[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013076890A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2013076890A1
WO2013076890A1 PCT/JP2012/005568 JP2012005568W WO2013076890A1 WO 2013076890 A1 WO2013076890 A1 WO 2013076890A1 JP 2012005568 W JP2012005568 W JP 2012005568W WO 2013076890 A1 WO2013076890 A1 WO 2013076890A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
insulating film
semiconductor device
gate insulating
forming
Prior art date
Application number
PCT/JP2012/005568
Other languages
English (en)
French (fr)
Inventor
千秋 工藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013501471A priority Critical patent/JP5243671B1/ja
Priority to US13/820,445 priority patent/US8791002B2/en
Publication of WO2013076890A1 publication Critical patent/WO2013076890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Definitions

  • the present application relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a trench gate structure and a manufacturing method thereof.
  • a semiconductor device having a trench gate structure has attracted attention.
  • a channel is formed on the surface of a semiconductor layer, whereas in a trench gate semiconductor device, a channel region is formed on the side surface of a trench provided in the semiconductor layer.
  • a semiconductor device with a trench gate structure is expected to be miniaturized and have a lower on-resistance than a semiconductor device with a planar gate structure.
  • a semiconductor device having a trench gate structure has been developed particularly in the field of power devices.
  • the semiconductor device having a trench gate structure is not limited by miniaturization due to the junction FET (JFET) effect, it has the advantage that the trench can be miniaturized and the on-resistance and switching loss can be reduced.
  • JFET junction FET
  • the aspect ratio of the trench becomes large due to miniaturization and it becomes difficult to bury the gate electrode.
  • the gate resistance is increased. In order to suppress an increase in gate resistance, it has been studied to make the gate electrode T-shaped and extend the gate electrode around the trench (see, for example, Patent Document 1).
  • a semiconductor device having a trench gate structure it is important to form an appropriate gate insulating film in the trench.
  • the electric field concentrates at the bottom of the trench, and the electric field strength is higher than other portions. This may cause breakdown due to dielectric breakdown of the gate insulating film at the bottom of the trench.
  • the conventional trench gate structure semiconductor device has the following problems. First, when controlling the film thickness of the gate insulating film using the plane orientation of the substrate, a substrate having a special plane orientation is required, which increases the manufacturing cost. In addition, the film thickness on the side surface of the trench and the film thickness on the bottom cannot be set independently to an arbitrary thickness.
  • a gate insulating film is also required on the semiconductor layer around the trench. If the thickness of the gate insulating film formed around the trench is thin, the gate-source capacitance increases and causes a delay. Therefore, when making the gate electrode T-shaped, it is necessary to control not only the thickness of the gate insulating film on the side and bottom of the trench but also the thickness of the gate insulating film around the trench.
  • the trench is substantially deepened and the aspect ratio is increased. For this reason, the problem that it becomes difficult to embed the gate electrode also occurs.
  • the above problems occur both in a silicon semiconductor device and in a semiconductor device using a wide band gap semiconductor such as silicon carbide (silicon carbide: SiC).
  • SiC silicon carbide
  • the relative dielectric constant of SiC (9.7 for 4H-SiC) is smaller than that of Si (11.9), and the difference from the relative dielectric constant of SiO 2 (3.8) is small. For this reason, in a semiconductor device using SiC, a larger electric field is applied to the gate insulating film, which is a more serious problem.
  • One embodiment disclosed in the present specification provides a semiconductor device in which the thickness of a gate insulating film in and around a trench can be easily controlled and a gate electrode can be easily embedded in the trench.
  • One embodiment of a method for manufacturing a semiconductor device disclosed in this specification includes a step of preparing a substrate having a semiconductor layer provided on a main surface side, a step of forming a trench in the semiconductor layer, a side surface of the trench, and a trench Forming a gate insulating film around the bottom and the trench, and forming a conductive film extending over the gate insulating film and filling the trench.
  • the step of forming the gate insulating film includes the step of forming the first insulating film on the side surface of the trench, and the formation of the second insulating film using a high-density plasma chemical vapor deposition method at the bottom of the trench and around the trench.
  • the conductive film is formed in contact with a portion of the first insulating film formed on the side surface of the trench.
  • One embodiment of a semiconductor device disclosed in this specification includes a substrate, a semiconductor layer provided on a main surface side of the substrate, a trench provided in the semiconductor layer, a side surface of the trench, a bottom portion of the trench, and a periphery of the trench. And a conductive film provided on the gate insulating film so as to fill the trench and spread around the trench, and the gate insulating film is provided on the side surface of the trench.
  • the second insulating film provided at the bottom of the trench and around the trench, and the thickness of the portion of the gate insulating film provided at the bottom of the trench and around the trench is the gate insulating film
  • the portion provided in the periphery of the trench in the second insulating film is thicker than the portion provided on the side surface of the trench in, and has a slope that gradually increases in thickness from the end on the trench side, Angle of inclination with respect to the main surface of the substrate of the slope portion is 45 ⁇ 5 degrees, and the conductive film, the side surface portion formed in the trench in the first insulating film is in contact.
  • a gate insulating film is formed by a combination of a high-density plasma chemical vapor deposition (High-Density-Plasma-Chemical-Vapor-Deposition: HDP-CVD) method and a thermal oxidation method, for example. To do.
  • a high-density plasma chemical vapor deposition High-Density-Plasma-Chemical-Vapor-Deposition: HDP-CVD
  • the film thickness of the gate insulating film at the bottom and the periphery of the trench and the film thickness of the gate insulating film on the side surface of the trench can be set independently without complicating the process. it can.
  • a semiconductor device in which the dielectric breakdown of the gate insulating film at the bottom of the trench is suppressed can be easily realized without substantially affecting the characteristics such as the threshold voltage.
  • FIG. 1 shows the result of the simulation of the electric field strength applied to the bottom of the trench in a trench gate structure semiconductor device using 4H—SiC.
  • the drain voltage was 1200 V
  • the junction breakdown voltage between the drift region and the body region was 1200 V or more.
  • the thickness of the gate insulating film in the channel region on the side surface of the trench was fixed to 70 nm, and the electric field strength applied to the bottom of the trench when the thickness at the bottom of the trench was changed was obtained.
  • the electric field strength exceeds 9 MV / cm. Even if the film thickness at the bottom of the trench is 140 nm, which is twice the film thickness at the side surface, an electric field of 6 MV / cm is applied to the bottom of the trench.
  • the dielectric breakdown electric field strength in a normal thermal oxide film is 10 MV / cm or more. However, in order to ensure reliability during long-term use, it is preferable that the electric field strength allowable in the semiconductor device is about 3 MV / cm to 4 MV / cm, which is sufficiently smaller than the dielectric breakdown electric field strength.
  • the electric field strength applied to the bottom of the trench is 4 MV / cm or less.
  • the (000-1) C plane is a plane with a high oxidation rate, but the oxidation rate is only about twice that of the (11-20) plane. For this reason, it is difficult to make the thickness of the gate insulating film at the bottom of the trench 5 times or more that of the side surface of the trench due to the difference in oxidation rate depending on the plane orientation. Further, since the combination of the surface orientation of the bottom surface and the surface orientation of the side surface of the trench is limited, the film thickness on the side surface and the film thickness on the bottom portion cannot be controlled independently. Furthermore, low concentration epitaxial growth is difficult on the C-plane. For this reason, it is difficult to relax the electric field applied to the bottom of the trench so as to be a predetermined value or less while securing the characteristics of the transistor using the difference in the oxidation rate depending on the plane orientation, which is not practical.
  • the film thickness at the side of the trench and the film thickness at the bottom are controlled independently. Is possible. However, an increase in man-hours is a big problem. For example, the following steps are required. First, after forming a thermal oxide film inside the trench, a polysilicon film is formed so as to cover the thermal oxide film. Next, a nitride film that covers the polysilicon film is formed, and the formed nitride film is selectively removed to form a mask that covers the side surfaces of the trench and exposes the bottom. After the exposed portion of the polysilicon film is thermally oxidized, the mask is removed, and the unoxidized polysilicon film is removed.
  • an oxide film obtained by oxidizing polysilicon has a lower breakdown field strength than an oxide film obtained by oxidizing single crystal silicon. For this reason, it is necessary to increase the thickness of the gate insulating film at the bottom of the trench compared to the case where the thermal oxide film is directly formed at the bottom of the trench. However, it is difficult to completely oxidize the thick polysilicon film to the inside, and it is not easy to make the thickness of the gate insulating film at the bottom of the trench significantly larger than the side surface.
  • a thick insulating film is formed at the bottom of the trench by thermal oxidation.
  • the inventor of the present application has found that when a thermal oxide film having a film thickness twice or more that of the side surface is formed at the bottom of the trench, defects are easily introduced into the semiconductor layer. In the thermal oxide film formation process, the volume of the surface portion of the semiconductor layer is increased by oxidation. For this reason, when a thick thermal oxide film is formed at the bottom of the trench, a large stress is applied to the corner of the bottom of the trench, and there is a high possibility that the crystallinity is disturbed at the corner. Therefore, defects are likely to occur in the semiconductor layer, and the breakdown voltage of the semiconductor device may be reduced, or the leakage current may be increased.
  • the inventor of the present application paid attention to the fact that by using the HDP-CVD method, the SiO 2 film can be selectively deposited on the bottom surface of the trench with almost no deposition on the side surface of the trench.
  • the film thickness on the side surface of the trench and the film thickness on the bottom can be controlled independently. Further, since no mask is required, the number of man-hours does not increase greatly.
  • the HDP-CVD method is used, a dense SiO 2 film can be obtained, so that a large dielectric breakdown electric field strength can be obtained even if the film thickness is smaller than the SiO 2 film obtained by oxidizing polysilicon. It is done.
  • the semiconductor device of this embodiment is a SiC-metal insulator semiconductor field effect transistor (MISFET) having a trench gate structure, and has a plurality of unit cells 11.
  • FIG. 2 shows a planar configuration of the unit cell 11
  • FIG. 3 shows a cross-sectional configuration taken along line III-III in FIG. In FIG. 2, the description of the source electrode is omitted.
  • Each unit cell 11 has a semiconductor layer 102 provided on the surface (main surface) of a substrate 101 containing SiC.
  • the semiconductor layer 102 includes an n-type drift region 121, a p-type body region 123 provided on the drift region 121, and an n-type source region 124 provided on the body region 123. Yes.
  • the source region 124 is surrounded by the body region 123.
  • the semiconductor layer 102 has a trench (concave portion) 102 a that penetrates the source region 124 and the body region 123 and reaches the drift region 121.
  • a gate insulating film 103 is formed on the source region 124 inside the trench 102a and around the trench 102a.
  • the gate insulating film 103 includes a first insulating film 131 provided on the side surface of the trench 102a, and a second insulating film 132 provided on the bottom of the trench 102a and around the trench 102a.
  • the second insulating film 132 includes an in-trench portion 132A provided at the bottom of the trench 102a and a trench surrounding portion 132B provided on the semiconductor layer 102 around the trench 102a.
  • a gate electrode 105 made of a conductive film is embedded in the trench 102a.
  • the gate electrode 105 has a T-shaped cross section that extends around the trench 102a.
