WO2012120929A1 - 電極用活物質、及び二次電池 - Google Patents
電極用活物質、及び二次電池 Download PDFInfo
- Publication number
- WO2012120929A1 WO2012120929A1 PCT/JP2012/051349 JP2012051349W WO2012120929A1 WO 2012120929 A1 WO2012120929 A1 WO 2012120929A1 JP 2012051349 W JP2012051349 W JP 2012051349W WO 2012120929 A1 WO2012120929 A1 WO 2012120929A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- site
- electrode
- polymer
- cation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/606—Polymers containing aromatic main chain polymers
- H01M4/608—Polymers containing aromatic main chain polymers containing heterocyclic rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an electrode active material and a secondary battery.
- Patent Documents 1 US Pat. No. 4,833,048) and 2 (Japanese Patent No. 2,715,778) disclose secondary batteries using an organic compound having a disulfide bond as a positive electrode. These secondary batteries utilize an electrochemical redox reaction involving generation and dissociation of disulfide bonds.
- the secondary batteries described in Patent Documents 1 and 2 are made of an electrode material mainly composed of an element having a small specific gravity such as sulfur or carbon, and have a certain effect in terms of a secondary battery having a high energy density. ing.
- secondary batteries using conductive polymers as electrode materials have been proposed as secondary batteries using organic compounds.
- This secondary battery utilizes electrolyte ion doping and dedoping reactions with respect to a conductive polymer.
- the dope reaction is a reaction in which a charged radical generated by oxidation or reduction of a conductive polymer is stabilized by a counter ion.
- Patent Document 3 discloses a secondary battery using such a conductive polymer as a positive electrode or negative electrode material.
- the secondary battery of Patent Document 3 is composed only of elements having a small specific gravity such as carbon and nitrogen, and has been expected as a secondary battery having a high capacity.
- conductive polymers have the property that charged radicals generated by redox are delocalized over a wide range of ⁇ -electron conjugated systems and interact with each other, resulting in electrostatic repulsion and radical disappearance. is there. This brings a limit to the generated charged radicals, that is, the dope concentration, and limits the capacity of the secondary battery. For example, it has been reported that the doping rate of a secondary battery using polyaniline as a positive electrode is 50% or less, and 7% in the case of polyacetylene. Although a secondary battery using a conductive polymer as an electrode material has a certain effect in terms of weight reduction, a secondary battery having a large energy density has not been obtained.
- Patent Document 4 Japanese Patent Laid-Open No. 2002-1510844 discloses an organic radical compound such as a nitroxyl radical compound, an aryloxy radical compound, and a polymer having a specific aminotriazine structure as an active material for an electrode.
- a secondary battery using as a positive electrode or negative electrode material is disclosed.
- Patent Document 5 Japanese Patent Application Laid-Open No. 2002-304996 discloses a secondary battery using a compound having a cyclic nitroxyl structure as an electrode active material among nitroxyl compounds. Cyclic nitroxyl structures are known to exhibit stable p-type redox.
- the polyradical compound used as the active material for the electrode includes poly (2,2,6,6-tetramethylpiperidine-1- having 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO).
- TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
- Nitroxyl radical compounds such as oxyl methacrylate (PTMA) are known.
- Patent Document 6 Japanese Patent Application Laid-Open No. 2008-280400 discloses a secondary battery using a stable aryloxy radical compound as an active material for an electrode. This compound is known to exhibit n-type redox.
- the organic radical battery there are two types of redox forms of the radical compound, which is an active material for electrodes, including p-type redox carried out between neutral radicals and cations and n-type redox carried out between neutral radicals and anions. There are types.
- a secondary battery is manufactured using a radical compound exhibiting n-type oxidation / reduction, lithium ions reciprocate between the positive electrode and the negative electrode in accordance with the charge / discharge reaction (so-called rocking chair type).
- the concentration of the electrolytic solution is constant regardless of the depth of charge and discharge, and theoretically, the amount of the electrolytic solution may be any amount that satisfies the gap between the electrodes.
- Nitroxyl radical compounds typified by TEMPO can reversibly repeat p-type redox in a non-aqueous electrolyte, but n-type redox is unstable because it involves a decomposition reaction and is reversible. I can't repeat it. Therefore, when a nitroxyl radical compound is used as an active material for an electrode, p-type redox is used as an electrode reaction, so that it is necessary to retain an amount of anion necessary for doping in the electrolytic solution. . Therefore, a large amount of electrolyte solution is required as compared with the case where an active material for an electrode that performs n-type oxidation-reduction is used. This large amount of electrolyte increases the weight of the entire secondary battery, which causes a reduction in energy density.
- the present inventors have found that an electrode capable of reciprocating lithium ions between a positive electrode and a negative electrode in a charge / discharge reaction even when a polymer having a radical structure that performs p-type redox is used.
- the active material was found.
- One embodiment is: One or more polymers having a radical site capable of conversion to a first cation site and an anion site capable of binding to the first cation site or the second cation, It relates to the active material for electrodes containing.
- the present invention relates to an electrode active material containing the following polymer (1) or (2).
- the site that can be converted to the first cation site by the oxidation reaction and converted to the radical site by the reduction reaction is the same as the anion site that can bind to the first cation site or the second cation.
- a polymer in the molecule (2) A first polymer having a site that can be converted to a first cation site by an oxidation reaction and converted to a radical site by a reduction reaction can be bonded to the first cation site or the second cation.
- a second polymer having an anionic moiety is an anionic moiety.
- a secondary battery using radicals as an active material charging and discharging can be performed in a form (rocking chair type) in which lithium ions reciprocate between a positive electrode and a negative electrode.
- a form rocking chair type
- lithium ions reciprocate between a positive electrode and a negative electrode.
- the electrode active material of the present invention includes one or more polymers having a radical site and an anion site.
- the radical site in the polymer exists in a reduced state and can be converted to the first cation site by oxidation.
- the anion site can bind to the first cation site converted by oxidation of the radical site in the polymer or the second cation existing outside the polymer. That is, the first cation site is present in the polymer and the second cation is not present in the polymer.
- the kind of 2nd cation is not specifically limited, It is preferable that it is a monovalent cation, and it is more preferable that it is lithium ion (Li ⁇ +> ). When lithium ions (Li + ) are used, a secondary battery having a higher energy density can be obtained.
- the radical site and the anion site may be present in the polymer of the same molecule, or may be present in different first and second polymer molecules.
- the “site” means at least a part of the structure in the polymer molecule.
- the electrode active material may be used only in the positive electrode, in the negative electrode, or in both the positive electrode and the negative electrode.
- the secondary battery using the electrode containing the electrode active material of the present invention By using the secondary battery using the electrode containing the electrode active material of the present invention, even when a p-type redox structure (for example, a nitroxyl radical) is used, lithium ions are positive and negative. Charging / discharging can be performed in a form that reciprocates between them (rocking chair type). As a result, it is not necessary to keep the amount of anion necessary for doping in the electrolyte during charging, and the amount of electrolyte can be reduced. As a result, a secondary battery having a high energy density can be obtained.
- a p-type redox structure for example, a nitroxyl radical
- reaction formula (A) is a formula representing an electrode reaction in the positive electrode during charge / discharge.
- the radical site becomes the first cation site R + and binds to the anion site Y ⁇ in the Y ⁇ ⁇ Li + salt to form R + ⁇
- a polyion complex having the structure of Y ⁇ is obtained.
- Li + is released into the electrolyte and moves toward the negative electrode side.
