WO2013047495A1 - リチウム二次電池用正極活物質の製造方法 - Google Patents
リチウム二次電池用正極活物質の製造方法 Download PDFInfo
- Publication number
- WO2013047495A1 WO2013047495A1 PCT/JP2012/074515 JP2012074515W WO2013047495A1 WO 2013047495 A1 WO2013047495 A1 WO 2013047495A1 JP 2012074515 W JP2012074515 W JP 2012074515W WO 2013047495 A1 WO2013047495 A1 WO 2013047495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- electrode active
- active material
- lithium secondary
- secondary battery
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a positive electrode active material for a lithium secondary battery.
- This application claims priority on September 30, 2011 based on Japanese Patent Application No. 2011-216464 for which it applied to Japan, and uses the content here.
- LiMPO 4 (M is Fe, Mn, etc.), which is a kind of olivine lithium metal phosphate, is less expensive than LiCoO 2 that has been widely used as a positive electrode active material for lithium secondary batteries. In the future, it is expected as a positive electrode active material for lithium secondary batteries, particularly large-sized lithium secondary batteries for automobiles.
- a solid phase synthesis method As a method for producing LiMPO 4 , a solid phase synthesis method, a hydrothermal synthesis method, and a sol-gel method are known as described in the following prior art documents. Among these, the hydrothermal synthesis method that produces LiMPO 4 having a small particle size at a relatively low temperature in a short time is said to be most excellent.
- lithium hydroxide, phosphoric acid, and an M element-containing compound are mixed, and water is added as a raw material.
- This raw material is heated to 100 ° C. or higher in an autoclave and hydrothermal synthesis is performed. It is carried out. At this time, the smaller the amount of water, the smaller the particle size of LiMPO 4 .
- the present invention was made in view of the above circumstances, and an object thereof is to provide a method for producing a positive electrode active material for a lithium secondary battery capable of particle size to obtain a small LiMPO 4.
- the lithium phosphate particle size D 90 of at 100 ⁇ m or less, M element-containing compound particle size D 90 of at 100 ⁇ m or less (however, M is Mg, Ca, Fe, Mn, Ni, Co, Zn, Ge , Cu, Cr, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, or one or more elements selected from the group consisting of rare earth elements) and water Lithium is characterized in that olivine-type LiMPO 4 is produced by adjusting the concentration of the M element with respect to water to 4 mol / L or more as a raw material, and hydrothermal synthesis using the raw material.
- a method for producing a positive electrode active material for a secondary battery [2] The positive electrode active material for a lithium secondary battery according to [1], wherein the M element-containing compound is one or more of M element sulfate, halide, nitrate, phosphate, and organic salt. Manufacturing method. [3] As a lithium source, one or two or more selected from the group consisting of LiOH, Li 2 CO 3 , CH 3 COOLi, and (COOLi) 2 are further mixed. A method for producing a positive electrode active material for a secondary battery.
- the lithium phosphate and the M element-containing compound are each adjusted to a particle size D 90 of 100 ⁇ m or less in an inert gas atmosphere, and then mixed, [1] to [3] Manufacturing method of positive electrode active material for lithium secondary battery.
- [5] The method for producing a positive electrode active material for a lithium secondary battery according to any one of [1] to [4], wherein the reaction temperature of hydrothermal synthesis is 100 ° C. or higher.
- any one or more of sucrose, lactose, ascorbic acid, 1,6-hexanediol, polyethylene glycol, polyethylene oxide, carboxymethylcellulose, carbon black, and fibrous carbon is used as the carbon source. Manufacturing method of positive electrode active material for lithium secondary battery.
- the present invention can provide a method for producing a positive electrode active material for a lithium secondary battery capable of particle size to obtain a small LiMPO 4.
- FIG. 1 is an X-ray diffraction diagram of positive electrode active materials of Example 1 and Comparative Example 2.
- FIG. FIG. 2 is a SEM photograph of the positive electrode active material of Example 1.
- FIG. 3 is an SEM photograph of the positive electrode active material of Comparative Example 3.
- a method for producing a positive electrode active material for a lithium secondary battery includes hydrothermal synthesis reaction to olivine-type LiMPO 4 using a Li source, an M source, and a phosphate source as raw materials.
- a Li source an M source
- a phosphate source as raw materials.
- water by-generation during hydrothermal synthesis can be reduced compared to the case where conventional Li sources such as lithium hydroxide and lithium carbonate are used.
- the amount of water during hydrothermal synthesis can be reduced, and the average particle size of LiMPO 4 can be reduced.
- water is interposed in the raw material for smooth hydrothermal synthesis, and the amount of water at this time is adjusted to be 4 mol / L or more as the concentration of M element with respect to water.
- the water contained in the raw material includes crystallization water of the M element-containing compound in addition to the water added to the raw material.
- LiMPO 4 Preferred olivine type manufactured by the manufacturing method in the embodiment of the present embodiment may be exemplified Li x M y P w O 4 made of lithium metal phosphate composition.
- x, y, w representing the molar ratio are 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1.5, 0.9 ⁇ w ⁇ 1.1
- M is Mg, Ca, Fe, Mn, Ni, Co, Zn, Ge, Cu, Cr, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, one or more elements selected from the group consisting of rare earth elements . Details of the manufacturing method will be described below.
- Lithium phosphate Lithium phosphate (Li 3 PO 4 ) is a Li source and a phosphate source. It is preferred that the particle size D 90 of using the following powder 100 [mu] m, more preferably a particle size D 90 of good following powder 45 [mu] m.
- the particle size D 90 is a particle size of 90% in the particle size cumulative curve of the particle size distribution of the lithium phosphate powder. For example, the particle size distribution is preferably measured by a laser diffraction method.
- the lower limit of the particle size D 90 can be arbitrarily set, but is generally 10 ⁇ m or more, and more preferably 1 ⁇ m or more.
- the M source is a compound that melts during hydrothermal synthesis and is an M element-containing compound that includes the M element.
- M element is from the group consisting of Mg, Ca, Fe, Mn, Ni, Co, Zn, Ge, Cu, Cr, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, and rare earth elements.
- One or more selected elements can be exemplified.
- a divalent transition metal is particularly preferable, and as the divalent transition metal, one or more elements of Fe, Mn, Ni, or Co can be exemplified, and Fe and / or Mn can be exemplified more preferably. .
- M source examples include sulfates of element M, halides (chlorides, fluorides, bromides, iodides), nitrates, phosphates, organic acid salts (for example, oxalates or acetates), and the like.
- the M source is preferably a compound that is easily dissolved in the solvent used in the hydrothermal synthesis reaction.
- divalent transition metal sulfates are preferable, and iron (II) sulfate and / or manganese (II) sulfate and hydrates thereof are more preferable.
- the M element-containing compound it is preferable to use a powder having a particle size D 90 of 100 ⁇ m or less, more preferably a powder having a particle size D 90 of 60 ⁇ m or less, like lithium phosphate.
- the lower limit of the particle size D 90 can be arbitrarily set, but is generally 30 ⁇ m or more, and more preferably 10 ⁇ m or more.
- the compounding ratio of the lithium phosphate and M element-containing compound, a lithium metal phosphate to be manufactured, more particularly, matching stoichiometric ratio of Li x M y P w O 4 made of lithium metal phosphates of the composition Just decide to do it.
- the number of moles of phosphate ions contained in lithium phosphate and the number of moles of M element contained in the M element-containing compound are equimolar. What is necessary is just to mix
- a lithium source such as lithium contained in the by-product may be added.
- a Li source may be added separately.
- the Li source is preferably a compound that melts during hydrothermal synthesis.
- LiOH LiOH, Li 2 CO 3, CH 3 COOLi, and the like one or more members selected from the group consisting of (COOLi) 2.
- COOLi LiOH
- Such a Li source by adding the Li x M y P w O 4 composition ratio of x can be 1 or more, it is possible to increase the discharge capacity of the positive electrode active material.
- Li source like lithium phosphate, it is preferable to use the following powder particle size D 90 of 100 [mu] m, more preferably a particle size D 90 of good following powder 45 [mu] m.
- the lower limit of the particle size D 90 can be arbitrarily set, but is generally 10 ⁇ m or more, and more preferably 1 ⁇ m or more.
- phosphoric acid sources include phosphoric acid (orthophosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, hydrogen phosphate, dihydrogen phosphate, ammonium phosphate, anhydrous ammonium phosphate, ammonium dihydrogen phosphate Further, diammonium hydrogen phosphate, iron phosphate and the like may be added.
- Phosphate source like lithium phosphate, preferably having a particle size D 90 of using the following powder 100 ⁇ m thing solid, more preferably a particle size D 90 of good following powder 45 [mu] m. If less these materials a particle size D 90 of 100 [mu] m, the particle size of the small Li x M y lithium metal phosphate of P w O 4 having a composition can be obtained.
- water is added to the raw material for smooth hydrothermal synthesis.
- the amount of water to be added is such that the concentration of M element with respect to water is 4 mol / L or more, preferably 4.5 mol / L or more. It is preferably adjusted to 4.7 mol / L or more, more preferably 4.9 mol / L or more. If 4 mol / L Not more than the concentration of element M with respect to water, relatively water does not become excessive, the average particle size of the Li x M y P w O 4 there is no fear of increasing.
- the concentration of element M with respect to water in the raw material is 10.2 mol / L or less, preferably 6.4 mol / L or less.
- the water includes, for example, crystal water of an M element-containing compound. Further, if a sufficient amount of crystallization water is contained in the compound blended as a raw material, it is not necessary to add water.
- polar solvents that can be hydrothermally synthesized include methanol, ethanol, 2-propanol, ethylene glycol, propylene glycol, acetone, cyclohexanone, 2-methylpyrrolidone, ethyl methyl ketone, 2-ethoxyethanol, propylene.
- Examples include carbonate, ethylene carbonate, dimethyl carbonate, dimethylformamide, and dimethyl sulfoxide. These solvents may be used alone instead of water, or these solvents may be mixed and used in water.
- a reducing substance such as ascorbic acid is a carbon source and can be used as an antioxidant for preventing oxidation of raw materials during hydrothermal synthesis.
