[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012127916A1 - 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012127916A1
WO2012127916A1 PCT/JP2012/052694 JP2012052694W WO2012127916A1 WO 2012127916 A1 WO2012127916 A1 WO 2012127916A1 JP 2012052694 W JP2012052694 W JP 2012052694W WO 2012127916 A1 WO2012127916 A1 WO 2012127916A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
organic
substrate
fine particles
Prior art date
Application number
PCT/JP2012/052694
Other languages
English (en)
French (fr)
Inventor
横川 弘
辻本 光
太祐 松井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012127916A1 publication Critical patent/WO2012127916A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0292Polyurethane particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a transparent conductive film used for various optical devices, a substrate with a transparent conductive film, and an organic electroluminescence element using the same.
  • organic EL element is an organic light emitting layer sandwiched between a pair of electrodes formed on a transparent substrate. It passes through the electrode and is taken out from the substrate side.
  • organic EL element a material having conductivity and translucency is used as an electrode material on the substrate side, and indium tin oxide (hereinafter referred to as ITO) is widely used.
  • ITO indium tin oxide
  • electrodes using ITO as a material are vulnerable to bending and physical stress and are fragile.
  • high vapor deposition temperature and / or high annealing temperature are needed, and there exists a possibility that it may become high cost in manufacture of the device using an organic EL element.
  • the substrate 101 with a transparent conductive film includes a substrate 102 having transparency and a transparent conductive film 103 formed on the substrate 102.
  • the transparent conductive film 103 includes a plurality of thin conductive fibers 104 and a polymer binder 105 as an adhesive layer.
  • the plurality of conductive fibers 104 are bonded onto the base material 102 by a polymer binder 105.
  • a plurality of conductive fibers 104 protrude from one surface opposite to the surface facing the base material 102 of the polymeric binder 105, and thus this one surface is uneven.
  • the surface smoothness is poor. Therefore, when the substrate 101 with a transparent conductive film is used in an organic EL element, for example, when a functional layer such as a hole injection layer, a hole transport layer, or an organic light emitting layer is formed on the transparent conductive film 103, These functional layers may not be formed to a uniform thickness. In particular, when the functional layer is formed on the transparent conductive film 103 by applying ink, repelling may occur during the application of the functional layer, and uniform thin film coating may not be possible.
  • the functional layer may be peeled off from the concavo-convex transparent conductive film 103 and damaged in the functional layer patterning step.
  • a voltage is applied to an organic EL element having a functional layer with a non-uniform thickness, current leaks between the anode and cathode of the organic EL element, or charge transport is inhibited in the functional layer. May be.
  • the refractive index of the transparent conductive film 103 is smaller than the refractive index of the material itself constituting the transparent conductive film 103.
  • the refractive index of the transparent conductive film 103 is about 1.4 to 1.5
  • the refractive index of the organic light emitting layer is about 1.7 to 1.8
  • the substrate 102 for example, glass or The refractive index of plastic is about 1.5 to 1.7.
  • the difference between the refractive index of the organic light emitting layer and the refractive index of the transparent conductive film 103 is the largest, and total reflection of light easily occurs at the interface between the transparent conductive film 103 and the organic light emitting layer. Light is not extracted, and the light extraction efficiency of the organic EL element may be reduced.
  • the present invention has been made in order to solve the above-described problem, and is capable of smoothing one surface on which a functional layer is formed, and capable of suppressing total reflection of light, and a transparent conductive film and a transparent conductive film It is an object of the present invention to provide a coated substrate and an organic electroluminescence device using the same.
  • the transparent conductive film of the present invention is a transparent conductive film formed on a substrate, which is a conductive fiber having a fiber diameter of 100 nm or less, a metal having a refractive index of 1.5 or more, and a particle diameter of 100 nm or less. It contains oxide fine particles and a polymeric binder that serves as an adhesive layer of these.
  • the conductive fiber is preferably a metal nanowire.
  • the metal oxide fine particles are preferably titanium oxide.
  • the polymer binder is preferably composed of a silicone resin, a cellulose resin, or a mixture thereof.
  • this transparent conductive film is formed on a substrate and configured as a substrate with a transparent conductive film.
  • This substrate with a transparent conductive film is preferably used for an organic electroluminescence element.
  • the refractive index of the transparent conductive film can be adjusted by adjusting the amount of metal oxide fine particles having a refractive index of 1.5 or more contained in the transparent conductive film. Total reflection can be suppressed. Further, by setting the fiber diameter of the conductive fiber and the particle diameter of the metal oxide fine particles to 100 nm or less, the translucent property of the transparent conductive film is ensured, and the metal oxide fine particles fill the space between the conductive fibers and are transparent. The conductive film can be smoothed.
  • the cross-sectional block diagram of the organic electroluminescent element provided with the base material with a transparent conductive film which concerns on one Embodiment of this invention. Sectional drawing of the base material with the said transparent conductive film. Sectional drawing of the base material with the conventional transparent conductive film.
  • FIG. 1 shows a cross-sectional configuration of an organic EL element.
  • the organic EL element 1 includes a base material 2, a transparent conductive film 3, a hole transport layer 4, an organic light emitting layer 5, and a conductor layer 6, and the transparent conductive film 3 on the base material 2.
  • the hole transport layer 4, the organic light emitting layer 5, and the conductor layer 6 are sequentially laminated.
  • the base material 2 and the transparent conductive film 3 constitute a base material 7 with a transparent conductive film.
  • the transparent conductive film 3 functions as an anode of the organic EL element 1 and injects holes into the organic light emitting layer 5.
  • the hole transport layer 4 efficiently transports holes from the transparent conductive film 3 to the organic light emitting layer 5.
  • the conductor layer 6 functions as a cathode of the organic EL element 1 and injects electrons into the organic light emitting layer 5.
  • a hole injection layer that promotes injection of holes from the transparent conductive film 3 is provided between the organic light-emitting layer 5 and the transparent conductive film 3.
  • the electron injection layer is preferably provided between the conductor layer 6.
  • an electron transport layer that efficiently transports electrons may be provided.
  • the organic EL element 1 configured as described above, when a voltage E is applied between the transparent conductive film 3 and the conductor layer 6 with the transparent conductive film 3 side as a positive potential, holes are positively transferred from the transparent conductive film 3. Through the hole transport layer 4, the organic light emitting layer 5 is injected, and electrons are injected from the conductor layer 6 into the organic light emitting layer 5. Then, the holes and electrons injected into the organic light emitting layer 5 are recombined in the organic light emitting layer 5 so that the organic light emitting layer 5 emits light.
  • the light emitted from the organic light emitting layer 5 passes through the hole transport layer 4 and the transparent conductive film-attached base material 7 (the transparent conductive film 3 and the base material 2), and is taken out of the organic EL element 1.
  • the light irradiated on the conductor layer 6 is reflected on the surface of the conductor layer 6, passes through the substrate 7 with a transparent conductive film, and is taken out of the organic EL element 1.
  • the material of the base material 2 will not be specifically limited if it is a transparent thing which has translucency.
  • a base material 2 for example, a rigid transparent glass plate such as soda glass or non-alkali glass, or a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate is used.
  • a rigid transparent glass plate such as soda glass or non-alkali glass
  • a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate
  • the strength of the substrate 2 is excellent, and the transparent conductive film 3 can be easily formed on the substrate 2.
  • a flexible transparent plastic plate is used as the substrate 2, the device using the substrate 2 can be reduced in weight, and the device can have flexibility.
  • ⁇ -NPD N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine
  • Examples of the material for the organic light emitting layer 5 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, and cyclopentadiene.
  • a compound or a polymer is used.
  • a light-emitting material such as an iridium complex, an osmium complex, a platinum complex, or a europium complex, or a phosphorescent light-emitting material such as a compound or polymer having these in a molecule can be used. These materials can be appropriately selected and used as necessary.
  • a material of the conductor layer 6 for example, aluminum or the like is used.
  • a laminated structure may be formed by combining aluminum and another material. Examples of such combinations include a laminate of an alkali metal and aluminum, a laminate of an alkali metal and silver, a laminate of an alkali metal halide and aluminum, a laminate of an alkali metal oxide and aluminum, and an alkali.
  • a laminate of an earth metal or rare earth metal and aluminum, or an alloy of these metal species with another metal can be used.
  • the substrate 7 with a transparent conductive film includes the substrate 2 and the transparent conductive film 3 formed on the substrate 2.
  • the transparent conductive film 3 includes a plurality of conductive fibers 8 having conductivity, a polymer binder 9 as an adhesive layer, and a plurality of metal oxide fine particles 10 having a refractive index of 1.5 or more.
  • a plurality of metal oxide fine particles 10 are filled in a polymer binder 9 together with a plurality of conductive fibers 8.
  • the plurality of conductive fibers 8 are bonded onto the base material 2 in a state of protruding from one surface of the polymer binder 9, one surface of the polymer binder 9 is uneven.
  • the plurality of conductive fibers 8 are in contact or close to each other three-dimensionally on the base material 2, so that the transparent conductive film 3 has conductivity.
  • the base material 7 with a transparent conductive film is used for the organic EL element 1
  • the some conductive fiber 8 which protrudes from one surface of the polymeric binder 9 contacts the organic light emitting layer 4, and the organic EL element 1
  • holes are injected from the plurality of conductive fibers 8 into the organic light emitting layer 4.
  • the plurality of metal oxide fine particles 10 fills the space between the plurality of conductive fibers 8 in the polymeric binder 9.
  • the metal oxide fine particles 10 arranged in the vicinity of one surface of the polymer binder 9 are formed in the uneven polymer binder 9.
  • the recess formed on one side is filled. Since the metal oxide fine particles 10 are present in the concave portion, the portion where the conductive fiber 8 protrudes from one surface of the polymeric binder 9 is buried, and the concave and convex shape on one surface of the polymeric binder 9 is embedded. Has been reduced.
  • the particle size of the metal oxide fine particles 10 is set to 100 nm or less.