- the same amount of Li + present in the electrolytic solution as that of Li + released from the positive electrode into the electrolytic solution is occluded in the negative electrode.
- Li + is released from the negative electrode into the electrolyte, and then moves toward the positive electrode. Further, the amount of Li + present in the electrolytic solution is occluded in the positive electrode in the same amount as the amount of Li + released from the negative electrode into the electrolytic solution.
- Li + reciprocates between the positive electrode and the negative electrode (charging chair type) with charge / discharge.
- the active material used for the negative electrode the active material for electrodes of the present invention may be used, or an active material other than the active material for electrodes of the present invention may be used.
- the electrode reaction of the negative electrode at the time of charging / discharging becomes reverse direction with Reaction formula (A).
- another active material for a negative electrode if it can occlude Li ⁇ +> at the time of charge and can discharge
- the active material for electrodes of this invention as an active material for positive electrodes was demonstrated in said example, you may use the active material for electrodes of this invention only for a negative electrode.
- the active material used for the positive electrode is not particularly limited as long as it can release Li + during charging and occlude Li + during discharging.
- the radical part or the first cation part and the anion part may be present in the polymer of the same molecule, and the radical part or the first cation part Each anion moiety may be present in a different type of polymer molecule.
- a polyion complex R in which radical sites R ⁇ and Y ⁇ Li + salt structures are present in one molecule or form an intramolecular ionic bond in the form of R + ⁇ Y ⁇ + ⁇ Y ⁇
- the radical site and the anion site are present in different types of polymer molecules, in the positive electrode, the radical site and the anion site are present in different polymer molecules in the discharged state, but when charged, the polyion complex R + ⁇ Y - to become.
- the radical site and the anion site are present in different types of polymer molecules in the charged state, but when discharged, a polyion complex is formed.
- the electrode active material and the secondary battery of the present invention will be described in more detail.
- the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention. can do.
- polymer having radical site a polymer having only a radical site and no anion site in the same molecule will be described.
- This polymer has a site that can be converted into a radical site in the reduced state and a first cation site in the oxidized state. More specifically, as shown in the following reaction formula (B), this polymer has a structure that becomes a cation (R + ) in an oxidized state and a radical (R ⁇ ) in a reduced state.
- this nitroxyl radical becomes a nitroxyl cation represented by the following formula (1) in the oxidized state, and becomes a nitroxyl radical represented by the following formula (2) in the reduced state.
- a nitroxyl radical that becomes a cyclic nitroxyl radical represented by the following formula (3) in the reduced state It is more preferable to use a nitroxyl radical that becomes a cyclic nitroxyl radical represented by the following formula (3) in the reduced state.
- R 1 to R 4 each independently represents an alkyl group, and each independently preferably a linear alkyl group. From the viewpoint of radical stability, R 1 to R 4 are each independently preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group.
- X contains a divalent group such that the cyclic nitroxyl radical of the above formula (3) forms a 5- to 7-membered ring. Such a structure of X is not particularly limited, but includes an element selected from the group consisting of carbon, oxygen, nitrogen, and sulfur. There are no particular restrictions on the portion of X that constitutes the cyclic structure.
- a hydrogen atom bonded to an atom constituting the ring may be substituted with an alkyl group, a halogen atom, ⁇ O, or the like.
- a particularly preferred cyclic nitroxyl radical structure is a 2,2,6,6-tetramethylpiperidinoxyl radical represented by the following formula (4) in the reduced state, and a 2,2,6,6-tetramethylpiperidinoxyl radical represented by the following formula (5). It is selected from the group consisting of 2,5,5-tetramethylpyrrolinoxyl radical and 2,2,5,5-tetramethylpyrrolinoxyl radical represented by the following formula (6).
- R 1 to R 4 represent the same groups as in the above formula (3).
- X of the cyclic nitroxyl radical structure represented by the above formula (3) is bonded to the main chain or side chain of the polymer, and the cyclic nitroxyl radical structure constitutes at least a part of the main chain or side chain of the polymer. That is, a structure excluding at least one hydrogen atom bonded to an element constituting the cyclic structure is bonded to the side chain or main chain of the polymer. In view of ease of synthesis and the like, the cyclic structure is preferably bonded to the side chain of the polymer.
- —CH 2 constituting the cyclic structure in the group X of the cyclic nitroxyl radical structure represented by the above formula (3) It is bonded to a part of the main chain or side chain of the polymer by a residue X ′ in which a hydrogen atom is removed from —, —CH ⁇ or —NH—.
- X ′ may be bonded to a part of the main chain or side chain of the polymer via a divalent group.
- R 1 to R 4 are the same groups as in the above formula (3), and X ′ represents a residue obtained by removing hydrogen from the portion constituting the cyclic structure in X of the above formula (3).
- X ′ represents a residue obtained by removing hydrogen from the portion constituting the cyclic structure in X of the above formula (3).
- the structure of the polymer main chain to be used is not particularly limited, and any structure may be used as long as the structure represented by the formula (7) is present as a part or all of the side chain.
- the polymer shown below has a structure represented by the above formula (7) added as a side chain, or a part of the polymer atom or group is represented by the above formula (7) as a side chain. Mention may be made of those substituted by structure.
- the structure represented by the above formula (7) is not directly, and may be bonded to the polymer via an appropriate divalent group in the middle.
- Examples of the structure of the main chain polymer include the following. Polyalkylene polymers such as polyethylene, polypropylene, polybutene, polydecene, polydodecene, polyheptene, polyisobutene, polyoctadecene; Diene polymers such as polybutadiene, polychloroprene, polyisoprene and polyisobutene; Poly (meth) acrylic acid; Poly (meth) acrylonitrile; Poly (meth) acrylamide polymers such as poly (meth) acrylamide, polymethyl (meth) acrylamide, polydimethyl (meth) acrylamide, polyisopropyl (meth) acrylamide; Polyalkyl (meth) acrylates such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate; Fluorine-based polymers such as polyvinylidene fluoride and polytetra
- (meth) acryl means methacryl or acryl.
- the polymer main chain is polyalkylene polymer, poly (meth) acrylic acid, poly (meth) acrylamide polymers, polyalkyl (meth) acrylates, polystyrene because of its excellent electrochemical resistance. It preferably has a polymer structure.
- the “main chain” is a carbon chain having the largest number of carbon atoms in the polymer compound.
- the “side chain” is a carbon chain that branches from the main chain and has fewer carbon atoms than the main chain in the polymer compound.
- the polymer is selected so that the repeating unit represented by the following formula (8) can be included in the reduced state.
- R 1 to R 4 are the same group as the above formula (3), and X ′ is the same as the above formula (7).
- R 5 is hydrogen or a methyl group.
- Y is not particularly limited, but is —CO—, —COO—, —CONR 6 —, —O—, —S—, an optionally substituted alkylene group having 1 to 18 carbon atoms, and a substituent. And an arylene group having 1 to 18 carbon atoms which may be used, and a divalent group formed by bonding two or more of these groups.
- R 6 represents an alkyl group having 1 to 18 carbon atoms.
- those represented by the following formulas (9) to (11) are particularly preferred.
- R 1 to R 4 are the same group as in the above formula (3)
- R 5 and Y are the same groups as in the above formula (8), but Y is particularly —COO. Either-, -O- or -CONR 6- is preferred.
- R 6 is the same group as the above formula (8).
- the structure represented by the above formula (7) may constitute a part of the main chain or side chain of the polymer, or may constitute all of the main chain or side chain.