  • the bottom portion is in contact with the in-trench portion 132 A of the second insulating film 132, and the side portion is in contact with the first insulating film 131.
  • a portion of the gate electrode 105 provided around the trench 102 a is in contact with the trench surrounding portion 132 B of the second insulating film 132. For this reason, the gate electrode 105 is insulated from the semiconductor layer 102 by the gate insulating film 103.
  • a source electrode (source-body electrode) 106 electrically connected to the source region 124 and the body region 123 is provided on the semiconductor layer 102.
  • the source electrode 106 is provided so as to surround the trench 102a.
  • a drain electrode 107 is provided on the back surface of the substrate 101.
  • An interlayer insulating film that covers the gate electrode 105 and the source electrode 106 is provided on the semiconductor layer 102 as necessary, and a gate wiring and a source wiring are provided in the interlayer insulating film.
  • the gate wiring and the source wiring are connected to the gate electrode 105 and the source electrode 106 by contact plugs, respectively.
  • the semiconductor device of this embodiment may be formed as follows. First, as shown in FIG. 4, SiC is epitaxially grown on the main surface of the substrate 101 to sequentially form an n-type drift region 121 and a p-type body region 123. Subsequently, an n-type source region 124 is formed in the body region 123.
  • a low-resistance n-type SiC substrate containing nitrogen having a concentration of about 3 ⁇ 10 18 cm ⁇ 3 can be used as the substrate 101.
  • the drift region 121 may be doped with nitrogen at a concentration of about 8 ⁇ 10 15 cm ⁇ 3 .
  • the thickness of the drift region 121 may be about 12 ⁇ m.
  • the impurity concentration and thickness of the drift region 121 may be determined by the required breakdown voltage, and are not limited to the exemplified concentration and thickness.
  • the body region 123 may be doped with aluminum at a concentration of about 2 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the body region 123 may be about 1 ⁇ m.
  • the source region 124 may be formed by ion implantation or the like.
  • An implantation mask made of SiO 2 or the like is formed so as to expose a portion to be the source region 124 in the body region 123.
  • n-type impurity ions for example, nitrogen ions
  • the ion implantation may be performed by setting the acceleration energy to 100 keV and the dose amount to 5 ⁇ 10 15 cm ⁇ 2 .
  • annealing is performed for about 30 minutes at a temperature of about 1700 ° C. in an inert gas atmosphere. Thereby, the implanted impurity ions are activated, and the source region 124 is obtained.
  • the example which forms the semiconductor layer 102 by epitaxial growth was shown, you may form all or one part of the semiconductor layer 102 by performing ion implantation etc. to a SiC substrate.
  • p-type impurities may be implanted into an n-type SiC substrate, and the upper portion of the SiC substrate may be used as the body region 123.
  • the body region 123 may be formed by epitaxially growing an n-type semiconductor layer on the SiC substrate and then ion-implanting p-type impurities into the surface region of the formed n-type semiconductor layer. In these cases, the region where the p-type impurity is not implanted becomes the drift region 121.
  • a trench 102 a is formed in the semiconductor layer 102.
  • the trench 102a uses, for example, a mask made of a SiO 2 film that exposes the central portion of the source region 124, and reactive ion etching (RIE) is performed on part of the source region 124, the body region 123, and the drift region 121. Can be removed.
  • the trench 102 a is formed so as not to penetrate the drift region 121 and so that the bottom surface is below the interface between the drift region 121 and the body region 123.
  • the trench 102a may have a depth of about 1.5 ⁇ m and a width of about 1 ⁇ m.
  • 5 illustrates an example in which the side surface of the trench 102a is perpendicular to the main surface of the substrate 101; however, the side surface of the trench 102a may not be perpendicular to the main surface of the substrate 101.
  • a second insulating film 132 is deposited by HDP-CVD.
  • the second insulating film 132 can be formed on the bottom of the trench 102a and the periphery of the trench 102a, and can be prevented from being formed on the side surface of the trench 102a.
  • the film thickness of the in-trench portion 132A formed at the bottom of the trench 102a and the trench peripheral portion 132B formed around the trench 102a in the second insulating film 132 may be about 150 nm to about 500 nm. In the present embodiment, as an example, the film thickness is about 350 nm.
  • the thickness of the second insulating film 132 may be adjusted by the deposition time.
  • the second insulating film 132 After the second insulating film 132 is formed, it is preferable to perform heat treatment at a temperature of about 900 ° C. in an inert gas atmosphere or an oxidizing atmosphere in order to improve the insulation resistance of the second insulating film 132. However, the heat treatment may be omitted.
  • the second insulating film 132 is formed by the HDP-CVD method.
  • the HDP-CVD method is a CVD method using high-density plasma.
  • the plasma density is higher than that of normal plasma CVD, and there is an advantage that a high-quality film can be formed even at a low temperature.
  • sputter etching and deposition are performed simultaneously, almost no film is formed on the portion where the underlayer is inclined more than about 45 degrees, and the end portion becomes an inclined surface having an inclination angle of about 45 degrees. Has characteristics. Therefore, as shown in FIG. 6, the second insulating film 132 is hardly deposited on the side surface of the trench 102a. Accordingly, the second insulating film 132 can be formed only at the bottom of the trench 102a and around the trench 102a without forming a mask on the side surface of the trench 102a.
  • the formation of the second insulating film 132 by the HDP-CVD method can be performed using a known apparatus under known conditions.
  • the SiO 2 film may be deposited under the following conditions.
  • the power supplied to the top coil is about 1300 W
  • the power supplied to the side coil is about 3100 W
  • a bias of about 3300 W is applied to the substrate.
  • the inside of the chamber is about 6 mTorr (about 0.8 Pa)
  • argon (Ar) is 125 sccm (sccm is 0 ° C., mL / min at 1 atm.
  • a first insulating film 131 is formed on the side surface of the trench 102a.
  • the first insulating film 131 may be thinner than the second insulating film 132.
  • the thickness may be about 30 nm to 100 nm.
  • the first insulating film 131 having a thickness of about 70 nm can be formed by performing heat treatment for about 3 hours at a temperature of about 1200 ° C. in a dry oxidation atmosphere. At this time, the second insulating film 132 is also baked.
  • the first insulating film 131 grows almost equally on the semiconductor layer 102 side and the trench 102a side. Therefore, as shown in FIG. 7, the position of the end portion on the trench 102a side of the trench peripheral portion 132B in the second insulating film 132 is slightly different from the upper edge of the trench 102a after the first insulating film 131 is formed. It will be in the retracted position. Theoretically, the position of the end portion of the trench peripheral portion 132B is the position of the upper edge of the trench 102a before the first insulating film 131 is formed.
  • the interval t1 is substantially equal to half the film thickness t2 of the first insulating film 131.
  • a conductive film 105A is formed on the entire surface of the semiconductor layer 102 including the inside of the trench 102a.
  • the conductive film 105A may be a polysilicon film having a thickness of about 600 nm doped with phosphorus at a concentration of 1 ⁇ 10 20 cm ⁇ 3 or more, for example.
  • the polysilicon film may be formed by LP-CVD, for example.
  • the conductive film 105A may be a conductive film other than the polysilicon film.
  • the conductive film 105A is etched (dry etching) using the resist layer 141 that covers the upper portion of the trench 102a and exposes other portions as a mask, so that the gate electrode 105 having a T-shaped cross section is formed. obtain.
  • the size of the portion of the gate electrode 105 protruding around the trench 102a is preferably set to 500 nm or more in consideration of misalignment of the lithography technique. However, if the required gate resistance can be realized, the gate electrode 105 need not have a T-shaped cross section. Subsequently, a portion of the second insulating film 132 that is not covered with the gate electrode 105 is removed to expose the source region 124 and the body region 123.
  • the source electrode 106 is formed so as to be in contact with the body region 123 and the source region 124. Specifically, the following may be performed. First, an insulating film serving as an interlayer insulating film is formed so as to cover the semiconductor layer 102 and the gate electrode 105. Thereafter, an opening that exposes part of the body region 123 and the source region 124 is formed in the insulating film, and a conductive film may be formed in the opening.
  • the conductive film may be a nickel (Ni) film or the like, and may be heat-treated as necessary after formation. Thereby, a source electrode in ohmic contact with the source region 124 and the body region 123 is obtained. Further, the drain electrode 107 is formed on the back surface (the surface opposite to the main surface) of the substrate 101. Although not shown in the drawing, a wiring and a plug for connecting each electrode and the wiring may be formed as necessary.
  • the gate insulating film 103 is formed by combining the HDP-CVD method and the thermal oxidation method. Therefore, it is easy to independently set the film thickness of the gate insulating film 103 on the side surface of the trench 102a and the film thickness of the gate insulating film 103 at the bottom and the periphery of the trench 102a without forming a mask or the like. it can.
  • the film thickness of the side surface of the trench 102a in the gate insulating film 103 and the film thickness at the bottom of the trench 102a may be set as appropriate depending on the required threshold voltage, dielectric breakdown voltage, and the like.
  • the film thickness at the bottom of the trench 102a may be thicker than the film thickness at the side surface of the trench 102a. More preferably, the film thickness at the bottom of the trench 102a is at least three times the film thickness at the side surface of the trench 102a. Furthermore, in order to reduce the electric field strength applied to the bottom of the trench 102a, the value may be 4 to 5 times or more.
  • the thickness of the gate insulating film 103 on the side surface of the trench 102a may be about 70 nm, and the thickness of the gate insulating film 103 on the bottom of the trench 102a may be about 350 nm to 400 nm.
  • the electric field strength applied to the bottom of the trench 102a can be suppressed to about 4 MV / cm.
  • the main surface is a (0001) Si surface that allows easy crystal growth
  • the thickness of the gate insulating film 103 on the side surface of the trench 102a is about 70 nm.
  • the thickness of the SiO 2 film formed on the upper surface of the semiconductor layer 102 by the thermal oxidation method is about 10 nm. Therefore, when the gate electrode 105 has a T-shaped cross section, the gate electrode 105 and the source region 124 come close to each other and the source-gate capacitance increases.
  • the thickness of the portion of the gate insulating film 103 formed around the trench 102a is also almost equal to the bottom of the trench 102a.
  • the film thickness is about 40 times that when formed on the (0001) Si surface by the thermal oxidation method, and the gate-source capacitance can be reduced to about 1/40.
  • the gate-source capacitance can be reduced when the thickness of the portion of the gate insulating film 103 formed around the trench 102a is thicker than the thickness of the portion formed on the side surface of the trench 102a. It is preferable because it is possible.
  • the depth of the trench 102a can be reduced when the thickness of the portion of the gate insulating film 103 formed around the trench 102a is thicker than the thickness of the portion formed at the bottom of the trench 102a. Therefore, it is preferable. If the depth of the trench 102a can be reduced, the time required for forming the trench 102a can be shortened. Further, when the depth of the trench 102a is increased and the aspect ratio which is the ratio of the depth and the width is increased, the etching rate is increased in the vicinity of the bottom of the trench 102a, and so-called sub-trench shape deterioration is likely to occur. It is also possible to suppress the generation of sub-trench by reducing the depth of the trench 102a.
