WO2012102234A1 - 保冷容器とその運転方法 - Google Patents
保冷容器とその運転方法 Download PDFInfo
- Publication number
- WO2012102234A1 WO2012102234A1 PCT/JP2012/051334 JP2012051334W WO2012102234A1 WO 2012102234 A1 WO2012102234 A1 WO 2012102234A1 JP 2012051334 W JP2012051334 W JP 2012051334W WO 2012102234 A1 WO2012102234 A1 WO 2012102234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- temperature
- heat
- heat storage
- refrigerator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/006—Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
Definitions
- the present invention relates to a cold storage container and an operation method thereof.
- cold storage containers that store stored items at a temperature lower than the outside temperature (ambient living temperature), such as refrigerators, are known.
- the stored item can be stored at a desired temperature, and therefore, the freshness of various foods as the stored item can be maintained for a long time.
- the refrigerators proposed in Patent Documents 1 and 2 are provided with a cold storage material. For example, even if the refrigerator does not operate due to a power failure, it can be stored by supplying cold air to the storage room for a certain period of time. A configuration is employed in which the indoor temperature does not change.
- Patent Document 3 As a refrigerator provided with a cold storage material (heat storage material) in this way, as in Patent Document 3, for example, a regenerator composed of a latent heat storage material and a heat exchange refrigerant tube is solidified with the operating capacity of the compressor at night time.
- a regenerator composed of a latent heat storage material and a heat exchange refrigerant tube is solidified with the operating capacity of the compressor at night time.
- a method in which a freezer compartment is cooled by a compressor and a refrigerator compartment is cooled by a heat accumulator only for a predetermined time in a daytime period.
- JP 58-219379 A Japanese Patent Laid-Open No. 7-4807 JP-A-6-174354
- the cooler since the cooler must function for a long time in order to cool the heat storage material, energy loss increases. In addition, when it is desired to use late-night power with a low usage fee, it may take time to cool the heat storage material to a predetermined state. Furthermore, a method of cooling the heat storage material in the freezer in a short time can be considered, but it is inconvenient because the heat storage material must be transferred between the freezer and the refrigerator before and after cooling, and the heat storage material is cooled after cooling. Therefore, the temperature change in the refrigerator becomes large, and there are problems such as frost and condensation in the refrigerator.
- the present invention has been made in view of the above circumstances, and can store the cold energy in the heat storage material in a relatively short time.
- the mechanism for storing such cold energy has a simple configuration and the cost increases. It is intended to provide a cold storage container and a method of operating the same that suppresses frost and condensation in the refrigerator.
- the cold storage container of the present invention is a cold storage container for stored goods having an electrical cooling function, and the first container that stores the stored goods at a temperature lower than the living temperature around the cold storage container in the steady operation, and the steady operation And the second container for storing the stored material at a temperature lower than that of the first container, and the interior of the first container is cooled to a temperature lower than the surrounding living temperature in steady operation, and the interior of the second container is Cooling means for cooling to a temperature lower than that of the container, wherein the first container has a first container body and a first lid member capable of opening and closing a space in the first container body, the first container The space surrounded by the container main body and the first lid member forms a refrigeration chamber for refrigerated storage, and the first container main body and the first lid member are provided to surround the refrigeration chamber.
- a first heat insulating part, the refrigerator compartment and the first heat insulating part A first heat storage section provided at least partially between the first heat storage section and a temperature that is controllable in the refrigerator compartment during normal operation and a living temperature around the cold storage container. Formed by using a first material made of one or more materials that cause a phase transition between a liquid phase and a solid phase at a temperature.
- the refrigerator is provided with a dehumidifier, and the cooling means includes the refrigerator It has the cooling mechanism which cools the room
- the cold storage container in the temperature distribution formed in the refrigeration chamber due to the change over time after the electrical cooling function is stopped from the steady operation state, it is in the vicinity of the first region that is relatively close to the living temperature.
- the part of the first heat storage unit that is disposed is more thermally conductive than the other part of the first heat storage unit that is disposed in the vicinity of the second region that is difficult to approach the living temperature. It is preferable that the value divided by the amount of use per unit area of the wall surface is small.
- the second container has a second container main body and an opening / closing mechanism that allows opening and closing of the space in the second container main body, and the space in the second container main body stores stored items.
- a freezing chamber for freezing is formed, and the second container body is provided at least in part between a second heat insulating portion provided to surround the freezing chamber, and the freezing chamber and the second heat insulating portion.
- the second heat storage unit, and the second heat storage unit has a liquid phase and a solid phase at a temperature between a temperature controllable in the freezer compartment and a living temperature around the cold storage container in a steady operation. It is preferably formed using a second material made of one or more materials that cause a phase transition between the phases.
- the first container is provided with a temperature adjustment mechanism for adjusting the temperature in the refrigerator compartment, and the first material has a peak temperature of a phase transition temperature at the time of solidification, the temperature adjustment. It is preferable to be included in the temperature range in the refrigerator compartment which can be adjusted by a mechanism.
- a hygroscopic material that generates heat upon moisture absorption is preferably disposed.
- the hygroscopic material is preferably a porous material.
- the porous material is preferably zeolite.
- the said moisture absorption material is imogolite.
- the hygroscopic material is preferably mesoporous silica.
- the cold storage container includes a third container and a humidifying mechanism that uses water obtained when the dehumidifier is dehumidified in the refrigerator to humidify the third container.
- the cold storage container of the present invention is a cold storage container for stored goods having an electrical cooling function, and the first container that stores the stored goods at a temperature lower than the living temperature around the cold storage container in the steady operation, and the steady operation And the second container for storing the stored material at a temperature lower than that of the first container, and the interior of the first container is cooled to a temperature lower than the surrounding living temperature in steady operation, and the interior of the second container is A cooling means for cooling to a temperature lower than that of the container, and a hygroscopic material that is disposed in a region where the discharge amount of the cold heat is relatively large in the first container and generates heat during moisture absorption, the first container being the first container And a first lid member that allows opening and closing of a space in the first container body, and the space surrounded by the first container body and the first lid member is a refrigeration chamber that refrigerates stored items.
- the first container body And the first lid member includes a first heat insulating portion provided to surround the refrigerator compartment, and a first heat storage portion provided at least partially between the refrigerator compartment and the first heat insulating portion.
- the first heat storage unit has a phase transition between a liquid phase and a solid phase at a temperature between a temperature controllable in the refrigerator compartment and a living temperature around the cold storage container in a steady operation. It is formed using the 1st material which consists of 1 or more types of materials.
- the operation method of the cold storage container of the present invention is the operation method of the cold storage container, and first, in the non-steady operation prior to the steady operation, the inside of the refrigerator is dehumidified by the dehumidifier, and then the cooling mechanism The refrigerator is cooled in the same manner as in the second container that is cooled in a steady operation to cool the first material of the first heat storage unit, and then the steady operation is performed.
- the cold storage container and its operation method of the present invention it is possible to store the cold heat in the heat storage material (material of the heat storage section) in a relatively short time, and the mechanism for storing such cold heat has a simple configuration. Therefore, it is possible to suppress the increase in cost, and it is possible to suppress the formation of frost and condensation in the refrigerator compartment.
- (A), (b) is a principal part enlarged view for demonstrating the effect
- FIG. 1A and 1B are views showing a first example of a refrigerator according to the present invention, in which FIG. 1A is a schematic perspective view, and FIG. 1B is a schematic cross-sectional view.
- the refrigerator 1 is a basic configuration of the first container in the cold storage container of the present invention described later, and is used for storing stored items at a temperature lower than the outside air temperature during steady operation.
- the refrigerator 1 of the present example includes a container body 10 having a refrigeration room (storage room) 100 communicating with the outside through an opening 101, and a door member attached to the opening 101. (Lid material) 20.
- the refrigerator compartment 100 is a space surrounded by the wall material 11 constituting the container body 10 and the wall material 21 constituting the door member 20.
- the container body 10 is provided with a heat insulating part 12 and a heat storage part 14, and the door member 20 is also provided with a heat insulating part 22 and a heat storage part 24.
- the heat storage unit 14 and the heat storage unit 24 are provided in a position adjacent to the packing P so as to be thicker (the volume is larger) than other positions.
- the inside of the refrigerator compartment 100 can be kept at a predetermined set temperature during steady operation. For example, even when the power supply is stopped due to a power failure and the operation is stopped, it will be described in detail below. In addition, it is possible to keep the refrigeration room 100 cool for a certain period of time so that no temperature distribution occurs.
- the container body 10 has a wall material 11 and a cooling device 19 for cooling the inside of the refrigerator compartment 100.
- the wall material 11 includes a heat insulating portion 12 provided so as to surround the refrigerator compartment 100, and a heat storage portion 14 provided so as to surround the refrigerator compartment 100 between the refrigerator compartment 100 and the heat insulating portion 12. These are accommodated in a space surrounded by a casing (not shown) made of a resin material such as ABS resin.
- the heat insulation part 12 insulates the refrigerator compartment 100 and the heat storage part 14 that are cooled during steady operation so that heat from the outside is not transmitted through the housing.
- a heat insulating part 12 is made of a generally known forming material such as a fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber. Can be formed.
- the heat storage unit 14 is formed using a material that causes a phase transition between the liquid phase and the solid phase as a heat storage material at a temperature between the set temperature of the refrigerator compartment 100 and the outside air temperature.
- the “set temperature of the refrigerator compartment 100” is a preset temperature in the refrigerator compartment 100 during steady operation of the refrigerator 1.
- the “outside air temperature” is, for example, a temperature assumed as an outside air temperature in an environment where the refrigerator 1 is used. For example, if the refrigerator 1 is a refrigerator having a set temperature of 3 ° C. and the assumed outside air temperature is 25 ° C., the heat storage unit 14 uses a heat storage material having a solid-liquid phase transition temperature higher than 3 ° C. and lower than 25 ° C. Formed.
- FIG. 2 is a graph schematically showing the thermal behavior when the heat storage material, which is the material forming the heat storage section 14 shown in FIG. 1, causes a phase transition.
- the horizontal axis of the graph represents temperature, and the vertical axis represents specific heat.
- the heat storage material in the case of a solid state (solid phase), the heat storage material is heated by absorbing the amount of heat corresponding to the specific heat C (s), and in the case of a liquid state (liquid phase), The temperature is raised by absorbing the amount of heat corresponding to the specific heat C (l).
- the temperature is increased by absorbing the amount of heat corresponding to the latent heat.
- phase transition temperature is the amount of heat required to raise the temperature of a substance of unit mass by the unit temperature, and therefore, in the temperature range where the phase transition occurs, the amount of heat absorbed to increase by the unit temperature corresponds to the latent heat. . Therefore, as shown in FIG. 2, in the phase transition temperature region Tf, the heat storage material can be considered to rise by a unit temperature by absorbing the amount of heat corresponding to the specific heat C (f), and the specific heat of the heat storage material is large. You can think of it. Therefore, if the phase transition temperature of the heat storage material is a temperature between the set temperature of the refrigerator compartment 100 and the outside air temperature, the phase transition temperature region in the process of raising the internal temperature when the operation of the refrigerator compartment 100 is stopped. Since Tf is reached, it is possible to suppress a temperature change for a long time in the temperature range.
- a material in the phase transition temperature region Tf having an appropriate temperature is used according to the set temperature of the refrigerator compartment 100, that is, according to the specifications of the refrigerator 1.
- the peak temperature of the phase transition temperature of the heat storage material is preferably about 6 ° C. to 7 ° C.
- the set temperature of the freezer room is about ⁇ 18 ° C.
- the peak temperature of the phase transition temperature is preferably ⁇ 16 ° C. to ⁇ 6 ° C.
- the set temperature of the chilled chamber is about 0 ° C., so the peak temperature of the phase transition temperature of the heat storage material is preferably 0 ° C. to 2 ° C.
- the phase transition temperature of the heat storage material can be measured using a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the above-mentioned peak temperature can be measured as a peak temperature when a phase transition from a liquid phase to a solid phase occurs, for example, when a differential scanning calorimeter is used and the temperature decrease rate is 1 ° C./min.
- the phase transition temperature range is a temperature range between the set temperature in the refrigerator compartment 100 and the outside air temperature in the steady operation, and the phase transition from the liquid phase to the solid phase occurs.
- the heat storage material having such a phase transition temperature is cooled to the phase transition temperature or lower by cold air transmitted from the refrigerator compartment 100 when the refrigerator compartment 100 is cooled during operation, and becomes a solid phase by being stored cold. Moreover, even if the refrigerator 1 stops operation in that state, the temperature change in the refrigerator compartment 100 can be suppressed by supplying cold air into the refrigerator compartment 100 for a certain period of time.
- heat storage material for example, water, paraffin, 1-decanol, SO 2 ⁇ 6H 2 O, C 4 H 3 O ⁇ 17H 2 O, (CH 2 ) 3N ⁇ 10 1/4 H 2 O, and the like are usually known materials. Can be used. It is also possible to appropriately adjust a heat storage material having a desired phase transition temperature by utilizing a freezing point depression generated by dissolving a solute in a liquid heat storage material.
- the heat storage unit 14 includes a heat storage material 141 and a protective film 142 that wraps the heat storage material 141, and the casing 18 of the container body 10 and the heat insulation provided in the casing 18.
- a configuration in which the space between the portions 12 is filled can be employed.
- 3B a plurality of small blocks (indicated by reference numerals 14a and 14b) formed of a heat storage material 141 and a protective film 142 in a space between the casing 18 and the heat insulating portion 12 are provided. You may form the thermal storage part 14 by filling.
- the heat storage material 141 may have a configuration capable of maintaining the shape at the time of a solid-liquid phase change by gelation treatment or the like. In this case, since the shape can be maintained and leakage can be prevented only by the heat storage material 141, the protective film 142 is not necessarily required. Further, the heat storage material 141 may be configured in a slurry form by microencapsulation or the like. In this case, since the volume change at the time of the solid-liquid phase change can be prevented, the thermal resistance at the contact surface between the heat storage material 141 and the other member can be kept constant.
- the cooling device 19 is a gas compression type cooling device, provided at the bottom of the container body 10, provided to be exposed to the compressor 191 that compresses the refrigerant, and the refrigerating chamber 100. It has a cooler 192 that cools the surroundings by the heat of vaporization when the compressed refrigerant evaporates, and a pipe 193 that connects the compressor 191 and the cooler 192.
- a normally known configuration such as a condenser for radiating heat from the compressed refrigerant or a dryer for removing moisture in the refrigerant may be provided.
- the gas compression type cooling device is shown here, the present invention is not limited to this, and a gas absorption type cooling device or an electronic cooling device using a Peltier element may be used.
- the refrigerator 1 is illustrated as being a direct cooling type (cold air natural convection method) in which the cooler 192 is exposed to the refrigerator compartment 100.
- the present invention is not limited to this, and it is also possible to adopt a cold type (cold air forced circulation method) in which the cold air cooled by the cooler 192 is circulated by a fan to cool the refrigerator compartment 100.
- the door member 20 is rotatably attached to the container body 10 via a connecting member such as a hinge (not shown), and is configured to open and close the opening 101.
- the door member 20 is provided with a packing P on the side in contact with the container body 10 when closed.
- the door member 20 also includes a heat insulating portion 22 provided surrounding the refrigerating chamber 100, and a heat storage portion 24 provided surrounding the refrigerating chamber 100 between the refrigerating chamber 100 and the heat insulating portion 22.
- the wall material 21 provided with these.
- the heat insulation part 22 and the heat storage part 24 can be formed using the same material as the heat insulation part 12 and the heat storage part 14 mentioned above.
- the heat storage part 14 and the heat storage part 24 have a thickness of the heat storage material at a position adjacent to the packing P (indicated by the symbol ⁇ in FIG. 1) via the casing of the container body 10 and the door member 20. It is provided to be thick in the direction.
- the schematic configuration of the refrigerator 1 of this example is as described above.
- FIG. 4 is an explanatory view showing a modification of the refrigerator of this example, and corresponds to FIG.
- the temperature in the refrigeration room (storage room) 100 is raised by a change over time after the refrigerator is stopped, and a temperature distribution is gradually formed. Then, relatively warm air stays in the upper part of the refrigerating chamber 100 and relatively cool air stays in the lower part of the refrigerating chamber due to the change in air density. In other words, the upper part of the refrigerator compartment is relatively closer to the outside air temperature than the lower part of the refrigerator compartment.
- the following configuration is adopted in the modified example of the refrigerator of this example.
- the wall material 11 at the upper part (ceiling part) of the refrigerating room 100 is more of the heat storage part 14 provided inside than the wall material 11 at the lower part (bottom part) of the refrigerating room 100.
- the volume is increasing.
- the heat storage unit 14 in the region indicated by the symbol ⁇ is larger than the heat storage unit 14 in the region indicated by the symbol ⁇ .
- the heat storage unit 14 provided in the wall material 11 is provided on the upper side heat storage unit 15 provided on the upper side of the refrigerator compartment 100 and on the lower side of the refrigerator compartment 100.
- the lower heat storage unit 16 formed.
- the heat storage part 24 provided in the wall material 21 of the door member 20 includes an upper heat storage part 25 provided on the upper side of the refrigerator compartment 100 and a lower heat storage part 26 provided on the lower part side of the refrigerator compartment 100. And is composed of.
- the upper heat storage unit 15 is formed using a forming material having a larger amount of latent heat than the lower heat storage unit 16.
- the upper heat storage unit 25 is formed using a forming material having a larger amount of latent heat than the lower heat storage unit 26.
- FIG. 1 the refrigerator 1 of this example will be described in more detail with reference to FIGS. 5 to 13 while considering the thermal characteristics of the heat storage unit.
- the symbols used in FIG. 1 may be used as appropriate.
- FIG. 5 is a calculation model for obtaining the temperature distribution in the horizontal section of the refrigerator 1.
- the refrigerator 1 by calculating the refrigerator 1 as a substantially rectangular parallelepiped, calculation was performed in a half region in consideration of symmetry in the cross section.
- reference signs W1 and W2 are internal dimensions of the refrigerator compartment 100
- reference sign W3 is the thickness of the heat insulating part 22 constituting the wall member 21
- reference signs W4 and W5 are thicknesses of the heat insulating part 12 constituting the wall member 11.
- Reference sign W6 is the thickness of the packing P provided at the joint between the container body 10 and the door member 20, and W7 is the thickness of the heat storage parts 14, 24 constituting the wall material.
- Each value is W1: 400 mm, W2: 500 mm, W3: 45 mm, W4: 45 mm, W5: 35 mm, W6: 1 mm, and W7 is a variable.
- FIG. 6 and 7 are diagrams showing the results of unsteady heat conduction analysis using the calculation model shown in FIG.
- the temperature of the refrigerator compartment 100 is shown.
- (A) shows the temperature after 1 hour
- (b) shows the temperature after 12 hours.
- FIG. 6 in the absence of the heat storage units 14, 24, the temperature in the refrigerator compartment 100 has already risen to a few ten degrees C. after one hour (FIG. 6 (a)), and after 12 hours. It is completely equal to the outside air temperature (FIG. 6B).
- FIG. 7 when there are the heat storage units 14 and 24, the temperature in the refrigerator compartment is maintained at about 5 ° C. after 1 hour (FIG. 7A), and after 12 hours. It was also found that the temperature can be maintained at about 7 to 8 ° C. (FIG. 7B).
- FIG. 8 is a calculation result for a model in which only the physical properties of the heat storage material constituting the heat storage unit are made different, and corresponds to FIGS.
- the calculation was performed assuming two types of heat storage materials having the same phase transition temperature and different latent heat values and thermal conductivities.
- Calculation conditions other than the heat storage material are the same as those in FIGS. 6 and 7 except that the phase transition temperature is ⁇ 18 ° C. and the start temperature is ⁇ 18 ° C.
- the heat storage material in FIG. 8A has latent heat: 334 kJ / kg, thermal conductivity: 2.2 W / (m ⁇ K), and the heat storage material in FIG. 8B has latent heat: 229 kJ / kg, thermal conductivity: 0.34 W / (m ⁇ K).
- the value of the latent heat and thermal conductivity of the heat storage material used in the calculation of FIG. 8A is about the same as that of ice, and the value of the latent heat and thermal conductivity of the heat storage material used in the calculation of FIG. The same level as paraffin.
- FIG. 8 (a) and 8 (b) show the temperature distribution after 12 hours.
- the temperature rise in FIG. 8 (b) is lower than that in FIG. 8 (a).
- FIG. 9 shows the calculation result of the model under the same condition as FIG. 8A except that there is no packing P, that is, the refrigerator compartment 100 is sealed with wall materials (heat insulation part and heat storage part). It can be seen that the model with a simple structure can suppress the temperature rise in the refrigerator even after 12 hours.
- the inflow of heat from the packing P part is the main factor of the temperature change in the refrigerator compartment, and the heat storage material provided in the heat storage part provided in the vicinity of the packing P It can be understood that the viewpoint is insufficient only by selecting only the magnitude of the latent heat. That is, it has been found that in order to select a suitable heat storage material as a material for forming the heat storage section, attention should be paid to the thermal conductivity as well as the latent heat value.
- the specific heat in the equation is used as latent heat in the phase transition temperature range.
- Specific heat is the amount of heat required to raise the temperature of the heat storage material by 1 ° C. Therefore, when the phase transition temperature range is, for example, 2 ° C., the total latent heat amount is divided by the temperature width of the phase transition temperature range, The specific heat used in the above equation 1 can be obtained.
- the above temperature conductivity is obtained for ice and paraffin as shown in Table 1 below.
- paraffin has a lower latent heat than ice, but its temperature conductivity is small, that is, the temperature is hard to rise, so the time until the phase transition is completed is longer than that of ice, and as a result, the phase transition temperature for a long time. Can be maintained. Therefore, comparing ice and paraffin, it can be seen that paraffin having a low temperature conductivity has a higher heat retention effect when heat flows in. That is, when ice and paraffin are compared, a high cooling effect can be exhibited by using paraffin as a material for forming the heat storage portion of the packing P portion in the position where heat flows in, in this example.
- the thickness of the heat storage unit 14 will be examined.
- the heat storage unit 14 and the heat storage unit 24 are adjacent to the packing P via the casing of the container body 10 and the door member 20 (indicated by reference numeral ⁇ in FIG. 1).
- the heat storage material is provided so as to be thick in the thickness direction.
- the heat storage unit 14 and the heat storage unit 24 at the position indicated by the symbol ⁇ are units in which the temperature conductivity of the material is viewed from the inner wall of the refrigerator compartment 100 as compared with the heat storage units at other positions.
- the index value which is a value divided by the amount of material used per area, is set to be small. This is due to the following reason.
- the heat storage part 14 is not arranged uniformly, but the wall material 11 in the vicinity of the packing P, which is a part relatively close to the outside air temperature after the operation is stopped, is relatively outside.
- the heat storage part 14 is provided thicker (so that the above-mentioned index value becomes smaller) than the wall material 11 of the part that is difficult to approach the temperature.
- the temperature is less likely to rise in the vicinity of the packing P as compared to a position far from the packing P, and cold air is supplied for a long time. Therefore, even if the operation is stopped, it is easy to maintain the temperature in the refrigerator compartment so that no temperature distribution occurs for a certain period of time.
- the temperature conductivity of the material at the phase transition temperature is higher than the material of the heat storage units 14 and 24 provided in the vicinity of the second region AR2. It is good also as controlling an index value as using a thing with small.
- the heat storage units 14 and 24 provided in the vicinity of the first region AR1 are provided so that the total latent heat amount is larger than that of the heat storage units 14 and 24 provided in the vicinity of the second region AR2.
- the index value may be controlled as being. From the above formula (1), the denominator of temperature conductivity has a term of specific heat, that is, latent heat in the phase transition temperature region. In addition, the above-described index value has a product of specific heat and usage, that is, a term of total latent heat in the denominator. Therefore, since the index value decreases as the total latent heat amount increases, the above idea is met.
- the region that is easily accessible to the outside air temperature is referred to as the first region, and the region that is not easily approached to the outside air temperature is referred to as the second region.
- This is not to divide into only one area. For example, if there is a region where the thickness of the heat insulating material is thin, the heat insulating performance of the region is low, and it is easier to approach the outside air temperature than the other parts, but it approaches the outside air temperature when compared with the packing part. It will be difficult. Even when there are three or more different regions as in this example, a relative comparison between the two regions is shown as a first region and a second region.
