[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013058369A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents

非水系二次電池用セパレータ及び非水系二次電池 Download PDF

Info

Publication number
WO2013058369A1
WO2013058369A1 PCT/JP2012/077133 JP2012077133W WO2013058369A1 WO 2013058369 A1 WO2013058369 A1 WO 2013058369A1 JP 2012077133 W JP2012077133 W JP 2012077133W WO 2013058369 A1 WO2013058369 A1 WO 2013058369A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
separator
secondary battery
fluoride resin
porous layer
Prior art date
Application number
PCT/JP2012/077133
Other languages
English (en)
French (fr)
Inventor
西川 聡
吉冨 孝
大塚 淳弘
亜由美 岩井
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US14/352,509 priority Critical patent/US20140315068A1/en
Priority to KR1020147010067A priority patent/KR101429580B1/ko
Priority to JP2013511462A priority patent/JP5282180B1/ja
Priority to CN201280051168.4A priority patent/CN103891001B/zh
Publication of WO2013058369A1 publication Critical patent/WO2013058369A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Furthermore, in recent years, these batteries have been studied for application to automobiles and the like because of their high energy density.
  • Techniques have been proposed (see, for example, Patent Documents 1 to 4).
  • the adhesive porous layer has a function as an adhesive that satisfactorily bonds the electrode and the separator when pressed or hot pressed on the electrode. Therefore, the adhesive porous layer contributes to the improvement of the cycle life of the soft pack battery.
  • a battery element is manufactured by winding the electrode and the separator in an overlapped state, and the element is enclosed in the metal can exterior together with an electrolytic solution. Is made.
  • a soft pack battery is produced using the separator having the above-mentioned adhesive porous layer, a battery element is produced in the same manner as the battery of the above metal can, and this is put together with the electrolyte in the soft pack exterior.
  • a hot press process is provided to manufacture a battery. Therefore, when such a separator is used, since a battery element can be produced in the same manner as the battery with the above metal can outer case, there is no need to make a significant change to the manufacturing process of the conventional metal can outer battery. There is.
  • a positive electrode or a negative electrode of a non-aqueous secondary battery is composed of a current collector and an active material layer containing an electrode active material and a binder resin formed on the current collector.
  • the adhesive porous layer adheres to the binder resin in the electrode when bonded to the electrode by pressure bonding or hot pressing. Therefore, in order to ensure better adhesiveness, it is preferable that the amount of the binder resin in the electrode is large.
  • such a separator is easy to peel off the adhesive porous layer at the time of transportation, especially when trying to slit the separator to an appropriate size, when the adhesive porous layer is too viscous, etc. That is, there is a problem that the phenomenon that the slit end face after the slit becomes fluffy appears.
  • the present invention has been made in view of such a background. Compared to the prior art, it has superior adhesion to the electrode, ensures good ion permeability even after bonding to the electrode, and has excellent slitting properties for non-aqueous secondary batteries A separator is needed. Further, a non-aqueous secondary battery having a high energy density and excellent cycle characteristics is required.
  • Adhesive porous formed on at least one surface of a porous base material and the porous base material, and includes the following (1) polyvinylidene fluoride resin A and (2) polyvinylidene fluoride resin B And a separator for a non-aqueous secondary battery.
  • ⁇ 3> The separator for a non-aqueous secondary battery according to ⁇ 1> or ⁇ 2>, wherein the adhesive porous layer has a porosity of 30% to 60% and an average pore diameter of 20 nm to 100 nm. It is.
  • the content of the polyvinylidene fluoride resin A is 15 to 85 masses.
  • ⁇ 6> A positive electrode, a negative electrode, and the non-aqueous secondary battery separator according to any one of ⁇ 1> to ⁇ 5> disposed between the positive electrode and the negative electrode, It is a non-aqueous secondary battery that obtains an electromotive force by doping and dedoping.
  • an aluminum laminate film is provided as an exterior material, and a multilayer structure in which the positive electrode, the negative electrode, and the non-aqueous secondary battery separator are bonded is housed in the aluminum laminate film.
  • the separator for a non-aqueous secondary battery is superior in adhesion to the electrode as compared with the prior art, and ensures good ion permeability even after bonding to the electrode, and has excellent slitting properties.
  • a nonaqueous secondary battery having a high energy density and excellent cycle characteristics is provided. Furthermore, it is possible to provide a high performance non-aqueous secondary battery with an aluminum laminate pack.
  • in a numerical range means a numerical range including an upper limit value and a lower limit value.
  • a separator for a non-aqueous secondary battery according to the present invention comprises a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride resin formed on at least one surface of the porous substrate.
  • a polyvinylidene fluoride resin constituting the adhesive porous layer (1) polyvinylidene fluoride resin A and (2) polyvinylidene fluoride resin B shown below are contained.
  • a resin composition in which a polyvinylidene fluoride resin is used as an adhesive resin constituting the adhesive porous layer constituting the separator and a specific polyvinylidene fluoride resin is combined that is, a polyvinylidene fluoride resin A and Compared to the case where one of the polyvinylidene fluoride resins A and B is not included, the composition including the polyvinylidene fluoride resin B is superior in adhesion to the electrode and excellent after bonding with the electrode. Ion permeability is obtained and excellent slitting properties are exhibited. The reason is presumed as follows.
  • VDF-HFP resin A polyvinylidene fluoride-based resin containing vinylidene fluoride and hexafluoropropylene as a polymerization component (hereinafter also referred to as “VDF-HFP resin”) tends to swell in an electrolyte solution when the polymerization ratio of hexafluoropropylene is increased. Therefore, it is expected that the adhesion between the adhesive porous layer and the electrode is improved as the polymerization ratio of hexafluoropropylene of the VDF-HFP resin constituting the adhesive porous layer is increased.
  • the adhesive porous layer is formed of VDF-HFP resin having a high polymerization ratio of hexafluoropropylene
  • the porosity is likely to be high and the pore diameter is likely to be large.
  • the area of the VDF-HFP resin portion that becomes the adhesion portion with the electrode is reduced on the surface of the adhesive porous layer, and the VDF-HFP resin portion is reduced. It will exist sparsely. Therefore, when the polymerization ratio of hexafluoropropylene of the VDF-HFP resin constituting the adhesive porous layer is increased, contrary to the above prediction, the adhesiveness between the adhesive porous layer and the electrode tends to decrease rather. Can be seen.
  • the porosity of the adhesive porous layer is high and the pore diameter is large, ion migration at the electrode interface becomes non-uniform, which adversely affects the cycle characteristics and load characteristics of the battery.
  • an adhesive porous layer having a porosity and a pore size that are small enough not to impair ion permeability it can be said that the polymerization ratio of hexafluoropropylene in the VDF-HFP resin should be reduced.
  • Such an adhesive porous layer has high uniformity of ion migration at the electrode interface, does not affect the cycle characteristics and load characteristics of the battery, and has an adhesive property with the electrode in terms of the surface morphology. Expected to improve.
  • the VDF-HFP resin having a small polymerization ratio of hexafluoropropylene has a poor swelling property with respect to the electrolytic solution, and it is difficult to obtain high adhesion to the electrode.
  • the present invention applies two types of VDF-HFP resins having different polymerization ratios of hexafluoropropylene to the adhesive porous layer, thereby improving the adhesion to the electrode and improving the battery characteristics.
  • the polyvinylidene fluoride resin B having a relatively high polymerization ratio of hexafluoropropylene ensures the swelling property of the VDF-HFP resin with respect to the electrolytic solution in the adhesive porous layer.
  • the polyvinylidene fluoride resin A having a relatively low polymerization ratio of hexafluoropropylene realizes an adhesive porous layer having a porosity and a pore diameter that are small enough not to impede ion permeability.
  • the uniformity of ion movement at the electrode interface is improved, and a surface morphology suitable for adhesion to the electrode is obtained.
  • the adhesive porous layer resin A and the adhesive porous layer resin B are both present in the adhesive porous layer, thereby providing a synergistic effect on the adhesion to the electrode. It is more excellent in adhesion to the electrode, and good ion permeability is ensured even after bonding to the electrode. Thereby, when a battery is constituted, it is excellent in cycle characteristics and load characteristics.
  • the separator of this invention is excellent also in the ion movement in the interface between a porous base material and an adhesive porous layer.
  • separators in which an adhesive porous layer is laminated on a porous substrate are likely to clog the interface between the two, and the ion migration at the interface deteriorates, making it difficult to achieve good battery characteristics. was there.
  • the adhesive porous layer in the present invention has a fine porous structure, high uniformity of pore distribution, and a large number of pores.
  • the selection range of temperature and pressure conditions at the time of pressure bonding or hot pressing is widened, and it is easy to avoid occurrence of crushing. Therefore, the probability that the pores of the porous base material and the pores of the adhesive porous layer are connected well increases, and the deterioration of battery performance due to clogging is suppressed.
  • the weight average molecular weight of one polyvinylidene fluoride resin B is in the range of 300,000 to 2.5 million.
  • the polyvinylidene fluoride resin B having a high HFP ratio is relatively easily swelled, and the adjustment of the molecular weight of the polyvinylidene fluoride resin B is more effective than the polyvinylidene fluoride resin A.
  • the adhesive porous layer is prevented from being embrittled and balanced so as to suppress the development of strong stickiness.
  • the close contact with the porous substrate is maintained, and at the time of slitting, the end face appearance is not impaired due to the fluff of the slit end face.
  • the separator for a non-aqueous secondary battery of the present invention is configured by providing at least one layer of a porous substrate.
  • the porous substrate in the present invention means a substrate having pores or voids therein. Examples of such a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet. And a composite porous sheet.
  • a microporous film is particularly preferable from the viewpoint of thinning and high strength.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
  • the material constituting the porous substrate may be either an organic material or an inorganic material as long as it is an electrically insulating material.
  • the material constituting the porous substrate is preferably a thermoplastic resin from the viewpoint of imparting a shutdown function to the porous substrate.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the constituent materials and closing the pores of the porous base material when the battery temperature increases.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane As the porous substrate using polyolefin, a polyolefin microporous membrane is suitable.
  • the polyolefin microporous membrane those having sufficient mechanical properties and ion permeability can be suitably used from among polyolefin microporous membranes applied to conventional separators for non-aqueous secondary batteries.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more.
  • a polyolefin microporous film containing polyethylene and polypropylene is suitable from the viewpoint of imparting heat resistance to such an extent that it does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • Such a microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a laminated structure of two or more layers, and at least one layer contains polyethylene and at least one layer contains a polyolefin microporous membrane having a structure containing polypropylene.
  • the polyolefin contained in the microporous polyolefin membrane preferably has a weight average molecular weight of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.
  • the polyolefin microporous membrane can be produced, for example, by the following method. That is, (i) the molten polyolefin resin is extruded from a T-die to form a sheet, (ii) the sheet is crystallized, (iii) stretched, and (iv) the stretched sheet is heat treated. Thus, a method of forming a microporous film can be mentioned.
  • a polyolefin resin is melted together with a plasticizer such as liquid paraffin, extruded from a T-die, cooled to form a sheet, (ii) the sheet is stretched, iii) A method of forming a microporous film by extracting a plasticizer from the stretched sheet and further (iv) heat-treating it may be mentioned.
  • a plasticizer such as liquid paraffin
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant polymers such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; And the like, or a porous sheet made of a mixture of the fibrous materials.
  • a composite porous sheet the structure which laminated
  • a composite porous sheet is preferable in that a further function can be added by the functional layer.
  • the functional layer for example, from the viewpoint of imparting heat resistance, a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be adopted.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
  • a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • a method of applying a functional layer to a microporous membrane or a porous sheet a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous layer Examples thereof include a method of pressure bonding or thermocompression bonding of the sheet and the functional layer.
  • the thickness of the porous substrate is preferably in the range of 5 ⁇ m to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
  • the puncture strength of the porous substrate is preferably 300 g or more from the viewpoint of improving the production yield.
  • Adhesive porous layer In the separator for non-aqueous secondary batteries of the present invention, at least one adhesive porous layer is provided on one side or both sides of the porous substrate.
  • the adhesive porous layer in the present invention is constituted by including a polyvinylidene fluoride resin as an adhesive resin, and has a number of micropores inside, and a structure in which these micropores are connected. Means a layer through which gas or liquid can pass from one surface to the other.
  • the adhesive porous layer is provided as the outermost layer of the separator on one side or both sides of the porous substrate, and can be adhered to the electrode by this adhesive porous layer. That is, the adhesive porous layer is a layer that can adhere the separator to the electrode when the separator and the electrode are stacked and subjected to pressure bonding or hot pressing.
  • the adhesive porous layer may be stacked or bonded.
  • an adhesive porous layer is provided on both one side and the other side (base and back) of the porous substrate. preferable.
  • the adhesive porous layer is bonded to either the positive electrode or the negative electrode.
  • the separator for non-aqueous secondary batteries of this invention has an adhesive porous layer on the both sides of the said porous base material, an adhesive porous layer is adhere
  • the adhesive porous layer is preferable not only on one side of the porous base material but also on both sides in terms of excellent cycle characteristics when a battery is produced. This is because the adhesive porous layer is on both surfaces of the porous substrate, so that both surfaces of the separator are well bonded to both electrodes via the adhesive porous layer.
  • the adhesive porous layer in the present invention preferably has a porous structure from the viewpoint of ion permeability.
  • the porosity is preferably 30% to 60%.