  • the thickness of the portion (132B) formed around the trench 102a in the gate insulating film 103 is usually larger than the thickness of the portion (132A) formed on the bottom surface of the trench 102a. Further, the thickness of the portion (132B) formed around the trench 102a in the gate insulating film 103 is larger than the thickness of the portion (131) formed on the side surface of the trench 102a.
  • a portion (132B) formed around the trench 102a in the gate insulating film 103 is inclined in the vicinity of the trench 102a, and the film thickness gradually increases as the distance from the vicinity of the trench 102a increases. Therefore, the film thickness of the portion formed around the trench 102a in the gate insulating film 103 is the maximum film thickness in the portion formed around the trench 102a.
  • the end surface of the trench peripheral portion 132B formed around the trench 102a is set to the main surface of the substrate 101.
  • An inclined surface can be formed.
  • the inclination angle ⁇ 1 of the inclined surface varies about ⁇ 5 degrees, it is about 45 degrees in a portion of at least about 80% excluding the upper end and the lower end of the inclined surface.
  • the interface between the second insulating film 132 and the gate electrode 105 at the bottom of the trench 102 a is preferably located below the interface between the drift region 121 and the body region 123. In this way, the second insulating film 132 is not formed on the portion of the body region 123 exposed to the side surface of the trench 102a that becomes the channel region. Therefore, the thick second insulating film hardly affects the threshold voltage or the like.
  • the side surface of the trench 102a is exposed to the HDP-CVD source gas. This may change the state of the side surface of the trench 102a. Depending on the conditions of the HDP-CVD method, part of the second insulating film 132 may be deposited on the side surface of the trench 102a. At this time, the second insulating film 132 formed on the side surface of the trench 102a is a film that is sufficiently thinner than the in-trench portion 132A and the trench surrounding portion 132B in the second insulating film 132. For this reason, as shown in FIG.
  • 11A after the second insulating film 132 is deposited on the semiconductor layer 102 or after the second insulating film 132 is baked, the second insulating film 132 is wet-etched. May be.
  • 11A to 11C are cross-sectional views showing a first modification of the manufacturing process of the semiconductor device according to the embodiment.
  • the portion modified by the HDP-CVD source gas on the side surface of the trench 102a or the SiO 2 film thinly formed on the side surface of the trench 102a by HDP-CVD is removed. be able to.
  • the etching amount of the second insulating film 132 is sufficient to be 30% or less of the thickness of the second insulating film 132.
  • the end of the trench peripheral portion 132B in the second insulating film 132 is set back from the end of the trench 102a by t3. Therefore, when the first insulating film 131 is formed, as shown in FIG. 11C, the end portion of the trench peripheral portion 132B and the upper end edge of the trench 102a, that is, the upper end edge of the trench in the first insulating film are formed.
  • the interval t1 with the portion is larger than half of the film thickness t2 at the upper end portion of the first insulating film 131.
  • the retraction amount of the second insulating film 132 is large, the first insulating film 131 is formed after the surface of the semiconductor layer 102 is exposed. For this reason, the semiconductor layer 102 is not exposed. Since the receding amount is within 30% of the thickness of the second insulating film 132, the area of the region is small and the source-gate capacitance hardly increases.
  • FIG. 5 shows a case where the upper end corner of the trench 102a is substantially perpendicular. However, as shown in FIG. 12, the upper end of the trench 102a may be rounded to form a curved surface.
  • FIG. 12 is an enlarged cross-sectional view illustrating a second modification of the semiconductor device according to the embodiment. By rounding the upper end portion of the trench 102a, electric field concentration at the upper end portion of the trench 102a can be reduced.
  • the upper end portion of the trench 102a can be rounded. Further, it is possible to round the upper end portion by performing annealing in a hydrogen atmosphere after forming the trench 102a having a corner portion under normal etching conditions. Not only the upper end portion of the trench 102a but also the lower end portion may be curved. In this way, electric field concentration at the lower end of the trench 102a can be reduced.
  • the trench peripheral portion 132B is formed in a portion where the inclination at the upper end portion of the trench 102a is about 45 degrees or less. Therefore, when the upper portion of the trench 102a is curved, before the first insulating film 131 is formed, the inclination ⁇ 2 of the upper end portion of the trench 102a that contacts the end portion of the trench peripheral portion 132B and the trench peripheral portion 132B are formed. Is equal to the inclination ⁇ 1 of the inclined portion.
  • FIG. 13 is an enlarged cross-sectional view illustrating a third modification of the semiconductor device according to the embodiment. In this case, the substantial aspect ratio of the trench 102a when embedding the conductive film 105A is reduced, and the embedding of the conductive film 105A is further facilitated.
  • the SiO 2 film formed by the HDP-CVD method is more likely to generate fixed charges at the interface between the SiO 2 film and the semiconductor layer than the SiO 2 film formed by the thermal oxidation method.
  • the first insulating film 131 by the thermal oxidation method before the second insulating film 132, generation of fixed charges or the like at the interface between the gate insulating film 103 and the semiconductor layer 102 can be suppressed. Benefits are gained.
  • FIG. 17 is a plan view illustrating a fifth modification of the semiconductor device according to the embodiment. In this case, as shown in FIG. 17, the slope ⁇ 4 of the portion in contact with the end of the trench surrounding portion 132B in the trench 102a where the first insulating film 131 is formed, and the slope ⁇ 1 of the inclined portion of the trench surrounding portion 132B. Matches.
  • FIG. 18 is a plan view illustrating a sixth modification of the semiconductor device according to the embodiment.
  • wet etching of the second insulating film 132 is performed, as shown in FIG. 18, the end of the trench peripheral portion 132B is t4 from the upper edge of the trench 102a after the first insulating film 131 is formed.
  • the receding amount t4 of the trench peripheral portion 132B substantially matches the etching amount of the second insulating film 132.
  • the etching amount of the second insulating film 132 is sufficient to be 30% or less of the thickness of the second insulating film 132. In this case, since the first insulating film 131 is also formed around the trench 102a, there is almost no influence on the gate capacitance if the retraction amount t4 is about 100 nm or less.
  • FIG. 19 is a plan view illustrating a seventh modification of the semiconductor device according to the embodiment.
  • the slope ⁇ 5 of the portion in contact with the end of the trench surrounding portion 132B in the trench 102a where the first insulating film 131 is formed is smaller than the slope ⁇ 1 of the inclined portion of the trench surrounding portion 132B.
  • the film thickness of the first insulating film 131 varies depending on the plane orientation of the semiconductor layer 102.
  • the film thickness of the portion formed on the top surface of the semiconductor layer 102 and the bottom surface of the trench 102a in the first insulating film 131 Is thinner than the thickness of the portion formed on the side surface of the trench 102a.
  • the second insulating film 132 is formed on the bottom of the trench 102a and around the trench 102a, there is no problem even if the first insulating film 131 is thin.
  • the n-type MISFET has been described.
  • a p-type MISFET may be used.
  • the conductivity type of the substrate 101, the drift region 121, and the source region 124 may be p-type
  • the conductivity type of the body region 123 may be n-type.
  • the semiconductor layer 102 may have a region other than the drift region 121, the body region 123, and the source region 124.
  • an impurity layer having a conductivity type different from that of the drift region 121 may be provided in the vicinity of the bottom surface of the trench 102a in the drift region 121 for electric field relaxation.
  • FIG. 20 is a plan view illustrating an eighth modification of the semiconductor device according to the embodiment.
  • the channel layer 125 made of an n-type SiC layer may be formed on the semiconductor layer 102 including the inside of the trench 102a.
  • the gate insulating film 103, the gate electrode 105, the source electrode 106, the drain electrode 107, and the like may be formed in the same manner as the MISFET having an inverted channel structure.
  • the first insulating film 131 may be formed before the second insulating film 132.
  • good Even in the case of having a storage channel structure, wet etching may be performed after the second insulating film 132 is formed, or the upper portion of the trench 102a may be rounded. Further, it may be a p-type MISFET.
  • an insulated bipolar transistor (insulated-gate-bipolar-transistor: IGBT) can be formed by making the substrate and the semiconductor layer formed immediately above have different conductivity types.
  • the unit cells may be arranged in any manner.
  • the planar shape of a trench may be what kind.
  • the unit cell may be arranged so that the trench has a planar rectangular shape and the long sides of the plurality of trenches are parallel to each other.
  • the substrate 101 is 4H—SiC and the semiconductor layer 102 is formed on the (0001) Si surface is shown.
  • the semiconductor layer 102 may be formed on the (000-1) C plane, and the drain electrode 107 may be formed on the (0001) Si plane.
  • the plane orientation of the main surface may be another crystal plane.
  • other polytype SiC substrates can be used.
  • the semiconductor device using SiC has been described, but the present invention can also be applied to a semiconductor device using another wide band gap semiconductor such as gallium nitride (GaN) or diamond. Further, the present invention can be applied to a semiconductor device using silicon.
  • GaN gallium nitride
  • the present invention can be applied to a semiconductor device using silicon.
