。しかも、衝撃的大荷重の入力等に因り受圧室に過大な圧力変動が惹起された際には、弾性舌片が弾性変形して受圧室内圧力がスリットを通じて速やかに解消されることにより、キャビテーション等の問題が効果的に防止され得る。
本発明の第一の実施形態としての流体封入式防振装置を示す縦断面図であって、図2のI-I断面図。 同流体封入式防振装置を構成する可動部材の平面図。 同可動部材の底面図。 図2のIV-IV断面図。 図2のV-V断面図。 本発明の別の形態としての可動部材の平面図。 同可動部材の底面図。 図6のVIII-VIII断面図。
 以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 先ず、図1には、本発明に係る第一の実施形態としての流体封入式防振装置10が示されている。この流体封入式防振装置10は、防振連結される一方の部材に取り付けられる第一の取付部材12と、防振連結される他方の部材に取り付けられる第二の取付部材14が、本体ゴム弾性体16で相互に弾性連結された構造を有している。そして、例えば、第一の取付部材12が防振連結される一方の部材である自動車のパワーユニットに取り付けられると共に、第二の取付部材14が防振連結される他方の部材である自動車のボデーに取り付けられることにより、パワーユニットが車両ボデーによって防振支持されるようになっている。なお、以下の説明において、上下方向とは、原則として、主たる振動入力方向である図1中の上下方向を言うものとする。
 より詳細には、第一の取付部材12は、鉄やアルミニウム合金等の金属材で形成された高剛性の部材とされており、略円形ブロック形状を有している。また、第一の取付部材12の上端部には、径方向外方に向かって広がるフランジ部18が一体形成されている。更に、第一の取付部材12の上端面に開口して中心軸上を延びるようにボルト穴20が形成されており、ボルト穴20の内周面には雌ねじが刻設されている。そして、第一の取付部材12は、例えば、ボルト穴20に螺着される図示しない取付ボルトによって図示しないパワーユニットにボルト固定されるようになっている。
 一方、第二の取付部材14は、第一の取付部材12と同様の金属材で形成された高剛性の部材とされており、全体として薄肉大径の略円筒形状を有している。また、第二の取付部材14の軸方向中間部分には、くびれ部22が設けられている。くびれ部22は、軸方向下方に向かって次第に縮径するテーパ部24と、テーパ部24の下端部から外周側に向かって広がる環状の段差部26を含んで構成されている。また、第二の取付部材14の下端部には、外周側に向かって広がる環状の段差28が形成されており、段差28の外周縁部には下方に向かって延び出す円環形状のかしめ片30が一体形成されている。このような第二の取付部材14は、例えば、第二の取付部材14に外嵌固定される図示しないブラケットが車両ボデーに取り付けられること等により、車両ボデーに固定されるようになっている。
 上述の如き第一の取付部材12と第二の取付部材14は、同一中心軸上に配設されると共に、第一の取付部材12が第二の取付部材14に対して軸方向上方に離隔配置されている。そして、それら第一の取付部材12と第二の取付部材14の間に本体ゴム弾性体16が介装されることにより、第一の取付部材12と第二の取付部材14が本体ゴム弾性体16で弾性的に連結されている。
 本体ゴム弾性体16は、厚肉の略円錐台形状を有するゴム弾性体で形成されている。また、本体ゴム弾性体16の径方向中央部分には、大径側端面(図1中、下側の端面)に開口するように大径の円形凹所32が形成されている。また、本体ゴム弾性体16の小径側端部には、第一の取付部材12が差し込まれており、フランジ部18の下面が本体ゴム弾性体16の小径側の軸方向端面に重ね合わされるようにして加硫接着されている。一方、本体ゴム弾性体16の大径側端部の外周面には、第二の取付部材14の上部およびテーパ部24が重ね合わされて加硫接着されている。これにより、第一の取付部材12と第二の取付部材14が本体ゴム弾性体16で相互に連結されている。なお、本実施形態における本体ゴム弾性体16は、第一の取付部材12と第二の取付部材14を一体的に備えた一体加硫成形品として形成されている。
 さらに、本体ゴム弾性体16と一体形成されたシールゴム層34が第二の取付部材14の内周面に固着されている。シールゴム層34は、薄肉のゴム膜で形成されており、第二の取付部材14における段差部26の内周面から段差28の内周縁部に亘る部位を覆うように被着形成されている。
 また、第二の取付部材14の下端開口部には、可撓性膜36が配設されている。可撓性膜36は、薄肉大径の略円形ドーム形状を有するゴム膜で形成されており、弾性変形が容易に許容されるようになっている。また、可撓性膜36の外周縁部には、固定金具38が固着されている。固定金具38は、略円環形状を有しており、筒状の固着部40と該固着部40の上端から外周側に向かって広がる鍔状部42を一体的に備えている。そして、固定金具38の固着部40に対して可撓性膜36の外周縁部が加硫接着されることにより、可撓性膜36が固定金具38を一体的に備えた一体加硫成形品として形成されている。なお、本実施形態では、鍔状部42の外周縁部と上端面を除く略全面に亘って固定金具38が可撓性膜36と一体形成されたゴム層で覆われている。