- an antioxidant in addition to ascorbic acid, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate and the like can be used.
- At least lithium phosphate and the M element-containing compound are hydrothermally synthesized at 100 ° C. or higher, and preferably hydrothermally synthesized at 100 ° C. or higher and 300 ° C. or lower.
- a phosphoric acid source is mixed with lithium phosphate in advance to form a mixture, and the mixture and the M element-containing compound are mixed immediately before starting the reaction, and then heated. Start and react. If the phosphoric acid source and the M element-containing compound are mixed in advance, and hydrothermal synthesis is started after another operation is performed and time elapses, an expectation occurs between the phosphate source and the M element-containing compound. This is not preferable because side reactions may not proceed.
- Li ions, M metal ions, and phosphate ions have a ratio substantially equal to the stoichiometric ratio of LiMPO 4 .
- a lithium source such as lithium contained in the by-product may be added.
- the lithium phosphate and the M element-containing compound when preparing the raw materials, it is preferable to pulverize the lithium phosphate and the M element-containing compound in advance so that the particle diameter D90 is 100 ⁇ m or less.
- the lithium phosphate and the M element-containing compound when mixed and then pulverized, the lithium phosphate and the M element-containing compound may not each have a particle size D 90 of 100 ⁇ m or less. Therefore, it is preferable to pulverize them before mixing.
- pulverizing it is preferable to grind
- the lithium phosphate and the M element-containing compound in a non-oxidizing atmosphere as much as possible from the pulverization to the start of hydrothermal synthesis so that the oxidation does not proceed during conveyance after pulverization.
- the average particle diameter of LiMPO 4 can be reduced by making the lithium phosphate and the M element-containing compound each have a particle diameter D 90 of 100 ⁇ m or less.
- the conversion reaction to LiMPO 4 starts and proceeds at 100 ° C. or higher.
- the inside of the reactor is preferably replaced with an inert gas or a reducing gas.
- the inert gas include nitrogen and argon.
- the resulting suspension is cooled to room temperature and solid-liquid separated. Since the separated liquid contains unreacted lithium ions and the like, the Li source and the like can be recovered from the separated liquid.
- the recovery method is not particularly limited.
- a basic phosphate source is added to the separated liquid to precipitate lithium phosphate.
- the precipitate can be recovered and reused as a raw material.
- the positive electrode active material separated from the suspension is washed and dried as necessary. It is preferable to select conditions so that the metal M is not oxidized during drying. For the drying, a vacuum drying method is preferably used.
- the obtained LiMPO 4 and a carbon source are mixed, the mixture is vacuum-dried as necessary, and then under inert conditions or Baking is preferably performed at a temperature of 500 ° C. to 800 ° C. under reducing conditions.
- inert conditions or Baking is preferably performed at a temperature of 500 ° C. to 800 ° C. under reducing conditions.
- a positive electrode material in which a carbon material is formed on the surface of the LiMPO 4 particles can be obtained. It is preferable to select conditions so that the element M is not oxidized in the firing.
- water-soluble organic substances such as saccharides exemplified by sucrose and lactose, ascorbic acid, 1,6-hexanediol, polyethylene glycol, polyethylene oxide, and carboxymethylcellulose are desirable.
- the LiMPO 4 thus obtained is a lithium metal phosphate having a composition of olivine-type Li x M y P w O 4 .
- x, y, w representing the molar ratio are 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1.5, 0.9 ⁇ w ⁇ 1.1
- M is Mg, Ca, Fe, Mn, Ni, Co, Zn, Ge, Cu, Cr, Ti, Sr, Ba, Sc, Y, Al, Ga, In, Si, B, one or more elements selected from the group consisting of rare earth elements .
- the composition of Li x M y P w O 4 include lithium phosphate, M element-containing compound can be adjusted by changing the mixing ratio of the Li source or phosphate source.
- the positive electrode active material for a lithium secondary battery in a preferred embodiment of the present embodiment is LiMPO 4 manufactured by the above-described manufacturing method.
- the positive electrode active material is more preferably one in which LiMPO 4 particles are coated with a carbon film.
- this positive electrode active material has an average particle diameter D 50 which is a cumulative 50% diameter on a volume basis, preferably 0.01 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m. In the present embodiment, by adjusting the concentration of the M element to water, you can freely control the average particle diameter D 50 of the positive electrode active material.
- the lithium secondary battery according to a preferred embodiment of the present embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
- LiMPO 4 produced by the above method is used as the positive electrode active material contained in the positive electrode.
- the positive electrode, the negative electrode, and the nonaqueous electrolyte constituting the lithium secondary battery will be described in order.
- a positive electrode In the lithium secondary battery according to a preferred embodiment of the present embodiment, as a positive electrode, a positive electrode mixture containing a positive electrode active material, a conductive additive, and a binder, and a positive electrode current collector bonded to the positive electrode mixture
- the sheet-like electrode which consists of can be used.
- a pellet type or sheet-shaped positive electrode formed by forming the above positive electrode mixture into a disk shape can also be used.
- the lithium metal phosphate produced by the above method is used.
- a conventionally known positive electrode active material may be mixed with the lithium metal phosphate.
- the binder can be selected arbitrarily, but polyethylene, polypropylene, ethylene propylene copolymer, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, polytetrafluoroethylene, poly (meth) acrylate, polyvinylidene fluoride, polyethylene oxide , Polypropylene oxide, polyepichlorohydrin, polyphasphazene, polyacrylonitrile, and the like.
- a conductive aid it can be arbitrarily selected as a conductive aid, but conductive metal powders such as silver powder; conductive carbon powders such as furnace black, ketjen black, and acetylene black; carbon nanotubes, carbon nanofibers, vapor grown carbon fibers, etc. Can be mentioned.
- vapor grown carbon fiber is preferable.
- the vapor grown carbon fiber has a fiber diameter of preferably 5 nm or more and 0.2 ⁇ m or less, and more preferably 10 nm or more and 0.1 ⁇ m or less.
- the ratio of fiber length / fiber diameter is preferably 5 to 1000, more preferably 100 to 500.
- the content of vapor grown carbon fiber is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on the dry mass of the positive electrode mixture.
- the positive electrode current collector can be arbitrarily selected, and examples thereof include a conductive metal foil, a conductive metal net, and a conductive metal punching metal.
- a conductive metal foil aluminum or an aluminum alloy is preferable.
- a carbon film may be formed on the positive electrode current collector to improve conductivity with the positive electrode mixture.
- the negative electrode is a sheet-like electrode composed of a negative electrode active material, a binder, and a negative electrode mixture containing a conductive additive added as necessary, and a negative electrode current collector bonded to the negative electrode mixture. Can be used. Further, as the negative electrode, a pellet-type or sheet-shaped negative electrode obtained by forming the above-described negative electrode mixture into a disk shape can also be used.
- a conventionally known negative electrode active material can be used as the negative electrode active material.
- carbon materials such as artificial graphite and natural graphite, and metal or semimetal materials such as Sn and Si can be used.
- the binder the same binder as that used in the positive electrode can be used.
- the conductive additive may be added as necessary, or may not be added.
- conductive carbon powders such as furnace black, ketjen black, and acetylene black; carbon nanotubes, carbon nanofibers, vapor grown carbon fibers, and the like can be used.
- vapor grown carbon fiber is particularly preferable.
- the vapor grown carbon fiber has a fiber diameter of preferably 5 nm or more and 0.2 ⁇ m or less, and more preferably 10 nm or more and 0.1 ⁇ m or less.
- the ratio of fiber length / fiber diameter is preferably 5 to 1000, more preferably 100 to 500.
- the content of vapor grown carbon fiber is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on the dry mass of the negative electrode mixture.
- examples of the negative electrode current collector include a conductive metal foil, a conductive metal net, and a conductive metal punching metal.
- a conductive metal foil copper or a copper alloy is preferable.
- non-aqueous electrolyte examples include a non-aqueous electrolyte in which a lithium salt is dissolved in an aprotic solvent.
- the aprotic solvent is arbitrarily selected, but at least one or two selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, and vinylene carbonate
- the above mixed solvent is preferable.
- the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, and CF 3 SO 3 Li.
- a so-called solid electrolyte or gel electrolyte can also be used as the nonaqueous electrolyte.
- the solid electrolyte or gel electrolyte include a polymer electrolyte such as a sulfonated styrene-olefin copolymer, a polymer electrolyte using polyethylene oxide and MgClO 4 , and a polymer electrolyte having a trimethylene oxide structure.
- the non-aqueous solvent used for the polymer electrolyte is preferably at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, and vinylene carbonate.
- the lithium secondary battery in a preferred embodiment of the present embodiment is not limited to the positive electrode, the negative electrode, and the nonaqueous electrolyte, and may include other members as necessary.
- a separator that separates the positive electrode and the negative electrode may be provided.
- the separator is essential when the non-aqueous electrolyte is not a polymer electrolyte.
- a nonwoven fabric, a woven fabric, a microporous film, a combination thereof, and the like can be given. More specifically, a porous polypropylene film, a porous polyethylene film, or the like can be used as appropriate.
- the lithium secondary battery in a preferred embodiment of the present embodiment can be used in various fields.
- Electric and electronic devices such as digital cameras, digital video, AV equipment and vacuum cleaners; electric vehicles, hybrid vehicles, electric bikes, hybrid bikes, electric bicycles, electric assist bicycles, railway engines, aircraft, ships, etc .
- Examples include power generation systems such as power generation systems, wind power generation systems, tidal power generation systems, geothermal power generation systems, heat differential power generation systems, and vibration power generation systems.
- a lithium secondary composed of LiMPO 4 using lithium phosphate and an M element-containing compound as raw materials.
- the average particle diameter of LiMPO 4 can be further reduced by adjusting the concentration of M element with respect to water to 4 mol / L or more.