- the heat storage part 14 is excessively thick, it is expected that the manufacturing cost and the shape / size of the product are adversely affected.
- the thickness of the heat storage unit 14 reaches the maximum temperature (allowable temperature) allowed as the temperature of the refrigerator compartment 100 even after a predetermined time (heat retention time) has elapsed after the operation is stopped. It is good to have a thickness necessary to satisfy the requirement of not.
- the heat insulation possible time is calculated on the assumption that there is no heat load other than the components in the refrigerator compartment 100, that is, the refrigerator compartment 100 has no special heat source for raising the temperature in the cabinet after the operation is stopped. ⁇ It is set.
- the thickness of the heat storage unit 14 can be obtained as follows in consideration of the heat inflow / transfer described above. First, in order to simplify the calculation, a composite thermal conductivity in the case where the thickness of the wall material is equal to the thickness of the heat storage unit 14 is obtained from an expression representing the heat flux that passes through the heat insulating unit 12 and the heat storage unit 14. .
- the wall material 11 includes a heat insulating portion 12 having a thickness L 1 and a thermal conductivity k 1 , and a heat storage portion 14 having a thickness L 2 and a thermal conductivity k 2.
- the calculation model is replaced by a calculation model having a wall material 17 formed of a virtual material having a thickness L 2 and a thermal conductivity k 12 as shown in FIG. 10B. To obtain the thermal conductivity of the wall material 17.
- the amount of heat is expressed by the following equation (2) for the calculation model of FIG. 10A, and the following equation ( 3). Therefore, from equations (2) and (3), the thermal conductivity of the wall material 17 in FIG. 10B, that is, the combined thermal conductivity of the heat insulating portion 12 and the heat storage portion 14 is obtained as the following equation (4).
- FIG. 11 is a graph showing the relationship of temperature with respect to the distance from the external surface of the refrigerator to the internal direction.
- the heat of the outside of the refrigerator is transferred to the refrigerating room through the wall material, so that the temperature of the wall material is equal to the outside air temperature on the external surface and equal to the refrigerating room temperature on the internal surface. Further, the temperature changes in the thickness direction. Moreover, since the air in a refrigerator compartment has a small heat capacity, it can be assumed that it is the same temperature as the inner wall of a refrigerator compartment. Such a relationship is the same even when the operation is stopped or when the temperature of the refrigerator compartment reaches the allowable temperature after a predetermined time has elapsed.
- the temperature change of the refrigerator compartment can be found by calculating the temperature change of the inner wall of the refrigerator compartment, and is calculated using a calculation model in which the space of the refrigerator compartment is discarded as shown in FIG.
- the temperature in the refrigerator compartment is indirectly calculated.
- the model shown in FIG. 11B calculates the temperature distribution for a solid solid with a thickness of 2L 2 and calculates the center of the solid (L from the surface). 2 ), the temperature in the refrigerator compartment can be calculated.
- the dimensionless time (Fourier number) indicated by the horizontal axis of the Heisler diagram of FIG. 12 is the temperature conductivity of the solid, the elapsed time from the shutdown, and the thickness to the center of the solid (that is, the thickness of the wall material). It can be shown as the following formula (5).
- the dimensionless temperature indicated by the vertical axis of the Hessler diagram of FIG. 12 is expressed by the following formula (6) using the outside air temperature, the set temperature of the refrigerator compartment, and the temperature of the refrigerator compartment that changes due to operation stop. Can do.
- the corresponding Fourier numbers can be obtained by setting the allowable temperature of the refrigerator compartment 100.
- the approximate expression (7) is an approximate expression for the graph shown for the flat plate in FIG.
- the temperature conductivity can be calculated using the above-described equations (1) and (4), and therefore, the Fourier number obtained from the Heisler diagram, Using the equation (5), a function of the thickness of the wall material (that is, the thickness of the heat storage unit) and the elapsed time from the operation stop can be obtained.
- FIG. 13 is a graph showing the relationship between the thickness of the heat storage unit and the heat retention time (elapsed time from the operation stop) obtained according to the above concept. In the figure, a plurality of heat storage materials are calculated.
- the heat retention time occupies most of the time from the start of the phase change to the completion of the phase change of the heat storage material in the heat storage section. Therefore, in the figure, when the temperature in the refrigerator compartment changes from 5 ° C to 7 ° C when the phase change temperature range of the paraffin is 5 ° C to 7 ° C and the outside air temperature is 25 ° C, it corresponds to the thickness of the heat storage part. It is calculated about the warming time.
- the relationship shown in FIG. 13 when the time until the allowable temperature is reached after the operation is stopped can be obtained, the necessary thickness of the heat storage unit can be obtained, so that a cold storage container having a desired specification can be obtained. Further, by using the relationship shown in FIG. 13, it is possible to estimate the time from when the operation of a certain cold container is stopped until the temperature is raised to the allowable temperature, that is, the warmable time. As described above, the arrangement, material, and thickness of the heat storage unit are set to obtain a cold-insulated container having a desired specification.
- the present inventors performed a simulation on the thermal characteristics of the heat storage section in order to demonstrate the effect of the heat storage section provided in accordance with the above-mentioned idea.
- the calculation model the calculation model shown in FIGS. 5 and 14 was used.
- FIG. 14 corresponds to the calculation model of FIG. 5 and further includes parameters W8 and W9.
- W8 and W9 are the lengths from the end of the heat storage part at the part in contact with the packing P. Table 2 below summarizes the parameters used for the calculation.
- FIGS. 15A and 15B show calculation results of unsteady heat conduction analysis using the calculation model of FIG.
- FIGS. 16A and 16B are calculation results of unsteady heat conduction analysis using the calculation model of FIG.
- FIGS. 15 (a) and 16 (a) show the temperature after 6 hours
- FIGS. 15 (b) and 17 (b) show the temperature after 8 hours.
- the amount of heat storage material used in the heat storage section 14 when a model of a commercial product (model number: SJ-V200T) with a capacity of the refrigerator compartment 100 of 170 L is estimated as a model, in the case of the model shown in FIGS. The amount used is 7 kg. On the other hand, in the case of the model shown in FIGS. 16A and 16B, the amount used is 3.3 kg. Therefore, it was found that the model shown in FIG. 16 can keep the inside of the refrigerator compartment 100 warm for a long time and can reduce the amount of heat storage material used. That is, it turned out that it can be set as the refrigerator in which an effective heat retention is possible by setting appropriately arrangement
- the refrigerator 1 configured as described above, even if the operation is stopped, it is possible to maintain a temperature distribution in the refrigerator compartment 100 so that no temperature distribution occurs for a certain period of time.
- a simulation was performed using a two-dimensional model with a simplified structure, but a two-dimensional model that reproduced the actual refrigerator configuration was used without simplifying the calculation. The simulation may be performed.
- the door member 20 is provided on the container body 10 so as to be rotatable.
- the door member (lid member) is provided so as to be able to open and close the refrigerator compartment 100, the above-described operation is performed. It is not limited to the configuration.
- the structure which opens and closes the refrigerator compartment 100 by sliding a lid material on a predetermined rail may be sufficient, or the structure which a cover material is provided so that attachment or detachment is possible, and opens and closes the refrigerator compartment 100 may be sufficient.
- the space in the vicinity of the lid member is still a portion that is relatively close to the outside air temperature after the operation is stopped. Therefore, by thickening the heat storage part provided in the wall material near the lid, it is possible to provide a refrigerator that can keep cold for a long time even after the operation is stopped.
- FIG. 17 and 18 are explanatory views of a second example of the refrigerator according to the present invention.
- the refrigerator 4 of this example is partly in common with the refrigerator 1 of the first example. Therefore, in this example, the same code
- the refrigerator 4 has a reflective layer (infrared reflective layer) 30 that reflects infrared rays on the inner wall of the refrigerator compartment 100.
- Such heat transfer by radiation between the user and the inside of the refrigerator compartment 100 when the door member 20 is released can be estimated using the following formula (8).
- the heat transfer amount is 109 J /
- the amount of heat flowing into the storage room is 33 kJ if the door opening time is 30 seconds, and 66 kJ if it is 60 seconds.
- the cold storage container 4 of this example has a reflective layer 30 that reflects infrared rays on the inner wall of the refrigerator compartment 100. Therefore, the inflow of radiant heat can be prevented by reflecting the infrared rays radiated from the user's body surface when taking out stored items from the refrigerator compartment 100 during a power failure, and the temperature rise in the refrigerator compartment can be suppressed. In addition, during normal operation, the temperature in the refrigeration room is unlikely to rise, so power consumption can be reduced.
- a material having a low absorption rate of infrared rays radiated from the human body is used as the reflective layer 30 .
- Such an infrared wavelength has a peak wavelength of about 9.6 ⁇ m from the Wien displacement law.
- a material having such a high infrared reflectance may be used.
- a material that reflects 60% or more of infrared light having a peak wavelength corresponding to the body surface temperature of the human body may be used.
- Examples of such a material include a metal material having light reflectivity such as aluminum.
- the reflective layer 30 may be provided on the surface of the housing 18 as shown in FIG. 18A, and the reflective layer 30 constitutes a part of the housing 18 as shown in FIG.
- the reflective layer 30 and the heat storage unit 14 may be in contact with each other.
- 18B when the reflective layer 30 is formed of a metal material, the cool air in the refrigerator compartment 100 during normal operation is stored in the heat storage unit via the reflective layer 30 that is a metal material. 14 is preferable because it is easy to be transmitted to 14 and the heat storage section 14 is stored cold and easily transitions to a solid phase.
- the refrigerator 4 having the above-described configuration, even if the stored item is taken out from the refrigerator compartment when the operation is stopped, the temperature rise in the refrigerator compartment can be suppressed, and the temperature distribution in the refrigerator compartment is not generated. Can be maintained.
- FIG. 19 is an explanatory diagram of a third example of the refrigerator according to the present invention.
- the refrigerator 5 of this example is partly in common with the refrigerator 1 of the first example. Therefore, in this example, the same code
- the heat storage unit 14 of the refrigerator 5 is provided so as to surround the refrigerator compartment 100 between the inner heat storage unit 14 ⁇ / b> B provided to surround the refrigerator compartment 100, and the heat insulating unit 12 and the inner heat storage unit 14 ⁇ / b> B.
- the heat storage unit 24 includes an inner heat storage unit 24B provided to surround the refrigerator compartment 100, and an outer heat storage unit 24A provided to surround the refrigerator compartment 100 between the heat insulating unit 22 and the inner heat storage unit 24B.
- a material for forming the outer heat storage parts 14A and 24A a material having a phase transition temperature close to the outside air temperature is used as compared with a material for forming the inner heat storage parts 14B and 24B.
- the refrigerator 5 having such a configuration, after the operation is stopped, first, from the inner heat storage units 14B and 24B having a relatively low phase transition temperature to the refrigerator compartment 100 until the phase transition of the inner heat storage units 14B and 24B is completed. Cold air is supplied inside. Next, cold air is supplied from the outer heat storage units 14A and 24A having a relatively high phase transition temperature into the refrigerator compartment 100 until the phase transition of the outer heat storage units 14A and 24A is completed. Therefore, the phase transition temperatures of the heat storage units 14 and 24 are set in multiple stages, and the temperature in the refrigerator compartment 100 can be easily maintained.
- the space surrounded by the container body and the lid material constitutes a refrigeration room for storing the stored items
- the container body and the lid member have a heat insulating part provided to surround the storage room, and a heat storage part provided at least in part between the refrigerator compartment and the heat insulating part,
- the heat storage unit is made of one or more materials that cause a phase transition between a liquid phase and a solid phase at a temperature between a temperature controllable in the storage chamber and a living temperature around the refrigerator in steady operation.
- the heat storage is disposed in the vicinity of the first region that is relatively close to the living temperature.
- the temperature of the material is more than the amount of the material used per unit area of the wall surface of the storage chamber than the heat storage unit disposed in the vicinity of the second region that is difficult to approach the living temperature.
- the divided value is set to be small.
- the difference between the allowable temperature that is the temperature in the refrigerator compartment after the electrical cooling function is stopped and that can be stored, and the living temperature, and the controllable temperature and the temperature Based on the relationship between the dimensionless temperature, which is a value divided by the difference from the living temperature, and the Fourier number of the wall material constituting the container body and the lid material, the temperature in the refrigerator compartment is controlled after the operation is stopped.
- the thickness of the heat storage unit corresponding to the heat retention possible time until the temperature changes from the possible temperature to the allowable temperature is defined.
- the allowable temperature is 10 ° C. or less.
- the heat retention time is 2 to 24 hours.
- the heat storage unit is formed using a plurality of types of materials, and the material of the heat storage unit provided in the vicinity of the first region is the heat storage unit provided in the vicinity of the second region.
- the material has a lower temperature conductivity at the phase transition temperature than the material.
- the heat storage unit provided in the vicinity of the first region is provided so that the total latent heat amount is larger than that of the heat storage unit provided in the vicinity of the second region.
- the first region is a contact portion between the container body and the lid member when the lid member is closed.
- the first region is a ceiling portion of the refrigerator compartment.
- a storage refrigerator having an electrical cooling function, A container body, and a lid member that allows the space in the container body to be opened and closed,
- the space surrounded by the container body and the lid material constitutes a refrigeration room for storing the stored items
- the container main body and the lid member have a heat insulating part provided to surround the refrigerator compartment, and a heat storage part provided at least in part between the refrigerator compartment and the heat insulating part,
- the heat storage unit is made of one or more materials that cause a phase transition between a liquid phase and a solid phase at a temperature between a temperature that can be controlled in the refrigerator compartment and a living temperature around the refrigerator in steady operation.
- the thickness of the heat storage part of the region occupying the largest area in the refrigerator is the allowable temperature that is allowed as the temperature at which the stored item can be refrigerated, which is the temperature in the refrigerator compartment after the electrical cooling function is stopped,
- the relationship between the dimensionless temperature, which is a value obtained by dividing the difference between the living temperature by the difference between the controllable temperature and the living temperature, and the Fourier number of the wall material constituting the container body and the lid member Is defined as a thickness corresponding to a heat retention possible time until the temperature in the refrigerator compartment changes from the controllable temperature to the allowable temperature after the electrical cooling function is stopped.
- the allowable temperature is 10 ° C. or less.
- the warming time is 2 to 24 hours.
- the material has a peak phase transition temperature of 0 ° C. to 10 ° C. during solidification.
- the material has a phase transition temperature range of 2 ° C. or less when a phase transition from a liquid phase to a solid phase occurs at a temperature between the set temperature in the storage chamber and the living temperature in steady operation.
- the heat storage unit includes a first heat storage unit provided to surround the storage chamber, and a second heat storage unit provided to surround the refrigerator compartment between the heat insulating unit and the first heat storage unit.
- the material for forming the second heat storage part has a phase transition temperature close to the living temperature as compared with the material for forming the first heat storage part.
- the phase transition temperature of the material is lower than the living temperature, and at least a part of the inner wall of the storage chamber is 60% of infrared light having a peak wavelength corresponding to the body surface temperature of the human body. It is covered with an infrared reflecting layer that reflects the above.
- the material for forming the infrared reflective layer is a metal material, and at least a part of the inner wall of the storage chamber is formed of the metal material and functions as the infrared reflective layer, and is in contact with the heat storage unit. .
- FIG. 20 is a schematic configuration diagram showing the first embodiment of the cold insulating container of the present invention, and reference numeral 50 in FIG. 20 denotes a refrigerator-freezer as the cold insulating container.
- the refrigerator-freezer 50 includes a first container 60, a second container 70, and a third container 80, and these are integrally formed by using a common housing 51.
- the 1st container 60 functions as a refrigerator, and has fundamentally the structure of the refrigerator 1 demonstrated previously using FIGS. 1-19. Moreover, in this embodiment, the 2nd container 70 functions as a freezer, and the 3rd container 80 functions as a vegetable store.
- FIG. 21 is a side sectional view showing the refrigerator 50 in a simplified manner. As shown in this figure, the first container 60 has a first container body 61 and a first lid member 62, and a space surrounded by the first container body 61 and the first lid member 62 is a refrigerator compartment 63. It is what. As described above, the first container 60 corresponds to the refrigerators 1 to 5 described above, and therefore the first container body 61 corresponds to the container body 10 shown in FIG. Corresponds to the door member 20, and the refrigerator compartment 63 corresponds to the refrigerator compartment 100.
- the second container 70 includes a second container main body 71 and a second lid member 72, and a space surrounded by the second container main body 71 and the second lid member 72 is frozen. This is the chamber 73.
- the third container 80 includes a third container body 81 and a third lid member 82, and a space surrounded by the third container body 81 and the third lid member 82 is a vegetable compartment 83. is there.
- the 1st cover material 62 is provided in the opening part so that opening and closing is possible by the door system, and, thereby, the refrigerator compartment 63 can be opened and closed.
- the second container 70 and the third container 80 also adopt a door system in this embodiment.
- a drawer method can be adopted instead of such a door method.
- the 2nd container 70 and the 3rd container 80 are comprised in the drawer shape which the upper side opened, and the internal freezer compartment is pulled out by pulling out the 2nd cover material 72 or the 3rd cover material 82 located in the front.
- 73 or the vegetable compartment 83 may be opened, and the freezer compartment 73 or the vegetable compartment 83 may be closed by pushing in from the state.
- the opening and closing of the present invention that enables the second container 70 and the third container 80 to open and close the spaces (freezer compartment 73 or vegetable compartment 83) in the container bodies 71 and 81.
- the mechanism is configured.
- These containers 60, 70, 80 are arranged in the order of the third container 80, the second container 70, and the first container 60 from the bottom, and share a part of each container main body 61, 71, 81 and the housing with each other. Are formed integrally.
- the wall materials 11 and 21 are composed of the heat insulating part 12 and the heat storage part 14, and similarly, the second container 70 and the third container.
- the wall material of 80 also consists of a heat insulating part and a heat storage part.
- the first container body 61 in the first container 60 is provided with a first heat insulating portion 65 surrounding the refrigerator compartment 63 as a wall material 64 in a housing (not shown), Furthermore, the 1st heat storage part 66 is arrange
- FIG. The first lid member 62 is also provided with a first heat insulating portion 65 and a first heat storage portion 66 as a wall member 64 in a housing (not shown).
- the thickness of the first heat storage unit 66 is simplified to be uniform, but for example, as shown in FIG. 1B, the first heat storage unit 66 in the vicinity of the packing P is replaced with the other part.
- the temperature conductivity of the first material (first heat storage material) forming the first heat storage unit 66 is divided by the amount used per unit area of the wall surface, such as being formed thicker than the first heat storage unit 66. It shall be arrange
- a second heat insulating part 75 and a second heat storage part 76 are disposed as wall members 74 on the second container main body 71 and the second lid member 72.
- a third heat insulating part 85 and a third heat storage part 86 are arranged as wall members 84 on the third container main body 81 and the third lid member 82.
- the same heat insulation part is the first in particular in the first shelf part 52.
- the heat insulating part 65 and the second heat insulating part 75 are combined.
- the bottom part of the second container 70 and the ceiling part of the third container 80 are formed by the same second shelf part 53, and in this second shelf part 53, the same insulation part is the second insulation part. 75 and the third heat insulating portion 85.
- the thermal conductivity of the material (second material, third material) forming these heat storage parts such as forming the heat storage part in the vicinity of the packing P thicker than the heat storage part of the other part, etc. It is preferable to arrange so that the value divided by the amount used per area is small.
- this refrigerator-freezer 50 is provided with a gas compression type cooling device similar to the cooling device 19 shown in FIG. That is, as shown in FIG. 21, the refrigerator 50 is provided with a cooling device (cooling means) 90 on the back side thereof.
- the cooling device 90 includes a compressor 91 provided on the bottom back side of the third container 80, a radiator 92 provided on the back side of the refrigerator 50, and the second container 70, that is, the freezer compartment. 73, a cooler 93 provided exposed in 73, a pipe 94 connecting between them, a cooling mechanism 95 for cooling the inside of the first container 60 (in the refrigerator compartment 63) by the cooler 93, It is configured.
- the cooling mechanism 95 includes normally known components such as an expansion valve and a dryer for removing moisture in the refrigerant.
- the compressor 91 compresses the refrigerant.
- the radiator 92 radiates heat by condensing the refrigerant compressed by the compressor 91.
- the cooler 93 condenses in the radiator 92 and then evaporates the refrigerant expanded through an expansion valve (not shown) and absorbs heat to cool the surroundings. For example, the inside of the freezer compartment 73 is cooled to about ⁇ 18 ° C. by the cooler 93.
- the cooling mechanism 95 controls a damper 96 disposed on the first shelf 52 between the first container 60 and the second container 70, a fan 97, and the operations of the damper 96 and the fan 97. And a control unit 98.
- the first shelf plate 52 is formed with a through hole 52 a on the back side of the refrigerator 50 so as to penetrate the freezer compartment 73 and the refrigerator compartment 63 through the top and bottom.
- the damper 96 is provided in the refrigerator compartment 63 side of this through-hole 52a so that opening and closing is possible.
- the fan 97 is provided in the through hole 52a (or in the freezing chamber 73 side of the through hole 52a), and allows air (cold air) to flow from the freezing chamber 73 side to the refrigerating chamber 63 side.
- the flow of air (cold air) may be switched from the refrigerator compartment 63 side to the freezer compartment 73 side, for example by switching the rotation direction.
- two fans 97 may be provided, one of which may be configured to flow from the freezer compartment 73 side to the refrigerator compartment 63 side, and the other may be configured to flow from the refrigerator compartment 63 side to the refrigerator compartment 73 side.
- the control unit 98 controls the opening / closing operation of the damper 96 and the rotation operation of the fan 97, and performs preset and stored control. That is, during steady operation, when the inside of the refrigerator compartment 63 rises to a predetermined temperature or at a preset time, the damper 96 is opened and the fan 97 is rotated to cool the inside of the freezer 73 (for example, ⁇ 18 ° C. cold air) is introduced from the through hole 52a to the refrigerator compartment 64 side. Thereby, the inside of the refrigerator compartment 63 is cooled to a set temperature, for example, about 3 ° C. Note that the damper 96 is closed and the rotation of the fan 97 is also stopped when the inside of the refrigerator compartment 63 is lowered to a predetermined temperature or when a preset time has elapsed.
- the inside of the freezer 73 for example, ⁇ 18 ° C. cold air
- control unit 98 performs the operation of the damper 96 from the freezer compartment 73 side and the refrigerator compartment 63 from the side of the open state of the damper 96 and the rotation operation of the fan 97 at the time of unsteady operation, for example, initial operation at the time of new purchase or recovery after a power failure.
- the time for inflow of cold air to the side is made longer than that in the steady operation, and the inside of the refrigerator compartment 63 is cooled more strongly than in the steady operation. The operation during this unsteady operation will be described in detail later.
- the refrigerator compartment 63 of the first container 60 can refrigerate and store stored items at a temperature lower than the outside air temperature (the living temperature around the refrigerator / freezer 50) during normal operation.
- the stored item can be stored frozen at a temperature lower than that of the refrigerator compartment 63.
- the vegetable compartment 83 of the third container 80 is cooled to a set temperature, for example, about 5 ° C. to 8 ° C. by introducing cold air from the freezer compartment 73 in the same manner as the refrigerator compartment 63. Yes.
- a dehumidifier 54 is disposed in the refrigerating chamber 63 of the first container 60 on the back side of the refrigerating freezer 50.
- the dehumidifier 54 is disposed at a substantially central portion in the vertical direction of the refrigerating room 63, and operates particularly during the unsteady operation, that is, during the initial operation at the time of new purchase or recovery after a power failure.
- the inside is dehumidified.
- the dehumidifier 54 has a fan 55 and a dehumidifier body 56.
- the fan 55 creates an air flow in the refrigerating chamber 63 as indicated by a broken line arrow in FIG. 21, and its rotation operation is controlled by the control unit 98.
- the dehumidifier body 56 is not particularly limited, and one having a known dehumidifying function is used. For example, there is an adsorption method that reduces humidity using a hygroscopic material such as zeolite or silica gel, or a Peltier method that cools using a Peltier element and condenses moisture (humidity) in the air to reduce humidity. Adopted.
- the dehumidifier body 56 is made of a Peltier element.
- the operation of the Peltier element (dehumidifier body 56), that is, on / off, is controlled by the control unit 98.
- a container 57 for receiving and storing condensed water is provided below the Peltier element (dehumidifier body 56).
- a discharge pipe 58 is connected to the bottom of the container 57, and water accumulated in the container 57 is discharged from the discharge pipe 58.