  • the porosity of the adhesive porous layer is 60% or less, it becomes easy to secure mechanical properties for maintaining the porous structure in the pressing step for bonding to the electrode. Further, when the porosity is 60% or less, the surface porosity becomes small, and the area occupied by the polyvinylidene fluoride resin portion increases, so that it is easy to ensure the adhesive force.
  • the porosity of the adhesive porous layer is 30% or more, good ion permeability can be obtained, and the battery characteristics are easily improved.
  • the adhesive porous layer in the present invention preferably has an average pore diameter of 20 nm to 100 nm.
  • the average pore diameter (diameter, unit: nm) is the pore surface area S of the adhesive porous layer made of polyvinylidene fluoride resin calculated from the nitrogen gas adsorption amount and the adhesion calculated from the porosity.
  • V the void volume of the porous porous layer
  • d 4 ⁇ V / S (Formula 1)
  • d Average pore diameter (nm) of the adhesive porous layer
  • V pore volume per 1 m 2 of the adhesive porous layer
  • S pore surface area per 1 m 2 of the adhesive porous layer
  • the pore surface area S of the adhesive porous layer is determined as follows. By applying the BET equation in a nitrogen gas adsorption method, a specific surface area of the porous substrate (m 2 / g), specific surface area of the composite film obtained by laminating a porous substrate and adhesive porous layer (m 2 / g) and are measured. The specific surface area is multiplied by the basis weight (g / m 2 ) to calculate the pore surface area per 1 m 2 . Next, the pore surface area per 1 m 2 of the porous substrate is subtracted from the pore surface area per 1 m 2 of the separator to calculate the pore surface area S per 1 m 2 of the adhesive porous layer.
  • the average pore size of the adhesive porous layer is 100 nm or less, a porous structure in which uniform pores are uniformly dispersed can be easily obtained, and the adhesion points with the electrode can be evenly dispersed. It is easy to secure sex. In that case, the movement of ions is also uniform, better cycle characteristics can be obtained, and better load characteristics can be obtained. Further, when the average pore diameter is 20 nm or more, ions easily move and good battery performance is easily obtained. This point will be specifically described. First, when the adhesive porous layer is impregnated with an electrolytic solution, the polyvinylidene fluoride resin swells. The degree of swelling varies depending on the configuration of the polyvinylidene fluoride resin.
  • the pores are blocked by swelling of the resin when impregnated with the electrolytic solution. Easy to prevent. Therefore, even in a swollen state, it is easy to secure a hole portion for ions to move, and it is easy to obtain good battery performance as compared with a case where such a hole portion is blocked.
  • ions can move only in the gel-like polyvinylidene fluoride resin containing the electrolytic solution, and the movement of ions is less than when the pores are not blocked. Extremely slow.
  • the adhesive porous layer which has a porosity suitable as a separator for non-aqueous secondary batteries and has a very small average pore diameter compared with the conventional one is obtained.
  • a fine porous structure is developed and uniform.
  • Such a porous structure has good uniformity of ion movement at the separator electrode interface as described above. Therefore, highly uniform electrode reactions are possible, and there is an effect of improving the load characteristics and cycle characteristics of the battery.
  • the uniformity of the in-plane distribution of the polyvinylidene fluoride resin part contributing to adhesion is high, good adhesion to the electrode is achieved.
  • the porous structure also improves ion migration at the interface between the porous substrate and the adhesive porous layer.
  • the interface between both layers is likely to be clogged, and the ion migration at the interface is likely to deteriorate. Therefore, it may be difficult to obtain good battery characteristics.
  • the adhesive porous layer in the present invention has a fine porous structure, the uniformity of pore distribution is high and the number of pores is large. Therefore, there is a high probability that the pores of the porous substrate and the pores of the adhesive porous layer formed using the polyvinylidene fluoride resin can be satisfactorily connected, and the performance degradation due to clogging can be significantly suppressed. It is.
  • the average pore diameter is more preferably in the range of 30 nm to 90 nm.
  • the adhesive porous layer in the present invention contains (1) at least one kind of polyvinylidene fluoride resin A and (2) at least one kind of polyvinylidene fluoride resin B shown below.
  • Polyvinylidene fluoride resin A a vinylidene fluoride homopolymer, and / or a constitutional unit derived from hexafluoropropylene with respect to all constitutional units, including a constitutional unit derived from vinylidene fluoride and a constitutional unit derived from hexafluoropropylene Vinylidene fluoride copolymer having a unit content (over 0 mol%) and 1.5 mol% or less
  • Polyvinylidene fluoride resin B a structural unit derived from vinylidene fluoride and a structural unit derived from hexafluoropropylene
  • Polyvinylidene fluoride resin A is a polymer containing at least a structural unit derived from vinylidene fluoride (VDF) and a structural unit derived from hexafluoropropylene (HFP) of 1.5 mol% or less based on the total structural units. It is. When HFP is included as a copolymerization component, it contains a vinylidene fluoride copolymer containing a structural unit derived from VDF and a structural unit derived from HFP.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • the structural unit derived from HFP may be 0 (zero) mol%, and in this case, the polyvinylidene fluoride resin A contains a vinylidene fluoride homopolymer (vinylidene fluoride homopolymer).
  • the copolymerization ratio of hexafluoropropylene in the polyvinylidene fluoride resin A exceeds 1.5 mol%, it corresponds to the later-described polyvinylidene fluoride resin B, and at least two kinds of HFP amounts differing within a predetermined range. As a result, it becomes difficult to make the above-mentioned surface morphology suitable. Therefore, good adhesion with the electrode cannot be obtained.
  • the polyvinylidene fluoride resin A may be a mixture of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer.
  • the content of the structural unit derived from hexafluoropropylene in the polyvinylidene fluoride resin A is preferably in the range of 0.5 mol% to 1.5 mol%, more preferably in the range of 1.0 mol% to 1.4 mol%. .
  • the weight average molecular weight (Mw) of the polyvinylidene fluoride resin A is preferably in the range of 200,000 to 3,000,000.
  • the weight average molecular weight is 200,000 or more, it is possible to ensure sufficient mechanical strength to withstand pressure bonding or hot pressing performed at the time of adhesion to the electrode.
  • the weight average molecular weight is less than 3 million, the viscosity of the coating liquid does not become too high, and the moldability can be maintained well.
  • the Mw of the polyvinylidene fluoride resin A is preferably in the range of 200,000 to 500,000 for the same reason as described above.
  • the weight average molecular weight (Mw; Dalton) of the polyvinylidene fluoride resin is a molecular weight measured by gel permeation chromatography (hereinafter also referred to as GPC) under the following conditions and converted to polystyrene.
  • GPC gel permeation chromatography
  • the polyvinylidene fluoride resin B is a copolymer containing at least a structural unit derived from vinylidene fluoride and a structural unit derived from hexafluoropropylene, and the number of structural units derived from hexafluoropropylene is 1 for all the structural units. It is contained in a range exceeding 5 mol%.
  • the polyvinylidene fluoride resin B may be a mixture in which two or more kinds of copolymers are mixed.
  • the content of the structural unit derived from hexafluoropropylene in the polyvinylidene fluoride resin B is preferably 1.8 mol% or more based on the total structural units. Further, the content of the structural unit derived from hexafluoropropylene is preferably less than 25 mol%, more preferably less than 15 mol%, based on all the structural units. Among them, the content of the structural unit derived from hexafluoropropylene is more preferably in the range of more than 2.0 mol% and less than 15 mol%.
  • the weight average molecular weight (Mw) of the polyvinylidene fluoride resin B is in the range of 300,000 to 2.5 million.
  • Mw weight average molecular weight
  • the weight average molecular weight is less than 300,000, the formed adhesive porous layer becomes extremely brittle, and the adhesiveness between the adhesive porous layer and the porous substrate is lowered. For this reason, when the line is conveyed in the manufacturing process of the separator, a phenomenon that the adhesive porous layer is easily peeled off from the porous substrate (decrease in handling properties) is caused.
  • the weight average molecular weight exceeds 2.5 million, the adhesive porous layer is strongly sticky, and it is difficult to ensure a good end face appearance because the slit end face is fluffed after the slit process.
  • the Mw of the polyvinylidene fluoride resin B is preferably in the range of 400,000 to 1,000,000 for the same reason as described above. Mw is a value measured by the same method as in the case of the polyvinylidene fluoride resin A described above.
  • a copolymer obtained by copolymerizing only vinylidene fluoride and hexafluoropropylene as the polyvinylidene fluoride resin A and the polyvinylidene fluoride resin B.
  • a copolymer obtained by further copolymerizing other monomers other than vinylidene fluoride and hexafluoropropylene can also be used. Examples of such other monomers include one kind or two or more kinds such as tetrafluoroethylene, trifluoroethylene, trichloroethylene, or vinyl fluoride.
  • the polyvinylidene fluoride resin having a relatively high molecular weight can be obtained preferably by emulsion polymerization or suspension polymerization, particularly preferably by suspension polymerization. It is also possible to select a commercially available resin that satisfies the copolymerization ratio and molecular weight of the resins A and B.
  • the adhesive porous layer contains 15 to 85 parts by mass of polyvinylidene fluoride resin A when the total amount of polyvinylidene fluoride resin A and polyvinylidene fluoride resin B is 100 parts by mass.
  • the polyvinylidene fluoride resin B is preferably contained in the range of 85 to 15 parts by mass.
  • the polyvinylidene fluoride-based resin A is 15 parts by mass or more (that is, the polyvinylidene fluoride-based resin B is 85 parts by mass or less)
  • the above-mentioned preferable surface morphology can be easily obtained, and the adhesion to the electrode can be improved. it can.
  • the polyvinylidene fluoride resin B is 15 parts by mass or more, the above-described electrolytic solution is ensured to be swellable and the adhesion to the electrode is improved.
  • the mass ratio (resin A / resin B) between the polyvinylidene fluoride resin A and the polyvinylidene fluoride resin B contained in the adhesive porous layer is preferably 25/75 to 75/25, more preferably 35/65 to 65/35.
  • the adhesive porous layer in the present invention can also be mixed with inorganic or organic fillers and other additives. Thereby, the slipperiness and heat resistance of a separator can be improved. In that case, it is preferable that the filler has a content and particle size that do not impair the effects of the present invention.
  • the inorganic filler As the inorganic filler, the above-described metal oxide, metal hydroxide, or the like can be used. Moreover, as an organic filler, an acrylic resin etc. can be used, for example.
  • the mass of the adhesive porous layer (preferably polyvinylidene fluoride resin) on one surface of the porous substrate is preferably 0.5 g / m 2 to 1.5 g / m 2 .
  • Adhesiveness with an electrode becomes it favorable that the quantity of an adhesive porous layer is 0.5 g / m ⁇ 2 > or more. Further, when the amount of the adhesive porous layer is 1.5 g / m 2 or less, the ion permeability is improved and the load characteristics of the battery are improved.
  • the total mass of the adhesive porous layer (preferably polyvinylidene fluoride resin) formed on the front and back is 1.0 g / m 2.
  • the weight difference between the front and back surfaces is also important.
  • the total mass of the adhesive porous layer formed on the front and back of the porous substrate is 1.0 g / m 2 to 3.0 g / m 2
  • the adhesive porous layer on one side is preferably 20% or less with respect to the total mass of both sides. When this difference exceeds 20%, curling may appear remarkably, which may hinder handling and may reduce cycle characteristics.
  • the separator for a non-aqueous secondary battery of the present invention preferably has a total film thickness of 5 ⁇ m to 35 ⁇ m from the viewpoint of mechanical strength and energy density when used as a battery.
  • the porosity of the non-aqueous secondary battery separator of the present invention is preferably in the range of 30% to 60% from the viewpoints of the effects of the present invention and mechanical strength, handling properties, and ion permeability.
  • the Gurley value (JIS P8117) of the non-aqueous secondary battery separator of the present invention is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of a good balance between mechanical strength and membrane resistance.
  • the separator for non-aqueous secondary batteries of the present invention preferably has a porous structure from the viewpoint of ion permeability.
  • the value obtained by subtracting the Gurley value of the porous substrate from the Gurley value of the separator for a nonaqueous secondary battery in a state where the adhesive porous layer is formed is preferably 300 seconds / 100 cc or less, More preferably, it is 150 seconds / 100cc or less, More preferably, it is 100 seconds / 100cc or less.
  • this value is 300 seconds / 100 cc or less, the adhesive porous layer does not become too dense and the ion permeability is kept good, and excellent battery characteristics are obtained.
  • the separator for a non-aqueous secondary battery of the present invention is formed by applying a coating liquid containing a polyvinylidene fluoride resin on a porous substrate to form a coating layer, and then solidifying the resin of the coating layer.
  • the adhesive porous layer can be manufactured by a method of integrally forming on the porous substrate.
  • the adhesive porous layer using the polyvinylidene fluoride resin as the adhesive resin can be suitably formed by, for example, the following wet coating method. Specifically, first, a polyvinylidene fluoride resin is dissolved in a solvent to prepare a coating solution. This coating solution is applied onto the porous substrate and immersed in an appropriate coagulation solution. This solidifies the polyvinylidene fluoride resin while inducing a phase separation phenomenon. At this time, the layer formed using the polyvinylidene fluoride resin has a porous structure. Thereafter, the coagulating liquid is removed by washing with water, and the adhesive porous layer can be integrally formed on the porous substrate by drying.
  • a good solvent that dissolves the polyvinylidene fluoride resin can be used for the coating solution.
  • a good solvent for example, a polar amide solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide and the like can be suitably used.