- Example 1 Hydrothermal synthesis process First, in a glove box filled with argon gas, MnSO 4 ⁇ 5H 2 O (special grade made by Kanto Chemical), FeSO 4 ⁇ 7H 2 O (special grade made by Wako Pure Chemical Industries), Li 3 PO 4 (Kanto) Chemical deer grade 1) and L (+)-ascorbic acid (special grade made by Kanto Chemical Co., Ltd.), respectively, while applying a pulse using Waring's MX1200XTM and finely pulverized lid PN-K06, the particle size d 90 was reduced to 100 ⁇ m or less Grinding was performed until
- a pressure-resistant stainless steel outer tube charged with a raw material for hydrothermal synthesis is placed in an autoclave, heated to 200 ° C. in 1 hour, and maintained at 200 ° C. for 7 hours to advance the hydrothermal synthesis reaction. It was. After holding for 7 hours, heating was stopped and the mixture was cooled to room temperature.
- the suspension after the reaction was taken out from the autoclave, and the suspension was subjected to solid-liquid separation with a centrifuge.
- the operation of discarding the resulting supernatant, adding distilled water anew, stirring and redispersing the solid, centrifuging the redispersed liquid again and discarding the supernatant is performed.
- the conductivity of the supernatant is 1 ⁇ 10. -4 Repeated until S / cm or less. Thereafter, drying was performed in a vacuum dryer controlled at 90 ° C. In this way, a lithium metal phosphate was obtained.
- Carbon film formation process 5.0 g of lithium metal phosphate obtained by drying, 0.5 g of sucrose was added, and 2.5 ml of distilled water was further added and mixed, and then controlled at 90 ° C. And dried in a vacuum dryer.
- the dried product was put in an alumina boat and set in a tubular furnace having a quartz tube having a diameter of 80 mm as a furnace core tube. Then, the temperature was raised at a rate of 100 ° C./hour while flowing nitrogen at a flow rate of 1 L / min, and maintained at 400 ° C. for 1 hour, whereby the decomposition product gas of sucrose was discharged out of the system. Thereafter, the temperature was raised to 700 ° C.
- the obtained positive electrode was introduced into a glove box filled with argon and controlled to a dew point of ⁇ 75 ° C. or lower.
- a coin-type battery with a diameter of 23 mm and a thickness of 2 mm was manufactured by caulking with a cap with a gasket attached thereto.
- Example 2 A coin-type battery was manufactured under the same conditions as in Example 1 except that the added water was changed to 11 mL.
- Example 3 A coin-type battery was manufactured under the same conditions as in Example 1 except that the added water was changed to 9 mL.
- Example 4 A coin-type battery was manufactured under the same conditions as in Example 1 except that the added water was changed to 7 mL.
- Example 5 A coin-type battery was prepared under the same conditions as in Example 1 except that 0.19 g of LiOH.H 2 O (special grade manufactured by Kanto Chemical Co., Ltd.) pulverized until the particle size D 90 was 100 ⁇ m or less was further added to the raw material for hydrothermal synthesis. Manufactured.
- LiOH.H 2 O special grade manufactured by Kanto Chemical Co., Ltd.
- Example 6 A coin-type battery was manufactured under the same conditions as in Example 5 except that the added water was changed to 11 mL.
- Example 7 A coin-type battery was manufactured under the same conditions as in Example 5 except that the added water was changed to 9 mL.
- Example 8 A coin-type battery was manufactured under the same conditions as in Example 5 except that the added water was changed to 7 mL.
- Example 9 Except for the use of CoSO 4 ⁇ 7H 2 O of 5.90 g (Kanto Chemical deer special grade) in place of FeSO4 ⁇ 7H 2 O, to produce a coin-type battery in the same manner as in Example 1.
- Example 10 A coin-type battery was manufactured under the same conditions as in Example 1 except that 5.52 g of NiSO 4 .6H 2 O (Kanto Kagaku Special Grade) was used instead of FeSO 4 .7H 2 O.
- Example 11 A coin-type battery was manufactured under the same conditions as in Example 1 except that the hydrothermal synthesis temperature was 100 ° C.
- Example 1 A coin-type battery was manufactured under the same conditions as in Example 1 except that MnSO 4 ⁇ 5H 2 O, FeSO 4 ⁇ 7H 2 O, Li 3 PO 4 and L (+)-ascorbic acid were mixed first and then pulverized. did.
- Example 2 Same as Example 1 except that MnSO 4 ⁇ 5H 2 O, FeSO 4 ⁇ 7H 2 O, Li 3 PO 4 and L (+)-ascorbic acid were mixed without any pulverization and 10 mL of distilled water was used. A coin-type battery was manufactured under the conditions.
- Example 1 The positive electrode active materials obtained in Example 1 and Comparative Example 2 were measured by X-ray diffractometry using CuK ⁇ rays (Panalytic X'Pert Powder). As a result, in Example 1, single-phase LiFe 0 was used. The formation of .25 Mn 0.75 PO 4 was confirmed. On the other hand, in Comparative Example 2, an impurity phase was observed. This is presumably because the charged substance was not pulverized, so that a uniform reaction did not occur. In the lower part of FIG. 1, diffraction lines (2 ⁇ ) of LiFePO 4 and LiMnPO 4 are shown. The composition was determined from the Vegard law.
- Example 1 has a smaller particle size than Comparative Example 3. This is presumably because the total metal source concentration in Example 1 is about 4.7 mol / L, which is higher than about 0.8 mol / L in Comparative Example 3.
- the particle size distribution of the positive electrode active material is measured using a laser diffraction scattering type particle size distribution analyzer LMS-2000e manufactured by Seishin Corporation, and the dispersion unit is 2000S / SR, and is dispersed in IPA (isopropyl alcohol) by ultrasonic waves. It was.
- the measurement results of the average particle diameter D 50 are shown in Table 1.