  • the semiconductor device and the manufacturing method thereof according to the present invention are useful as various semiconductor devices including a power device and the manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 半導体装置の製造方法は、トレンチの側面、トレンチの底部及びトレンチの周囲にゲート絶縁膜を形成する工程を備えている。ゲート絶縁膜を形成する工程は、トレンチの側面に第1の絶縁膜を形成する工程と、トレンチの底部及びトレンチの周囲に高密度プラズマ化学気相成長法を用いて第2の絶縁膜を形成する工程とを含む。ゲート絶縁膜におけるトレンチの底部及びトレンチの周囲に形成された部分の膜厚を、ゲート絶縁膜におけるトレンチの側面に形成された部分よりも厚くする。

Description

半導体装置及びその製造方法
 本願は、半導体装置及びその製造方法に関し、特にトレンチゲート構造を有する半導体装置及びその製造方法に関する。
 近年、トレンチゲート構造を有する半導体装置が注目されている。プレーナゲート構造の半導体装置では、半導体層の表面にチャネルが形成されるのに対し、トレンチゲート構造の半導体装置では、半導体層に設けられたトレンチの側面にチャネル領域が形成される。このため、トレンチゲート構造の半導体装置は、プレーナゲート構造の半導体装置よりも微細化及びオン抵抗の低減が期待される。このため、特にパワーデバイスの分野においてトレンチゲート構造の半導体装置の開発が行われている。
 トレンチゲート構造の半導体装置は、接合FET(JFET)効果による微細化の制限を受けないため、トレンチを微細化し、オン抵抗及びスイッチング損失を低減できるという利点を有している。しかし、微細化によりトレンチのアスペクト比が大きくなりゲート電極の埋め込みが困難になるという問題がある。また、ゲート電極の断面積が小さくなるため、ゲート抵抗が増大してしまう。ゲート抵抗の増大を抑えるために、ゲート電極をT字状にして、トレンチの周囲にゲート電極を延伸することが検討されている(例えば、特許文献1を参照。)。
 また、トレンチゲート構造の半導体装置においては、トレンチ内に適切なゲート絶縁膜を形成することが重要である。トレンチの底部には電界が集中し、他の部分よりも電界強度が高くなる。このため、トレンチの底部においてゲート絶縁膜の絶縁破壊によるブレイクダウンが生じるおそれがある。
 一方、絶縁破壊電界を大きくするために、ゲート絶縁膜の膜厚を全体的に厚くすると、スイッチングの際の閾値電圧が上昇してしまう。このため、トレンチの側面と底面との面方位の違いを用いてトレンチの底部により厚いゲート絶縁膜を形成する方法が検討されている(例えば、特許文献2を参照。)。また、ゲート絶縁膜を形成する際にトレンチの側面にマスクを形成し、トレンチの側面においては酸化膜の形成を抑えつつ、トレンチの底部に厚いゲート絶縁膜を形成する方法が検討されている(例えば、特許文献3を参照。)。
特開2007-281512号公報 特開平7-326755号公報 特開2007-242943号公報
 しかしながら、前記従来のトレンチゲート構造の半導体装置には以下のような問題がある。まず、ゲート絶縁膜の膜厚を基板の面方位を用いて制御する場合には、特殊な面方位の基板が必要となり、製造コストを上昇させる。また、トレンチの側面における膜厚と底部における膜厚とを独立して任意の厚さに設定することができない。
 トレンチの側面にマスクを形成し、トレンチの底部にのみ厚いゲート絶縁膜を形成する場合には、マスクの形成及び除去という工程が必要となる。このため、製造工程が複雑となり、製造コスト及びサイクルタイムが上昇してしまう。
 また、ゲート電極をT字状にする場合には、トレンチの周囲の半導体層の上にもゲート絶縁膜が必要となる。トレンチの周囲に形成されたゲート絶縁膜の膜厚が薄いと、ゲート-ソース容量が増大し、遅延の原因となる。従って、ゲート電極をT字状にする場合には、トレンチの側面及び底部におけるゲート絶縁膜の膜厚だけでなく、トレンチの周囲におけるゲート絶縁膜の膜厚も制御する必要がある。
 さらに、トレンチの周囲に厚いゲート絶縁膜を形成すると、実質的にトレンチが深くなり、アスペクト比が大きくなる。このため、ゲート電極の埋め込みが困難になるという問題も発生する。
 以上のような問題は、シリコン半導体装置においても、炭化珪素(シリコンカーバイド:SiC)等のワイドバンドギャップ半導体を用いた半導体装置においても生じる。SiCの比誘電率(4H-SiCでは9.7)は、Siの比誘電率(11.9)よりも小さく、SiO2の比誘電率(3.8)との差が小さい。このため、SiCを用いた半導体装置においては、ゲート絶縁膜により大きな電界が印加されるので、より大きな問題となる。
 本明細書において開示される一実施の形態は、トレンチ内及びトレンチ周囲におけるゲート絶縁膜の膜厚の制御が容易であると共に、トレンチへのゲート電極の埋め込みも容易な半導体装置を提供する。
 本明細書において開示される半導体装置の製造方法の一形態は、主面側に設けられた半導体層を有する基板を準備する工程と、半導体層にトレンチを形成する工程と、トレンチの側面、トレンチの底部及びトレンチの周囲にゲート絶縁膜を形成する工程と、ゲート絶縁膜の上にトレンチを埋め且つトレンチの周囲に拡がった導電膜を形成する工程とを備えている。ゲート絶縁膜を形成する工程は、トレンチの側面に第1の絶縁膜を形成する工程と、トレンチの底部及びトレンチの周囲に高密度プラズマ化学気相成長法を用いて第2の絶縁膜を形成する工程とを含み、ゲート絶縁膜におけるトレンチの底部及びトレンチの周囲に形成された部分の膜厚を、ゲート絶縁膜におけるトレンチの側面に形成された部分よりも厚くする。導電膜を形成する工程において、導電膜と、第1の絶縁膜におけるトレンチの側面の上に形成された部分とは接するように形成する。
 本明細書において開示される半導体装置の一形態は、基板と、基板の主面側に設けられた半導体層と、半導体層に設けられたトレンチと、トレンチの側面、トレンチの底部及びトレンチの周囲に設けられたゲート絶縁膜と、トレンチを埋め且つトレンチの周囲に拡がるように、ゲート絶縁膜の上に設けられた導電膜とを備え、ゲート絶縁膜は、トレンチの側面に設けられた第1の絶縁膜と、トレンチの底部及びトレンチの周囲に設けられた第2の絶縁膜とを有し、ゲート絶縁膜におけるトレンチの底部及びトレンチの周囲に設けられた部分の膜厚は、ゲート絶縁膜におけるトレンチの側面に設けられた部分よりも厚く、第2の絶縁膜におけるトレンチの周囲に設けられた部分は、トレンチ側の端部から次第に厚さが厚くなる傾斜部を有し、傾斜部の基板の主面に対する傾斜角度は、45±5度であり、導電膜と、第1の絶縁膜におけるトレンチの側面に形成された部分とは接している。
 本明細書において開示される一実施の形態によれば、トレンチ内及びトレンチ周囲におけるゲート絶縁膜の膜厚の制御が容易であると共に、トレンチへのゲート電極の埋め込みも容易な半導体装置を実現できる。
トレンチの底部に形成された絶縁膜の膜厚と、トレンチの底部において絶縁膜にかかる電界強度との関係を示すグラフである。 一実施形態に係る半導体装置を示す平面図である。 一実施形態に係る半導体装置を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 一実施形態に係る半導体装置の一製造工程を示す断面図である。 (a)~(c)は一実施形態に係る半導体装置の製造工程の第1の変形例を示す断面図である。 一実施形態に係る半導体装置の第2の変形例を拡大して示す断面図である。 一実施形態に係る半導体装置の第3の変形例を拡大して示す断面図である。 一実施形態に係る半導体装置の製造工程の第4の変形例を示す断面図である。 一実施形態に係る半導体装置の製造工程の第4の変形例を示す断面図である。 一実施形態に係る半導体装置の製造工程の第4の変形例を示す断面図である。 一実施形態に係る半導体装置の第5の変形例を示す平面図である。 一実施形態に係る半導体装置の第6の変形例を示す平面図である。 一実施形態に係る半導体装置の第7の変形例を示す平面図である。 一実施形態に係る半導体装置の第8の変形例を示す平面図である。
 本明細書において開示される半導体装置の製造方法においては、高密度プラズマ化学気相成長(High Density Plasma Chemical Vapor Deposition:HDP-CVD)法と、例えば熱酸化法との組み合わせによりゲート絶縁膜を形成する。
 この製造方法によれば、工程を複雑にすることなく、トレンチの底部及び周囲におけるゲート絶縁膜の膜厚と、トレンチの側面におけるゲート絶縁膜の膜厚とを独立して自由に設定することができる。閾値電圧等の特性にほとんど影響を与えることなく、トレンチの底部におけるゲート絶縁膜の絶縁破壊が抑制された半導体装置を容易に実現できる。また、ゲート抵抗の低減とゲート容量の低減とを両立させることができ、高周波動作に優れた半導体装置を実現できる。
 まず、必要とされるゲート絶縁膜の膜厚について説明する。図1は4H-SiCを用いたトレンチゲート構造の半導体装置において、トレンチ底部にかかる電界強度をシミュレーションにより求めた結果を示している。ドレイン電圧は1200Vであり、ドリフト領域とボディ領域とのジャンクション耐圧は1200V以上であるとした。トレンチ側面のチャネル領域におけるゲート絶縁膜の膜厚を70nmに固定し、トレンチ底部における膜厚を変化させた際のトレンチ底部にかかる電界強度を求めた。
 図1に示すように、トレンチ底部におけるゲート絶縁膜の膜厚が側面と同じ70nmの場合には、電界強度は9MV/cmを超えている。トレンチ底部における膜厚を側面における膜厚の2倍である140nmとしても、6MV/cmの電界がトレンチ底部にかかる。
 通常の熱酸化膜における絶縁破壊電界強度は10MV/cm以上である。しかし、長期使用の際の信頼性を確保するためには、半導体装置において許容しうる電界強度を、絶縁破壊電界強度よりも十分に小さな3MV/cm~4MV/cm程度とすることが好ましい。
 図1に示すように、トレンチ底部におけるゲート絶縁膜の膜厚を、トレンチ側面におけるゲート絶縁膜の膜厚の5倍以上である350nm以上にすると、トレンチ底部にかかる電界強度は4MV/cm以下となる。
 4H-SiCにおいて、(000-1)C面は酸化速度が大きい面であるが、その酸化速度は(11-20)面の2倍程度でしかない。このため、面方位による酸化速度の違いにより、トレンチの底部におけるゲート絶縁膜の膜厚を、トレンチの側面の5倍以上とすることは困難である。また、トレンチの底面の面方位と側面の面方位との組み合わせは限定されるため、側面における膜厚と底部における膜厚とを独立して制御することはできない。さらに、C面においては、低濃度のエピタキシャル成長が困難である。このため、面方位による酸化速度の違いを用いて、トランジスタの特性を確保しつつ、トレンチ底部にかかる電界を所定の値以下となるように緩和することは困難であり、実用的でない。
 ゲート絶縁膜の形成工程を複数の工程に別けて、トレンチの底部におけるゲート絶縁膜の膜厚を厚くする場合には、トレンチの側面における膜厚と底部における膜厚とを独立して制御することが可能である。しかし、工数の増加が大きな問題となる。例えば、以下のような工程が必要となる。まず、トレンチの内部に熱酸化膜を形成した後、熱酸化膜を覆うようにポリシリコン膜を形成する。次に、ポリシリコン膜を覆う窒化膜を形成し、形成した窒化膜を選択的に除去してトレンチの側面を覆い且つ底部を露出するマスクを形成する。ポリシリコン膜の露出部分を熱酸化した後、マスクを除去し、さらに、酸化されていないポリシリコン膜を除去する。
 また、ポリシリコンを酸化した酸化膜は、単結晶シリコンを酸化した酸化膜と比べて絶縁破壊電界強度が低くなる。このため、トレンチの底部に熱酸化膜を直接形成する場合よりも、トレンチの底部におけるゲート絶縁膜の膜厚を厚くする必要がある。しかし、厚いポリシリコン膜を内部まで完全に酸化することは困難であり、トレンチの底部におけるゲート絶縁膜の膜厚を側面よりも大幅に大きくすることは容易ではない。
 さらに、どちらの方法においても、熱酸化によりトレンチの底部に厚い絶縁膜を形成する。本願発明者は、側面の2倍以上の膜厚の熱酸化膜をトレンチの底部に形成すると、半導体層に欠陥が導入されやすくなるということを見出した。熱酸化膜の形成プロセスにおいては、半導体層の表面部分の体積が酸化により増大する。このため、トレンチの底部に厚い熱酸化膜を形成すると、トレンチの底部の角部に大きなストレスがかかり、角部において結晶性が乱れるおそれが高くなる。従って、半導体層に欠陥が生じやすくなり、半導体装置の耐圧が低下したり、リーク電流が増大したりするおそれがある。
 本願発明者は、HDP-CVD法を用いることにより、トレンチの側面にはほとんど堆積させることなく、トレンチの底面に選択的にSiO2膜を堆積させることができることに着目した。HDP-CVD法を用いることにより、トレンチの側面における膜厚と底部における膜厚とを独立して制御することができる。また、マスクを必要としないため、工数が大きく増加することはない。さらに、HDP-CVD法を用いた場合には、緻密なSiO2膜を得ることができるため、ポリシリコンを酸化したSiO2膜と比べて膜厚が薄くても、大きな絶縁破壊電界強度が得られる。