  • a phase separation agent that induces phase separation in addition to the good solvent.
  • phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • Such a phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
  • what is necessary is just to mix or melt
  • the coating liquid preferably contains a polyvinylidene fluoride resin at a concentration of 3% by mass to 10% by mass from the viewpoint of forming a good porous structure. Further, from the viewpoint of forming an appropriate porous structure, it is preferable to use a mixed solvent containing a good solvent in an amount of 60% by mass or more and a phase separation agent in the range of 5% by mass to 40% by mass.
  • the coagulation liquid water, a mixed solvent of water and the good solvent, or a mixed solvent of water, the good solvent, and the phase separation agent can be used.
  • a mixed solvent of water, a good solvent, and a phase separation agent is preferable.
  • the mixing ratio of the good solvent and the phase separation agent is matched to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
  • the concentration of water is preferably 40% by mass to 90% by mass from the viewpoint of forming a good porous structure and improving productivity.
  • the conventional coating methods such as Meyer bar, die coater, reverse roll coater, and gravure coater can be applied to the porous substrate.
  • the adhesive porous layer is formed on both sides of the porous substrate, it is possible to solidify, wash and dry after coating the coating liquid one side at a time. It is preferable that the liquid is coated on the porous substrate on both sides at the same time, and then coagulated, washed with water and dried.
  • the adhesive porous layer can be produced not only by the wet coating method described above but also by a dry coating method.
  • the dry coating method is a method in which a coating liquid containing a polyvinylidene fluoride resin and a solvent is applied onto a porous substrate, and the solvent is volatilized and removed by drying, thereby forming a porous film. How to get.
  • the coating film tends to be denser than in the wet coating method, and it is difficult to obtain a porous layer unless a filler or the like is added to the coating solution.
  • a filler or the like is added to the coating solution.
  • the separator of the present invention is manufactured by a method in which an adhesive porous layer and a porous substrate are prepared separately, and these sheets are overlapped and combined by pressure bonding or hot pressing or an adhesive. May be.
  • the coating liquid is applied onto the release sheet, and the adhesive porous layer is formed by using the wet coating method or the dry coating method described above. Examples include a method of peeling only the porous layer.
  • Non-aqueous secondary battery of the present invention uses the separator of the present invention described above, and includes a positive electrode, a negative electrode, and the separator for a non-aqueous secondary battery of the present invention disposed between the positive electrode and the negative electrode. It is provided and configured.
  • the dope means occlusion, support, adsorption, or insertion, and means a phenomenon in which lithium ions enter the active material of an electrode such as a positive electrode.
  • the non-aqueous secondary battery has a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution.
  • the non-aqueous secondary battery of the present invention is suitable for a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • the positive electrode can have a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the positive electrode active material include lithium cobaltate, lithium nickelate, spinel structure lithium manganate, and olivine structure lithium iron phosphate.
  • the adhesive porous layer of the separator is disposed on the positive electrode side, since the polyvinylidene fluoride resin has excellent oxidation resistance, LiMn 1/2 Ni 1 1 that can operate at a high voltage of 4.2 V or higher.
  • a positive electrode active material such as 2 O 2 or LiCo 1/3 Mn 1/3 Ni 1/3 O 2 can be easily applied.
  • binder resin examples include a polyvinylidene fluoride resin.
  • conductive assistant examples include acetylene black, ketjen black, and graphite powder.
  • current collector examples include aluminum foil having a thickness of 5 ⁇ m to 20 ⁇ m.
  • the structure which formed the electrode layer which consists of a negative electrode active material and binder resin on a negative electrode electrical power collector can be employ
  • the negative electrode active material for example, a carbon material that can occlude lithium electrochemically or a material that can be alloyed with lithium such as silicon or tin can be used.
  • the binder resin include polyvinylidene fluoride resin and styrene-butadiene rubber.
  • the adhesiveness is good, even when not only polyvinylidene fluoride resin but also styrene-butadiene rubber is used as the negative electrode binder, good adhesiveness can be secured.
  • the conductive assistant include acetylene black, ketjen black, and graphite powder.
  • the current collector include copper foil having a thickness of 5 ⁇ m to 20 ⁇ m. Moreover, it can replace with said negative electrode and can also use metal lithium foil as a negative electrode.
  • the electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof, ⁇ - Cyclic esters such as butyrolactone and ⁇ -valerolactone, or a mixed solvent thereof can be preferably used.
  • cyclic carbonate and chain carbonate are mixed in a mass ratio (cyclic carbonate / chain carbonate) in the range of 20/80 to 40/60, and lithium salt is dissolved in 0.5M to 1.5M. That is suitable.
  • the separator for non-aqueous secondary batteries of the present invention can be applied to a battery with a metal can exterior, it is suitable for a soft pack battery having an aluminum laminate film as an exterior material because of its good adhesion to electrodes. It is done.
  • a positive electrode and a negative electrode are joined via a separator, the joined body is impregnated with an electrolytic solution, and sealed in an aluminum laminate film.
  • a non-aqueous secondary battery can be obtained by press-bonding or hot pressing this. With such a configuration, a non-aqueous secondary battery excellent in cycle life can be obtained because the electrode and the separator are well bonded.
  • the battery is excellent in safety.
  • a method for joining the electrode and the separator there are a stack method in which the electrode and the separator are laminated, a method in which the electrode and the separator are wound together, and the present invention can be applied to any of them.
  • composition of polyvinylidene fluoride resin was determined from the NMR spectrum.
  • the NMR spectrum was obtained by dissolving 20 mg of a polyvinylidene fluoride resin in 0.6 ml of deuterated dimethyl sulfoxide at 100 ° C., and measuring the 19 F-NMR spectrum at 100 ° C.
  • the thickness ( ⁇ m) of the separator was obtained by measuring 20 arbitrary points within 10 cm ⁇ 10 cm using a contact-type thickness meter (LITEMATIC, manufactured by Mitutoyo Corporation) and arithmetically averaging the measured values. The measurement was performed by using a cylindrical measuring terminal having a diameter of 5 mm so that a load of 7 g was applied during the measurement.
  • LITEMATIC contact-type thickness meter
  • the average pore diameter of the adhesive porous layer was determined by the following method.
  • the specific surface area (m 2 / g) of the polyolefin microporous membrane and the specific surface area of the separator which is a composite membrane in which the polyolefin microporous membrane and the adhesive porous layer are laminated was measured respectively.
  • the specific surface area (m 2 / g) was multiplied by the basis weight (g / m 2 ) to calculate the pore surface area per 1 m 2 of each sheet.
  • the pore surface area per 1 m 2 of the adhesive porous layer was calculated by subtracting the pore surface area of the polyolefin microporous membrane from the pore surface area of the separator. Separately, the pore volume V per 1 m 2 of sheet was calculated from the porosity.
  • the average pore diameter (diameter) d of the adhesive porous layer was calculated from the following formula 2 from the pore surface area S and the pore volume V.
  • the porosity of the separator for a non-aqueous secondary battery and the porous substrate was obtained from the following formula 3.
  • ⁇ 1 ⁇ Ws / (ds ⁇ t) ⁇ ⁇ 100 (Formula 3)
  • porosity (%)
  • Ws basis weight (g / m 2 )
  • ds true density (g / cm 3 )
  • t film thickness ( ⁇ m).
  • the porosity ⁇ (%) of a composite separator in which a polyethylene porous substrate and a porous layer made of only a polyvinylidene fluoride-based resin are laminated was calculated from the following Equation 4.
  • Wa is the basis weight (g / m 2 ) of the base material
  • Wb is the weight (g / m 2 ) of the polyvinylidene fluoride resin
  • t is the film thickness ( ⁇ m).
  • Wa 0 (g / m 2 )
  • t is the thickness of the adhesive porous layer, that is, the thickness of the substrate from the thickness of the separator. The value obtained by subtracting.
  • the weight (g / m 2 ) of the polyvinylidene fluoride resin was measured from the spectrum intensity of FK ⁇ using an energy dispersive X-ray fluorescence analyzer (EDX-800HS, Shimadzu Corporation). In this measurement, the weight of the polyvinylidene fluoride resin on the surface irradiated with X-rays is measured. Therefore, when a porous layer using a polyvinylidene fluoride resin is formed on both the front and back surfaces, the mass of the polyvinylidene fluoride resin on each of the front and back surfaces is measured by measuring each of the front and back surfaces, and the measured values are summed up. Thus, the total mass of the front and back surfaces was obtained.
  • EDX-800HS energy dispersive X-ray fluorescence analyzer
  • Gurley value According to JIS P8117, measurement was performed with a Gurley type densometer (G-B2C, manufactured by Toyo Seiki Co., Ltd.).
  • the resistance (ohm ⁇ cm 2 ) of this test cell was measured at 20 ° C. by the AC impedance method (measurement frequency: 100 kHz).
  • a tape (3M Scotch (registered trademark) mending tape 810) was applied to both sides of the separator, and cut into 10 mm ⁇ 200 mm to obtain test pieces. At one end in the longitudinal direction of the test piece, the end of each of the double-sided tapes is peeled off, and the ends of both of the peeled tapes are gripped by a tensile tester (Orientec Tensilon Universal Tester RTC-1210A). I had it. And the peeling test was implemented on the conditions of a tension direction: the direction orthogonal to the surface of a test piece, and a tension speed: 20 mm / min. The average of the stress values of 30 mm to 100 mm (value obtained by continuous measurement during peeling from 30 mm to 100 mm from the start of tension) was defined as the peeling force (N / cm).
  • [Adhesiveness with electrode] Disassemble the five test batteries, measure the peel strength when peeling the negative electrode and the positive electrode from the separator, respectively, using a tensile tester, and determine the average peel strength for the negative electrode and the average peel strength for the positive electrode, respectively. Calculated. And the average value of the peeling strength with respect to a negative electrode and the average value of the peeling strength with respect to a positive electrode were averaged, and this was made into the parameter
  • Example 1 Provide of separators for non-aqueous secondary batteries-
  • a vinylidene fluoride homopolymer (weight average molecular weight: 500,000) was prepared.
  • the above-mentioned polyvinylidene fluoride resins A and B are mixed at a ratio of 50/50 [mass ratio], and the mixture of the mixed polyvinylidene fluoride resins is mixed with dimethylacetamide (DMAc) and tripropylene glycol (TPG).
  • DMAc dimethylacetamide
  • TPG tripropylene glycol
  • HFP hexafluoropropylene
  • a lead tab is welded to the positive electrode and negative electrode prepared as described above, the separators prepared in the above examples and comparative examples are joined via the positive and negative electrodes, and the electrolyte is soaked in a vacuum sealer in the aluminum pack. It was enclosed using.
  • 1 M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) was used as the electrolytic solution.
  • a test battery was produced by applying a load of 20 kg per 1 cm 2 of electrode with a hot press machine and performing hot pressing at 90 ° C. for 2 minutes.
  • a non-aqueous secondary battery separator of the present invention was produced in the same manner as in Example 1 except that the copolymer was used, and a non-aqueous secondary battery was further produced.
  • Example 4 Example 1 except that the mixing ratio (resin A / resin B [mass ratio]) of polyvinylidene fluoride resin A and polyvinylidene fluoride resin B in Example 1 was changed from 50/50 to 10/90.
  • a separator for a non-aqueous secondary battery of the present invention was produced, and a non-aqueous secondary battery was further produced.
  • Example 5 Example 1 except that the mixing ratio of the polyvinylidene fluoride resin A and the polyvinylidene fluoride resin B (resin A / resin B [mass ratio]) in Example 1 was changed from 50/50 to 20/80. In the same manner as in Example 1, a separator for a non-aqueous secondary battery of the present invention was produced, and a non-aqueous secondary battery was further produced.
  • Example 6 Example 1 except that the mixing ratio of the polyvinylidene fluoride resin A and the polyvinylidene fluoride resin B (resin A / resin B [mass ratio]) in Example 1 was changed from 50/50 to 80/20. In the same manner as in Example 1, a separator for a non-aqueous secondary battery of the present invention was produced, and a non-aqueous secondary battery was further produced.
  • Example 7 Example 1 except that the mixing ratio of the polyvinylidene fluoride resin A and the polyvinylidene fluoride resin B (resin A / resin B [mass ratio]) in Example 1 was changed from 50/50 to 90/10. In the same manner as in Example 1, a separator for a non-aqueous secondary battery of the present invention was produced, and a non-aqueous secondary battery was further produced.
  • a non-aqueous secondary battery separator of the present invention was produced in the same manner as in Example 1, except that the copolymer was used. Further, a non-aqueous secondary battery was produced.
  • a non-aqueous secondary battery separator of the present invention was produced in the same manner as in Example 1, except that the copolymer was used. Further, a non-aqueous secondary battery was produced.
  • a non-aqueous secondary battery separator of the present invention was produced in the same manner as in Example 1, except that the copolymer was used. Further, a non-aqueous secondary battery was produced.
  • Example 3 Comparative Example 3 Example 1 except that the mixing ratio (resin A / resin B [mass ratio]) of polyvinylidene fluoride resin A and polyvinylidene fluoride resin B in Example 1 was changed from 50/50 to 0/100.
  • a separator for a non-aqueous secondary battery of the present invention was produced, and a non-aqueous secondary battery was further produced.
  • Example 4 Example 1 except that the mixing ratio (resin A / resin B [mass ratio]) of polyvinylidene fluoride resin A and polyvinylidene fluoride resin B in Example 1 was changed from 50/50 to 100/0. In the same manner as in Example 1, a separator for a non-aqueous secondary battery of the present invention was produced, and a non-aqueous secondary battery was further produced.