  • the surface of the transparent conductive film 3 is required to have smoothness. In particular, when this is used for the organic EL element 1, it is necessary to have higher smoothness.
  • the surface unevenness of the transparent conductive film 3 on which these organic layers are laminated is Ra ( The center line average roughness) is preferably 10 nm or less, and the Rz (ten-point average roughness) is preferably 100 nm or less. That is, the above-mentioned surface unevenness can be achieved by setting the particle diameter of the metal oxide particles 10 that are one of the materials constituting the transparent conductive film 3 to 100 nm or less.
  • the particle diameter of the metal oxide fine particles 10 is preferably about the same as or smaller than the fiber diameter of the conductive fibers 8 so that the metal oxide fine particles 10 can be filled more easily between the conductive fibers 8.
  • the transparent conductive film 3 includes a large component such as the metal oxide fine particles 10 having a particle diameter exceeding 100 nm or the conductive fibers 8 having a fiber diameter exceeding 100 nm, the turbidity (haze) of the transparent conductive film 3 is high. Since it becomes too large, it becomes difficult to measure and evaluate the accurate refractive index of the transparent conductive film 3.
  • the plurality of metal oxide fine particles 10 are filled in the polymeric binder 9, which is higher than the case where the plurality of metal oxide fine particles 10 are not filled in the polymeric binder 9. It is difficult for voids to occur in the molecular binder 9.
  • the refractive index of the plurality of metal oxide fine particles 10 is set to 1.5 or more. Therefore, the refractive index of the transparent conductive film 3 is larger than when the plurality of metal oxide fine particles 10 are not filled in the polymeric binder 9.
  • the polymer binder 9 is filled with a plurality of metal oxide fine particles 10 so that the refractive index of the transparent conductive film 3 becomes 1.5 to 1.8 according to the refractive index of the functional layer and the base material 2.
  • the amount to be adjusted is adjusted to reduce the difference between the refractive index of the functional layer and the refractive index of the transparent conductive film 3.
  • the refractive index with respect to light having a wavelength of 550 nm which is the human maximum visual sensitivity wavelength
  • the refractive index of the functional layer and the substrate 2 For example, Alq3 (tris (8-hydroxyquinolinate) aluminum (III)), which is a typical material for the organic light emitting layer 5, has a refractive index of 1.71.
  • a typical ⁇ -NPD (N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine) as a material of the hole transport layer 4 has a refractive index of 1.80.
  • the refractive index of the base material 2 is 1.52 when the material of the base material 2 is soda glass, 1.50 when the material is acrylic, 1.59 when the material is polycarbonate, and the case of polyester. 1.65.
  • the filling amount of the plurality of metal oxide fine particles 10 into the polymeric binder 9 is appropriately determined according to the functional layer and the material of the substrate 2 as described above.
  • the filling amount of the metal oxide fine particles 10 into the polymeric binder 9 is such that the volume of the metal oxide fine particles 10 is 5 to 70% with respect to the volume of the transparent conductive film 3. preferable. If it carries out like this, while ensuring the electroconductivity of the transparent conductive film 3, the refractive index of the transparent conductive film 3 can be improved, and one surface of the transparent conductive film 3 can be smooth
  • the volume of the metal oxide fine particles 10 with respect to the volume of the transparent conductive film 3 is less than 5%, the effect of reducing the surface unevenness of the transparent conductive film 3 is reduced, and the refractive index of the transparent conductive film 3 is improved. The effect of making it lessened.
  • the volume of the metal oxide fine particles 10 with respect to the volume of the transparent conductive film 3 exceeds 70%, the metal oxide fine particles 10 prevent the conductive fibers 8 from contacting each other, so that the conductivity of the transparent conductive film 3 is reduced. Let In this case, the metal oxide fine particles 10 may be unevenly distributed on the conductive fiber 8, and the effect of reducing the surface irregularities of the transparent conductive film 3 may not be exhibited.
  • the conductive fiber 8 is made of a fibrous metal, metal, or metal fine particle having a line width of several nm to several tens of ⁇ m. As described above, the fiber diameters of the plurality of conductive fibers 8 are set to 100 nm or less. Thereby, the transparent conductive film 3 has translucency, and the transparency of the transparent conductive film 3 can be maintained.
  • the length of the conductive fiber 8 is sufficiently longer than the fiber diameter of the conductive fiber 8.
  • the amount of the plurality of conductive fibers 8 bonded on the substrate 2 is preferably 0.1 mg / m 2 or more and 1000 mg / m 2 or less, and preferably 1 mg / m 2 or more and 100 mg / m 2 or less. More preferred.
  • the average aspect ratio of the plurality of conductive fibers 8 is preferably 10 or more and 10,000 or less.
  • the thickness of the polymeric binder 9 is preferably not less than the fiber diameter of the plurality of conductive fibers 8 (for example, 100 nm described above) and not more than 500 nm in consideration of the conductivity of the transparent conductive film 3.
  • the amount of the conductive fibers 8, the average aspect ratio, and the thickness of the polymeric binder 9 are the specific gravity of the conductive fibers 8 and the metal oxide fine particles 10, and the refractive index of the metal oxide fine particles 10. It is appropriately set in consideration of the refractive index of the transparent conductive film 3 to be designed.
  • the material of the conductive fiber 8 for example, a metal mesh, a metal nanowire, or an aggregate of metal fine particles is used.
  • metal nanowires have high conductivity inherent to the material, and the resistance value of the transparent conductive film 3 is lowered and the transmittance of the transparent conductive film 3 is increased. Therefore, it is preferable to use metal nanowires.
  • the metal used for the conductive fiber 8 include gold, silver, copper, aluminum, zinc, cobalt, nickel, and tungsten. Among such metals, gold, silver, or copper having high conductivity is preferably used, and silver having the highest conductivity is more preferably used.
  • the length of the metal nanowires is preferably 3 ⁇ m or more, more preferably 3 ⁇ m or more and 500 ⁇ m or less in consideration of the conductivity of the transparent conductive film 3, More preferably, it is 3 ⁇ m or more and 300 ⁇ m or less.
  • the fiber diameter of the metal nanowire is set to 100 nm or less.
  • the transparent conductive film 3 has translucency, and the transparency of the transparent conductive film 3 can be maintained.
  • the manufacturing method of metal nanowire is not specifically limited, For example, well-known methods, such as a liquid phase method or a gaseous-phase method, are used.
  • the polymeric binder 9 has such a strength that a functional layer can be formed on the transparent conductive film 3.
  • Examples of the material of such a polymeric binder 9 include polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and a saponified product thereof partially or entirely, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid.
  • Methyl acid copolymer ethylene-vinyl acetate-methyl methacrylate copolymer, olefin resin such as polypropylene and propylene- ⁇ -olefin copolymer, vinyl chloride resin such as polyvinyl chloride resin, acrylonitrile-styrene copolymer Acrylonitrile resins such as polymers, styrene resins such as polystyrene and styrene-methyl methacrylate copolymer, acrylate polymers such as polyethyl acrylate, methacrylate polymers such as polymethyl methacrylate, copolymers thereof Polymer and other copolymer components were added (mesh ) Acrylate resin, a polyester resin such as polyethylene terephthalate, polyamide resins such as nylon, polycarbonate resin, ethyl cellulose, cellulose resins such as acetyl cellulose, polyurethane resins, and silicone resins.
  • thermosetting resins such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, or polysiloxane resin can be used.
  • thermosetting resins such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, or polysiloxane resin can be used.
  • curing agent, a hardening accelerator, or a solvent to these thermosetting resins as needed.
  • the ionizing radiation curable resin preferably has an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal. Resins, polybutadiene resins, polythiol polyene resins, oligomers such as (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methyl Monofunctional monomers such as styrene and N-vinylpyrrolidone, as well as polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate A relatively large amount of diethylene glycol di (me
  • the ionizing radiation curable resin an ultraviolet curable resin
  • a photopolymerization initiator acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones or the like are used.
  • a photosensitizer may be used.
  • the photosensitizer n-butylamine, triethylamine, tri-n-butylphosphine, thioxanthone, or the like is used.
  • the transparent conductive film 3 has practical durability in a patterning process and a lamination process for applying the transparent conductive film 3 to a device. Further, these materials have excellent dispersibility with respect to the conductive fibers 8 and the metal oxide fine particles 10 contained in the transparent conductive ink (material of the transparent conductive film 3) when the transparent conductive film 3 is formed by a coating process. Therefore, the transparent conductive film 3 having more excellent transparency can be formed.
  • the polymer binder 9 may be filled with translucent particles. Specifically, in order to impart wear resistance to the transparent conductive film 3, high-hardness inorganic particles or slippery organic particles May be contained in the polymeric binder 9 as a filler.
  • the translucent particles are not particularly limited as long as the difference between the refractive index of the translucent particles and the refractive index of the polymeric binder 9 is within ⁇ 0.03. Examples of such translucent particles include silica, alumina, magnesium fluoride, calcium fluoride, cerium fluoride, aluminum fluoride, acrylic particles, styrene particles, urethane particles, styrene acrylic particles, and crosslinked particles thereof.
  • Melamine-formalin condensate particles polytetrafluoroethylene (PTFE) particles, perfluoroalkoxy (PFA) resin particles, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) particles, polyfluorovinylidene (PVDF) Particles, fluorine-containing polymer particles such as ethylene-tetrafluoroethylene (ETFE) copolymer, silicone resin particles, or glass beads. These may be used alone or in combination of two or more.
  • the material of the metal oxide fine particles 10 is not particularly limited as long as the refractive index is 1.5 or more.
  • the particle diameter of the metal oxide particles 10 is set to 100 nm or less, like the fiber diameter of the conductive fibers 8. Thereby, the metal oxide particles 10 can be filled between the conductive fibers 8 in a well-balanced manner, the refractive index of the transparent conductive film 3 can be increased, and one surface of the transparent conductive film 3 can be easily smoothed. be able to. Furthermore, since these particle diameters and fiber diameters are small, it becomes difficult to block light by these, and the translucency of the transparent conductive film 3 can be maintained.
