WO2012134229A2 - 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 - Google Patents
폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 Download PDFInfo
- Publication number
- WO2012134229A2 WO2012134229A2 PCT/KR2012/002402 KR2012002402W WO2012134229A2 WO 2012134229 A2 WO2012134229 A2 WO 2012134229A2 KR 2012002402 W KR2012002402 W KR 2012002402W WO 2012134229 A2 WO2012134229 A2 WO 2012134229A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyethylene terephthalate
- yarn
- tire
- tire cord
- heat treatment
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0681—Parts of pneumatic tyres; accessories, auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/0042—Reinforcements made of synthetic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/48—Tyre cords
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/22—Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/02—Carcasses
- B60C9/04—Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
- B60C2009/0416—Physical properties or dimensions of the carcass cords
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/22—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
- B60C2009/2252—Physical properties or dimension of the zero degree ply cords
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
Definitions
- the present invention provides a method for producing a stretched yarn which makes it possible to produce polyethylene terephthalate stretched yarn having a large fineness of 2000 denier or more while exhibiting excellent strength and form stability while hardly deteriorating strength during the manufacturing process of a tire vulcanization process. It relates to polyethylene terephthalate stretched yarn and tire cord.
- a tire is a composite of fiber / steel / rubber and generally has a structure as shown in FIG.
- the body ply corresponding to 6 of FIG. 1 is a core layer which is a core reinforcing material inside the tire, also called a carcass, and maintains the shape of the tire and withstands stratification while supporting the overall load of the vehicle. This is where strong fatigue resistance to driving expansion and contraction movement is required.
- a synthetic fiber material such as a pleester such as plenaphthalene terephthalate is applied to such a body ply tire cord.
- the synthetic fiber cord has a great contribution to improving the durability of the tire due to its high strength, but has a disadvantage in that elasticity and form stability are degraded after vulcanization of the tire due to high shrinkage with respect to heat.
- PCI Post Cure Inflation
- the high-speed spinning technology is integrated into the manufacturing process of the tire cord.
- High Modulus Low Shrinkage (HMLS) Properties without PCI Process It has become possible to produce polyester tire cords having.
- an undrawn yarn having a high degree of crystallinity in order to manufacture a tire cord having high elasticity and low shrinkage properties, an undrawn yarn having a high degree of crystallinity must be used. Since the undrawn yarn having a high degree of crystallinity is relatively narrow in area, it is possible to use the ultra-high spinning equipment. When the undrawn yarn is drawn under conditions of high speed and high draw ratio, there is a problem that the cutting by the uneven stretching or friction can easily occur. For this reason, ultrafast spinning equipment has restrictions on the application of the draw ratio to the non-drawn yarn of high crystallinity, and the loss of the tensile strength of the drawn yarn is greatly reduced due to the insufficient drawing.
- the present invention hardly causes a decrease in strength during the manufacturing process of the tire vulcanization process, and shows excellent strength and form stability.
- the present invention also obtains from the above production method It is to provide a polyethylene terephthalate stretched yarn.
- the present invention provides a polyethylene terephthalate tire cord and a method for producing the same, which show a high degree of strength and excellent morphological stability while hardly causing a decrease in strength. will be.
- the present invention is unburnt having a fineness of 2000 denier or more by melt spinning a polymer containing 90 mol% or more of polyethylene terephthalate having a terminal carboxyl group (-COOH) content of 20 to 30 eq / 10 6 g at a rate of 2500 to 4000 m / min. Forming a woman; And it provides a method for producing a polyethylene terephthalate stretched yarn comprising the step of stretching the undrawn yarn to a draw ratio of 1.4 to 2.4 times.
- the present invention comprises a polymer containing polyethylene terephthalate 90 mol% or more, polyethylene tereol having a tensile strength of 7.3 to 8.5 g / d after heat treatment for 6 hours at a temperature of 160 ° C under a load of 0.01 g / d Provide phthalate stretched yarn.
- the present invention also comprises the steps of forming a polyethylene terephthalate stretched yarn by the above-described method; Coalescing the stretched yarn; And it provides a method of producing a polyethylene terephthalate tire cord comprising the step of immersing the heat-treated yarn in an adhesive solution and heat treatment.
- the present invention is a polyethylene comprising a polymer containing 90 mol 0 / ° or more of polyethylene terephthalate, the strength is 6.5 to 8.5 g / d after heat treatment for 6 hours at a temperature of 160 ° C under a load of 0.01 g / d
- terephthalate tire cords Provides terephthalate tire cords.
- a method for producing polyethylene terephthalate stretched yarn, a method for producing tire cord, a stretched yarn and tire cord obtained therefrom will be described.
- this is presented as an embodiment of the invention, whereby the scope of the invention is not limited. It will be apparent to those skilled in the art that various modifications may be made to the various embodiments within the scope of the invention.
- the term "comprise” or “contains” means that a particular component (or component) is included without limitation, except for the addition of other components. Cannot be interpreted as.
- Polyethylene terephthalate (hereinafter referred to as 'PET') tire cord melt-spun PET, a polymer, to produce undrawn yarn, and stretch it to obtain a stretched yarn, and then, by twisting the PET stretched yarn and immersing in adhesive, It may be prepared in the form of a cord. Therefore, the properties of the undrawn yarn produced through melt spinning of PET and the drawn yarn produced by drawing them are directly or indirectly reflected in the physical properties of the PET tire cord.
- the present inventors applied ultra-fast spinning technology using PET polymers in which the terminal carboxyl group (-COOH) content was adjusted to 20 to 30 eq / 10 6 g during the polymerization process, in the course of studying the PET stretched yarn for tire cord. By doing so, even after a large tire manufacturing process such as a long time vulcanization process, physical properties such as strength are hardly exhibited, and PET fine yarn and tire cord of large fineness having excellent strength and shape stability can be efficiently manufactured. Revealed and completed the invention.
- the manufacturing method described later has a large fineness of 2000 denier or more and is used for tire manufacturing process such as long time vulcanization process.
- the PET drawn yarn and the tire cord can be produced which hardly exhibits a decrease in physical properties such as strength and exhibits excellent strength and excellent shape stability.
- Such PET tire cords can be very preferably used as body plies or cap ply cords of pneumatic tires, and the like, and particularly, sugars having a large fineness that can be used for large tires while exhibiting excellent physical properties. We can meet the needs of the industry.
- a method for producing PET stretched yarn melt-spun a polymer containing 90 mol% or more of PET having a terminal carboxyl group (-COOH) content of 20 to 30 eq / 10 6 g at a rate of 2500 to 4000 m / min to obtain fineness of 2000 denier or more.
- a polymer containing 90 mol% or more of PET having a terminal carboxyl group (-COOH) content of 20 to 30 eq / 10 6 g at a rate of 2500 to 4000 m / min to obtain fineness of 2000 denier or more.
- PET polymer a polymer containing 90 mol% or more of PET having a terminal carboxyl group (-COOH) content of 20 to 30 eq / 10 6 g is prepared.
- the terminal carboxyl group (-COOH) content of 20 to 30 eq / 10 6 g is used to control the polymer relatively low, so it is excellent in heat resistance and strong even after the tire manufacturing process such as long time vulcanization process. PET stretch yarns and tire cords, which hardly exhibit such deterioration of properties, can be produced. However, when the terminal carboxyl content is too low, the basic adhesion of the tire cord may be lowered, which is not preferable.
- Hindered Phenol-based or Phenolic Amine-based heat-resistant agent may be used in the polymerization process for forming the PET polymer. More specifically, these
- Hindered Phen-based heat-resistant or Phenic Amine-based heat resistant agent is 3000 to 5000 ppm, or about 4000 to about the total weight of the PET polymer
- a PET polymer having the above-described terminal carboxyl group-content can be provided.
- the Hindered Phenol-based heat-resistant or Phenic Amine-based heat-resistant agent can be used without limitation any materials commonly known to those skilled in the art, specific examples thereof are trade name TS-1, Irganox 295, Irganox 1019 or Songnox 1098 Hindered Phenol-based or Phenolic Amine-based heat resistant agents are known.
- the polymer containing PET used as a raw material for producing the non-drawn yarn may include a variety of additives in addition to the PET, but at least the content of PET is more than 90 mol% is appropriate. Using such polymers, drawn yarns and tire cords having excellent physical properties described below can be produced. Accordingly, hereinafter "PET increased polymer” refers to the amount of PET than 90 mole 0/0, the polymer without any special explanation.
- the PET polymer may have an inherent viscosity of 0.8 to 1.5 dl / g, preferably 1.2 to 1.5 dl / g, in order to prepare undrawn yarn under high spinning speed and spinning tension, which will be described later.
- the strength of the stretched yarn and the tire cord can be further improved.
- the PET polymer having the terminal carboxyl group content range described above when the PET polymer having the terminal carboxyl group content range described above is prepared, the polymer may be melt spun at a speed of 2500 to 4000 m / min to form an undrawn yarn having a fineness of 2000 denier or more.
- the non-drawn yarn manufacturing step by using ultra-fast spinning technology, an undrawn yarn having a high crystallinity can be obtained, and a tire cord showing excellent strength and form stability can be manufactured through a subsequent process.
- the polymer is melt spun under a spinning speed of 2500 to 4000 m / min, preferably 3000 to 4000 m / min.
- the spinning speed in order to achieve the properties or productivity of the undrawn yarn such as high crystallinity, it is preferable to apply a spinning speed of 2500 m / min or more, It is appropriate that the spinning speed should be less than 4000 m / min, given the minimum cornering time required for the production of unstretched yarn and the vibration and friction of the machine due to ultra-fast spinning.