- all of the units constituting the polymer may be units represented by the above formula (8), or a part thereof may be units represented by the above formula (8).
- the degree to which the cyclic nitroxyl radical site is contained in the polymer depends on the purpose, the structure of the polymer, and the production method, but it is sufficient that the cyclic nitroxyl radical site is present even slightly.
- the cyclic nitroxyl radical site is preferably 1% by mass or more, particularly 10% by mass or more of the whole polymer.
- the content of the cyclic nitroxyl radical site in the polymer is preferably 50% by mass or more, particularly preferably 80% by mass or more.
- examples of the polymer unit having a radical site include a copolymer represented by the following formula (12) and / or (13), or a copolymer containing the chemical structure as a repeating unit.
- R 1 to R 4 are the same groups as in the above formula (3), and R 5 is hydrogen or a methyl group.
- n represents an arbitrary positive integer
- the molecular weight of the polymer having a radical site is not particularly limited, but when the secondary battery is constructed, it preferably has a molecular weight that does not dissolve in the electrolyte solution, which is the organic solvent in the electrolyte solution. It depends on the combination with the type. Generally, the weight average molecular weight is 1000 or more, preferably 10,000 or more, more preferably 20000 or more. Moreover, Preferably it is 5 million or less, More preferably, it is 500,000 or less. Moreover, the polymer containing the structure represented by the above formula (7) may be cross-linked, thereby improving the durability against the electrolyte.
- a polymer having only an anion moiety and having no radical moiety in the same molecule will be described.
- an anion selected from sulfonate, carboxylate, and phosphate can be used.
- Examples of the structure of the main chain of the polymer having an anion moiety include the following.
- Polyalkylene polymers such as polyethylene, polypropylene, polybutene, polydecene, polydodecene, polyheptene, polyisobutene, polyoctadecene; Diene polymers such as polybutadiene, polychloroprene, polyisoprene and polyisobutene; Poly (meth) acrylic acid; Poly (meth) acrylonitrile; Poly (meth) acrylamide polymers such as poly (meth) acrylamide, polymethyl (meth) acrylamide, polydimethyl (meth) acrylamide, polyisopropyl (meth) acrylamide; Polyalkyl (meth) acrylates such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate; Fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene; Polystyrene polymers such
- (meth) acryl means methacryl or acryl.
- polyalkylene polymers poly (meth) acrylic acid, poly (meth) acrylamide polymers, polyalkyl (meth) acrylates, polystyrene polymers are excellent in electrochemical resistance.
- the main chain structure is preferable.
- the “main chain” is a carbon chain having the largest number of carbon atoms in the polymer compound.
- examples of the polymer having an anion moiety preferably used in the present invention include polymers represented by the following formulas (14) and (15).
- n represents an arbitrary positive integer
- n and m represent any positive integer
- R 1 to R 4 are the same group as the above formula (3), and R 5 is the same group as the above formula (8).
- the radical site may be the first cation site in some cases.
- the polyion complex oxidizes the radical site R. to convert it to a first cation site R + , which is further combined with the anion site Y ⁇ to produce R +. Y - it can be obtained by a.
- Polymer having a radical part and an anion part in the same molecule is used as the polymer having the radical part and the anion part.
- the radical site and the anion site are present in different types of polymer molecules, the polymer having a radical site and the polymer having an anion site are respectively referred to as “1. polymer having a radical site” and “2. anion site”.
- Polymers described in “Polymer having” can be used.
- FIG. 1 shows the configuration of one embodiment of the secondary battery of the present invention.
- the secondary battery shown in FIG. 1 has a positive electrode 1 formed on a current collector (metal foil) 4 connected to a positive electrode lead 5 and a current collector (metal foil) 6 connected to a negative electrode lead 7.
- the formed negative electrode 2 is disposed so as to face each other with a separator 3 containing an electrolyte, and a laminated body in which these are overlapped is provided. This laminate is sealed with an aluminum laminate exterior body (exterior film) 8.
- solid electrolyte and gel electrolyte as electrolyte, it is good also as a form which replaces with the separator 3 and interposes these electrolytes between electrodes.
- the shape in which the laminated body is housed in the exterior body 8 is used, but the shape of the secondary battery is not limited to this, and a conventionally known one can be used.
- the shape of the secondary battery include a case where the electrode laminate and the wound body are sealed with a metal case, a resin case, or a laminate film made of a synthetic foil and a metal foil such as an aluminum foil, etc. Manufactured into a cylindrical shape, a square shape, a coin shape, a sheet shape and the like.
- the active material for electrodes of this invention is used for the positive electrode 1, the negative electrode 2, or both electrodes.
- the “secondary battery” is a battery that can extract and store the electrochemically stored energy in the form of electric power and can be charged and discharged.
- “positive electrode” refers to an electrode having a higher redox potential
- “negative electrode” refers to an electrode having a lower redox potential.
- the secondary battery of the present invention is sometimes referred to as a “capacitor”.
- Electrode active material The electrode active material of the present invention can be used in either one of the positive electrode or the negative electrode of the secondary battery, or in both electrodes.
- the electrode active material of the present invention may be used alone or in combination with other active materials.
- the active material for an electrode of the present invention is preferably contained in an amount of 10 to 90 parts by weight with respect to 100 parts by weight of the total active material. More preferably, it contains 80 parts by mass.
- the positive electrode and negative electrode active materials described below can be used in combination.
- the electrode active material of the present invention is used only for the positive electrode or the negative electrode, conventionally known materials can be used as the active material for the other electrode not including the electrode active material of the present invention.
- the electrode active material of the present invention when used for the positive electrode, a material capable of reversibly inserting and extracting lithium ions can be used as the negative electrode active material.
- the active material for the negative electrode include metallic lithium, lithium alloys, carbon materials, conductive polymers, lithium oxides, and the like.
- the lithium alloy include a lithium-aluminum alloy, a lithium-tin alloy, and a lithium-silicon alloy.
- carbon materials include graphite, hard carbon, activated carbon, and the like.
- the conductive polymers include polyacene, polyacetylene, polyphenylene, polyaniline, polypyrrole, and the like.
- lithium oxides include lithium alloys such as a lithium aluminum alloy, lithium titanate, and the like.
- the electrode active material of the present invention when used for a negative electrode, a material capable of reversibly occluding and releasing lithium ions can be used as the positive electrode active material.
- the active material for the positive electrode include lithium-containing composite oxides. Specifically, LiMO 2 (M is selected from Mn, Fe, and Co, and a part thereof is substituted with other cations such as Mg, Al, and Ti. May be used), LiMn 2 O 4 , or an olivine-type metal phosphate material.
- the electrode using the electrode active material of the present invention is not limited to either the positive electrode or the negative electrode, but is preferably used as the active material for the positive electrode from the viewpoint of energy density.
- Conductivity-imparting agent (auxiliary conductive material) and ion-conducting auxiliary material are used for the purpose of reducing impedance and improving energy density and output characteristics.
- Auxiliary materials can also be mixed.
- Examples of the conductivity-imparting agent include carbon materials such as graphite, carbon black, acetylene black, carbon fiber, and carbon nanotube, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene.
- a carbon material is preferable, and specifically, at least one selected from the group consisting of natural graphite, artificial graphite, carbon black, vapor-grown carbon fiber, mesophase pitch carbon fiber, and carbon nanotube is preferable.
- These conductivity-imparting agents may be used in a mixture of two or more at any ratio within the scope of the gist of the present invention.