  • the metal oxide fine particles 10 have photocatalytic activity, it is preferable to irradiate the transparent conductive film 3 with energy before forming the organic light emitting layer 5 on the transparent conductive film 3. Thereby, since the wettability of the ink of the organic light emitting layer 5 can be improved, the organic light emitting layer 5 having a uniform thickness can be formed on the transparent conductive film 3. Therefore, it is preferable to use a material excellent in photocatalytic activity as the material of the metal oxide fine particles 10, and it is particularly preferable to use titanium oxide. Further, by using titanium oxide as the material of the metal oxide fine particles 10, the conductivity and transmittance of the transparent conductive film 3 are improved.
  • the energy irradiated onto the transparent conductive film 3 is not particularly limited, but it is preferable to use a light source containing ultraviolet rays.
  • a light source include various light sources such as a mercury lamp, a metal halide lamp, a xenon lamp, or an excimer lamp.
  • coating the organic light emitting layer 4 in addition to pattern irradiation through a photomask according to the shape of the organic EL element produced, for example, an excimer laser or YAG (yttrium aluminum garnet) It is also possible to draw and irradiate in a pattern using a laser or the like.
  • the surface of the conductive fiber 8 may be sulfided or oxidized.
  • the portion of the conductive fiber 8 that has been sulfurized or oxidized is blackened, and the metallic luster of that portion is lost, so that irregular reflection of light can be suppressed.
  • the portion of the conductive fiber 8 that has been sulfurized or oxidized becomes a non-conductor and is chemically stable, the occurrence of migration can be prevented.
  • Examples of the method for sulfiding the conductive fibers 8 include a method in which the substrate 7 with a transparent conductive film is placed in water and hydrogen sulfide generated by iron sulfide and hydrochloric acid is passed through the water.
  • a method of oxidizing the conductive fiber 8 for example, a method of performing a surface treatment for oxidizing the surface of the substrate 7 with a transparent conductive film using a tabletop optical surface treatment apparatus can be mentioned.
  • a method of performing a surface treatment for oxidizing the surface of the substrate 7 with a transparent conductive film using a tabletop optical surface treatment apparatus can be mentioned.
  • titanium oxide is used as the metal oxide fine particles 10
  • the surface of the adjacent conductive fiber 8 can be oxidized by the photocatalytic action of the titanium oxide, thereby obtaining the above-described effects.
  • the formation method of the transparent conductive film 3 is not specifically limited, The following two methods are mentioned typically.
  • a conductive fiber sol including a solution and a suspension
  • a metal oxide fine particle sol including a metal oxide fine particle sol, and a transparent resin solution are mixed to form a transparent conductive ink.
  • this transparent conductive ink is applied onto a substrate and dried.
  • a conductive fiber sol is coated on a substrate in advance and dried to form a layer containing conductive fibers.
  • the metal oxide fine particle sol is applied onto the layer containing conductive fibers, and is immersed in the layer.
  • the conductive fiber sol may contain a transparent resin solution, and the metal oxide fine particle sol may contain a silicone resin as the transparent resin solution.
  • the thickness of the transparent conductive film 3 is not particularly limited, and is appropriately selected according to transparency, surface resistance, film properties, and the like.
  • the light transmittance of the transparent conductive film 3 is preferably 80% or more in order to ensure the transparency required for the device.
  • the sheet resistance value of the transparent conductive film 3 is preferably 30 ⁇ / ⁇ or less in order to uniformly emit an organic EL element having an area of several cm square or several tens cm 2 .
  • the average film thickness of the transparent conductive film 3 is preferably 50 nm or more, and the light transmittance of the transparent conductive film 3 is In order to make it 80% or more, it is preferable that the average film thickness of the transparent conductive film 3 is 200 nm or less.
  • Ra is preferably about 10 nm or less
  • Rz is preferably 100 nm or less in order to prevent deterioration of the characteristics of the organic EL device using the transparent conductive film 3.
  • Ra exceeds about 10 nm and Rz exceeds 100 nm
  • the interface between the transparent conductive film 3 and the functional layer becomes non-uniform, so that charge injection and transfer characteristics are deteriorated and leakage current is generated. There is.
  • the light emission efficiency of the organic EL element may be reduced, or unevenness, bright spots, or dark spots may be generated to reduce the light emission uniformity of the organic EL element.
  • a short circuit may occur and the organic EL element may not emit light, or the life of the organic EL element may be extremely shortened.
  • the coating method of the transparent conductive film 3 is not particularly limited, and a known coating method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, or gravure coating is used.
  • a pressurizing process such as a roller press may be performed.
  • the translucency of the transparent conductive film 3 is ensured by setting the fiber diameter of the conductive fibers 8 and the particle diameter of the metal oxide fine particles 10 to 100 nm or less.
  • the metal oxide fine particles 10 can fill the space between the conductive fibers 8 and smooth the transparent conductive film 3.
  • this base material 7 with a transparent conductive film is used as a board
  • the functional layer can be prevented from being peeled off and damaged from the substrate 7 with the transparent conductive film, and a current leaks between the anode and the cathode of the organic EL element, It is possible to prevent charge transport from being inhibited in the functional layer.
  • the base material 7 with a transparent conductive film of this embodiment since the refractive index of the transparent conductive film 3 becomes large, when the base material 7 with a transparent conductive film is used as a board
  • Example 1 The above silver nanowire material and titanium oxide sol STS-01 manufactured by Ishihara Sangyo Co., Ltd. having an average particle diameter of 50 nm were stirred and mixed at a weight ratio of 1: 1 to prepare a transparent conductive ink. Next, no alkali glass No. 1737 (with a refractive index of 1.50 to 1.53 for light having a wavelength of 500 nm) was prepared. Then, a transparent conductive ink was applied onto the alkali-free glass by a spin coating method so as to have a thickness of 100 nm, and heated at 100 ° C. for 5 minutes. Thereby, a transparent conductive film was formed on the alkali-free glass. Thus, the sample of Example 1 was produced.
  • Example 2 356 parts by mass of methanol was added to 208 parts by mass of tetraethoxysilane. Next, 18 parts by mass of water and 18 parts by mass of 0.01 mol / l hydrochloric acid were added to the mixed liquid of tetraethoxysilane and methanol, and these were sufficiently mixed using a disperser. Heated in bath for 2 hours. Thereby, a silicone resin having a weight average molecular weight of 950 was produced. Next, a titanium oxide sol having a solid content of 21% and an average particle size of 60 nm was mixed with the silicone resin so that the titanium oxide was 1: 1 with respect to the silicone resin.
  • the liquid mixture of the silicone resin and the titanium oxide sol was diluted with methanol so that the total solid content was 5%.
  • a coating material in which titanium oxide and a silicone resin were mixed was produced.
  • the silver nanowire dispersion liquid was applied onto a prepared alkali-free glass and dried to form a layer containing silver nanowires on the alkali-free glass.
  • a coating material was applied onto this layer by a spin coater method and heated at 100 ° C. for 10 minutes to form a transparent conductive film on the alkali-free glass.
  • the sample of Example 2 was produced.
  • Example 3 The silver nanowire material was applied onto a prepared alkali-free glass and dried to form a layer containing silver nanowires on the alkali-free glass. Next, a coating material was applied onto this layer by a spin coater method and heated at 100 ° C. for 10 minutes to form a transparent conductive film on the alkali-free glass. Thus, the sample of Example 3 was produced.
  • Example 4 A sample of Example 4 was produced in the same manner as in Example 1 except that the silver nanowire material and titanium oxide sol were stirred and mixed at a weight ratio of 2: 3.
  • Example 5 The sample of Example 5 was prepared in the same manner as in Example 1 except that instead of titanium oxide sol, zirconium oxide sol “Nanouse ZR-20AS” manufactured by Nissan Chemical Industries, Ltd. having a particle size of 30 nm to 80 nm was used. Produced.
  • Comparative Example 1 A sample of Comparative Example 1 was produced in the same manner as in Example 1 except that the titanium oxide sol was not mixed with the silver nanowire material.
  • Comparative Example 2 Said silver nanowire dispersion liquid and titanium oxide sol were mixed by 1: 1, and the mixed sol of silver nanowire and titanium oxide was produced. Next, this sol was applied onto an alkali-free glass substrate and dried to form a transparent conductive film. In this way, a sample of Comparative Example 2 was produced.
  • Comparative Example 3 Except for using titanium oxide sol PT-501R made by Ishihara Sangyo Co., Ltd. with a solid content of 20% and an average particle size of 180 nm instead of a titanium oxide sol with a solid content of 21% and an average particle size of 60 nm In the same manner as in Example 2, a sample of Comparative Example 3 was produced.
  • Table 1 shows the configurations of the samples of Examples 1 to 5 and Comparative Examples 1 to 3 and special notes.
  • the physical properties of the transparent conductive film were measured for the samples of Examples 1 to 5 and Comparative Examples 1 to 3. Specifically, the average film thickness, visible light transmittance, sheet resistance, refractive index for light having a wavelength of 550 nm, surface roughness Ra, film strength, and wettability are measured as the properties of the transparent conductive film. did. Hereinafter, these measurements will be described in order.
  • the thickness of the transparent conductive film of each sample was measured using a contact type surface shape measuring device Dektak manufactured by Veeco.
  • the refractive index of the transparent conductive film of each sample with respect to light having a wavelength of 550 nm was measured using a spectroscopic ellipsometer manufactured by Otsuka Electronics Co., Ltd.
  • “slight scratches”, “many scratches”, and “partial peeling” shown in Table 2 below were defined as follows. “Slight scratches” are those that can be confirmed by visually observing the scratches, and the number of scratches can be counted by observing a loupe or the like. A “scratch” is one having a width of several ⁇ m to several tens of ⁇ m and a length of several mm. “Many scratches” can be easily confirmed by visual inspection, and it is difficult to count due to the large number of observations using a magnifying glass. “Partial peeling” is not only a scratch counted by the number, but also a portion where the transparent conductive film is removed from the alkali-free glass can be visually confirmed.
  • Oleic acid was dropped on the surface of the transparent conductive film of each sample.