- Examples 1 to 10 had good rate characteristics. This is considered to be due to the fact that LiMPO 4 micronized by synthesis at a high concentration was obtained.
- Example 5 the capacity and rate characteristics were slightly improved as compared with Example 1, but this is because Li is excessively contained.
- Comparative Example 1 both the capacity and the rate characteristics are slightly lower than in Example 1. This is because a slight oxidation reaction of the metal species occurs due to the charged material being pulverized together with other raw materials. Conceivable.
- Comparative Example 2 both the capacity and rate characteristics are lower than in Example 1, but this can be said to be due to the presence of impurities.
- Comparative Example 3 the capacity is the same, but the rate characteristics are lower than in Example 1. This can be said to be due to the difference in particle size, as can be seen from FIG.
- the M source can be similarly applied to metals such as Co and Ni.
- the reaction temperature is preferably 100 ° C. or higher.
- LiMPO 4 having a small particle size can be easily obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Materials Engineering (AREA)
Abstract
粒径D90が100μm以下であるリン酸リチウムと、粒径D90が100μm以下であるM元素含有化合物(ただし、MはMg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素である)と、水とを混合し、水に対する前記M元素の濃度を4モル/L以上に調整して原料とし、前記原料を用いて水熱合成することにより、かんらん石型のLiMPO4を製造することを特徴とするリチウム二次電池用正極活物質の製造方法を採用する。
Description
本発明は、リチウム二次電池用正極活物質の製造方法に関する。
本願は、2011年9月30日に、日本に出願された特願2011-216464号に基づき優先権を主張し、その内容をここに援用する。
本願は、2011年9月30日に、日本に出願された特願2011-216464号に基づき優先権を主張し、その内容をここに援用する。
かんらん石型のリチウム金属リン酸塩の一種であるLiMPO4(MはFe,Mn等)は、リチウム二次電池の正極活物質として従来広く用いられてきたLiCoO2よりも安価である。今後リチウム二次電池、特に自動車用などの大型のリチウム二次電池の正極活物質として期待されている。
LiMPO4の製造方法としては、下記の先行技術文献に記載されているように、固相合成法、水熱合成法、ゾルゲル法が知られている。これらのうち、比較的低温、短時間で粒径が小さいLiMPO4が得られる水熱合成法が最も優れているとされている。
従来の水熱合成法では、水酸化リチウムとリン酸とM元素含有化合物とを混合し、更に水を加えたものを原料とし、この原料をオートクレーブ中で100℃以上に加熱して水熱合成を行っている。このとき、水の量が少ないほどLiMPO4の粒径が小さくなる。
Chemistry Letters 36 (2007) 436
Electrochemical and Solid-State Letters, 9 (2006) A277-A280
しかし、従来の水熱合成法では、原料として添加した水のほかに、水熱合成中に水酸化リチウムとリン酸とが反応して水が生成する。水熱合成中に水が生成すると、結果的に水量が増えてLiMPO4の形成反応が進行し、これによりLiMPO4の粒径が増大してしまう問題があった。
本発明は上記事情に鑑みてなされたものであって、粒径が小さなLiMPO4を得ることが可能なリチウム二次電池用正極活物質の製造方法を提供することを目的とする。
本発明は上記事情に鑑みてなされたものであって、粒径が小さなLiMPO4を得ることが可能なリチウム二次電池用正極活物質の製造方法を提供することを目的とする。
上記課題を解決するために、以下の構成を採用した。
[1] 粒径D90が100μm以下であるリン酸リチウムと、粒径D90が100μm以下であるM元素含有化合物(ただし、MはMg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素である)と、水とを混合し、水に対する前記M元素の濃度を4モル/L以上に調整して原料とし、前記原料を用いて水熱合成することにより、かんらん石型のLiMPO4を製造することを特徴とするリチウム二次電池用正極活物質の製造方法。
[2] 前記M元素含有化合物が、M元素の硫酸塩、ハロゲン化塩、硝酸塩、リン酸塩、有機塩1種又は2種以上である[1]に記載のリチウム二次電池用正極活物質の製造方法。
[3] リチウム源として、LiOH、Li2CO3、CH3COOLi、(COOLi)2からなる群から選ばれる1種又は2種以上を更に混合する[1]または[2]に記載のリチウム二次電池用正極活物質の製造方法。
[4] 前記リン酸リチウムと前記M元素含有化合物とをそれぞれ、不活性ガス雰囲気中で粒径D90100μm以下に調整してから混合する[1]乃至[3]の何れか一項に記載のリチウム二次電池用正極活物質の製造方法。
[5] 水熱合成の反応温度を100℃以上とする[1]乃至[4]の何れか一項に記載のリチウム二次電池用正極活物質の製造方法。
[6] [1]乃至[5]の何れか一項に記載の製造方法によって得られた前記LiMPO4に炭素源を混合して、不活性ガス雰囲気中または還元ガス雰囲気中で加熱することにより、前記LiMPO4の表面に炭素材料を形成するリチウム二次電池用正極活物質の製造方法。
[7] 前記炭素源として、スクロース、ラクトース、アスコルビン酸、1,6-ヘキサンジオール、ポリエチレングリコール、ポリエチレンオキサイド、カルボキシメチルセルロース、カーボンブラック、繊維状炭素のいずれか1種以上を用いる[6]に記載のリチウム二次電池用正極活物質の製造方法。
[1] 粒径D90が100μm以下であるリン酸リチウムと、粒径D90が100μm以下であるM元素含有化合物(ただし、MはMg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素である)と、水とを混合し、水に対する前記M元素の濃度を4モル/L以上に調整して原料とし、前記原料を用いて水熱合成することにより、かんらん石型のLiMPO4を製造することを特徴とするリチウム二次電池用正極活物質の製造方法。
[2] 前記M元素含有化合物が、M元素の硫酸塩、ハロゲン化塩、硝酸塩、リン酸塩、有機塩1種又は2種以上である[1]に記載のリチウム二次電池用正極活物質の製造方法。
[3] リチウム源として、LiOH、Li2CO3、CH3COOLi、(COOLi)2からなる群から選ばれる1種又は2種以上を更に混合する[1]または[2]に記載のリチウム二次電池用正極活物質の製造方法。
[4] 前記リン酸リチウムと前記M元素含有化合物とをそれぞれ、不活性ガス雰囲気中で粒径D90100μm以下に調整してから混合する[1]乃至[3]の何れか一項に記載のリチウム二次電池用正極活物質の製造方法。
[5] 水熱合成の反応温度を100℃以上とする[1]乃至[4]の何れか一項に記載のリチウム二次電池用正極活物質の製造方法。
[6] [1]乃至[5]の何れか一項に記載の製造方法によって得られた前記LiMPO4に炭素源を混合して、不活性ガス雰囲気中または還元ガス雰囲気中で加熱することにより、前記LiMPO4の表面に炭素材料を形成するリチウム二次電池用正極活物質の製造方法。
[7] 前記炭素源として、スクロース、ラクトース、アスコルビン酸、1,6-ヘキサンジオール、ポリエチレングリコール、ポリエチレンオキサイド、カルボキシメチルセルロース、カーボンブラック、繊維状炭素のいずれか1種以上を用いる[6]に記載のリチウム二次電池用正極活物質の製造方法。
本発明によれば、粒径が小さなLiMPO4を得ることが可能なリチウム二次電池用正極活物質の製造方法を提供できる。
以下、本発明の実施形態であるリチウム二次電池用正極活物質の製造方法について図面を参照して説明する。
本実施形態の好ましい実施態様におけるリチウム二次電池用正極活物質の製造方法は、Li源とM源とリン酸源とを原料にして、かんらん石型のLiMPO4への水熱合成反応を行う際に、Li源及びリン酸源としてリン酸リチウムを用いることで、従来の水酸化リチウムや炭酸リチウム等のLi源を用いる場合に比べて、水熱合成時における水の副成を低減でき、これにより水熱合成時の水量を少なくしてLiMPO4の平均粒径を小さくすることができる。
さらに原料には、水熱合成を円滑に行うために水を介在させるが、このときの水量は、水に対するM元素の濃度として4モル/L以上になるように調整する。ここで、原料に含まれる水には、原料に添加する水の他に、M元素含有化合物の結晶水も含まれる。水量を制限することで、水熱合成時におけるLiMPO4の形成反応を適度に抑制して、LiMPO4の平均粒径をより小さくすることができる。
本実施形態の好ましい実施態様における製造方法によって製造されるかんらん石型のLiMPO4は、より具体的には、LixMyPwO4なる組成のリチウム金属リン酸塩を例示できる。ただし、モル比を表すx、y、wは、0<x<2、0<y≦1.5、0.9<w<1.1であり、Mは、Mg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素である。
以下、製造方法の詳細について説明する。
以下、製造方法の詳細について説明する。
(リン酸リチウム)
リン酸リチウム(Li3PO4)は、Li源及びリン酸源である。粒径D90が100μm以下の粉末を用いることが好ましく、より好ましくは粒径D90が45μm以下の粉末がよい。粒径D90は、リン酸リチウム粉末の粒度分布の粒度累積曲線における90%の粒子径である。粒度分布は例えば、レーザー回折法で測定することが好ましい。粒径D90の下限値は任意で設定できるが、10μm以上が一般的であり、1μm以上がより好ましい。
リン酸リチウム(Li3PO4)は、Li源及びリン酸源である。粒径D90が100μm以下の粉末を用いることが好ましく、より好ましくは粒径D90が45μm以下の粉末がよい。粒径D90は、リン酸リチウム粉末の粒度分布の粒度累積曲線における90%の粒子径である。粒度分布は例えば、レーザー回折法で測定することが好ましい。粒径D90の下限値は任意で設定できるが、10μm以上が一般的であり、1μm以上がより好ましい。
(M源)
M源としては、水熱合成時に融解する化合物であって、M元素を含むM元素含有化合物である。M元素は、Mg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素を例示できる。これらのうち、特に2価遷移金属が好ましく、2価遷移金属としてFe、Mn、NiまたはCoのいずれか1種又は2種以上の元素を例示でき、より好ましくはFeおよび/またはMnを例示できる。M源としては、M元素の硫酸塩、ハロゲン化物(塩化物、フッ化物、臭化物、ヨウ化物)、硝酸塩、リン酸塩、有機酸塩(例えばシュウ酸塩または酢酸塩)などが挙げられる。M源は、水熱合成反応に用いる溶媒に溶解しやすい化合物が好ましい。これらのうち、2価遷移金属硫酸塩が好ましく、硫酸鉄(II)および/または硫酸マンガン(II)ならびにこれらの水和物がより好ましい。
M源としては、水熱合成時に融解する化合物であって、M元素を含むM元素含有化合物である。M元素は、Mg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素を例示できる。これらのうち、特に2価遷移金属が好ましく、2価遷移金属としてFe、Mn、NiまたはCoのいずれか1種又は2種以上の元素を例示でき、より好ましくはFeおよび/またはMnを例示できる。M源としては、M元素の硫酸塩、ハロゲン化物(塩化物、フッ化物、臭化物、ヨウ化物)、硝酸塩、リン酸塩、有機酸塩(例えばシュウ酸塩または酢酸塩)などが挙げられる。M源は、水熱合成反応に用いる溶媒に溶解しやすい化合物が好ましい。これらのうち、2価遷移金属硫酸塩が好ましく、硫酸鉄(II)および/または硫酸マンガン(II)ならびにこれらの水和物がより好ましい。