- the dehumidifying body 56 discharges condensed water only from the back side of the refrigerator compartment 63, and the container 57 is disposed on the back side of the refrigerator compartment 63 so as to receive the discharged water. Yes. With such a configuration, the container 57 does not block the air flow by the fan 55.
- the discharge pipe 58 enters between the first heat insulating portion 65 and the first heat storage portion 66 on the back side of the first container 60 from the inside of the refrigerator compartment 63, and the second heat insulating portion 75 and the second heat storage portion of the second container 70. 76, the space between the third heat insulating portion 85 and the third heat storage portion 86 of the third container 80 is lowered to reach the vegetable compartment 83.
- a humidifier 59 using an ultrasonic vibrator or the like is provided at the end of the discharge pipe 58 on the vegetable compartment 83 side.
- the humidifier 59 is for humidifying the inside of the vegetable compartment 83 by spraying the water sent from the discharge pipe 58 in the mist form into the vegetable compartment 83.
- the operation of the humidifier 59 is also controlled by the control unit 98.
- the refrigerator-freezer 50 is provided with a control device (not shown) including the control unit 98.
- the control device adjusts the temperature in the refrigerator compartment 63 (not shown). Is provided.
- This temperature adjustment mechanism is a known mechanism used when, for example, the temperature in the refrigerator compartment 63 is changed between summer and winter, and includes a temperature sensor (not shown) provided in the refrigerator compartment 63 and the control unit. 98. That is, when the inside of the refrigerating chamber 63 becomes a predetermined temperature higher than the temperature set by the temperature adjusting mechanism, the control unit 98 operates the damper 96 and the fan 97 and causes cold air to flow into the refrigerating chamber 63 side from the freezing chamber 73 to refrigerate. The inside of the chamber 63 is cooled to a set temperature.
- the peak temperature of the phase transition temperature at the time of solidification which turns into a solid from a liquid can be adjusted with the said temperature control mechanism. It is preferable to be included in the temperature range in the refrigerator compartment 63.
- the set temperature of the refrigerator compartment 63 is usually about 3 ° C. to 5 ° C., but the temperature range that can be adjusted by the temperature adjusting mechanism is wider than this, for example, about 2 ° C. to 8 ° C. Therefore, the peak temperature of the phase transition temperature at the time of solidification of the first material (first heat storage material) is preferably within such a temperature range, for example, about 6 ° C. to 7 ° C. is preferable.
- the peak temperature of the phase transition temperature at the time of solidification is, for example, when a phase transition from a liquid phase to a solid phase occurs when a temperature drop rate is measured at 1 ° C./min using a differential scanning calorimeter.
- the peak temperature can be measured.
- the first material first heat storage material
- the inside of the refrigerator compartment 63 is compared by absorbing a large amount of heat corresponding to the latent heat when the first material undergoes phase transition from solid to liquid. For a long time.
- the second material (second heat storage material) forming the second heat storage unit 76 of the second container 70 has a peak temperature of the phase transition temperature at the time of solidification from a liquid to a solid, and a range of the set temperature of the freezer 73 It is preferable to be contained within.
- the 3rd material (3rd heat storage material) which forms the 3rd heat storage part 86 of the 3rd container 80 has the peak temperature of the phase transition temperature at the time of solidification which turns into a solid from a liquid of the preset temperature of the vegetable compartment 83 It is preferable to be included in the range.
- about 1st material (1st heat storage material), 2nd material (2nd heat storage material), and 3rd material (3rd heat storage material), all may consist of 1 type of materials, It may consist of materials.
- the refrigerator compartment 63, the freezer compartment 73, and the vegetable compartment 83 are each cooled to a set temperature in the same manner as the conventional refrigerator-freezer as described above. That is, by operating the cooling device 90, the cooler 93 cools the inside of the freezer compartment 73 to a predetermined temperature, for example, about ⁇ 18 ° C., and further, the damper 96 and the fan 97 are operated by the control unit 98, thereby the freezer compartment 73. The inside cold air is caused to flow into the refrigerator compartment 63 to cool the inside of the refrigerator compartment 63 to a set temperature. Similarly, the vegetable compartment 83 is also cooled to the set temperature.
- the cooling device 90 is operated in the same manner as during steady operation, and the controller 98 controls the dehumidifier 54.
- the fan 55 and the Peltier element (dehumidifier body 56) are operated to dehumidify the refrigerator compartment 73.
- the heat storage materials (first material, second material, third material) forming the heat storage portions 66, 76, 86 of the containers 60, 70, 80 are substantially the same. Since it is the same temperature as the outside air temperature (ambient living temperature), it is in a liquid phase state. Therefore, in particular, in order to shift the state in the refrigerating chamber 63 to the steady operation or to restore the state, the first material (first heat storage material) forming the first heat storage section 66 of the first container 60 is brought into a solid state. Therefore, it is necessary to store cold in the first material.
- the latent heat storage material is used as the first material, cooling the inside of the refrigerating chamber 63 in the same manner as in the steady operation requires a long time to store the cold, and as a result, the inside of the refrigerating chamber 63 Therefore, it takes a long time to shift to (or return to) the original steady operation in which the stored items are stored in a refrigerator.
- the inside of the refrigerator compartment 73 is dehumidified.
- the moisture in the refrigerator compartment 73 can be sufficiently reduced to lower the dew point temperature, and it is possible to prevent condensation and frost formation during subsequent cooling.
- the dehumidification time by the dehumidifier 54 it calculates
- the control unit 98 stops the operation of the dehumidifier 54.
- the water cooled and condensed by the Peltier element (dehumidifier body 56) is accumulated in the container 57, further flows through the discharge pipe 58 to the vegetable compartment 83, and is sprayed in a mist form by the humidifier 59. It has become.
- the spray of water by the humidifier 59 is also linked to the operation of the dehumidifier 54 by the control unit 98.
- cooling by the cooling device 90 is performed simultaneously with dehumidification by the dehumidifier 54, but only dehumidification by the dehumidifier 54 may be performed in advance without cooling by the cooling device 90. In that case, after the operation of the dehumidifier 54 is stopped as described below, the cooling device 90 is started.
- the control unit 98 opens the damper 96 in the cooling mechanism 95 to rotate the fan 97. At that time, the control unit 98 controls the time for the damper 96 to be open and the time for the cool air to flow from the freezer compartment 73 side to the refrigerating compartment 63 side by the rotation operation of the fan 97 so as to be longer than that during steady operation. To do.
- the inside of the freezer compartment 73 is cooled by the cooling device 90 in the same manner as during steady operation, a sufficient amount of cold air flows from the inside of the freezer compartment 73 toward the refrigerator compartment 63 side.
- the inside of the refrigerator compartment 63 is cooled to the same temperature as that of the freezer compartment 73 that is cooled in the same manner as during steady operation, that is, to substantially the same temperature.
- the first material (first heat storage material) of the first heat storage section 66 in the first container 60 is used.
- control unit 98 stops the unsteady operation for the refrigerator compartment 63 by the cooling mechanism 95, and shifts (returns) to the steady operation. That is, the damper 96 and the fan 97 are operated in the steady operation mode by the control unit 98, and the cold air in the freezer compartment 73 is intermittently flowed into the refrigerating chamber 63, whereby the inside of the refrigerating chamber 63 is cooled and held at the set temperature. .
- the inside of the refrigerator compartment 63 is cooled by the cooling mechanism 95 in the same manner as the freezer compartment 73 cooled in the steady operation during the unsteady operation prior to the steady operation. Therefore, by using a lot of cold air below freezing point in the freezing chamber 73, it is possible to store the cold heat in the first material (first heat storage material) in a relatively short time and to store such cold heat. It is possible to suppress the cost from becoming high with a simple configuration. Moreover, since the inside of the refrigerator compartment 63 is dehumidified by the dehumidifier 54 before the cooling by such a cooling mechanism 95, it is possible to suppress the occurrence of frost and condensation in the refrigerator compartment.
- the dehumidifier body 56 is configured by a Peltier element.
- adsorption method in which the humidity is reduced using a hygroscopic material.
- a porous material such as zeolite, silica gel, or activated alumina is preferably used as the hygroscopic material, and among these, zeolite is preferably used. As shown in the graph showing the water adsorption isotherm in FIG.
- the zeolite has a large amount of adsorption dehumidification (moisture adsorption amount) even in the low temperature (low vapor pressure) region, so that the inside of the refrigerator 63 This is because the moisture absorption function can be satisfactorily exhibited even when used in the above.
- FIG. 23 is a diagram showing a second embodiment of the cold container according to the present invention, and reference numeral 150 in FIG. 23 denotes a refrigerator-freezer as the cold container.
- the difference between the refrigerator-freezer 150 and the refrigerator-freezer 50 shown in FIG. 21 is that the inside of the refrigerator compartment 63 is cooled by the cooling mechanism 95 in the same manner as the refrigerator compartment 73 (in the second container 70) cooled in a steady operation.
- a moisture absorbing material that generates heat when absorbing moisture is disposed in a region where the amount of cold heat discharged is relatively large in the first container 60.
- the inflow of heat into the refrigerator compartment 100 of the refrigerator 1 after operation is stopped in the packing P as compared with other portions. Since the heat insulating property is low, it mainly occurs at the position of the packing P, and heat is transferred from the packing P portion to the inside of the refrigerator compartment 100. That is, the inflow of heat into the refrigerating room 100, in other words, the discharge of the cold heat from the refrigerating room 100 becomes larger at the packing P portion. Further, such a trend of heat inflow (cold heat discharge) is the same not only after the operation is stopped, but also during the initial operation at the time of new purchase or recovery after a power failure, for example.
- the amount of cold heat discharged from the refrigerator compartment 63 to the outside increases particularly in the packing P portion. That is, when the inside of the refrigerating chamber 63 is cooled by the cooling mechanism 95 in the same manner as the freezing chamber 73 (in the second container 70) cooled in a steady operation, the packing P portion in the first container 60 Compared with this part, the discharge amount of cold heat is relatively large.
- the moisture absorbing material 155 is disposed outside (outer vicinity) R of the packing P.
- a material that generates heat upon moisture absorption is used.
- a porous material such as zeolite, silica gel, activated alumina, or the like is used.
- zeolite is preferably used.
- zeolite has a large amount of moisture absorption (moisture adsorption) compared to other types even at low temperatures (low vapor pressure). Because it is done.
- a hygroscopic material 155 for example, zeolite having an appropriate particle size is used, and is filled in a container (not shown) in a dried state so as to exhibit a sufficient hygroscopic function.
- a container a bag-like one formed by a resin sheet having a large number of openings such as a mesh is used.
- it may be a container made of a resin or metal having an opening at least partially.
- Such a container having the moisture-absorbing material 155 is basically used in an unsteady operation prior to a steady operation, for example, at the time of initial operation at the time of new purchase or recovery after a power failure. Therefore, when not in use, the opening is hermetically sealed by, for example, a sealing encapsulant so that the hygroscopic performance of the hygroscopic material 155 (zeolite) does not deteriorate. It is preferable to be configured as described above.
- Such a container is provided with a sticking material such as a seal and a magnet, for example, and is detachably attached to the first container body 61 and the first lid member 62 which are the outside (outer vicinity) R of the packing P. It is supposed to be.
- a sticking material such as a seal and a magnet, for example
- an engagement recess 157 is formed in the first container body 61 and the first lid member 62 that become the outside (outer vicinity) R of the packing P, and this engagement recess 157. It may be adapted to be detachably attached to.
- the container having the hygroscopic material 155 is preferably disposed around the entire circumference of the packing P between the first container body 61 and the first lid member 62. However, you may make it arrange
- a container (moisture absorbing material 155) may be selectively disposed at a location where the discharge amount is relatively large.
- the refrigerator 90 is operated to cool the refrigerator compartment 63, the freezer compartment 73, and the vegetable compartment 83 to the set temperatures.
- the sealing material of the container having the moisture absorbing material 155 is peeled off and the outside of the packing P (outside) The vicinity portion) R, for example, is fitted into the engagement recess 157 shown in FIG.
- the cooling device 90 is operated in the same manner as during steady operation, and the fan 98 and the Peltier element (dehumidifier body 56) of the dehumidifier 54 are operated by the control unit 98 in the same manner as the refrigerator 50, and the refrigerator 73 Dehumidify inside.
- the moisture in the refrigerator compartment 73 can be sufficiently reduced to lower the dew point temperature, and it is possible to prevent condensation and frost formation during subsequent cooling.
- the control unit 98 stops the operation of the dehumidifier 54.
- the water cooled and condensed by the Peltier device (dehumidifier body 56) is accumulated in the container 57, further flows through the discharge pipe 58 to the vegetable compartment 83, and is sprayed in a mist form by the humidifier 59. It is like that.
- the cooling by the cooling device 90 is performed simultaneously with the dehumidification by the dehumidifier 54.
- the cooling by the dehumidifier 54 may be performed in advance without performing the cooling by the cooling device 90. Good. In that case, after the operation of the dehumidifier 54 is stopped as described below, the cooling device 90 is started.
- the control unit 98 opens the damper 96 in the cooling mechanism 95 to rotate the fan 97. At that time, the control unit 98 controls the time for the damper 96 to be open and the time for the cool air to flow from the freezer compartment 73 side to the refrigerating compartment 63 side by the rotation operation of the fan 97 so as to be longer than that during steady operation. To do.
- the inside of the freezer compartment 73 is cooled by the cooling device 90 in the same manner as during steady operation, a sufficient amount of cold air flows from the inside of the freezer compartment 73 toward the refrigerator compartment 63 side.
- the inside of the refrigerator compartment 63 is cooled to the same temperature as that of the freezer compartment 73 that is cooled in the same manner as during steady operation, that is, to substantially the same temperature.
- the 1st material (1st heat storage material) of the 1st heat storage part 66 in the 1st container 60 is cooled markedly compared with the time of the steady operation of the refrigerator compartment 63, and, thereby, 1st material stores cold heat rapidly. , Phase transition from liquid phase to solid phase.
- the moisture absorbing material 155 is outside the packing P (outer vicinity) R and the air in the vicinity thereof. It absorbs moisture (absorbs moisture) and generates heat. Therefore, since the hygroscopic material 155 generates heat as described above, the temperature rises outside (outer vicinity) R of the packing P as shown in FIG. 24C, thereby preventing condensation. .
- control unit 98 stops the unsteady operation for the refrigerator compartment 63 by the cooling mechanism 95, and shifts (returns) to the steady operation. That is, the damper 96 and the fan 97 are operated in the steady operation mode by the control unit 98, and the cold air in the freezer compartment 73 is intermittently flowed into the refrigerating chamber 63, whereby the inside of the refrigerating chamber 63 is cooled and held at the set temperature. .
- the container having the moisture absorbing material 155 is removed from the outside (outer vicinity) R of the packing P, dried as necessary, and then sealed again with a sealing material and stored. This allows reuse.
- the refrigerator-freezer 150 and its operating method as in the refrigerator-freezer 50 and its operating method in the above embodiment, during unsteady operation prior to steady operation, to the first material (first heat storage material). Therefore, it is possible to store the cold heat in a relatively short time, and it is possible to suppress the cost from increasing by making the mechanism for storing such cold heat simple. Moreover, since the inside of the refrigerator compartment 63 is dehumidified by the dehumidifier 54 before the cooling by such a cooling mechanism 95, it is possible to suppress the occurrence of frost and condensation in the refrigerator compartment.
- the first container 60 has a relatively large discharge amount of cold heat. That is, the moisture absorbing material 155 that generates heat when absorbing moisture is disposed outside the packing P (outside vicinity) R, so that dew condensation occurs on the outside (outside vicinity) R of the packing P due to cold air in the refrigerator compartment 63. Can be prevented.
- FIG. 25 is a view showing a third embodiment of the cold storage container of the present invention, and reference numeral 160 in FIG. 25 denotes a refrigerator-freezer as the cold storage container.
- the refrigerator / freezer 160 differs from the refrigerator / freezer 150 shown in FIG. 23 in that it is provided in the cooling device 90 in that imogolite is used instead of a porous material such as zeolite as the moisture-absorbing material 162 that generates heat when absorbing moisture.
- the flow path of the refrigerant into the condenser 164 piped so as to pass through the vicinity of the hygroscopic material 162 is configured to be switchable by the control unit 98.
- Imogolite is a tubular aluminum silicate having a chemical composition of SiO 2 ⁇ Al 2 O 3 ⁇ 2H 2 O [(OH) 3 Al 2 O 3 SiOH], for example, an outer diameter of about 2.5 nm and an inner diameter of The length is about 1.0 nm and the length is about several tens of nm to several ⁇ m.
- This imogolite has a high water absorption rate (water absorption rate about 4 to 5 times that of zeolite), a high dehydration rate at low temperature (21 wt% dehydration at 40 ° C), and a low hydration enthalpy (hydration equivalent to zeolite) Enthalpy), and absorbs a large amount of water on the high humidity side (absorbs about 230% by weight when the relative humidity is 96%).
- This imogolite is also used by being housed in a bag-like resin sheet, resin, metal, or the like, as in the second embodiment. And it attaches in the engagement recessed part 157 as shown to Fig.26 (a) with such a form.
- a lid having a vent hole in the engagement recess 157 may be detachably provided, and the engaging recess 157 may be directly filled with imogolite.
- the first container body 61 is provided with a condenser 164 in the vicinity of the engaging recess 157 in which the hygroscopic material 162 is disposed.
- the condenser 164 is provided as a constituent member of the cooling device 90, and is a conventionally known pipe for circulating the refrigerant heated to about 40 ° C. by the compressor 91 to dissipate heat.
- a switching valve (not shown) for switching the flow path of the refrigerant flowing through the condenser 164 is provided. That is, as shown in FIGS.
- the refrigerant is circulated in the condenser 164 disposed in the vicinity of the engaging recess 157, and the state is returned to the compressor 91 without being circulated. Can be switched between. Further, such switching control of the switching valve is performed by the control unit 98.
- the hygroscopic material 162 is also disposed around the entire circumference of the packing P between the first container body 61 and the first lid member 62 as in the second embodiment. It is preferable. In that case, it is preferable to arrange the condenser 164 in the vicinity of all the hygroscopic materials 162. However, the hygroscopic material 162 may be arranged at several places with an interval, for example. Further, even in the same packing P portion, there is a difference in the thickness of the packing P, and when the discharge amount of cold heat is relatively different depending on the position of the packing P, the cold heat is less than that of other portions. The hygroscopic material 162 may be selectively disposed at a location where the discharge amount is relatively large.
- the refrigerator 90 is operated to cool the refrigerator compartment 63, the freezer compartment 73, and the vegetable compartment 83 to the set temperatures.
- the hygroscopic material 162 is disposed in advance in the engaging recess 157. The operation relating to the hygroscopic material 162 will be described later.
- the moisture-absorbing material 162 is arranged in advance in the engagement recess 157 also during non-steady operation prior to steady operation, for example, during initial purchase during new purchase or during recovery after a power failure.
- the cooling device 90 is operated in the same manner as in the steady operation, and the control unit 98 operates the fan 55 and the Peltier element (dehumidifier body 56) of the dehumidifier 54 in the same manner as the refrigerator 50, and the inside of the refrigerator 73 Dehumidify.
- the moisture in the refrigerator compartment 73 can be sufficiently reduced to lower the dew point temperature, and it is possible to prevent condensation and frost formation during subsequent cooling.
- the control unit 98 stops the operation of the dehumidifier 54.
- the water cooled and condensed by the Peltier device (dehumidifier body 56) is accumulated in the container 57, further flows through the discharge pipe 58 to the vegetable compartment 83, and is sprayed in a mist form by the humidifier 59. It is like that.
- cooling by the cooling device 90 is performed at the same time as dehumidification by the dehumidifier 54, but even if only dehumidification by the dehumidifier 54 is performed in advance without cooling by the cooling device 90. Good. In that case, after the operation of the dehumidifier 54 is stopped as described below, the cooling device 90 is started.
- the control unit 98 opens the damper 96 in the cooling mechanism 95 to rotate the fan 97. At that time, the control unit 98 controls the time for the damper 96 to be open and the time for the cool air to flow from the freezer compartment 73 side to the refrigerating compartment 63 side by the rotation operation of the fan 97 so as to be longer than that during steady operation. To do.
- the inside of the freezer compartment 73 is cooled by the cooling device 90 in the same manner as during steady operation, a sufficient amount of cold air flows from the inside of the freezer compartment 73 toward the refrigerator compartment 63 side.
- the inside of the refrigerator compartment 63 is cooled to the same temperature as that of the freezer compartment 73 that is cooled in the same manner as during steady operation, that is, to substantially the same temperature.
- the 1st material (1st heat storage material) of the 1st heat storage part 66 in the 1st container 60 is cooled markedly compared with the time of the steady operation of the refrigerator compartment 63, and, thereby, 1st material stores cold heat rapidly. , Phase transition from liquid phase to solid phase.
- the hygroscopic material 162 since the hygroscopic material 162 is disposed outside (outer vicinity) R of the packing P, the hygroscopic material 162 absorbs the humidity in the outside (outer vicinity) R of the packing P and in the vicinity thereof ( It absorbs moisture) and generates heat. Therefore, since the hygroscopic material 162 generates heat as described above, the temperature rises outside (outer vicinity) R of the packing P as shown in FIG. 26B, thereby preventing condensation. .
- control unit 98 stops the unsteady operation for the refrigerator compartment 63 by the cooling mechanism 95, and shifts (returns) to the steady operation. That is, the damper 96 and the fan 97 are operated in the steady operation mode by the control unit 98, and the cold air in the freezer compartment 73 is intermittently flowed into the refrigerating chamber 63, whereby the inside of the refrigerating chamber 63 is cooled and held at the set temperature. .
- the condenser 164 disposed in the vicinity of the moisture absorbent material 162 is controlled by the control unit 98 at the time of non-steady operation (initial operation at the time of new purchase or recovery after power failure) prior to such steady operation.
- the switching valve (not shown) is controlled so that the refrigerant does not flow through the condenser 164.
- the hygroscopic material 162 since the hygroscopic material 162 is not heated by the condenser 164, the hygroscopic material 162 adsorbs (hygroscopically) the humidity in the outside (outer vicinity) R of the packing P and the air in the vicinity thereof and absorbs heat to generate the packing. Condensation on the exterior (outer vicinity) R of P is reliably prevented.
- the control unit 98 controls the switching valve (not shown) so that the refrigerant flows through the condenser 164. Then, the moisture-absorbing material 162 is heated to, for example, about 40 ° C. by the condenser 164 to release (dehumidify) the moisture that has been previously absorbed, and become dry. Therefore, by performing the drying process of the hygroscopic material 162 by switching such a switching valve periodically or prior to the unsteady operation, the condensation on the outside (outer vicinity) R of the packing P is caused as described above. It can be surely prevented.
- the storage of cold heat in the first material is compared during the unsteady operation prior to the steady operation. It can be performed in a short time, and a mechanism for storing such cold energy can be configured with a simple structure to prevent an increase in cost. Moreover, since the inside of the refrigerator compartment 63 is dehumidified by the dehumidifier 54 before the cooling by such a cooling mechanism 95, it is possible to suppress the occurrence of frost and condensation in the refrigerator compartment.
- the first container 60 has a relatively large discharge amount of cold heat. That is, since the moisture absorbing material 162 that generates heat when absorbing moisture is disposed outside the packing P (contains outside), dew condensation occurs outside the packing P (outside vicinity) R due to the cool air in the refrigerator compartment 63. Can be prevented.
- the hygroscopic material 162 can be used over a long period of time without being frequently replaced, for example, in a state of being disposed in the engagement recess 157.
- FIG. 27 is an explanatory diagram of a storage container according to the fourth embodiment of the present invention.
- the storage container of this embodiment is partially in common with the storage container 1 of the first embodiment. Therefore, in this embodiment, the same code
- FIGS. 27A and 27B are explanatory views showing the structure of the wall material 11.
- the heat storage section 14 is located in the storage chamber 100 at a position adjacent to the packing P (indicated by reference symbol ⁇ in FIG. 1) through the casing of the container body 10 and the door member 20. It is provided so that it may become thick from the wall surface of the thickness direction. For this reason, the thickness of the heat insulation part 13 on the heat storage part 14 adjacent to the packing P is thinner than the thickness of the heat insulation part 12 on the heat storage part 14 not adjacent to the packing P.