  • the surface of the transparent conductive film of each sample to which oleic acid was dropped was irradiated with ultraviolet rays using an excimer lamp. Thereafter, the angle (contact angle) formed by the surface of the transparent conductive film and oleic acid was measured.
  • the film thickness was 100 nm in Example 2 and Example 5, and 105 nm in Example 1, Example 3, and Example 4. In contrast, in Comparative Example 5, the film thickness was as large as 150 nm. Further, in the measurement of the visible light transmittance, the visible light transmittance was 83% or more in each of Examples 1 to 5. In contrast, in Comparative Example 5, the visible light transmittance was as low as 75%. In the sheet resistance measurement, the sheet resistance value is 12 ⁇ / ⁇ in Example 1 and Example 4, 9 ⁇ / ⁇ in Example 2 and Example 5, and 10 ⁇ / ⁇ in Example 3. Met. On the other hand, in Comparative Example 5, the sheet resistance value was as high as 30 ⁇ / ⁇ .
  • the refractive index was 1.65 or more in each of Examples 1 to 5.
  • the refractive index was 1.49
  • the refractive index was as low as 1.59.
  • the surface roughness Ra was 7 nm or less in each of Examples 1 to 5.
  • the surface roughness Ra was 20 nm
  • the surface roughness Ra was 35 nm
  • the surface roughness Ra was as very large as 80 nm.
  • the surface state of the transparent conductive film is not scratched on the surface in Example 1, Example 3, and Example 5, and on the surface in Example 2 and Example 4. There was only a slight wound.
  • Comparative Example 1 the transparent conductive film was partially peeled from the alkali-free glass, in Comparative Example 2, the transparent conductive film was completely peeled off, and in Comparative Example 3, the surface of the transparent conductive film was There were numerous wounds. Furthermore, in the leakage test, the contact angles were all smaller than 10 ° in Examples 1 to 4, and 10 ° to 20 ° in Example 5. On the other hand, in Comparative Example 1, the contact angle was 60 °, and in Comparative Example 2, the contact angle was as large as 40 °.
  • a transparent conductive film including a polymeric binder containing metal nanowires having a fiber diameter of 100 nm or less and metal oxide fine particles having a particle diameter of 100 nm or less.
  • organic EL elements provided with the samples of Examples 1 to 5 and Comparative Examples 1 to 3 were prepared, and the characteristics of the organic EL elements were examined. Specifically, the properties of the light emitting surface, the luminance of the light emitting surface, and the leakage current when a voltage was applied to the organic EL element were measured.
  • the structure of the produced organic EL element and the above measurement will be described.
  • the organic EL element in the measurement of the properties of the light emitting surface, the organic EL element emitted uniform surface light even when any sample of Examples 1 to 5 was provided. In contrast, the organic EL element did not emit a uniform surface light even when any sample of Comparative Examples 1 to 3 was provided. Further, in the luminance measurement, the organic EL element showed a luminance of 250 cd / m 2 even when any sample of Examples 1 to 4 was provided, and 215 cd / m 2 when the sample of Example 5 was provided. The brightness was shown.
  • the organic EL element exhibits a luminance of 150 cd / m 2 when the sample of Comparative Example 1 is provided, and exhibits a luminance of 180 cd / m 2 when the sample of Comparative Example 2 is provided. When 3 samples were provided, no brightness was shown.
  • the organic EL element generated a leakage current of 1 ⁇ 10 ⁇ 4 mA even when any sample of Examples 1 to 5 was provided.
  • the organic EL element generates a leakage current of 1 ⁇ 10 ⁇ 2 mA when the sample of Comparative Example 1 is provided, and leaks of 3 ⁇ 10 ⁇ 4 mA when the sample of Comparative Example 2 is provided.
  • a leak current of 1 ⁇ 10 ⁇ 2 mA was generated.
  • the transparent conductive film 3 can be used as a transparent electrode such as a liquid crystal display, a plasma display, or a solar organic battery.
  • carbon nanotubes may be used as the material of the conductive fiber 8
  • a conductive polymer may be used as the material of the polymeric binder 9.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

透明導電膜3は、導電性を有する複数の導電性繊維8と、接着層としての高分子性バインダ9と、屈折率が1.5以上である複数の金属酸化物微粒子10と、を含む。金属酸化物微粒子10の粒径と導電性繊維8の繊維径を100nm以下とすることで、透明導電膜3の透光性を確保すると共に、導電性繊維8間を金属酸化物微粒子10が埋め、透明導電膜3を平滑化することができる。また、透明導電膜3の屈折率が大きくなるので、透明導電膜3が、有機エレクトロルミネッセンス素子の基板として用いられたとき、積層された有機発光層との屈折率の差が小さくなり、光の全反射を抑制することができる。

Description

透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、種々の光学デバイスに用いられる透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子に関する。
 一般的な有機エレクトロルミネッセンス(以下、有機ELという)素子は、一対の電極で挟持された有機発光層が透明な基材上に形成されたものであり、有機発光層からの光は、一方の電極を透過して基材側から取り出される。この種の有機EL素子において、基材側の電極の材料として、導電性及び透光性を有するものが用いられ、インジウムスズ酸化物(以下、ITOという)が広く用いられる。しかし、ITOを材料として用いた電極は曲げや物理的な応力に対して脆弱で壊れやすい。また、ITOを用いた電極の導電性を向上させるためには、高い蒸着温度及び/又は高いアニール温度が必要となり、有機EL素子を用いたデバイスの製造において、コスト高となる虞がある。
 そこで、ITOに代えて、複数の導電性繊維を含む透明導電膜を電極として用いた技術が知られている(例えば、日本国公表特許2009-505358号公報参照)。この種の透明導電膜付き基材の構成例について、図3を参照して説明する。透明導電膜付き基材101は、透明性を有する基材102と、この基材102上に形成される透明導電膜103と、を備える。透明導電膜103は、細線状の複数の導電性繊維104と、接着層としての高分子性バインダ105と、を含む。複数の導電性繊維104は、高分子性バインダ105によって、基材102上に接着されている。