 このような可撓性膜36は、第二の取付部材14に組み付けられる。即ち、固定金具38における鍔状部42の外周縁部が、第二の取付部材14の下端部に設けられた段差28に対して下方から重ね合わされると共に、鍔状部42が第二の取付部材14に一体形成されたかしめ片30によってかしめ固定されることにより、可撓性膜36が第二の取付部材14の下端部に固定されるようになっている。
 このように、可撓性膜36が第一の取付部材12と第二の取付部材14を備えた本体ゴム弾性体16の一体加硫成形品に対して組み付けられることにより、第二の取付部材14の軸方向上側の開口部が本体ゴム弾性体16で流体密に閉塞されていると共に、第二の取付部材14の軸方向下側の開口部が可撓性膜36で流体密に閉塞されている。これにより、第二の取付部材14の内周側において本体ゴム弾性体16と可撓性膜36の軸方向間には、外部から密閉された流体室としての流体封入領域44が形成されている。
 また、流体封入領域44には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油、或いはそれらの混合液等の非圧縮性流体が封入流体として封入されている。なお、封入流体は、特に限定されるものではないが、後述するオリフィス通路68を流動せしめられる流体の共振作用等に基づく防振効果を有利に得るために、粘度が0.1Pa・s以下の低粘性流体を採用することが望ましい。なお、このような流体の封入は、可撓性膜36の第二の取付部材14(第二の取付部材14を備えた本体ゴム弾性体16の一体加硫成形品)への組付けを非圧縮性流体中で行うことにより、有利に実現することが出来る。
 また、流体封入領域44には、仕切部材46が収容配置されている。仕切部材46は、厚肉の略円板形状を有しており、本実施形態では、仕切部材本体48と蓋部材50を含んで構成されている。
 仕切部材本体48は、全体として厚肉の略円板形状を有しており、本実施形態では鉄やアルミニウム合金、硬質合成樹脂材等の硬質材で形成されている。また、仕切部材本体48の外周縁部には、上端面および外周面に開口する切欠状溝52が、一周よりも短い所定の長さで周方向に延びるように形成されている。
 また、仕切部材本体48の径方向中央部分には、収容凹所54が形成されている。収容凹所54は、仕切部材本体48において切欠状溝52の内周側に所定距離を隔てて形成されており、上方に向かって開口する円形の凹所とされている。更に、仕切部材本体48の径方向中央部分には、下側中央凹所56が形成されている。下側中央凹所56は、仕切部材本体48において収容凹所54と上下方向で略対応する位置に形成された円形の凹所であって、軸方向下方に向かって開口せしめられている。
 一方、蓋部材50は、仕切部材本体48と略同一の直径を有する薄肉の円板形状を呈しており、本実施形態では仕切部材本体48と同様の硬質材で形成されている。そして、蓋部材50が、仕切部材本体48の上端面に対して上方から重ね合わされて組み合わされることにより、本実施形態における仕切部材46が構成されている。
 このように蓋部材50が仕切部材本体48に対して重ね合わされることにより、切欠状溝52の上側開口部が蓋部材50で覆蓋されており、仕切部材46の外周面に開口して周方向に延びる周方向溝が切欠状溝52を利用して形成されている。また、仕切部材本体48に形成された収容凹所54の開口部が蓋部材50で覆われることによって、仕切部材46の内部に収容領域58が形成されている。
 かくの如き仕切部材46は、流体封入領域44に収容状態で配設されている。即ち、仕切部材46は、第二の取付部材14の下側開口部から挿し入れられて、蓋部材50の外周縁部が第二の取付部材14の段差部26に対して下方から当接せしめられると共に、仕切部材本体48の外周縁部に対して固定金具38の鍔状部42が下方から重ね合わされる。そして、固定金具38の鍔状部42が第二の取付部材14のかしめ片30で第二の取付部材14に対して固定されることにより、仕切部材46が第二の取付部材14の段差部26と固定金具38の鍔状部42との間で位置決めされて、第二の取付部材14によって固定的に支持されている。なお、本実施形態では、第二の取付部材14に対して仕切部材46が内挿された状態で、第二の取付部材14に八方絞り等の縮径加工を施すことにより、仕切部材46の外周面がシールゴム層34を介して第二の取付部材14に密着せしめられている。
 このようにして仕切部材46が流体封入領域44内において軸直角方向に広がって配設されて、第二の取付部材14で支持されることにより、流体封入領域44が仕切部材46を挟んで軸方向で上側と下側に二分されている。即ち、仕切部材46を挟んだ一方(上方)の側において、壁部の一部が本体ゴム弾性体16で構成されて、振動入力時に圧力変動が惹起される受圧室60が形成されていると共に、仕切部材46を挟んだ他方(下方)の側において、壁部の一部が可撓性膜36で構成されて、可撓性膜36の変形によって容積変化が許容される平衡室62が形成されている。なお、これら受圧室60と平衡室62には、流体封入領域44に封入された非圧縮性流体が封入されている。