- FIG. 28 is a diagram showing a fifth embodiment of the present invention and a method for obtaining the phase transition temperature of the heat storage material used in the storage container.
- FIG. 28A shows a measurement example of the phase transition temperature of the heat storage material using DSC.
- the horizontal axis represents the temperature t.
- the right direction is a high temperature side. Two horizontal axes are shown. The upper side shows the measurement result when the temperature is lowered, and the lower side shows the measurement result when the temperature is raised.
- the vertical direction represents the amount of heat.
- the upper part represents the amount of heat released from the heat storage material with respect to the horizontal axis, and the lower part represents the heat absorption amount of the heat storage material.
- FIG. 28 (a) shows a measurement result when the DSC furnace is cooled at a predetermined temperature decrease rate (temperature decrease rate) as a solid line waveform D1, and is cooled at a temperature decrease rate higher than the predetermined temperature decrease rate.
- the measurement result is shown by a broken line waveform D2.
- the measurement result when the DSC furnace is heated at a predetermined temperature increase rate is indicated by a solid line waveform U1
- the measurement result when the DSC furnace is heated at a temperature increase rate higher than the predetermined temperature increase rate is indicated by a broken line waveform U2. Is shown.
- the peak temperature changes due to the difference in the temperature lowering rate or the temperature rising rate. Further, in the temperature drop measurement, the phase transition temperature is lowered by the supercooling H, so that hysteresis occurs between the temperature rise and the temperature fall.
- the peak temperature when the phase transition from the liquid phase to the solid phase occurs is measured at a temperature drop rate of 1 ° C./min.
- the peak temperature measured by DSC changes due to the difference in temperature drop or rise speed, or due to hysteresis during temperature drop and temperature rise.
- the peak temperature needs to be a temperature at which the heat storage material can maintain a solid phase when the heat storage material is kept cold or kept in an actual storage container.
- the measurement of the phase transition temperature of the heat storage material using DSC is preferably to measure the peak temperature when the phase transition from the solid phase to the liquid phase occurs.
- the measurement of the peak temperature of the phase transition temperature of the heat storage material using DSC is preferably a temperature increase measurement at a relatively low temperature increase rate.
- the cooling rate in the container actually used may be measured.
- FIG. 28 (b) shows a method for determining the phase change temperature based on temperature rise measurement by DSC.
- the horizontal axis represents the temperature t, and the vertical direction represents the amount of heat, which is the same as in FIG.
- the measurement result when the DSC furnace is heated at a predetermined rate of temperature rise is shown by a solid line waveform U.
- the straight line portion of the waveform U before the heat storage material starts the phase transition from the solid phase to the liquid phase is extended to the high temperature side to be a virtual straight line X1 indicated by a broken line.
- the straight line portion of the waveform U before the heat absorption material starts the phase transition and before the maximum heat absorption amount is extended to be a virtual straight line X2 indicated by a broken line.
- the phase change temperature in DSC is obtained as the temperature of the intersection C between the virtual straight line X1 and the virtual straight line X2.
- a straight line indicated by a broken line orthogonal to the virtual straight line X1 from the position of the maximum heat absorption amount is a virtual straight line X3
- the peak temperature is obtained as the temperature of the intersection E between the virtual straight line X1 and the virtual straight line X3.
- the peak temperature obtained in this way is in a temperature range in which the heat storage material can maintain a solid state in an actual storage container in most cases.
- FIG. 29 is a view showing a sixth embodiment of the cold container according to the present invention, and reference numeral 170 in FIG. 29 denotes a refrigerator-freezer as the cold container.
- 23 differs from the refrigerator refrigerator 150 shown in FIG. 23 or the refrigerator refrigerator 160 shown in FIG. 25 in that mesoporous silica is used instead of a porous material such as zeolite or imogolite as a moisture absorbing material 172 that generates heat when absorbing moisture. It is in the point used.
- Mesoporous silica is a porous material having uniform and regular pores (mesopores) composed of SiO 2 (silica).
- the range of mesopores is 2-50 nm in diameter, which is larger than the pores of zeolite having a diameter of 2 nm or less.
- This mesoporous silica has a water supply capacity equivalent to that of zeolite on the low humidity side, and absorbs a large amount of water on the high humidity side (room temperature 25 ° C., humidity 90%, about 2.7 times the amount of water absorption of zeolite). Since it dehydrates even at room temperature, it has excellent properties such as being usable as a humidity control material.
- This mesoporous silica is also used by being housed in a bag-like resin sheet, resin, metal, or the like, as in the second embodiment. And it attaches in the engagement recessed part 157 as shown to Fig.30 (a) with such a form.
- the engagement recess 157 has a vent hole without being accommodated in the bag-like resin sheet or container.
- a lid (not shown) may be provided so as to be detachable, and mesoporous silica may be directly filled into the engagement recess 157.
- the first container body 61 is provided with a condenser 164 in the vicinity of the engaging recess 157 in which the hygroscopic material 172 is disposed.
- the condenser 164 is provided as a constituent member of the cooling device 90, and is a conventionally known pipe for circulating the refrigerant heated to about 40 ° C. by the compressor 91 to dissipate heat.
- a switching valve (not shown) for switching the flow path of the refrigerant flowing through the condenser 164 is provided. That is, as shown in FIGS.
- the hygroscopic material 172 is also disposed around the entire circumference of the packing P between the first container body 61 and the first lid member 62 as in the second embodiment. It is preferable. In that case, it is preferable that the condenser 164 is also arranged in the vicinity of all the moisture absorbing materials 172. However, the hygroscopic material 172 may be arranged at several places with an interval, for example. Further, even in the same packing P portion, there is a difference in the thickness of the packing P, and when the discharge amount of cold heat is relatively different depending on the position of the packing P, the cold heat is less than that of other portions. You may selectively arrange
- the refrigerator 90 is operated to cool the refrigerator compartment 63, the freezer compartment 73, and the vegetable compartment 83 to the set temperatures.
- the hygroscopic material 172 is disposed in advance in the engaging recess 157. The operation relating to the hygroscopic material 172 will be described later.
- the moisture-absorbing material 172 is arranged in advance in the engaging recess 157 also during non-steady operation prior to steady operation, for example, during initial purchase during new purchase or recovery after a power failure.
- the cooling device 90 is operated in the same manner as in the steady operation, and the control unit 98 operates the fan 55 and the Peltier element (dehumidifier body 56) of the dehumidifier 54 in the same manner as the refrigerator 50, and the inside of the refrigerator 73 Dehumidify.
- the moisture in the refrigerator compartment 73 can be sufficiently reduced to lower the dew point temperature, and it is possible to prevent condensation and frost formation during subsequent cooling.
- the control unit 98 stops the operation of the dehumidifier 54.
- the water cooled and condensed by the Peltier device (dehumidifier body 56) is accumulated in the container 57, further flows through the discharge pipe 58 to the vegetable compartment 83, and is sprayed in a mist form by the humidifier 59. It is like that.
- cooling by the cooling device 90 is performed at the same time as dehumidification by the dehumidifier 54, but even if only dehumidification by the dehumidifier 54 is performed in advance without cooling by the cooling device 90. Good. In that case, after the operation of the dehumidifier 54 is stopped as described below, the cooling device 90 is started.
- the control unit 98 opens the damper 96 in the cooling mechanism 95 to rotate the fan 97. At that time, the control unit 98 controls the time for the damper 96 to be open and the time for the cool air to flow from the freezer compartment 73 side to the refrigerating compartment 63 side by the rotation operation of the fan 97 so as to be longer than that during steady operation. To do.
- the inside of the freezer compartment 73 is cooled by the cooling device 90 in the same manner as during steady operation, a sufficient amount of cold air flows from the inside of the freezer compartment 73 toward the refrigerator compartment 63 side.
- the inside of the refrigerator compartment 63 is cooled to the same temperature as that of the freezer compartment 73 that is cooled in the same manner as during steady operation, that is, to substantially the same temperature.
- the 1st material (1st heat storage material) of the 1st heat storage part 66 in the 1st container 60 is cooled markedly compared with the time of the steady operation of the refrigerator compartment 63, and, thereby, 1st material stores cold heat rapidly. , Phase transition from liquid phase to solid phase.
- the moisture absorbing material 172 since the moisture absorbing material 172 is disposed on the outside (outer vicinity) R of the packing P, the moisture absorbing material 172 absorbs the humidity in the outside (outer vicinity) R of the packing P and in the air ( It absorbs moisture) and generates heat. Therefore, since the hygroscopic material 172 generates heat as described above, the temperature rises outside (outer vicinity) R of the packing P as shown in FIG. 30B, thereby preventing condensation. .
- control unit 98 stops the unsteady operation for the refrigerator compartment 63 by the cooling mechanism 95, and shifts (returns) to the steady operation. That is, the damper 96 and the fan 97 are operated in the steady operation mode by the control unit 98, and the cold air in the freezer compartment 73 is intermittently flowed into the refrigerating chamber 63, whereby the inside of the refrigerating chamber 63 is cooled and held at the set temperature. .
- the control unit 98 performs the non-steady operation prior to the steady operation (at the time of new purchase or initial operation at the time of recovery after a power failure).
- the switching valve (not shown) is controlled so that the refrigerant does not flow through the condenser 164.
- the hygroscopic material 172 since the hygroscopic material 172 is not heated by the condenser 164, the hygroscopic material 172 adsorbs (hygroscopically) the humidity in the outside (outer vicinity) R of the packing P and in the air in the vicinity thereof, and generates heat by generating heat. Condensation on the exterior (outer vicinity) R of P is reliably prevented.
- the control unit 98 controls the switching valve (not shown) so that the refrigerant flows through the condenser 164. Then, the moisture-absorbing material 172 is heated to, for example, about 40 ° C. by the condenser 164 to release (dehumidify) moisture that has been absorbed earlier and become dry. Therefore, by performing the drying treatment of the moisture absorbing material 172 by switching the switching valve periodically or prior to the non-steady operation, the condensation on the outside (outer vicinity) R of the packing P is caused as described above. It can be surely prevented.
- the storage of cold heat in the first material is compared during non-steady operation prior to steady operation. It can be performed in a short time, and a mechanism for storing such cold energy can be configured with a simple structure to prevent an increase in cost. Moreover, since the inside of the refrigerator compartment 63 is dehumidified by the dehumidifier 54 before the cooling by such a cooling mechanism 95, it is possible to suppress the occurrence of frost and condensation in the refrigerator compartment.