  • Example 5 (Comparative Example 5)
  • a non-aqueous secondary battery separator of the present invention was produced in the same manner as in Example 1 except that the copolymer was used, and a non-aqueous secondary battery was further produced.
  • This vinylidene fluoride resin mixture was dissolved in 1-methyl-2-pyrrolidone- (NMP), and the resulting coating solution was used as a polyethylene microporous film (film thickness 9 ⁇ m, Gurley value 160 sec / 100 cc, porosity 39 %) was applied in equal amounts and dipped in methanol to solidify. Next, this was washed with water and dried to obtain a separator in which an adhesive porous layer made of a polyvinylidene fluoride resin was formed on both sides of a polyethylene microporous membrane.
  • NMP 1-methyl-2-pyrrolidone-
  • the separator for a non-aqueous secondary battery of the present invention is suitably used for a non-aqueous secondary battery, and particularly suitable for a non-aqueous secondary battery having an aluminum laminate exterior material in which joining with an electrode is important.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、多孔質基材と、前記多孔質基材の少なくとも一方の面に形成され、下記の(1)ポリフッ化ビニリデン系樹脂A及び(2)ポリフッ化ビニリデン系樹脂Bを含む接着性多孔質層と、を備えた非水系二次電池用セパレータを提供する。 (1)フッ化ビニリデン単独重合体と、フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%以下であるフッ化ビニリデン共重合体と、からなる群より選ばれるポリフッ化ビニリデン系樹脂A (2)フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%を超えており、重量平均分子量が30万~250万であるフッ化ビニリデン共重合体より選ばれるポリフッ化ビニリデン系樹脂B

Description

非水系二次電池用セパレータ及び非水系二次電池
 本発明は、非水系二次電池用セパレータ及び非水系二次電池に関するものである。
 リチウムイオン二次電池に代表される非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯用電子機器の電源として広く利用されている。さらに近年では、これら電池は、高エネルギー密度を有するという特徴から自動車などへの適用も検討されている。
 携帯用電子機器の小型化・軽量化に伴ない、非水系二次電池の外装の簡素化がなされている。最近では、外装として当初使用されたステンレス製の電池缶に代えてアルミ缶製の電池缶が開発され、さらに現在では、アルミラミネートパック製のソフトパック外装が開発されている。
 アルミラミネート製のソフトパック外装の場合、外装が柔らかいため、充放電に伴なって電極とセパレータとの間に隙間が形成される場合がある。これは、サイクル寿命を悪化させる一因であり、電極やセパレータ等の接着部の接着性を均一に保つことは重要な技術的課題の一つである。
 接着性に関連する技術として、電極とセパレータとの接着性を高める技術が種々提案されている。このような技術の1つとして、従来のセパレータであるポリオレフィン微多孔膜にポリフッ化ビニリデン系樹脂を用いた多孔質層(以下、「接着性多孔質層」ともいう。)を成形したセパレータを用いる技術が提案されている(例えば、特許文献1~4参照)。接着性多孔質層は、電極に重ねて圧着又は熱プレスした際に電極とセパレータとを良好に接合させる接着剤としての機能を担う。そのため、接着性多孔質層は、ソフトパック電池のサイクル寿命の改善に寄与している。
 上記のようにポリオレフィン微多孔膜に接着性多孔質層を積層したセパレータでは、充分な接着性の確保とイオン透過性の両立という観点から、ポリフッ化ビニリデン系樹脂層の多孔構造と厚みとに着眼し、あるいは2種類のポリフッ化ビニリデン系樹脂を組み合わせたことによる新たな技術提案がなされている。
 また、従来の金属缶外装を用いて電池を作製する場合、電極とセパレータを重ね合わせた状態で捲回して電池素子を作製し、この素子を電解液と共に金属缶外装内に封入して、電池を作製する。一方、上述した接着性多孔質層を有するセパレータを用いてソフトパック電池を作製する場合は、上記の金属缶外装の電池と同様にして電池素子を作製し、これを電解液と共にソフトパック外装内に封入した後、最後に熱プレス工程を設けて電池を作製する。したがって、このようなセパレータを用いる場合、上記の金属缶外装の電池と同様にして電池素子を作製できるため、従来の金属缶外装電池の製造工程に対して大幅な変更を加える必要がないという利点がある。
特許第4127989号公報 特許第4490055号公報 特許第4109522号公報 特許第4414165号公報
 一般に、非水系二次電池の正極又は負極は、集電体とこの集電体上に形成される電極活物質及びバインダー樹脂を含む活物質層とで構成されている。接着性多孔質層は、圧着又は熱プレスによって電極と接合させた場合、電極中のバインダー樹脂に対して接着する。そのため、より良好な接着性を確保するためには、電極内のバインダー樹脂の量は多い方が好ましい。
 一方、電池のエネルギー密度をより高めるためには、逆に電極中の活物質の含有量を高める必要があり、バインダー樹脂の含有量は少ない方が好ましい。そのため、上記の従来技術では、活物質量を増やすため、十分な接着性を確保する目的で高い温度条件や圧力条件にて圧着又は熱プレスを行なう必要があった。ところが、圧着又は熱プレス時の温度条件や圧力条件を高めると、接着性多孔質層の多孔構造が潰れてしまい、イオン透過性が不足し、結果として良好な電池特性が得られなくなる課題があった。
 また、このようなセパレータは、搬送時に接着性多孔質層が剥離しやすく、特にセパレータを適切なサイズにスリットしようとする場合、接着性多孔質層の粘りが強過ぎる等の際には、スリット性、すなわちスリット後のスリット端面が毛羽立ってしまう現象が発現する課題がある。
 本発明は、このような背景に鑑みなされたものである。このような背景のもと、従来技術に比べ、電極との接着性に優れ、電極と接着した後にも良好なイオン透過性が確保されると共に、優れたスリット性を有する非水系二次電池用セパレータが必要とされている。また、エネルギー密度が高く、サイクル特性に優れた非水系二次電池が必要とされている。
 本発明は、上記課題を解決するために、以下の構成を採用する。
 <1> 多孔質基材と、前記多孔質基材の少なくとも一方の面に形成され、下記の(1)ポリフッ化ビニリデン系樹脂A及び(2)ポリフッ化ビニリデン系樹脂Bを含む接着性多孔質層と、を備えた非水系二次電池用セパレータ。
(1)フッ化ビニリデン単独重合体と、フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%以下であるフッ化ビニリデン共重合体と、からなる群より選ばれるポリフッ化ビニリデン系樹脂A
(2)フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%を超えており、重量平均分子量が30万~250万であるフッ化ビニリデン共重合体より選ばれるポリフッ化ビニリデン系樹脂B
 <2> 前記ポリフッ化ビニリデン系樹脂Bの重量平均分子量が、40万~100万である前記<1>に記載の非水系二次電池用セパレータである。
 <3> 前記接着性多孔質層は、空孔率が30%~60%であり、平均孔径が20nm~100nmである前記<1>又は前記<2>に記載の非水系二次電池用セパレータである。
 <4> 前記接着性多孔質層は、ポリフッ化ビニリデン系樹脂A及びポリフッ化ビニリデン系樹脂Bの合計量を100質量部としたとき、前記ポリフッ化ビニリデン系樹脂Aの含有量が15~85質量部であり、前記ポリフッ化ビニリデン系樹脂Bの含有量が85~15質量部である前記<1>~前記<3>のいずれか1つに記載の非水系二次電池用セパレータである。
 <5> 前記接着性多孔質層は、前記多孔質基材の一方の面における量が0.5g/m~1.5g/mである前記<1>~前記<4>のいずれか1つに記載の非水系二次電池用セパレータである。
 <6> 正極と、負極と、前記正極及び前記負極の間に配置された前記<1>~前記<5>のいずれか1つに記載の非水系二次電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池である。
 <7> 更に、外装材としてアルミラミネートフィルムを備え、前記正極と前記負極と前記非水系二次電池用セパレータとが接着された重層構造が前記アルミラミネートフィルム中に収容されている前記<6>に記載の非水系二次電池である。
 本発明によれば、従来技術に比べて、電極との接着性に優れ、電極と接着した後にも良好なイオン透過性が確保されると共に、優れたスリット性を有する非水系二次電池用セパレータが提供される。また、
 本発明によれば、エネルギー密度が高く、サイクル特性に優れた非水系二次電池を提供される。更には、高性能なアルミラミネートパック外装の非水系二次電池を提供することが可能となる。
 以下、本発明の非水系二次電池用セパレータ及びこれを用いた非水系二次電池について詳細に説明する。なお、以下において、数値範囲中の「~」は、上限値及び下限値を含む数値範囲であることを意味する。
<非水系二次電池用セパレータ>
 本発明の非水系二次電池用セパレータは、多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を設けて構成されており、接着性多孔質層を構成する前記ポリフッ化ビニリデン系樹脂として、以下に示す(1)ポリフッ化ビニリデン系樹脂A、及び(2)ポリフッ化ビニリデン系樹脂Bを含有する。
 (1)フッ化ビニリデン単独重合体と、フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%以下であるフッ化ビニリデン共重合体と、からなる群より選ばれるポリフッ化ビニリデン系樹脂A
 (2)フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%を超えており、重量平均分子量が30万~250万であるフッ化ビニリデン共重合体より選ばれるポリフッ化ビニリデン系樹脂B
 本発明においては、セパレータを構成する接着性多孔質層を構成する接着性樹脂としてポリフッ化ビニリデン系樹脂を用い、特定のポリフッ化ビニリデン系樹脂を組み合わせた樹脂組成、すなわちポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとを含めた組成にすることで、ポリフッ化ビニリデン系樹脂A、Bの一方を含有しない場合に比べ、電極との接着性により優れ、かつ電極との接着後において優れたイオン透過性が得られると共に、優れたスリット性が発現する。この理由は、以下のように推測される。
 フッ化ビニリデン及びヘキサフロロプロピレンを重合成分として含むポリフッ化ビニリデン系樹脂(以下、「VDF-HFP樹脂」ともいう。)は、ヘキサフロロプロピレンの重合割合を増やすと電解液に膨潤し易くなる。そのため、接着性多孔質層を構成するVDF-HFP樹脂のヘキサフロロプロピレンの重合割合が多いほど、接着性多孔質層と電極との接着性が向上するとも予想される。
 しかし、ヘキサフロロプロピレンの重合割合が多いVDF-HFP樹脂で接着性多孔質層を形成すると、空孔率が高くなり易く、孔径も大きくなり易い。接着性多孔質層の空孔率が高く孔径も大きいと、接着性多孔質層表面において、電極との接着箇所となるVDF-HFP樹脂部分の面積が減少し、且つ、VDF-HFP樹脂部分がまばらに存在することとなる。そのため、接着性多孔質層を構成するVDF-HFP樹脂のヘキサフロロプロピレンの重合割合を増やしていくと、上記の予想に反し、接着性多孔質層と電極との接着性はむしろ低下する傾向が見られるようになる。また、接着性多孔質層の空孔率が高く孔径も大きいと、電極界面におけるイオン移動が不均一になり、電池のサイクル特性及び負荷特性に悪影響を及ぼす。
 換言すると、イオン透過性を阻害しない程度に空孔率や孔径が小さな接着性多孔質層を得るには、VDF-HFP樹脂のヘキサフロロプロピレンの重合割合を少なくすればよいと言える。このような接着性多孔質層であれば、電極界面におけるイオン移動の均一性が高く、電池のサイクル特性及び負荷特性に影響を及ぼさないし、その表面モルホロジーの形態からして電極との接着性が向上するとも予想される。
 しかし、ヘキサフロロプロピレンの重合割合が少ないVDF-HFP樹脂は電解液に対する膨潤性が乏しく、電極に対して高い接着性を得ることは困難である。
 そして従来、電極とセパレータとの接着性を上げる手段として、圧着又は熱プレス時の圧力及び温度を高くする方策が採られていた。しかし、圧着や熱プレス時の条件が高圧・高温であるほど、接着性多孔質層の多孔質構造が潰れてしまい、電極との接着後のイオン透過性が悪化し、良好な電池特性を得ることが困難であった。
 そこで、本発明は、ヘキサフロロプロピレンの重合割合が異なる2種類のVDF-HFP樹脂を接着性多孔質層に適用することで、電極への接着性を向上させつつ、電池特性も優れたものとする。
 すなわち、ヘキサフロロプロピレンの重合割合が比較的高いポリフッ化ビニリデン系樹脂Bによって、接着性多孔質層において電解液に対するVDF-HFP樹脂の膨潤性を確保する。そして、ヘキサフロロプロピレンの重合割合が比較的低いポリフッ化ビニリデン系樹脂Aによって、イオン透過性を阻害しない程度に空孔率や孔径が小さな接着性多孔質層を実現する。結果、電極界面におけるイオン移動の均一性を高め、かつ電極との接着に好適な表面モルホロジーを獲得する。
 本発明においては、上記のように、接着性多孔質層樹脂Aと接着性多孔質層樹脂Bとをともに接着性多孔質層に存在させることで、電極との接着性に対し相乗効果が奏され、電極との接着性により優れ、電極と接着した後にも良好なイオン透過性が確保される。これにより、電池を構成したときには、サイクル特性及び負荷特性に優れる。
 さらに、本発明のセパレータは、多孔質基材と接着性多孔質層との間の界面におけるイオン移動にも優れる。
 従来、多孔質基材に接着性多孔質層を積層したセパレータは、両者の界面が目詰まりし易く、当該界面でのイオン移動が悪化してしまい、良好な電池特性を実現するのが難しいことがあった。これに対し、本発明における接着性多孔質層は、微細な多孔質構造が発達しており、空孔分布の均一性が高くかつ孔の数が多い。また、接着性に優れるので、圧着や加熱プレス時の温度や圧力の条件の選択幅が広がり、潰れの発生を回避しやすい。そのため、多孔質基材の孔と接着性多孔質層の孔とが良好に接続される確率が高まり、目詰まりによる電池性能の低下が抑制される。
 上記に加えて、本発明においては、一方のポリフッ化ビニリデン系樹脂Bの重量平均分子量を30万~250万の範囲とする。HFP比率の高いポリフッ化ビニリデン系樹脂Bは、比較的膨潤しやすく、ポリフッ化ビニリデン系樹脂Aよりポリフッ化ビニリデン系樹脂Bの分子量の調節が有効である。後述するように、分子サイズを上記範囲に調節することで、接着性多孔質層の脆化を防ぎつつ、強い粘りの発現が抑えられるようにバランスを図る。これにより、多孔質基材との密着を保ち、スリット時には、スリット端面が毛羽立つ等の理由で端面外観が損なわれないように保つ。
 以下、本発明の非水系二次電池用セパレータの各構成について説明する。
[多孔質基材]
 本発明の非水系二次電池用セパレータは、多孔質基材の少なくとも一層を設けて構成されている。本発明における多孔質基材は、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層させた複合多孔質シート等が挙げられる。中でも特に、薄膜化及び高強度の観点において、微多孔膜が好ましい。