- the melt spinning of the polymer proceed under a spin tension of 0.8 to 1.2 g / d. That is, in order to obtain the unstretched yarn properties required in the present invention, for example, high crystallinity, the spin tension is preferably 0.8 g / d or more, and in order to prevent the filament from being cut or the physical properties deteriorated with more than necessary tension.
- the spinning tension is preferably 1.2 g / d or less.
- the melt spinning may be carried out through the spinneret having 400 to 700, or 450 to 650, or 500 to 600 detention holes.
- the amount of polymer discharged in the spinning cylinder is greatly increased, which may cause uneven cooling between the inner and outer layers, and the drawn yarn having uniform physical properties and excellent sand quality.
- tire cords are difficult to produce.
- it is difficult to give sufficient spinning tension because the fineness of the monofilament increases and the ejection speed of the melt in the mold increases.
- the difference in orientation due to the cooling difference occurs between the inner and outer layers of the larger monofilament, the strength is lowered, and the stability of the form is also lowered due to the low radial tension, and it may not be able to satisfactorily satisfy the required characteristics as the tire cord.
- melt spinning is carried out through the spinneret having 400 to 700 relatively large number of prisoner holes, uniform angles can be achieved and the fineness of the monofilament can be optimized, which can be relatively easy to impart radial tension.
- the number of the detention holes is optimized to 700 or less, the inter-interference phenomenon can be reduced, and as a result, it is possible to manufacture stretched yarn and tire cords having excellent physical properties with uniform physical properties and excellent sand quality.
- a non-drawn yarn may be manufactured by adding a cooling process.
- the amount of polymer discharged material remaining in the spinning cylinder is greatly increased, so that there is a high possibility of cooling unevenness, so that the control of the corner wind is very important. If the cooling air volume is too low, there is a high possibility that the unevenness or deterioration of the angle due to the lack of angle capacity, the increase of the rain and deterioration of sand quality and strength may occur.
- the non-drawn yarn prepared through the above process may exhibit a crystallinity of 10 to 30% and a low amorphous orientation index of 0.08 to 0.2.
- the drawn yarn and the tire cord are manufactured, thereby producing a tire cord having excellent strength and excellent shape stability.
- the technical principle can be predicted as follows.
- Unstretched PET polymer basically has a crystallized form, and is composed of a crystalline region and an amorphous region.
- the undrawn yarn obtained under controlled melt spinning conditions has a higher degree of crystallization than previously known undrawn yarn (usually crystallized to less than 7%) due to the orientation crystallization phenomenon, which is 10% or more, preferably 10-30%. It shows high crystallinity. Due to this high degree of crystallinity, the drawn yarn and tire cords prepared using the undrawn yarn may exhibit high shrinkage stress and modulus.
- the undrawn yarn exhibits an amorphous orientation index of 0.2 or less, preferably 0.08 to 0.2, which is significantly lower than previously known undrawn yarn.
- the amorphous orientation index indicates the degree of orientation of the chains included in the amorphous region in the unstretched yarn, and has a lower value as the matting of the chains in the amorphous region increases.
- the disorder is increased so that the chains in the amorphous region become a relaxed structure rather than a tensioned structure, so that the drawn yarn and the tire cord made from the undrawn yarn have a low shrinkage force with a low shrinkage rate. Will be displayed.
- the unstretched sand obtained under the melt spinning conditions described above is a molecule forming the same.
- the chains contain more crosslinks per unit volume, forming a fine network structure due to slipping during the spinning process.
- the unstretched yarn can have a strained structure of the chains in the amorphous region while the amorphous orientation index is low, thereby showing the developed crystal structure and excellent orientation characteristics.
- the drawn yarn and tire cords obtained therefrom can exhibit high shrinkage stress and modulus with low shrinkage ratio, and as a result, a tire cord exhibiting excellent shape stability can be produced.
- the hydrolysis and the like can be suppressed to improve heat resistance, and long-term vulcanization. Even after the manufacturing process of a large tire, such as a process, stretched yarn and tire cords having a low physical property such as strength can be produced.
- the undrawn yarn is stretched to produce a PET drawn yarn.
- This stretching step may be carried out in a direct spinning stretching method (Direct Spinning & Drawing, hereinafter referred to as a 'DSD method') in which spinning and stretching are continuously performed in a single process according to a conventional drawing yarn manufacturing process.
- a direct spinning stretching method Direct Spinning & Drawing, hereinafter referred to as a 'DSD method'
- the stretching step is preferably carried out so that the draw ratio 1.4 to Z4 times, or 1.5 to 2.0 black is 1.5 to 1.9. That is, in order to manufacture a tire cord having excellent strength and form stability, it is preferable to be 1.4 times or more, and in the case of ultra high speed spinning with a spinning speed of 2500 to 4000 m / min, the drawing ratio is limited due to the limitation of adjusting the drawing ratio according to the spinning equipment. It is preferable that it is four times or less.
- the drawn yarn produced in this manner can minimize the deterioration of physical properties such as strong deterioration even after heat treatment corresponding to a long time vulcanization process, for example, after heat treatment for 6 hours at a temperature of 160 ° C under a load of 0.01 g / d
- the strength may be at least 7.3 g / d, more specifically 7.3 to 8.5 g / d, or 7.5 to 8.0 g / d.
- the stretched yarn itself has a tensile strength of .8.0 g / d or more, suitably It is 8.0 to 9.5 g / d, the central body under the load of 4.5 g / d is 4.0 to 7.0%, the body length is 10.0 to 15.0%, and the intrinsic viscosity is 0.9 to 1.2 dl / g, thereby exhibiting excellent overall physical properties.
- the drawn yarn can be produced with large fineness of 2000 to 6000 denier, and can meet the needs of the art to obtain a tire cord for a large tire having a large fineness while exhibiting excellent physical properties.
- the method for producing a PET tire cord may include forming a PET stretch yarn by the above-described method; Combining the stretched yarns to form a twisted yarn; And immersing the conjugated twisted yarn in an adhesive solution and performing heat treatment.
- the step of joining for example, the stretching of the total fineness of 2000 to 6000 denier 'Z' with a twist number of 100 to 400 TPM (twist per meter) per unit length, 1 to 3 plies of the 'Z' twist yarn may be softened to 100 to 400 TPM to prepare a twisted yarn having a total fineness of 4000 to 12000 denier.
- the adhesive solution one used in the manufacture of conventional tire cords, for example, a resorcinol-formaldehyde-latex (RFL) adhesive solution may be used.
- the heat treatment process may proceed for 90 to 360 seconds under a temperature of 230 to 260 ° C, preferably for 90 to 240 seconds under a temperature of 240 to 250 ° C, more preferably of 245 to 250 ° C It can be carried out for 90 to 120 seconds under the temperature.
- a stretched yarn and a tire cord can be manufactured by the above method.
- each of the above steps is not only an example of the method of manufacturing the stretch yarn and tire cord, but also may further include a step that is commonly performed in the art before or after each step.
- Tire cords prepared according to this process can be minimized even after the heat treatment corresponding to the prolonged vulcanization process, the degradation of the falling properties, for example, after heat treatment for 6 hours at a temperature of 16CTC under a load of 0.01 g / d
- the strength may be at least 6.5 g / d, more specifically 6.5 to 8.5 g / d, black to 6.7 to 7.5 g / d, or 6.8 to 7.2 g / d.
- the tire cord has a total fineness of 4000 to 12000 denier, while the tensile strength can be 7.0 to 9.0 g / d, heat treatment for 2 minutes in a 177 ° C oven, under a load of 0.01 g / d After this, the dry heat shrinkage rate and the ES index, which is the sum of the middle bodies under a load of 2.25 g / d, can be 5.5 to 7.5%.
- the 'form-stability index (ES index) "is" dry heat shrinkage rate (@ 177 ° at C oven 2 minutes under a load of 0.01 g / d)' and 'zhongxin (@ 2.25 g / d load) ⁇ sum of As the value is lower, the change in shape of the tire cord is smaller and the tensile strength is excellent.
- the tire cord may exhibit physical properties of 3.5 to 6.5% in the middle body under a load of 2.25 g / d, and a stiffness of 10.0% or more, preferably 10.0 to 18.0%.
- the tire cord manufactured according to the above-described process is manufactured by applying super high speed and spinning technology using a PET polymer whose content range of terminal carboxyl groups is adjusted to a specific range, and is a large tire manufacturing process such as a long time vulcanization process. Even after roughness, the physical properties such as strong hardly appear, and have a large fineness, but can exhibit excellent tensile strength and excellent form stability. Accordingly, such tire cords are very preferably applied as pneumatic tires, in particular, for body plying of large tires, so that the load of the entire vehicle can be very effectively supported.
- the use of the tire cord is not limited thereto, and may be applied to other uses such as a cap ply.
- tire cords are preferably used for applications such as pneumatic tires, in particular for body plying of large tires, and can improve the controllability and ride comfort of the vehicle.
- FIG. 1 is a partial cutaway perspective view showing a configuration of a general tire.
- the Hindered Phenol-based heat resistant agent of Irganox 295 was added at the time of polymerization to form a PET polymer having a controlled terminal carboxyl content.
- the PET non-stretched yarns of Examples 1 to 6 were manufactured by melting and spinning the PET polymer chip by applying an ultrafast spinning technique to the PET polymer.