 上記の透明導電膜付き基材101においては、複数の導電性繊維104が、高分子性バインダ105の基材102と対向する面と反対側の一面から突出しているので、この一面が凹凸状となり、表面平滑性が悪い。そのため、この透明導電膜付き基材101が有機EL素子に用いられた場合、例えば正孔注入層、正孔輸送層、又は有機発光層等といった機能層を透明導電膜103上に形成するとき、これら機能層を均一な厚さに成膜することができないことがある。特に、機能層が透明導電膜103上にインクの塗布により形成される場合、機能層の塗工の際に、はじきが発生し均一な薄膜塗工ができないことがある。
 また、この透明導電膜付き基材101を用いた有機EL素子を製造する際、機能層のパターンニング工程において、機能層が凹凸状の透明導電膜103から剥がれて傷つくことがある。また、不均一な厚さの機能層を備えた有機EL素子に電圧が印加されると、有機EL素子の陽極と陰極との間で電流が漏れたり、その機能層内において電荷の輸送が阻害されることがある。
 さらに、透明導電膜103には空隙が生じることがあり、この場合、透明導電膜103の屈折率はその透明導電膜103を構成する材料自体の屈折率に比べて小さくなる。ここで、透明導電膜103の屈折率は、1.4~1.5程度であり、有機発光層の屈折率は1.7~1.8程度であり、基材102(例えば、ガラス、又はプラスチック)の屈折率は1.5~1.7程度である。このため、有機発光層の屈折率と透明導電膜103の屈折率との差が最も大きく、透明導電膜103と有機発光層との界面において、光の全反射が起こり易くなり、有機発光層からの光が取り出されず、有機EL素子の光取出し効率を低下させる虞がある。
 本発明は、上記課題を解決するためになされたものであり、機能層が形成される一面を平滑化することができると共に、光の全反射を抑制することができる透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子を提供することを目的とする。
 本発明の透明導電膜は、基材上に形成される透明導電膜であって、繊維径が100nm以下の導電性繊維と、屈折率が1.5以上であり、粒径が100nm以下の金属酸化物微粒子と、これらの接着層となる高分子性バインダと、を含むことを特徴とする。
 この透明導電膜において、前記導電性繊維は、金属ナノワイヤであることが好ましい。
 この透明導電膜において、前記金属酸化物微粒子は、酸化チタンであることが好ましい。
 この透明導電膜において、前記高分子性バインダは、シリコーン樹脂、セルロース樹脂、又はこれらの混合物により構成されることが好ましい。
 この透明導電膜が基材上に形成されて、透明導電膜付き基材として構成されることが好ましい。
 この透明導電膜付き基材は、有機エレクトロルミネッセンス素子に用いられることが好ましい。
 本発明に係る透明導電膜によれば、透明導電膜に含まれる屈折率が1.5以上の金属酸化物微粒子の量を調整して透明導電膜の屈折率を調整することができるので、光の全反射を抑制することができる。また、導電性繊維の繊維径と金属酸化物微粒子の粒径とを100nm以下とすることにより、透明導電膜の透光性を確保すると共に、金属酸化物微粒子が導電性繊維間を埋め、透明導電膜を平滑化することができる。
本発明の一実施形態に係る透明導電膜付き基材を備えた有機エレクトロルミネッセンス素子の断面構成図。 同透明導電膜付き基材の断面図。 従来の透明導電膜付き基材の断面図。
 以下、本発明の一実施形態に係る透明導電膜について、図面を参照して説明する。本実施形態の透明導電膜は、透光性を有する基材上に形成され、透明導電膜付き基材として構成され、例えば有機エレクトロルミネッセンス(以下、有機ELという)素子に用いられる。図1は、有機EL素子の断面構成を示す。有機EL素子1は、基材2と、透明導電膜3と、正孔(ホール)輸送層4と、有機発光層5と、導体層6と、を備え、基材2上に透明導電膜3、正孔輸送層4、有機発光層5、及び導体層6が順次積層された構成となっている。基材2と透明導電膜3とが、透明導電膜付き基材7を構成する。透明導電膜3は、有機EL素子1の陽極として機能し、有機発光層5に正孔を注入する。正孔輸送層4は、透明導電膜3からの正孔を効率的に有機発光層5に輸送する。導体層6は、有機EL素子1の陰極として機能し、有機発光層5に電子を注入する。
 有機発光層5は、透明導電膜3からの正孔の注入を促進する正孔注入層が、透明導電膜3との間に設けられることが好ましく、導体層6からの電子の注入を促進する電子注入層が導体層6との間に設けられることが好ましい。さらに、電子を効率的に輸送する電子輸送層が設けられてもよい。
 このように構成された有機EL素子1において、透明導電膜3と導体層6との間に透明導電膜3側を+電位として電圧Eが印加されると、正孔が透明導電膜3から正孔輸送層4を通って有機発光層5に注入され、電子が導体層6から有機発光層5に注入される。そして、有機発光層5に注入された正孔と電子とが、有機発光層5内で再結合することにより、有機発光層5が発光する。有機発光層5から発せられた光は、正孔輸送層4と透明導電膜付き基材7(透明導電膜3及び基材2)とを透過して、有機EL素子1の外へ取り出される。なお、導体層6に照射された光は、導体層6の表面で反射され、透明導電膜付き基材7を透過して、有機EL素子1の外へ取り出される。
 なお、基材2の材料は、透光性を有する透明なものであれば、特に限定されない。このような基材2としては、例えばソーダガラス若しくは無アルカリガラス等のリジッドな透明ガラス板、又はポリカーボネート若しくはエチレンテレフタレート等のフレキシブルな透明プラスチック板等が用いられる。基材2としてリジッドな透明ガラス板が用いられた場合、基材2の強度が優れると共に、基材2上への透明導電膜3の形成を容易とすることができる。基材2としてフレキシブルな透明プラスチック板が用いられた場合、基材2を用いたデバイスを軽量化できると共に、柔軟性を有するデバイスとすることができる。
 また、正孔輸送層4の材料としては、例えばα-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)が用いられる。
 また、有機発光層5の材料としては、例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、若しくはこれらの誘導体、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、又はこれらの発光性化合物からなる基を分子の一部分に有する化合物若しくは高分子等が用いられる。また、例えばイリジウム錯体、オスミウム錯体、白金錯体若しくはユーロピウム錯体等の発光材料、又はこれらを分子内に有する化合物若しくは高分子等の燐光発光材料も用いることができる。これらの材料は、必要に応じて、適宜選択して用いることができる。
 また、導体層6の材料としては、例えばアルミニウム等が用いられる。また、アルミニウムと他の材料とを組み合わせて積層構造としてもよい。このような組み合わせとしては、アルカリ金属とアルミニウムとの積層体、アルカリ金属と銀との積層体、アルカリ金属のハロゲン化物とアルミニウムとの積層体、アルカリ金属の酸化物とアルミニウムとの積層体、アルカリ土類金属若しくは希土類金属とアルミニウムとの積層体、又はこれらの金属種と他の金属との合金などが挙げられる。具体的には、ナトリウム、ナトリウムとカリウムとの合金、リチウム、若しくはマグネシウム等とアルミニウムとの積層体、マグネシウムと銀との混合物、マグネシウムとインジウムとの混合物、アルミニウムとリチウムとの合金、フッ化リチウムとアルミニウムの混合物との積層体、又はアルミニウムと酸化アルミニウム(Al)の混合物との積層体等が挙げられる。
 次に、透明導電膜付き基材7の詳細について、図2を参照して説明する。透明導電膜付き基材7は、基材2と、この基材2上に形成されている透明導電膜3と、を備える。透明導電膜3は、導電性を有する複数の導電性繊維8と、接着層としての高分子性バインダ9と、屈折率が1.5以上である複数の金属酸化物微粒子10と、を含む。複数の金属酸化物微粒子10が、複数の導電性繊維8と共に高分子性バインダ9に充填されている。
 複数の導電性繊維8は、高分子性バインダ9の一面から突出した状態で基材2上に接着されているので、高分子性バインダ9の一面は凹凸状になっている。また、複数の導電性繊維8が、基材2上で三次元的に互いに接触又は近接し合っていることにより、透明導電膜3が導電性を有するようになっている。なお、透明導電膜付き基材7が有機EL素子1に用いられた場合、高分子性バインダ9の一面から突出している複数の導電性繊維8は有機発光層4と接触し、有機EL素子1に電圧が印加されると、複数の導電性繊維8から有機発光層4へ正孔が注入される。
 本実施形態においては、複数の金属酸化物微粒子10が、高分子性バインダ9内で複数の導電性繊維8間を埋めている。この場合、高分子性バインダ9に充填された複数の金属酸化物微粒子10のうち、高分子性バインダ9の一面近傍に配置された金属酸化物微粒子10が、凹凸状の高分子性バインダ9の一面に形成された凹部に充填される。その凹部内に金属酸化物微粒子10が存在している分、高分子性バインダ9の一面からの導電性繊維8が突出している部分が埋没されて、高分子性バインダ9の一面の凹凸状が低減されている。
 金属酸化物微粒子10の粒径は、100nm以下に設定されている。透明導電膜3の表面は、平滑性を有することが求められ、特に、これが有機EL素子1に用いられる場合は、より高い平滑性を有することが必要である。ここで、有機EL素子1の有機層が、一般的に膜厚100nm程度以下の層の積層体であることに鑑みれば、これら有機層が積層される透明導電膜3の表面凹凸は、Ra(中心線平均粗さ)10nm以下、Rz(十点平均粗さ)100nm以下であることが好ましい。つまり、透明導電膜3を構成する材料の1つである金属酸化物粒子10の粒径を100nm以下とすることにより、上述した表面凹凸とすることができる。
 金属酸化物微粒子10の粒径は、金属酸化物微粒子10を導電性繊維8間により充填し易くするために、導電性繊維8の繊維径と同程度又はそれ以下であることが好ましい。なお、透明導電膜3が、粒径が100nmを超える金属酸化物微粒子10や繊維径が100nmを超える導電性繊維8等の大きな構成物を備える場合、透明導電膜3の濁度(ヘーズ)が大きくなり過ぎるので、透明導電膜3の正確な屈折率を測定及び評価することが困難になる。
 また、本実施形態においては、複数の金属酸化物微粒子10が高分子性バインダ9に充填されることにより、複数の金属酸化物微粒子10が高分子性バインダ9に充填されない場合に比べて、高分子性バインダ9内に空隙が生じ難くなっている。また、複数の金属酸化物微粒子10の屈折率が、1.5以上に設定されている。したがって、複数の金属酸化物微粒子10が高分子性バインダ9に充填されないときに比べて、透明導電膜3の屈折率が大きくなっている。
 この場合、機能層及び基材2の屈折率に応じて透明導電膜3の屈折率が1.5~1.8となるように、複数の金属酸化物微粒子10を高分子性バインダ9へ充填する量が調整されて、機能層の屈折率と透明導電膜3の屈折率との差が小さくなる。
 機能層及び基材2の屈折率について、人間の最大視感度波長である550nmの波長の光に対する屈折率の具体例を以下に示す。例えば、有機発光層5の材料として代表的なAlq3(トリス(8-ヒドロキシキノリネート)アルミニウム(III))の屈折率は1.71である。また、正孔輸送層4の材料として代表的なα-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)の屈折率は1.80である。また、基材2の屈折率は、基材2の材料がソーダガラスの場合に1.52であり、アクリルの場合に1.50であり、ポリカーボネートの場合に1.59であり、ポリエステルの場合に1.65である。上記のような機能層及び基材2の材料に応じて、複数の金属酸化物微粒子10の高分子性バインダ9への充填量が適宜決定される。なお、金属酸化物微粒子10の高分子性バインダ9への充填量としては、金属酸化物微粒子10の体積が透明導電膜3の体積に対して5~70%となるように充填されることが好ましい。こうすれば、透明導電膜3の導電性を確保しつつ、透明導電膜3の屈折率を向上し、透明導電膜3の一面を平滑化することができる。