 HDP-CVD法を用いたSiO2膜の形成においては、膜の堆積と、エッチングとが同時に進み、エッジ部分がエッチングされる。このため、トレンチの周囲に形成されたSiO2膜には、トレンチ側から次第に厚さが厚くなる傾斜部が形成される。従って、トレンチの周囲に比較的厚いゲート絶縁膜を形成したとしても、トレンチの実質的なアスペクト比の上昇を抑えることができ、ゲート電極の埋め込みが容易となるという利点も得られる。
 以下に、具体例をあげて本発明に係る半導体装置について説明する。本実施形態の半導体装置は、トレンチゲート構造を有するSiC-金属絶縁体半導体電界効果トランジスタ(MISFET)であり、複数のユニットセル11を有している。図2は、ユニットセル11の平面構成を示しており、図3は、図2のIII-III線における断面構成を示している。図2において、ソース電極の記載は省略している。各ユニットセル11は、SiCを含む基板101の表面(主面)に設けられた半導体層102とを有している。半導体層102は、n型のドリフト領域121と、ドリフト領域121の上に設けられたp型のボディ領域123と、ボディ領域123の上部に設けられたn型のソース領域124とを有している。ソース領域124は、ボディ領域123に囲まれている。
 半導体層102は、ソース領域124及びボディ領域123を貫通し、ドリフト領域121に達するトレンチ(凹部)102aを有している。トレンチ102aの内部及びトレンチ102aの周囲におけるソース領域124の上にはゲート絶縁膜103が形成されている。ゲート絶縁膜103は、トレンチ102aの側面に設けられた第1の絶縁膜131と、トレンチ102aの底部及びトレンチ102aの周囲に設けられた第2の絶縁膜132とを有している。第2の絶縁膜132は、トレンチ102aの底部に設けられたトレンチ内部分132A及びトレンチ102aの周囲において半導体層102の上に設けられたトレンチ周囲部分132Bとを含む。
 トレンチ102aには、導電膜からなるゲート電極105が埋め込まれている。ゲート電極105は、トレンチ102aの周囲に拡がる断面T字状に形成されている。ゲート電極105のトレンチ102a内に埋め込まれた部分のうち、底部は第2の絶縁膜132のトレンチ内部分132Aと接し、側部は第1の絶縁膜131と接している。また、ゲート電極105のトレンチ102aの周囲に設けられた部分は、第2の絶縁膜132のトレンチ周囲部分132Bと接している。このため、ゲート電極105は、ゲート絶縁膜103により半導体層102と絶縁されている。
 半導体層102の上には、ソース領域124及びボディ領域123と電気的に接続されたソース電極(ソース-ボディ電極)106が設けられている。ソース電極106はトレンチ102aを囲むように設けられている。基板101の裏面には、ドレイン電極107が設けられている。必要に応じて半導体層102の上には、ゲート電極105及びソース電極106を覆う層間絶縁膜が設けられ、層間絶縁膜にはゲート配線及びソース配線が設けられる。ゲート配線及びソース配線は、それぞれコンタクトプラグによりゲート電極105及びソース電極106と接続される。
 本実施形態の半導体装置は、以下のようにして形成すればよい。まず、図4に示すように、基板101の主面上にSiCをエピタキシャル成長させ、n型のドリフト領域121及びp型のボディ領域123を順次形成する。続いて、ボディ領域123にn型のソース領域124を形成する。
 基板101には、3×1018cm-3程度の濃度の窒素を含む低抵抗のn型SiC基板を用いることができる。ドリフト領域121には、8×1015cm-3程度の濃度で窒素をドープすればよい。ドリフト領域121の厚さは、12μm程度とすればよい。ドリフト領域121の不純物濃度及び厚さは、必要とする耐圧によって決定すればよく、例示した濃度及び厚さに限定されない。
 ボディ領域123には、2×1018cm-3程度の濃度でアルミニウムをドープすればよい。ボディ領域123の厚さは、1μm程度とすればよい。
 ソース領域124は、イオン注入等により形成すればよい。ボディ領域123におけるソース領域124とする部分を露出するように、SiO2等からなる注入マスクを形成する。この後、ボディ領域123にn型の不純物イオン(例えば窒素イオン)を注入すればよい。イオン注入は例えば、加速エネルギーを100keVとし、ドーズ量を5×1015cm-2とすればよい。注入マスクを除去した後、不活性ガス雰囲気において、1700℃程度の温度で30分程度のアニール処理を行う。これにより、注入された不純物イオンが活性化され、ソース領域124が得られる。
 なお、半導体層102をエピタキシャル成長により形成する例を示したが、半導体層102の全部又は一部をSiC基板にイオン注入等を行うことにより形成してもよい。例えば、n型のSiC基板にp型の不純物を注入して、SiC基板の上部をボディ領域123としてもよい。また、SiC基板の上にn型の半導体層をエピタキシャル成長した後、形成したn型の半導体層の表面領域にp型不純物をイオン注入してボディ領域123を形成してもよい。これらの場合には、p型不純物が注入されなかった領域がドリフト領域121となる。
 次に、図5に示すように、半導体層102に、トレンチ102aを形成する。トレンチ102aは、例えば、ソース領域124の中央部を露出するSiO2膜からなるマスクを用い、ソース領域124、ボディ領域123及びドリフト領域121の一部を反応性イオンエッチング(Reactive Ion Etching:RIE)により除去すればよい。トレンチ102aは、ドリフト領域121を貫通せず且つ底面がドリフト領域121とボディ領域123との界面よりも下側となるように形成する。例えば、トレンチ102aは深さを1.5μm程度とし、幅を1μm程度とすればよい。図5においては、トレンチ102aの側面が、基板101の主面に対して垂直である例を示しているが、トレンチ102aの側面が基板101の主面に対して垂直でなくてもよい。
 次に、図6に示すように、HDP-CVD法により第2の絶縁膜132を堆積する。HDP-CVD法を用いることにより、トレンチ102aの底部及びトレンチ102aの周囲に第2の絶縁膜132を形成し、トレンチ102aの側面には形成されないようにすることができる。第2の絶縁膜132におけるトレンチ102aの底部に形成されたトレンチ内部分132A及びトレンチ102aの周囲に形成されたトレンチ周囲部分132Bの膜厚は、150nm程度~500nm程度とすればよい。本実施形態においては、一例として膜厚を約350nmとする。第2の絶縁膜132の膜厚は堆積時間により調整すればよい。
 第2の絶縁膜132を形成した後、第2の絶縁膜132の絶縁耐性を向上するために、不活性ガス雰囲気又は酸化雰囲気において900℃程度の温度で熱処理を行うことが好ましい。但し、熱処理は省略してもよい。
 本実施形態においては、第2の絶縁膜132をHDP-CVD法により形成している。HDP-CVD法は高密度プラズマを用いたCVD法である。通常のプラズマCVDよりもプラズマ密度を高くしており、低い温度においても良質な膜が形成できる等の利点を有している。また、スパッタエッチングと堆積とを同時に行うため、下地層が約45度よりも大きく傾斜している部分にはほとんど成膜されず、端部は約45度の傾斜角度を有する傾斜面となるという特徴を有する。このため、図6に示すようにトレンチ102aの側面には、第2の絶縁膜132がほとんど堆積しない。従って、トレンチ102aの側面にマスクを形成しなくても、トレンチ102aの底部及びトレンチ102aの周囲にのみ第2の絶縁膜132を形成することができる。
 HDP-CVD法により、SiO2膜を形成する場合には厚いSiO2膜を形成しても、熱酸化法によりSiO2膜を形成する場合と比べて基板に大きなストレスが発生しにくい。このため、トレンチ102aの底部に厚いSiO2膜を形成しても、半導体層102への欠陥の導入を抑制できるという利点も得られる。
 HDP-CVD法による第2の絶縁膜132の形成は、既知の装置を用いて既知の条件により行うことができる。例えば、平行平板型で、上方及び側方にプラズマ発生コイルを有するタイプのHDP-CVD装置の場合、以下のような条件でSiO2膜の堆積を行えばよい。トップコイルに供給する電力を1300W程度とし、サイドコイルに供給する電力を3100W程度とし、基板に3300W程度のバイアスを印加する。チャンバー内を6mTorr(約0.8Pa)程度として、アルゴン(Ar)を125sccm(sccmは0℃、1気圧におけるmL/分を意味する。約0.21Pa m3/s )程度、酸素(O2)を145sccm(約0.25Pa m3/s )程度及びシラン(SiH4)を80sccm(約0.14Pa m3/s )程度の流量で供給する。アルゴン、酸素及びシランは、上方及び側方から供給する。アルゴン、酸素及びシランの供給量は、必要とする成長レートに合わせて調製すればよい。
 次に、図7に示すように、トレンチ102aの側面上に第1の絶縁膜131を形成する。第1の絶縁膜131は、第2の絶縁膜132よりも膜厚を薄くすればよい。具体的には、厚さを30nm程度~100nm程度とすればよい。例えば、ドライ酸化雰囲気において1200℃程度の温度で3時間程度の熱処理を行うことにより、厚さが70nm程度の第1の絶縁膜131を形成することができる。なお、この際に第2の絶縁膜132が焼き締められるという効果も得られる。
 熱酸化法の場合、第1の絶縁膜131は半導体層102側及びトレンチ102a側にほぼ等しく成長する。従って、図7に示すように、第2の絶縁膜132におけるトレンチ周囲部分132Bのトレンチ102a側の端部の位置は、第1の絶縁膜131が形成された後のトレンチ102aの上端縁から若干後退した位置となる。理論的には、トレンチ周囲部分132Bの端部の位置は、第1の絶縁膜131を形成する前のトレンチ102aの上端縁の位置となる。第1の絶縁膜131が半導体層102側及びトレンチ102a側にほぼ等しく成長した場合には、トレンチ周囲部分132Bの端部と、第1の絶縁膜131を形成した後のトレンチ102aの上端縁との間隔t1は、第1の絶縁膜131の膜厚t2の半分とほぼ等しくなる。
 次に、図8に示すように、トレンチ102a内を含む半導体層102上の全面に導電膜105Aを形成する。導電膜105Aは、例えば1×1020cm-3以上の濃度でリンがドープされた厚さが600nm程度のポリシリコン膜とすればよい。ポリシリコン膜は、例えばLP-CVD法により形成すればよい。但し、導電膜105Aはポリシリコン膜以外の導電膜としてもよい。
 次に、図9に示すように、トレンチ102aの上部を覆い、他の部分を露出するレジスト層141をマスクとして導電膜105Aをエッチング(ドライエッチング)して、断面T字状のゲート電極105を得る。ゲート電極105におけるトレンチ102aの周囲に張り出した部分の大きさは、リソグラフィー技術の合わせずれ等を考慮して500nm以上とすることが好ましい。但し、必要とするゲート抵抗が実現できるのであれば、ゲート電極105を断面T字状にしなくてもよい。続いて、第2の絶縁膜132における、ゲート電極105に覆われていない部分を除去して、ソース領域124及びボディ領域123を露出させる。
 次に、図10に示すように、ボディ領域123及びソース領域124と接するようにソース電極106を形成する。具体的には以下のようにすればよい。まず半導体層102及びゲート電極105を覆うように層間絶縁膜となる絶縁膜を形成する。この後、絶縁膜にボディ領域123及びソース領域124の一部を露出する開口部を形成し、開口部内に導電膜を形成すればよい。導電膜は、ニッケル(Ni)膜等とすればよく、形成後に必要に応じて熱処理を行えばよい。これにより、ソース領域124及びボディ領域123とオーミック接触するソース電極が得られる。また、基板101の裏面(主面と反対側の面)上に、ドレイン電極107を形成する。図示していないが、必要に応じて配線及び各電極と配線とを接続するプラグ等を形成すればよい。
 本実施形態においては、HDP-CVD法と熱酸化法とを組み合わせてゲート絶縁膜103を形成している。このため、マスク等を形成することなくトレンチ102aの側面におけるゲート絶縁膜103の膜厚と、トレンチ102aの底部及び周囲におけるゲート絶縁膜103の膜厚とを、独立して設定することが容易にできる。ゲート絶縁膜103におけるトレンチ102aの側面の膜厚と、トレンチ102aの底部における膜厚とは、必要とする閾値電圧及び絶縁破壊耐圧等により適宜設定すればよい。トレンチ102aの底部においてゲート絶縁膜103にかかる電界強度を小さくするためには、トレンチ102aの底部における膜厚を、トレンチ102aの側面における膜厚よりも厚くすればよい。トレンチ102aの底部における膜厚を、トレンチ102aの側面における膜厚の3倍以上とすることがより好ましい。さらに、トレンチ102aの底部にかかる電界強度を小さくするためには、4~5倍以上としてもよい。