- size of an electroconductivity imparting agent is not specifically limited, From the viewpoint of uniform dispersion, it is so preferable that it is fine.
- the average particle size of the primary particles is preferably 500 nm or less as the particle size, the diameter is preferably 500 nm or less, and the length is preferably 5 nm or more and 50 ⁇ m or less in the case of a fiber or tube material.
- the average particle size and each dimension here are average values obtained by observation in an electron microscope, or values measured by a D 50 value particle size distribution meter of particle size distribution measured by a laser diffraction particle size distribution measuring device. is there.
- the ion conduction auxiliary material examples include a polymer gel electrolyte and a polymer solid electrolyte. Among these, it is preferable to mix carbon fibers. By mixing carbon fiber, the tensile strength of the electrode is increased, and the electrode is less likely to crack or peel off. More preferably, vapor grown carbon fiber is mixed. These materials can be used alone or in admixture of two or more. The ratio of these materials in the electrode is preferably 10 to 80% by mass.
- Binder A binder may be used to strengthen the bond between the materials in the positive electrode and the negative electrode.
- binders include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, polypropylene, polyethylene Resin binders such as polyimide and various polyurethanes. These binders can be used alone or in admixture of two or more. The ratio of the binder in the electrode is preferably 5 to 30% by mass.
- a thickener may be used to facilitate adjustment of the electrode slurry.
- Such thickeners include carboxymethyl cellulose, polyethylene oxide, polypropylene oxide, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol, polyacrylamide, hydroxyethyl polyacrylate, ammonium polyacrylate, polyacrylic acid. Examples include soda.
- These thickeners can be used alone or in admixture of two or more.
- the proportion of the thickener in the electrode is preferably 0.1 to 5% by mass.
- the thickener may also serve as a binder.
- separator a porous film made of polyethylene, polypropylene, or the like, a cellulose film, a nonwoven fabric, or the like can be used. Moreover, when using solid electrolyte and gel electrolyte as electrolyte, it can replace with a separator and can also be set as the form which interposes these electrolyte between a positive electrode and a negative electrode.
- Electrolyte is used to transport charge carriers between the negative electrode and the positive electrode, and generally has an ionic conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at 20 ° C.
- the electrolyte for example, an electrolytic solution in which an electrolyte salt is dissolved in a solvent can be used.
- the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, and Li (C 2 F 5 SO 2 ) 2.
- Conventionally known materials such as N, Li (CF 3 SO 2 ) 3 C, and Li (C 2 F 5 SO 2 ) 3 C can be used.
- These electrolyte salts can be used alone or in admixture of two or more.
- examples of the solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, N, N-dimethylformamide, N, Organic solvents such as N-dimethylacetamide and N-methyl-2-pyrrolidone can be used. These solvents can be used alone or in admixture of two or more.
- a solid electrolyte can be used as the electrolyte.
- the polymer compound used in these solid electrolytes include the following. Polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride- Vinylidene fluoride polymers such as tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer; Acrylonitrile-methyl methacrylate copolymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-
- polymer compounds may be used in the form of a gel containing an electrolytic solution, or only a polymer compound containing an electrolyte salt may be used as it is.
- Shape of the secondary battery is not particularly limited, and conventionally known batteries can be used.
- Examples of the shape of the secondary battery include a case where an electrode laminate or a wound body is sealed with a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film. Specifically, it is manufactured in a cylindrical shape, a rectangular shape, a coin shape, a sheet shape, or the like, but the shape of the secondary battery of the present invention is not limited to these.
- the manufacturing method of the secondary battery is not particularly limited, and a method appropriately selected according to the material can be used.
- a solvent is added to an electrode active material, a conductivity imparting agent, and the like to form a slurry, which is applied onto a current collector, and then the electrode is produced by heating or volatilizing the solvent at room temperature.
- a method of wrapping with an exterior body and injecting an electrolyte solution and sealing it can be mentioned.
- Examples of the solvent for slurrying include the following. Ether solvents such as tetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether, dioxane; Amine solvents such as N, N-dimethylformamide, N-methylpyrrolidone; Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Aliphatic hydrocarbon solvents such as hexane and heptane; Halogenated hydrocarbon solvents such as chloroform, dichloromethane, dichloroethane, trichloroethane, carbon tetrachloride; Alkyl ketone solvents such as acetone and methyl ethyl ketone; Alcohol solvents such as methanol, ethanol, isopropyl alcohol; Dimethyl sulfoxide, water.
- Ether solvents such as tetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether, diox
- the electrode can be produced by a method of kneading an electrode active material, a conductivity-imparting agent and the like in a dry manner and then forming a thin film and stacking on the current collector.
- the electrode has a thickness of 40 ⁇ m or more and 300 ⁇ m or less, such as electrode peeling or cracking Occurrence can be suppressed. As a result, a uniform electrode can be produced.
- a polymer in the form of a radical site may be used, or a polymer in a form capable of changing to a radical by an electrode reaction may be used.
- the radical site of this polymer can be converted to the first cation site by an electrode reaction (oxidation reaction).
- this polymer has a first cation moiety, and can be converted to a radical moiety by an electrode reaction (reduction reaction).
- this polymer include a salt of a polymer having a first cation site and PF 6- , BF 4-, or the like.
- the composite of the active material for electrode, activated carbon, and conductive material of the present invention that exhibits good electronic conductivity, or the electrode of the present invention is used as an electrode.
- Example 1 a secondary battery using the polyion complex A represented by the following formula (22) as a positive active material was produced.
- PSS solution was added dropwise to the cationic polymer and stirred, polyion complex A of the above formula (22) was obtained as a white precipitate (yield: 91%).
- SQUID measurement Superconducting Quantum Interference Device; superconducting quantum interference device
- Polyion complex A, carbon fiber, and polyvinylidene difluoride were mixed at a mass ratio of 1/8/1 and then dispersed in N-methylpyrrolidone to obtain a slurry.
- the slurry was applied on an aluminum foil to prepare a polyion complex A / carbon composite electrode.
- a half cell using the obtained polyion complex A / carbon composite electrode as the positive electrode, metal Li as the negative electrode, and 0.5M (C 4 H 9 ) 4 NClO 4 -containing acetonitrile as the electrolyte was prepared, and the discharge characteristics were evaluated. .
- a discharge capacity of 28 mAh / g was obtained in 10C discharge.
- a capacity of about 30% of a theoretical capacity of 70.3 mAh / g was obtained, and it was confirmed that Polyion Complex A was effective as an electrode active material.
- Example 2 The electrode which used the copolymer B represented by following formula (25) for the active material for electrodes was produced.
- copolymer B represented by the above formula (26) was pulverized by a ball mill and then uniformly dispersed by adding it to mCPBA − THF solution, followed by stirring overnight. Through precipitation purification into diethyl ether, copolymer B was obtained as an orange solid. From the SQUID measurement, the radical concentration was estimated to be 96%. Copolymer B / VGCF / PVdF was mixed at 1/8/1 (mass ratio) and applied onto an ITO substrate to prepare an electrode.