- the first container 60 has a relatively large discharge amount of cold heat.
- the moisture absorbing material 172 that generates heat when absorbing moisture is arranged outside the packing P (contains outside), dew condensation occurs outside the packing P (outside neighborhood) R due to the cool air in the refrigerator compartment 63. Can be prevented.
- mesoporous silica is used as the hygroscopic material 172 and the condenser 164 is disposed in the vicinity of the hygroscopic material 172, the water absorption of the hygroscopic material 172 that has absorbed moisture by heat drying with the condenser 164 can be easily regenerated. Therefore, the hygroscopic material 172 can be used over a long period of time without being frequently replaced, for example, in a state of being disposed in the engagement recess 157.
- the water condensed in the dehumidifier 54 is used for humidifying the vegetable compartment, but it may be simply discharged out of the freezer 50 and evaporated by the radiator 92 of the cooling device 90 or the like.
- the hygroscopic agents 155, 162, and 172 are used to prevent condensation on the outside R of the packing P during the unsteady operation. Is not limited to this.
- the refrigerator-freezers 150, 160, and 170 are used in a hot and humid environment such as the summer of Japan, the moisture absorbents 155, 162, and 172 are used at the outside R of the packing P even during steady operation. It functions as a means to prevent condensation.
- the refrigerator-freezers 150, 160, and 170 may not have the dehumidifier 54 because the non-steady operation does not have to be performed.
- the refrigerator-freezers 150, 160, and 170 prevent condensation around the packing P during steady operation. For this reason, when a condenser or heater through which a high-temperature (about 40 ° C.) refrigerant flows is provided around the packing P, it is not necessary to constantly flow a refrigerant through the condenser or constantly flow an electric current through the heater.
- the condenser 164 may be used for preventing condensation around the packing P, or a condenser dedicated to preventing condensation may be provided separately from the condenser 164.
- the present invention can be widely used in the field of cold storage containers that store stored items at a temperature lower than the surrounding living temperature.
- 1st heat storage part 70 ... 2nd container, 71 ... 2nd container body, 72 ... 1st 2 lid materials, 73 ... freezing room, 74 ... wall material, 75 ... second heat insulating part, 76 ... second heat storage part, 80 ... third container, 81 ... third container body, 82 ... third lid material, 83 ... Vegetable room, 84 ... wall material, 85 ... third heat insulating part, 86 ... third heat storage part, 90 ... cooling device (cooling means), 100 ... storage room, 101 ... opening, 1 0 ... refrigerator, 155 ... moisture-absorbing material, 160 ... refrigerator, 162 ... moisture-absorbing material, 170 ... refrigerator, 172 ... moisture-absorbing material, AR1 ... first region, AR2 ... second region, P ... packing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
蓄熱材への冷熱の蓄えを比較的短時間で行うことができ、しかも冷蔵庫内に霜・結露が生じるのを抑制した、保冷容器とその運転方法を提供する。 第1容器60と、第2容器70と、定常運転において第1容器内60を周囲の生活温度より低い温度に冷却するとともに、第2容器70内を第1容器60より低い温度に冷却する冷却手段90と、を備える保冷容器50である。第1容器60は貯蔵物を冷蔵する冷蔵室63を有し、その第1断熱部65と冷蔵室63との間に第1蓄熱部66を有する。第1蓄熱部66は、定常運転において冷蔵室63内で制御可能な温度と保冷容器50の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる第1材料によって形成されている。冷蔵室63には除湿器54が設けられ、冷却手段90は、冷蔵室63内を、定常運転で冷却される第2容器70内と同じに冷却する冷却機構95を有する。
Description
本発明は、保冷容器とその運転方法に関するものである。
従来、冷蔵庫のように、外気温(周囲の生活温度)より低い温度で貯蔵物を保管する保冷容器が知られている。このような保冷容器を用いると、所望の温度で貯蔵物を保管することができ、したがって貯蔵物である各種の食品の鮮度を長時間に渡って保つことができる。
このような保冷容器は、停電等の理由によって稼働しなくなると、貯蔵物を貯蔵する貯蔵室の温度が外気温に近づくように昇温してしまう。これを防止するために、特許文献1、2に提案されている冷蔵庫では、蓄冷材を備えることとし、例えば停電により稼働しなくなっても、一定時間は貯蔵室内に冷気を供給することで、貯蔵室内の温度が変化しないような構成が採用されている。
また、このように蓄冷材(蓄熱材)を備える冷蔵庫としては、例えば特許文献3のように、潜熱蓄熱材と熱交換用冷媒管とから成る蓄熱器を夜間時間帯のコンプレッサーの運転余力で固化させ、昼間時間帯の所定時間のみ、コンプレッサーで冷凍室、蓄熱器で冷蔵室を冷却するものが提案されている。
ところが、前記特許文献3の冷蔵庫では、従来の冷却器以外に冷媒管と蓄熱材とからなる蓄熱器を設けなければならず、構成が複雑になってその分コストが高くなるといった課題がある。
また、蓄冷材(蓄熱材)を用いる冷蔵庫では、保冷を行う際、まず、蓄熱材に冷熱を蓄える必要がある。しかし、蓄熱材として特に潜熱蓄熱材料を用いた場合では、冷熱を蓄えるのに長時間を要してしまう。したがって、新規購入時等のように庫内が室温状態にまで温まっている場合には、蓄熱材の保冷効果を機能させるべく蓄熱材を所定状態にまで冷却するのに時間がかかり、定常運転を行うまでに長時間を要してしまうといった課題がある。
また、蓄冷材(蓄熱材)を用いる冷蔵庫では、保冷を行う際、まず、蓄熱材に冷熱を蓄える必要がある。しかし、蓄熱材として特に潜熱蓄熱材料を用いた場合では、冷熱を蓄えるのに長時間を要してしまう。したがって、新規購入時等のように庫内が室温状態にまで温まっている場合には、蓄熱材の保冷効果を機能させるべく蓄熱材を所定状態にまで冷却するのに時間がかかり、定常運転を行うまでに長時間を要してしまうといった課題がある。
さらに、蓄熱材を冷却するために冷却器を長時間機能させなければならないため、エネルギー損失が大きくなる。
また、使用料が安い深夜電力を利用したい場合にも、蓄熱材を所定状態にまで冷却するのに時間がかかることから、深夜電力の時間帯内に冷却することができないこともある。
さらに、蓄熱材を冷凍庫内で短時間に冷却する方法も考えられるが、冷却前後に蓄熱材を冷凍庫と冷蔵庫との間で移し替えなければならないため不便であり、また、冷却後蓄熱材が冷えすぎてしまうため、冷蔵庫内の温度変化が大きくなり、冷蔵庫内で霜・結露を生じる等の課題もある。
また、使用料が安い深夜電力を利用したい場合にも、蓄熱材を所定状態にまで冷却するのに時間がかかることから、深夜電力の時間帯内に冷却することができないこともある。
さらに、蓄熱材を冷凍庫内で短時間に冷却する方法も考えられるが、冷却前後に蓄熱材を冷凍庫と冷蔵庫との間で移し替えなければならないため不便であり、また、冷却後蓄熱材が冷えすぎてしまうため、冷蔵庫内の温度変化が大きくなり、冷蔵庫内で霜・結露を生じる等の課題もある。
本発明は前記事情に鑑みてなされたもので、蓄熱材への冷熱の蓄えを比較的短時間で行うことができ、しかもこのような冷熱を蓄える機構を簡易な構成にしてコストが高くなるのを抑制し、さらに冷蔵庫内に霜・結露が生じるのを抑制した、保冷容器とその運転方法を提供することを目的としている。
本発明の保冷容器は、電気的な冷却機能を有する貯蔵物の保冷容器であって、定常運転において前記保冷容器の周囲の生活温度より低い温度で貯蔵物を保存する第1容器と、定常運転において前記第1容器より低い温度で貯蔵物を保存する第2容器と、定常運転において前記第1容器内を前記周囲の生活温度より低い温度に冷却するとともに、前記第2容器内を前記第1容器より低い温度に冷却する冷却手段と、を備え、前記第1容器は、第1容器本体と該第1容器本体内の空間を開閉可能にする第1蓋材とを有し、前記第1容器本体および前記第1蓋材で囲まれた前記空間は、貯蔵物を冷蔵する冷蔵室を成しており、前記第1容器本体および前記第1蓋材は、前記冷蔵室を囲んで設けられた第1断熱部と、前記冷蔵室と前記第1断熱部との間において少なくとも一部に設けられた第1蓄熱部と、を有し、前記第1蓄熱部は、定常運転において前記冷蔵室内で制御可能な温度と前記保冷容器の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料からなる第1材料を用いて形成され、前記冷蔵室には除湿器が設けられ、前記冷却手段は、前記冷蔵室内を、定常運転で冷却される前記第2容器内と同じに冷却する冷却機構を有することを特徴としている。
前記保冷容器においては、定常運転状態から電気的な冷却機能を停止した後の経時変化によって前記冷蔵室内に形成される温度分布において、相対的に前記生活温度に近づきやすい第1の領域の近傍に配置されている前記第1蓄熱部の一部は、前記生活温度に近づきにくい第2の領域の近傍に配置されている前記第1蓄熱部の他の一部よりも、前記材料の温度伝導率を、壁面の単位面積当たりの使用量で割った値が小さくなるように設けられているのが好ましい。
前記保冷容器において、前記第2容器は、第2容器本体と該第2容器本体内の空間を開閉可能にする開閉機構とを有し、前記第2容器本体内の前記空間は、貯蔵物を冷凍する冷凍室を成しており、前記第2容器本体は、前記冷凍室を囲んで設けられた第2断熱部と、前記冷凍室と前記第2断熱部との間において少なくとも一部に設けられた第2蓄熱部と、を有し、前記第2蓄熱部は、定常運転において前記冷凍室内で制御可能な温度と前記保冷容器の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料からなる第2材料を用いて形成されているのが好ましい。
前記保冷容器において、前記第1容器には、前記冷蔵室内の温度を調節する温度調節機構が設けられており、前記第1材料は、その固化時の相転移温度のピーク温度が、前記温度調節機構によって調整可能な前記冷蔵室内の温度範囲に含まれるのが好ましい。
前記保冷容器においては、前記冷却機構によって前記冷蔵室内を、定常運転で冷却される前記第2容器内と同じに冷却した際、前記第1容器において冷熱の排出量が相対的に大きい領域に、吸湿時に発熱する吸湿材料が配置されるのが好ましい。
また、前記吸湿材料が多孔質材料であるのが好ましい。
さらに、前記多孔質材料がゼオライトであるのが好ましい。
また、前記吸湿材料がイモゴライトであるのが好ましい。
また、前記吸湿材料がメソポーラスシリカであるのが好ましい。
また、前記吸湿材料が多孔質材料であるのが好ましい。
さらに、前記多孔質材料がゼオライトであるのが好ましい。
また、前記吸湿材料がイモゴライトであるのが好ましい。
また、前記吸湿材料がメソポーラスシリカであるのが好ましい。
前記保冷容器においては、第3容器と、前記除湿器で前記冷蔵室内を除湿した際に得られる水を、前記第3容器内の加湿に用いる加湿機構と、を有するのが好ましい。
本発明の保冷容器は、電気的な冷却機能を有する貯蔵物の保冷容器であって、定常運転において前記保冷容器の周囲の生活温度より低い温度で貯蔵物を保存する第1容器と、定常運転において前記第1容器より低い温度で貯蔵物を保存する第2容器と、定常運転において前記第1容器内を前記周囲の生活温度より低い温度に冷却するとともに、前記第2容器内を前記第1容器より低い温度に冷却する冷却手段と、前記第1容器において冷熱の排出量が相対的に大きい領域に配置されて吸湿時に発熱する吸湿材料と、を備え、前記第1容器は、第1容器本体と該第1容器本体内の空間を開閉可能にする第1蓋材とを有し、前記第1容器本体および前記第1蓋材で囲まれた前記空間は、貯蔵物を冷蔵する冷蔵室を成しており、前記第1容器本体および前記第1蓋材は、前記冷蔵室を囲んで設けられた第1断熱部と、前記冷蔵室と前記第1断熱部との間において少なくとも一部に設けられた第1蓄熱部と、を有し、前記第1蓄熱部は、定常運転において前記冷蔵室内で制御可能な温度と前記保冷容器の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料からなる第1材料を用いて形成されていることを特徴としている。
本発明の保冷容器の運転方法は、前記保冷容器の運転方法であって、前記定常運転に先立つ非定常運転時に、まず、前記除湿器によって前記冷蔵庫内を除湿し、次いで、前記冷却機構によって前記冷蔵室内を、定常運転で冷却される前記第2容器内と同じに冷却して前記第1蓄熱部の前記第1材料を冷却し、その後、前記定常運転を行うことを特徴としている。
本発明の保冷容器とその運転方法によれば、蓄熱材(蓄熱部の材料)への冷熱の蓄えを比較的短時間で行うことができ、しかもこのような冷熱を蓄える機構を簡易な構成にしてコストが高くなるのを抑制することができ、さらに冷蔵室内に霜・結露が生じるのを抑制することができる。
まず、本発明の実施形態の説明に先立ち、本発明の保冷容器の基本構成となる冷蔵庫について、図面を参照して説明する。なお、以下の図面においては、図面を見やすくするため、各構成要素の寸法や比率などを適宜異ならせている。
図1は本発明に係る冷蔵庫の第1例を示す図であり、図1(a)は概略斜視図、図1(b)は概略断面図である。この冷蔵庫1は、後述する本発明の保冷容器における第1容器の基本構成となるもので、定常運転時に外気温より低い温度で貯蔵物を保管するために用いられるものである。
図1は本発明に係る冷蔵庫の第1例を示す図であり、図1(a)は概略斜視図、図1(b)は概略断面図である。この冷蔵庫1は、後述する本発明の保冷容器における第1容器の基本構成となるもので、定常運転時に外気温より低い温度で貯蔵物を保管するために用いられるものである。
図1(a)、(b)に示すように本例の冷蔵庫1は、開口部101によって外部に通じる冷蔵室(貯蔵室)100を有する容器本体10と、開口部101に取り付けられた扉部材(蓋材)20と、を有している。冷蔵室100は、容器本体10を構成する壁材11と、扉部材20を構成する壁材21とによって囲まれた空間である。容器本体10には断熱部12と蓄熱部14とが設けられ、扉部材20にも断熱部22と蓄熱部24とが設けられている。蓄熱部14及び蓄熱部24は、パッキンPと隣り合う位置において他の位置よりも厚く(体積が大きく)なるように設けられている。
このような冷蔵庫1では、定常運転時には冷蔵室100内を所定の設定温度に保つことができるが、例えば停電により電力供給が止まり運転を停止した場合であっても、以下に詳細に説明するように、一定時間は冷蔵室100内の温度に温度分布が生じないように保冷することが可能になっている。
容器本体10は、壁材11と、冷蔵室100内を冷却するための冷却装置19と、を有している。壁材11は、冷蔵室100を囲んで設けられた断熱部12と、冷蔵室100と断熱部12との間において冷蔵室100を囲んで設けられた蓄熱部14と、を有している。これらは、ABS樹脂などの樹脂材料を形成材料とする筐体(不図示)で囲まれた空間に収容されている。
断熱部12は、定常運転時に冷却されている冷蔵室100および蓄熱部14に、筐体を介して外部からの熱が伝わらないように断熱している。このような断熱部12は、ガラスウールのような繊維系断熱材、ポリウレタンフォームのような発泡樹脂系断熱材、セルロースファイバーのような天然繊維系断熱材など、通常知られた形成材料を用いて形成することができる。
蓄熱部14は、冷蔵室100の設定温度と、外気温との間の温度で、液相と固相との間の相転移が生じる材料を蓄熱材として用いて形成される。ここで、「冷蔵室100の設定温度」とは、冷蔵庫1の定常運転における冷蔵室100内の設定温度である。また、「外気温」とは、例えば、冷蔵庫1が用いられる環境の外気温として想定される温度である。例えば、冷蔵庫1が、設定温度3℃の冷蔵庫であり、想定される外気温を25℃とすると、蓄熱部14は、固-液相転移温度が3℃より高く25℃より低い蓄熱材を用いて形成される。
図2は、図1に示す蓄熱部14の形成材料である蓄熱材が相転移を起こすときの熱的な挙動を模式的に示すグラフである。グラフの横軸は温度、縦軸は比熱を示す。
図2に示すように蓄熱材は、固体状態(固相)の場合には、比熱C(s)に対応する熱量を吸収することで昇温し、液体状態(液相)の場合には、比熱C(l)に対応する熱量を吸収することで昇温する。これに対し、蓄熱材が相転移を生じる温度では、潜熱に対応する熱量を吸収することで昇温する。
図2に示すように蓄熱材は、固体状態(固相)の場合には、比熱C(s)に対応する熱量を吸収することで昇温し、液体状態(液相)の場合には、比熱C(l)に対応する熱量を吸収することで昇温する。これに対し、蓄熱材が相転移を生じる温度では、潜熱に対応する熱量を吸収することで昇温する。
ここで「比熱」とは、単位質量の物質の温度を単位温度だけ上昇させるのに要する熱量であるため、相転移する温度領域では、単位温度だけ上昇させるために吸収する熱量が潜熱に対応する。したがって、図2に示すように相転移温度領域Tfでは、蓄熱材は、比熱C(f)に対応する熱量を吸収することで単位温度だけ昇温すると考えることができ、蓄熱材の比熱が大きくなっていると考えることができる。そのため、蓄熱材の相転移温度が、冷蔵室100の設定温度と外気温との間の温度であれば、冷蔵室100の運転が停止したときに庫内温度の昇温過程で相転移温度領域Tfに達するため、当該温度領域で長時間温度変化を抑制することが可能となる。
このような蓄熱材には、冷蔵室100の設定温度により、すなわち冷蔵庫1の仕様により、適切な温度の相転移温度領域Tfの材料を用いる。
例えば、冷蔵室100の設定温度は3℃~5℃程度であるため、蓄熱材の相転移温度のピーク温度は6℃~7℃程度であるのが好ましい。
例えば、冷蔵室100の設定温度は3℃~5℃程度であるため、蓄熱材の相転移温度のピーク温度は6℃~7℃程度であるのが好ましい。
なお、このような冷蔵庫100に代えて、例えば後述する本発明の保冷容器における冷凍庫(冷凍室)に用いられる蓄熱材の場合、冷凍室の設定温度は-18℃程度であるため、蓄熱材の相転移温度のピーク温度は-16℃~-6℃であるのが好ましい。また、チルド室に用いられる蓄熱材の場合、チルド室の設定温度は0℃程度であるため、蓄熱材の相転移温度のピーク温度は0℃~2℃であるのが好ましい。
ここで、蓄熱材の相転移温度は、示差走査熱量計(DSC)を用いて測定することができる。前述のピーク温度は、例えば示差走査熱量計を用い、降温レートを1℃/minとして測定したときに、液相から固相への相転移が生じる際のピーク温度として測定することができる。
また、相転移温度域は、定常運転における冷蔵室100内の設定温度と外気温との間の温度で、液相から固相への相転移が生じる際の温度域である。
また、相転移温度域は、定常運転における冷蔵室100内の設定温度と外気温との間の温度で、液相から固相への相転移が生じる際の温度域である。
このような相転移温度を有する蓄熱材は、運転時に冷蔵室100が冷やされることにより、冷蔵室100から伝わる冷気によって相転移温度以下にまで冷却され、蓄冷することで、固相となる。また、その状態で冷蔵庫1が運転を停止したとしても、一定時間は冷蔵室100内に冷気を供給することで、冷蔵室100内の温度変化を抑制することができる。
蓄熱材としては、例えば、水、パラフィン、1-デカノール、SO2・6H2O、C4H3O・17H2O、(CH2)3N・101/4H2Oなど、通常知られた材料を用いることができる。また、液状の蓄熱材に溶質を溶解させることで生じる凝固点降下を利用して、所望の相転移温度を有する蓄熱材を適宜調整することも可能である。
図3(a)(b)は、壁材11の構造を示す説明図である。図3(a)に示すように、蓄熱部14は、蓄熱材141と蓄熱材141を包む保護膜142とを有し、容器本体10の筐体18と、筐体18内に設けられた断熱部12との間の空間に充填されている構成を採用することができる。また、図3(b)に示すように、筐体18と断熱部12との間の空間に蓄熱材141と保護膜142とで形成された複数の小ブロック(符号14a、14bで示す)を充填することで、蓄熱部14を形成してもよい。
また、蓄熱材141は、ゲル化処理等により、固体-液体の相変化時に形状保持が出来る構成でもよい。この場合、蓄熱材141のみで形状保持、漏洩防止が可能となるため、保護膜142は必ずしも必要ではない。
さらに、蓄熱材141は、マイクロカプセル化等により、スラリー状にした構成でもよい。この場合、固体-液体の相変化時の体積変化を防ぐことができるため、蓄熱材141と他部材との接触面での熱抵抗を一定に保つことができる。
さらに、蓄熱材141は、マイクロカプセル化等により、スラリー状にした構成でもよい。この場合、固体-液体の相変化時の体積変化を防ぐことができるため、蓄熱材141と他部材との接触面での熱抵抗を一定に保つことができる。
図1に戻って、冷却装置19は、ガス圧縮式の冷却装置であり、容器本体10の底部に設けられ、冷媒を圧縮するコンプレッサー191と、冷蔵室100内に露出して設けられ、内部で圧縮された冷媒が蒸発する際の気化熱により周囲を冷却する冷却器192と、コンプレッサー191と冷却器192とを接続する配管193と、を有している。その他、圧縮された冷媒から放熱するためのコンデンサーや、冷媒中の水分を除去するためのドライヤーなど、通常知られた構成を備えていてもよい。
また、ここではガス圧縮式の冷却装置を示したが、これに限らず、ガス吸収式の冷却装置や、ペルチェ素子を用いた電子式の冷却装置とすることも可能である。また、ここでは冷蔵庫1が、冷却器192が冷蔵室100に露出する直冷式(冷気自然対流方式)であることとして図示した。しかしこれに限らず、冷却器192で冷やされた冷気を、ファンによって循環させることで冷蔵室100を冷却する間冷式(冷気強制循環方式)を採用することも可能である。
一方、扉部材20は、不図示の蝶番などの接続部材を介して容器本体10に回動可能に取り付けられ、開口部101を開閉する構成となっている。また扉部材20は、閉じたときに容器本体10と接する側に、パッキンPが設けられている。
扉部材20も、容器本体10と同様に、冷蔵室100を囲んで設けられた断熱部22と、冷蔵室100と断熱部22との間において冷蔵室100を囲んで設けられた蓄熱部24と、を備えた壁材21を有している。断熱部22および蓄熱部24は、前述の断熱部12および蓄熱部14と同様の材料を用いて形成することができる。
扉部材20も、容器本体10と同様に、冷蔵室100を囲んで設けられた断熱部22と、冷蔵室100と断熱部22との間において冷蔵室100を囲んで設けられた蓄熱部24と、を備えた壁材21を有している。断熱部22および蓄熱部24は、前述の断熱部12および蓄熱部14と同様の材料を用いて形成することができる。
このような冷蔵庫1では、蓄熱部14および蓄熱部24は、容器本体10および扉部材20の筐体を介してパッキンPと隣接する位置(図1において符号αで示す)で蓄熱材が厚さ方向に厚くなるように設けられている。
本例の冷蔵庫1の概略構成は、以上のようになっている。
本例の冷蔵庫1の概略構成は、以上のようになっている。
図4は、本例の冷蔵庫の変形例を示す説明図であり、図1(b)に対応する図である。
冷蔵室(貯蔵室)100内の温度は、冷蔵庫の運転停止後の経時変化により昇温し、次第に温度分布が形成される。そうすると、空気の密度変化によって、冷蔵室100の上部には相対的に暖かい空気が滞留し、冷蔵室の下部には相対的に冷たい空気が滞留する。すなわち、冷蔵室の上部は冷蔵室の下部よりも相対的に外気温に近づきやすくなっている。このような温度分布の形成を抑制するために、本例の冷蔵庫の変形例では、以下のような構成を採用している。
冷蔵室(貯蔵室)100内の温度は、冷蔵庫の運転停止後の経時変化により昇温し、次第に温度分布が形成される。そうすると、空気の密度変化によって、冷蔵室100の上部には相対的に暖かい空気が滞留し、冷蔵室の下部には相対的に冷たい空気が滞留する。すなわち、冷蔵室の上部は冷蔵室の下部よりも相対的に外気温に近づきやすくなっている。このような温度分布の形成を抑制するために、本例の冷蔵庫の変形例では、以下のような構成を採用している。
図4(a)に示す冷蔵庫2では、冷蔵室100の上部(天井部)の壁材11は、冷蔵室100の下部(底部)の壁材11よりも、内部に設けられた蓄熱部14の体積が大きくなっている。図では、符号βで示された領域の蓄熱部14の方が符号γで示された領域の蓄熱部14よりも大きいことを示している。