 例えば、トレンチ102aの側面におけるゲート絶縁膜103の膜厚を70nm程度とし、トレンチ102aの底部におけるゲート絶縁膜103の膜厚を350nm~400nm程度としてもよい。トレンチ102aの底部におけるゲート絶縁膜103の膜厚を350nm~400nm程度とすることにより、トレンチ102aの底部にかかる電界強度を4MV/cm程度まで抑制することができる。
 SiCの場合(0001)Si面の酸化速度が非常に遅いため、主面を結晶成長が容易な(0001)Si面とし、トレンチ102aの側面におけるゲート絶縁膜103の膜厚を70nm程度とした場合には、半導体層102の上面に熱酸化法により形成されるSiO2膜の厚さは10nm程度である。このため、ゲート電極105を断面T字状とした場合には、ゲート電極105とソース領域124とが接近し、ソース-ゲート容量が大きくなってしまう。
 一方、本実施形態においては、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分の膜厚も、トレンチ102aの底部とほぼ等しくなる。例えば、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分の膜厚を400nm程度とすることは容易である。この場合には、(0001)Si面に熱酸化法により形成した場合の40倍程度の膜厚となり、ゲート-ソース容量を40分の1程度まで小さくすることができる。このように、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分の膜厚が、トレンチ102aの側面に形成された部分の膜厚よりも厚い方が、ゲート-ソース容量を低減することができるので好ましい。
 また、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分の膜厚が、トレンチ102aの底部に形成された部分の膜厚よりも厚い方が、トレンチ102aの深さを浅くすることができるので好ましい。トレンチ102aの深さを浅くすることができれば、トレンチ102aの形成に要する時間を短縮することができる。また、トレンチ102aの深さが深くなり、深さと幅との比率であるアスペクト比が大きくなると、トレンチ102aの底部近傍においてエッチング速度が大きくなり、いわゆるサブトレンチという形状劣化が生じやすくなる。トレンチ102aの深さを浅くすることによりサブトレンチの発生を抑制することも可能となる。
 HDP-CVD法においては、トレンチの周囲においてトレンチの内部よりも堆積が生じやすい。特に、トレンチのアスペクト比が大きくなると、この影響は大きくなる。従って、通常はゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分(132B)の膜厚は、トレンチ102aの底面に形成された部分(132A)の膜厚よりも大きくなる。また、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分(132B)の膜厚は、トレンチ102aの側面に形成された部分(131)の膜厚よりも大きくなる。なお、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分(132B)は、トレンチ102aの近傍において傾斜しており、その膜厚はトレンチ102aの近傍から遠ざかるにつれて次第に増大している。このため、ゲート絶縁膜103におけるトレンチ102aの周囲に形成された部分の膜厚とは、トレンチ102aの周囲に形成された部分における最大の膜厚である。
 さらに、HDP-CVD法により第2の絶縁膜132を形成することにより、図6に示すように、トレンチ102aの周囲に形成されたトレンチ周囲部分132Bの端面を、基板101の主面に対して傾斜した傾斜面とすることができる。傾斜面の傾斜角度θ1は、±5度程度のばらつきは生じるが、傾斜面の上端部及び下端部を除いた少なくとも80%程度の部分において約45度となる。トレンチ周囲部分132Bの端面を傾斜面とすることにより、ゲート絶縁膜103を形成した後におけるトレンチ102aの実質的なアスペクト比の上昇を抑えることができる。このため、導電膜105Aの埋め込みを容易に行うことができる。このように、ソース-ゲート容量の上昇を抑えつつ、ゲート電極105の断面積を大きくし、ゲート抵抗の上昇を抑えることが容易にできる。
 トレンチ102aの底部における第2の絶縁膜132とゲート電極105との界面は、ドリフト領域121とボディ領域123との界面よりも下側に位置していることが好ましい。このようにすれば、チャネル領域となる、ボディ領域123のトレンチ102aの側面に露出している部分には、第2の絶縁膜132が形成されていない。従って、厚い第2の絶縁膜が、閾値電圧等に影響を及ぼすことはほとんどない。
 第2の絶縁膜132を堆積する際には、トレンチ102aの側面がHDP-CVDの原料ガスにさらされる。これにより、トレンチ102aの側面の状態が変化するおそれがある。また、HDP-CVD法の条件に依存して、トレンチ102aの側面に第2の絶縁膜132の一部が堆積されることがある。この際、トレンチ102aの側面に形成される第2の絶縁膜132は、第2の絶縁膜132におけるトレンチ内部分132A及びトレンチ周囲部分132Bと比べて十分に薄い膜となる。このため、図11(a)に示すように半導体層102の上に第2の絶縁膜132を堆積した後又は第2の絶縁膜132を焼きしめした後に、第2の絶縁膜132をウェットエッチングしてもよい。図11(a)~(c)は一実施形態に係る半導体装置の製造工程の第1の変形例を示す断面図である。第2の絶縁膜132をウェットエッチングすることにより、トレンチ102aの側面におけるHDP-CVDの原料ガスにより変性した部分又はHDP-CVDによりトレンチ102aの側面に薄く形成されてしまったSiO2膜を除去することができる。第2の絶縁膜132のエッチング量は第2の絶縁膜132の膜厚の30%以下で十分である。
 ウェットエッチングにより、図11(b)に示すように、第2の絶縁膜132におけるトレンチ周囲部分132Bの端部は、トレンチ102aの端部からt3だけ後退する。このため、第1の絶縁膜131を形成すると、図11(c)に示すように、トレンチ周囲部分132Bの端部と、トレンチ102aの上端縁、つまり第1の絶縁膜における前記トレンチの上端縁である部分との間隔t1は、第1の絶縁膜131の上端部における膜厚t2の半分よりも大きくなる。
 第2の絶縁膜132の後退量が大きい場合でも、半導体層102の表面が露出した後に第1の絶縁膜131を形成する。このため、半導体層102が露出することはない。後退量は第2の絶縁膜132の膜厚に対して30%以内であるため、その領域の面積は小さく、ソースーゲート容量の増加もほとんど生じない。
 ウェットエッチングにより、トレンチ周囲部分132Bの端部が後退すると、導電膜105Aを埋め込む際におけるトレンチ102aの実質的なアスペクト比が小さくなるため、導電膜105Aの埋め込みがより容易となるという利点も得られる。
 図5には、トレンチ102aの上端角部がほぼ直角となっている場合を示している。しかし、図12に示すように、トレンチ102aの上端部を丸めて曲面としてもよい。図12は、一実施形態に係る半導体装置の第2の変形例を拡大して示す断面図である。トレンチ102aの上端部を丸めることにより、トレンチ102aの上端部における電界集中を緩和することができる。
 トレンチ102aを形成するエッチングの際に、堆積量が多くなるような条件でエッチングを開始し、次第に堆積量が少なくなるようにすれば、トレンチ102aの上端部を丸めることができる。また、通常のエッチング条件により、角部を有するトレンチ102aを形成した後、水素雰囲気においてアニールを行うことにより上端部を丸めることも可能である。トレンチ102aの上端部だけでなく、下端部についても曲面としてかまわない。このようにすれば、トレンチ102aの下端部における電界集中を緩和することができる。
 HDP-CVD法により第2の絶縁膜132を形成する際には、トレンチ102aの上端部における傾きが約45度以下の部分にトレンチ周囲部分132Bが形成される。このため、トレンチ102aの上部を曲面とした場合には、第1の絶縁膜131を形成する前において、トレンチ102aにおけるトレンチ周囲部分132Bの端部と接する上端部の傾きθ2と、トレンチ周囲部分132Bの傾斜部の傾きθ1とは一致する。
 第2の絶縁膜132を形成した後、トレンチ102aの側面をウェットエッチングした場合には、トレンチ周囲部分132Bの端部が後退する。このため、図13に示すように、第1の絶縁膜131を形成する前において、トレンチ102aにおけるトレンチ周囲部分132Bの端部と接する上端部の傾きθ3は、トレンチ周囲部分132Bの傾斜部の傾きθ1よりも小さくなる。図13は、一実施形態に係る半導体装置の第3の変形例を拡大して示す断面図である。この場合には、導電膜105Aを埋め込む際における、トレンチ102aの実質的なアスペクト比が小さくなり、導電膜105Aの埋め込みがさらに容易となる。
 本実施形態においては、第2の絶縁膜132を形成した後に、第1の絶縁膜131を形成する例を示した。第1の絶縁膜131を第2の絶縁膜132よりも後に形成すれば、第1の絶縁膜が高密度プラズマに曝されることによる、第1の絶縁膜131の膜質の劣化が生じないという利点がある。また、第1の絶縁膜131の膜厚が高密度プラズマにより減少することがないという利点も得られる。しかし、第1の絶縁膜131を形成した後に、第2の絶縁膜132を形成してもよい。図14から16は、一実施形態に係る半導体装置の製造工程の第4の変形例を示す断面図である。HDP-CVD法により形成したSiO2膜は、熱酸化法により形成したSiO2膜よりもSiO2膜と半導体層との界面に固定電荷等が発生しやすい。熱酸化法による第1の絶縁膜131を、第2の絶縁膜132よりも先に形成することにより、ゲート絶縁膜103と半導体層102との界面における固定電荷等の発生を抑えることができるという利点が得られる。
 この場合には、図14に示すように、トレンチ102aを形成した後、第2の絶縁膜132を形成する前に、熱酸化を行い、半導体層102の露出している部分に第1の絶縁膜131を形成する。次に、図15に示すように、HDP-CVD法によりトレンチ102aの底部及びトレンチ102aの周囲に第2の絶縁膜132を形成する。この後、第2の絶縁膜132を第1の絶縁膜131よりも先に形成する場合と同様にして、ゲート電極105の形成、ソース電極106の形成及びドレイン電極107の形成等を行えばよい。
 第1の絶縁膜131を第2の絶縁膜132よりも前に形成する場合には、図16に示すように第2の絶縁膜132におけるトレンチ周囲部分132Bの端部の位置は、第1の絶縁膜131を形成した後のトレンチ102aの上端縁と一致する。つまり、トレンチ周囲部分132Bの端部の位置と、第1の絶縁膜131におけるトレンチ102aの上端縁である部分の位置とは一致する。トレンチ102aの上端部を丸めた場合においても第1の絶縁膜131を第2の絶縁膜132よりも先に形成してかまわない。図17は、一実施形態に係る半導体装置の第5の変形例を示す平面図である。この場合には、図17に示すように、第1の絶縁膜131が形成されたトレンチ102aにおけるトレンチ周囲部分132Bの端部と接する部分の傾きθ4と、トレンチ周囲部分132Bの傾斜部の傾きθ1とは一致する。
 第1の絶縁膜131を第2の絶縁膜132よりも先に形成する場合にも、第2の絶縁膜132を形成した後、ウェットエッチングを行ってもよい。ウェットエッチングを行うことにより、トレンチ102aの側面において第1の絶縁膜131を確実に露出させ、トレンチ102aの側面において第1の絶縁膜131とゲート電極105とが接するようにすることができる。図18は、一実施形態に係る半導体装置の第6の変形例を示す平面図である。第2の絶縁膜132のウェットエッチングを行った場合には、図18に示すように、トレンチ周囲部分132Bの端部は、第1の絶縁膜131を形成した後のトレンチ102aの上端縁からt4だけ後退した位置となる。トレンチ周囲部分132Bの後退量t4は、第2の絶縁膜132のエッチング量とほぼ一致する。第2の絶縁膜132のエッチング量は第2の絶縁膜132の膜厚の30%以下で十分である。また、この場合には、第1の絶縁膜131がトレンチ102aの周囲にも形成されているため、後退量t4が約100nm以下であればゲート容量に対する影響はほとんどない。
 また、図19に示すようにトレンチ102aの上端部を丸めた場合にも、第2の絶縁膜132のウェットエッチングを行ってかまわない。図19は、一実施形態に係る半導体装置の第7の変形例を示す平面図である。この場合には、第1の絶縁膜131が形成されたトレンチ102aにおけるトレンチ周囲部分132Bの端部と接する部分の傾きθ5は、トレンチ周囲部分132Bの傾斜部の傾きθ1よりも小さくなる。
 第1の絶縁膜131の膜厚は、半導体層102の面方位によって変化する。(0001)Si面を主面とする基板101の上に半導体層102を形成した場合には、第1の絶縁膜131における半導体層102の上面及びトレンチ102aの底面に形成された部分の膜厚は、トレンチ102aの側面に形成された部分の膜厚よりも薄くなる。しかし、トレンチ102aの底部及びトレンチ102aの周囲には第2の絶縁膜132を形成するため、第1の絶縁膜131の膜厚が薄くても問題はない。