- the amount of the heat-resistant agent, the terminal carboxyl group content and the applied spinning conditions were summarized in Table 1 below, and the remaining conditions were in accordance with conventional conditions for the production of PET polymer and PET non-stretched yarn.
- the unstretched yarn was stretched, heat fixed, and wound at a predetermined draw ratio shown in Table 1 to prepare a PET stretched yarn. Comparative Examples 1 and 2
- the amount of the heat-resistant agent is reduced so that the amount of the terminal carboxyl group content of the PET polymer is not adjusted to the level of the example (Comparative Example 2), or the ultrafast spinning technique is not applied (Comparative Example 1). A woman was produced. The conditions of the melt spinning used at this time are shown in Table 1 below.
- Example 1 1.40 4000 25 500 0.85 3000 1.8 2000
- Example 2 1.40 4000 26 500 0.99 3200 1.7 2000
- Example 3 1.40 4000 26 500 1.12 3500 1.5 2000
- Example 4 1.20 4000 25 500 1.04 3500 1.5
- Example 5 1.50 4000 25 500 1.15 3500 1.5
- Example 6 1.40 5000 22 500 1.13 3500 1.5
- Comparative Example 1 1.05 4000 25 450 0.61 2400 2.2 2000
- Comparative Example 2 1.40 1000 39 500 1.12 3500 1.5 2000
- ' C ' represents the content of the terminal carboxyl group (eq / 10 6 g)
- A represents the appropriate amount (ml) of neutralizing the terminal carboxyl group in the polymer sample with 0.1 normal caustic carbenzyl alcohol solution
- B is 0.1 in the blank test.
- Neutralization titration (ml) is shown with normal caustic carbenzyl alcohol solution
- W represents the weight (g) of a polymer sample.
- Intrinsic viscosity of drawn yarn After removal of oil from the drawn yarn sample and drying, the intrinsic viscosity of the drawn yarn was measured using an Oswald viscometer according to the OCP method.
- Comparative Example 1 is a stretch yarn manufactured under low radiation tension and spinning speed without applying the ultra-fast spinning technology, it is difficult to form stability due to the low middle body and elongation Confirmed.
- the terminal carboxyl group content was outside the range of Examples, and it was confirmed that the strength decrease after heat treatment was large.
- the drawn yarns of Examples 1 to 6 were found not only to have excellent physical properties such as tensile strength, medium stretching, and elongation, but also to exhibit excellent strength even after heat treatment.
- two twisted yarns of 'Z' stretched to a predetermined total fineness, and number of twists per unit length (TPM) are twisted twisted into 'S' strands of the same linkage After immersed in RFL adhesive solution, and dried and heat-treated to prepare a PET tire cord.
- TPM number of twists per unit length
- the drawn yarn, drawn yarn fineness, the number of twists per unit length (TPM) and the code thermal treatment conditions are shown in Table 3 below, and the composition and drying conditions of the RFL adhesive solution are similar to those of conventional PET tire cords. According to the manufacturing conditions.
- PET tire cords were prepared using the drawn yarns prepared under the conditions of Comparative Examples 1 and 2, wherein the drawn yarns used, the drawn yarn fineness, the number of twists per unit length, and the cord heat treatment conditions are shown in Table 3 below. It was.
- Dry heat shrinkage was measured after 2 minutes with a load of 0.01 g / d in 177 ° C. Aubon using MK-V).
- Shape stability index (E-S index): The sum of the core and dry heat shrinkage measured by the above method.
- Comparative Example 3 is manufactured using a drawn yarn prepared under a low radiation tension and spinning speed without applying ultra-fast spinning technology, form stability reflected in the shape stability index This was found to be inconvenient.
- Comparative Example 4 was prepared from a PET polymer having a terminal carboxyl group content outside the range of Examples, and it was confirmed that the strength decrease after heat treatment was large.
- the stretched yarns of Examples 7 to 12 exhibit tensile strength, medium length, length and It was confirmed that not only the physical properties such as shape stability index, but also excellent strength after heat treatment.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Tires In General (AREA)
Abstract
본 발명은 타이어의 가류 공정 등의 제조 과정 중에 강도 저하가 거의 일어나지 않고, 우수한 강도 및 형태 안정성을 나타내면서 2000 데니어 이상의 큰 섬도를 갖는 폴리에틸렌테레프탈레이트 연신사의 제조를 가능케 하는 연신사의 제조 방법, 이로부터 얻어진 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드에 관한 것이다. 상기 폴리에틸렌테레프탈레이트 연신사의 제조 방법은 말단 카르복시기(-COOH) 함량이 20 내지 30 eq/106g인 폴리에틸렌테레프탈레이트를 90 몰% 이상 포함하는 중합체를 2500 내지 4000m/min의 속도로 용융 방사하여 2000 데니어 이상의 섬도를 갖는 미연신사를 형성하는 단계; 및 상기 미연신사를 1.4 내지 2.4배의 연신비로 연신하는 단계를 포함한다.
Description
【명세서】
【발명의 명칭】
폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드
【기술분야】
본 발명은 타이어의 가류 공정 등의 제조 과정 중에 강도 저하가 거의 일어나지 않고, 우수한 강도 및 형태 안정성을 나타내면서 2000 데니어 이상의 큰 섬도를 갖는 폴리에틸렌테레프탈레이트 연신사의 제조를 가능케 하는 연신사의 제조 방법, 이로부터 얻어진 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드에 관한 것이다.
【배경기술】
타이어는 섬유 /강철 /고무의 복합체로서, 일반적으로 도 1과 같은 구조를 갖는다. 여기서, 도 1의 6에 해당하는 보디 플라이 (body ply)는 타이어 내부의 핵심 보강재인 코오드 층으로서, 카커스 (carcass)로도 불리며, 자동차의 전체적인 하중을 지지하면서 타이어의 형상을 유지하고 층격을 견디며 주행 증 굴신운동에 대한 강한 내피로성이 요구되는 부분이다. 이와 같은 보디 플라이용 타이어 코오드에는 일반적으로 플리나프탈렌테레프탈레이트와 같은 플리에스테르 등 합성섬유 소재가 적용되고 있다.
이러한 합성섬유 코오드는 높은 강력으로 타이어의 내구성 향상에 큰 기여를 하였으나, 열에 대한 수축률이 높아 타이어의 가류 후 탄성 및 형태안정성이 저하되는 단점이 있다. 이를 보완하기 위해 PCI(Post Cure Inflation) 등과 같은 추가 공정의 적용을 통해 코오드의 형태안정성을 향상시키기 위한 많은 연구가 이루어지고 있다. 특히, 산업용도의 고강력사의 경우 저속 하에서 연신비를 높임으로써 높은 강도를 발현할 수 있게 되었으나, 여전히 높은 열수축률과 낮은 탄성으로 인하여 PCI 공정이 필수적으로 요구되고 있다.
이후, 타이어 코오드의 제조 공정에 초고속 방사 기술이 접목되면서,
PCI 공정 없이도 고탄성 저수축 (High Modulus Low Shrinkage, HMLS) 물성을
갖는 폴리에스테르 타이어 코오드의 제조가 가능하게 되 었다.
이 때, 고탄성 저수축 물성을 갖는 타이어 코오드를 제조하기 위해서는 결정화도가 높은 미 연신사를 사용해야 하는데, 결정화도가 높은 미연신사는 연신될 수 있는 영 역 이 상대적으로 좁기 때문에 , 초고속 방사 설비를 이용하여 상기 미연신사를 초고속 및 고연신 비의 조건에서 연신할 경우, 불균일 연신 또는 마찰에 의 한 절사가 쉽 게 발생할 수 있는 문제점 이 있다. 이와 같은 이유로 초고속 방사 설비에서는 고결정화도의 미연신사에 대한 연신비 적용에 제약이 따르고, 층분한 연신이 이루어지지 못함에 따라 연신사의 인장강도가 크게 저하되는 손실이 발생하게 된다. 특히 , 2000 데니어 이상의 큰 섬도를 갖는 연신사 및 타이어 코오드의 제조 공정 중에서는, 방사 공정 및 넁각 공정의 한계상 강력 저하 등의 물성 저하가 더욱 크게 일어나며 균일한 . 물성을 갖는 타이어 코오드를 얻을 수 없게 된다.
상술한 문제점으로 인해, 최근 RADIAL 타이어의 사용이 증가하여 큰 섬도를 가지면서 우수하고도 균일한 물성을 갖는 타이어 코오드의 제공이 요구됨에도 불구하고, 이 러한 요구에 제대로 부응하고 있는 실정 이다. 더구나, 큰 섬도를 갖는 타이어 코오드의 경우, 주로 큰 타이어에 사용되 기 때문에 타이어의 가류 시간에 있어서도 많은 고무량에 기 인한 장시간의 가류 공정에 노출되어 강력 손상이 발생하기 쉽다. 이 때문에, 강력 저하 등 물성 저하의 문제점이 더욱 크게 나타남에도 불구하고, 이에 대한 개선 방안은 제대로 제안되지 못하고 있는 실정 이다.
【발명의 내용】
【해결하려는 과제】
이에 본 발명은 타이어의 가류 공정 등의 제조 과정 중에 강도 저하가 거의 일어나지 않고, 우수한 강도 및 형 태 안정성을 나타내면서
2000 데니어 이상의 큰 섬도를 갖는 폴리에 틸렌테레프탈레이트 연신사의 효율적 제조를 가능케 하는 폴리 에틸렌테 레프탈레이트 ' 연신사의 제조 방법을 제공하는 것이다.