また、M元素含有化合物は、リン酸リチウムと同様に、粒径D90が100μm以下の粉末を用いることが好ましく、より好ましくは粒径D90が60μm以下の粉末がよい。粒径D90の下限値は任意で設定できるが、30μm以上が一般的であり、10μm以上がより好ましい。
リン酸リチウム及びM元素含有化合物の配合比については、製造するリチウム金属リン酸塩、より具体的には、LixMyPwO4なる組成のリチウム金属リン酸塩の化学両論比に一致するように決めればよい。例えば、x=y=w=1であるLiMPO4を得るには、リン酸リチウムに含まれるリン酸イオンのモル数と、M元素含有化合物に含まれるM元素のモル数が等モルになるように配合すればよい。ただし、副生成物ができる場合は副生成物に含まれるリチウムなどの分リチウム源などを加えるとよい。
また、リン酸リチウム及びM元素含有化合物の他に、別途Li源を添加してもよい。Li源は、水熱合成時に融解する化合物が好ましい。例えば、LiOH、Li2CO3、CH3COOLi、(COOLi)2からなる群から選択される1種又は2種以上などが挙げられる。これらのうちLiOHが好ましい。このようなLi源を加えることで、LixMyPwO4における組成比xを1以上にすることができ、正極活物質の放電容量を高めることができる。Li源は、リン酸リチウムと同様に、粒径D90が100μm以下の粉末を用いることが好ましく、より好ましくは粒径D90が45μm以下の粉末がよい。粒径D90の下限値は任意で設定できるが、10μm以上が一般的であり、1μm以上がより好ましい。
更に、リン酸源として、リン酸(オルトリン酸)、メタリン酸、ピロリン酸、三リン酸、テトラリン酸、リン酸水素、リン酸二水素、リン酸アンモニウム、無水リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸鉄などを添加してもよい。リン酸源は、リン酸リチウムと同様に、固体のものは粒径D90が100μm以下の粉末を用いることが好ましく、より好ましくは粒径D90が45μm以下の粉末がよい。
これらの原料の粒径D90が100μm以下であれば、粒径の小さなLixMyPwO4なる組成のリチウム金属リン酸塩が得られる。
これらの原料の粒径D90が100μm以下であれば、粒径の小さなLixMyPwO4なる組成のリチウム金属リン酸塩が得られる。
また、原料には、水熱合成を円滑に行うために水を添加するが、添加する水量は、水に対するM元素の濃度が4モル/L以上、好ましくは4.5モル/L以上、より好ましくは4.7モル/L以上、更に好ましくは4.9モル/L以上になるように調整する。水に対するM元素の濃度が4モル/L未以上であれば、相対的に水量が過剰にならず、LixMyPwO4の平均粒径が増大するおそれがない。原料における水に対するM元素の濃度は、10.2モル/L以下、好ましくは6.4モル/L以下とすることが好ましい。水に対するM元素の濃度が10.2モル/L以下であれば、水が極端に不足することがなく、水熱合成反応を円滑に進めることができる。
水には、例えば、M元素含有化合物の結晶水も含まれる。また、原料として配合される化合物に十分な量の結晶水が含まれていれば、水をあえて添加しなくてもよい。
水には、例えば、M元素含有化合物の結晶水も含まれる。また、原料として配合される化合物に十分な量の結晶水が含まれていれば、水をあえて添加しなくてもよい。
尚、水の他に水熱合成が可能な極性溶媒としては、メタノール、エタノール、2-プロパノール、エチレングリコール、プロピレングリコール、アセトン、シクロヘキサノン、2-メチルピロリドン、エチルメチルケトン、2-エトキシエタノール、プロピレンカルボネート、エチレンカルボネート、ジメチルカルボネート、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。水に代えてこれらの溶媒を単独で用いてもよく、また、水にこれらの溶媒を混合して用いても良い。
以上が本実施形態の好ましい実施態様の製造方法における主な原料であるが、上記の主な原料以外に、以下の物質を添加してもよい。
アスコルビン酸等の還元性物質は、炭素源であるとともに水熱合成中の原料の酸化を防止する酸化防止剤として用いることができる。このような酸化防止剤としてはアスコルビン酸の他に、トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル等を用いることができる。
本実施形態の好ましい実施態様における製造方法においては、少なくともリン酸リチウムとM元素含有化合物とを100℃以上で水熱合成させ、好ましくは100℃以上300℃以下で水熱合成させる。また、原料にリン酸源を添加する場合は、予めリン酸リチウムにリン酸源を混合して混合物としておき、反応を開始する直前にこの混合物とM元素含有化合物を混合してから、加熱を開始して反応させるとよい。リン酸源とM元素含有化合物とを先に混合しておき、更に別の操作を行って時間が経過した後に水熱合成を開始させると、リン酸源とM元素含有化合物との間で予期しない副反応が進むことがあるので好ましくない。
原料の調製においては、Liイオン、M金属イオンおよびリン酸イオンが、LiMPO4の化学量論比と概ね同じになる割合にすることが好ましい。ただし、副生成物ができる場合は副生成物に含まれるリチウムなどの分リチウム源などを加えるとよい。
また、原料を用意する際に、リン酸リチウム、M元素含有化合物をそれぞれ、粒径D90が100μm以下になるように事前に粉砕しておくことが好ましい。リン酸リチウム及びM元素含有化合物を混合した後に粉砕すると、リン酸リチウム、M元素含有化合物をそれぞれ粒径D90100μm以下にできないことがあるので、混合する前に粉砕することが好ましい。また、粉砕する場合は、リン酸リチウム、M元素含有化合物を酸化させないように、窒素やアルゴン等の非酸化性ガス雰囲気中で粉砕することが好ましい。また、粉砕後の搬送時などにおいて酸化が進まないように、リン酸リチウム及びM元素含有化合物を、粉砕から水熱合成の開始の間までなるべく非酸化性雰囲気に保管することが好ましい。リン酸リチウム、M元素含有化合物をそれぞれ粒径D90100μm以下にすることで、LiMPO4の平均粒径を小さくすることができる。
LiMPO4への変換反応は、100℃以上で開始および進行させる。また、反応器内は不活性ガスまたは還元性ガスで置換されていることが好ましい。不活性ガスとしては、窒素、アルゴンなどが挙げられる。
得られた懸濁液を室温まで冷却して固液分離する。分離された液体には、未反応のリチウムイオン等が含まれているので、分離された液からLi源等を回収することができる。
回収方法は、特に制限されない。例えば、分離された液に塩基性リン酸源を加えて、リン酸リチウムを沈殿させる。そして、前記沈殿物を回収し、原料として再使用することができる。
懸濁液から分離された正極活物質は、必要に応じて洗浄して乾燥させる。乾燥では金属Mが酸化されないように条件を選択することが好ましい。前記乾燥では真空乾燥法が好ましく用いられる。
回収方法は、特に制限されない。例えば、分離された液に塩基性リン酸源を加えて、リン酸リチウムを沈殿させる。そして、前記沈殿物を回収し、原料として再使用することができる。
懸濁液から分離された正極活物質は、必要に応じて洗浄して乾燥させる。乾燥では金属Mが酸化されないように条件を選択することが好ましい。前記乾燥では真空乾燥法が好ましく用いられる。
また、正極活物質であるLiMPO4に更に導電性を付与するために、得られたLiMPO4と、炭素源とを混ぜ合わせ、前記混合物を必要に応じて真空乾燥させ、次いで不活性条件下または還元条件下で、好ましくは500℃~800℃の温度で焼成する。このような焼成を行うと、LiMPO4粒子の表面に炭素材料が形成された正極材料を得ることができる。焼成では元素Mが酸化されないように条件を選択することが好ましい。
上記焼成で使用可能な炭素源としては、スクロース、ラクトース等に例示される糖類、アスコルビン酸、1,6-ヘキサンジオール、ポリエチレングリコール、ポリエチレンオキサイド、カルボキシメチルセルロースの水溶性有機物が望ましい。
このようにして得られたLiMPO4は、かんらん石型のLixMyPwO4なる組成のリチウム金属リン酸塩である。ただし、モル比を表すx、y、wは、0<x<2、0<y≦1.5、0.9<w<1.1であり、Mは、Mg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素である。LixMyPwO4の組成は、リン酸リチウム、M元素含有化合物、Li源またはリン酸源の配合比を変更することで調整できる。
(リチウム二次電池用の正極活物質)
本実施形態の好ましい実施態様におけるリチウム二次電池用の正極活物質は、前述の製造方法によって製造されたLiMPO4である。この正極活物質は、LiMPO4の粒子が炭素膜で被覆されたものがより好ましい。
また、この正極活物質は、体積基準の累積50%径である平均粒径D50が、好ましくは0.01~1μm、より好ましくは0.05~0.5μmである。本実施形態では、水に対するM元素の濃度を調整することで、正極活物質の平均粒径D50を自在に制御できる。
本実施形態の好ましい実施態様におけるリチウム二次電池用の正極活物質は、前述の製造方法によって製造されたLiMPO4である。この正極活物質は、LiMPO4の粒子が炭素膜で被覆されたものがより好ましい。
また、この正極活物質は、体積基準の累積50%径である平均粒径D50が、好ましくは0.01~1μm、より好ましくは0.05~0.5μmである。本実施形態では、水に対するM元素の濃度を調整することで、正極活物質の平均粒径D50を自在に制御できる。
(リチウム二次電池)
本実施形態の好ましい実施態様におけるリチウム二次電池は、正極と負極と非水電解質とを具備して構成されている。このリチウム二次電池においては、正極に含まれる正極活物質として、上記の方法によって製造されたLiMPO4が用いられる。このような正極活物質が備えられることによって、リチウム二次電池のエネルギー密度を向上させることが可能になる。以下、リチウム二次電池を構成する正極、負極及び非水電解質について順次説明する。
本実施形態の好ましい実施態様におけるリチウム二次電池は、正極と負極と非水電解質とを具備して構成されている。このリチウム二次電池においては、正極に含まれる正極活物質として、上記の方法によって製造されたLiMPO4が用いられる。このような正極活物質が備えられることによって、リチウム二次電池のエネルギー密度を向上させることが可能になる。以下、リチウム二次電池を構成する正極、負極及び非水電解質について順次説明する。
(正極)
本実施形態の好ましい実施態様におけるリチウム二次電池では、正極として、正極活物質と導電助材と結着剤とが含有されてなる正極合材と、正極合材に接合される正極集電体とからなるシート状の電極を用いることができる。また、正極として、上記の正極合材を円板状に成形させてなるペレット型若しくはシート状の正極も用いることができる。
本実施形態の好ましい実施態様におけるリチウム二次電池では、正極として、正極活物質と導電助材と結着剤とが含有されてなる正極合材と、正極合材に接合される正極集電体とからなるシート状の電極を用いることができる。また、正極として、上記の正極合材を円板状に成形させてなるペレット型若しくはシート状の正極も用いることができる。
正極活物質には、上記の方法によって製造されたリチウム金属リン酸塩が用いられるが、このリチウム金属リン酸塩に、従来公知の正極活物質を混合して用いても良い。
結着剤としては任意に選択できるが、ポリエチレン、ポリプロピレン、エチレンプロピレンコポリマー、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、ポリテトラフルオロエチレン、ポリ(メタ)アクリレート、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエピクロルヒドリン、ポリファスファゼン、ポリアクリロニトリル、等を例示できる。
更に導電助材としては任意に選択できるが、銀粉などの導電性金属粉;ファーネスブラック、ケッチェンブラック、アセチレンブラックなどの導電性カーボン粉;カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維などが挙げられる。導電性助剤としては気相法炭素繊維が好ましい。気相法炭素繊維は、その繊維径が5nm以上0.2μm以下であることが好ましく、10nm以上0.1μm以下であることがより好ましい。繊維長さ/繊維径の比が5~1000であることが好ましく、100以上~500以下であることがより好ましい。気相法炭素繊維の含有量は正極合材の乾燥質量に対して0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。
更に正極集電体としては任意に選択できるが、導電性金属の箔、導電性金属の網、導電性金属のパンチングメタルなどが挙げられる。導電性金属としては、アルミニウムまたはアルミニウム合金が好ましい。正極集電体には、正極合材との導電性を向上させるために炭素膜を形成しておいてもよい。
(負極)
負極は、負極活物質、結着剤及び必要に応じて添加される導電助材が含有されてなる負極合材と、負極合材に接合される負極集電体とからなるシート状の電極を用いることができる。また、負極として、上記の負極合材を円板状に成形させてなるペレット型若しくはシート状の負極も用いることができる。