 また、仕切部材46の外周縁部に形成された前記周方向溝の外周側開口部が、第二の取付部材14によって流体密に覆蓋されており、仕切部材46の外周縁部を周方向に所定の長さで延びるトンネル状通路が形成されている。更に、蓋部材50には、該トンネル状通路の一方の端部を仕切部材46の上方に開口させる上側連通路64が形成されていると共に、仕切部材本体48には、該トンネル状通路の他方の端部を仕切部材46の下方に開口させる下側連通路66が形成されている。そして、トンネル状通路の一方の端部が上側連通路64を通じて受圧室60に連通されていると共に、該トンネル状通路の他方の端部が下側連通路66を通じて平衡室62に連通されており、受圧室60と平衡室62を相互に連通するオリフィス通路68が形成されている。なお、本実施形態では、受圧室60の壁ばね剛性に応じてオリフィス通路68の通路長と通路断面積の比が適当に設定されることにより、オリフィス通路68を通じて両室60,62の間で流動せしめられる流体の共振周波数が、自動車のエンジンシェイク等に相当する10Hz前後の低周波数にチューニングされている。
 ここにおいて、仕切部材46に形成された収容領域58には、図2~5に示されているような可動部材70が収容配置されている。可動部材70は、全体として略円板形状を有しており、液圧吸収ゴム板72と拘束板としての硬質補強板74によって構成されている。
 液圧吸収ゴム板72は、略円板形状を有するゴム弾性体であって、その外径寸法が、収容領域58の内径寸法よりも僅かに小さくされている。また、液圧吸収ゴム板72の厚さ寸法も、収容領域58の高さ寸法よりも僅かに小さくされており、収容領域58への配設下、液圧吸収ゴム板72の上下面と収容領域58の上下内面との間に存在する隙間により、収容領域58内での液圧吸収ゴム板72の板厚方向への変位が許容されるようになっている。なお、液圧吸収ゴム板72の外周面には、周方向に延びるリップ形状をもって突出する位置決め突部76が、周上の複数箇所に一体形成されている。そして、これら複数の位置決め突部76により、収容領域58内で液圧吸収ゴム板72が略中央に位置決めされて、板厚方向の変位が小さな接触抵抗で許容されるようになっている。
 さらに、液圧吸収ゴム板72の板厚方向中間部分に埋設された状態で、略円板形状の硬質補強板74が配設されており、液圧吸収ゴム板72に加硫接着されている。硬質補強板74は、液圧吸収ゴム板72よりも剛性が大きい合成樹脂材や金属材等によって形成されている。また、硬質補強板74の外径寸法は、液圧吸収ゴム板72の外径寸法よりも小さくされており、液圧吸収ゴム板72の中央部分の弾性変形が硬質補強板74によって実質的に阻止されている。
 なお、本実施形態では、硬質補強板74を外周側に外れて位置する液圧吸収ゴム板72の外周縁部において、板厚方向両側に突出する上下の弾性当接部78,78が、周方向に連続した円環形状で一体形成されている。そして、これら上下の弾性当接部78,78の突出高さが周方向で連続的に変化せしめられることにより、液圧吸収ゴム板72の外周縁部が、周方向において板厚方向で両側に波打ったように延びる波状部とされている。即ち、液圧吸収ゴム板72の外周縁部は、上下の弾性当接部78,78を含む板厚方向の寸法が実質的に変化しないで、厚さ方向の中心位置が周方向で上下に振れるように変化せしめられている。特に本実施形態では、上下の弾性当接部78,78の突出先端面が略サイン波状に一定周期(例えば、周方向で90度周期)で周方向に滑らかに波打った形状とされている。
 また、硬質補強板74には、板厚方向に貫通する複数の貫通窓80が形成されている。本実施形態では、各貫通窓80が円形孔とされており、液圧吸収ゴム板72の径方向中間部分において周方向で等間隔に四つ形成されている。そして、各貫通窓80は、液圧吸収ゴム板72の単体からなるゴム弁板82で覆蓋されている。
 かかるゴム弁板82は、略一定の厚さ寸法で広がる円板形状を有している。ゴム弁板82の外周部分には、硬質補強板74の貫通窓80の内周縁部上に位置して厚さ方向両側に突出する緩衝リブ84が全周に亘って環状に一体形成されている。この緩衝リブ84の突出高さは、液圧吸収ゴム板72の全面において板厚方向で最も外方に突出するように設定されている。各ゴム弁板82の外周部分において、液圧吸収ゴム板72の上下両面に突出する緩衝リブ84,84が形成されていることにより、ゴム弁板82の外周部分が補強されていると共に、液圧吸収ゴム板72の収容領域58内面への当接時の衝撃が緩和されるようになっている。
 また、ゴム弁板82には、スリット86が形成されている。スリット86は、ゴム弁板82の中心から径方向外方に向かって放射状に延びるように複数本形成されており、ゴム弁板82を厚さ方向に貫通している。本実施形態において、スリット86は、図2,3に示されているように、放射中心回りで等間隔に3本形成されており、周方向で各隣り合うスリット86,86間に、扇形の平板形状とされた弾性舌片88がそれぞれ形成されている。即ち、かかる弾性舌片88では、複数のスリット86,86,86の放射中心点が弾性舌片88の先端部とされている一方、この放射中心点を中心として弾性舌片88の両側のスリット86,86の先端をつないで延びる円弧の線上に位置する部分が弾性舌片88の基端部とされている。
 なお、各スリット86は、その先端部がゴム弁板82の外周縁部までは至らない長さとされており、特に本実施形態では、弾性当接部78,78にも僅かに至らない先端部長さで各スリット86が形成されている。また、各スリット86は、外力が作用しない初期状態で閉鎖するようになっており、各ゴム弁板82の周方向両端面が、スリット86を挟んで隣り合うゴム弁板82の周方向端面に対して、スリット86の全長に亘って密接状態で重ね合わされている。尤も、かかるスリット86は、要求される防振特性に応じて完全に閉鎖されている必要はなく、周方向で隣り合う弾性舌片88の周方向両端面間が僅かに離隔していても良い。