 本実施形態においては、n型のMISFETについて説明したが、p型のMISFETとすることも可能である。この場合には、基板101、ドリフト領域121及びソース領域124の導電型をp型とし、ボディ領域123の導電型をn型とすればよい。また、半導体層102は、ドリフト領域121、ボディ領域123及びソース領域124以外の領域を有していてもよい。例えば、電界緩和のために、ドリフト領域121におけるトレンチ102aの底面近傍に、ドリフト領域121と異なる導電型の不純物層が設けられている構成としてもよい。
 本実施形態においては、反転チャネル構造を有するMISFETについて説明したが、図20に示すような蓄積チャネル構造を有するMISFETについても同様の構成とすることができる。図20は、一実施形態に係る半導体装置の第8の変形例を示す平面図である。例えば、半導体層102にトレンチ102aを形成した後、トレンチ102aの内部を含む半導体層102の上に、n型のSiC層からなるチャネル層125を形成すればよい。チャネル層125を形成した後に、ゲート絶縁膜103、ゲート電極105、ソース電極106及びドレイン電極107等を、反転チャネル構造のMISFETと同様にして形成すればよい。図20には、第1の絶縁膜131を第2の絶縁膜132よりも後に形成する例を示したが、第1の絶縁膜131を第2の絶縁膜132よりも先に形成してもよい。蓄積チャネル構造を有する場合においても、第2の絶縁膜132を形成した後にウェットエッチングを行ったり、トレンチ102aの上部を丸めたりしてもよい。また、p型のMISFETとしてもよい。
 さらに、MISFETに限らず、半導体層の上に絶縁膜を介して電極が配置されている種々の半導体装置を同様にして形成することができる。例えば、基板とその直上に形成する半導体層とを互いに異なる導電型とすることにより絶縁バイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を形成することができる。
 本実施形態においては、複数のユニットセルが千鳥状に配列されている例を示したが、ユニットセルはどのように配置されていてもよい。また、平面正方形状のトレンチを有している例を示したが、トレンチの平面形状はどのようなものであってもよい。例えば、トレンチを平面長方形状とし、複数のトレンチの長辺が互いに平行となるようにユニットセルを配置してもよい。
 本実施形態においては、基板101が4H-SiCであり、(0001)Si面の上に半導体層102を形成する例を示した。しかし、(000-1)C面に半導体層102を形成し、(0001)Si面にドレイン電極107を形成してもよい。また、主面の面方位を他の結晶面としてもよい。さらに、他のポリタイプのSiC基板を用いることも可能である。
 本実施形態においては、SiCを用いた半導体装置について説明したが、窒化ガリウム(GaN)又はダイヤモンド等の他のワイドバンドギャップ半導体を用いた半導体装置に適用することも可能である。また、シリコンを用いた半導体装置に適用することも可能である。
 本発明に係る半導体装置及びその製造方法は、パワーデバイス等を含む種々の半導体装置及びその製造方法として有用である。
11   ユニットセル
101  基板
102  半導体層
102a トレンチ
103  ゲート絶縁膜
105  ゲート電極
105A 導電膜
106  ソース電極
107  ドレイン電極
121  ドリフト領域
123  ボディ領域
124  ソース領域
125  チャネル層
131  第1の絶縁膜
132  第2の絶縁膜
132A トレンチ内部分
132B トレンチ周囲部分
141  レジスト層

Claims (20)

  1.  主面側に設けられた半導体層を有する基板を準備する工程と、
     前記半導体層にトレンチを形成する工程と、
     前記トレンチの側面、前記トレンチの底部及び前記トレンチの周囲にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜の上に、前記トレンチを埋め且つ前記トレンチの周囲に拡がった導電膜を形成する工程とを備え、
     前記ゲート絶縁膜を形成する工程は、前記トレンチの側面に第1の絶縁膜を形成する工程と、前記トレンチの底部及び前記トレンチの周囲に高密度プラズマ化学気相成長法を用いて第2の絶縁膜を形成する工程とを含み、前記ゲート絶縁膜における前記トレンチの底部及び前記トレンチの周囲に形成された部分の膜厚を、前記ゲート絶縁膜における前記トレンチの側面に形成された部分よりも厚くし、
     前記導電膜を形成する工程において、前記導電膜と、前記第1の絶縁膜における前記トレンチの側面の上に形成された部分とは接するように形成する、半導体装置の製造方法。
  2.  前記第1の絶縁膜を形成する工程は、前記第2の絶縁膜を形成する工程よりも後に行う、請求項1に記載の半導体装置の製造方法。
  3.  前記第1の絶縁膜を形成する工程は、前記第2の絶縁膜を形成する工程よりも先に行う、請求項1に記載の半導体装置の製造方法。
  4.  前記トレンチを形成する工程は、前記トレンチの上端角部を丸める工程を含む、請求項1~3のいずれか1項に記載の半導体装置の製造方法。
  5.  前記導電膜を形成する工程よりも前に、前記第2の絶縁膜をウェットエッチングする工程をさらに備え、
     前記第2の絶縁膜のエッチング量は、前記第2の絶縁膜の膜厚の30%以下である、請求項1~4のいずれか1項に記載の半導体装置の製造方法。
  6.  前記基板を準備する工程において、前記半導体層は、第1導電型のドリフト領域と、前記ドリフト領域の上に設けられた第2導電型のボディ領域とを有するようにし、
     前記トレンチを形成する工程において、前記トレンチの底部は、前記ドリフト領域と前記ボディ領域との界面より下側で且つ前記ドリフト領域の下面よりも上側に位置するようにし、
     前記ゲート絶縁膜を形成する工程において、前記ゲート絶縁膜における前記トレンチの底部に形成された部分の上面は、前記ドリフト領域と前記ボディ領域との界面よりも下側とする、請求項1~5のいずれか1項に記載の半導体装置の製造方法。
  7.  前記半導体層は、ワイドバンドギャップ半導体からなる、請求項1~6のいずれか1項に記載の半導体装置の製造方法。
  8.  前記ワイドバンドギャップ半導体は、炭化珪素からなる、請求項7に記載の半導体装置の製造方法。
  9.  前記基板は炭化珪素基板であり、前記主面はシリコン面である、請求項8に記載の半導体装置の製造方法。
  10.  基板と、
     前記基板の主面側に設けられた半導体層と、
     前記半導体層に設けられたトレンチと、
     前記トレンチの側面、前記トレンチの底部及び前記トレンチの周囲に設けられたゲート絶縁膜と、
     前記トレンチを埋め且つ前記トレンチの周囲に拡がるように、前記ゲート絶縁膜の上に設けられた導電膜とを備え、
     前記ゲート絶縁膜は、前記トレンチの側面に設けられた第1の絶縁膜と、前記トレンチの底部及び前記トレンチの周囲に設けられた第2の絶縁膜とを有し、
     前記ゲート絶縁膜における前記トレンチの底部及び前記トレンチの周囲に設けられた部分の膜厚は、前記ゲート絶縁膜における前記トレンチの側面に設けられた部分よりも厚く、
     前記第2の絶縁膜における前記トレンチの周囲に設けられた部分は、前記トレンチ側の端部から次第に厚さが厚くなる傾斜部を有し、前記傾斜部の前記基板の主面に対する傾斜角度は、45±5度であり、
     前記導電膜と、前記第1の絶縁膜における前記トレンチの側面に形成された部分とは接している、半導体装置。
  11.  前記第1の絶縁膜は、前記トレンチの側面と、前記トレンチの底部及び前記トレンチの周囲とに形成されている、請求項10に記載の半導体装置。
  12.  前記第2の絶縁膜における前記トレンチの周囲に設けられた部分の前記トレンチ側の端部の位置と、前記第1の絶縁膜における前記トレンチの上端縁である部分の位置とは一致している、請求項11に記載の半導体装置。
  13.  前記第2の絶縁膜における前記トレンチの周囲に設けられた部分の前記トレンチ側の端部と、前記第1の絶縁膜における前記トレンチの上端縁である部分との間隔は、前記第2の絶縁膜における前記トレンチの周辺に設けられた部分の厚さの30%以下である、請求項11に記載の半導体装置。
  14.  前記トレンチの上端部は、丸みを帯び、
     前記第2の絶縁膜における前記トレンチ側の端部と接する部分の接線の前記基板の主面に対する角度は、前記傾斜部の前記傾斜角度と同じである、請求項11に記載の半導体装置。
  15.  前記トレンチの上端部は、丸みを帯び、
     前記第2の絶縁膜における前記トレンチ側の端部と接する部分の接線の前記基板の主面に対する角度は、前記傾斜部の前記傾斜角度よりも小さい、請求項11に記載の半導体装置。
  16.  前記半導体層は、第1導電型のドリフト領域と、前記ドリフト領域の上に設けられた第2導電型のボディ領域とを有し、
     前記トレンチの底部は、前記ドリフト領域と前記ボディ領域との界面より下側で且つ前記ドリフト領域の下面よりも上側に位置し、
     前記ゲート絶縁膜における前記トレンチの底部に形成された部分の上面は、前記ドリフト領域と前記ボディ領域との界面よりも下側である、請求項10~15のいずれか1項に記載の半導体装置。
  17.  前記半導体層は、ワイドバンドギャップ半導体により構成される、請求項10~16のいずれか1項に記載の半導体装置。
  18.  前記ワイドバンドギャップ半導体は、炭化珪素により構成される、請求項17に記載の半導体装置。
  19.  前記基板は炭化珪素基板であり、前記主面はシリコン面である、請求項18に記載の半導体装置。
  20.  前記ゲート絶縁膜における前記トレンチの周囲に設けられた部分の膜厚は、前記ゲート絶縁膜における前記トレンチの底部に設けられた部分の膜厚よりも厚い、請求項10~19のいずれか1項に記載の半導体装置。
PCT/JP2012/005568 2011-11-21 2012-09-03 半導体装置及びその製造方法 WO2013076890A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013501471A JP5243671B1 (ja) 2011-11-21 2012-09-03 半導体装置及びその製造方法
US13/820,445 US8791002B2 (en) 2011-11-21 2012-09-03 Semiconductor device and fabrication method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-254060 2011-11-21
JP2011254060 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013076890A1 true WO2013076890A1 (ja) 2013-05-30

Family

ID=48469362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005568 WO2013076890A1 (ja) 2011-11-21 2012-09-03 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US8791002B2 (ja)
JP (1) JP5243671B1 (ja)
WO (1) WO2013076890A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058726A (ja) * 2014-09-04 2016-04-21 パナソニックIpマネジメント株式会社 半導体装置およびその製造方法
JP2016115936A (ja) * 2014-12-11 2016-06-23 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag シールドゲートを有する炭化珪素装置を形成する方法
JP2018157214A (ja) * 2015-10-09 2018-10-04 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 非晶質化された部分を除去することによって炭化ケイ素半導体素子を製造する方法
JP2019140152A (ja) * 2018-02-06 2019-08-22 株式会社豊田中央研究所 半導体装置
WO2024150368A1 (ja) * 2023-01-12 2024-07-18 三菱電機株式会社 半導体装置、および、半導体装置の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029578A1 (ja) * 2013-08-27 2015-03-05 富士電機株式会社 半導体装置の製造方法および半導体装置
JP6098474B2 (ja) * 2013-10-24 2017-03-22 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2015207588A (ja) * 2014-04-17 2015-11-19 ローム株式会社 半導体装置