 これに対して、透明導電膜3の体積に対する金属酸化物微粒子10の体積が5%未満の場合、透明導電膜3の表面凹凸を低減させる効果が少なくなり、透明導電膜3の屈折率を向上させる効果も少なくなる。また、透明導電膜3の体積に対する金属酸化物微粒子10の体積が70%を超える場合、金属酸化物微粒子10が、導電性繊維8同士の接触を妨げるので、透明導電膜3の導電性を低下させる。また、この場合、金属酸化物微粒子10が導電性繊維8上に偏在することがあり、透明導電膜3の表面凹凸を低減させる効果が発現されないことがある。
 導電性繊維8は、数nmから数十μmの線幅を有する繊維状金属、金属、又は金属微粒子から成る。複数の導電性繊維8の繊維径は、上述したように、100nm以下に設定されている。それにより、透明導電膜3が透光性を有し、透明導電膜3の透明性を保持することができる。導電性繊維8の長さは、導電性繊維8の繊維径よりも十分に長い。基材2上に接着される複数の導電性繊維8の量は、0.1mg/m以上1000mg/m以下であることが好ましく、1mg/m以上100mg/m以下であることがより好ましい。また、複数の導電性繊維8の平均アスペクト比は、10以上10000以下であることが好ましい。さらに、高分子性バインダ9の厚さは、透明導電膜3の導電性を考慮して、複数の導電性繊維8の繊維径(例えば上述の100nm)以上500nm以下であることが好ましい。なお、上記の導電性繊維8の量、平均アスペクト比、及び高分子性バインダ9の厚さは、導電性繊維8と金属酸化物微粒子10との比重、及び金属酸化物微粒子10の屈折率と設計すべき透明導電膜3の屈折率等を考慮して、適宜設定される。
 導電性繊維8の材料としては、例えば金属メッシュ、金属ナノワイヤ、又は金属微粒子の集合体等が用いられる。このような材料の中でも、金属ナノワイヤは材料固有の導電性が高く、透明導電膜3の抵抗値が低くなると共に透明導電膜3の透過率が高くなるので、金属ナノワイヤを用いることが好ましい。導電性繊維8に用いられる金属として、例えば金、銀、銅、アルミニウム、亜鉛、コバルト、ニッケル、又はタングステン等が挙げられる。このような金属の中でも、導電率が高い金、銀、又は銅を用いることが好ましく、導電率が最も高い銀を用いることがより好ましい。
 導電性繊維8として金属ナノワイヤを用いた場合、金属ナノワイヤの長さは、透明導電膜3の導電性を考慮して、3μm以上であることが好ましく、3μm以上500μm以下であることがより好ましく、3μm以上300μm以下であることが更に好ましい。また、金属ナノワイヤの繊維径は、100nm以下に設定されている。それにより、透明導電膜3が透光性を有し、透明導電膜3の透明性を保持することができる。金属ナノワイヤの製造方法は、特に限定されることなく、例えば液相法又は気相法等の公知の方法が用いられる。
 高分子性バインダ9は、透明導電膜3上に機能層を形成することができる程度の強度を有する。このような高分子性バインダ9の材料としては、例えばポリエチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体及びその部分又は全部ケン化物、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-酢酸ビニル-メタクリル酸メチル共重合体、ポリプロピレン、プロピレン-α-オレフィン共重合体等のオレフィン系樹脂、ポリ塩化ビニル樹脂等の塩化ビニル系樹脂、アクリロニトリル-スチレン共重合体等のアクリロニトリル系樹脂、ポリスチレン、スチレン-メタクル酸メチル共重合体等のスチレン系樹脂、ポリアクリル酸エチル等のアクリル酸エステル重合体、ポリメタクリル酸メチル等のメタクリル酸エステル重合体、それらの共重合体や他の共重合成分を加えた(メタ)アクリル酸エステル系樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ナイロン等のポリアミド樹脂、ポリカーボネート樹脂、エチルセルロース、アセチルセルロース等のセルロース樹脂、ポリウレタン系樹脂、シリコン系樹脂等が挙げられる。
 また、例えばフェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、又はポリシロキサン樹脂等の熱硬化性樹脂が挙げられる。さらに、これらの熱硬化性樹脂に必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、又は溶剤を加えてもよい。
 また、電離放射線硬化型樹脂としては、好ましくは、アクリレート系の官能基を有するもの、例えば、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマー、及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びに多官能モノマー、例えばトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものを使用することができる。さらに、上記の電離放射線硬化型樹脂を紫外線硬化型樹脂とするには、電離放射線硬化型樹脂の中に光重合開始剤を配合することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、又はチオキサントン類等が用いられる。また、光重合開始剤に加えて光増感剤を用いてもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、又はチオキサントン等が用いられる。
 上記の高分子性バインダ9の材料の中でも、特に、シリコーン樹脂、セルロース樹脂、又はこれらの混合物を用いることが好ましい。それにより、透明導電膜3が導電性繊維8と金属酸化物微粒子10との複合膜でありながら、透明導電膜3の表面強度(例えば、耐擦傷性や表面硬度等)を保持することができる。その結果、透明導電膜3をデバイスへ応用するためのパターンニング工程や積層工程において、透明導電膜3が実用的な耐久性を有するようになる。また、これらの材料は、透明導電膜3を塗布プロセスで形成する際、透明導電性インク(透明導電膜3の材料)に含まれる導電性繊維8及び金属酸化物微粒子10に対する分散性が優れているので、より透明性に優れた透明導電膜3を形成することができる。
 高分子性バインダ9内に透光性粒子が充填されてもよく、具体的には、透明導電膜3に耐摩耗性を付与するために、高硬度の無機粒子、又は滑り性を有する有機粒子が高分子性バインダ9にフィラーとして含まれてもよい。透光性粒子は、透光性粒子の屈折率と高分子性バインダ9の屈折率との差が、±0.03以内であれば、特に限定されない。このような透光性粒子としては、例えば、シリカ、アルミナ、フッ化マグネシウム、フッ化カルシウム、フッ化セリウム、フッ化アルミニウム、アクリル粒子、スチレン粒子、ウレタン粒子、スチレンアクリル粒子及びその架橋の粒子、メラミン-ホルマリン縮合物の粒子、ポリテトラフルオロエチレン(PTFE)の粒子、ペルフルオロアルコキン(PFA)樹脂の粒子、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)の粒子、ポリフルオロビニリデン(PVDF)の粒子、エチレン-テトラフルオロエチレン(ETFE)共重合体等の含フッ素ポリマー粒子、シリコーン樹脂粒子、又はガラスビーズ等が挙げられる。これらは、1種類を単独で用いる他、2種類以上を混合して使用してもよい。
 金属酸化物微粒子10の材料としては、屈折率が1.5以上のものであれば特に限定はされないが、例えば酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化ルテニウム、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化マンガン、酸化コバルト、酸化ロジウム、酸化レニウム、酸化ストロンチウム、及びこれらの単独または2種以上の混合物や金属、色素を担持したものが挙げられる。
 金属酸化物粒子10の粒径は、導電性繊維8の繊維径と同様に、上述したように、100nm以下に設定されている。それにより、金属酸化物粒子10を導電性繊維8間にバランスよく充填させることができ、透明導電膜3の屈折率を大きくすることができ、また、透明導電膜3の一面を平滑化し易くすることができる。更に、これら粒子径及び繊維径が小さいので、これらによって光が遮蔽され難くなり、透明導電膜3の透光性を保持することができる。
 金属酸化物微粒子10が光触媒活性を有する場合には、透明導電膜3上に有機発光層5を形成する際に、予め透明導電膜3上にエネルギー照射をしておくことが好ましい。これにより、有機発光層5のインクの濡れ性を向上させることができるので、均一な厚さの有機発光層5を透明導電膜3上に形成することができる。したがって、上記の金属酸化物微粒子10の材料として、光触媒活性に優れたものを用いることが好ましく、特に、酸化チタンを用いることが好ましい。また、酸化チタンを金属酸化物微粒子10の材料として用いることにより、透明導電膜3の導電性及び透過率が向上する。
 透明導電膜3上に照射されるエネルギーは、特に限定されないが、紫外線を含む光源を用いることが好ましい。このような光源としては、水銀ランプ、メタルハライドランプ、キセノンランプ、又はエキシマランプ等の種々の光源が挙げられる。なお、有機発光層4をパターンニングして塗布する場合、作製される有機EL素子の形状に応じてフォトマスクを介したパターン照射をする他、例えばエキシマレーザ、又はYAG(イットリウム・アルミニウム・ガーネット)レーザ等のレーザを用いてパターン状に描画照射することもできる。
 なお、導電性繊維8の表面が、硫化又は酸化されてもよい。これにより、硫化又は酸化された導電性繊維8の部分が黒化して、その部分の金属光沢が失われるので、光の乱反射を抑制することができる。また、硫化又は酸化された導電性繊維8の部分が不導体となり化学的に安定するので、マイグレーションの発生を防止することができる。導電性繊維8を硫化する方法としては、例えば透明導電膜付き基材7を水中に配置して、この水中に硫化鉄と塩酸とにより発生した硫化水素を通す方法が挙げられる。また、導電性繊維8を酸化する方法としては、例えば卓上型光表面処理装置を用いて、透明導電膜付き基材7の表面を酸化するための表面処理を施す方法が挙げられる。また、金属酸化物微粒子10として、酸化チタンを用いれば、この酸化チタンの光触媒作用により、近接する導電性繊維8の表面を酸化することができ、これにより、上述した効果が得られる。
 透明導電膜3の形成方法は、特に限定されないが、代表的に以下の2つの方法が挙げられる。第1の方法として、導電性繊維ゾル(溶液、及び懸濁液を含む)と、金属酸化物微粒子ゾルと、透明樹脂溶解液と、をそれぞれ混合し、透明導電性インクを形成作製する。次に、この透明導電性インクを基材上に塗工し、乾燥させる。
 第2の方法として、予め導電性繊維ゾルを基材上に塗工し、乾燥させることにより、導電性繊維を含む層を形成する。次に、金属酸化物微粒子ゾルを導電性繊維を含む層上に塗工し、その層に浸み込ませる。なお、導電性繊維ゾルは、透明樹脂溶解液を含んでもよく、金属酸化物微粒子ゾルは、透明樹脂溶解液としてシリコーン樹脂を含んでもよい。
 透明導電膜3の厚さは、特に限定されず、透明性、表面抵抗、及び膜性状等に合わせて適宜選択される。透明導電膜3が有機EL素子の基板として用いられる場合には、デバイスに必要とされる透明性を確保するために、透明導電膜3の光透過率が80%以上であることが好ましい。また、上記の場合、数cm四方、又は数十cm程度の面積を有する有機EL素子を均一に発光させるために、透明導電膜3のシート抵抗値が30Ω/□以下であることが好ましい。さらに、上記の場合、透明導電膜3のシート抵抗値を30Ω/□以下にするために、透明導電膜3の平均膜厚が50nm以上であることが好ましく、透明導電膜3の光透過率を80%以上にするために、透明導電膜3の平均膜厚が200nm以下であることが好ましい。
 また、透明導電膜3の表面粗さとしては、これを用いた有機EL素子の特性の悪化を防ぐために、Raが約10nm以下であることが好ましく、また、Rzが100nm以下であることが好ましい。なお、Raが約10nmを超え、また、Rzが100nmを超える場合、透明導電膜3と機能層との界面が不均一となるので、電荷注入及び移動特性が悪化し、リーク電流が発生することがある。その結果、有機EL素子の発光効率が低下したり、ムラ、輝点、又はダークスポットが発生して有機EL素子の発光均一性が低下することがある。また、ショートが発生して有機EL素子が発光しなくなったり、有機EL素子の寿命が極めて短くなることがある。