 さらに、各弾性舌片88には、部分的に厚肉なゴム突部である補強部90が突出して一体形成されている。弾性舌片88における補強部90は、弾性舌片88の幅方向に延びる突条により構成されている。弾性舌片88の幅方向とは、弾性舌片88の基端部から先端部に延びる長さ方向に対して直交する方向であり、スリット86に対しても直交して延びる方向である。なお、本実施形態では、補強部90は、スリット86の放射中心を中心とする円の周方向に延びる円弧形状をもって、各弾性舌片88に形成されている。更に本実施形態では、弾性舌片88において、放射状に延びる各スリット86の先端をつなぐ外接円で囲まれた領域内に補強部90が形成されている。また、補強部90が弾性舌片88の基端部から先端部に至る長さ方向の中間部分に形成されており、特に長さ方向において中央よりも外周側に偏倚していることが望ましい。具体的には、ゴム弁板82の表裏両面において、放射状に延びるスリット86の放射中心回りで山形断面をもって周方向に連続して延びる弾性突条が形成されており、かかる弾性突条がスリットで分断されることにより、各弾性舌片88毎に独立した補強部90が形成されている。
 なお、各弾性舌片88の表裏両面に形成された補強部90,90は、互いに同じ位置に同じ大きさで、表裏対称に形成されていることが好ましい。それにより弾性舌片88の形状が安定し、弾性変形効果も十分に発揮され得る。また、本実施形態では、補強部90の断面において、頂部が外周側に偏倚されており、補強部90の外周側の曲率半径に比して内周側の曲率半径が大きくされており、なだらかに傾斜している。これにより、弾性舌片88において、ゴム弁板82の外周側に位置する基端部分よりもゴム弁板82の中心側に位置する先端部分の方が周方向幅が小さくされて変形し易くされている特性を考慮し、補強部90,90の形成によりゴム弁板82に及ぼされる特性変化の軽減が図られている。また、補強部90の突出高さ寸法は弾性舌片88の厚さ寸法の30~100%であることが望ましい。補強部90が小さ過ぎると十分な補強効果が得られ難く、大き過ぎると弾性舌片88の弾性特性等への悪影響が懸念されるからである。
 このような構造とされた可動部材70は、仕切部材46の内部に形成された収容領域58内に配設されており、前述のように、収容領域58内で可動部材70が板厚方向に所定距離だけ変位可能とされている。また、収容領域58の上側壁部を構成する蓋部材50の中央部分には、軸方向に貫通する上側透孔96が形成されており、上側透孔96を通じて収容領域58が受圧室60に連通されている。一方、収容領域58の下側壁部を構成する仕切部材本体48の中央部分(収容凹所54の底壁部)には、軸方向に貫通する下側透孔98が形成されており、下側透孔98を通じて収容領域58が平衡室62に連通されている。
 なお、本実施形態では、上下の透孔96,98が、何れも大径の円形透孔とされており、それら上側透孔96と下側透孔98が略等しい直径で形成されている。また、上下の透孔96,98の内径寸法は、可動部材70における硬質補強板74の外径寸法よりも小さくされており、可動部材70における硬質補強板74の配設領域が上下の透孔96,98の外周部分に当接することで、可動部材70の板厚方向への変位量が確実に規定されるようになっている。
 要するに、上下の透孔96,98が形成されることで、仕切部材46には、内周面に開口して周方向に延びる環状溝が形成されており、この環状溝に対して、可動部材70の外周部分が差し入れられている。そして、環状溝の内面への当接によって変位量が制限される領域内で、可動部材70が、仕切部材46を介して、第二の取付部材14に対して変位可能に支持されているのである。このことから明らかなように、本実施形態では、仕切部材46によって液圧吸収ゴム板72を変位可能に支持するゴム板支持部が構成されている。
 更にまた、上下の透孔96,98の大きさは、可動部材70に設けられたゴム弁板82が、それら上下の透孔96,98を通じて受圧室60や平衡室62へ十分な面積で露呈されるように設定されている。具体的には、軸方向の投影において各ゴム弁板82の50%以上、好適には80%以上が、上下の透孔96,98を通じて受圧室60や平衡室62に露呈されることが好ましい。
 これにより、収容領域58内に配設された可動部材70の上面に対して受圧室60の圧力が上側透孔96を通じて及ぼされるようになっていると共に、可動部材70の下面に対して平衡室62の圧力が下側透孔98を通じて及ぼされるようになっている。
 そして、可動部材70が収容領域58内において受圧室60と平衡室62を仕切るように配設されていることにより、振動入力によって受圧室60と平衡室62の間で相対的な圧力差が生じると、可動部材70が軸方向に微小変位せしめられて、受圧室60の圧力変動を吸収する液圧吸収機構が構成されている。
 また、本実施形態では、液圧吸収ゴム板72の外周縁部が上下の透孔96,98よりも外周側にまで広がっていると共に、液圧吸収ゴム板72の固着された硬質補強板74が上下の透孔96,98の開口領域よりも大径の円板形状とされており、硬質補強板74の外周縁部が全周に亘って上下の透孔96,98よりも外周側に広がっている。これにより、大振幅振動の入力に際して、硬質補強板74が固着された液圧吸収ゴム板72の外周部分が、収容領域58の上下内面に対して当接せしめられて、可動部材70の軸方向での変位が一層確実に制限されるようになっている。