- the secondary battery of the present invention is a power source for various portable electronic devices that require high energy density, a driving or auxiliary storage power source for electric vehicles, hybrid electric vehicles, etc., a power storage device for various types of energy such as solar energy and wind power generation, Alternatively, it can be used as a storage power source for household electric appliances.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
第1カチオン部位への変換が可能なラジカル部位と、前記第1カチオン部位又は第2カチオンとの結合が可能なアニオン部位と、を有する1種以上のポリマー、
を含む電極用活物質に関する。
下記(1)又は(2)のポリマーを含む電極用活物質に関する。
(2)酸化反応により第1カチオン部位に変換し還元反応によりラジカル部位に変換することが可能な部位を有する第1のポリマーと、前記第1カチオン部位又は第2カチオンと結合することが可能なアニオン部位を有する第2のポリマー。
ここでは、ラジカル部位のみを有し、同一分子中にアニオン部位を有さないポリマーについて説明する。このポリマーは、還元状態でラジカル部位、酸化状態で第1カチオン部位に変換することが可能な部位を有する。より具体的には、下記反応式(B)に示すように、このポリマーは、酸化状態においてカチオン(R+)、還元状態においてラジカル(R・)となる構造を有する。
ポリエチレン、ポリプロピレン、ポリブテン、ポリデセン、ポリドデセン、ポリヘプテン、ポリイソブテン、ポリオクタデセン等のポリアルキレン系ポリマー;
ポリブタジエン、ポリクロロプレン、ポリイソプレン、ポリイソブテン等のジエン系ポリマー;
ポリ(メタ)アクリル酸;
ポリ(メタ)アクリロニトリル;
ポリ(メタ)アクリルアミド、ポリメチル(メタ)アクリルアミド、ポリジメチル(メタ)アクリルアミド、ポリイソプロピル(メタ)アクリルアミド等のポリ(メタ)アクリルアミド類ポリマー;
ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリアルキル(メタ)アクリレート類;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー;
ポリスチレン、ポリブロモスチレン、ポリクロロスチレン、ポリメチルスチレン等のポリスチレン系ポリマー;
ポリビニルアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリビニルメチルエーテル、ポリビニルカルバゾール、ポリビニルピリジン、ポリビニルピロリドン等のビニル系ポリマー;
ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブテンオキサイド、ポリオキシメチレン、ポリアセトアルデヒド、ポリメチルビニルエーテル、ポリプロピルビニルエーテル、ポリブチルビニルエーテル、ポリベンジルビニルエーテル等のポリエーテル系ポリマー;
ポリメチレンスルフィド、ポリエチレンスルフィド、ポリエチレンジスルフィド、ポリプロピレンスルフィド、ポリフェニレンスルフィド、ポリエチレンテトラフルフィド、ポリエチレントリメチレンスルフィド等のポリスルフィド系ポリマー;
ポリエチレンテレフタレート、ポリエチレンアジペート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリエチレンパラフェニレンジアセテート、ポリエチレンイソプロピリデンジベンゾエート等のポリエステル類;
ポリトリメチレンエチレンウレタン等のポリウレタン類;
ポリエーテルケトン、ポリアリルエーテルケトン等のポリケトン系ポリマー;
ポリオキシイソフタロイル等のポリ無水物系ポリマー;
ポリエチレンアミン、ポリヘキサメチレンアミン、ポリエチレントリメチレンアミン等のポリアミン系ポリマー;
ナイロン、ポリグリシン、ポリアラニン等のポリアミド系ポリマー;
ポリアセチルイミノエチレン、ポリベンゾイルイミノエチレン等のポリイミン系ポリマー;
ポリエステルイミド、ポリエーテルイミド、ポリベンズイミド、ポリピロメルイミド等のポリイミド系ポリマー;
ポリアリレン、ポリアリレンアルキレン、ポリアリレンアルケニレン、ポリフェノール、フェノール樹脂、セルロース、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリベンゾキサジン、ポリベンゾキサゾール、ポリカルボラン、ポリジベンゾフラン、ポリオキソイソインドリン、ポリフランテトラカルボキシル酸ジイミド、ポリオキサジアゾール、ポリオキシンドール、ポリフタラジン、ポリフタライド、ポリシアヌレート、ポリイソシアヌレート、ポリピペラジン、ポリピペリジン、ポリピラジノキノキサン、ポリピラゾール、ポリピリダジン、ポリピリジン、ポリピロメリチミン、ポリキノン、ポリピロリジン、ポリキノキサリン、ポリトリアジン、ポリトリアゾール等のポリアロマティック系ポリマー;
ポリジシロキサン、ポリジメチルシロキサン等のシロキサン系ポリマー;
ポリシラン系ポリマー;
ポリシラザン系ポリマー;
ポリホスファゼン系ポリマー;
ポリチアジル系ポリマー;
ポリアセチレン、ポリピロール、ポリアニリン等の共役系ポリマー。
ここでは、アニオン部位のみを有し、同一分子中にラジカル部位を有さないポリマーについて説明する。アニオン部位としては、スルホネート、カルボキシレート、ホスフェートから選ばれたアニオンを使用することができる。アニオン部位を有するポリマーの主鎖の構造としては、下記のものを挙げることができる。
ポリエチレン、ポリプロピレン、ポリブテン、ポリデセン、ポリドデセン、ポリヘプテン、ポリイソブテン、ポリオクタデセン等のポリアルキレン系ポリマー;
ポリブタジエン、ポリクロロプレン、ポリイソプレン、ポリイソブテン等のジエン系ポリマー;
ポリ(メタ)アクリル酸;
ポリ(メタ)アクリロニトリル;
ポリ(メタ)アクリルアミド、ポリメチル(メタ)アクリルアミド、ポリジメチル(メタ)アクリルアミド、ポリイソプロピル(メタ)アクリルアミド等のポリ(メタ)アクリルアミド類ポリマー;
ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリアルキル(メタ)アクリレート類;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー;
ポリスチレン、ポリブロモスチレン、ポリクロロスチレン、ポリメチルスチレン等のポリスチレン系ポリマー;
ポリビニルアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリビニルメチルエーテル、ポリビニルカルバゾール、ポリビニルピリジン、ポリビニルピロリドン等のビニル系ポリマー;
ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブテンオキサイド、ポリオキシメチレン、ポリアセトアルデヒド、ポリメチルビニルエーテル、ポリプロピルビニルエーテル、ポリブチルビニルエーテル、ポリベンジルビニルエーテル等のポリエーテル系ポリマー;
ポリメチレンスルフィド、ポリエチレンスルフィド、ポリエチレンジスルフィド、ポリプロピレンスルフィド、ポリフェニレンスルフィド、ポリエチレンテトラフルフィド、ポリエチレントリメチレンスルフィド等のポリスルフィド系ポリマー;
ポリエチレンテレフタレート、ポリエチレンアジペート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリエチレンパラフェニレンジアセテート、ポリエチレンイソプロピリデンジベンゾエート等のポリエステル類;
ポリトリメチレンエチレンウレタン等のポリウレタン類;
ポリエーテルケトン、ポリアリルエーテルケトン等のポリケトン系ポリマー;
ポリオキシイソフタロイル等のポリ無水物系ポリマー;
ポリエチレンアミン、ポリヘキサメチレンアミン、ポリエチレントリメチレンアミン等のポリアミン系ポリマー;
ナイロン、ポリグリシン、ポリアラニン等のポリアミド系ポリマー;
ポリアセチルイミノエチレン、ポリベンゾイルイミノエチレン等のポリイミン系ポリマー;
ポリエステルイミド、ポリエーテルイミド、ポリベンズイミド、ポリピロメルイミド等のポリイミド系ポリマー;
ポリアリレン、ポリアリレンアルキレン、ポリアリレンアルケニレン、ポリフェノール、フェノール樹脂、セルロース、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリベンゾキサジン、ポリベンゾキサゾール、ポリカルボラン、ポリジベンゾフラン、ポリオキソイソインドリン、ポリフランテトラカルボキシル酸ジイミド、ポリオキサジアゾール、ポリオキシンドール、ポリフタラジン、ポリフタライド、ポリシアヌレート、ポリイソシアヌレート、ポリピペラジン、ポリピペリジン、ポリピラジノキノキサン、ポリピラゾール、ポリピリダジン、ポリピリジン、ポリピロメリチミン、ポリキノン、ポリピロリジン、ポリキノキサリン、ポリトリアジン、ポリトリアゾール等のポリアロマティック系ポリマー;
ポリジシロキサン、ポリジメチルシロキサン等のシロキサン系ポリマー;
ポリシラン系ポリマー;
ポリシラザン系ポリマー;
ポリホスファゼン系ポリマー;
ポリチアジル系ポリマー;
ポリアセチレン、ポリピロール、ポリアニリン等の共役系ポリマー。
ここでは、ラジカル部位とアニオン部位を同一分子中に有するポリマーについて説明する。このポリマーの一例は、下記式(16)で表される。
ポリイオンコンプレックスは、下記式(21)に示すように、ラジカル部位R・を酸化して第1カチオン部位R+に変換し、さらにこれをアニオン部位Y-と結合させて、R+・Y-とすることにより得ることができる。