 透明導電膜3の塗工法としては、特に限定されることなく、例えばスピンコート、スクリーン印刷、ディップコート、ダイコート、キャスト、スプレーコート、又はグラビアコート等の公知の塗工法が用いられる。また、透明導電膜3の表面を平滑化すると共に透明導電膜6の表面抵抗値を安定化するために、例えばローラープレス等による加圧工程を行ってもよい。
 本実施形態の透明導電膜付き基材7によれば、導電性繊維8の繊維径と金属酸化物微粒子10の粒径とを100nm以下とすることで、透明導電膜3の透光性を確保すると共に、金属酸化物微粒子10が導電性繊維8間を埋め透明導電膜3を平滑化することができる。また、この透明導電膜付き基材7が、有機EL素子の基板として用いられた場合、透明導電膜付き基材7上に例えば有機発光層4といった機能層を均一な厚さで成膜することができる。特に、機能層が透明導電膜付き基材7上にインクの塗布により形成される場合でも、機能層の塗工の際に、はじきが発生し均一な薄膜塗工ができる。このため、機能層のパターンニング工程において、機能層が透明導電膜付き基材7から剥がれて傷つくことを防止することができると共に、有機EL素子の陽極と陰極との間で電流が漏れたり、機能層内において電荷の輸送が阻害されることを防止することができる。
 さらに、本実施形態の透明導電膜付き基材7によれば、透明導電膜3の屈折率が大きくなるので、透明導電膜付き基材7が有機EL素子の基板として用いられた場合、積層された有機発光層4との屈折率の差が小さくなり、光の全反射を抑制することができる。それにより、有機EL素子の光取出し効率を向上させることができ、信頼性の高いデバイスを提供することができる。
 次に、実施例1乃至5及び比較例1乃至3について説明する。
 以下に示すように、まず導電性繊維としての銀ナノワイヤを作製した後、実施例1乃至5及び比較例1乃至3のサンプルを作製した。
 (導電性繊維)
 導電性繊維として、公知論文「Materials Chemistry and Physics vol.114 p333-338 “Preparation of Ag nanorods with high yield by polyol process”」に準じて銀ナノワイヤ、及び銀ナノワイヤ分散液を作製した。この場合、銀ナノワイヤの平均繊維径を50nmとし、銀ナノワイヤの平均長さを5μmとした。また、銀ナノワイヤ3質量部とセルロース樹脂1質量部とを水を分散媒として混合し、固形分4.0質量%の銀ナノワイヤ材料を作製した。
 (実施例1)
 上記の銀ナノワイヤ材料と平均粒径50nmの石原産業株式会社製酸化チタンゾルSTS-01とを重量比1:1で撹拌混合して、透明導電性インクを作製した。次に、コーニング社製無アルカリガラスNo.1737(波長が500nmの光に対する屈折率が1.50~1.53)を用意した。そして、この無アルカリガラス上に透明導電性インクを厚さが100nmとなるようにスピンコート法により塗布して、100℃で5分間加熱した。それにより、無アルカリガラス上に透明導電膜を形成した。このようして、実施例1のサンプルを作製した。
 (実施例2)
 テトラエトキシシラン208質量部にメタノール356質量部を加えた。次に、このテトラエトキシシランとメタノールとの混合液に水18質量部と0.01mol/lの塩酸18質量部とを加えて、これらをディスパーを用いて充分に混合した後、60℃の恒温槽中で2時間加熱した。これにより、重量平均分子量が950のシリコーン樹脂を作製した。次に、このシリコーン樹脂に、固形分量が21%かつ平均粒径が60nmの酸化チタンゾルを、このシリコーン樹脂に対して酸化チタンが1:1となるように混合した。次に、このシリコーン樹脂と酸化チタンゾルとの混合液を全固形分が5%となるようにメタノールで希釈した。これにより、酸化チタンとシリコーン樹脂とが混合されたコーティング材を作製した。次に、上記の銀ナノワイヤ分散液を用意した無アルカリガラス上に塗布し乾燥させて、無アルカリガラス上に銀ナノワイヤを含む層を形成した。次に、この層上にコーティング材をスピンコータ法により塗布し、100℃で10分間加熱して、無アルカリガラス上に透明導電膜を形成した。このようにして、実施例2のサンプルを作製した。
 (実施例3)
 上記の銀ナノワイヤ材料を用意した無アルカリガラス上に塗布して乾燥させて、無アルカリガラス上に銀ナノワイヤを含む層を形成した。次に、この層上にコーティング材をスピンコータ法により塗布し、100℃で10分間加熱して、無アルカリガラス上に透明導電膜を形成した。このようにして、実施例3のサンプルを作製した。
 (実施例4)
 銀ナノワイヤ材料と酸化チタンゾルとを重量比2:3で撹拌混合した点を除いて、上記実施例1と同様にして、実施例4のサンプルを作製した。
 (実施例5)
 酸化チタンゾルの代わりに、粒径30nm~80nmの日産化学工業株式会社製酸化ジルコニウムゾル「ナノユーズZR-20AS」を用いた点を除いて、上記実施例1と同様にして、実施例5のサンプルを作製した。
 (比較例1)
 酸化チタンゾルを銀ナノワイヤ材料に混合しなかった点を除いて、上記実施例1と同様にして、比較例1のサンプルを作製した。
 (比較例2)
 上記の銀ナノワイヤ分散液と酸化チタンゾルとを1:1で混合し、銀ナノワイヤと酸化チタンとの混合ゾルを作製した。次に、このゾルを無アルカリガラス基板上に塗布して、乾燥することで、透明導電膜を形成した。このようにして、比較例2のサンプルを作製した。
 (比較例3)
 固形分量が21%かつ平均粒径が60nmの酸化チタンゾルの代わりに、固形分量が20%かつ平均粒径が180nmの石原産業株式会社製酸化チタンゾルPT-501Rを用いた点を除いて、上記実施例2と同様にして、比較例3のサンプルを作製した。
 なお、上記の実施例1乃至5及び比較例1乃至3のサンプルの構成、及び特記事項を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の実施例1乃至5及び比較例1乃至3のサンプルについて、透明導電膜の物性を測定した。具体的には、透明導電膜の物性として、透明導電膜の平均膜厚、可視光透過率、シート抵抗、波長が550nmの光に対する屈折率、表面粗さRa、膜強度、及び濡れ性を測定した。以下、これらの測定について順に説明する。
 (平均膜厚の測定)
 Veeco社製接針式表面形状測定器Dektakを用いて、各サンプルの透明導電膜の厚さを測定した。
 (可視光透過率の測定)
 日本電色工業株式会社製NDH-2000を用いて各サンプルの透明導電膜の透過率を測定した。
 (シート抵抗の測定)
 三菱化学株式会社製ロレスタEP MCP-T360を用いて各サンプルの透明導電膜の表面抵抗値を測定した。
 (屈折率の測定)
 大塚電子株式会社製分光エリプソメータを用いて、波長が550nmの光に対する各サンプルの透明導電膜の屈折率を測定した。
 (表面粗さRaの測定)
 株式会社島津製作所製ナノサーチ顕微鏡SFT-3500を用いて、測定視野を縦30μm及び横30μmとして、各サンプルの透明導電膜の表面粗さRaを測定した。
 (膜強度の測定)
 ネル布を用いての拭き試験後、各サンプルの透明導電膜の表面の状態を目視により観察した。この場合、以下の表2に示す「微かな傷」、「多数の傷」、及び「部分的な剥がれ」について次のように定義した。「微かな傷」は、目視で注視することにより傷があることを確認することができ、ルーペ等の観察により傷の本数を数えることができるものである。また、「傷」とは、幅が数μm~数十μmで、長さが数mmのものをいう。「多数の傷」は、目視で傷があることを容易に確認することができ、ルーペ等の観察では本数が多いために数えることが難しいものである。「部分的な剥がれ」は、本数で数えるような傷だけではなく、無アルカリガラスから透明導電膜が取れている部分が目視で確認することができるものである。
 (濡れ性の測定)
 各サンプルの透明導電膜の表面にオレイン酸を滴下した。次に、オレイン酸が滴下された各サンプルの透明導電膜の表面にエキシマランプを用いて紫外線を照射した。その後、透明導電膜の表面とオレイン酸とのなす角(接触角)を測定した。
 上記の測定の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、平均膜厚の測定において、膜厚は、実施例2及び実施例5では100nmであり、実施例1、実施例3、及び実施例4では105nmであった。これに対して、比較例5では、膜厚が150nmと大きくなった。また、可視光透過率の測定において、可視光透過率は、実施例1乃至5ではいずれも83%以上であった。これに対して、比較例5では、可視光透過率が75%と低かった。また、シート抵抗の測定において、シート抵抗値は、実施例1、及び実施例4では12Ω/□であり、実施例2、及び実施例5では9Ω/□であり、実施例3では10Ω/□であった。これに対して、比較例5では、シート抵抗値が30Ω/□と高かった。さらに、屈折率の測定において、屈折率は、実施例1乃至5ではいずれも1.65以上であった。これに対して、比較例1では、屈折率が1.49であり、比較例2では、屈折率が1.59と低かった。
 また、表面粗さRaの測定において、表面粗さRaは、実施例1乃至5ではいずれも7nm以下であった。これに対して、比較例1では、表面粗さRaが20nmであり、比較例2では、表面粗さRaが35nmであり、比較例3では、表面粗さRaが80nmと非常に大きかった。また、膜強度の測定において、透明導電膜の表面の状態は、実施例1、実施例3、及び実施例5では、その表面に傷はなく、実施例2、及び実施例4では、その表面に微かな傷があったのみであった。これに対して、比較例1では、透明導電膜が無アルカリガラスから部分的に剥がれており、比較例2では、透明導電膜が完全に剥がれており、比較例3では、透明導電膜の表面に多数の傷があった。さらに、漏れ性の試験において、接触角は、実施例1乃至4では、いずれも10°よりも小さく、実施例5では、10°~20°であった。これに対して、比較例1では、接触角が60°であり、比較例2では、接触角が40°と大きかった。
 これらの結果は、繊維径が100nm以下の金属ナノワイヤと粒径が100nm以下の金属酸化物微粒子とを含む高分子性バインダを備えた透明導電膜を用いることが好ましいことを示す。
 次に、上記実施例1乃至5及び比較例1乃至3のサンプルを備えた有機EL素子を作製し、この有機EL素子の特性を調べた。具体的には、有機EL素子に電圧が印加された時の発光面の性状、発光面の輝度、及びリーク電流を測定した。以下、作製した有機EL素子の構成、及び上記の測定について説明する。
 (有機EL素子の構成)
 各サンプルの透明導電膜上に株式会社同人化学研究所製α-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)を厚さが50nmとなるように真空蒸着し、透明導電膜上に正孔輸送層を形成した。次に、正孔輸送層上に株式会社同人化学研究所製アルミキノリノール錯体(トリス(8-ヒドロキシノリネート)アルミニウム(III)を厚さが50nmとなるように真空蒸着し、正孔輸送層上に有機発光層を形成した。次に、有機発光層上にアルミニウムを厚さが150nmとなるように真空蒸着し、有機発光層上に導体層を形成した。このようにして、各サンプルを備えた有機EL素子を作製した。
 (発光面の性状の測定)
 有機EL素子の透明導電膜と導電層との間に10Vの電圧を印加し、発光面の性状を目視により観察した。
 (輝度の測定)
 有機EL素子の透明導電膜と導電層との間に10Vの電圧を印加し、コニカミノルタセンシング株式会社製輝度計LS-110を用いて発光面の輝度を目視により観察した。
 (リーク電流の測定)
 2Vの直流電流を流した状態での有機EL素子のリーク電流を計測した。
 上記の測定の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、発光面の性状の測定において、有機EL素子は、実施例1乃至5のいずれのサンプルを備えた場合でも、均一な面発光をした。これに対して、有機EL素子は、比較例1乃至3のいずれのサンプルを備えた場合でも、均一な面発光をしなかった。また、輝度の測定において、有機EL素子は、実施例1乃至4のいずれのサンプルを備えた場合でも、250cd/mの輝度を示し、実施例5のサンプルを備えた場合、215cd/mの輝度を示した。これに対して、有機EL素子は、比較例1のサンプルを備えた場合、150cd/mの輝度を示し、比較例2のサンプルを備えた場合、180cd/mの輝度を示し、比較例3のサンプルを備えた場合、輝度を示さなかった。