また、図4(b)に示す冷蔵庫3では、壁材11内に設けられた蓄熱部14が、冷蔵室100の上部側に設けられた上部蓄熱部15と、冷蔵室100の下部側に設けられた下部蓄熱部16と、によって構成されている。同様に、扉部材20の壁材21内に設けられた蓄熱部24も、冷蔵室100の上部側に設けられた上部蓄熱部25と、冷蔵室100の下部側に設けられた下部蓄熱部26と、によって構成されている。上部蓄熱部15は、下部蓄熱部16と比べ、潜熱量が多い形成材料を用いて形成される。同様に、上部蓄熱部25は、下部蓄熱部26と比べ、潜熱量が多い形成材料を用いて形成される。
これにより、冷蔵室100の上部では下部よりも長時間に渡って冷気が供給されることとなるため、冷蔵室100の上部に滞留しやすい暖かい空気を冷やし、下部の冷たい空気との温度差を小さくすることができる。したがって、このような構成の冷蔵庫2、3では、温度分布の形成を抑制することができる。
次に、蓄熱部の熱的特性を考慮しながら、図5~13を参照して、より詳細に本例の冷蔵庫1について説明する。なお、以下の説明においては、図1で用いた符号を適宜使用することがある。
まず、蓄熱部の蓄熱材について検討する。
蓄熱部の熱的特性は、図5に示す2次元モデルを用いたシミュレーションにより求めた。図5は、冷蔵庫1の水平方向の断面における温度分布を求めるための計算モデルである。ここでは、冷蔵庫1を略直方体として捉えることで、断面における対称性を考慮して半分の領域で計算を行った。
蓄熱部の熱的特性は、図5に示す2次元モデルを用いたシミュレーションにより求めた。図5は、冷蔵庫1の水平方向の断面における温度分布を求めるための計算モデルである。ここでは、冷蔵庫1を略直方体として捉えることで、断面における対称性を考慮して半分の領域で計算を行った。
図中、符号W1,W2は、冷蔵室100の内部寸法、符号W3は、壁材21を構成する断熱部22の厚さ、符号W4,W5は、壁材11を構成する断熱部12の厚さ、符号W6は、容器本体10と扉部材20との接合部に設けられたパッキンPの厚さ、W7は、壁材を構成する蓄熱部14、24の厚さである。各値は、W1:400mm、W2:500mm、W3:45mm、W4:45mm、W5:35mm、W6:1mmであり、W7は変数である。
図6、7は、図5に示した計算モデルを用いた非定常熱伝導解析の結果を示す図である。図6は、蓄熱部14、24が無い場合(W7=0mm)の冷蔵室100の温度を示し、図7は、蓄熱材としてパラフィンを用いた蓄熱部14、24(W7=5mm)がある場合の冷蔵室100の温度を示す。それぞれ(a)は1時間経過後の温度、(b)は12時間経過後の温度を示す。
計算条件は、パラフィンの融点(相転移温度):5.9℃、潜熱:229kJ/kg、開始温度:3℃、外気温:25℃、パッキンPの材質:鉄、蓄熱部における蓄熱材の充填率:100%、である。
図6に示すように、蓄熱部14、24が無い場合には、1時間後ですでに冷蔵室100内の温度が10数℃にまで上昇し(図6(a))、12時間後には完全に外気温と等しくなっている(図6(b))。対して、図7に示すように、蓄熱部14、24がある場合には、1時間後では冷蔵室内の温度が5℃程度に維持され(図7(a))、12時間後であっても概ね7℃~8℃程度に保持することができることが分かった(図7(b))。
また、図7から明らかなように、運転停止後の冷蔵庫1の冷蔵室100に対する熱の流入は、パッキンPの位置で主として生じ、パッキンP部分から冷蔵室100の内部へ熱が移動している。そこで次に、蓄熱部の性能を、熱の移動を考慮したシミュレーションを行うことにより検討した。
図8は、蓄熱部を構成する蓄熱材の物性のみを異ならせたモデルについての計算結果であり、図6,7に対応する図である。ここでは、同一の相転移温度を有し、且つ、潜熱値と熱伝導率とが異なる2種の蓄熱材を想定して計算を行った。蓄熱材以外の計算条件は、相転移温度:-18℃、開始温度:-18℃とした他は、図6,7と同様である。
図8(a)の蓄熱材は、潜熱:334kJ/kg、熱伝導率:2.2W/(m・K)、図8(b)の蓄熱材は、潜熱:229kJ/kg、熱伝導率:0.34W/(m・K)である。図8(a)の計算で用いた蓄熱材の潜熱および熱伝導率の値は、氷と同程度であり、図8(b)の計算で用いた蓄熱材の潜熱および熱伝導率の値は、パラフィンと同程度である。
図8(a)(b)は、いずれも12時間後の温度分布を示しているが、図から明らかなように、図8(b)の方が図8(a)よりも温度上昇が抑えられていることが分かる。
さらに、図9にはパッキンPが無い、すなわち冷蔵室100を壁材(断熱部および蓄熱部)で密閉した以外は図8(a)と同条件としたモデルの計算結果を示すが、このような構造のモデルでは、12時間後であっても、冷蔵室の温度上昇を抑制できていることがわかる。
さらに、図9にはパッキンPが無い、すなわち冷蔵室100を壁材(断熱部および蓄熱部)で密閉した以外は図8(a)と同条件としたモデルの計算結果を示すが、このような構造のモデルでは、12時間後であっても、冷蔵室の温度上昇を抑制できていることがわかる。
これらの計算結果から、パッキンPを有する保冷容器の構成では、パッキンP部分からの熱の流入が冷蔵室内の温度変化の主要因であり、パッキンPの近傍に設けられた蓄熱部が有する蓄熱材は、潜熱の大きさのみに着目して選択しただけでは観点が不十分であることが分かる。すなわち、蓄熱部の形成材料として好適な蓄熱材を選択するためには、潜熱値とともに熱伝導率にも着目すべきであることが分かった。
これらの計算結果に基づいて本発明者達が検討を重ねた結果、蓄熱部の形成材料は、下記の式(1)で示される温度伝導率を用いて評価することが有効であることが分かった。
ここで、式中の比熱は、相転移温度域における潜熱として仮定して用いる。比熱は、蓄熱材を1℃昇温させるために必要な熱量であるため、相転移温度域が例えば2℃に渡る場合には、総潜熱量を相転移温度域の温度幅で割ることにより、上記式1で用いる比熱を求めることができる。
上記温度伝導率を、氷とパラフィンとについて求めると、以下の表1のようになる。
上記温度伝導率を、氷とパラフィンとについて求めると、以下の表1のようになる。
すなわち、パラフィンは氷よりも潜熱量は小さいものの温度伝導率が小さい、すなわち温度が上がりにくいため、相転移が完了するまでの時間が氷よりも長くなり、結果、長時間に渡って相転移温度を維持することが可能となる。したがって、氷とパラフィンとを比べると、温度伝導率が低いパラフィンの方が熱の流入があった場合における保温効果が高いことが分かる。すなわち、氷とパラフィンとを比べると、熱の流入がある位置、本例ではパッキンP部分の蓄熱部の形成材料としてパラフィンを用いることにより、高い保冷効果を発揮することができる。
次に、蓄熱部14の厚さについて検討する。
前述したように、図1に示す冷蔵庫1では、蓄熱部14および蓄熱部24は、容器本体10および扉部材20の筐体を介してパッキンPと隣接する位置(図1において符号αで示す)で蓄熱材が厚さ方向に厚くなるように設けられている。これは、別の表現によれば、符号αで示す位置の蓄熱部14および蓄熱部24は、他の位置の蓄熱部と比べて、材料の温度伝導率を冷蔵室100の内壁から見た単位面積当たりの材料の使用量で割った値である指標値が小さくなるように設けられている。これは、次のような理由による。
前述したように、図1に示す冷蔵庫1では、蓄熱部14および蓄熱部24は、容器本体10および扉部材20の筐体を介してパッキンPと隣接する位置(図1において符号αで示す)で蓄熱材が厚さ方向に厚くなるように設けられている。これは、別の表現によれば、符号αで示す位置の蓄熱部14および蓄熱部24は、他の位置の蓄熱部と比べて、材料の温度伝導率を冷蔵室100の内壁から見た単位面積当たりの材料の使用量で割った値である指標値が小さくなるように設けられている。これは、次のような理由による。
冷蔵庫1が運転を停止すると、主としてパッキンPを介して外部の熱が冷蔵室100内に流入し内部を昇温させる。これは、パッキンPを介して容器本体10と扉部材20とが接しているため、パッキン部分では冷蔵庫1の断熱部12,22および蓄熱部14,24が不連続となっているためである。すなわち、冷蔵室100において、パッキンPの近傍は、パッキンPから遠い領域(第2の領域AR2)よりも相対的に外気温に近づきやすい領域(第1の領域AR1)になっていると言うことができる。
そこで、本例の冷蔵庫1では、蓄熱部14を一様に配置するのではなく、運転停止後に相対的に外気温に近づきやすい部分であるパッキンPの近傍の壁材11では、相対的に外気温に近づきにくい部分の壁材11よりも、蓄熱部14が厚くなるように(上述の指標値が小さくなるように)設けることとしている。これにより、パッキンPの近傍ではパッキンPから遠い位置と比べて温度が上がりにくく、長時間冷気が供給されることとなる。そのため、運転を停止したとしても一定時間は冷蔵室内の温度に温度分布が生じないように維持しやすくなる。
第1の領域AR1の近傍に設けられた蓄熱部14,24の材料として、第2の領域AR2の近傍に設けられた蓄熱部14,24の材料よりも、相転移温度における材料の温度伝導率が小さいものを用いることとして、指標値を制御することとしてもよい。
また、第1の領域AR1の近傍に設けられた蓄熱部14,24は、第2の領域AR2の近傍に設けられた蓄熱部14,24よりも、総潜熱量が多くなるように設けられていることとして指標値を制御することとしてもよい。前記式(1)より温度伝導率の分母には比熱、すなわち相転移温度域における潜熱の項がある。また、前述の指標値には、分母で比熱と使用量との積、すなわち総潜熱量の項がある。したがって、総潜熱量が多くなると指標値が小さくなるため、前記考えに合致するものとなる。
このように外気温に近づきやすい領域を第1の領域、外気温に近づきにくい領域を第2の領域と表記しているが、これは相対的な関係を示しており、必ずしも庫内全体を2つだけの領域に分けるということではない。例えば、前記断熱材の厚さが薄い領域が存在した場合、その領域は断熱性能が低くなり、他の部分よりも外気温に近づきやすくなるが、パッキン部と比較した場合には外気温に近づきにくいことになる。この例のように異なる領域が3つ以上ある場合でも、その中での2つの領域の相対的な比較を第1の領域、第2の領域と示している。
ここで、蓄熱部14が厚くなるほど、すなわち蓄熱部14が蓄える潜熱量が多くなるほど、前述の指標値が小さくなり、長時間に渡って冷気を放出することができる。そのため、運転停止後の冷蔵室100の温度上昇を抑制することができる。一方で、蓄熱部14が過剰に厚いと、製造コストや製品の形状・大きさに悪影響があることが予想される。
ここで、蓄熱部14が厚くなるほど、すなわち蓄熱部14が蓄える潜熱量が多くなるほど、前述の指標値が小さくなり、長時間に渡って冷気を放出することができる。そのため、運転停止後の冷蔵室100の温度上昇を抑制することができる。一方で、蓄熱部14が過剰に厚いと、製造コストや製品の形状・大きさに悪影響があることが予想される。
したがって、蓄熱部14の厚さは、例えば、運転停止後に予め設定した時間(保温可能時間)を経過した後であっても、冷蔵室100の温度として許容される最高温度(許容温度)に到達しない、という要求を満たすために必要な厚さとするとよい。
保温可能時間は、冷蔵室100内に構成部材以外に熱負荷が無いこととして、すなわち、冷蔵室100内には、運転停止後の庫内の温度を上昇させる特別な熱源が無いこととして、計算・設定される。
保温可能時間は、冷蔵室100内に構成部材以外に熱負荷が無いこととして、すなわち、冷蔵室100内には、運転停止後の庫内の温度を上昇させる特別な熱源が無いこととして、計算・設定される。
このような蓄熱部14の厚さは、前述の熱の流入・伝達を考慮した上で、次のようにして求めることができる。
まず、計算を簡略化するため、断熱部12と蓄熱部14とを透過する熱流束を表す式から、壁材の厚さが蓄熱部14の厚さと等しいとした場合の合成熱伝導率を求める。
まず、計算を簡略化するため、断熱部12と蓄熱部14とを透過する熱流束を表す式から、壁材の厚さが蓄熱部14の厚さと等しいとした場合の合成熱伝導率を求める。
すなわち、図10(a)に示すような、壁材11が、厚さL1、熱伝導率k1の断熱部12と、厚さL2、熱伝導率k2の蓄熱部14と、で構成されているという計算モデルから、図10(b)に示すような、厚さL2、熱伝導率k12の仮想的な材料で形成された壁材17を有する計算モデルに置き換えることにより計算を簡略化し、壁材17の熱伝導率を求める。
外部から冷蔵室100内へ所定の熱量が流入する場合、熱量は、図10(a)の計算モデルについては下記式(2)で表され、図10(b)の計算モデルについては下記式(3)で表される。そのため、式(2)(3)より、図10(b)の壁材17の熱伝導率、すなわち断熱部12と蓄熱部14との合成熱伝導率は下記式(4)として求められる。
(q:熱量(W)、T1:外気温(K)、T2:冷蔵室内の設定温度(K)、L1:断熱部の厚さ(m)、L2:蓄熱部の厚さ(m)、k1:断熱部の熱伝導率(W/(m・K))、k2:蓄熱部の熱伝導率(W/(m・K))k12:断熱部と蓄熱部との合成熱伝導
率(W/(m・K))
率(W/(m・K))
次に、冷蔵庫1の構造の簡略化を行い、簡略化した構造に対する熱の流入を検討する。図11は、冷蔵庫の外部表面から内部方向への距離に対する温度の関係を示すグラフである。
図11(a)に示すように、冷蔵庫の外部の熱は、壁材を介して冷蔵室内に伝わるため、壁材の温度は、外部表面では外気温と等しく、内部表面では冷蔵室温度と等しく、さらに厚さ方向に温度が変化するという関係にある。また、冷蔵室内の空気は、熱容量が小さいことから、冷蔵室の内壁と同じ温度であると仮定することができる。このような関係は、運転停止直後であっても、所定時間経過後に冷蔵室の温度が許容温度に到達したときであっても同様である。
そのため、冷蔵室の温度変化については冷蔵室の内壁についての温度変化を計算することで知り得ると考え、図11(b)に示すように冷蔵室の空間を捨象した計算モデルを用いて計算することで、冷蔵室内の温度を間接的に算出することとする。図では、壁材の厚さをL2としているため、図11(b)に示すモデルでは、厚さ2L2の中実の立体についての温度分布を計算し、該立体の中心(表面からL2の位置)の温度を算出することで、冷蔵室内の温度を計算することができる。
このような立体(冷蔵室を捨象した冷蔵庫)の表面から立体内部への伝熱計算は、立体の初期温度と外部温度とを用い、一般の伝熱計算で非定常熱伝導の基礎式を解くことにより算出可能である。また、立体の中心部に対する伝熱による温度変化については、図12に示すような、無次元温度と無次元時間(フーリエ数)との関係によって示されるハイスラー線図が知られており、ハイスラー線図を用いて、立体内部の温度変化を求めることもできる。
図12のハイスラー線図の横軸が示す無次元時間(フーリエ数)は、立体の温度伝導率、運転停止からの経過時間、立体の中心までの厚さ(すなわち壁材の厚さ)、を用いて下記式(5)のように示すことができる。
また、図12のハイスラー線図の縦軸が示す無次元温度は、外気温、冷蔵室の設定温度、運転停止により変化する冷蔵室の温度、を用いて下記式(6)のように示すことができる。
無次元温度を示す変数のうち、外気温T1、設定温度T2、については設定値があるため、冷蔵室100の許容温度を設定することにより、対応するフーリエ数を求めることができる。図12に示すハイスラー線図からフーリエ数を求めるときには、図から直接読み取ることとしてもよく、また、下記の近似式(7)を用いて算出することとしてもよい。近似式(7)は、図12において平板について表すグラフについての近似式である。
また、上式(5)で示されるフーリエ数のうち、温度伝導率については、上述の式(1)(4)を用いて算出することができるため、ハイスラー線図から求めたフーリエ数と、式(5)とを用いて、壁材の厚さ(すなわち蓄熱部の厚さ)と、運転停止からの経過時間と、の関数を求めることができる。
図13は、前記の考え方に従って求めた、蓄熱部の厚さと保温可能時間(運転停止からの経過時間)との関係を示すグラフである。図では、複数の蓄熱材について算出している。
なお、保温可能時間は、蓄熱部の蓄熱材料の相変化開始から相変化完了までの時間が大半を占める。そのため、図では、パラフィンの相変化温度域を5℃~7℃、外気温を25℃とした場合の、5℃から7℃まで冷蔵室内の温度が変化するときについて、蓄熱部の厚さに対する保温可能時間について算出している。
図13の関係を用いると、例えば、運転停止後に許容温度に達するまでの時間を設定すると、必要な蓄熱部の厚さを求めることができるため、所望の仕様の保冷容器とすることができる。また、図13の関係を用いると、ある保冷容器の運転が停止してから許容温度まで昇温するまでの時間、すなわち保温可能時間を見積もることができる。
以上のようにして、蓄熱部の配置、材料、厚さ、を設定し、所望の仕様の保冷容器とする。
以上のようにして、蓄熱部の配置、材料、厚さ、を設定し、所望の仕様の保冷容器とする。
ここで、本発明者達は、前述の考えに従って設けた蓄熱部の効果を実証するために、蓄熱部の熱的特性についてシミュレーションを行った。計算モデルとしては、図5および図14に示す計算モデルを用いた。
図14は、図5の計算モデルに対応し、さらにパラメータW8,W9を追加したものである。W8,W9は、パッキンPと当接する部分における蓄熱部の端部からの長さである。下記の表2は、計算に用いたパラメータをまとめた表である。
また、図15(a)(b)は、図5の計算モデルを用いた非定常熱伝導解析の計算結果である。符号W1~W7の値は、図7と同じ(W7=5mm)である。
さらに、図16(a)(b)は、図14の計算モデルを用いた非定常熱伝導解析の計算結果である。符号W1~W6については図14と同じである。蓄熱部14、24の厚さについては、端部からW8=40mm,W9=20mmの間においては、W7=20mmとし、それ以外の部分については、W7=2mmとした。
さらに、図16(a)(b)は、図14の計算モデルを用いた非定常熱伝導解析の計算結果である。符号W1~W6については図14と同じである。蓄熱部14、24の厚さについては、端部からW8=40mm,W9=20mmの間においては、W7=20mmとし、それ以外の部分については、W7=2mmとした。
なお、図15(a)、図16(a)は、それぞれ6時間経過後の温度、図15(b)、図17(b)は8時間経過後の温度を示す。
計算条件は、パラフィンの融点(相転移温度):5.9℃、潜熱:229kJ/kg、開始温度:3℃、外気温:25℃、パッキンPの材質:鉄、蓄熱部における蓄熱材の充填率:100%、である。
計算の結果、図15に示すように、蓄熱部14が一様な厚さで形成されている場合には、6時間後ですでに冷蔵室100内に温度分布が形成され(図15(a))、8時間後には冷蔵室100内の温度が概ね20℃近くにまで上昇している(図15(b))。対して、図16に示すように、蓄熱部14がパッキンPの周囲には多く、他の部分には少なく分布を持たせてある場合には、6時間後では冷蔵室100内の温度が数℃程度に維持され(図16(a))、8時間後であっても概ね10℃程度に保持することができることが分かった(図16(b))。
蓄熱部14における蓄熱材の使用量について、冷蔵室100の容量が170Lの市販品(型番:SJ-V200T)をモデルとして概算すると、図15(a)(b)に示したモデルの場合には、使用量は7kgとなる。対して図16(a)(b)に示したモデルの場合には、使用量は3.3kgとなる。したがって、図16に示したモデルの方が、長時間に渡り冷蔵室100内を保温することができる上に、蓄熱材の使用量を削減することが可能であることが分かった。
すなわち、蓄熱部の配置、材料、厚さ、を適切に設定することで、効果的な保温が可能な冷蔵庫とすることが可能であることが分かった。
すなわち、蓄熱部の配置、材料、厚さ、を適切に設定することで、効果的な保温が可能な冷蔵庫とすることが可能であることが分かった。
以上のような構成の冷蔵庫1によれば、運転を停止したとしても一定時間は冷蔵室100内の温度に温度分布が生じないように維持することが可能となる。
なお、本例では、計算を簡略化するために、構造を簡略化した2次元モデルを用いてシミュレーションを行ったが、簡略化することなく、実際の冷蔵庫の構成を再現した2次元モデルを用いてシミュレーションを行うこととしても構わない。
なお、本例では、計算を簡略化するために、構造を簡略化した2次元モデルを用いてシミュレーションを行ったが、簡略化することなく、実際の冷蔵庫の構成を再現した2次元モデルを用いてシミュレーションを行うこととしても構わない。
また、本例では、扉部材20が容器本体10に回動可能に設けられていることとしたが、扉部材(蓋材)が冷蔵室100を開閉可能に設けられているならば、上述の構成に限らない。
例えば、蓋材が所定のレール上をスライドすることで冷蔵室100を開閉する構成であってもよく、または、蓋材が着脱可能に設けられ、冷蔵室100を開閉する構成であってもよい。このような構成であっても、蓋材近傍の空間は、運転停止後に相対的に外気温に近づきやすい部分であることには変わりがない。そのため、蓋材近傍の壁材内部に設けられた蓄熱部を厚くすることで、運転停止後であっても長時間に渡って保冷をすることが可能な冷蔵庫とすることができる。
図17、図18は、本発明に係る冷蔵庫の第2例の説明図である。
本例の冷蔵庫4は、第1例の冷蔵庫1と一部共通している。したがって、本例において第1例と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
図17に示すように、冷蔵庫4は、冷蔵室100の内壁に赤外線を反射する反射層(赤外線反射層)30を有する。
本例の冷蔵庫4は、第1例の冷蔵庫1と一部共通している。したがって、本例において第1例と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
図17に示すように、冷蔵庫4は、冷蔵室100の内壁に赤外線を反射する反射層(赤外線反射層)30を有する。
冷蔵庫4の運転停止中に、使用者が冷蔵室100内の貯蔵物を取り出したい場合、扉部材20を開け冷蔵室100に手を入れる必要がある。このとき通常は、使用者の手の表面温度が冷蔵室100の内部温度よりも高いため、使用者の手からの輻射熱により冷蔵室100に熱が流入することとなる。
このような、扉部材20の解放時における、使用者と冷蔵室100内との間の輻射により熱移動は、下記式(8)を用いて見積もることができる。
(Q:輻射による熱の流入量(J)、A:表面積(m2)、ε:放射率、σ:ステファン・ボルツマン定数(5.67×10-8(W/(m2・K4))、s:ドアの開放時間(s)、T4:体表温度(K)、T5:冷蔵室内温度(K))
衣類を着た使用者の表面温度を30℃、冷蔵室内温度を6℃とし、人体の表面積(1.8m2)の半分からの輻射を考えると、前記式(8)から伝熱量は109J/sとなり、庫内に流入する熱量は、ドアの開放時間30秒であれば33kJ、60秒であれば66kJとなる。
対して、冷蔵室内の空気が外気と完全に入れ替わった場合に流入する熱量は、庫内容積を140Lとした場合、空気の密度ρ(=1.1763kg/m3)、空気の比熱Cp(=1007J/(kg・K))、外気温25℃、冷蔵室内温度6℃とすると、32kJとなり、(熱量=140/1000×ρ×Cp×(25-6))となる。
したがって、扉部材20を開けたときの熱流入については、使用者の体表からの輻射による影響が大きいことが分かる。
したがって、扉部材20を開けたときの熱流入については、使用者の体表からの輻射による影響が大きいことが分かる。
本例の保冷容器4では、冷蔵室100の内壁に赤外線を反射する反射層30を有している。そのため、停電時に冷蔵室100から貯蔵物を取り出す際の使用者の体表から輻射される赤外線を反射することで輻射熱の流入を防ぎ、冷蔵室内の温度上昇の抑制を図ることができる。また、通常運転時は、冷蔵室内の温度が上昇し難いため、消費電力低減を行うことができる。
反射層30としては、人体から輻射される赤外線の吸収率が低い材料を用いる。このような赤外線の波長は、ウィーンの変位則からピーク波長が9.6μm付近である。また、キルヒホッフの法則より、吸収率と反射率とは逆相関であるため、このような赤外線の反射率が高い材料を用いてもよい。例えば、人体の体表温度に対応する波長をピーク波長とする赤外線を60%以上反射する材料を用いるとよい。このような材料としては、アルミニウムのような光反射性を有する金属材料が挙げられる。
反射層30は、図18(a)に示すように、筐体18の表面に設けることとしてもよく、図18(b)に示すように、反射層30が筐体18の一部を構成し、反射層30と蓄熱部14とが接することとしてもよい。図18(b)のような構成とした上で、反射層30を金属材料で形成することとすると、定常運転時の冷蔵室100内の冷気が金属材料である反射層30を介して蓄熱部14に伝わりやすく、蓄熱部14が蓄冷して固相に相転移しやすいため好ましい。
以上のような構成の冷蔵庫4によれば、運転停止時に冷蔵室から貯蔵物を取り出すとしても、冷蔵室内の温度上昇の抑制を図ることができ、冷蔵室内の温度に温度分布が生じないように維持することが可能となる。
図19は、本発明に係る冷蔵庫の第3例の説明図である。
本例の冷蔵庫5は、第1例の冷蔵庫1と一部共通している。したがって、本例において第1例と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
本例の冷蔵庫5は、第1例の冷蔵庫1と一部共通している。したがって、本例において第1例と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
図19に示すように、冷蔵庫5の蓄熱部14は、冷蔵室100を囲んで設けられた内側蓄熱部14Bと、断熱部12と内側蓄熱部14Bとの間において冷蔵室100を囲んで設けられた外側蓄熱部14Aと、を有している。また、蓄熱部24は、冷蔵室100を囲んで設けられた内側蓄熱部24Bと、断熱部22と内側蓄熱部24Bとの間において冷蔵室100を囲んで設けられた外側蓄熱部24Aと、を有している。外側蓄熱部14A,24Aの形成材料としては、内側蓄熱部14B,24Bの形成材料と比べ、相転移温度が外気温に近いものを用いる。
このような構成の冷蔵庫5においては、運転が停止した後に、まず、相対的に相転移温度が低い内側蓄熱部14B,24Bから、内側蓄熱部14B,24Bの相転移が完了するまで冷蔵室100内に冷気が供給される。次いで、相対的に相転移温度が高い外側蓄熱部14A,24Aから、外側蓄熱部14A,24Aの相転移が完了するまで冷蔵室100内に冷気が供給される。したがって、蓄熱部14,24の相転移温度が多段階に設定されることとなり、冷蔵室100内の温度を維持しやすくなる。
以上のような構成の冷蔵庫5によれば、冷蔵室100内の温度に温度分布が生じないように維持することが可能となる。
なお、以上に説明した本発明に係る冷蔵庫にあっては、特に、以下に示す構成を備えてなるのが好ましい。
(1)電気的な冷却機能を有する貯蔵物の冷蔵庫であって、
容器本体と、前記容器本体内の空間を開閉自在とする蓋材と、を有し、
前記容器本体および前記蓋材で囲まれた前記空間は、前記貯蔵物を貯蔵する冷蔵室を成しており、
前記容器本体および前記蓋材は、該貯蔵室を囲んで設けられた断熱部と、前記冷蔵室と前記断熱部との間において少なくとも一部に設けられた蓄熱部と、を有し、
前記蓄熱部は、定常運転において前記貯蔵室内で制御可能な温度と前記冷蔵庫の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料を用いて形成され、
定常運転状態から電気的な冷却機能を停止した後の経時変化によって前記冷蔵室内に形成される温度分布において、相対的に前記生活温度に近づきやすい第1の領域の近傍に配置されている前記蓄熱部は、前記生活温度に近づきにくい第2の領域の近傍に配置されている前記蓄熱部よりも、前記材料の温度伝導率を、前記貯蔵室の壁面の単位面積当たりの前記材料の使用量で割った値が小さくなるように設けられている。
(2)電気的な冷却機能停止後の前記冷蔵室内の温度であって前記貯蔵物を保管可能な温度として許容される許容温度と、前記生活温度との差を、前記制御可能な温度と前記生活温度との差で割った値である無次元温度と、前記容器本体および前記蓋材を構成する壁材のフーリエ数と、の関係に基づいて、運転停止後に前記冷蔵室内の温度が前記制御可能な温度から前記許容温度まで変化するまでの保温可能時間に対応した、前記蓄熱部の厚さが規定されている。
(3)前記許容温度は、10℃以下である。
(4)前記保温可能時間は、2時間~24時間である。
(5)前記蓄熱部は、複数種の材料を用いて形成され、前記第1の領域の近傍に設けられた前記蓄熱部の材料は、前記第2の領域の近傍に設けられた前記蓄熱部の材料よりも、相転移温度における前記材料の温度伝導率が小さい。
(6)前記第1の領域の近傍に設けられた前記蓄熱部は、前記第2の領域の近傍に設けられた前記蓄熱部よりも、総潜熱量が多くなるように設けられている。
(7)前記第1の領域が、前記蓋材を閉じたときの前記容器本体と前記蓋材との接触部分である。
(8)前記第1の領域が、前記冷蔵室の天井部である。
なお、以上に説明した本発明に係る冷蔵庫にあっては、特に、以下に示す構成を備えてなるのが好ましい。