 微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材を構成する材料は、電気絶縁性を有する材料であれば、有機材料及び無機材料のいずれでもよい。多孔質基材を構成する材料は、多孔質基材にシャットダウン機能を付与する観点からは、熱可塑性樹脂が好ましい。
 シャットダウン機能とは、電池温度が高まった場合に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。
 前記熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 ポリオレフィンを用いた多孔質基材としては、ポリオレフィン微多孔膜が好適である。
 ポリオレフィン微多孔膜としては、従来の非水系二次電池用セパレータに適用されているポリオレフィン微多孔膜の中から、充分な力学物性とイオン透過性を有するものを好適に用いることができる。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95質量%以上が好ましい。
 上記のほか、高温に曝されたときに容易に破膜しない程度の耐熱性を付与す観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好適である。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンは、重量平均分子量が10万~500万のものが好適である。重量平均分子量が10万以上であると、充分な力学物性を確保できる。一方、重量平均分子量が500万以下であると、シャットダウン特性が良好であるし、膜の成形がしやすい。
 ポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、(i)溶融したポリオレフィン樹脂をT-ダイから押し出し、シート化し、(ii)このシートに結晶化処理を施した後、(iii)延伸し、さらに(iv)延伸後のシートを熱処理することで、微多孔膜を形成する方法が挙げられる。また別の方法として、(i)流動パラフィンなどの可塑剤と一緒にポリオレフィン樹脂を溶融し、これをT-ダイから押し出し、冷却してシート化した後、(ii)このシートを延伸し、(iii)延伸後のシートから可塑剤を抽出し、さらに(iv)熱処理することで、微多孔膜を形成する方法等も挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子;等の繊維状物からなる多孔性シート、又は前記繊維状物の混合物からなる多孔性シートが挙げられる。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂および無機フィラーからなる多孔質層を採用できる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性高分子が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を好適に使用できる。
 なお、複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを圧着又は熱圧着する方法等が挙げられる。
 多孔質基材の厚みは、良好な力学物性と内部抵抗を得る観点から、5μm~25μmの範囲が好適である。
 多孔質基材のガーレ値(JIS P8117)は、電池の短絡防止や十分なイオン透過性を得る観点から、50秒/100cc~800秒/100ccの範囲が好適である。
 多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、300g以上が好適である。
[接着性多孔質層]
 本発明の非水系二次電池用セパレータは、多孔質基材の片面又は両面に少なくとも一層の接着性多孔質層が設けられている。本発明における接着性多孔質層とは、接着性樹脂としてポリフッ化ビニリデン系樹脂を含んで構成されており、かつ内部に多数の微細孔を有し、これら微細孔が連結された構造をなして、一方の面から他方の面へと気体あるいは液体が通過可能とされている層を意味する。
 接着性多孔質層は、多孔質基材の片面又は両面にセパレータの最外層として設けられ、この接着性多孔質層によって電極と接着させることができる。すなわち、接着性多孔質層は、セパレータと電極とを重ねた状態で圧着あるいは熱プレスに供したときにセパレータを電極に接着させ得る層である。接着性多孔質層は、重ねるだけでも接着するものでもよい。
 セパレータを正極及び負極の両方と接着させた場合、サイクル寿命の観点から好ましいので、多孔質基材の一方面及び他方面の両方(基材表裏)に接着性多孔質層が設けられた態様が好ましい。
 本発明の非水系二次電池用セパレータが前記多孔質基材の片側のみに接着性多孔質層を有する場合、接着性多孔質層は正極又は負極のいずれかに接着される。また、本発明の非水系二次電池用セパレータが前記多孔質基材の両側に接着性多孔質層を有する場合、接着性多孔質層は正極及び負極の双方に接着される。接着性多孔質層は、多孔質基材の片面のみに設けるのみならず両面に設けることで、電池を作製したときのサイクル特性に優れる点で好ましい。接着性多孔質層が多孔質基材の両面にあることで、セパレータの両面が接着性多孔質層を介して両電極とよく接着するためである。
 本発明における接着性多孔質層は、イオン透過性の観点から多孔化された構造を有していることが好ましい。具体的には、空孔率が30%~60%であることが好ましい。接着性多孔質層の空孔率が60%以下であると、電極と接着させるためのプレス工程において多孔質構造を維持するための力学物性を確保しやすくなる。また、空孔率が60%以下であると、表面開孔率が小さくなり、ポリフッ化ビニリデン系樹脂部分が占める面積が増えるため、接着力を確保しやすくなる。一方、接着性多孔質層の空孔率が30%以上であると、良好なイオン透過性が得られ、電池特性も向上しやすくなる。
 また、本発明における接着性多孔質層は、平均孔径が20nm~100nmであることが好ましい。ここで、平均孔径(直径、単位:nm)は、窒素ガス吸着量から算出されるポリフッ化ビニリデン系樹脂からなる接着性多孔質層の空孔表面積Sと、空孔率から算出される該接着性多孔質層の空孔体積Vを用いて、全ての孔が円柱状であることを仮定して以下の式1から算出される。
 d=4・V/S …(式1)
  d:接着性多孔質層の平均孔径(nm)
  V:接着性多孔質層の1m当たりの空孔体積
  S:接着性多孔質層の1m当たりの空孔表面積
 接着性多孔質層の空孔表面積Sは、以下のようにして求められる。
 窒素ガス吸着法でBET式を適用することにより、多孔質基材の比表面積(m/g)と、多孔質基材及び接着性多孔質層を積層した複合膜の比表面積(m/g)と、を測定する。それぞれの比表面積にそれぞれの目付(g/m)を乗算して、それぞれの1m当たりの空孔表面積を算出する。次いで、多孔質基材1m当たりの空孔表面積をセパレータ1m当たりの空孔表面積から減算して、接着性多孔質層1m当たりの空孔表面積Sを算出する。
 接着性多孔質層の平均孔径が100nm以下であると、均一な空孔が均一に分散した多孔質構造が得られ易く、電極との接着点を均一に散在させることができるため、良好な接着性を確保しやすい。その場合、イオンの移動も均一となり、より良好なサイクル特性が得られ、さらに良好な負荷特性が得られる。
 また、平均孔径が20nm以上であると、イオンが移動しやすく、良好な電池性能が得やすい。この点について、具体的に説明する。
 まず、接着性多孔質層に電解液を含浸させた場合、ポリフッ化ビニリデン系樹脂は膨潤する。膨潤の程度はポリフッ化ビニリデン系樹脂の構成によって異なるが、本発明のポリフッ化ビニリデン系樹脂の場合、平均孔径が20nm以上であると、電解液を含浸させたときに樹脂の膨潤によって孔が閉塞することを防ぎやすい。そのため、膨潤した状態においても、イオンが移動するための空孔部分を確保しやすく、このような空孔部分が閉塞されてしまった場合に比較して、良好な電池性能が得やすい。なお、空孔部分が閉塞してしまった場合、電解液を含むゲル状のポリフッ化ビニリデン系樹脂中のみしかイオンは移動できず、空孔が閉塞していない場合に比べて、イオンの移動が極めて遅くなる。
 本発明によれば、非水系二次電池用セパレータとして適当な空孔率を有し、かつ、従来のものに比べて非常に小さな平均孔径を有する接着性多孔質層が得られる。これは微細な多孔構造が発達していて均一であることを意味する。このような多孔構造は、前述したようにセパレータ電極界面におけるイオンの移動の均一性が良好である。そのため、均一性の高い電極反応が可能になり、電池の負荷特性、サイクル特性を向上させる効果がある。また、接着に寄与するポリフッ化ビニリデン系樹脂部の面内分布の均一性も高いため、良好な電極との接着が達成される。
 さらに本発明において、多孔構造は、多孔質基材と接着性多孔質層との間の界面におけるイオン移動も良好にする。本発明のような積層型のセパレータは、両層界面が目詰まりしやすく、界面でのイオン移動も悪化しやすい。そのため、良好な電池特性を得るのが難しいことがある。しかしながら、本発明における接着性多孔質層は、微細な多孔構造が発達しているため、空孔分布の均一性が高く、かつその孔の数が多い。したがって、多孔質基材の孔とポリフッ化ビニリデン系樹脂を用いて形成された接着性多孔質層の孔とを良好に接続できる確率が高くなり、目詰まりによる性能低下を著しく抑制することが可能である。
 上記のうち、平均孔径としては、30nm~90nmの範囲がより好ましい。
-ポリフッ化ビニリデン系樹脂-
 本発明における接着性多孔質層は、以下に示す(1)ポリフッ化ビニリデン系樹脂Aの少なくとも一種と、(2)ポリフッ化ビニリデン系樹脂Bの少なくとも一種と、を含有する。これら2種類のポリフッ化ビニリデン系樹脂を混合することによって、各々1種類のポリフッ化ビニリデン系樹脂を適用した場合に比べ、電極との接着性が格段に向上する。
 (1)ポリフッ化ビニリデン系樹脂A:フッ化ビニリデン単独重合体、及び/又は、フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が(0mol%を超え)1.5mol%以下であるフッ化ビニリデン共重合体
 (2)ポリフッ化ビニリデン系樹脂B:フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%を超えており、重量平均分子量が30万~250万であるフッ化ビニリデン共重合体
(1)ポリフッ化ビニリデン系樹脂A
 ポリフッ化ビニリデン系樹脂Aは、少なくとも、フッ化ビニリデン(VDF)由来の構成単位と、全構成単位に対して1.5mol%以下のヘキサフロロプロピレン(HFP)由来の構成単位と、を含む重合体である。HFPを共重合成分として含む場合、VDF由来の構成単位及びHFP由来の構成単位を含むフッ化ビニリデン共重合体を含有する。また、HFP由来の構成単位は0(ゼロ)mol%でもよく、この場合はポリフッ化ビニリデン系樹脂Aとしてフッ化ビニリデン単独重合体(フッ化ビニリデンホモポリマー)を含有する。ポリフッ化ビニリデン系樹脂A中におけるヘキサフロロプロピレンの共重合割合が1.5mol%を超えると、後述のポリフッ化ビニリデン系樹脂Bに該当することになり、HFP量が所定の範囲で異なる少なくとも二種を含まない構成になる結果、電解液への膨潤性が大きくなり過ぎ、前述の表面モロホロジーを好適なものにすることが困難となる。したがって、良好な電極との接着性が得られなくなる。ポリフッ化ビニリデン系樹脂Aは、フッ化ビニリデン単独重合体とフッ化ビニリデン共重合体とを混合した混合物としてもよい。
 ヘキサフロロプロピレン由来の構成単位のポリフッ化ビニリデン系樹脂A中における含有量は、0.5mol%以上1.5mol%以下の範囲が好ましく、1.0mol%以上1.4mol%以下の範囲がより好ましい。
 また、ポリフッ化ビニリデン系樹脂Aの重量平均分子量(Mw)としては、20万~300万の範囲が好ましい。重量平均分子量が20万以上であると、電極との接着時に行なう圧着又は熱プレスに耐えるだけの力学強度を確保することができる。また、重量平均分子量が300万未満であると、塗工液の粘度が高くなり過ぎず、成形性を良好に維持することができる。
 中でも、ポリフッ化ビニリデン系樹脂AのMwは、上記同様の理由から、20万~50万の範囲が好ましい。
 なお、ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw;ダルトン)は、ゲル浸透クロマトグラフィー(以下、GPCともいう。)により下記の条件で測定し、ポリスチレン換算して表した分子量である。
 <条件>
・GPC:GPC-900(日本分光社製)
・カラム:TSKgel Super AWM-H×2本(東ソー社製)
・移動相溶媒:ジメチルホルムアミド(DMF)
・標準試料 :単分散ポリスチレン〔東ソー(株)製〕
・カラム温度:40℃
・流量:10ml/分
(2)ポリフッ化ビニリデン系樹脂B
 ポリフッ化ビニリデン系樹脂Bは、少なくともフッ化ビニリデン由来の構成単位とヘキサフロロプロピレン由来の構成単位とを含む共重合体であり、その全構成単位に対して、ヘキサフロロプロピレン由来の構成単位が1.5mol%を超える範囲で含まれている。
 上記のポリフッ化ビニリデン系樹脂Aと共に、ヘキサフロロプロピレンの共重合割合が高いポリフッ化ビニリデン樹脂Bを含ませることで、電解液への膨潤性を確保することができる。ポリフッ化ビニリデン系樹脂Bは、2種以上の共重合体を混合した混合物としてもよい。
 ヘキサフロロプロピレン由来の構成単位のポリフッ化ビニリデン系樹脂B中における含有量は、全構成単位に対して1.8mol%以上が好ましい。また、ヘキサフロロプロピレン由来の構成単位の含有量は、全構成単位に対して、25mol%未満であることが好ましく、15mol%未満であることがより好ましい。中でも、ヘキサフロロプロピレン由来の構成単位の含有量は、2.0mol%超15mol%未満の範囲がより好ましい。
 ポリフッ化ビニリデン系樹脂Bの重量平均分子量(Mw)は、30万~250万の範囲である。重量平均分子量が30万未満であると、成形された接着性多孔質層が著しく脆くなり、接着性多孔質層と多孔質基材との接着性が低下する。そのため、セパレータの製造工程でライン搬送した場合に、多孔質基材から接着性多孔質層が容易に剥がれ落ちてしまう現象(ハンドリング性の低下)を招来する。また、重量平均分子量が250万を超えると、接着性多孔質層に強い粘りが生じてくるため、スリット工程後のスリット端面が毛羽立つ等の理由により端面外観を良好に確保することが難しくなる。すなわち、スリット工程における品質確保(スリット性)に課題が生じる。また、重量平均分子量が250万を超える場合、接着性多孔質層を成形する際に調製する塗工液の粘度が高くなり過ぎ、高速塗工が難しくなり、生産性が低下する。
 中でも、ポリフッ化ビニリデン系樹脂BのMwは、上記同様の理由から、40万~100万の範囲が好ましい。
 Mwは、上記のポリフッ化ビニリデン系樹脂Aにおける場合と同様の方法で測定される値である。
 上記のように、ポリフッ化ビニリデン系樹脂A及びポリフッ化ビニリデン系樹脂Bを混合して用いることで、電極との接着性において相乗効果が発現し、接着性を格段に高めることが可能である。また、ポリフッ化ビニリデン系樹脂A及びポリフッ化ビニリデン系樹脂Bを混合することにより、多孔質基材と接着性多孔質層との間の剥離力が向上する。
 本発明においては、ポリフッ化ビニリデン系樹脂A、ポリフッ化ビニリデン系樹脂Bとして、フッ化ビニリデン及びヘキサフロロプロピレンのみを共重合した共重合体を用いることが好ましい。このほか、フッ化ビニリデン及びヘキサフロロプロピレン以外の他のモノマーをさらに共重合した共重合体を用いることもできる。このような他のモノマーとしては、例えば、テトラフロロエチレン、トリフロロエチレン、トリクロロエチレン、又はフッ化ビニル等の一種類又は二種類以上を挙げることができる。
 上記のように、比較的分子量の高いポリフッ化ビニリデン系樹脂は、好ましくは乳化重合あるいは懸濁重合により、特に好ましくは懸濁重合により得ることができる。また、樹脂A,Bの共重合比および分子量を満足する市販の樹脂を選択することも可能である。
 接着性多孔質層は、ポリフッ化ビニリデン系樹脂A及びポリフッ化ビニリデン系樹脂Bの合計量を100質量部としたときに、ポリフッ化ビニリデン系樹脂Aを15質量部~85質量部の範囲で含み、ポリフッ化ビニリデン系樹脂Bを85質量部~15質量部の範囲で含むことが好ましい。ポリフッ化ビニリデン系樹脂Aが15質量部以上(すなわちポリフッ化ビニリデン系樹脂Bが85質量部以下)であることで、上述した好適な表面モロホロジーが得られやすく、電極との接着性を高めることができる。また、ポリフッ化ビニリデン系樹脂Bが15質量部以上であると、上述した電解液へ膨潤性を確保し、電極との接着性が良好になる。