 また、受圧室60と平衡室62の圧力差が著しく大きい場合には、ゴム弁板82に形成された弾性舌片88の弾性変形によってスリット86が開口されるようになっており、スリット86を通じて受圧室60と平衡室62が相互に連通されるようになっている。これにより、衝撃的な大荷重の入力に際して、オリフィス通路68よりも小さな流動抵抗で受圧室60と平衡室62を相互に連通する短絡機構が構成されている。要するに本実施形態においては、弾性舌片88の弾性を利用して、スリット86の連通状態と遮断状態を切り換える弁構造によって短絡機構が実現されている。
 このような構造とされた流体封入式防振装置10では、車両への装着下、自動車のエンジンシェイクに相当する低周波大振幅振動が入力されると、受圧室60と平衡室62の相対的な圧力変動に基づいて、低周波数域にチューニングされたオリフィス通路68を通じての流体流動が生ぜしめられる。その際、受圧室60と平衡室62の相対的な圧力差が可動部材70の変位による液圧吸収機能を上回ることから、可動部材70の変位量が制限されて実質的に拘束される。それ故、オリフィス通路68を通じての流体流動量が効果的に確保されて、流体の共振作用等の流動作用に基づく防振効果(高減衰効果)が有効に発揮され得る。
 また、通常のエンジンシェイクに相当する低周波数大振幅振動の入力時には、オリフィス通路68を通じての流体流動によって受圧室60の圧力変動が平衡室62に逃がされることとなり、受圧室60の圧力変動が著しく大きくなることもない。従って、可動部材70においても、弾性舌片88の弾性により、受圧室60と平衡室62の圧力差に抗してスリット86が閉塞状態に保持される。また、それ故、受圧室60の圧力のスリット86を通じての逃げが防止されて、受圧室60と平衡室62の相対的な圧力差に基づくオリフィス通路68を通じての流体流動と、それに基づく防振性能が一層効果的に発揮されうる。
 さらに、アイドリング振動や走行こもり音等に相当する中乃至高周波数域の小振幅振動の入力時には、オリフィス通路68が反共振的な作用によって実質的に遮断状態となる。その際、受圧室60と平衡室62の相対的な圧力差に基づいて可動部材70が板厚方向で微小変位を許容されることで、受圧室60に惹起される圧力変動を平衡室62側に逃して吸収する液圧吸収作用が発揮される。それ故、オリフィス通路68の実質的な遮断に伴う著しい高動ばね化が回避されて、良好な防振性能が発揮されることとなる。なお、アイドリング振動や走行こもり音に相当する中乃至高周波数域の振動入力に際しても、受圧室60の圧力変動が、可動部材70の変位に基づいて平衡室62に逃がされることにより、スリット86が略閉塞状態に保持される。
 一方、走行時における段差の乗り越え等により衝撃的な大荷重が入力されて、受圧室60に著しい圧力変動が発生すると、受圧室60と平衡室62の圧力差に基づいてゴム弁板82における各弾性舌片88が大きく変形し、スリット86が開口せしめられる。そして、受圧室60と平衡室62がスリット86を通じて相互に連通されて、スリット86を通じての流体流動により、受圧室60の極めて著しい圧力変動が可及的速やかに解消され得る。それ故、例えば受圧室60におけるキャビテーションの発生を抑えて、キャビテーションに起因する異音や振動の発生を防止することも可能となる。
 ここにおいて、ゴム弁板82における弾性舌片88には、部分的に厚肉とされることで補強部90が形成されている。これにより、弾性舌片88が弾性変形してスリット86を開放させる特性を確保しつつ、弾性舌片88の局部的な変形剛性を高めて、弾性舌片88の変形の安定化が図られている。それ故、衝撃的な大荷重の入力時にはスリット86を開口させて、受圧室60における著しい圧力変動を抑えることが出来ると共に、エンジンシェイクやアイドリング振動、走行こもり音等のオリフィス通路68や液圧吸収機構による防振効果が発揮される通常の振動入力時には、弾性舌片88の不規則な変形やそれに起因する予期しないスリット86の開放が効果的に防止されて、オリフィス通路68や液圧吸収機構による所期の防振効果が有効に発揮され得るのである。
 特に弾性舌片88における補強部90は、弾性舌片88の長さ方向の中間部分に設けられていることから、かかる補強部90の形成により、弾性舌片88の基端部における弾性変形特性の増大や、弾性舌片88の先端部におけるマスの増大などに伴う不具合も回避されうる。それ故、上述の如き補強部90を弾性舌片88に形成することにより、衝撃的な大荷重入力時におけるスリット86の開口に基づいて発揮されるキャビテーション防止等の特性を十分に確保しつつ、通常走行時などにおける弾性舌片88の不規則な変形や共振等に伴う防振性能の低下を効果的に防止することが可能となるのである。
 また、本実施形態では、ゴム弾性体で形成された液圧吸収ゴム板72に硬質補強板74を固着せしめた可動部材70が採用されており、ゴム弁板82の周囲が硬質補強板74で補強されている。この硬質補強板74による補強効果が各弾性舌片88にも及ぼされることから、弾性舌片88の変形態様の更なる安定化が図られ得る。
 更にまた、本態様では、ゴム弁板82の外周側が上下の緩衝リブ84,84で補強されていることから、スリット86の先端部分における亀裂が防止されて優れた耐久性が実現されうる。また、仮にスリット86の先端部分に亀裂が発生した場合でも、ゴム弁板82の外周側に配設された硬質補強板74で亀裂の成長が防止され得る。
 以上、本発明の実施形態について説明してきたが、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。