(1)電気的な冷却機能を有する貯蔵物の冷蔵庫であって、
容器本体と、前記容器本体内の空間を開閉自在とする蓋材と、を有し、
前記容器本体および前記蓋材で囲まれた前記空間は、前記貯蔵物を貯蔵する冷蔵室を成しており、
前記容器本体および前記蓋材は、該貯蔵室を囲んで設けられた断熱部と、前記冷蔵室と前記断熱部との間において少なくとも一部に設けられた蓄熱部と、を有し、
前記蓄熱部は、定常運転において前記貯蔵室内で制御可能な温度と前記冷蔵庫の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料を用いて形成され、
定常運転状態から電気的な冷却機能を停止した後の経時変化によって前記冷蔵室内に形成される温度分布において、相対的に前記生活温度に近づきやすい第1の領域の近傍に配置されている前記蓄熱部は、前記生活温度に近づきにくい第2の領域の近傍に配置されている前記蓄熱部よりも、前記材料の温度伝導率を、前記貯蔵室の壁面の単位面積当たりの前記材料の使用量で割った値が小さくなるように設けられている。
(2)電気的な冷却機能停止後の前記冷蔵室内の温度であって前記貯蔵物を保管可能な温度として許容される許容温度と、前記生活温度との差を、前記制御可能な温度と前記生活温度との差で割った値である無次元温度と、前記容器本体および前記蓋材を構成する壁材のフーリエ数と、の関係に基づいて、運転停止後に前記冷蔵室内の温度が前記制御可能な温度から前記許容温度まで変化するまでの保温可能時間に対応した、前記蓄熱部の厚さが規定されている。
(3)前記許容温度は、10℃以下である。
(4)前記保温可能時間は、2時間~24時間である。
(5)前記蓄熱部は、複数種の材料を用いて形成され、前記第1の領域の近傍に設けられた前記蓄熱部の材料は、前記第2の領域の近傍に設けられた前記蓄熱部の材料よりも、相転移温度における前記材料の温度伝導率が小さい。
(6)前記第1の領域の近傍に設けられた前記蓄熱部は、前記第2の領域の近傍に設けられた前記蓄熱部よりも、総潜熱量が多くなるように設けられている。
(7)前記第1の領域が、前記蓋材を閉じたときの前記容器本体と前記蓋材との接触部分である。
(8)前記第1の領域が、前記冷蔵室の天井部である。
(9)電気的な冷却機能を有する貯蔵物の冷蔵庫であって、
容器本体と、前記容器本体内の空間を開閉自在とする蓋材と、を有し、
前記容器本体および前記蓋材で囲まれた前記空間は、前記貯蔵物を貯蔵する冷蔵室を成しており、
前記容器本体および前記蓋材は、該冷蔵室を囲んで設けられた断熱部と、前記冷蔵室と前記断熱部との間において少なくとも一部に設けられた蓄熱部と、を有し、
前記蓄熱部は、定常運転において前記冷蔵室内で制御可能な温度と前記冷蔵庫の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料を用いて形成され、
庫内で最も大きな面積を占める領域の前記蓄熱部の厚さは、電気的な冷却機能停止後の前記冷蔵室内の温度であって前記貯蔵物を冷蔵可能な温度として許容される許容温度と、前記生活温度との差を、前記制御可能な温度と前記生活温度との差で割った値である無次元温度と、前記容器本体および前記蓋材を構成する壁材のフーリエ数と、の関係に基づいて、電気的な冷却機能停止後に前記冷蔵室内の温度が前記制御可能な温度から前記許容温度まで変化するまでの保温可能時間に対応した厚さとして規定されている。
(10)前記許容温度は、10℃以下である。
(11)前記保温可能時間は、2時間~24時間である。
(12)前記材料は、固化時の相転移温度のピーク温度が0℃~10℃である。
(13)前記材料は、定常運転における前記貯蔵室内の設定温度と前記生活温度との間の温度で、液相から固相への相転移が生じる際の相転移温度域が2℃以下である。
(14)前記蓄熱部は、前記貯蔵室を囲んで設けられた第1蓄熱部と、前記断熱部と前記第1蓄熱部との間において前記冷蔵室を囲んで設けられた第2蓄熱部と、を有し、前記第2蓄熱部の形成材料は、前記第1蓄熱部の形成材料と比べ、相転移温度が前記生活温度に近い。
(15)前記材料の相転移温度は、前記生活温度よりも低い温度であり、前記貯蔵室の内壁の少なくとも一部が、人体の体表温度に対応する波長をピーク波長とする赤外線を60%以上反射する赤外線反射層で覆われている。
(16)前記赤外線反射層の形成材料が金属材料であり、前記貯蔵室の内壁の少なくとも一部が、前記金属材料で形成されて前記赤外線反射層として機能するとともに、前記蓄熱部と接している。
容器本体と、前記容器本体内の空間を開閉自在とする蓋材と、を有し、
前記容器本体および前記蓋材で囲まれた前記空間は、前記貯蔵物を貯蔵する冷蔵室を成しており、
前記容器本体および前記蓋材は、該冷蔵室を囲んで設けられた断熱部と、前記冷蔵室と前記断熱部との間において少なくとも一部に設けられた蓄熱部と、を有し、
前記蓄熱部は、定常運転において前記冷蔵室内で制御可能な温度と前記冷蔵庫の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料を用いて形成され、
庫内で最も大きな面積を占める領域の前記蓄熱部の厚さは、電気的な冷却機能停止後の前記冷蔵室内の温度であって前記貯蔵物を冷蔵可能な温度として許容される許容温度と、前記生活温度との差を、前記制御可能な温度と前記生活温度との差で割った値である無次元温度と、前記容器本体および前記蓋材を構成する壁材のフーリエ数と、の関係に基づいて、電気的な冷却機能停止後に前記冷蔵室内の温度が前記制御可能な温度から前記許容温度まで変化するまでの保温可能時間に対応した厚さとして規定されている。
(10)前記許容温度は、10℃以下である。
(11)前記保温可能時間は、2時間~24時間である。
(12)前記材料は、固化時の相転移温度のピーク温度が0℃~10℃である。
(13)前記材料は、定常運転における前記貯蔵室内の設定温度と前記生活温度との間の温度で、液相から固相への相転移が生じる際の相転移温度域が2℃以下である。
(14)前記蓄熱部は、前記貯蔵室を囲んで設けられた第1蓄熱部と、前記断熱部と前記第1蓄熱部との間において前記冷蔵室を囲んで設けられた第2蓄熱部と、を有し、前記第2蓄熱部の形成材料は、前記第1蓄熱部の形成材料と比べ、相転移温度が前記生活温度に近い。
(15)前記材料の相転移温度は、前記生活温度よりも低い温度であり、前記貯蔵室の内壁の少なくとも一部が、人体の体表温度に対応する波長をピーク波長とする赤外線を60%以上反射する赤外線反射層で覆われている。
(16)前記赤外線反射層の形成材料が金属材料であり、前記貯蔵室の内壁の少なくとも一部が、前記金属材料で形成されて前記赤外線反射層として機能するとともに、前記蓄熱部と接している。
次に、本発明の保冷容器について説明する。
図20は、本発明の保冷容器の第1実施形態を示す概略構成図であり、図20中符号50は保冷容器としての冷凍冷蔵庫である。この冷凍冷蔵庫50は、第1容器60と第2容器70と第3容器80とを備え、かつ、これらを共通の筐体51を用いることで一体に形成したものである。
図20は、本発明の保冷容器の第1実施形態を示す概略構成図であり、図20中符号50は保冷容器としての冷凍冷蔵庫である。この冷凍冷蔵庫50は、第1容器60と第2容器70と第3容器80とを備え、かつ、これらを共通の筐体51を用いることで一体に形成したものである。
第1容器60は、冷蔵庫として機能するもので、先に図1から図19を用いて説明した冷蔵庫1の構成を基本的に有するものである。また、本実施形態では、第2容器70は冷凍庫として機能するものであり、第3容器80は野菜庫として機能するものである。
図21は、冷凍冷蔵庫50を簡略化して示す側断面図である。この図に示すように、第1容器60は第1容器本体61と第1蓋材62とを有し、これら第1容器本体61と第1蓋材62とによって囲まれた空間を冷蔵室63としたものである。なお、前述したように第1容器60は先に説明した冷蔵庫1~5に対応し、したがって第1容器本体61は図1(b)に示した容器本体10に対応し、第1蓋材62は扉部材20に対応し、冷蔵室63は冷蔵室100に対応している。
図21は、冷凍冷蔵庫50を簡略化して示す側断面図である。この図に示すように、第1容器60は第1容器本体61と第1蓋材62とを有し、これら第1容器本体61と第1蓋材62とによって囲まれた空間を冷蔵室63としたものである。なお、前述したように第1容器60は先に説明した冷蔵庫1~5に対応し、したがって第1容器本体61は図1(b)に示した容器本体10に対応し、第1蓋材62は扉部材20に対応し、冷蔵室63は冷蔵室100に対応している。
また、図21に示すように第2容器70は、第2容器本体71と第2蓋材72とを有し、これら第2容器本体71と第2蓋材72とによって囲まれた空間を冷凍室73としたものである。さらに、第3容器80は、第3容器本体81と第3蓋材82とを有し、これら第3容器本体81と第3蓋材82とによって囲まれた空間を野菜室83としたものである。
なお、第1容器60については、先の冷蔵庫1において説明したように、その開口部に第1蓋材62を扉方式で開閉可能に設け、これによって冷蔵室63を開閉可能にしている。同様に、第2容器70、第3容器80についても、本実施形態では扉方式を採用している。ただし、第2容器70、第3容器80については、このような扉方式に代えて引き出し方式を採用することもできる。
すなわち、第2容器70、第3容器80を、その上部側が開口した抽斗状に構成し、前面に位置する第2蓋材72又は第3蓋材82を手前に引き出すことで、内部の冷凍室73又は野菜室83を開くようにし、また、その状態から押し入れることで、冷凍室73又は野菜室83を閉じるようにしてもよい。このような扉方式や引き出し方式の機構により、第2容器70、第3容器80においてその容器本体71、81内の空間(冷凍室73又は野菜室83)を開閉可能にする、本発明の開閉機構が構成される。
これら各容器60、70、80は、下から第3容器80、第2容器70、第1容器60の順に配置され、各容器本体61、71、81の一部や筐体を相互に共有化していることで、一体に形成されている。
また、第1容器60については、例えば図1(b)に示したように、壁材11、21が断熱部12と蓄熱部14とからなっており、同様に第2容器70、第3容器80についても、その壁材が断熱部と蓄熱部とからなっている。
また、第1容器60については、例えば図1(b)に示したように、壁材11、21が断熱部12と蓄熱部14とからなっており、同様に第2容器70、第3容器80についても、その壁材が断熱部と蓄熱部とからなっている。
すなわち、図21に示すように第1容器60における第1容器本体61は、筐体(図示せず)内に壁材64として、冷蔵室63を囲んで第1断熱部65を配設し、さらにその内側、すなわち冷蔵室63と第1断熱部65との間に、第1蓄熱部66を配設している。また、第1蓋材62にも、筐体(図示せず)内に壁材64として、第1断熱部65と第1蓄熱部66とを配設している。図21では、簡略化して第1蓄熱部66の厚さを均一にしているが、例えば図1(b)に示したように、パッキンPの近傍部の第1蓄熱部66を、他部の第1蓄熱部66に比べて厚く形成したりするなど、この第1蓄熱部66を形成する第1材料(第1蓄熱材料)の温度伝導率を、壁面の単位面積当たりの使用量で割った値が小さくなるように配設されているものとする。ただし、本発明は、必ずしも第1蓄熱部66の配置状態に差を付けることなく、第1容器60全体において均一に第1蓄熱部66を配置するようにしてもよい。
第2容器70についても、第1容器60と同様に、第2容器本体71及び第2蓋材72に、壁材74として第2断熱部75と第2蓄熱部76とが配設されている。さらに、第3容器80についても、第1容器60と同様に、第3容器本体81及び第3蓋材82に、壁材84として第3断熱部85と第3蓄熱部86とが配設されている。ただし、第1容器60の底部と第2容器70の天井部とは同じ第1棚板部52によって形成されていることから、特にこの第1棚板部52においては、同じ断熱部が第1断熱部65と第2断熱部75とを兼ねた構成となっている。同様に、第2容器70の底部と第3容器80の天井部とは同じ第2棚板部53によって形成されており、この第2棚板部53においては、同じ断熱部が第2断熱部75と第3断熱部85とを兼ねた構成となっている。
第2容器70における第2蓄熱部76、第3容器80における第3蓄熱部86についても、第1容器60における第1蓄熱部66と同様に、例えば図1(b)に示したように、パッキンPの近傍部の蓄熱部を、他部の蓄熱部に比べて厚く形成したりするなど、これら蓄熱部を形成する材料(第2材料、第3材料)の温度伝導率を、壁面の単位面積当たりの使用量で割った値が小さくなるように、配設するのが好ましい。
また、この冷凍冷蔵庫50では、図1(b)に示した冷却装置19と同様のガス圧縮式の冷却装置が備えられている。すなわち、図21に示すように冷凍冷蔵庫50には、その背面側に冷却装置(冷却手段)90が配設されている。この冷却装置90は、第3容器80の底部背面側に設けられたコンプレッサー(圧縮機)91と、冷凍冷蔵庫50の背面側に設けられた放熱器92と、第2容器70内、すなわち冷凍室73内に露出して設けられた冷却器93と、これらの間を接続する配管94と、前記冷却器93によって第1容器60内(冷蔵室63内)を冷却するための冷却機構95と、有して構成されている。なお、この冷却機構95には、図示しないものの、膨張弁や、冷媒中の水分を除去するためのドライヤーなど、通常知られた構成要素が備えられている。
コンプレッサー91は、冷媒を圧縮するものである。放熱器92は、コンプレッサー91で圧縮された冷媒を凝縮することで、放熱するものである。冷却器93は、放熱器92で凝縮し、その後膨張弁(図示せず)を経て膨張した冷媒を蒸発させ、吸熱することで周囲を冷却するものである。例えば、冷却器93によって冷凍室73内を、-18℃程度に冷却するようになっている。
また、冷却機構95は、第1容器60と第2容器70との間の第1棚板部52に配設されたダンパー96と、ファン97と、これらダンパー96及びファン97の動作を制御する制御部98と、を備えたものである。第1棚板52には、冷凍冷蔵庫50の背面側に、上下に貫通して冷凍室73と冷蔵室63とを連通させる、貫通孔52aが形成されている。そして、ダンパー96は、この貫通孔52aの冷蔵室63側に開閉可能に設けられている。
また、ファン97は、貫通孔52a内(または貫通孔52aの冷凍室73側)に設けられており、冷凍室73側から冷蔵室63側に空気(冷気)を流動させるようになっている。なお、このファン97については、例えばその回転方向を切り換えることで、空気(冷気)の流れを冷蔵室63側から冷凍室73側に切り換えられるようになっていてもよい。また、ファン97を二つ設け、一方を冷凍室73側から冷蔵室63側に流れるように構成し、他方を冷蔵室63側から冷凍室73側に流れるように構成してもよい。
制御部98は、ダンパー96の開閉動作、及びファン97の回転動作を制御するもので、予め設定され、記憶された制御をなすようになっている。すなわち、定常運転時には、冷蔵室63内が所定温度に上昇した際、または予め設定された時間毎に、ダンパー96を開き、かつ、ファン97を回転動作させて、冷凍室73内の冷気(例えば-18℃の冷気)を貫通孔52aから冷蔵室64側に流入させる。これにより、冷蔵室63内を、設定温度、例えば3℃程度に冷却するようになっている。なお、冷蔵室63内が所定温度に下降した際、または予め設定された時間経過したら、ダンパー96を閉じ、かつ、ファン97の回転も停止させるようになっている。
また、制御部98は、非定常運転時、例えば新規購入時や停電後の復旧時における初期運転時には、ダンパー96の開状態の時間、及びファン97の回転動作による冷凍室73側から冷蔵室63側への冷気の流入の時間を定常運転時より長くし、この定常運転時よりも冷蔵室63内を強く冷却するようになっている。この非定常運転時の動作については後に詳述する。
以上の構成により、第1容器60の冷蔵室63は、定常運転時、外気温(冷凍冷蔵庫50の周囲の生活温度)より低い温度で貯蔵物を冷蔵保存でき、第2容器70の冷凍室73は、定常運転時、冷蔵室63より低い温度で貯蔵物を冷凍保存できるようになっている。なお、第3容器80の野菜室83も、図示しないものの、冷蔵室63と同様にして冷凍室73から冷気が導入され、設定温度、例えば5℃~8℃程度に冷却されるようになっている。
また、第1容器60の冷蔵室63内には、冷蔵冷凍庫50の背面側に、除湿器54が配設されている。この除湿器54は、冷蔵室63の上下方向略中央部に配置されたもので、特に非定常運転時、すなわち前記した新規購入時や停電後の復旧時における初期運転時に作動し、冷蔵室63内の除湿を行うものである。
この除湿器54は、ファン55と、除湿器本体56とを有したものである。ファン55は、図21中破線矢印で示すように、冷蔵室63内に空気の流れを作るもので、その回転動作が前記制御部98によって制御されるようになっている。除湿器本体56は、特に限定されることなく、公知の除湿機能を有したものが用いられる。例えば、ゼオライトやシリカゲル等の吸湿材を用いて湿度を低下させる吸着方式によるものや、ペルチェ素子を用いて冷却を行い、空気中の水分(湿気)を凝縮して湿度を低下させるペルチェ方式などが採用される。
本実施形態では、ペルチェ方式が採用されているものとし、したがって除湿器本体56は、ペルチェ素子からなっているものとする。このペルチェ素子(除湿器本体56)も、その動作、すなわちオン・オフが、前記制御部98によって制御されるようになっている。また、このペルチェ素子(除湿器本体56)の下方には、凝縮した水を受けて溜める容器57が設けられている。この容器57には、その底部に排出管58が接続されており、容器57に溜まった水は排出管58から排出されるようになっている。なお、除湿本体56は、凝縮した水を冷蔵室63の背面側からのみ排出するようになっており、容器57は、排出された水を受けるべく、冷蔵室63の背面側に配設されている。このような構成により、容器57はファン55による空気の流れを妨げないようになっている。
排出管58は、冷蔵室63内から第1容器60の背面側の第1断熱部65と第1蓄熱部66との間に入り、第2容器70の第2断熱部75と第2蓄熱部76との間、第3容器80の第3断熱部85と第3蓄熱部86との間を下降して野菜室83内に至るようになっている。この排出管58の野菜室83側の端部には、超音波振動子などを用いた加湿器59が設けられている。加湿器59は、排出管58で送られてきた水をミスト状にして野菜室83内に噴霧し、野菜室83内を加湿するものである。なお、この加湿器59も、その動作が前記制御部98によって制御されるようになっている。
また、この冷凍冷蔵庫50には、前記制御部98を含む制御装置(図示せず)が設けられており、この制御装置には冷蔵室63内の温度を調節する温度調節機構(図示せず)が設けられている。この温度調節機構は、例えば夏場と冬場とで冷蔵室63内の温度を変える場合などに用いる公知の機構であり、冷蔵室63内に設けられた温度センサ(図示せず)と、前記制御部98とを含んで構成されている。すなわち、冷蔵室63内が温度調節機構で設定した温度より所定温度高くなると、制御部98が前記ダンパー96とファン97とを動作させ、冷凍室73から冷蔵室63側に冷気を流入させて冷蔵室63内を設定温度まで冷却するようになっている。
ここで、第1容器60の第1蓄熱部66を形成する第1材料(第1蓄熱材料)は、液体から固体になる固化時の相転移温度のピーク温度が、前記温度調節機構によって調整可能な冷蔵室63内の温度範囲に含まれているのが好ましい。例えば、冷蔵室63の設定温度は通常3℃~5℃程度であるが、温度調節機構によって調整可能な温度範囲はこれよりも広い範囲、例えば2℃~8℃程度となっている。したがって、第1材料(第1蓄熱材料)の固化時の相転移温度のピーク温度は、このような温度範囲内にあるのが好ましく、例えば6℃~7℃程度であるのが好ましい。
なお、固化時の相転移温度のピーク温度は、前述したように例えば示差走査熱量計を用い、降温レートを1℃/minとして測定したときに、液相から固相への相転移が生じる際のピーク温度として測定することができる。このようにすれば、第1材料(第1蓄熱材料)は、少なくとも温度調節機構によって調整される冷蔵室63内の温度で確実に固化するようになる。したがって、停電時等に冷却装置90がその運転を停止しても、第1材料が固体から液体に相転移する際に潜熱に対応して熱量を多く吸収することで、冷蔵室63内を比較的長い時間低温に保持することができる。
また、第2容器70の第2蓄熱部76を形成する第2材料(第2蓄熱材料)は、液体から固体になる固化時の相転移温度のピーク温度が、冷凍室73の設定温度の範囲内に含まれているのが好ましい。同様に、第3容器80の第3蓄熱部86を形成する第3材料(第3蓄熱材料)は、液体から固体になる固化時の相転移温度のピーク温度が、野菜室83の設定温度の範囲内に含まれているのが好ましい。
なお、第1材料(第1蓄熱材料)、第2材料(第2蓄熱材料)、第3材料(第3蓄熱材料)については、いずれも1種類の材料からなっていてもよく、複数種の材料からなっていてもよい。
なお、第1材料(第1蓄熱材料)、第2材料(第2蓄熱材料)、第3材料(第3蓄熱材料)については、いずれも1種類の材料からなっていてもよく、複数種の材料からなっていてもよい。
次に、このような構成からなる冷凍冷蔵庫50の動作を説明する。
定常運転時には、冷却装置90を動作させることにより、前述したように従来の冷凍冷蔵庫と同様にして、冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。すなわち、冷却装置90を動作させることによって冷却器93で冷凍室73内を所定温度、例えば-18℃程度に冷却し、さらにダンパー96、ファン97を制御部98で動作させることにより、冷凍室73内の冷気を冷蔵室63内に流入させて冷蔵室63内を設定温度に冷却する。同様にして、野菜室83内も設定温度に冷却する。
定常運転時には、冷却装置90を動作させることにより、前述したように従来の冷凍冷蔵庫と同様にして、冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。すなわち、冷却装置90を動作させることによって冷却器93で冷凍室73内を所定温度、例えば-18℃程度に冷却し、さらにダンパー96、ファン97を制御部98で動作させることにより、冷凍室73内の冷気を冷蔵室63内に流入させて冷蔵室63内を設定温度に冷却する。同様にして、野菜室83内も設定温度に冷却する。
また、定常運転に先立つ非定常運転時、例えば新規購入時や停電後の復旧時における初期運転時には、まず、冷却装置90を定常運転時と同じに動作させるとともに、制御部98によって除湿器54のファン55とペルチェ素子(除湿器本体56)を動作させ、冷蔵室73内を除湿する。このように、非定常運転時の始めに除湿を行うのは、以下の理由による。
新規購入時や停電後の復旧時における初期運転時には、各容器60、70、80の蓄熱部66、76、86を形成する蓄熱材料(第1材料、第2材料、第3材料)は、ほぼ外気温(周囲の生活温度)と同じ温度になっているため、液相状態になっている。したがって、特に冷蔵室63内の状態を定常運転に移行させ、または復帰させるためには、第1容器60の第1蓄熱部66を形成する第1材料(第1蓄熱材料)を固相状態にするべく、第1材料に冷熱を蓄える必要がある。しかし、第1材料として潜熱蓄熱材料を用いているので、定常運転時と同じに冷蔵室63内を冷却するのでは、冷熱を蓄えるのに長時間を要してしまい、結果として冷蔵室63内に貯蔵物を冷蔵保存する本来の定常運転に移行(または復帰)するまでに、長時間を要してしまう。
そこで、制御部98によって冷却機構95を制御し、冷蔵室63に対する冷却を強めることにより、第1材料に冷熱を蓄えるための時間を短縮することが考えられる。ところが、このように冷却を強め、例えば冷蔵室63内を冷凍室73と同じに-18℃程度にまで冷却すると、冷蔵室63は室内の空気中の水分(湿気)が結露し、さらに霜となって内壁面等に付着してしまう。すると、たとえ第1材料に十分な冷熱が蓄えられ、第1材料が固相に転移しても、霜の影響で冷蔵室63内の温度が設定温度よりも低くなりすぎ、すぐには定常運転、すなわち設定された温度による正常な運転を行うことができなくなってしまう。
そこで、本実施形態では、前述したようにまず、冷蔵室73内を除湿するようにしている。このように除湿することで、冷蔵室73内の水分を十分に少なくして露点温度を下げることができ、この後の冷却時に結露や霜付きが生じるのを防止することができる。
除湿器54による除湿時間については、冷蔵室63内の容量と、ペルチェ素子(除湿器本体56)の能力とに基づいて予めシミュレーション等で求め、設定しておき、制御部98に記憶させておく。
除湿器54による除湿時間については、冷蔵室63内の容量と、ペルチェ素子(除湿器本体56)の能力とに基づいて予めシミュレーション等で求め、設定しておき、制御部98に記憶させておく。
設定された除湿時間が経過したら、制御部98は除湿器54の動作を停止させる。なお、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。このような加湿器59による水の噴霧も、制御部98により、除湿器54の動作に連動させられるようになっている。
なお、前記説明では除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
除湿器54の動作を停止させたら、冷却装置90が起動していない場合にはこれを起動し、さらに制御部98によって冷却機構95におけるダンパー96を開き、ファン97を回転動作させる。その際、ダンパー96の開状態の時間、及びファン97の回転動作による冷凍室73側から冷蔵室63側への冷気の流入を行う時間を、制御部98によって定常運転時より長くなるように制御する。
すると、冷凍室73内は冷却装置90によって定常運転時と同じに冷却されるため、この冷凍室73内から冷蔵室63側に十分な量の冷気が流入する。これにより、冷蔵室63内は定常運転時と同じに冷却されている冷凍室73と同じに、すなわちほぼ同じ温度に冷却されるようになる。
ここで、冷却機構95による冷蔵室93内の冷却時間、すなわち、冷凍室73とほぼ同じ温度に冷却する時間については、第1容器60における第1蓄熱部66の第1材料(第1蓄熱材料)の容量と、冷却装置90と冷却機構95とによる冷却能力等に基づいて予めシミュレーション等で求め、設定しておき、制御部98に記憶させておく。
このように冷却機構95によって冷蔵室63内を、定常運転時と同じに冷却されている冷凍室73と同じに冷却すると、第1容器60における第1蓄熱部66の第1材料(第1蓄熱材料)は冷蔵室63の定常運転時に比べて格段に速く冷却される。したがって、第1材料は急速に冷熱を蓄え、液相から固相に相転移する。
このように冷却機構95によって冷蔵室63内を、定常運転時と同じに冷却されている冷凍室73と同じに冷却すると、第1容器60における第1蓄熱部66の第1材料(第1蓄熱材料)は冷蔵室63の定常運転時に比べて格段に速く冷却される。したがって、第1材料は急速に冷熱を蓄え、液相から固相に相転移する。
その後、制御部98によって冷却機構95による冷蔵室63に対する非定常運転を停止させ、定常運転に移行(復帰)させる。すなわち、制御部98によってダンパー96、ファン97を定常運転モードで動作させ、冷凍室73内の冷気を冷蔵室63内に間欠的に流入させることにより、冷蔵室63内を設定温度に冷却保持する。
このような冷凍冷蔵庫50とその運転方法によれば、定常運転に先立つ非定常運転時に、冷却機構95によって冷蔵室63内を、定常運転で冷却される冷凍室73と同じに冷却するようにしたので、冷凍室73内の氷点下の冷気を多く用いることにより、第1材料(第1蓄熱材材料)への冷熱の蓄えを比較的短時間で行うことができ、しかもこのような冷熱を蓄える機構を簡易な構成にしてコストが高くなるのを抑制することができる。また、このような冷却機構95による冷却の前に、冷蔵室63内を除湿器54で除湿するようにしたので、冷蔵室内に霜・結露が生じるのを抑制することができる。
なお、前記実施形態では、除湿器本体56をペルチェ素子で構成したが、前述したように吸湿材を用いて湿度を低下させる、吸着方式を採用することもできる。その場合には、吸湿材料として、ゼオライトやシリカゲル、活性アルミナなどの多孔質材料が好適に用いられ、中でも、ゼオライトが好適に用いられる。ゼオライトは、図22の水の吸着等温線を示すグラフに示されるように、吸着除湿量(水分吸着量)が低温(低蒸気圧)域でも他のものに比べて大きいため、冷蔵室63内で使用した場合にも、その吸湿機能が良好に発揮されるようになるからである。
図23は、本発明の保冷容器の第2実施形態を示す図であり、図23中符号150は保冷容器としての冷凍冷蔵庫である。この冷凍冷蔵庫150が図21に示した冷凍冷蔵庫50と異なるところは、前記冷却機構95によって前記冷蔵室63内を、定常運転で冷却される前記冷凍室73(第2容器70内)と同じに冷却した際、前記第1容器60において冷熱の排出量が相対的に大きい領域に、吸湿時に発熱する吸湿材料が配置される点である。