図1に、本発明の二次電池の一実施形態の構成を示す。図1に示した二次電池は、正極リード5に接続された集電体(金属箔)4上に形成した正極1と、負極リード7に接続された集電体(金属箔)6上に形成した負極2を、電解質を含むセパレータ3を介して対向するように配置し、これらを重ね合わせた積層体を有している。この積層体は、アルミラミネート外装体(外装用フィルム)8で封止されている。なお、電解質として固体電解質やゲル電解質を用いる場合は、セパレータ3に代えてこれら電解質を電極間に介在させる形態としても良い。
本発明の電極用活物質は、二次電池の正極及び負極のうち何れか一方の電極、または、両方の電極中に用いることができる。二次電池の電極(正極、負極)中には、本発明の電極用活物質を単独で用いても、他の活物質と組み合わせて用いても良い。本発明の電極用活物質と他の活物質を併用して用いる場合、全活物質100質量部に対して、本発明の電極用活物質を10~90質量部、含むことが好ましく、20~80質量部を含むことがより好ましい。この場合、他の活物質としては、下記に記載の正極用及び負極用の活物質を併用することができる。
正極・負極中には、インピーダンスを低下させ、エネルギー密度、出力特性を向上させる目的で、導電付与剤(補助導電材)やイオン伝導補助材を混合させることもできる。
正極・負極中の各材料間の結びつきを強めるために、結着剤を用いても良い。このような結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダが挙げられる。これらの結着剤は、単独でまたは2種類以上混合して用いることもできる。電極中の結着剤の割合としては、5~30質量%が好ましい。
電極用のスラリーを調整しやすくするために、増粘剤を用いても良い。このような増粘剤としては、カルボキシメチルセルロース、ポリエチレンオキシド、ポリプロピレンオキシド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ヒドロキシエチル、ポリアクリル酸アンモニウム、ポリアクリル酸ソーダ等が挙げられる。これらの増粘剤は、単独でまたは2種類以上混合して用いることもできる。電極中の増粘剤の割合としては、0.1~5質量%が好ましい。また、増粘剤は、結着剤の役割も果たすことがある。
負極集電体及び正極集電体としては、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、金属平板、メッシュ状などの形状のものを用いることができる。また、集電体に触媒効果を持たせたり、電極活物質と集電体とを化学結合させたりしてもよい。
セパレータとしては、ポリエチレン、ポリプロピレン等からなる多孔質フィルム、セルロース膜、不織布等を用いることもできる。また、電解質として固体電解質やゲル電解質を用いる場合は、セパレータに代えてこれら電解質を正極と負極間に介在させる形態とすることもできる。
電解質は、負極と正極間の荷電担体輸送を行うものであり、一般には20℃で10-5~10-1S/cmのイオン伝導性を有するものが好ましい。電解質としては、例えば電解質塩を溶剤に溶解した電解液を利用することができる。第2カチオンがリチウムイオンである場合、電解質塩としては例えば、LiPF6、LiClO4、LiBF4、LiCF3SO3、Li(CF3SO2)2N、Li(C2F5SO2)2N、Li(CF3SO2)3C、Li(C2F5SO2)3C等の従来公知の材料を用いることができる。これらの電解質塩は、単独でまたは2種類以上を混合して用いることもできる。
ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体;
アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアクリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリルニトリル系重合体;
ポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体。
二次電池の形状は特に限定されず、従来から公知のものを用いることができる。二次電池の形状としては、電極積層体、又は巻回体を、金属ケース、樹脂ケース、或いはアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止したもの等が挙げられる。具体的には、円筒型、角型、コイン型、およびシート型等で作製されるが、本発明の二次電池の形状はこれらに限定されるものではない。
二次電池の製造方法としては特に限定されず、材料に応じて適宜、選択した方法を用いることができる。例えば、電極用活物質、導電付与剤などに溶剤を加えてスラリー状にし、これを集電体上に塗布した後、加熱もしくは常温で溶剤を揮発させることにより電極を作製する。次に、この電極を、セパレータを挟んで互いに対向して積層または巻回した後、外装体で包み、電解液を注入して封止するといった方法を挙げることができる。
テトラヒドロフラン、ジエチルエーテル、エチレングリコールジメチルエーテル、ジオキサンなどのエーテル系溶媒;
N、N-ジメチルホルムアミド、N-メチルピロリドン等のアミン系溶媒;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;
ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒;
クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、四塩化炭素等のハロゲン化炭化水素系溶媒;
アセトン、メチルエチルケトンなどのアルキルケトン系溶媒;
メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒;
ジメチルスルホキシド、水。
本実施例では、下記式(22)で表されるポリイオンコンプレックスAを正用活物質に用いた二次電池を作製した。
下記式(25)で表されるコポリマーBを、電極用活物質に用いた電極を作製した。
2 負極
3 セパレータ
4 正極集電体
5 正極リード
6 負極集電体
7 負極リード
8 外装体
9 二次電池
Claims (10)
- 第1カチオン部位への変換が可能なラジカル部位と、前記第1カチオン部位又は第2カチオンとの結合が可能なアニオン部位と、を有する1種以上のポリマー、
を含む電極用活物質。 - 同一分子中に前記ラジカル部位と前記アニオン部位を有する前記ポリマーを含む、請求項1に記載の電極用活物質。
- 前記ポリマーとして、前記ラジカル部位を有する第1のポリマーと、前記アニオン部位を有する第2のポリマーを含む、請求項1に記載の電極用活物質。
- 下記(1)又は(2)のポリマーを含む電極用活物質。
(1)酸化反応により第1カチオン部位に変換し還元反応によりラジカル部位に変換することが可能な部位と、前記第1カチオン部位又は第2カチオンと結合することが可能なアニオン部位と、を同一分子中に有するポリマー、
(2)酸化反応により第1カチオン部位に変換し還元反応によりラジカル部位に変換することが可能な部位を有する第1のポリマーと、前記第1カチオン部位又は第2カチオンと結合することが可能なアニオン部位を有する第2のポリマー。 - 前記第2カチオンは、リチウムイオン(Li+)である、請求項1~4の何れか1項に記載の電極用活物質。
- 還元状態の前記ラジカル部位はニトロキシルラジカルである、請求項1~5の何れか1項に記載の電極用活物質。
- 前記アニオン部位は、スルホネート、カルボキシレート、及びホスフェートからなる群から選ばれた少なくとも一種のアニオンである、請求項1~7の何れか1項に記載の電極用活物質。
- 前記第2カチオンがリチウムイオン(Li+)である請求項1~8の何れか1項に記載の電極用活物質を含む正極と、
リチウムイオン(Li+)を吸蔵、放出することが可能な活物質を含む負極と、
電解質としてリチウム塩と、非プロトン性溶媒と、を含む非水電解液と、
を有する二次電池。 - 下記(A)~(C)のうち何れか一つの形態の正極と負極を有する、二次電池。
(A)前記第2カチオンがリチウムイオン(Li+)である請求項1~8の何れか1項に記載の電極用活物質を含む正極、及び、リチウムイオン(Li+)を吸蔵、放出することが可能な活物質を含む負極、
(B)リチウムイオン(Li+)を吸蔵、放出することが可能な活物質を含む正極、及び、前記第2カチオンがリチウムイオン(Li+)である請求項1~8の何れか1項に記載の電極用活物質を含む負極、
(C)前記第2カチオンがリチウムイオン(Li+)である請求項1~8の何れか1項に記載の電極用活物質を含む正極と負極。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013503414A JPWO2012120929A1 (ja) | 2011-03-09 | 2012-01-23 | 電極用活物質、及び二次電池 |
US14/003,699 US9647269B2 (en) | 2011-03-09 | 2012-01-23 | Electrode active material and secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-051393 | 2011-03-09 | ||
JP2011051393 | 2011-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012120929A1 true WO2012120929A1 (ja) | 2012-09-13 |
Family
ID=46797900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051349 WO2012120929A1 (ja) | 2011-03-09 | 2012-01-23 | 電極用活物質、及び二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9647269B2 (ja) |
JP (2) | JPWO2012120929A1 (ja) |
WO (1) | WO2012120929A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050323A1 (ja) * | 2012-09-27 | 2014-04-03 | 日本電気株式会社 | コポリマー、電極用活物質、及び二次電池 |