 中でも、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの質量比(樹脂A/樹脂B)としては、25/75~75/25が好ましく、より好ましくは35/65~65/35である。
-フィラー-
 本発明における接着性多孔質層は、無機物又は有機物からなるフィラーやその他添加物を混入することも可能である。これにより、セパレータの滑り性や耐熱性を改善させることができる。その場合、フィラーは、本発明の効果を阻害しない程度の含有量や粒子サイズとすることが好ましい。
 無機フィラーとしては、上述した金属酸化物や金属水酸化物等を用いることができる。
 また、有機フィラーとしては、例えば、アクリル樹脂等を用いることができる。
 接着性多孔質層(好ましくはポリフッ化ビニリデン系樹脂)の、多孔質基材の一方の面における質量としては、0.5g/m~1.5g/mが好適である。接着性多孔質層の量が0.5g/m以上であると、電極との接着性が良好になる。また、接着性多孔質層の量が1.5g/m以下であると、イオン透過性が良好になり、電池の負荷特性が高められる。
 接着性多孔質の表裏両面に接着性多孔質層を形成する場合、表裏に形成された接着性多孔質層(好ましくはポリフッ化ビニリデン系樹脂)の合計の質量としては、1.0g/m~3.0g/mが好適である。
 本発明においては、接着性多孔質層を多孔質基材の両面に形成する場合、その表裏の重量差も重要になる。具体的には、多孔質基材の表裏に形成された接着性多孔質層の合計の質量が1.0g/m~3.0g/mであり、一方面の接着性多孔質層の質量と他方面の接着性多孔質層の質量との差が、両面合計の質量に対して20%以下であることが好ましい。この差が20%を超えると、カールが顕著に現れることがあり、ハンドリングする上で支障となったり、サイクル特性が低下する場合がある。
~セパレータの諸特性~
 本発明の非水系二次電池用セパレータは、機械強度と電池としたときのエネルギー密度の観点から、全体の膜厚が5μm~35μmであることが好ましい。
 本発明の非水系二次電池用セパレータの空孔率は、本発明の効果と機械的強度、ハンドリング性、及びイオン透過性の観点から、30%以上60%以下の範囲が好ましい。
 本発明の非水系二次電池用セパレータのガーレ値(JIS P8117)は、機械強度と膜抵抗のバランスがよい点で、50秒/100cc~800秒/100ccの範囲が好ましい。
 本発明の非水系二次電池用セパレータは、イオン透過性の観点から、多孔化された構造であることが好ましい。具体的には、接着性多孔質層を形成した状態の非水系二次電池用セパレータのガーレ値から多孔質基材のガーレ値を減算した値が、300秒/100cc以下であることが好ましく、150秒/100cc以下であることがより好ましく、さらに好ましくは100秒/100cc以下である。この値が300秒/100cc以下であることで、接着性多孔質層が緻密になり過ぎずイオン透過性が良好に保たれ、優れた電池特性が得られる。
~非水系二次電池用セパレータの製造方法~
 本発明の非水系二次電池用セパレータは、ポリフッ化ビニリデン系樹脂を含む塗工液を多孔質基材上に塗工し塗工層を形成し、次いで塗工層の樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造することができる。
 接着性樹脂としてポリフッ化ビニリデン系樹脂を用いた接着性多孔質層は、例えば以下の湿式塗工法によって好適に形成することができる。
 具体的には、まずポリフッ化ビニリデン系樹脂を溶媒に溶解させて塗工液を調製する。この塗工液を多孔質基材上へ塗工し、適切な凝固液に浸漬する。これにより、相分離現象を誘発しながら、ポリフッ化ビニリデン系樹脂を固化させる。このとき、ポリフッ化ビニリデン系樹脂を用いて形成された層は、多孔構造となっている。その後、水洗することで凝固液を除去し、乾燥することで接着性多孔質層を多孔質基材上に一体的に形成することができる。
 上記の塗工液には、ポリフッ化ビニリデン系樹脂を溶解する良溶媒を用いることができる。このような良溶媒としては、例えば、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミドなどの極性アミド溶媒を好適に用いることができる。良好な多孔構造を形成する観点から、上記の良溶媒に加えて、相分離を誘発させる相分離剤を混合させる方が好ましい。このような相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、あるいはトリプロピレングリコールなどが挙げられる。このような相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。また、接着性多孔質層にフィラーやその他添加物を混入させる場合は、塗工液中に混合あるいは溶解させればよい。
 塗工液は、良好な多孔構造を形成する観点から、ポリフッ化ビニリデン系樹脂が3質量%~10質量%の濃度で含まれていることが好ましい。
 また、塗工液は、適切な多孔構造を形成する観点から、良溶媒を60質量%以上含み、かつ相分離剤を5質量%~40質量%の範囲で含む混合溶媒を用いることが好ましい。
 凝固液としては、水、水と前記良溶媒の混合溶媒、あるいは水と前記良溶媒と前記相分離剤の混合溶媒を用いることができる。特に水と良溶媒と相分離剤の混合溶媒が好ましい。この場合、良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせることが、生産性の観点から好適である。水の濃度は、良好な多孔構造を形成し、生産性を向上させる観点から、40質量%~90質量%が好ましい。
 多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなどの従来の塗工方式を適用可能である。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を片面ずつ塗工してから凝固、水洗、及び乾燥することも可能であるが、生産性の観点から、塗工液を両面同時に多孔質基材上に塗工した後に凝固、水洗、及び乾燥することが好適である。
 接着性多孔質層は、上述した湿式塗工法以外に、乾式塗工法でも製造することができる。ここで、乾式塗工法とは、ポリフッ化ビニリデン系樹脂と溶媒とを含む塗工液を多孔質基材上に塗工し、これを乾燥することで溶媒を揮発除去することにより、多孔膜を得る方法をいう。但し、乾式塗工法は、湿式塗工法と比べて塗工膜が緻密になり易く、塗工液にフィラー等を添加しなければ多孔質層が得られ難い。また、このようなフィラー等を添加したとしても、良好な多孔質構造は得られ難い。よって、このような観点から、本発明では湿式塗工法を用いることが好ましい。
 また、本発明のセパレータは、接着性多孔質層と多孔質基材を別個に作製しておき、これらのシートを重ね合わせて、圧着又は熱プレスや接着剤により複合化する方法等により製造されてもよい。接着性多孔質層を独立したシートとして得る方法としては、塗工液を剥離シート上に塗工し、上述した湿式塗工法あるいは乾式塗工法を用いて接着性多孔質層を形成し、接着性多孔質層のみを剥離する方法等が挙げられる。
[非水系二次電池]
 本発明の非水系二次電池は、上述した本発明のセパレータを用い、正極と、負極と、前記正極及び前記負極の間に配置された上述の本発明の非水系二次電池用セパレータとを設けて構成されている。なお、ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 非水系二次電池は、負極と正極とがセパレータを介して対向した構造体に電解液が含浸された電池要素が、外装材内に封入された構造を有している。本発明の非水系二次電池は、非水電解質二次電池、特にはリチウムイオン二次電池に好適である。
 正極は、正極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造とすることができる。活物質層は、さらに導電助剤を含んでもよい。
 正極活物質としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、スピネル構造のマンガン酸リチウム、あるいはオリビン構造のリン酸鉄リチウムなどが挙げられる。本発明では、セパレータの接着性多孔質層を正極側に配置した場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3といった正極活物質を適用しやすくなるという利点もある。
 バインダー樹脂としては、例えば、ポリフッ化ビニリデン系樹脂などが挙げられる。
 導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末などが挙げられる。
 集電体としては、例えば、厚さ5μm~20μmのアルミ箔などが挙げられる。
 負極としては、負極活物質、及びバインダー樹脂からなる電極層を、負極集電体上に形成した構成を採用でき、必要に応じて電極層中に導電助剤を添加してもよい。
 負極活物質としては、例えば、リチウムを電気化学的に吸蔵することができる炭素材料や、シリコンあるいは錫などのリチウムと合金化する材料などを用いることができる。
 バインダー樹脂としては、例えばポリフッ化ビニリデン系樹脂やスチレン-ブタジエンゴムなどが挙げられる。本発明の非水系二次電池用セパレータの場合、接着性が良好であるため、負極バインダーとして、ポリフッ化ビニリデン系樹脂だけでなくスチレン-ブタジエンゴムを用いた場合でも良好な接着性を確保できる。
 導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末などが挙げられる。集電体としては例えば厚さ5μm~20μmの銅箔などが挙げられる。
 また、上記の負極に代えて、金属リチウム箔を負極として用いることも可能である。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。
 リチウム塩としては、例えばLiPF、LiBF、LiClOなどが挙げられる。
 非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート及びそのフッ素置換体等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル、あるいはこれらの混合溶媒を好適に用いることができる。
 特に、電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート/鎖状カーボネート)で20/80~40/60の範囲で混合し、リチウム塩を0.5M~1.5M溶解したものが好適である。
 なお、従来の接着性多孔質層を備えたセパレータにおいては、使用する電解液の種類によって電極に対する接着性を発揮し難い場合があったが、本発明のセパレータによれば、電解液の種類によらず良好な接着性を発揮し得る点にも大きな利点がある。
 本発明の非水系二次電池用セパレータは金属缶外装の電池にも適用可能であるが、電極との接着性が良好であるため、アルミラミネートフィルムを外装材として有するソフトパック電池に好適に用いられる。このような電池を作製する方法は、正極及び負極をセパレータを介して接合し、この接合体に電解液を含浸し、アルミラミネートフィルム内に封入する。その後、これを圧着又は熱プレスすることで、非水系二次電池を得ることができる。このような構成であることで、電極とセパレータが良好に接着され、サイクル寿命に優れた非水系二次電池が得られる。また、電極とセパレータとの接着性が良好なため、安全性にも優れた電池となる。電極とセパレータの接合方法は、電極とセパレータとを積層させていくスタック方式、電極とセパレータとを一緒に捲回する方式などがあり、本発明はいずれにも適用可能である。
 以下、本発明を実施例により説明する。ただし、本発明は以下の実施例に限定されるものではない。
(測定・評価)
 以下に示す実施例及び比較例で作製したセパレータ及びリチウムイオン二次電池について、以下の測定、評価を行なった。測定及び評価の結果は、下記の表に示す。
[ポリフッ化ビニリデン系樹脂の重量平均分子量]
 ポリフッ化ビニリデン系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記の条件で測定し、ポリスチレン換算して求めた。
 <条件>
・GPC:GPC-900(日本分光社製)
・カラム:TSKgel Super AWM-H(2本)(東ソー社製)
・移動相溶媒:ジメチルホルムアミド(DMF)
・標準試料 :単分散ポリスチレン〔東ソー(株)製〕
・カラム温度:40℃
・流量:10ml/分
[ポリフッ化ビニリデン系樹脂の組成]
 ポリフッ化ビニリデン系樹脂の組成は、NMRスペクトルから求めた。NMRスペクトルは、ポリフッ化ビニリデン系樹脂20mgを重ジメチルスルホキシド0.6mlに100℃にて溶解し、100℃で19F-NMRスペクトルを測定して得た。
[膜厚]
 セパレータの厚み(μm)は、接触式の厚み計(LITEMATIC、ミツトヨ社製)を用いて、10cm×10cm内の任意の20点を測定し、その測定値を算術平均することで求めた。測定は、直径5mmの円柱状の測定端子を用い、測定中に7gの荷重が印加されるように調整して行なった。
[目付]
 セパレータを10cm×10cmに切り出し、その質量を測定した。この質量を面積で割ることで目付を求めた。
[平均孔径]
 接着性多孔質層の平均孔径は、下記の方法にて求めた。
 ガス吸着法でBET式を適用することにより、ポリオレフィン微多孔膜の比表面積(m/g)と、ポリオレフィン微多孔膜及び接着性多孔質層を積層した複合膜であるセパレータの比表面積(m/g)をそれぞれ測定した。これら比表面積(m/g)にそれぞれの目付(g/m)を乗算して、それぞれのシート1m当たりの空孔表面積を算出した。ポリオレフィン微多孔膜の空孔表面積をセパレータの空孔表面積から減算して、接着性多孔質層1m当たりの空孔表面積Sを算出した。別途、空孔率からシート1m当たりの空孔体積Vを算出した。ここで、全ての孔が円柱状であると仮定し、空孔表面積S及び空孔体積Vから、接着性多孔質層の平均孔径(直径)dを以下の式2から算出した。
d=4・V/S …(式2)
  d:接着性多孔質層の平均孔径(nm)
  V:接着性多孔質層の1m当たりの空孔体積
  S:接着性多孔質層の1m当たりの空孔表面積
この平均孔径dをポリフッ化ビニリデン系樹脂からなる多孔質層の平均孔径とした。
[空孔率]
 非水系二次電池用セパレータ及び多孔質基材の空孔率は、下記式3から求めた。
   ε={1-Ws/(ds・t)}×100 …(式3)
 ここで、ε:空孔率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、t:膜厚(μm)である。
 具体的には、例えばポリエチレン多孔質基材とポリフッ化ビニリデン系樹脂のみからなる多孔質層とを積層した複合セパレータの空孔率ε(%)は、以下の式4から算出した。
   ε={1―(Wa/0.95+Wb/1.78)/t}×100 …(式4)
 ここで、Waは基材の目付(g/m)であり、Wbはポリフッ化ビニリデン系樹脂の重量(g/m)であり、tは膜厚(μm)である。
 なお、接着性多孔質層の空孔率を算出する場合は、Wa=0(g/m)であり、tは接着性多孔質層の厚み、すなわちセパレータの膜厚から基材の膜厚を引いた値とすればよい。
[ポリフッ化ビニリデン系樹脂の質量]
 セパレータの各面について、エネルギー分散型蛍光X線分析装置(EDX-800HS、島津製作所)を用いてFKαのスペクトル強度からポリフッ化ビニリデン系樹脂の重量(g/m)を測定した。この測定では、X線を照射した面のポリフッ化ビニリデン系樹脂の重量が測定される。よって、表裏両面にポリフッ化ビニリデン系樹脂を用いた多孔質層を形成した場合、表裏各々の測定を行なうことで、表裏各々のポリフッ化ビニリデン系樹脂の質量が測定され、その測定値を合計することで表裏合計の質量を求めた。
[ガーレ値]
 JIS P8117に従い、ガーレ式デンソメータ(G-B2C、東洋精機社製)にて測定した。
[セパレータの抵抗]
 セパレータに、電解液として1M LiBF-プロピレンカーボネート/エチレンカーボネート(=1/1[質量比])を含浸させ、これをリードタブ付きのアルミ箔電極に挟んでアルミパックに封入することで、試験セルを作製した。この試験セルの抵抗(ohm・cm)を交流インピーダンス法(測定周波数:100kHz)により20℃にて測定した。
[剥離力]
 セパレータの両面にテープ(3M社製スコッチ(登録商標)メンディングテープ810)を貼り、10mm×200mmに切り出し試験片とした。この試験片の長手方向の一方の端部において、両面のテープそれぞれの端部を剥がし、引張試験機(オリエンテック社製テンシロン万能試験機RTC-1210A)に、剥がした両テープの端部を握持させた。そして、引張り方向:試験片の面に直交する方向、引張り速度:20mm/min、の条件にて剥離試験を実施した。30mm~100mmの応力値(引張り開始から30mm~100mm剥がす間に連続測定して得た値)の平均を、剥離力(N/cm)とした。