본 발명은 또한, 상기 제조 방법으로부터 얻어진
폴리에틸렌테레프탈레이트 연신사를 제공하는 것이다.
또한, 본 발명은 강도 저하가 거의 일어나지 않고, 우수한 강도 및 뛰어난 형태 안정성을 나타내면서도 큰 섬도를 갖는 폴리에틸렌테레프탈레이트 타이어 코오드 및 이의 제조 방법을 제공하는. 것이다.
【과제의 해결 수단】
본 발명은 말단 카르복시기 (-COOH) 함량이 20 내지 30 eq/106g인 폴리에틸렌테레프탈레이트를 90 몰 % 이상 포함하는 중합체를 2500 내지 4000m/min의 속도로 용융 방사하여 2000 데니어 이상의 섬도를 갖는 미연신사를 형성하는 단계; 및 상기 미연신사를 1.4 내지 2.4배의 연신비로 연신하는 단계를 포함하는 폴리에틸렌테레프탈레이트 연신사의 제조 방법을 제공한다.
또한, 본 발명은 폴리에틸렌테레프탈레이트를 90 몰% 이상 포함한 중합체를 포함하고, 0.01 g/d의 하중 하에 160°C의 온도에서 6 시간 동안 열처리한 후의 인장 강도가 7.3 내지 8.5g/d인 폴리에틸렌테레프탈레이트 연신사를 제공한다.
본 발명은 또한, 상술한 방법에 의해 폴리에틸렌테레프탈레이트 연신사를 형성하는 단계; 상기 연신사를 합연하는 단계; 및 상기 합연사을 접착제 용액에 침지하고 열처리하는 단계를 포함하는 폴리에틸렌테레프탈레이트 타이어 코오드의 제조 방법을 제공한다.
또한, 본 발명은 폴리에틸렌테레프탈레이트를 90 몰0 /。 이상 포함한 중합체를 포함하고, 0.01 g/d의 하중 하에 160°C의 온도에서 6 시간 동안 열처리한 후의 강도가 6.5 내지 8.5g/d 인 폴리에틸렌테레프탈레이트 타이어 코오드를 제공한다. 이하, 발명의 구체적인 구현예에 따른 폴리에틸렌테레프탈레이트 연신사의 제조방법, 타이어 코오드의 제조방법, 이로부터 얻어지는 연신사 및 타이어 코오드에 대해 설명하기로 한다. 다만, 이는 발명의 일 구현 예로 제시되는 것으로서, 이에 의해 발명의 권리범위가 한정되는 것은 아니며,
발명 의 권리범위 내에서 여 러 구현 예에 대한 다양한 변형 이 가능함은 당 업자에 게 자명하다.
아울러, 본 명세서 전체에서 명시 적 인 다른 기 재가 없는 한 '포함' 또는 '함유 '라 함은 특정 구성 요소 (또는 구성 성분)가 별다른 제한 없이 들어 있음을 지칭하며, 다른 구성 요소의 부가를 제외하는 것으로 해석될 수 없다. 폴리에틸렌테레프탈레이트 (이하 'PET'라 함) 타이어 코오드는 고분자인 PET를 용융 방사하여 미 연신사를 제조하고 이를 연신하여 연신사를 얻은 후, 이러한 PET 연신사를 합연사하고 접 착제에 침지하여 딥 코오드 형 태로 제조될 수 있다. 따라서, 상기 PET의 용융 방사를 통해 제조된 미연신사 및 이를 연신하여 제조된 연신사의 특성은 PET 타이어 코오드의 물성에 직 · 간접 적으로 반영된다.
본 발명자들은 타이어 코오드용 PET 연신사에 대한 연구를 거듭하는 과정에서, 중합 과정 중에 말단 카르복시기 (-COOH) 함량이 20 내지 30 eq/106g으로 조절된 PET 중합체를 사용하여 초고속 방사 기술을 적용함으로서, 장시간의 가류 공정 등 대형 타이어 제조 과정을 거치더라도 강력 등 물성 저하가 거의 나타나지 않고, 우수한 강도 및 형 태 안정성 등을 갖는 큰 섬도의 PET 연신사 및 타이 어 코오드를 효율적으로 제조할 수 있음을 밝혀내고 발명을 완성하였다. 즉 상기 말단 카르복시기 함량이 이 전보다 낮은 수준인 20 내지 30 eq/106g으로 조절된 중합체를 사용함으로서, 열에 의 한 중합체의 가수분해나 아민분해가 억 제되어 , 보다 우수한 내열성을 가지며 가류 공정 등의 장시간 열처 리 후에도 강력 저하 등이 거의 나타나지 않는 PET 연신사 및 타이어 코오드를 제조할 수 있음이 확인되 었다. 또한, 이 러 한 중합체에 대해 초고속 방사 기술을 적 절히 적용함에 따라, 우수한 강도 및 형 태 안정성을 나타내는 PET 연신사 및 타이어 코오드가 효율적으로 제조될 수 있다.
이 러한 점 때문에, 후술하는 제조 방법을 적용하면, 2000 데니어 이상의 큰 섬도를 가지면서도, 장시간의 가류 공정 등 타이어 제조 과정에
의해서도 강력 등 물성 저하가 거의 일어나지 않고, 우수한 강도 및 뛰어난 형태 안정성 등을 나타내는 PET 연신사 및 타이어 코오드가 제조될 수 있다. 이러한 PET 타이어 코오드 등은 공기 주입식 타이어의 보디 플라이 또는 캡 플라이용 코오드 등으로 매우 바람직하게 사용될 수 있고, 특히, 우수한 물성을 나타내면서 대형 타이어에 바람직하게 사용 가능한 큰 섬도를 갖는 타이어 코오드를 얻고자 하는 당업계의 요구에 부웅할 수 있다.
이에 발명의 일 구현예에 따르면, PET 연신사의 제조 방법이 제공된다. 이러한 PET 연신사의 제조 방법은 말단 카르복시기 (-COOH) 함량이 20 내지 30 eq/106g인 PET를 90 몰 % 이상 포함하는 중합체를 2500 내지 4000m/min의 속도로 용융 방사하여 2000 데니어 이상의 섬도를 갖는 미연신사를 형성하는 단계; 및 상기 미연신사를 1.4 내지 2.4배의 연신비로 연신하는 단계를 포함한다.
이하, 이러한 PET 연신사의 제조방법을 각 단계별로 상세히 설명하기로 한다.
상기 제조 방법에서는, 먼저, 말단 카르복시기 (-COOH) 함량이 20 내지 30 eq/106g인 PET를 90 몰 % 이상 포함하는 중합체 (이하, "PET 중합체")를 준비한다. 이미 상술한 바와 같이, 말단 카르복시기 (-COOH) 함량이 20 내지 30 eq/106g으로서 비교적 낮게 조절된 중합체를 사용함에 따라, 내열성이 우수하고 장시간의 가류 공정 등 타이어의 제조 과정을 거친 후에도 강력 등 물성 저하가 거의 나타나지 않는 PET 연신사 및 타이어 코오드가 제조될 수 있다. 다만, 말단 카르복시기 함량이 지나치게 낮아지는 경우 타이어 코오드의 기본적인 접착력이 저하될 수 있어 바람직하지 않다. 이러한 범위로 PET 중합체의 말단 카르복시기 함량을 조절하기 위해, PET 중합체의 형성을 위한 중합 공정시 Hindered Phenol계 내열제 또는 Phenolic Amine계 내열제를 사용할 수 있다. 보다 구체적으로, 이러한
Hindered Phen 계 내열제 또는 Phen ic Amine계 내열제를 상기 PET 중합체의 총 중량에 대해 3000 내지 5000ppm, 혹은 약 4000 내지
5000ppm의 함량으로 사용하여, 중합을 진행하고 PET 중합체를 형성함에 따라, 상술한 말단 카르복시기—함량을 갖는 PET 중합체가 제공될 수 있다.
이때 , 사용 가능한 Hindered Phenol계 내열제 또는 Phen ic Amine계 내열제로는 당업자에게 통상적으로 알려진 물질을 별다른 제한없이 모두 사용할 수 있고, 이의 구체적 인 예로는 상품명 TS-1 , Irganox 295, Irganox 1019 또는 Songnox 1098으로 알려진 Hindered Phenol계 또는 Phenolic Amine계 내열제를 들 수 있다.
또한, 상기 미연신사를 제조하기 위 한 원료로 사용되는 PET를 포함하는 중합체는 PET 외에도 여 러 가지 첨가제를 포함할 수 있기는 하지만, 적어도 PET의 함량이 90 몰 % 이상으로 됨 이 적 절하다. 이러한 중합체를 사용하여 이하에 설명하는 우수한 물성을 갖는 연신사 및 타이어 코오드가 제조될 수 있다. 따라서, 이하에서 'PET 증합체 '는 특별한 설명 없이 PET의 함량이 90 몰0 /0 이상인 중합체를 의미한다.
그리고, 후술하는 높은 방사 속도 및 방사 장력 하에서 미연신사를 제조하기 위해서, 상기 PET 중합체는 고유 점도가 0.8 내지 1.5 dl/g, 바람직하게는 1.2 내지 1.5 dl/g로 될 수 있다. 고유 점도가 비교적 높은 중합체를 사용하고, 초고속 방사 기술을 적용함으로서, 연신사 및 타이 어 코오드의 강도를 보다 향상시킬 수 있다. 다만, 방사시 Pack의 지나친 압력 상승으로 인한 절사 등을 억제하기 위해서는 1.5 dl/g 이하의 고유 점도를 갖는 중합체를 용융 방사함이 바람직하다.