 例えば、前記実施形態では、三方向に延び出す直線的な切込みで構成された放射状のスリット86が例示されているが、スリット86の具体的な形状は、特に限定されるものではない。具体的には、例えば、特許文献1に記載の如きU字状などに湾曲した一本のスリットや、相互に離隔して組み合わされた複数本のスリット等によって弾性舌片を形成することも可能である。
 また、弾性舌片88に形成される補強部90は、上面又は下面の一方だけに形成されていても良いし、相互に異なる大きさや形状を採用することで、上方への変形特性と下方への変形特性とを異ならせることも可能である。更にまた、かかる補強部90は、前記実施形態のように弾性舌片88の周方向の全長に亘って形成されている必要はなく、例えば図6~8に示されているように、弾性舌片88において独立した一つ又は複数の弾性突起100によって補強部を構成することも可能である。なお、図6~8では、その理解を容易とするために、前記実施形態と同様な構造とされた部材および部位に対して前記実施形態と同一の符号を付しておく。
 また、前記実施形態では、可動部材70を構成する硬質補強板74に複数の貫通窓80が形成されていたが、貫通窓80が一つだけ形成された構造であっても良い。更に、かかる硬質補強板74は、本発明において必須でなく、可動部材70を、硬質補強板74が固着されていない液圧吸収ゴム板72の単体によって構成することも可能である。
 また、前記実施形態では、液圧吸収ゴム板72で構成された可動部材70が、仕切部材46から独立した部品で構成されており、仕切部材46によって板厚方向で微小変位可能に支持されていたが、かかる液圧吸収ゴム板72で構成された可動部材70の外周部分を仕切部材46に対して加硫接着したり挟圧保持させたりする等して固定的に支持せしめることも可能である。このように液圧吸収ゴム板72の外周縁部を仕切部材で固定的に支持せしめた可動膜構造では、液圧吸収ゴム板72の弾性変形に基づいて液圧吸収機能が発揮され得る。
 また、液圧吸収ゴム板72において仕切部材46への当接衝撃を緩和する弾性当接部78や緩衝リブ84は、必要に応じて設けられるものであって、その形成や形状、位置などは限定されるものでない。例えば、前記実施形態では、緩衝リブ84,84がゴム弁板82の外周部分に形成されていたが、それに加えてまたは代えて、硬質補強板74の表面から突出するゴム突起やゴム突条、シボなどからなる緩衝突部を設けても良い。
 また、前記実施形態では、仕切部材46に大径の上下透孔96,98が形成されることにより、可動部材70に形成された各弾性舌片88の表裏両面が直接に受圧室60や平衡室62に晒されていたが、そのような大径の上下透孔96,98に代えて、例えば複数の小径孔を形成して、それら小径孔を通じて、受圧室60や平衡室62の圧力が各弾性舌片88に及ぼされるようにしても良い。
 その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
10:流体封入式防振装置、12:第一の取付部材、14:第二の取付部材、16:本体ゴム弾性体、36:可撓性膜、60:受圧室、62:平衡室、68:オリフィス通路、72:液圧吸収ゴム板、74:硬質補強板、80:貫通窓、86:スリット、88:弾性舌片、90:補強部

Claims (7)

  1.  第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、該本体ゴム弾性体で壁部の一部が構成された受圧室と、壁部の一部が可撓性膜で構成された平衡室とが形成されて、それら受圧室と平衡室に非圧縮性流体が封入されており、オリフィス通路によって該受圧室と該平衡室が相互に連通されている流体封入式防振装置において、
     前記受圧室と前記平衡室との間に液圧吸収ゴム板が配設されており、該液圧吸収ゴム板の一方の面に前記受圧室の圧力が及ぼされると共に、該液圧吸収用ゴム板の他方の面に前記平衡室の圧力が及ぼされることにより、それら受圧室と平衡室の圧力差に基づく該液圧吸収ゴム板の変位や変形に基づいて該受圧室の圧力変動を吸収する液圧吸収機構が構成されている一方、
     該液圧吸収ゴム板にはスリットにより弾性舌片が形成されており、該弾性舌片の弾性変形により該スリットが開口して該受圧室と該平衡室を短絡させる短絡機構が構成されていると共に、該弾性舌片における基端部から先端部に至る長さ方向の中間部分において厚肉の補強部が一体形成されていることを特徴とする流体封入式防振装置。
  2.  前記液圧吸収ゴム板には放射状に延びる複数本のスリットが設けられており、前記弾性舌片が、それらスリットの放射中心回りで隣り合うスリット間に位置して周方向に複数形成されている請求項1に記載の流体封入式防振装置。
  3.  放射状に延びる複数本の前記スリットの各先端をつなぐ外接円よりも内周側に位置して、前記弾性舌片における前記補強部が形成されている請求項2に記載の流体封入式防振装置。
  4.  前記弾性舌片における前記補強部が、該弾性舌片の表裏両側に向かって突出するゴム突部により構成されている請求項1~3の何れか1項に記載の流体封入式防振装置。
  5.  前記弾性舌片における前記補強部が、該弾性舌片の幅方向に延びる突条により構成されている請求項1~4の何れか1項に記載の流体封入式防振装置。
  6.  前記液圧吸収ゴム板には該液圧吸収ゴム板よりも剛性が大きい硬質補強板が固着されていると共に、該硬質補強板には板厚方向の貫通窓が形成されており、該液圧吸収ゴム板において該貫通窓を覆蓋する部分に前記スリットが設けられて前記弾性舌片が形成されている請求項1~5の何れか1項に記載の流体封入式防振装置。