[熱収縮率]
 セパレータを18cm(MD方向)×6cm(TD方向)に切り出し、試験片とした。105℃のオーブンの中にMD方向が重力方向となるように試験片をつるし、無張力下で30分間熱処理を行なった。熱処理後オーブンから取り出し、MD方向及びTD方向のそれぞれについて、以下の式から熱収縮率(%)を算出した。
 熱収縮率(%)=(熱処理前の試験片の長さ-熱処理後の試験片の長さ)/(熱処理前の試験片の長さ)×100
[平衡含水量]
 温度20℃、相対湿度40%の環境下にセパレータを3日間静置して調湿し、120℃の水分気化装置(VA-100型、三菱アナリテック社製)中で水分を気化させた後、カールフィッシャー水分計(CA-100、三菱化学社製)を用いて水分を測定した。
[電極との接着性]
 5個の試験用電池を解体し、セパレータから負極と正極とをそれぞれ剥がすときの剥離強度を引張試験機にて測定し、負極に対する剥離強度の平均値と正極に対する剥離強度の平均値とをそれぞれ算出した。そして、負極に対する剥離強度の平均値と正極に対する剥離強度の平均値とを平均し、これを接着性を評価する指標とした。
 なお、実施例1のセパレータについての正極と負極に対する剥離強度の平均値を100とし、各セパレータについての正極と負極に対する剥離強度の平均値を相対値で示した。
[サイクル特性]
 試験用電池について、充電条件を1C、4.2Vの定電流定電圧充電とし、放電条件を1C、2.75Vカットオフの定電流放電として、25℃下で充放電を繰り返す操作(サイクル試験)を実施した。このとき、サイクル特性は、100サイクル後の容量維持率(%)を指標として評価した。
 容量維持率(%)=(100サイクル目の放電容量)/(初期の放電容量)×100
[負荷特性]
 試験用電池について、25℃下、0.2Cで放電したときの放電容量と、2Cで放電したときの放電容量とを測定し、下記式より求められる相対放電容量(%)を負荷特性を評価する指標とした。ここで、充電条件は0.2C、4.2Vの定電流定電圧充電8時間とし、放電条件は2.75Vカットオフの定電流放電とした。
 相対放電容量(%)=(2Cでの放電容量)/(0.2Cでの放電容量)×100
 なお、負荷特性の指標は、接着後のセパレータのイオン透過性の指標でもある。
[剥がれ]
 セパレータを搬送速度:20m/min、巻き出し張力:0.3N/cm、巻取り張力:0.1N/cmにて搬送させたときの接着性多孔質層の剥がれの有無を目視により観察し、下記の評価基準にしたがって評価した。尚、剥がれにより発生した異物は落下したもの、巻き取りロールの端面に挟まって観察されるものを数えた。
 <評価基準>
A:剥がれがない。
B:剥がれにより発生した異物が1000mあたり1個以上5個以下である。
C:剥がれにより発生した異物が1000mあたり5個より多く20個以下である。
D:剥がれにより発生した異物が1000mあたり20個より多い。
[スリット性]
 セパレータを搬送速度:20m/min、巻き出し張力:0.3N/cm、巻取り張力:0.1N/cmにて搬送し、搬送しながらシェア刃を用いてセパレータをスリット処理した後の端面(スリット端面)の外観を目視により観察し、下記の評価基準にしたがって評価した。
 <評価基準>
A:端面位置のずれが0.5mm以下である。
B:端面位置のずれが0.5mmより大きく2mm以下である。
C:端面位置のすれが2mmより大きく5mm以下である。
D:端面位置のすれが5mmより大きい。
(実施例1)
-非水系二次電池用セパレータの作製-
 ポリフッ化ビニリデン系樹脂Aとして、フッ化ビニリデン単独重合体(重量平均分子量:50万)を用意した。また、ポリフッ化ビニリデン系樹脂Bとして、懸濁重合により重量平均分子量が40万のフッ化ビニリデン/ヘキサフロロプロピレン(=95/5[mol%])共重合体を作製した。
 上記のポリフッ化ビニリデン系樹脂AとBとを50/50[質量比]の割合で混合し、混合されたポリフッ化ビニリデン系樹脂の混合物を、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)とを7/3の比率(=DMAc/TPG;質量比)で混合した混合溶媒に、濃度が5質量%になるように溶解し、塗工液とした。この塗工液をポリエチレン微多孔膜(膜厚:9μm、ガーレ値:160秒/100cc、空孔率:39%)の両面に等量塗工し、水とジメチルアセトアミドとトリプロピレングリコールとを混合した40℃の凝固液(水/DMAc/TPG=57/30/13[質量比])に浸漬した。浸漬により塗工膜を固化した後、水洗、乾燥して、ポリオレフィン系微多孔膜に接着性多孔質層が形成された非水系二次電池用セパレータを得た。
 得られたセパレータについて、接着性多孔質層を構成するポリフッ化ビニリデン系樹脂A,B中のヘキサフロロプロピレン(HFP)の含有量、ポリフッ化ビニリデン系樹脂A,Bの混合比、ポリフッ化ビニリデン系樹脂Bの重量平均分子量(Mw)、セパレータの膜厚及び目付、接着性多孔質層の平均孔径、セパレータと接着性多孔質層の空孔率、接着性多孔質層(PVDF樹脂)の質量(両面の合計質量、表面側の質量と裏面側の質量との差の両面合計質量に対する割合)、及びセパレータのガーレ値を上記の方法により測定した。測定結果は、下記表1に示す。
 なお、以下に示す実施例及び比較例のセパレータについても同様の測定を行ない、測定結果を表1にまとめて示す。
-非水系二次電池の作製-
(負極の作製)
 負極活物質である人造黒鉛300g、バインダーであるスチレン-ブタジエン共重合体の変性体を40質量%含む水溶性分散液7.5g、増粘剤であるカルボキシメチルセルロース3g、適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、得られた塗膜を乾燥し、プレスして負極活物質層を有する負極を作製した。
(正極の作製)
 正極活物質であるコバルト酸リチウム粉末を89.5g、導電助剤のアセチレンブラック4.5g、バインダーであるポリフッ化ビニリデンを6質量%となるようにNMPに溶解した溶液をポリフッ化ビニリデンの重量が6質量%となるように双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、得られた塗膜を乾燥し、プレスして正極活物質層を有する正極を作製した。
(電池の作製)
 上記のように作製した正極と負極にリードタブを溶接し、上記の実施例及び比較例で作製したセパレータを正負極間に介してこれらを接合させ、電解液をしみ込ませてアルミパック中に真空シーラーを用いて封入した。ここで、電解液は1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用いた。これを熱プレス機により電極1cm当たり20kgの荷重をかけ、90℃、2分の熱プレスを行なうことで、試験用電池を作製した。
(実施例2)
 実施例1において、ポリフッ化ビニリデン系樹脂Bとして用いたMw40万のフッ化ビニリデン/ヘキサフロロプロピレン共重合体を、懸濁重合により作製した重量平均分子量が190万のフッ化ビニリデン/ヘキサフロロプロピレン(=95/5[mol%])共重合体に代えた以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(実施例3)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとして用いたMw50万のフッ化ビニリデン単独重合体を、懸濁重合により作製した重量平均分子量が70万のフッ化ビニリデン/ヘキサフロロプロピレン(=98.6/1.4[mol%])共重合体に代えた以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(実施例4)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの混合比率(樹脂A/樹脂B[質量比])を、50/50から10/90に変更した以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(実施例5)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの混合比率(樹脂A/樹脂B[質量比])を、50/50から20/80に変更した以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(実施例6)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの混合比率(樹脂A/樹脂B[質量比])を、50/50から80/20に変更した以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(実施例7)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの混合比率(樹脂A/樹脂B[質量比])を、50/50から90/10に変更した以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(実施例8)
 実施例1において、ポリフッ化ビニリデン系樹脂Bとして用いたMw40万のフッ化ビニリデン/ヘキサフロロプロピレン共重合体を、懸濁重合により作製した重量平均分子量が90万のフッ化ビニリデン/ヘキサフロロプロピレン(=95/5[mol%])共重合体に代えた以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(比較例1)
 実施例1において、ポリフッ化ビニリデン系樹脂Bとして用いたMw40万のフッ化ビニリデン/ヘキサフロロプロピレン共重合体を、懸濁重合により作製した重量平均分子量が20万のフッ化ビニリデン/ヘキサフロロプロピレン(=95/5[mol%])共重合体に代えた以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(比較例2)
 実施例1において、ポリフッ化ビニリデン系樹脂Bとして用いたMw40万のフッ化ビニリデン/ヘキサフロロプロピレン共重合体を、懸濁重合により作製した重量平均分子量が260万のフッ化ビニリデン/ヘキサフロロプロピレン(=95/5[mol%])共重合体に代えた以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(比較例3)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの混合比率(樹脂A/樹脂B[質量比])を、50/50から0/100に変更した以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(比較例4)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとポリフッ化ビニリデン系樹脂Bとの混合比率(樹脂A/樹脂B[質量比])を、50/50から100/0に変更した以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(比較例5)
 実施例1において、ポリフッ化ビニリデン系樹脂Aとして用いたMw50万のフッ化ビニリデン単独重合体を、懸濁重合により作製した重量平均分子量が70万のフッ化ビニリデン/ヘキサフロロプロピレン(=98.0/2.0[mol%])共重合体に代えた以外は、実施例1と同様にして、本発明の非水系二次電池用セパレータを作製し、さらに非水系二次電池を作製した。
(比較例6)
 重量平均分子量40万のポリフッ化ビニリデン樹脂と、重量平均分子量27万でモル比94.5/5.5、重量比に換算すると88/12のフッ化ビニリデン/ヘキサフルオロプロピレン共重合体とが重量比で60/40になるように混合したものを用いた。このフッ化ビニリデン樹脂混合物を、1-メチル-2-ピロリドン-(NMP)に溶解し、得られた塗工液をポリエチレン微多孔膜(膜厚9μm、ガーレ値160秒/100cc、空孔率39%)の両面に等量塗工し、メタノール中に浸漬して固化させた。次いで、これを水洗し乾燥して、ポリエチレン微多孔膜の両面に、ポリフッ化ビニリデン系樹脂からなる接着性多孔質層が形成されたセパレータを得た。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
 また、上記した実施例及び比較例のセパレータの平衡含水量を測定したところ、いずれのセパレータについても1000ppm以下であった。
 表2に示されるように、実施例では、電極との接着性が良好で、剥がれ及びスリット性に優れたセパレータが得られた。
 本発明の非水系二次電池用セパレータは、非水系二次電池に好適に用いられ、特に電極との接合が重要なアルミラミネート外装材を有する非水系二次電池に好適である。
 日本出願2011-231835の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  多孔質基材と、
     前記多孔質基材の少なくとも一方の面に形成され、下記の(1)ポリフッ化ビニリデン系樹脂A及び(2)ポリフッ化ビニリデン系樹脂Bを含む接着性多孔質層と、
     を備えた非水系二次電池用セパレータ。
    (1)フッ化ビニリデン単独重合体と、フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%以下であるフッ化ビニリデン共重合体と、からなる群より選ばれるポリフッ化ビニリデン系樹脂A
    (2)フッ化ビニリデン由来の構成単位及びヘキサフロロプロピレン由来の構成単位を含み、かつ全構成単位に対するヘキサフロロプロピレン由来の構成単位の含有量が1.5mol%を超えており、重量平均分子量が30万~250万であるフッ化ビニリデン共重合体より選ばれるポリフッ化ビニリデン系樹脂B
  2.  前記ポリフッ化ビニリデン系樹脂Bの重量平均分子量が、40万~100万である請求項1に記載の非水系二次電池用セパレータ。
  3.  前記接着性多孔質層は、空孔率が30%~60%であり、平均孔径が20nm~100nmである請求項1又は請求項2に記載の非水系二次電池用セパレータ。
  4.  前記接着性多孔質層は、ポリフッ化ビニリデン系樹脂A及びポリフッ化ビニリデン系樹脂Bの合計量を100質量部としたとき、前記ポリフッ化ビニリデン系樹脂Aの含有量が15~85質量部であり、前記ポリフッ化ビニリデン系樹脂Bの含有量が85~15質量部である請求項1~請求項3のいずれか1項に記載の非水系二次電池用セパレータ。
  5.  前記接着性多孔質層は、前記多孔質基材の一方の面における量が0.5g/m~1.5g/mである請求項1~請求項4のいずれか1項に記載の非水系二次電池用セパレータ。
  6.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項5のいずれか1項に記載の非水系二次電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
  7.  更に、外装材としてアルミラミネートフィルムを備え、前記正極と前記負極と前記非水系二次電池用セパレータとが接着された重層構造が前記アルミラミネートフィルム中に収容されている請求項6に記載の非水系二次電池。
PCT/JP2012/077133 2011-10-21 2012-10-19 非水系二次電池用セパレータ及び非水系二次電池 WO2013058369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/352,509 US20140315068A1 (en) 2011-10-21 2012-10-19 Non-aqueous secondary battery separator and non-aqueous secondary battery
KR1020147010067A KR101429580B1 (ko) 2011-10-21 2012-10-19 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
JP2013511462A JP5282180B1 (ja) 2011-10-21 2012-10-19 非水系二次電池用セパレータ及び非水系二次電池
CN201280051168.4A CN103891001B (zh) 2011-10-21 2012-10-19 非水系二次电池用隔膜及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-231835 2011-10-21
JP2011231835 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058369A1 true WO2013058369A1 (ja) 2013-04-25

Family

ID=48141012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077133 WO2013058369A1 (ja) 2011-10-21 2012-10-19 非水系二次電池用セパレータ及び非水系二次電池