한편, 상술한 말단 카르복시기 함량 범위를 갖는 PET 중합체가 준비되면, 이 러 한 중합체를 2500 내지 4000m/min의 속도로 용융 방사하여 2000 데니어 이상의 섬도를 갖는 미 연신사를 형성하는 단계를 진행할 수 있다.
이 러한 미 연신사 제조 단계에서는 초고속 방사 기술을 이용함에 따라, 높은 결정화도를 갖는 미 연신사를 얻게 되며, 이에 대해 이후의 공정을 거쳐 우수한 강도 및 형 태안정성을 나타내는 타이어 코오드를 제조할 수 있다. 이 러 한 미 연신사의 높은 결정화도를 달성하기 위해 , 2500 내지 4000m/min, 바람직하게는 3000 내지 4000 m/min의 방사 속도 하에서 상기 중합체를 용융 방사한다. 즉, 높은 결정화도와 같은 미 연신사의 물성 또는 생산성 등을 달성하기 위해 2500 m/min 이상의 방사 속도를 적용함이 바람직하며 ,
미 연신사 제조시 요구되는 최소한의 넁각 시간을 부여하고 초고속 방사에 따른 기 계의 진동 및 마찰 현상을 고려하였을 때 방사 속도는 4000 m/min 이하로 됨 이 적 절한다.
또한, 상기 중합체의 용융 방사는 0.8 내지 1.2 g/d의 방사 장력 하에 진행하는 것이 바람직하다. 즉, 본 발명에서 요구되는 미 연신사 물성, 예를 들어, 높은 결정화도 등을 얻기 위하여 방사 장력은 0.8 g/d 이상인 것 이 바람직하고, 필요 이상의 장력으로 필라멘트가 절사되거나 물성 이 떨어지는 것을 방지하기 위하여 방사 장력은 1.2 g/d 이하인 것이 바람직하다.
그리고, 상기 용융 방사는 400 내지 700개, 혹은 450 내지 650개, 혹은 500 내지 600개의 구금 홀을 갖는 방사 구금을 통해 진행될 수 있다. 통상적으로 2000 데니어 이상의 큰 섬도를 갖는. 연신사 및 타이어 코오드를 일반적 인 방사 설비 등을 사용하여 제조하는 경우, 방사통 내에 체류하는 고분자 토출물의 양이 크게 증가하여 내외층간의 냉각 불균일이 발생할 수 있고, 균일한 물성 및 우수한 사질을 갖는 연신사 및 타이어 코오드를 생산하기 어 렵 게 된다. 또한, 모노필라멘트의 섬도가 증가하여 구금 내 용융물의 토출속도가 증가하기 때문에 충분한 방사 장력을 부여하기가 어 렵다. 이에 따라, 보다 커진 모노필라멘트 내외층 간에 냉각 차에 의 한 배향도 차이가 발생하여 강력 이 저하되고, 낮은 방사 장력으로 인하여 형 태안정성 또한 저하되어 타이어 코오드로서의 요구 특성을 제대로 층족시 키지 못할 수 있다. 그러나, 400 내지 700개의 비교적 많은 구금 홀을 갖는 방사 구금을 통해 용융 방사를 진행하는 경우, 균일한 넁각이 가능해 지며 모노필라멘트의 섬도가 최 적화되어 방사 장력을 부여하기도 비교적 용이해질 수 있다. 또한, 구금 홀이 700개 이하로 최 적화됨 에 따라 사간 간섭 현상 또한 줄일 수 있고, 그 결과 균일한 물성 및 우수한 사질과 함께 뛰어난 물성을 갖는 연신사 및 타이어 코오드를 제조할 수 있게 된다.
한편, 상술한 조건 하에 PET 중합체를 용융 방사한 후에는 냉각 공정을 부가하여 미 연신사를 제조할 수 있는데 , 이 러한 넁각 공정은 15 내지
60 t의 넁각풍을 가하는 방법으로 진행함이 바람직하고, 각각의 넁각풍 온도 조건에 있어서 넁각 풍량을 0.7 내지 1.5 m/s로 조절하는 것 이
바람직하다.2000 데니어 이상의 큰 섬도를 갖는 연신사 및 타이어 코오드를 제조하는 경우, 방사통 내에 체류하는 고분자 토출물의 양이 크게 증가하여 냉각 불균일의 우려가 크기 때문에, 넁각풍의 조절이 매우 중요하게 된다. 만일, 냉각 풍량이 지나치게 낮아지면 넁각 용량 부족으로 인해 넁각 불균일 또는 넁각 불량이 발생할 우려가 크고 모우가 증가하며 사질 및 강력의 저하가 발생할 수 있다. 반대로, 넁각 풍량이 지나치게 높아지면, 너무 빠른 넁각풍 속도에 의하여 사간 부딪힘이나사란 등의 문제가 발생할 수 있다. 상기와 같은 과정을 통해 제조된 미연신사는 10 내지 30 % 의 결정화도 및 0.08 내지 0.2의 낮은 비결정 배향 지수 (Amorphous Orientation Factor)를 나타낼 수 있다. 초고속 방사 기술 등의 적용을 통해, 이러한 결정 특성을 갖는 미연신사를 얻은 후 연신사 및 타이어 코오드를 제조함에 따라, 우수한 강도와 함께 뛰어난 형태안정성을 나타내는 타이어 코오드를 제조할 수 있다. 그 기술적 원리는 다음과 같이 예측될 수 있다.
미연신사를 이루는 PET 고분자는 기본적으로 일부가 결정화된 형태를 띠고 있어 결정 영역과 비결정 영역으로 이루어진다. 그런데, 조절된 용융 방사 조건 하에 얻어진 상기 미연신사는 배향 결정화 현상으로 인해 이전에 알려진 미연신사 (통상 7 % 미만으로 결정화됨)보다 결정화된 정도가 높아 10% 이상, 바람직하게는 10 내지 30 %의 높은 결정화도를 나타낸다. 이러한 높은 결정화도로 인해 상기 미연신사를 사용하여 제조한 연신사 및 타이어 코오드는 높은 수축 응력 및 모들러스를 나타낼 수 있다.
이와 동시에, 상기 미연신사는 이전에 알려진 미연신사에 비해 크게 낮은 0.2 이하, 바람직하게는 0.08 내지 0.2 의 비결정 배향 지수를 나타낸다. 이때, 비결정 배향 지수라 함은 미연신사 내의 비결정 영역에 포함된 체인들의 배향 정도를 나타내는 것으로, 상기 비결정 영역의 체인들의 헝클어짐이 증가할수록 낮은 값을 가진다. 일반적으로는 상기 비결정 배향 지수가 낮아지면 무질서도가 증가하여 비결정 영역의 체인들이 긴장된 구조가 아닌 이완된 구조로 되기 때문에, 미연신사로부터 제조된 연신사 및 타이어 코오드가 낮은 수축률과 함께 낮은 수축 웅력을 나타내게 된다. 그러나, 상술한 용융 방사 조건 하에 얻어진 미연신사는 이를 이루는 분자
체인들이 방사 공정 중에 미끄러짐으로 인해 미세 네트워크 구조를 형성하면서 단위 부피당 보다 많은 가교 결합을 포함한다. 이 때문에, 상기 미연신사는 비결정 배향 지수가 낮아지면서도 비결정 영역의 체인들이 긴장된 구조로 될 수 있고, 이로 인해 발달된 결정 구조 및 우수한 배향 특성을 나타낸다. 따라서, 상기 미연신사뿐 아니라, 이로부터 얻어지는 연신사 및 타이어 코오드는 낮은 수축율과 함께 높은 수축 응력 및 모들러스를 나타낼 수 있으며, 그 결과 우수한 형태안정성을 나타내는 타이어 코오드가 제조될 수 있는 것이다.
또한, 이미 상술한 바와 같이, 상술한 용융 방사 조건과 함께 말단 카르복시기의 함량 범위가 특정 범위로 조절된 PET 중합체가사용됨에 따라, 그 가수분해 등이 억제되어 내열성이 향상될 수 있고, 장시간의 가류 공정 등 대형 타이어의 제조 공정을 거친 후에도 강력 등 물성 저하가 최소화된 연신사 및 타이어 코오드가 제조될 수 있다.
한편, 상술한 바와 같은 미연신사를 형성한 후에는, 이러한 미연신사를 연신해 PET 연신사를 제조한다. 이러한 연신 단계는 통상적인 연신사 제조 공정에 따라 방사와 연신이 단일공정에서 연속적으로 이루어지는 직접 방사 연신 방식 (Direct Spinning & Drawing, 이하 'DSD 방식 '이라 함)으로 진행될 수 있다.
또, 상기 연신 단계는 연신비 1.4 내지 Z4 배, 혹은 1.5 내지 2.0 흑은 1.5 내지 1.9가 되도록 수행하는 것이 바람직하다. 즉, 우수한 강도 및 형태안정성을 갖는 타이어 코오드를 제조하기 위해서는 1.4 배 이상인 것이 바람직하고, 방사속도가 2500 내지 4000 m/min으로 방사하는 초고속 방사의 경우 방사설비에 따른 연신비 조정의 제약으로 인해 연신비는 4 배 이하인 것이 바람직하다.