  7.  前記液圧吸収ゴム板における板厚方向の変位を許容し且つ変位量を制限して、該液圧吸収ゴム板を支持せしめるゴム板支持部が、前記第二の取付部材に設けられている請求項1~6の何れか1項に記載の流体封入式防振装置。
PCT/JP2011/003896 2011-07-07 2011-07-07 流体封入式防振装置 WO2013005261A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013522370A JP5543031B2 (ja) 2011-07-07 2011-07-07 流体封入式防振装置
PCT/JP2011/003896 WO2013005261A1 (ja) 2011-07-07 2011-07-07 流体封入式防振装置
CN201180070082.1A CN103477115B (zh) 2011-07-07 2011-07-07 流体封入式隔振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003896 WO2013005261A1 (ja) 2011-07-07 2011-07-07 流体封入式防振装置

Publications (1)

Publication Number Publication Date
WO2013005261A1 true WO2013005261A1 (ja) 2013-01-10

Family

ID=47436637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003896 WO2013005261A1 (ja) 2011-07-07 2011-07-07 流体封入式防振装置

Country Status (3)

Country Link
JP (1) JP5543031B2 (ja)
CN (1) CN103477115B (ja)
WO (1) WO2013005261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009318A1 (de) * 2015-07-15 2017-01-19 Vibracoustic Gmbh Trennvorrichtung und hydrolager
US20210381576A1 (en) * 2018-11-27 2021-12-09 Vibracoustic Nantes Sas Switchable anti-vibration hydraulic mount and separation element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019003332T5 (de) * 2018-08-24 2021-03-18 Sumitomo Riko Company Limited Fluidgefüllte vibrationsdämpfungsvorrichtung
CN110645309B (zh) * 2019-09-23 2021-06-18 安徽誉林汽车部件有限公司 一种液压悬置用解耦膜片结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009961A (ja) * 2005-06-28 2007-01-18 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007127193A (ja) * 2005-11-04 2007-05-24 Nok Corp 液体封入式マウント
JP2008249076A (ja) * 2007-03-30 2008-10-16 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009058083A (ja) * 2007-08-31 2009-03-19 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009275910A (ja) * 2008-04-16 2009-11-26 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2011069428A (ja) * 2009-09-25 2011-04-07 Tokai Rubber Ind Ltd 流体封入式防振装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352487A (en) * 1980-11-18 1982-10-05 Gould Inc. Viscous spring damper
DE3501628A1 (de) * 1985-01-19 1986-07-31 Boge Gmbh, 5208 Eitorf Hydraulisch daempfendes gummilager
DE3522482A1 (de) * 1985-06-22 1987-01-15 Freudenberg Carl Fa Hydraulisch daempfendes motorlager
DE3526686A1 (de) * 1985-07-25 1987-02-05 Metzeler Kautschuk Zweikammer-motorlager mit hydraulischer daempfung