負極は、負極活物質、結着剤及び必要に応じて添加される導電助材が含有されてなる負極合材と、負極合材に接合される負極集電体とからなるシート状の電極を用いることができる。また、負極として、上記の負極合材を円板状に成形させてなるペレット型若しくはシート状の負極も用いることができる。
負極活物質としては、従来公知の負極活物質を用いることができる。例えば、人造黒鉛、天然黒鉛などの炭素材料や、Sn、Si等の金属または半金属材料を用いることができる。
結着剤としては、正極で使用する結着剤と同様のものを用いることができる。
更に導電助材は、必要に応じて添加してもよく、添加しなくても良い。例えば、ファーネスブラック、ケッチェンブラック、アセチレンブラックなどの導電性カーボン粉;カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維などを用いることができる。導電助剤としては気相法炭素繊維が特に好ましい。気相法炭素繊維は、その繊維径が5nm以上0.2μm以下であることが好ましく、10nm以上0.1μm以下であることがより好ましい。繊維長さ/繊維径の比が5~1000であることが好ましく、100以上~500以下であることがより好ましい。気相法炭素繊維の含有量は負極合材の乾燥質量に対して0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。
更に導電助材は、必要に応じて添加してもよく、添加しなくても良い。例えば、ファーネスブラック、ケッチェンブラック、アセチレンブラックなどの導電性カーボン粉;カーボンナノチューブ、カーボンナノファイバー、気相法炭素繊維などを用いることができる。導電助剤としては気相法炭素繊維が特に好ましい。気相法炭素繊維は、その繊維径が5nm以上0.2μm以下であることが好ましく、10nm以上0.1μm以下であることがより好ましい。繊維長さ/繊維径の比が5~1000であることが好ましく、100以上~500以下であることがより好ましい。気相法炭素繊維の含有量は負極合材の乾燥質量に対して0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。
更に負極集電体としては、導電性金属の箔、導電性金属の網、導電性金属のパンチングメタルなどが挙げられる。導電性金属としては銅または銅の合金が好ましい。
(非水電解質)
次に、非水電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる非水電解質を例示できる。
次に、非水電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる非水電解質を例示できる。
非プロトン性溶媒は任意に選択されるが、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、およびビニレンカーボネートからなる群から選ばれる少なくとも1種または2種以上の混合溶媒が好ましい。
また、リチウム塩には、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Li等が挙げられる。
また、リチウム塩には、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Li等が挙げられる。
また非水電解質として、いわゆる固体電解質またはゲル電解質を用いることもできる。固体電解質またはゲル電解質としては、スルホン化スチレン-オレフィン共重合体などの高分子電解質、ポリエチレンオキシドとMgClO4を用いた高分子電解質、トリメチレンオキシド構造を有する高分子電解質などが挙げられる。高分子電解質に用いられる非水系溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ―ブチロラクトン、およびビニレンカーボネートからなる群から選ばれる少なくとも1種が好ましい。
更に、本実施形態の好ましい実施態様におけるリチウム二次電池は、正極、負極、非水電解質のみに限られず、必要に応じて他の部材等を備えていても良い。例えば正極と負極を隔離するセパレータを具備しても良い。セパレータは、非水電解質がポリマー電解質でない場合には必須である。例えば、不織布、織布、微細孔質フィルムなどや、それらを組み合わせたものなどが挙げられる。より具体的には、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等を適宜使用できる。
本実施形態の好ましい実施態様におけるリチウム二次電池は、種々な分野において用いることができる。例えば、パーソナルコンピュータ、タブレット型コンピュータ、ノート型コンピュータ、携帯電話、無線機、電子手帳、電子辞書、PDA(Personal Digital Assistant)、電子メーター、電子キー、電子タグ、電力貯蔵装置、電動工具、玩具、デジタルカメラ、デジタルビデオ、AV機器、掃除機などの電気・電子機器;電気自動車、ハイブリッド自動車、電動バイク、ハイブリッドバイク、電動自転車、電動アシスト自転車、鉄道機関、航空機、船舶などの交通機関;太陽光発電システム、風力発電システム、潮力発電システム、地熱発電システム、熱差発電システム、振動発電システムなどの発電システムなどが挙げられる。
以上説明したように、本実施形態の好ましい実施態様におけるリチウム二次電池の正極活物質の製造方法によれば、リン酸リチウムとM元素含有化合物とを原料にして、LiMPO4からなるリチウム二次電池用正極活物質を製造する際に、水に対するM元素の濃度を4モル/L以上に調整することで、LiMPO4の平均粒径をより小さくすることができる。
(実施例1)
1.水熱合成工程
はじめに、アルゴンガスで満たされたグローブボックス中で、MnSO4・5H2O(関東化学製 特級)、FeSO4・7H2O(和光純薬製 特級)、Li3PO4(関東化学 鹿1級)、L(+)-アスコルビン酸(関東化学製 特級)をそれぞれ、ワーリング社製MX1200XTMおよび微粉砕フタPN-K06を用いてパルスを印加しつつ、粒径d90が100μm以下になるまで粉砕を行った。
1.水熱合成工程
はじめに、アルゴンガスで満たされたグローブボックス中で、MnSO4・5H2O(関東化学製 特級)、FeSO4・7H2O(和光純薬製 特級)、Li3PO4(関東化学 鹿1級)、L(+)-アスコルビン酸(関東化学製 特級)をそれぞれ、ワーリング社製MX1200XTMおよび微粉砕フタPN-K06を用いてパルスを印加しつつ、粒径d90が100μm以下になるまで粉砕を行った。
次いで、100mlのPTFE製試料容器に、0.012gのL(+)-アスコルビン酸、粉砕した15.6gのMnSO4・5H2O、粉砕した5.83gのFeSO4・7H2O、粉砕した10gのLi3PO4を入れ、そこにアルゴンガスを15時間バブリングさせることで溶存していた炭酸ガスや酸素を追い出させた蒸留水を10mLを入れ、蓋をし、耐圧ステンレス製外筒(HUS-100)に入れた。
次いで、水熱合成用原料を仕込んだ耐圧ステンレス製外筒をオートクレーブにいれ、昇温時間1時間で200℃まで昇温し、200℃で7時間保持することにより、水熱合成反応を進行させた。7時間保持後、加熱をやめ室温まで冷却した。
次いで、室温まで冷却後、オートクレーブから反応後の懸濁液を取り出し、懸濁液を遠心分離機で固液分離した。生じた上澄み液を捨て、新たに蒸留水を加えて固形物を撹拌して再分散させ、その再分散液を再び遠心分離して上澄みを捨てるという操作を、上澄み液の導電率が1×10-4S/cm以下になるまで繰り返した。その後、90℃に制御された真空乾燥機内で乾燥を行った。このようにして、リチウム金属リン酸塩を得た。
2.炭素膜形成工程
乾燥して得られたリチウム金属リン酸塩を5.0g分取し、0.5gのスクロースを添加し、更に蒸留水を2.5ml添加して混合後、90℃に制御された真空乾燥機で乾燥した。乾燥物をアルミナボートに入れ、直径80mmの石英管を炉心管とした管状炉にセットした。そして、1L/分の流量で窒素を流しながら100℃/時間の速度で昇温し、400℃で1時間保持することで、スクロースの分解生成ガスを系外に排出した。その後、100℃/時間の速度で700℃まで昇温し、窒素を流しながら4時間保持した。保持終了後、窒素を流しながら100℃以下まで冷却し、管状炉から焼成物を取り出して正極活物質とした。
乾燥して得られたリチウム金属リン酸塩を5.0g分取し、0.5gのスクロースを添加し、更に蒸留水を2.5ml添加して混合後、90℃に制御された真空乾燥機で乾燥した。乾燥物をアルミナボートに入れ、直径80mmの石英管を炉心管とした管状炉にセットした。そして、1L/分の流量で窒素を流しながら100℃/時間の速度で昇温し、400℃で1時間保持することで、スクロースの分解生成ガスを系外に排出した。その後、100℃/時間の速度で700℃まで昇温し、窒素を流しながら4時間保持した。保持終了後、窒素を流しながら100℃以下まで冷却し、管状炉から焼成物を取り出して正極活物質とした。
3.電池評価
1.0gの正極活物質、0.3gの導電助材としてのアセチレンブラック(電気化学工業製 HS-100)、0.15gのバインダーとしてのポリフッ化ビニリデン(クレハ製 KFポリマー W#1300)をそれぞれ秤量した。これらを充分に混合した後に、2.25gのN-メチル-2-ピロリドン(キシダ化学製)を徐々に添加して塗工液とした。ギャップを調整したドクターブレードでこの塗工液を20μm厚のAl箔上に塗工した。得られた塗膜からN-メチル-2-ピロリドンを乾燥させた後に、直径15mmの円形に切り出した。その後、切り出した塗膜を3MPaで20秒間プレスして厚さを測定したところ、平均膜厚は52μmであった。また、塗膜の重量は11mgであった。このようにして正極を製造した。
1.0gの正極活物質、0.3gの導電助材としてのアセチレンブラック(電気化学工業製 HS-100)、0.15gのバインダーとしてのポリフッ化ビニリデン(クレハ製 KFポリマー W#1300)をそれぞれ秤量した。これらを充分に混合した後に、2.25gのN-メチル-2-ピロリドン(キシダ化学製)を徐々に添加して塗工液とした。ギャップを調整したドクターブレードでこの塗工液を20μm厚のAl箔上に塗工した。得られた塗膜からN-メチル-2-ピロリドンを乾燥させた後に、直径15mmの円形に切り出した。その後、切り出した塗膜を3MPaで20秒間プレスして厚さを測定したところ、平均膜厚は52μmであった。また、塗膜の重量は11mgであった。このようにして正極を製造した。
得られた正極をアルゴンで充満され露点が-75℃以下に制御されたグローブボックス内に導入した。正極を2320型のコイン型電池用の蓋(宝泉製)に置き、電解液(1MLiPF6 EC:MEC=40:60)を添加した。更にその上に、直径20mmで切り出したセパレータ(セルガード2400)、直径17.5mmで切り出した金属リチウム箔を順次重ねた。その上から、ガスケットを取り付けたキャップをして、かしめることにより、直径23mm、厚み2mmのコイン型電池を製造した。
(実施例2)
添加水を11mLに変更したこと以外は、実施例1と同じ条件でコイン型電池を製造した。
添加水を11mLに変更したこと以外は、実施例1と同じ条件でコイン型電池を製造した。
(実施例3)
添加水を9mLに変更したこと以外は、実施例1と同じ条件でコイン型電池を製造した。
添加水を9mLに変更したこと以外は、実施例1と同じ条件でコイン型電池を製造した。
(実施例4)
添加水を7mLに変更したこと以外は、実施例1と同じ条件でコイン型電池を製造した。
添加水を7mLに変更したこと以外は、実施例1と同じ条件でコイン型電池を製造した。
(実施例5)
粒径D90が100μm以下になるまで粉砕した0.19gのLiOH・H2O(関東化学製 特級)を更に水熱合成用原料に添加した以外は実施例1と同じ条件でコイン型電池を製造した。
粒径D90が100μm以下になるまで粉砕した0.19gのLiOH・H2O(関東化学製 特級)を更に水熱合成用原料に添加した以外は実施例1と同じ条件でコイン型電池を製造した。
(実施例6)
添加水を11mLに変更したこと以外は、実施例5と同じ条件でコイン型電池を製造した。
添加水を11mLに変更したこと以外は、実施例5と同じ条件でコイン型電池を製造した。
(実施例7)
添加水を9mLに変更したこと以外は、実施例5と同じ条件でコイン型電池を製造した。
添加水を9mLに変更したこと以外は、実施例5と同じ条件でコイン型電池を製造した。
(実施例8)
添加水を7mLに変更したこと以外は、実施例5と同じ条件でコイン型電池を製造した。
添加水を7mLに変更したこと以外は、実施例5と同じ条件でコイン型電池を製造した。
(実験例9)
FeSO4・7H2Oの代わりに5.90gのCoSO4・7H2O(関東化学製 鹿特級)を用いたこと以外は、実施例1と同じ条件でコイン型電池を製造した。
FeSO4・7H2Oの代わりに5.90gのCoSO4・7H2O(関東化学製 鹿特級)を用いたこと以外は、実施例1と同じ条件でコイン型電池を製造した。
(実験例10)
FeSO4・7H2Oの代わりに5.52gのNiSO4・6H2O(関東化学製 鹿特級)を用いたこと以外は、実施例1と同じ条件でコイン型電池を製造した。