이러한 방법으로 제조된 연신사는 장시간의 가류 공정에 대응하는 열처리 후에도 강력 저하 등 물성 저하가 최소화될 수 있으며, 예를 들어, 0.01 g/d의 하중 하에 160°C의 온도에서 6 시간 동안 열처리한 후의 강도가 7.3 g/d 이상, 보다 구체적으로 7.3 내지 8.5 g/d, 혹은 7.5 내지 8.0 g/d으로 될 수 있다. 또, 상기 연신사 자체로 인장 강도가 .8.0g/d 이상, 적절하게는
8.0 내지 9.5 g/d이고, 4.5 g/d의 하중 하에서의 중신이 4.0 내지 7.0 %이고, 절신이 10.0 내지 15.0 % 이고, 고유 점도가 0.9 내지 1.2 dl/g로 되어, 뛰어난 제반 물성을 나타낼 수 있다. 이와 동시에, 상기 연신사는 2000 내지 6000 데니어의 큰 섬도로 제조될 수 있어, 우수한 물성을 -나타내면서 큰 섬도를 갖는 대형 타이어용 타이어 코오드를 얻고자 하는 당업계의 요구에 부응할 수 있다.
한편, 발명의 다른 구현예에 따르면, 상술한 PET 연신사의 제조 방법올 이용한 PET 타이어 코오드의 제조 방법이 제공된다. 이러한 PET 타이어 코오드의 제조 방법은 상술한 방법에 의해 PET 연신사를 형성하는 단계; 상기 연신사를 합연하여 합연사를 형성하는 단계; 및 상기 합연사을 접착제 용액에 침지하고 열처리하는 단계를 포함할 수 있다.
이러한 타이어 코오드의 제조 방법에서, 이때, 상기 합연 단계는, 예를 들어, 총 섬도 2000 내지 6000 데니어의 연신사를 단위길이당 꼬임 수 100 내지 400 TPM(twist per meter)으로 'Z'연하고, 상기 'Z'연 원사 1 내지 3 플라이를 100 내지 400 TPM으로 연하여 총 섬도 4000 내지 12000 데니어의 합연사를 제조하는 방법으로 수행할 수 있다.
또한, 상기 접착제 용액으로는 통상적인 타이어 코오드의 제조를 ¬해 사용되는 것, 예를 들어, 레소시놀 - 포름알데히드 - 라텍스 (Resorcinol - Formaldehyde - Latex, RFL) 접착제 용액을 사용할 수 있다. 그리고, 상기 열처리 공정은 230 내지 260 °C의 온도 하에서 90 내지 360 초 동안 진행할 수 있고, 바람직하게는 240 내지 250 °C의 온도 하에서 90 내지 240 초 동안, 보다 바람직하게는 245 내지 250 °C의 온도 하에서 90 내지 120 초 동안 수행할 수 있다. 상기 합연사를 접착제 용액에 침지하고 이러한 조건 하에 열처리함으로써, 타이어 코오드의 형태 안정성이 더욱 향상될 수 있고, 타이어의 가류 시 물성 변화를 더욱 줄일 수 있게 된다.
이상과 같은 방법을 통해 연신사 및 타이어 코오드를 제조할 수 있다. 다만, 상기의 각 단계들은 연신사 및 타이어 코오드 제조방법의 일 예일뿐, 이외에도 각 단계의 이전 또는 이후에 본 발명이 속하는 기술분야에서 통상적으로 수행되는 단계를 더욱 포함할 수 있음은 물론이다.
이러한 공정에 따라 제조된 타이어 코오드는 장시간의 가류 공정에 대응하는 열처리 후에도 강력 저하 둥 물성 저하가 최소화될 수 있으며, 예를 들어, 0.01 g/d의 하중 하에 16CTC의 온도에서 6 시간 동안 열처리한 후의 강도가 6.5 g/d 이상, 보다 구체적으로 6.5 내지 8.5 g/d, 흑은 6.7 내지 7.5 g/d, 혹은 6.8 내지 7.2 g/d으로 될 수 있다. 또, 상기 타이어 코오드는 총 섬도 4000 내지 12000 데니어의 큰 섬도를 가지면서도, 인장 강도가 7.0 내지 9.0 g/d로 될 수 있고, 0.01 g/d의 하중 하에, 177 °C 오븐에서 2 분 동안 열처리 한 후의 건열수축율과, 2.25 g/d의 하중 하에서의 중신의 합인 형태안정지수 (E-S index)가 5.5 내지 7.5 %로 될 수 있다. 이때, 상기 '형태안정지수 (E-S index)'는 '건열수축률 (@ 177 °C 오븐에서 0.01 g/d의 하중 하에 2 분 경과)' 및 '중신 (@ 2.25 g/d의 하중 )■의 합으로서, 그 수치가 낮을수록 타이어 코오드의 형태 변화가 작고 인장강도가 우수함을 나타낸다. 또 상기 타이어 코오드는 2.25 g/d의 하중 하에서의 중신이 3.5 내지 6.5%이고, 절신이 10.0% 이상 적절하게는 10.0 내지 18.0%로 되는 물성을 나타낼 수 있다.
이와 같이, 상술한 공정에 따라 제조된 타이어 코오드는 말단 카르복시기의 함량 범위가 특정 범위로 조절된 PET중합체를 사용해 초고속、 방사 기술 등을 적용되어 제조된 것으로서, 장시간의 가류 공정 등 대형 타이어 제조 공정을 거친 후에도 강력 등 물성 저하가 거의 나타나지 않고 큰 섬도를 가지면서도 우수한 인장 강도 및 뛰어난 형태안정성을 나타낼 수 있다. 따라서, 이러한 타이어 코오드는 공기 주입식 타이어, 특히, 대형 타이어의 보디 플라이용 코오드로서 매우 바람직하게 적용되어 전체적인 차량의 하중올 매우 효과적으로 지지할 수 있게 된다. 다만, 상기 타이어 코오드의 용도가 이에 제한되는 것은 아니며, 캡 플라이 (cap ply) 등 다른 용도에도 적용될 수 있음은 물론이다.
【발명의 효과】
본 발명에 따르면, 장시간의 가류 공정 등 대형 타이어 제조 공정을 거친 후에도 강력 등 물성 저하가 거의 나타나지 않고, 큰 섬도를 가지면서 우수한 형태안정성 및 강도를 나타는 타이어 코오드 및 이의 제조 방법이
제공될 수 있다. 이러한 타이어 코오드는 공기 주입식 타이어, 특히, 대형 타이어의 보디 플라이용 등의 용도로 바람직하게 사용되어, 차량의 조정성 및 승차감을 향상시킬 수 있다.
【도면의 간단한 설명】
도 1은 일반적인 타이어의 구성을 나타낸 부분 절개 사시도이다.
【발명을 실시하기 위한 구체적인 내용】
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
[연신사의 제조】
실시예 1~6 (말단 카르복시기 함량이 조절된 PET중합체를 형성하고, 초고속방사 기술을 적용해 2000 데니어 이상의 PET 연신사의 제조)
먼저, Irganox 295의 Hindered Phenol계 내열제를 증합시 첨가하여 말단 카르복시기 함량이 조절된 PET 중합체를 형성하였다. 이후, 이러한 PET 중합체에 대해 초고속 방사 기술을 적용해 PET 중합체 칩을 용융 방사하고 넁각하는 방법으로 실시예 1 내지 6의 PET 미연신사를 제조하였다. 이때, 내열제의 사용량, 말단 카르복시기 함량 및 적용된 방사 조건은 하기 표 1에 정리된 바와 같았으며, 나머지 조건은 PET 증합체 및 PET 미연신사의 제조를 위한 통상적인 조건에 따랐다. 또한, 상기 미연신사를 표 1에 나타난 소정의 연신비로 연신, 열 고정 및 권취하여 PET 연신사를 제조하였다. 비교예 1~2
실시예 1 내지 6에서와 달리, 내열제의 사용량을 작게 하여 PET 중합체의 말단 카르복시기 함량올 실시예 수준으로 조절하지 않거나 (비교예 2), 초고속 방사 기술을 적용하지 않고 (비교예 1) PET 연신사를 제조하였다. 이때 사용된 용융 방사의 조건을 하기 표 1에 나타내었다.
[표 1]
중합체 방사 섬도 내열제 -COOH 방사장 방사 고유 구금 홀 (데니어) 함량 함량 속도 연신비 점도 수 (ea)
(ppm) (eq/106g) (g/d) (m/min)
(di/g)
실시예 1 1.40 4000 25 500 0.85 3000 1.8 2000 실시예 2 1.40 4000 26 500 0.99 3200 1.7 2000 실시예 3 1.40 4000 26 500 1.12 3500 1.5 2000 실시예 4 1.20 4000 25 500 1.04 3500 1.5 2000 실시예 5 1.50 4000 25 500 1.15 3500 1.5 2000 실시예 6 1.40 5000 22 500 1.13 3500 1.5 2000 비교예 1 1.05 4000 25 450 0.61 2400 2.2 2000 비교예 2 1.40 1000 39 500 1.12 3500 1.5 2000
[연신사의 물성 측정】
실시예 1~6 및 비교예 1~2에 따른 각각의 연신사에 대하여 다음과 같은 방법으로 물성을 측정하였으며, 측정된 물성은 하기 표 2에 나타내었다.
1) PET 중합체의 말단 카르복시기 함량 (eq/106g) 측정: 분쇄한 고분자 시료를 230°C의 벤질 알코올에 용해시키고, 페놀레드 지시약을 가한 후 가성카리벤질 알코올 용액으로 고분자 시료 중의 말단 카르복시기를 중화 적정하였다. 다음의 식에 따라 말단 카르복시기 함량 (eq/106g)을 산출하였다.