DE102014003300A1 (de) | 2014-03-07 | 2015-09-10 | Evonik Degussa Gmbh | Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung |
DE102014004760A1 (de) | 2014-03-28 | 2015-10-01 | Evonik Degussa Gmbh | Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung |
EP3136410A1 (de) | 2015-08-26 | 2017-03-01 | Evonik Degussa GmbH | Verwendung bestimmter polymere als ladungsspeicher |
EP3135704A1 (de) | 2015-08-26 | 2017-03-01 | Evonik Degussa GmbH | Verwendung bestimmter polymere als ladungsspeicher |
EP3279223A1 (de) | 2016-08-05 | 2018-02-07 | Evonik Degussa GmbH | Verwendung thianthrenhaltiger polymere als ladungsspeicher |
WO2018024901A1 (de) | 2016-08-05 | 2018-02-08 | Evonik Degussa Gmbh | Verwendung thianthrenhaltiger polymere als ladungsspeicher |
WO2018046387A1 (de) | 2016-09-06 | 2018-03-15 | Evonik Degussa Gmbh | Verfahren zur verbesserten oxidation sekundärer amingruppen |
WO2018135624A1 (ja) * | 2017-01-20 | 2018-07-26 | 日本電気株式会社 | ラジカルポリマーを用いた電極及び二次電池 |
DE102017005924A1 (de) | 2017-06-23 | 2018-12-27 | Friedrich-Schiller-Universität Jena | Verwendung benzotriazinyl-haltiger Polymere als Ladungsspeicher |
CN109526241A (zh) * | 2016-07-26 | 2019-03-26 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、含固体电解质的片材及全固态二次电池的制造方法、以及链段化聚合物、聚合物及链段化聚合物的非水溶剂分散物 |
WO2020017630A1 (ja) * | 2018-07-19 | 2020-01-23 | 日本電気株式会社 | ラジカルポリマーを電極に用いた二次電池 |
US10756348B2 (en) | 2015-08-26 | 2020-08-25 | Evonik Operations Gmbh | Use of certain polymers as a charge store |
US10844145B2 (en) | 2016-06-02 | 2020-11-24 | Evonik Operations Gmbh | Method for producing an electrode material |
US10957907B2 (en) | 2015-08-26 | 2021-03-23 | Evonik Operations Gmbh | Use of certain polymers as a charge store |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10256460B2 (en) | 2013-03-11 | 2019-04-09 | Fluidic, Inc. | Integrable redox-active polymer batteries |
US11003870B2 (en) | 2014-01-10 | 2021-05-11 | Arizona Board Of Regents On Behalf Of Arizona State University | Redox active polymer devices and methods of using and manufacturing the same |
WO2015175553A1 (en) * | 2014-05-13 | 2015-11-19 | Arizona Board Of Regents On Behalf Of Arizona State University | Electrochemical energy storage devices comprising self-compensating polymers |
WO2015175556A1 (en) | 2014-05-13 | 2015-11-19 | Arizona Board Of Regents On Behalf Of Arizona State University | Redox active polymer devices and methods of using and manufacturing the same |
US9793566B2 (en) | 2015-04-17 | 2017-10-17 | Battelle Memorial Institute | Aqueous electrolytes for redox flow battery systems |
KR102268076B1 (ko) * | 2017-06-09 | 2021-06-23 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
KR102320325B1 (ko) * | 2017-06-20 | 2021-11-02 | 주식회사 엘지화학 | 리튬-황 전지 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002304996A (ja) * | 2001-04-03 | 2002-10-18 | Nec Corp | 蓄電デバイス |
WO2009054455A1 (ja) * | 2007-10-26 | 2009-04-30 | Kyusyu University | ニトロキシル基を有するハイパーブランチポリマー |
JP2009238612A (ja) * | 2008-03-27 | 2009-10-15 | Nec Corp | 蓄電デバイス |
JP2009245921A (ja) * | 2008-03-13 | 2009-10-22 | Denso Corp | 二次電池用電極及びその製造方法並びにその電極を採用した二次電池 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4442187A (en) | 1980-03-11 | 1984-04-10 | University Patents, Inc. | Batteries having conjugated polymer electrodes |
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
JP2715778B2 (ja) | 1991-01-29 | 1998-02-18 | 松下電器産業株式会社 | 可逆性電極材料 |
JP3687736B2 (ja) | 2000-02-25 | 2005-08-24 | 日本電気株式会社 | 二次電池 |
US7523220B2 (en) | 2003-09-17 | 2009-04-21 | Microsoft Corporation | Metaspace: communication middleware for partially connected mobile ad hoc networks |
JP4214280B2 (ja) | 2006-08-30 | 2009-01-28 | クオリティ株式会社 | ソフトウエア管理システム,管理サーバおよび管理プログラム |
JP5042800B2 (ja) | 2007-01-09 | 2012-10-03 | ドコモ・テクノロジ株式会社 | ネットワークデータ分散共有システム |
JP5076884B2 (ja) | 2007-02-20 | 2012-11-21 | 株式会社デンソー | 二次電池用電極及びその電極を採用した二次電池 |
JP2008244263A (ja) | 2007-03-28 | 2008-10-09 | Toyota Central R&D Labs Inc | 蓄電デバイス |
JP5176129B2 (ja) | 2007-05-09 | 2013-04-03 | 日本電気株式会社 | ポリラジカル化合物および電池 |
JP5211623B2 (ja) * | 2007-10-05 | 2013-06-12 | 株式会社豊田中央研究所 | 蓄電デバイス |
JP2010033265A (ja) | 2008-07-28 | 2010-02-12 | Nec Corp | コンテンツ配信方法およびシステム |
JP4829954B2 (ja) | 2008-12-01 | 2011-12-07 | 富士通株式会社 | 無線通信システム |
JP5365246B2 (ja) | 2009-02-23 | 2013-12-11 | コニカミノルタ株式会社 | 活物質、二次電池 |
-
2012
- 2012-01-23 US US14/003,699 patent/US9647269B2/en active Active
- 2012-01-23 JP JP2013503414A patent/JPWO2012120929A1/ja active Pending
- 2012-01-23 WO PCT/JP2012/051349 patent/WO2012120929A1/ja active Application Filing
-
2016