FeSO4・7H2Oの代わりに5.52gのNiSO4・6H2O(関東化学製 鹿特級)を用いたこと以外は、実施例1と同じ条件でコイン型電池を製造した。
(実施例11)
水熱合成温度を100℃にしたこと以外は実施例1と同じ条件でコイン型電池を製造した。
水熱合成温度を100℃にしたこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例1)
MnSO4・5H2O、FeSO4・7H2O、Li3PO4及びL(+)-アスコルビン酸を先に混合してから粉砕したこと以外は実施例1と同じ条件でコイン型電池を製造した。
MnSO4・5H2O、FeSO4・7H2O、Li3PO4及びL(+)-アスコルビン酸を先に混合してから粉砕したこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例2)
MnSO4・5H2O、FeSO4・7H2O、Li3PO4及びL(+)-アスコルビン酸を何ら粉砕せずに混合したこと、蒸留水を10mL用いたこと以外は実施例1と同じ条件でコイン型電池を製造した。
MnSO4・5H2O、FeSO4・7H2O、Li3PO4及びL(+)-アスコルビン酸を何ら粉砕せずに混合したこと、蒸留水を10mL用いたこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例3)
蒸留水を100mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
蒸留水を100mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例4)
蒸留水を50mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
蒸留水を50mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例5)
蒸留水を30mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
蒸留水を30mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例6)
蒸留水を20mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
蒸留水を20mL添加したこと以外は実施例1と同じ条件でコイン型電池を製造した。
(比較例7)
蒸留水を100mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
蒸留水を100mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
(比較例8)
蒸留水を50mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
蒸留水を50mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
(比較例9)
蒸留水を30mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
蒸留水を30mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
(比較例10)
蒸留水を20mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
蒸留水を20mL添加したこと以外は実施例5と同じ条件でコイン型電池を製造した。
(比較例11)
水熱合成温度を90℃にしたこと以外は実施例1と同じ条件でコイン型電池を製造した。
水熱合成温度を90℃にしたこと以外は実施例1と同じ条件でコイン型電池を製造した。
(材料評価)
実施例1および比較例2で得られた正極活物質を、CuKα線を用いたX線回折法による測定(パナリティカル製X'Pert Powder)を行った結果、実施例1では単相のLiFe0.25Mn0.75PO4の生成を確認した。一方で、比較例2では不純物相が見られた。これは、仕込み物質を粉砕していないため、均一な反応が起こらなかったためであると考えられる。図1の下側には、LiFePO4およびLiMnPO4の回折線(2θ)を示している。また、組成はベガード則より求めた。
実施例1および比較例2で得られた正極活物質を、CuKα線を用いたX線回折法による測定(パナリティカル製X'Pert Powder)を行った結果、実施例1では単相のLiFe0.25Mn0.75PO4の生成を確認した。一方で、比較例2では不純物相が見られた。これは、仕込み物質を粉砕していないため、均一な反応が起こらなかったためであると考えられる。図1の下側には、LiFePO4およびLiMnPO4の回折線(2θ)を示している。また、組成はベガード則より求めた。
また、実施例1および比較例3で得られた正極活物質の走査電子顕微鏡(SEM)像をそれぞれ図2、図3に示す。図2及び図3によれば、実施例1は比較例3よりも粒径が細かい。これは、実施例1では金属源濃度合計が約4.7mol/Lと比較例3の約0.8mol/Lよりも高いためであると考えられる。
正極活物質の粒度分布はセイシン企業製のレーザー回折散乱式粒度分布測定器LMS-2000e、分散ユニットは2000S/SRを用い、IPA(イソプロピルアルコール)中に超音波により分散させた状態で測定を行った。平均粒径D50の測定結果を表1に示す。
(電池評価)
実施例1~11および比較例1~11のコイン型電池について、温度25℃で、0.1Cの電流値で4.5Vまで定電流充電した後、4.5Vで0.01Cになるまで定電圧充電した。その後、2.5Vまで2Cおよび0.1Cで定電流放電した。下記表1に0.1Cでの放電容量と放電容量維持率を示す。放電容量は、正極活物質の質量当たりの放電容量である。また、放電容量維持率は、0.1C放電での放電容量に対する2C放電での放電容量の百分率である。
実施例1~11および比較例1~11のコイン型電池について、温度25℃で、0.1Cの電流値で4.5Vまで定電流充電した後、4.5Vで0.01Cになるまで定電圧充電した。その後、2.5Vまで2Cおよび0.1Cで定電流放電した。下記表1に0.1Cでの放電容量と放電容量維持率を示す。放電容量は、正極活物質の質量当たりの放電容量である。また、放電容量維持率は、0.1C放電での放電容量に対する2C放電での放電容量の百分率である。
この結果より、実施例1~10ではレート特性が良いことが確認された。これは、高濃度で合成したことにより微粒子化したLiMPO4が得られたことによるものと考えられる。実施例5では実施例1よりもわずかに容量、レート特性がよくなったが、これはLiが過剰に含まれているためであるといえる。比較例1では容量、レート特性ともに実施例1よりもわずかに下がっているが、これは仕込み物質が他の原料と共に粉砕されることにより金属種のわずかな酸化反応がおこっているためであると考えられる。比較例2では容量、レート特性共に実施例1よりも下がっているがこれは不純物が存在しているためであると言える。比較例3では容量は同等だが、レート特性が実施例1よりも下がっている。これは図2からも分かるように、粒径の差によるものといえる。
比較例3~6、実施例1~3から明らかなように、水に対するM元素濃度が高くなるほど粒径は小さくなることが分かる。また、実施例1~4から明らかなように、水に対するM元素濃度が4.5mol/L以上では粒径が200nm以下になり、放電容量維持率も85%以上を維持できることがわかる。特に4.9mol/Lが粒径が一番小さくなる。
実施例5~8に示すように、Liが過剰な組成でも実施例1~4と同様の結果である。
さらに、実施例9、10に示すように、M源はCo, Niなどの金属でも同様に適用できることが分かる。
また、実施例11、比較例11に示すように、反応温度は100℃以上が好ましいことが分かる。
また、実施例11、比較例11に示すように、反応温度は100℃以上が好ましいことが分かる。
本発明のリチウム二次電池用正極活物質の製造方法により、粒径が小さなLiMPO4を容易に得ることが可能となる。
Claims (15)
- 粒径D90が100μm以下であるリン酸リチウムと、粒径D90が100μm以下であるM元素含有化合物(ただし、MはMg,Ca,Fe,Mn,Ni,Co,Zn,Ge,Cu,Cr,Ti,Sr,Ba,Sc,Y,Al,Ga,In,Si,B,希土類元素からなる群から選ばれる1種または2種以上の元素である)と、水とを混合し、水に対する前記M元素の濃度を4モル/L以上に調整して原料とし、前記原料を用いて水熱合成することにより、かんらん石型のLiMPO4を製造することを特徴とするリチウム二次電池用正極活物質の製造方法。
- 前記M元素含有化合物が、M元素の硫酸塩、ハロゲン化塩、硝酸塩、リン酸塩、有機塩からなる群から選ばれる1種又は2種以上である請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- リチウム源として、LiOH、Li2CO3、CH3COOLi、(COOLi)2からなる群から選ばれる1種又は2種以上を更に混合する請求項1または2に記載のリチウム二次電池用正極活物質の製造方法。
- 前記リン酸リチウムと前記M元素含有化合物とをそれぞれ、不活性ガス雰囲気中で粒径D90が100μm以下になるまで調整してから混合する請求項1乃至請求項3の何れか一項に記載のリチウム二次電池用正極活物質の製造方法。
- 水熱合成の反応温度を100℃以上とする請求項1乃至請求項4の何れか一項に記載のリチウム二次電池用正極活物質の製造方法。
- 請求項1乃至請求項5の何れか一項に記載の製造方法によって得られた前記LiMPO4に炭素源を混合して、不活性ガス雰囲気中または還元ガス雰囲気中で加熱することにより、前記LiMPO4の表面に炭素材料を形成するリチウム二次電池用正極活物質の製造方法。
- 前記炭素源として、スクロース、ラクトース、アスコルビン酸、1,6-ヘキサンジオール、ポリエチレングリコール、ポリエチレンオキサイド、カルボキシメチルセルロース、カーボンブラック、繊維状炭素のいずれか1種以上を用いる請求項6に記載のリチウム二次電池用正極活物質の製造方法。
- M元素含有化合物は、粒径D90が60μm以下の粉末を用いることを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- Li源は、粒径D90が45μm以下の粉末を用いることを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- 原料における水に対するM元素の濃度は、4モル/L以上10.2モル/L以下である請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- リン酸源として、リン酸、メタリン酸、ピロリン酸、三リン酸、テトラリン酸、リン酸水素、リン酸二水素、リン酸アンモニウム、無水リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸鉄から選ばれる1種以上を更に混合する請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- LiMPO4は、かんらん石型のLixMyPwO4なる組成のリチウム金属リン酸塩であり、モル比を表すx、y、wは、0<x<2、0<y≦1.5、0.9<w<1.1であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- 得られたLiMPO4を更に炭素源と混ぜ合わせ、500℃~800℃の温度で焼成する工程を含む請求項1に記載のリチウム二次電池用正極活物質の製造方法。
- LiMPO4の平均粒径D50が、0.01~1μmである請求項12に記載のリチウム二次電池用正極活物質の製造方法。
- LiMPO4の平均粒径D50が、0.05~0.5μmである請求項12に記載のリチウム二次電池用正極活物質の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013513310A JP5364865B2 (ja) | 2011-09-30 | 2012-09-25 | リチウム二次電池用正極活物質の製造方法 |
US14/223,344 US8968594B2 (en) | 2011-09-30 | 2014-03-24 | Production method of positive electrode active material for lithium secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011216464 | 2011-09-30 | ||
JP2011-216464 | 2011-09-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/223,344 Continuation US8968594B2 (en) | 2011-09-30 | 2014-03-24 | Production method of positive electrode active material for lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047495A1 true WO2013047495A1 (ja) | 2013-04-04 |