JP4218061B2 (ja) * 2004-10-18 2009-02-04 東海ゴム工業株式会社 流体封入式防振装置
US8308147B2 (en) * 2006-04-07 2012-11-13 Bridgestone Corporation Vibration damper
DE102010045277B4 (de) * 2010-09-14 2013-09-19 Carl Freudenberg Kg Trennwand für ein Hydrolager

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009961A (ja) * 2005-06-28 2007-01-18 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007127193A (ja) * 2005-11-04 2007-05-24 Nok Corp 液体封入式マウント
JP2008249076A (ja) * 2007-03-30 2008-10-16 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009058083A (ja) * 2007-08-31 2009-03-19 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009275910A (ja) * 2008-04-16 2009-11-26 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2011069428A (ja) * 2009-09-25 2011-04-07 Tokai Rubber Ind Ltd 流体封入式防振装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009318A1 (de) * 2015-07-15 2017-01-19 Vibracoustic Gmbh Trennvorrichtung und hydrolager
CN107850171A (zh) * 2015-07-15 2018-03-27 威巴克公司 分隔装置和液压支承
US10480606B2 (en) 2015-07-15 2019-11-19 Vibracoustic Gmbh Separating device and hydraulic mount
US20210381576A1 (en) * 2018-11-27 2021-12-09 Vibracoustic Nantes Sas Switchable anti-vibration hydraulic mount and separation element
US12123472B2 (en) * 2018-11-27 2024-10-22 Vibracoustic Nantes Sas Switchable anti-vibration hydraulic mount and separation element

Also Published As

Publication number Publication date
JPWO2013005261A1 (ja) 2015-02-23
CN103477115A (zh) 2013-12-25
CN103477115B (zh) 2015-06-17
JP5543031B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4861969B2 (ja) 流体封入式防振装置
JP5801134B2 (ja) 液封入式防振装置
JP5535958B2 (ja) 液封入式防振装置
JP5542565B2 (ja) 流体封入式防振装置
JP4914817B2 (ja) 流体封入式防振装置
JP2007271001A (ja) 流体封入式防振装置
JP2008002618A (ja) 流体封入式防振装置
JP4120510B2 (ja) 流体封入式防振装置
JP4922871B2 (ja) 流体封入式防振装置
JP5543031B2 (ja) 流体封入式防振装置
JP2010196719A (ja) 流体封入式防振装置
JP2008190602A (ja) 流体封入式防振装置
JP5377272B2 (ja) 流体封入式防振装置
JP2003074617A (ja) 流体封入式防振装置
JP2009243511A (ja) 自動車用の流体封入式エンジンマウント
JP2008163970A (ja) 流体封入式防振装置
JP2007085523A (ja) 流体封入式防振装置
WO2020039648A1 (ja) 流体封入式防振装置
JP4075066B2 (ja) 流体封入式エンジンマウント
JP4871902B2 (ja) 流体封入式防振装置
JP4792414B2 (ja) 流体封入式防振装置
JP5702250B2 (ja) 液封入式防振装置
JP5899039B2 (ja) 流体封入式防振装置
JP5677898B2 (ja) 流体封入式防振装置
JP5014239B2 (ja) 流体封入式防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868927

Country of ref document: EP

Kind code of ref document: A1