C = [{(A-B)XF}/W]/10
상기 식에서,' C는 말단 카르복시기의 함량 (eq/106g)을 나타내고, A는 고분자 시료 중의 말단 카르복시기를 0.1 노르말 가성카리벤질 알코올 용액으로 중화 적정한 적정량 (ml)을 나타내몌 B는 공시험에서 0.1 노르말 가성카리벤질 알코올 용액으로 중화 적정한 적정량 (ml)을 나타내고 W는 고분자 시료의 중량 (g)을 나타낸다.
2) 연신사 고유 점도: 연신사 시료의 유분 제거 및 건조 후, OCP법에 따라 Oswald형 점도계를 사용하여 연신사의 고유 점도를 측정하였다.
. 3) 인장강도 및 열처리 후 강도 (g/d): ASTM D885 기준에 따라, 만능인장시험기를 이용하여 원사 강도를 측정하였다. 또, 원사를 0.01 g/d의
초하중 하에서, 160°C 의 오븐에서 6시간 방치 후, 마찬가지 방법으로 강도를 측정하였다.
4) 중신 (%) 및 절신 (%): ASTM D885 기준에 따라, 만능인장시험기를 이용하여 4.5g/d의 하중 하에서의 신도 (중신), 및 절신 (breaking elongation)을 측정하였다.
[표 2]
상기 표 1 및 표 2를 통해 알 수 있는 바와 같이, 비교예 1은 초고속 방사 기술을 적용하지 않고 낮은 방사장력 및 방사속도 하에서 제조된 연신사로서, 중신 및 절신이 낮아 형태 안정성이 층분치 못한 것으로 확인되었다. 또, 비교예 2는 말단 카르복시기 함량 범위가 실시예의 범위를 벗어나는 것으로서, 열처리 후 강도 저하가 크게 나타나는 것으로 확인되었다.
이에 비해, 실시예 1 내지 6의 연신사는 인장강도, 중신, 절신 등의 물성을 우수할 뿐 아니라, 열처리 후에도 우수한 강도를 나타내는 것으로 확인되었다.
[타이어 코오드의 제조 1
실시 예 7~12
실시 예 1 내지 6 중 어느 하나에 따른 연신사를 사용하여 소정의 총 섬도, 및 단위 길이당 꼬임 수 (TPM)로 'Z'연 된 원사 2 가닥을 동일한 연계수의 'S'연으로 합연사하여 RFL 접착제 용액에 침지 한 후, 건조 및 열처 리하여 PET 타이어 코오드를 제조하였다. 이 때, 사용된 연신사, 연신사 섬도, 단위길이당 꼬임 수 (TPM) 및 코오드 열처 리 조건은 하기 표 3에 나타내었고, 상기 RFL 접착제 용액의 조성과 건조 조건 등은 통상적 인 PET 타이어 코오드의 제조 조건에 따랐다.
비교예 3~4
비교예 1 및 2 의 조건으로 제조된 연신사를 사용하여 PET 타이어 코오드를 제조하였고, 이 때, 사용된 연신사, 연신사 섬도, , 단위길이당 꼬임 수 및 코오드 열처리 조건은 하기 표 3에 나타내었다.
[표 3]
[타이어 코오드의 물성 측정]
실시 예 7~12 및 비교예 3~4에 따른 각각의 타이어 코오드에 대하여 다음과 같은 방법으로 물성을 측정하였으며, 측정 된 물성은 하기 표 4에 나타내었다.
1 ) 인장강도 (g/d): ASTM D885 기준에 따라, 만능인장시 험기를 이용하여 코오드 강도를 측정하였다. 또, 코오드를 0.01 g/d의 초하중 하에서 ,
160°C 의 오븐에서 6시간 방치 후, 마찬가지 방법으로 강도를 측정하였다.
2) 중신 (%) 및 절신 (%): ASTM D885 기준에 따라, 만능인장시험기를 이용하여 2.25 g/d의 하중 하에서의 신도 (중신), 및 절신 (Breaking elongation)을 측정하였다.
3) 건열수축률 (%): 건열수축률 측정장비 (제조사: TESTRITE, 모델명:
MK-V)를 이용하여 177 °C 오본에서 0.01 g/d의 하중으로 2 분 경과 후 건열수축를을 측정하였다.
4) 형태안정지수 (E-S index): 상기 방법으로 측정한 중신과 건열수축률의 합
[S. 4]
상기 표 3 및 표 4를 통해 알 수 있는 바와 같이, 비교예 3은 초고속 방사 기술을 적용하지 않고 낮은 방사장력 및 방사속도 하에서 제조된 연신사를 이용해 제조된 것으로서, 형태 안정지수에서 반영되는 형태 안정성이 층분치 못한 것으로 확인되었다. 또, 비교예 4는 말단 카르복시기 함량 범위가 실시예의 범위를 벗어나는 PET 중합체로부터 제조된 것으로서, 열처리 후 강도 저하가 크게 나타나는 것으로 확인되었다.
이에 비해, 실시예 7 내지 12의 연신사는 인장강도, 중신, 절신 및
형 태안정 지수 등의 물성을 우수할 뿐 아니라, 열처리 후에도 우수한 강도를 나타내는 것으로 확인되 었다.
Claims
【특허청구범위】
【청구항 11
말단 카르복시기 (-CO이 ) 함량이 20 내지 30 eq/106g인 폴리에틸렌테레프탈레이트를 90 몰 % 이상 포함하는 중합체를 2500 내지 4000m/min의 속도로 용융 방사하여 2000 데니어 이상의 섬도를 갖는 미연신사를 형성하는 단계; 및
상기 미연신사를 1.4 내지 2.4배의 연신비로 연신하는 단계를 포함하는 폴리에틸렌테레프탈레이트 연신사의 제조 방법.
【청구항 2】
제 1 항에 있어서, 상기 폴리에틸렌테레프탈레이트를 포함하는 중합체는 Hindered Phen 계 내열제 또는 Phen ic Amine계 내열제의 존재 하에 중합된 것인 폴리에틸렌테레프탈레이트 연신사의 제조 방법.
【청구항 3】
제 1 항에 있어서, Hindered Phenol계 내열제 또는 Phenolic Amine계 내열제는 상기 플리에틸렌테레프탈레이트를 포함하는 중합체의 총 중량에 대해 3000 내지 5000ppm의 함량으로 사용되는 폴리에틸렌테레프탈레이트 연신사의 제조 방법.
【청구항 4】
제 1 항에 있어서, 상기 용융 방사는 400 내지 700개의 구금 홀을 갖는 방사 구금을 통해 진행되는 폴리에틸렌테레프탈레이트 연신사의 제조 방법. '
【청구항 5】
제 1 항에 있어서, 상기 용융 방사 공정은 0.8 내지 1.2g/d의 방사 장력 하에 진행되는 폴리에틸렌테레프탈레이트 연신사의 제조 방법.
【청구항 6】
제 1 항에 있어서, 상기 폴리에틸렌테레프탈레이트를 포함하는 중합체는 0.8 내지 15 dl/g의 고유 점도를 갖는 폴리에틸렌테레프탈레이트 연신사의 제조 방법.
【청구항 7]
폴리에틸렌테레프탈레이트를 90 몰 % 이상 포함한 중합체를 포함하고, 0.01 g/d의 하중 하에 160°C의 온도에서 6 시간 동안 열처리한 후의 인장 강도가 7.3 내지 8.5g/d인 폴리에틸렌테레프탈레이트 연신사.
【청구항 8】
제 7 항에 있어서, 상기 열처리 전에, 인장 강도가 8.0 내지 9.5 g/d이고, 45 g/d의 하중 하에서의 중신이 4.0 내지 7.0%이고, 절신이 10.0 내지 15.0 %이고, 고유 점도가 0.
9 내지 1.2 dl/g이고, 섬도가 2000 내지 6000 데니어 (d)인 폴리에틸렌테레프탈레이트 연신사.
' 【청구항 9】
제 1 항 내지 제 6 항 중 어느 한 항의 방법에 의해 폴리에틸렌테레프탈레이트 연신사를 형성하는 단계;
상기 연신사를 합연하여 합연사를 형성하는 단계; 및
상기 합연사을 접착제 용액에 침지하고 열처리하는 단계를 포함하는 폴리에틸렌테레프탈레이트 타이어 코오드의 제조 방법 .
【청구항 10]
게 9 항에 있어서, 상기 열처리 단계는 240 내지 260 °C의 온도 하에서 90 내지 360 초 동안 진행하는 폴리에틸렌테레프탈레이트 타이어 코오드의 제조 방법.
【청구항 111
폴리에틸렌테레프탈레이트를 90 몰0 /。 이상 포함한 중합체를 포함하고, 0.01 g/d의 하중 하에 160°C의 온도에서 6 시간 동안 열처리한 후의 강도가 6.5 내지 8.5g/d 인 폴리에틸렌테레프탈레이트 타이어 코오드.
【청구항 12】
제 11 항에 있어서, 상기 열처리 전에, 총 섬도 4000 내지 12000 데니어이고, 인장 강도가 7.0 내지 9.0 g/d이고, 2.25 g/d의 하중 하에서 3.5 내지 6.5 %의 중신 및 10.0 내지 18Ό 0/。의 절신을 나타내는 폴리에틸렌테레프탈레이트 타이어 코오드.