 また、リーク電流の測定において、有機EL素子は、実施例1乃至5のいずれのサンプルを備えた場合でも、1×10-4mAのリーク電流を発生した。これに対して、有機EL素子は、比較例1のサンプルを備えた場合、1×10-2mAのリーク電流を生じ、比較例2のサンプルを備えた場合、3×10-4mAのリーク電流を生じ、比較例3のサンプルを備えた場合、1×10-2mAのリーク電流を生じた。
 これらの結果は、実施例1乃至5のいずれかのサンプルを備えた有機EL素子が、比較例1乃至3のいずれかのサンプルを備えた有機EL素子よりも、信頼線の高いデバイスであることを示す。
 本発明は上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変更が
可能である。例えば、透明導電膜3は、液晶ディスプレイ、プラズマディスプレイ、又は太陽有機電池等の透明電極として用いることができる。また、導電性繊維8の材料として、カーボンナノチューブを用いてもよく、高分子性バインダ9の材料として、導電性を有する高分子を用いてもよい。
 なお、本出願は、日本国特許出願2011-065062号に基づいており、その特許出願の内容は、参照によって本出願に組み込まれる。
 1 有機エレクトロルミネッセンス素子
 2 基材
 3 透明導電膜
 7 透明導電膜付き基材
 8 導電性繊維(金属ナノワイヤ)
 9 高分子性バインダ
 10 金属酸化物微粒子(酸化チタン)

Claims (6)

  1.  基材上に形成される透明導電膜であって、
     繊維径が100nm以下の導電性繊維と、
     屈折率が1.5以上であり、粒径が100nm以下の金属酸化物微粒子と、
     これらの接着層となる高分子性バインダと、を含むことを特徴とする透明導電膜。
  2.  前記導電性繊維は、金属ナノワイヤであることを特徴とする請求項1に記載の透明導電膜。
  3.  前記金属酸化物微粒子は、酸化チタンであることを特徴とする請求項1又は請求項2に記載の透明導電膜。
  4.  前記高分子性バインダは、シリコーン樹脂、セルロース樹脂、又はこれらの混合物により構成されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の透明導電膜。
  5.  基材上に請求項1乃至請求項4のいずれか一項に記載の透明導電膜が形成されたことを特徴とする透明導電膜付き基材。
  6.  請求項5に記載の透明導電膜付き基材を備えたことを特徴とする有機エレクトロルミネッセンス素子。
PCT/JP2012/052694 2011-03-23 2012-02-07 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子 WO2012127916A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-065062 2011-03-23
JP2011065062A JP2012204022A (ja) 2011-03-23 2011-03-23 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2012127916A1 true WO2012127916A1 (ja) 2012-09-27

Family

ID=46879084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052694 WO2012127916A1 (ja) 2011-03-23 2012-02-07 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JP2012204022A (ja)
WO (1) WO2012127916A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006798A1 (ja) * 2015-07-03 2017-01-12 住友化学株式会社 有機光電変換素子、その製造方法並びにそれを備える太陽電池モジュール及びセンサー
CN114231903A (zh) * 2021-12-08 2022-03-25 洛阳理工学院 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法
TWI762934B (zh) * 2020-05-20 2022-05-01 大陸商業成科技(成都)有限公司 導電層圖案化的方法及導電結構

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366577B2 (ja) * 2013-04-26 2018-08-01 昭和電工株式会社 導電パターンの製造方法及び導電パターン形成基板
KR101812531B1 (ko) * 2013-08-22 2017-12-27 쇼와 덴코 가부시키가이샤 투명 전극 및 그 제조 방법
KR20170038125A (ko) * 2013-10-16 2017-04-05 히타치가세이가부시끼가이샤 도전성 섬유를 포함하는 적층체, 감광성 도전 필름, 도전 패턴의 제조 방법, 도전 패턴 기판, 및 터치 패널
WO2019043501A1 (ja) * 2017-09-01 2019-03-07 株式会社半導体エネルギー研究所 電子デバイス、発光素子、太陽電池、発光装置、電子機器及び照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155374A (ja) * 2007-12-25 2009-07-16 Mitsubishi Rayon Co Ltd 硬化性組成物、複合体、転写シート及びそれらの製造方法
JP2010129831A (ja) * 2008-11-28 2010-06-10 Konica Minolta Holdings Inc 有機光電変換素子、及びその製造方法
JP2011029038A (ja) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd 透明導電膜付き基材の製造方法
JP2011029037A (ja) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd 透明導電膜付き基材
WO2011111670A1 (ja) * 2010-03-08 2011-09-15 パナソニック電工株式会社 有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155374A (ja) * 2007-12-25 2009-07-16 Mitsubishi Rayon Co Ltd 硬化性組成物、複合体、転写シート及びそれらの製造方法
JP2010129831A (ja) * 2008-11-28 2010-06-10 Konica Minolta Holdings Inc 有機光電変換素子、及びその製造方法
JP2011029038A (ja) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd 透明導電膜付き基材の製造方法
JP2011029037A (ja) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd 透明導電膜付き基材
WO2011111670A1 (ja) * 2010-03-08 2011-09-15 パナソニック電工株式会社 有機エレクトロルミネッセンス素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006798A1 (ja) * 2015-07-03 2017-01-12 住友化学株式会社 有機光電変換素子、その製造方法並びにそれを備える太陽電池モジュール及びセンサー
JPWO2017006798A1 (ja) * 2015-07-03 2018-05-17 住友化学株式会社 有機光電変換素子、その製造方法並びにそれを備える太陽電池モジュール及びセンサー
TWI762934B (zh) * 2020-05-20 2022-05-01 大陸商業成科技(成都)有限公司 導電層圖案化的方法及導電結構
CN114231903A (zh) * 2021-12-08 2022-03-25 洛阳理工学院 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法
CN114231903B (zh) * 2021-12-08 2023-09-26 洛阳理工学院 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法

Also Published As

Publication number Publication date
JP2012204022A (ja) 2012-10-22

Similar Documents

Publication Publication Date Title
WO2012127916A1 (ja) 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子
JP5010556B2 (ja) 有機el発光素子
KR101114916B1 (ko) 유기발광소자용 기판 및 그 제조방법
JP2011048937A (ja) 有機el発光素子
KR101837646B1 (ko) 광 추출 층을 갖는 유기 발광 다이오드
TW200427366A (en) Light-emitting apparatus and method for forming the same
WO2006095632A1 (ja) エレクトロルミネッセンス素子及び照明装置
JP2009004275A (ja) 面発光体及び面発光体の製造方法
JP6573160B2 (ja) 発光素子
KR20140076268A (ko) 플렉서블 디스플레이용 투명전극을 구비한 기판 및 그 제조방법
JP4703107B2 (ja) 有機el素子の製造方法
JP2007066886A (ja) エレクトロルミネッセンス素子用積層体及びエレクトロルミネッセンス素子
WO2012127915A1 (ja) 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子、並びにその製造方法
JP2014514700A (ja) 有機電子素子用基板
JPWO2010032721A1 (ja) 有機エレクトロルミネッセンス素子
JP6597619B2 (ja) 透明電極、透明電極の製造方法、及び、電子デバイス
Jun et al. Fabrication of substrate-free double-side emitting flexible device based on silver nanowire-polymer composite electrode
JP5054464B2 (ja) 有機el発光素子
JP2012190659A (ja) 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子
JP2010055894A (ja) 発光素子用封止フィルム
JP2015191787A (ja) 有機エレクトロルミネッセンス素子用基板、有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR100829497B1 (ko) 요철 층을 포함하는 유기 발광 소자 및 이를 구비한조명장치
JP2010218738A (ja) 有機el素子、それを用いたディスプレイ、及び照明装置
JP5216112B2 (ja) 面状発光体
WO2012117812A1 (ja) 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760493

Country of ref document: EP

Kind code of ref document: A1