- 2016-09-26 JP JP2016186898A patent/JP6421804B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002304996A (ja) * | 2001-04-03 | 2002-10-18 | Nec Corp | 蓄電デバイス |
WO2009054455A1 (ja) * | 2007-10-26 | 2009-04-30 | Kyusyu University | ニトロキシル基を有するハイパーブランチポリマー |
JP2009245921A (ja) * | 2008-03-13 | 2009-10-22 | Denso Corp | 二次電池用電極及びその製造方法並びにその電極を採用した二次電池 |
JP2009238612A (ja) * | 2008-03-27 | 2009-10-15 | Nec Corp | 蓄電デバイス |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014050323A1 (ja) * | 2012-09-27 | 2016-08-22 | 日本電気株式会社 | コポリマー、電極用活物質、及び二次電池 |
WO2014050323A1 (ja) * | 2012-09-27 | 2014-04-03 | 日本電気株式会社 | コポリマー、電極用活物質、及び二次電池 |
DE102014003300A1 (de) | 2014-03-07 | 2015-09-10 | Evonik Degussa Gmbh | Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung |
US9890230B2 (en) | 2014-03-07 | 2018-02-13 | Evonik Degussa Gmbh | Tetracyanoanthraquinodimethane polymers and use thereof |
DE102014004760A1 (de) | 2014-03-28 | 2015-10-01 | Evonik Degussa Gmbh | Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung |
US10263280B2 (en) | 2014-03-28 | 2019-04-16 | Evonik Degussa Gmbh | 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof |
US10756348B2 (en) | 2015-08-26 | 2020-08-25 | Evonik Operations Gmbh | Use of certain polymers as a charge store |
EP3136410A1 (de) | 2015-08-26 | 2017-03-01 | Evonik Degussa GmbH | Verwendung bestimmter polymere als ladungsspeicher |
EP3135704A1 (de) | 2015-08-26 | 2017-03-01 | Evonik Degussa GmbH | Verwendung bestimmter polymere als ladungsspeicher |
US10957907B2 (en) | 2015-08-26 | 2021-03-23 | Evonik Operations Gmbh | Use of certain polymers as a charge store |
US10844145B2 (en) | 2016-06-02 | 2020-11-24 | Evonik Operations Gmbh | Method for producing an electrode material |
CN109526241B (zh) * | 2016-07-26 | 2022-07-01 | 富士胶片株式会社 | 固体电解质组合物、片材及电池及相关制造方法和聚合物 |
CN109526241A (zh) * | 2016-07-26 | 2019-03-26 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、含固体电解质的片材及全固态二次电池的制造方法、以及链段化聚合物、聚合物及链段化聚合物的非水溶剂分散物 |
US10608255B2 (en) | 2016-08-05 | 2020-03-31 | Evonik Operations Gmbh | Use of thianthrene-containing polymers as a charge store |
WO2018024901A1 (de) | 2016-08-05 | 2018-02-08 | Evonik Degussa Gmbh | Verwendung thianthrenhaltiger polymere als ladungsspeicher |
EP3279223A1 (de) | 2016-08-05 | 2018-02-07 | Evonik Degussa GmbH | Verwendung thianthrenhaltiger polymere als ladungsspeicher |
WO2018046387A1 (de) | 2016-09-06 | 2018-03-15 | Evonik Degussa Gmbh | Verfahren zur verbesserten oxidation sekundärer amingruppen |
US11001659B1 (en) | 2016-09-06 | 2021-05-11 | Evonik Operations Gmbh | Method for the improved oxidation of secondary amine groups |
WO2018135624A1 (ja) * | 2017-01-20 | 2018-07-26 | 日本電気株式会社 | ラジカルポリマーを用いた電極及び二次電池 |
DE102017005924A1 (de) | 2017-06-23 | 2018-12-27 | Friedrich-Schiller-Universität Jena | Verwendung benzotriazinyl-haltiger Polymere als Ladungsspeicher |
WO2020017630A1 (ja) * | 2018-07-19 | 2020-01-23 | 日本電気株式会社 | ラジカルポリマーを電極に用いた二次電池 |
JPWO2020017630A1 (ja) * | 2018-07-19 | 2021-08-02 | 日本電気株式会社 | ラジカルポリマーを電極に用いた二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012120929A1 (ja) | 2014-07-17 |
JP2017010942A (ja) | 2017-01-12 |
JP6421804B2 (ja) | 2018-11-14 |
US20140038036A1 (en) | 2014-02-06 |
US9647269B2 (en) | 2017-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6421804B2 (ja) | 電極用活物質、及び二次電池 | |
JP5332251B2 (ja) | 高分子ラジカル材料・導電性材料複合体、その製造方法及び蓄電デバイス | |
JP4687848B2 (ja) | 蓄電デバイス | |
JP4637293B2 (ja) | 二次電池およびその導電補助層用カーボンインキ | |
JP5429596B2 (ja) | 二次電池及びその製造方法 | |
JP4657383B2 (ja) | 二次電池およびその製造方法ならびに電極形成用インキ | |
JP5549516B2 (ja) | 二次電池およびそれに用いる電解液並びに膜 | |
JP5625151B2 (ja) | ラジカルを有する化合物、重合体、およびその重合体を用いた蓄電デバイス | |
JP5239160B2 (ja) | ポリラジカル化合物の製造方法 | |
JP2009298873A (ja) | ポリラジカル化合物の製造方法及び電池 | |
JP2012219109A (ja) | ラジカル化合物、その製造方法及び二次電池 | |
JPWO2008090832A1 (ja) | ポリラジカル化合物−導電性物質複合体及びその製造方法ならびにそれを用いた電池 | |
JP7092037B2 (ja) | ラジカルポリマーを用いた電極及び二次電池 | |
JP4530133B2 (ja) | 蓄電デバイス | |
JP7115318B2 (ja) | ラジカルポリマーを用いた電極及び二次電池 | |
JP6248947B2 (ja) | 電極材料および二次電池 | |
JP5282259B2 (ja) | 分子クラスター二次電池 | |
JP6332634B2 (ja) | コポリマー、電極用活物質、及び二次電池 | |
JP4737365B2 (ja) | 電極活物質、電池および重合体 | |
JP6268708B2 (ja) | リチウム二次電池用正極およびリチウム二次電池 | |
JP5034147B2 (ja) | 二次電池 | |
JP2015060636A (ja) | 二次電池 | |
JP2014143020A (ja) | リチウム二次電池用正極およびリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754917 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013503414 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14003699 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12754917 Country of ref document: EP Kind code of ref document: A1 |