Family
ID=47995527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074515 WO2013047495A1 (ja) | 2011-09-30 | 2012-09-25 | リチウム二次電池用正極活物質の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8968594B2 (ja) |
JP (1) | JP5364865B2 (ja) |
TW (1) | TWI465390B (ja) |
WO (1) | WO2013047495A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015049934A (ja) * | 2013-08-29 | 2015-03-16 | 太平洋セメント株式会社 | リン酸マンガンリチウム正極活物質及びその製造方法 |
JP5820521B1 (ja) * | 2014-09-29 | 2015-11-24 | 太平洋セメント株式会社 | リチウム二次電池用正極材料及びその製造方法 |
JP5835446B1 (ja) * | 2014-10-28 | 2015-12-24 | 住友大阪セメント株式会社 | 正極材料、正極材料の製造方法、正極およびリチウムイオン電池 |
WO2016021068A1 (ja) * | 2014-08-08 | 2016-02-11 | 株式会社パワージャパンプリュス | リチウム複合金属リン酸塩化合物およびオリビン型リン酸鉄リチウムの製造方法と該オリビン型リン酸鉄リチウム、ならびに二次電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107394164B (zh) * | 2017-07-26 | 2020-08-25 | 天津银隆新能源有限公司 | 三元正极材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103298A (ja) * | 2005-10-07 | 2007-04-19 | Toyota Central Res & Dev Lab Inc | 正極活物質及びその製造方法、並びに水系リチウム二次電池 |
JP2007511458A (ja) * | 2003-11-14 | 2007-05-10 | ジュート−ヒェミー アクチェンゲゼルシャフト | リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用 |
JP2008184346A (ja) * | 2007-01-29 | 2008-08-14 | Kyushu Univ | オリビン型化合物超微粒子およびその製造方法 |
WO2009131095A1 (ja) * | 2008-04-25 | 2009-10-29 | 住友大阪セメント株式会社 | リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池 |
JP2011071018A (ja) * | 2009-09-28 | 2011-04-07 | Sumitomo Osaka Cement Co Ltd | リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5910382A (en) | 1996-04-23 | 1999-06-08 | Board Of Regents, University Of Texas Systems | Cathode materials for secondary (rechargeable) lithium batteries |
JP4823540B2 (ja) * | 2005-03-18 | 2011-11-24 | 住友大阪セメント株式会社 | 電極材料の製造方法と電極材料及び電極並びにリチウム電池 |
DE102005012640B4 (de) * | 2005-03-18 | 2015-02-05 | Süd-Chemie Ip Gmbh & Co. Kg | Kreisprozess zur nasschemischen Herstellung von Lithiummetallphosphaten |
JP5376894B2 (ja) * | 2008-10-20 | 2013-12-25 | 古河電池株式会社 | オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池 |
JP5381115B2 (ja) * | 2009-01-20 | 2014-01-08 | 住友大阪セメント株式会社 | リン酸リチウム粉体とリン酸リチウム含有スラリー及び電極活物質の製造方法並びにリチウムイオン電池 |
JP5544934B2 (ja) * | 2010-03-03 | 2014-07-09 | 住友大阪セメント株式会社 | リチウムイオン電池用正極活物質の製造方法 |
CN101891180B (zh) * | 2010-07-07 | 2012-05-23 | 成都开飞高能化学工业有限公司 | 亚微米磷酸铁锂的制备方法 |
JP5859548B2 (ja) * | 2011-08-18 | 2016-02-10 | 三井化学株式会社 | 多孔質正極材料の製造方法 |
-
2012
- 2012-09-25 JP JP2013513310A patent/JP5364865B2/ja active Active
- 2012-09-25 WO PCT/JP2012/074515 patent/WO2013047495A1/ja active Application Filing
- 2012-09-27 TW TW101135557A patent/TWI465390B/zh not_active IP Right Cessation
-
2014
- 2014-03-24 US US14/223,344 patent/US8968594B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007511458A (ja) * | 2003-11-14 | 2007-05-10 | ジュート−ヒェミー アクチェンゲゼルシャフト | リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用 |
JP2007103298A (ja) * | 2005-10-07 | 2007-04-19 | Toyota Central Res & Dev Lab Inc | 正極活物質及びその製造方法、並びに水系リチウム二次電池 |
JP2008184346A (ja) * | 2007-01-29 | 2008-08-14 | Kyushu Univ | オリビン型化合物超微粒子およびその製造方法 |
WO2009131095A1 (ja) * | 2008-04-25 | 2009-10-29 | 住友大阪セメント株式会社 | リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池 |
JP2011071018A (ja) * | 2009-09-28 | 2011-04-07 | Sumitomo Osaka Cement Co Ltd | リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015049934A (ja) * | 2013-08-29 | 2015-03-16 | 太平洋セメント株式会社 | リン酸マンガンリチウム正極活物質及びその製造方法 |
WO2016021068A1 (ja) * | 2014-08-08 | 2016-02-11 | 株式会社パワージャパンプリュス | リチウム複合金属リン酸塩化合物およびオリビン型リン酸鉄リチウムの製造方法と該オリビン型リン酸鉄リチウム、ならびに二次電池 |
JPWO2016021068A1 (ja) * | 2014-08-08 | 2017-04-27 | 株式会社パワージャパンプリュス | リチウム複合金属リン酸塩化合物およびオリビン型リン酸鉄リチウムの製造方法と該オリビン型リン酸鉄リチウム、ならびに二次電池 |
JP5820521B1 (ja) * | 2014-09-29 | 2015-11-24 | 太平洋セメント株式会社 | リチウム二次電池用正極材料及びその製造方法 |
JP5835446B1 (ja) * | 2014-10-28 | 2015-12-24 | 住友大阪セメント株式会社 | 正極材料、正極材料の製造方法、正極およびリチウムイオン電池 |
Also Published As
Publication number | Publication date |
---|---|
TWI465390B (zh) | 2014-12-21 |
US8968594B2 (en) | 2015-03-03 |
JPWO2013047495A1 (ja) | 2015-03-26 |
TW201332888A (zh) | 2013-08-16 |
JP5364865B2 (ja) | 2013-12-11 |
US20140203218A1 (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5329006B1 (ja) | リチウム二次電池用正極活物質及びその製造方法 | |
US9527748B2 (en) | Production process for nanometer-size silicon material | |
US9745194B2 (en) | Method of producing cathode active material for lithium secondary battery | |
US9543573B2 (en) | Method of producing iron phosphate, lithium iron phosphate, electrode active substance, and secondary battery | |
KR20110118806A (ko) | 리튬 보레이트계 화합물의 제조 방법, 리튬 이온 2차 전지용 정극 활물질, 리튬 이온 2차 전지용 정극 및 리튬 이온 2차 전지 | |
US9225013B2 (en) | Method for producing cathode-active material for lithium secondary battery | |
CN107834102B (zh) | 锂离子二次电池和其制造方法 | |
JPWO2012176471A1 (ja) | リチウム含有複合酸化物粉末およびその製造方法 | |
WO2011117992A1 (ja) | 電池用活物質および電池 | |
JP5364865B2 (ja) | リチウム二次電池用正極活物質の製造方法 | |
JP5505868B2 (ja) | リチウム二次電池用正極活物質の前駆体とその製造方法 | |
JP2010232091A (ja) | リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 | |
AU2019204947B2 (en) | High power electrode materials | |
JP5901492B2 (ja) | リチウムシリケート化合物の製造方法、リチウムシリケート化合物凝集体の製造方法及びリチウムイオン電池の製造方法 | |
KR101186686B1 (ko) | 리튬 이차 전지용 양극 활물질의 제조 방법 | |
JP5370501B2 (ja) | 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 | |
KR101661896B1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 사용한 리튬 이차 전지 | |
WO2013099409A1 (ja) | リン酸鉄の製造方法、リン酸鉄リチウム、電極活物質、及び二次電池 | |
JP6055767B2 (ja) | リチウム二次電池用正極活物質の製造方法 | |
JP5769140B2 (ja) | リチウム二次電池用正極活物質の製造方法 | |
US10141563B2 (en) | Negative-electrode active material, production process for the same and electric storage apparatus | |
JP2014032961A (ja) | リチウム二次電池用正極活物質、その製造方法およびそれを含むリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013513310 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12836831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12836831 Country of ref document: EP Kind code of ref document: A1 |