JP6357869B2 (ja) * 2014-05-20 2018-07-18 住友電気工業株式会社 炭化珪素半導体装置の製造方法
DE102015202764B4 (de) * 2015-02-16 2018-05-30 Infineon Technologies Austria Ag Verfahren zur Herstellung einer Graben-Halbleitervorrichtung mit einem Isolierblock in einem Halbleitergraben und Halbleitervorrichtung
JP2016164906A (ja) * 2015-03-06 2016-09-08 豊田合成株式会社 半導体装置およびその製造方法ならびに電力変換装置
JP6822088B2 (ja) * 2016-11-15 2021-01-27 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US11677011B2 (en) * 2020-12-18 2023-06-13 Omnivision Technologies, Inc. Fabrication process of vertical-channel, silicon, field-effect transistors
CN114740665B (zh) * 2022-04-29 2023-08-01 广州华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN115188803B (zh) * 2022-09-09 2022-12-13 深圳芯能半导体技术有限公司 一种沟槽侧壁栅碳化硅mosfet及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260663A (ja) * 1996-03-27 1997-10-03 Toshiba Corp 半導体装置
JPH11266015A (ja) * 1998-03-18 1999-09-28 Denso Corp 炭化珪素半導体装置の製造方法
JP2008042056A (ja) * 2006-08-09 2008-02-21 Renesas Technology Corp 半導体装置およびその製造方法
US20080265289A1 (en) * 2007-04-30 2008-10-30 Alpha & Omega Semiconductor, Ltd Device structure and manufacturing method using HDP deposited source-body implant block
JP2009158717A (ja) * 2007-12-26 2009-07-16 Nec Electronics Corp 縦型電界効果トランジスタ及びその製造方法
CN102194694A (zh) * 2010-03-05 2011-09-21 世界先进积体电路股份有限公司 沟槽式金属氧化物半导体场效应晶体管的制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69534888T2 (de) * 1994-04-06 2006-11-02 Denso Corp., Kariya Herstellungsverfahren für Halbleiterbauelement mit Graben
JP3471473B2 (ja) 1994-04-06 2003-12-02 株式会社デンソー 半導体装置及びその製造方法
US5494854A (en) 1994-08-17 1996-02-27 Texas Instruments Incorporated Enhancement in throughput and planarity during CMP using a dielectric stack containing HDP-SiO2 films
JP2000150634A (ja) * 1998-11-13 2000-05-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6455378B1 (en) 1999-10-26 2002-09-24 Hitachi, Ltd. Method of manufacturing a trench gate power transistor with a thick bottom insulator
JP2001127072A (ja) 1999-10-26 2001-05-11 Hitachi Ltd 半導体装置
JP2001196587A (ja) 2000-01-14 2001-07-19 Denso Corp 半導体装置およびその製造方法
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
ITMI20010039A1 (it) * 2000-01-14 2002-07-11 Denso Corp Dispositivo a semiconduttori e metodo per la fabbricazione dello stesso
JP4857827B2 (ja) 2006-03-09 2012-01-18 富士電機株式会社 Mos型半導体装置の製造方法
JP2007043208A (ja) 2006-11-15 2007-02-15 Mitsubishi Electric Corp トレンチ構造を有する半導体装置及びその製造方法
JP2007281512A (ja) 2007-06-25 2007-10-25 Renesas Technology Corp 半導体装置
JP2010182857A (ja) 2009-02-05 2010-08-19 Renesas Electronics Corp 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260663A (ja) * 1996-03-27 1997-10-03 Toshiba Corp 半導体装置
JPH11266015A (ja) * 1998-03-18 1999-09-28 Denso Corp 炭化珪素半導体装置の製造方法
JP2008042056A (ja) * 2006-08-09 2008-02-21 Renesas Technology Corp 半導体装置およびその製造方法
US20080265289A1 (en) * 2007-04-30 2008-10-30 Alpha & Omega Semiconductor, Ltd Device structure and manufacturing method using HDP deposited source-body implant block
JP2009158717A (ja) * 2007-12-26 2009-07-16 Nec Electronics Corp 縦型電界効果トランジスタ及びその製造方法
CN102194694A (zh) * 2010-03-05 2011-09-21 世界先进积体电路股份有限公司 沟槽式金属氧化物半导体场效应晶体管的制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058726A (ja) * 2014-09-04 2016-04-21 パナソニックIpマネジメント株式会社 半導体装置およびその製造方法
US9543427B2 (en) 2014-09-04 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method for fabricating the same
JP2016115936A (ja) * 2014-12-11 2016-06-23 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag シールドゲートを有する炭化珪素装置を形成する方法
US9577073B2 (en) 2014-12-11 2017-02-21 Infineon Technologies Ag Method of forming a silicon-carbide device with a shielded gate
US9960230B2 (en) 2014-12-11 2018-05-01 Infineon Technologies Ag Silicon-carbide transistor device with a shielded gate
JP2018157214A (ja) * 2015-10-09 2018-10-04 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 非晶質化された部分を除去することによって炭化ケイ素半導体素子を製造する方法
JP2019140152A (ja) * 2018-02-06 2019-08-22 株式会社豊田中央研究所 半導体装置
WO2024150368A1 (ja) * 2023-01-12 2024-07-18 三菱電機株式会社 半導体装置、および、半導体装置の製造方法

Also Published As

Publication number Publication date
US8791002B2 (en) 2014-07-29
US20130175548A1 (en) 2013-07-11
JP5243671B1 (ja) 2013-07-24
JPWO2013076890A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5243671B1 (ja) 半導体装置及びその製造方法
US8748977B2 (en) Semiconductor device and method for producing same
US9117836B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US8729608B2 (en) Semiconductor device and method of manufacturing the device
WO2013118203A1 (ja) 半導体装置及びその製造方法
JP7512348B2 (ja) 半導体装置およびその製造方法
JP5671779B2 (ja) エピタキシャルウエハの製造方法および半導体装置の製造方法
JP5995347B2 (ja) SiC半導体装置及びその製造方法
US9269781B2 (en) Semiconductor device and method for manufacturing the same
CA2766981A1 (en) Silicon carbide insulating gate type semiconductor device and fabrication method thereof
JP2012164707A (ja) 半導体装置およびその製造方法
WO2014178094A1 (ja) 半導体装置及びその製造方法
US20220246745A1 (en) Silicon Carbide Devices, Semiconductor Devices and Methods for Forming Silicon Carbide Devices and Semiconductor Devices
JP2008078174A (ja) トレンチゲート型炭化珪素半導体装置
US20130119407A1 (en) Method for manufacturing semiconductor device, and semiconductor device
WO2012105170A1 (ja) 半導体装置およびその製造方法
JP5870672B2 (ja) 半導体装置
CN111081778A (zh) 一种碳化硅沟槽型mosfet器件及其制造方法
JP6991476B2 (ja) 半導体装置
JP5223040B1 (ja) 半導体装置及びその製造方法
KR102365375B1 (ko) 둥근 트렌치 코너를 갖는 트렌치 게이트형 모스펫 제조방법
JP2006303272A (ja) 半導体装置、及びその製造方法
JP5223041B1 (ja) 半導体装置及びその製造方法
US20230049364A1 (en) Transistor device and method for producing thereof
JP2024097715A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013501471

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820445

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851351

Country of ref document: EP

Kind code of ref document: A1