【청구항 13】
제 11 항에 있어서, 0.01 g/d의 하중 하에 , 177 °C 오븐에서 2 분 동안 열처리 한 후의 건열수축율과, 2.25 g/d의 하중 하에서의 중신의 합인 형태안정지수 (E-S index)가 5.5 내지 7.5 0/。인 폴리에틸렌테레프탈레이트 타이어 코오드.
【청구항 14]
제 11 항에 있어서, 공기 주입식 타이어의 보디 플라이용 또는 캡 플라이용 코오드로 사용되는 타이어 코오드.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800170533A CN103476976A (zh) | 2011-03-31 | 2012-03-30 | 拉伸聚对苯二甲酸乙二醇酯纤维的制备方法、拉伸聚对苯二甲酸乙二醇酯纤维和轮胎帘子线 |
US14/007,900 US9457528B2 (en) | 2011-03-31 | 2012-03-30 | Preparation method for drawn poly (ethyleneterephthalate) fiber, drawn poly (ethyleneterephthalate) fiber, and tire cord |
EP12762788.3A EP2692912A4 (en) | 2011-03-31 | 2012-03-30 | METHOD FOR PRODUCING A POLYETHYLENE TREEPHTHALATE FIBER, DYED POLYETHYLENE TEREPHTHALATE FIBER AND TIRE CORD THEREOF |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0029871 | 2011-03-31 | ||
KR20110029871 | 2011-03-31 | ||
KR10-2012-0032904 | 2012-03-30 | ||
KR1020120032904A KR101920703B1 (ko) | 2011-03-31 | 2012-03-30 | 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012134229A2 true WO2012134229A2 (ko) | 2012-10-04 |
WO2012134229A3 WO2012134229A3 (ko) | 2013-01-10 |
Family
ID=47282506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/002402 WO2012134229A2 (ko) | 2011-03-31 | 2012-03-30 | 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9457528B2 (ko) |
EP (1) | EP2692912A4 (ko) |
KR (1) | KR101920703B1 (ko) |
CN (1) | CN103476976A (ko) |
WO (1) | WO2012134229A2 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6659007B2 (ja) * | 2015-09-08 | 2020-03-04 | 株式会社ブリヂストン | タイヤ用繊維、ゴム・繊維複合体及びタイヤ |
KR101998599B1 (ko) * | 2017-11-29 | 2019-10-01 | 금호타이어 주식회사 | 박층형 캡플라이 및 이를 적용한 저중량 타이어 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2004558B2 (de) * | 1969-02-03 | 1975-03-27 | Teijin Ltd., Osaka (Japan) | Verfahren zum Strecken von Polyesterfäden |
CA1158816A (en) * | 1980-06-06 | 1983-12-20 | Kazuo Okamoto | Conductive composite filaments and methods for producing said composite filaments |
JPS57154410A (en) * | 1981-03-13 | 1982-09-24 | Toray Ind Inc | Polyethylene terephthalate fiber and its production |
JPS5898419A (ja) * | 1981-12-02 | 1983-06-11 | Touyoubou Pet Koode Kk | 熱寸法安定性および化学安定性にすぐれると同時に高強度を有するポリエステル繊維 |
EP0282660B1 (en) * | 1987-03-17 | 1991-06-05 | Unitika Ltd. | Polyester fiber and process for producing the same |
JP3746128B2 (ja) * | 1997-01-14 | 2006-02-15 | 竹本油脂株式会社 | 合成繊維用潤滑剤及び合成繊維の潤滑方法 |
BR9914877A (pt) | 1998-10-30 | 2001-07-03 | Asahi Chemical Ind | Composição de resina poliéster, processo para produzir a mesma, fibra de poliéster, e, tecido |
CN1194026C (zh) * | 2000-09-12 | 2005-03-23 | 东洋纺织株式会社 | 聚酯聚合反应催化剂和通过使用它而制成的聚酯和聚酯生产方法 |
KR100402838B1 (ko) | 2001-05-10 | 2003-10-22 | 주식회사 효성 | 폴리에스테르 멀티필라멘트사 |
ES2552227T3 (es) | 2001-07-16 | 2015-11-26 | Teijin Limited | Catalizador para la preparación de un poliéster y a un procedimiento para preparar un poliéster usando el catalizador |
US6818293B1 (en) * | 2003-04-24 | 2004-11-16 | Eastman Chemical Company | Stabilized polyester fibers and films |
DE102006016157A1 (de) * | 2006-04-06 | 2007-10-11 | Mitsubishi Polyester Film Gmbh | Hydrolysebeständige Polyesterfolie mit Hydrolyseschutzmittel |
KR101205948B1 (ko) | 2008-07-22 | 2012-11-28 | 코오롱인더스트리 주식회사 | 폴리에틸렌테레프탈레이트 타이어 코오드 및 이를 포함하는타이어 |
CN102864515B (zh) | 2008-03-31 | 2014-11-05 | 可隆工业株式会社 | 被拉伸的pet纤维以及包含被拉伸的pet纤维的轮胎帘线 |
CN101981240B (zh) | 2008-03-31 | 2012-06-20 | 可隆工业株式会社 | 被拉伸的聚对苯二甲酸乙二醇酯(pet)纤维、pet轮胎帘线及包含pet轮胎帘线的轮胎 |
KR101231093B1 (ko) | 2008-03-31 | 2013-02-07 | 코오롱인더스트리 주식회사 | 폴리에틸렌테레프탈레이트 미연신사, 연신사, 및 이를 포함하는 타이어 코오드 |
CN101748507B (zh) | 2008-12-05 | 2013-05-22 | 东丽纤维研究所(中国)有限公司 | 耐久型抗静电聚酯纤维及生产方法 |
KR101271586B1 (ko) | 2009-06-30 | 2013-06-11 | 코오롱인더스트리 주식회사 | 폴리에틸렌테레프탈레이트 타이어 코오드 및 이를 포함하는 타이어 |
-
2012
- 2012-03-30 CN CN2012800170533A patent/CN103476976A/zh active Pending
- 2012-03-30 EP EP12762788.3A patent/EP2692912A4/en not_active Withdrawn
- 2012-03-30 US US14/007,900 patent/US9457528B2/en active Active
- 2012-03-30 WO PCT/KR2012/002402 patent/WO2012134229A2/ko active Application Filing
- 2012-03-30 KR KR1020120032904A patent/KR101920703B1/ko active IP Right Grant
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2692912A4 |
Also Published As
Publication number | Publication date |
---|---|
WO2012134229A3 (ko) | 2013-01-10 |
US9457528B2 (en) | 2016-10-04 |
KR20120112206A (ko) | 2012-10-11 |
KR101920703B1 (ko) | 2019-02-13 |
EP2692912A2 (en) | 2014-02-05 |
CN103476976A (zh) | 2013-12-25 |
US20140018513A1 (en) | 2014-01-16 |
EP2692912A4 (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5641931B2 (ja) | ポリエチレンテレフタレート延伸糸、ポリエチレンテレフタレートタイヤコード、これらの製造方法、およびこれを含むタイヤ | |
JP5656628B2 (ja) | ポリエチレンテレフタレート延伸糸、ポリエチレンテレフタレートタイヤコード、これらの製造方法、およびこれを含むタイヤ | |
US9005754B2 (en) | Undrawn polyethylene terephthalate (PET) fiber, drawn PET fiber, and tire-cord comprising the same | |
KR101812237B1 (ko) | 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 | |
KR20100010195A (ko) | 폴리에틸렌테레프탈레이트 타이어 코오드, 및 이를포함하는 타이어 | |
WO2013100647A1 (ko) | 폴리에틸렌테레프탈레이트 연신사, 폴리에틸렌테레프탈레이트 타이어 코오드 및 이들의 제조 방법 | |
JP5802761B2 (ja) | ポリエチレンテレフタレート延伸糸、タイヤコードおよびこれらの製造方法 | |
CN101652255B (zh) | 缺气保用轮胎 | |
KR101231093B1 (ko) | 폴리에틸렌테레프탈레이트 미연신사, 연신사, 및 이를 포함하는 타이어 코오드 | |
KR101338505B1 (ko) | 폴리에틸렌테레프탈레이트 연신사의 제조방법, 연신사, 타이어 코오드의 제조방법, 및 타이어 코오드 | |
KR20130079257A (ko) | 폴리에틸렌테레프탈레이트 연신사, 폴리에틸렌테레프탈레이트 타이어 코오드 및 이들의 제조 방법 | |
WO2012134229A2 (ko) | 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 | |
KR101205948B1 (ko) | 폴리에틸렌테레프탈레이트 타이어 코오드 및 이를 포함하는타이어 | |
KR101552697B1 (ko) | 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드 | |
KR101231095B1 (ko) | 폴리에틸렌테레프탈레이트 연신사 및 이를 포함하는 타이어코오드 및 타이어 | |
KR101271586B1 (ko) | 폴리에틸렌테레프탈레이트 타이어 코오드 및 이를 포함하는 타이어 | |
KR101231094B1 (ko) | 폴리에틸렌테레프탈레이트 연신사, 이를 포함하는 타이어 코오드 및 타이어 | |
JP4854013B2 (ja) | 空気入りタイヤ | |
KR101231096B1 (ko) | 폴리에틸렌테레프탈레이트 연신사, 이를 포함하는 타이어 코오드 및 타이어 | |
KR101205943B1 (ko) | 폴리에틸렌테레프탈레이트 타이어 코오드, 및 이를포함하는 타이어 | |
JP2009023567A (ja) | 空気入りタイヤ | |
JP2008285049A (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12762788 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14007900 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012762788 Country of ref document: EP |