Country Status (6)

Country Link
US (1) US20140315068A1 (ja)
JP (1) JP5282180B1 (ja)
KR (1) KR101429580B1 (ja)
CN (1) CN103891001B (ja)
TW (1) TWI548136B (ja)
WO (1) WO2013058369A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021291A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータおよび非水電解質電池
WO2017002947A1 (ja) * 2015-07-02 2017-01-05 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法
WO2017082258A1 (ja) * 2015-11-11 2017-05-18 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2017208338A (ja) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用分離膜およびこれを含むリチウム二次電池
WO2018212252A1 (ja) * 2017-05-17 2018-11-22 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法
JP2018536971A (ja) * 2015-10-19 2018-12-13 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. コーティングされた電池セパレーター
CN109661736A (zh) * 2016-12-27 2019-04-19 东丽株式会社 电池用隔膜、电极体和非水电解质二次电池
WO2023286877A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2023286876A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2023286875A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2023286874A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093689B (zh) 2014-08-29 2018-05-29 住友化学株式会社 层叠体、间隔件和非水二次电池
EP3239223A4 (en) * 2014-12-26 2017-11-29 Toray Industries, Inc. Polyolefin microporous membrane, production method therefor, and battery separator
WO2017026485A1 (ja) * 2015-08-11 2017-02-16 東レバッテリーセパレータフィルム株式会社 電池用セパレータ
JP6766411B2 (ja) 2016-03-31 2020-10-14 東レ株式会社 電池用セパレータおよびその製造方法
WO2018021398A1 (ja) 2016-07-28 2018-02-01 東レ株式会社 積層捲回体
KR102434168B1 (ko) * 2016-09-21 2022-08-19 데이진 가부시키가이샤 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
HUE064825T2 (hu) * 2017-02-13 2024-04-28 Lg Energy Solution Ltd Ragasztóréteggel ellátott szeparátor fólia lítium szekunder akkumulátorhoz
WO2018168835A1 (ja) 2017-03-17 2018-09-20 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
JP7115319B2 (ja) * 2017-09-26 2022-08-09 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
EP3719864B1 (en) * 2017-11-30 2024-08-28 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2020155208A (ja) * 2019-03-18 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN117625088A (zh) * 2022-08-30 2024-03-01 宁德时代新能源科技股份有限公司 粘结剂、制备方法、正极浆料、二次电池及用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021233A (ja) * 1998-06-30 2000-01-21 Teijin Ltd フッ素樹脂多孔膜、それを用いたゲル状のポリマー電解質膜、およびその製造法
JP2001076758A (ja) * 1999-08-05 2001-03-23 Skc Ltd リチウム2次電池及びその製造方法
JP2001319693A (ja) * 2000-05-11 2001-11-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2002025620A (ja) * 2000-07-12 2002-01-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003007280A (ja) * 2001-06-26 2003-01-10 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2003178804A (ja) * 2001-12-11 2003-06-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004111160A (ja) * 2002-09-17 2004-04-08 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
WO2004112183A1 (en) * 2003-06-17 2004-12-23 Samshin Creation Co., Ltd. A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052750A (ja) * 1999-08-03 2001-02-23 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP3683144B2 (ja) * 1999-12-16 2005-08-17 日本電気株式会社 フィルム外装非水電解液二次電池
JP2001178804A (ja) 1999-12-27 2001-07-03 Toshiyuki Sato 臭気・有害ガス除去装置
JP2003022580A (ja) * 2001-05-02 2003-01-24 Victor Co Of Japan Ltd 情報記録担体、情報記録担体の製造方法、情報記録担体再生装置及び情報記録担体記録装置
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
US7892672B2 (en) * 2007-06-06 2011-02-22 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2008156033A1 (ja) * 2007-06-19 2008-12-24 Teijin Limited 非水系二次電池用セパレータ、その製造方法および非水系二次電池
KR20090080909A (ko) * 2008-01-22 2009-07-27 소니 가부시끼가이샤 전지
JP2010180341A (ja) * 2009-02-06 2010-08-19 Sumitomo Chemical Co Ltd 樹脂組成物、シート、および多孔質フィルム
KR101791376B1 (ko) * 2009-08-06 2017-10-27 스미또모 가가꾸 가부시끼가이샤 다공질 필름, 전지용 세퍼레이터 및 전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021233A (ja) * 1998-06-30 2000-01-21 Teijin Ltd フッ素樹脂多孔膜、それを用いたゲル状のポリマー電解質膜、およびその製造法
JP2001076758A (ja) * 1999-08-05 2001-03-23 Skc Ltd リチウム2次電池及びその製造方法
JP2001319693A (ja) * 2000-05-11 2001-11-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2002025620A (ja) * 2000-07-12 2002-01-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003007280A (ja) * 2001-06-26 2003-01-10 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2003178804A (ja) * 2001-12-11 2003-06-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004111160A (ja) * 2002-09-17 2004-04-08 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
WO2004112183A1 (en) * 2003-06-17 2004-12-23 Samshin Creation Co., Ltd. A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603522B2 (ja) * 2012-07-30 2014-10-08 帝人株式会社 非水電解質電池用セパレータおよび非水電解質電池
WO2014021291A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータおよび非水電解質電池
US9882189B2 (en) 2012-07-30 2018-01-30 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2017002947A1 (ja) * 2015-07-02 2017-01-05 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法
JP6078703B1 (ja) * 2015-07-02 2017-02-08 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法
JP2018536971A (ja) * 2015-10-19 2018-12-13 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. コーティングされた電池セパレーター
WO2017082258A1 (ja) * 2015-11-11 2017-05-18 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP6143992B1 (ja) * 2015-11-11 2017-06-07 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US10811657B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7043183B2 (ja) 2016-05-17 2022-03-29 三星エスディアイ株式会社 二次電池用分離膜およびこれを含むリチウム二次電池
JP2017208338A (ja) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用分離膜およびこれを含むリチウム二次電池
CN109661736A (zh) * 2016-12-27 2019-04-19 东丽株式会社 电池用隔膜、电极体和非水电解质二次电池
WO2018212252A1 (ja) * 2017-05-17 2018-11-22 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法
WO2023286877A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2023286876A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2023286875A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2023286874A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Also Published As

Publication number Publication date
TW201334263A (zh) 2013-08-16
US20140315068A1 (en) 2014-10-23
JPWO2013058369A1 (ja) 2015-04-02
KR101429580B1 (ko) 2014-08-12
CN103891001A (zh) 2014-06-25
TWI548136B (zh) 2016-09-01
JP5282180B1 (ja) 2013-09-04
KR20140060371A (ko) 2014-05-19
CN103891001B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
JP5282181B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP5282180B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
US10096811B2 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
TWI553945B (zh) 非水系蓄電池用分隔器及非水系蓄電池
US9368778B2 (en) Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP5432417B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5624251B2 (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP5129895B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5670811B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5603522B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5745174B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5837437B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2014026947A (ja) 非水電解質電池用セパレータ及び非水電解質電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013511462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010067

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14352509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841815

Country of ref document: EP

Kind code of ref document: A1