図1(a)、(b)に示した冷蔵庫1などにおいて、例えば図7に関して述べたように、運転停止後の冷蔵庫1の冷蔵室100に対する熱の流入は、パッキンPが他の部分に比べて断熱性が低いことから、パッキンPの位置で主として生じ、パッキンP部分から冷蔵室100の内部へ熱が移動している。
すなわち、このような冷蔵室100に対する熱の流入、換言すれば冷蔵室100からの冷熱の排出は、パッキンP部分でより多くなる。また、このような熱の流入(冷熱の排出)傾向は、運転停止後だけでなく、例えば新規購入時や停電後の復旧時における初期運転時も同様である。
すなわち、このような冷蔵室100に対する熱の流入、換言すれば冷蔵室100からの冷熱の排出は、パッキンP部分でより多くなる。また、このような熱の流入(冷熱の排出)傾向は、運転停止後だけでなく、例えば新規購入時や停電後の復旧時における初期運転時も同様である。
したがって、本発明に係る冷凍冷蔵庫においても、その第1容器60では、冷蔵室63から外部に排出される冷熱の量が、特にパッキンP部分で多くなる。すなわち、前記冷却機構95によって前記冷蔵室63内を、定常運転で冷却される前記冷凍室73(第2容器70内)と同じに冷却した際、前記第1容器60におけるパッキンP部分では、他の部分に比べて冷熱の排出量が相対的に大きくなる。
このようにパッキンP部分で冷熱の排出量が相対的に大きくなるため、パッキンPを伝わった冷蔵室63内の冷気(冷熱)がパッキンPの外側(周囲)の空気を冷し、パッキンPの外部に結露を発生させる。特に、本実施形態のように冷凍室73内から流入させた氷点下の冷気を用いて第1容器60内の第1蓄熱部66の第1材料(第1蓄熱材料)に冷熱を蓄える場合、外気との温度差が大きくなるため、図23中のA部分を示す図24(a)に示すように、パッキンPの外部(外側近傍部)Rに結露が生じやすくなる。
そこで、本実施形態では、図23に示すようにこのパッキンPの外部(外側近傍部)Rに吸湿材料155を配置している。吸湿材料155としては、吸湿時に発熱するものが用いられ、具体的にはゼオライトやシリカゲル、活性アルミナなどの多孔質材料が用いられる。中でも、ゼオライトが好適に用いられる。ゼオライトは、図22に示したように吸着除湿量(水分吸着量)が低温(低蒸気圧)でも他のものに比べて大きいため、結露が生じるような低温状態でもその吸湿機能が良好に発揮されるからである。
また、このような吸湿材料155、例えばゼオライトは、適宜な粒径の粒状のものが用いられ、十分な吸湿機能を発揮するように乾燥された状態で予め容器(図示せず)に充填されて用いられる。この容器としては、網目等の多数の開口を形成した樹脂シートなどによって形成された、袋状のものなどが用いられる。または、少なくとも一部に開口を有した樹脂や金属からなる容器であってもよい。
このような吸湿材料155を有する容器は、基本的には定常運転に先立つ非定常運転時、例えば新規購入時や停電後の復旧時における初期運転時に用いられる。したがって、非使用時には、吸湿材料155(ゼオライト)の吸湿性能が低下しないよう、前記の開口が例えばシール状の封止材によって気密に封止されており、使用時に封止材を剥離して用いるように構成されているのが好ましい。
このような容器には、例えばシール等の貼着材や磁石が設けられていて、パッキンPの外部(外側近傍部)Rとなる第1容器本体61や第1蓋材62に着脱可能に取り付けられるようになっている。または、図24(b)に示すようにパッキンPの外部(外側近傍部)Rとなる第1容器本体61や第1蓋材62に係合凹部157が形成されており、この係合凹部157に着脱可能に取り付けられるようになっていてもよい。
この吸湿材料155を有する容器については、第1容器本体61と第1蓋材62との間のパッキンPの全周に渡ってその周囲に配置されるのが好ましい。ただし、例えば間隔をあけて数箇所に配置するようにしてもよい。また、同じパッキンP部分であっても、パッキンPの厚さ等に差があり、パッキンPの位置によって冷熱の排出量が相対的に異なっている場合には、他の部分に比べて冷熱の排出量が相対的に大きい箇所に、選択的に容器(吸湿材料155)を配置してもよい。
次に、このような吸湿材料155を有する容器を用いる冷凍冷蔵庫150の動作を説明する。
定常運転時には、前記実施形態の冷凍冷蔵庫50と同様に、冷却装置90を動作させることによって冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。
定常運転時には、前記実施形態の冷凍冷蔵庫50と同様に、冷却装置90を動作させることによって冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。
また、定常運転に先立つ非定常運転時、例えば新規購入時や停電後の復旧時における初期運転時には、まず、前記の吸湿材料155を有する容器の封止材を剥離し、パッキンPの外部(外側近傍部)R、例えば図24(b)に示す係合凹部157に嵌め込み、係合させることでここに取り付ける。
続いて、冷却装置90を定常運転時と同じに動作させるとともに、制御部98によって前記冷凍冷蔵庫50と同様に除湿器54のファン55とペルチェ素子(除湿器本体56)を動作させ、冷蔵室73内を除湿する。このように除湿することで、冷蔵室73内の水分を十分に少なくして露点温度を下げることができ、この後の冷却時に結露や霜付きが生じるのを防止することができる。
設定された除湿時間が経過したら、制御部98は除湿器54の動作を停止させる。
ここで、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。
なお、本実施形態においても、除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
ここで、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。
なお、本実施形態においても、除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
除湿器54の動作を停止させたら、冷却装置90が起動していない場合にはこれを起動し、さらに制御部98によって冷却機構95におけるダンパー96を開き、ファン97を回転動作させる。その際、ダンパー96の開状態の時間、及びファン97の回転動作による冷凍室73側から冷蔵室63側への冷気の流入を行う時間を、制御部98によって定常運転時より長くなるように制御する。
すると、冷凍室73内は冷却装置90によって定常運転時と同じに冷却されるため、この冷凍室73内から冷蔵室63側に十分な量の冷気が流入する。これにより、冷蔵室63内は定常運転時と同じに冷却されている冷凍室73と同じに、すなわちほぼ同じ温度に冷却されるようになる。そして、第1容器60における第1蓄熱部66の第1材料(第1蓄熱材料)は、冷蔵室63の定常運転時に比べて格段に速く冷却され、これによって第1材料は急速に冷熱を蓄え、液相から固相に相転移する。
また、このようにして氷点下の冷気が冷蔵室63内に十分な量流入し、冷蔵室63内が冷凍室73とほぼ同じ温度に冷却されると、特にパッキン部Pでは熱交換が大きくなり、熱の流入、すなわち冷熱の排出が多くなる。すると、冷蔵室63内の冷気(冷熱)はパッキンPを伝わってその外部(外側近傍部)Rを冷す。
ところが、このパッキンPの外部(外側近傍部)Rには、先に吸湿材料155を有する容器を配置しているので、吸湿材料155がパッキンPの外部(外側近傍部)Rやその近傍の空気中の湿度を吸着(吸湿)し、発熱している。したがって、このように吸湿材料155が発熱していることにより、図24(c)に示すようにパッキンPの外部(外側近傍部)Rではその温度が上昇し、これによって結露が防止されている。
その後、制御部98によって冷却機構95による冷蔵室63に対する非定常運転を停止させ、定常運転に移行(復帰)させる。すなわち、制御部98によってダンパー96、ファン97を定常運転モードで動作させ、冷凍室73内の冷気を冷蔵室63内に間欠的に流入させることにより、冷蔵室63内を設定温度に冷却保持する。
また、吸湿材料155を有する容器については、これをパッキンPの外部(外側近傍部)Rから取り外し、必要に応じて乾燥した後、封止材で再度封止して保管しておく。これにより、再使用が可能になる。
このような冷凍冷蔵庫150とその運転方法によれば、前記実施形態における冷凍冷蔵庫50とその運転方法と同様に、定常運転に先立つ非定常運転時において、第1材料(第1蓄熱材材料)への冷熱の蓄えを比較的短時間で行うことができ、しかもこのような冷熱を蓄える機構を簡易な構成にしてコストが高くなるのを抑制することができる。また、このような冷却機構95による冷却の前に、冷蔵室63内を除湿器54で除湿するようにしたので、冷蔵室内に霜・結露が生じるのを抑制することができる。
さらに、冷却機構95によって冷蔵室63内を、定常運転で冷却される冷凍室73(第2容器70内)と同じに冷却した際、第1容器60において冷熱の排出量が相対的に大きい領域、すなわちパッキンPの外部(外側近傍部)Rに、吸湿時に発熱する吸湿材料155を配置しているので、冷蔵室63内の冷気によってこのパッキンPの外部(外側近傍部)Rで結露が起こるのを防止することができる。
図25は、本発明の保冷容器の第3実施形態を示す図であり、図25中符号160は保冷容器としての冷凍冷蔵庫である。この冷凍冷蔵庫160が図23に示した冷凍冷蔵庫150と異なるところは、吸湿時に発熱する吸湿材料162として、ゼオライト等の多孔質材料に代えてイモゴライトを用いた点と、冷却装置90に設けられ、吸湿材料162の近傍を通るように配管されたコンデンサー164内への冷媒の流路が、制御部98によって切り換え可能に構成されている点である。
イモゴライトは、SiO2・Al2O3・2H2O[(OH)3Al2O3SiOH]の化学組成を有するチューブ状のアルミニウムシリケイトであって、例えば外径が2.5nm程度、内径が1.0nm程度、長さが数十nm~数μm程度のものである。
このイモゴライトは、吸水速度が大きい(ゼオライトの約4~5倍の吸水速度)、低温での脱水率が高い(40℃で21重量%脱水)、水和エンタルピーが小さい(ゼオライトと同等の水和エンタルピー)、高湿度側で多量吸水する(相対湿度96%で約230重量%吸水)、といった優れた性質を有する。
このイモゴライトは、吸水速度が大きい(ゼオライトの約4~5倍の吸水速度)、低温での脱水率が高い(40℃で21重量%脱水)、水和エンタルピーが小さい(ゼオライトと同等の水和エンタルピー)、高湿度側で多量吸水する(相対湿度96%で約230重量%吸水)、といった優れた性質を有する。
このイモゴライトも、第2実施形態と同様に、袋状の樹脂シートや、樹脂、金属等の容器内に収容されて用いられる。そして、このような形態で図26(a)に示すように係合凹部157内に取り付けられる。ただし、本実施形態では、後述するようにイモゴライトは交換せずに長期の使用が可能となるため、前記袋状樹脂シートや容器に収容することなく、例えば係合凹部157に通気孔を有する蓋(図示せず)を着脱可能に設けるようにし、該係合凹部157内に直接イモゴライトを充填するようにしてもよい。
図25、図26(a)、(b)に示すように第1容器本体61には、吸湿材料162を配置する係合凹部157の近傍に、コンデンサー164が配設されている。コンデンサー164は、冷却装置90の構成部材として設けられたもので、コンプレッサー91によって40℃程度に加温された冷媒を流通させ、放熱させるための従来公知の配管である。本実施形態では、特にコンデンサー164を流通する冷媒の流路を切り換える切換弁(図示せず)が設けられている。すなわち、図26(a)、(b)に示したように係合凹部157の近傍に配置されたコンデンサー164内に、前記冷媒を流通させる状態と、流通させずにコンプレッサー91に返送する状態との間で切換可能になっている。また、このような切換弁の切換制御は、制御部98によってなされるようになっている。
なお、この吸湿材料162についても、第2実施形態と同様に、第1容器本体61と第1蓋材62との間のパッキンPの全周に渡って、その周囲に吸湿材料162が配置されるのが好ましい。その場合に、コンデンサー164についても、全ての吸湿材料162の近傍に配置されるのが好ましい。ただし、吸湿材料162については、例えば間隔をあけて数箇所に配置するようにしてもよい。また、同じパッキンP部分であっても、パッキンPの厚さ等に差があり、パッキンPの位置によって冷熱の排出量が相対的に異なっている場合には、他の部分に比べて冷熱の排出量が相対的に大きい箇所に、選択的に吸湿材料162を配置してもよい。
次に、このような吸湿材料162を用いる冷凍冷蔵庫160の動作を説明する。
定常運転時には、前記第1実施形態の冷凍冷蔵庫50と同様に、冷却装置90を動作させることによって冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。なお、吸湿材料162については、予め係合凹部157内に配置しておく。この吸湿材料162に関する動作については、後述する。
定常運転時には、前記第1実施形態の冷凍冷蔵庫50と同様に、冷却装置90を動作させることによって冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。なお、吸湿材料162については、予め係合凹部157内に配置しておく。この吸湿材料162に関する動作については、後述する。
また、定常運転に先立つ非定常運転時、例えば新規購入時や停電後の復旧時における初期運転時にも、予め係合凹部157内に吸湿材料162を配置しておく。
そして、冷却装置90を定常運転時と同じに動作させるとともに、制御部98によって前記冷凍冷蔵庫50と同様に除湿器54のファン55とペルチェ素子(除湿器本体56)を動作させ、冷蔵室73内を除湿する。このように除湿することで、冷蔵室73内の水分を十分に少なくして露点温度を下げることができ、この後の冷却時に結露や霜付きが生じるのを防止することができる。
そして、冷却装置90を定常運転時と同じに動作させるとともに、制御部98によって前記冷凍冷蔵庫50と同様に除湿器54のファン55とペルチェ素子(除湿器本体56)を動作させ、冷蔵室73内を除湿する。このように除湿することで、冷蔵室73内の水分を十分に少なくして露点温度を下げることができ、この後の冷却時に結露や霜付きが生じるのを防止することができる。
設定された除湿時間が経過したら、制御部98は除湿器54の動作を停止させる。
ここで、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。
また、本実施形態においても、除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
ここで、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。
また、本実施形態においても、除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
除湿器54の動作を停止させたら、冷却装置90が起動していない場合にはこれを起動し、さらに制御部98によって冷却機構95におけるダンパー96を開き、ファン97を回転動作させる。その際、ダンパー96の開状態の時間、及びファン97の回転動作による冷凍室73側から冷蔵室63側への冷気の流入を行う時間を、制御部98によって定常運転時より長くなるように制御する。
すると、冷凍室73内は冷却装置90によって定常運転時と同じに冷却されるため、この冷凍室73内から冷蔵室63側に十分な量の冷気が流入する。これにより、冷蔵室63内は定常運転時と同じに冷却されている冷凍室73と同じに、すなわちほぼ同じ温度に冷却されるようになる。そして、第1容器60における第1蓄熱部66の第1材料(第1蓄熱材料)は、冷蔵室63の定常運転時に比べて格段に速く冷却され、これによって第1材料は急速に冷熱を蓄え、液相から固相に相転移する。
また、このようにして氷点下の冷気が冷蔵室63内に十分な量流入し、冷蔵室63内が冷凍室73とほぼ同じ温度に冷却されると、特にパッキン部Pでは熱交換が大きくなり、熱の流入、すなわち冷熱の排出が多くなる。すると、冷蔵室63内の冷気(冷熱)はパッキンPを伝わってその外部(外側近傍部)Rを冷す。
ところが、このパッキンPの外部(外側近傍部)Rには吸湿材料162が配置されているので、吸湿材料162がパッキンPの外部(外側近傍部)Rやその近傍の空気中の湿度を吸着(吸湿)し、発熱している。したがって、このように吸湿材料162が発熱していることにより、図26(b)に示すようにパッキンPの外部(外側近傍部)Rではその温度が上昇し、これによって結露が防止されている。
その後、制御部98によって冷却機構95による冷蔵室63に対する非定常運転を停止させ、定常運転に移行(復帰)させる。すなわち、制御部98によってダンパー96、ファン97を定常運転モードで動作させ、冷凍室73内の冷気を冷蔵室63内に間欠的に流入させることにより、冷蔵室63内を設定温度に冷却保持する。
また、吸湿材料162の近傍に配置したコンデンサー164に対しては、このような定常運転に先立つ非定常運転時(新規購入時や停電後の復旧時における初期運転時)には、制御部98によって前記切換弁(図示せず)を制御し、該コンデンサー164内に冷媒が流通しない状態にしておく。すると、吸湿材料162はコンデンサー164によって加熱されないため、該吸湿材料162はパッキンPの外部(外側近傍部)Rやその近傍の空気中の湿度を良好に吸着(吸湿)し、発熱することでパッキンPの外部(外側近傍部)Rでの結露を確実に防止するようになる。
また、非定常運転の後の定常運転時には、制御部98によって前記切換弁(図示せず)を制御し、該コンデンサー164内に冷媒が流通する状態にする。すると、吸湿材料162はコンデンサー164によって例えば40℃程度に加熱されることにより、先に吸湿した水分を放出(脱湿)し、乾燥した状態になる。したがって、このような切換弁の切換による吸湿材料162の乾燥処理を定期的に、あるいは非定常運転時に先立って行うことにより、前述したようにパッキンPの外部(外側近傍部)Rでの結露を確実に防止することができる。
このような冷凍冷蔵庫160とその運転方法によれば、前記第2実施形態と同様に、定常運転に先立つ非定常運転時において、第1材料(第1蓄熱材材料)への冷熱の蓄えを比較的短時間で行うことができ、しかもこのような冷熱を蓄える機構を簡易な構成にしてコストが高くなるのを抑制することができる。また、このような冷却機構95による冷却の前に、冷蔵室63内を除湿器54で除湿するようにしたので、冷蔵室内に霜・結露が生じるのを抑制することができる。
さらに、冷却機構95によって冷蔵室63内を、定常運転で冷却される冷凍室73(第2容器70内)と同じに冷却した際、第1容器60において冷熱の排出量が相対的に大きい領域、すなわちパッキンPの外部(外側近傍部)Rに、吸湿時に発熱する吸湿材料162を配置しているので、冷蔵室63内の冷気によってこのパッキンPの外部(外側近傍部)Rで結露が起こるのを防止することができる。
また、吸湿材料162としてイモゴライトを用い、この吸湿材料162の近傍にコンデンサー164を配置したので、コンデンサー164による加熱乾燥によって吸湿した吸湿材料162の吸水性を容易に再生することができる。したがって、吸湿材料162を頻繁に交換することなく、例えば係合凹部157内に配置した状態で長期に亘って使用することができる。
図27は、本発明の第4実施形態に係る保管容器の説明図である。本実施形態の保管容器は、第1実施形態の保管容器1と一部共通している。したがって、本実施形態において第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
図27(a)、(b)は、壁材11の構造を示す説明図である。図27(a)、(b)に示すように、容器本体10および扉部材20の筐体を介してパッキンPと隣接する位置(図1において符号αで示す)で蓄熱部14が貯蔵室100の壁面から厚さ方向に厚くなるように設けられている。このため、パッキンPに隣接した蓄熱部14上の断熱部13の厚さは、パッキンPに隣接しない蓄熱部14上の断熱部12の厚さより薄くなっている。
このような断熱材の厚さが相対的に薄い断熱部13では、他領域に比して入熱量が増えてしまい、蓄熱部14の厚い領域の方が保冷能力が低下してしまう事態が生じ得る。そこで、断熱部12と断熱部13とで断熱能力に差がつかないようにしておくことが必要となる。本例では、断熱部13には断熱部12で用いている発泡ウレタンより断熱性能の高い真空断熱材を用いている。これにより、断熱部13の断熱能力を断熱部12と同等にすることができ、パッキンPに隣接した蓄熱部14の保冷能力の低下を防止することができる。
図28は、本発明の第5実施形態であって、保管容器で使用する蓄熱材の相転移温度を求める方法を示す図である。図28(a)は、DSCを用いた蓄熱材の相転移温度の測定例を示している。図において横軸は温度tを表している。温度tは右方向が高温側である。横軸は2本示している。上側が降温時の測定結果を示し、下側が昇温時の測定結果を示している。縦方向は熱量を表している。横軸を基準に上方は蓄熱材からの放熱量を表し、下方は蓄熱材の吸熱量を表している。
また、図28(a)には、DSCの炉を所定の降温レート(降温速度)で冷却した場合の測定結果を実線の波形D1で示し、当該所定の降温レートより高い降温レートで冷却した場合の測定結果を破線の波形D2で示している。同様に、DSCの炉を所定の昇温レートで加熱した場合の測定結果を実線の波形U1で示し、当該所定の昇温レートより高い昇温レートで加熱した場合の測定結果を破線の波形U2で示している。
図28(a)に示すように、DSCによる測定では、降温レートや昇温レートの相違によりピーク温度が変化してしまう。また、降温測定では過冷却Hにより相転移温度が低下するので、昇温時と降温時とでヒステリシスが生じる。上記の第1実施形態では、降温レートを1℃/minとして液相から固相への相転移が生じる際のピーク温度を測定することを述べた。しかしながら、非定常状態では、図28(a)のように、温度降下あるいは上昇の速度の相違により、あるいは降温時と昇温時のヒステリシスにより、DSCで測定したピーク温度は変化する。ピーク温度は、蓄熱材を実際の保管容器内で保冷したり、保温したりしている場合に、蓄熱材が固相状態を保持できる温度である必要がある。このため、DSCを用いた蓄熱材の相転移温度の測定は、固相から液相への相転移が生じる際のピーク温度を測定する方が望ましい。そこで、DSCを用いた蓄熱材の相転移温度のピーク温度の測定は、比較的低い昇温レートによる昇温測定が望ましい。それ以外に、例えば実際に使用する容器内の冷却速度を測定してもよい。
図28(b)は、一般的にDSCによる昇温測定に基づいて相変化温度を決定する方法を示している。横軸は温度tを表し、縦方向は熱量を表しており、図28(a)と同様である。図28(b)では、DSCの炉を所定の昇温レートで加熱した場合の測定結果を実線の波形Uで示している。蓄熱材が固相から液相への相転移を開始する以前の波形Uの直線部分を高温側に延長して破線で示す仮想直線X1とする。また、蓄熱材が相転移を開始した後で最大吸熱量となる前の波形Uの直線部分を延長して破線で示す仮想直線X2とする。DSCでの相変化温度は、仮想直線X1と仮想直線X2との交点Cの温度として求める。一方、最大吸熱量の位置から仮想直線X1に直交する破線で示す直線を仮想直線X3とすると、ピーク温度は仮想直線X1と仮想直線X3との交点Eの温度として求める。このようにして求めたピーク温度は、殆どの場合で実際の保管容器内で蓄熱材が固相状態を保持できる温度範囲内にある。
図29は、本発明の保冷容器の第6実施形態を示す図であり、図29中符号170は保冷容器としての冷凍冷蔵庫である。この冷凍冷蔵庫170が図23に示した冷凍冷蔵庫150や図25に示した冷凍冷蔵庫160と異なるところは、吸湿時に発熱する吸湿材料172として、ゼオライト等の多孔質材料やイモゴライトに代えてメソポーラスシリカを用いた点にある。冷却装置90に設けられ、吸湿材料172の近傍を通るように配管されたコンデンサー164内への冷媒の流路が、制御部98によって切り換え可能に構成されている点については冷凍冷蔵庫160と同様である。
メソポーラスシリカは、SiO2(シリカ)を構成材料とした均一で規則的な細孔(メソ孔)を有する多孔質材料である。メソ孔の範囲は、ゼオライトの細孔が直径2nm以下であるのに対し、それより大きい直径2~50nmである。
このメソポーラスシリカは、低湿度側でゼオライトと同等の給水能力を持ち、且つ、高湿度側で多量吸水する(室温25℃、湿度90%でゼオライトの約2.7倍の吸水量)、更に、室温でも脱水するため、調湿材としても利用可能といった優れた性質を有する。
このメソポーラスシリカは、低湿度側でゼオライトと同等の給水能力を持ち、且つ、高湿度側で多量吸水する(室温25℃、湿度90%でゼオライトの約2.7倍の吸水量)、更に、室温でも脱水するため、調湿材としても利用可能といった優れた性質を有する。
このメソポーラスシリカも、第2実施形態と同様に、袋状の樹脂シートや、樹脂、金属等の容器内に収容されて用いられる。そして、このような形態で図30(a)に示すように係合凹部157内に取り付けられる。ただし、本実施形態では、後述するようにメソポーラスシリカは交換せずに長期の使用が可能となるため、前記袋状樹脂シートや容器に収容することなく、例えば係合凹部157に通気孔を有する蓋(図示せず)を着脱可能に設けるようにし、該係合凹部157内に直接メソポーラスシリカを充填するようにしてもよい。
図29、図30(a)、(b)に示すように第1容器本体61には、吸湿材料172を配置する係合凹部157の近傍に、コンデンサー164が配設されている。コンデンサー164は、冷却装置90の構成部材として設けられたもので、コンプレッサー91によって40℃程度に加温された冷媒を流通させ、放熱させるための従来公知の配管である。本実施形態では、特にコンデンサー164を流通する冷媒の流路を切り換える切換弁(図示せず)が設けられている。すなわち、図30(a)、(b)に示したように係合凹部157の近傍に配置されたコンデンサー164内に、前記冷媒を流通させる状態と、流通させずにコンプレッサー91に返送する状態との間で切換可能になっている。また、このような切換弁の切換制御は、制御部98によってなされるようになっている。
なお、この吸湿材料172についても、第2実施形態と同様に、第1容器本体61と第1蓋材62との間のパッキンPの全周に渡って、その周囲に吸湿材料172が配置されるのが好ましい。その場合に、コンデンサー164についても、全ての吸湿材料172の近傍に配置されるのが好ましい。ただし、吸湿材料172については、例えば間隔をあけて数箇所に配置するようにしてもよい。また、同じパッキンP部分であっても、パッキンPの厚さ等に差があり、パッキンPの位置によって冷熱の排出量が相対的に異なっている場合には、他の部分に比べて冷熱の排出量が相対的に大きい箇所に、選択的に吸湿材料172を配置してもよい。
次に、このような吸湿材料172を用いる冷凍冷蔵庫170の動作を説明する。
定常運転時には、前記第1実施形態の冷凍冷蔵庫50と同様に、冷却装置90を動作させることによって冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。なお、吸湿材料172については、予め係合凹部157内に配置しておく。この吸湿材料172に関する動作については、後述する。
定常運転時には、前記第1実施形態の冷凍冷蔵庫50と同様に、冷却装置90を動作させることによって冷蔵室63、冷凍室73、野菜室83をそれぞれ設定温度に冷却する。なお、吸湿材料172については、予め係合凹部157内に配置しておく。この吸湿材料172に関する動作については、後述する。
また、定常運転に先立つ非定常運転時、例えば新規購入時や停電後の復旧時における初期運転時にも、予め係合凹部157内に吸湿材料172を配置しておく。
そして、冷却装置90を定常運転時と同じに動作させるとともに、制御部98によって前記冷凍冷蔵庫50と同様に除湿器54のファン55とペルチェ素子(除湿器本体56)を動作させ、冷蔵室73内を除湿する。このように除湿することで、冷蔵室73内の水分を十分に少なくして露点温度を下げることができ、この後の冷却時に結露や霜付きが生じるのを防止することができる。
そして、冷却装置90を定常運転時と同じに動作させるとともに、制御部98によって前記冷凍冷蔵庫50と同様に除湿器54のファン55とペルチェ素子(除湿器本体56)を動作させ、冷蔵室73内を除湿する。このように除湿することで、冷蔵室73内の水分を十分に少なくして露点温度を下げることができ、この後の冷却時に結露や霜付きが生じるのを防止することができる。
設定された除湿時間が経過したら、制御部98は除湿器54の動作を停止させる。
ここで、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。
また、本実施形態においても、除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
ここで、ペルチェ素子(除湿器本体56)で冷却され、凝縮した水は、容器57に溜まり、さらに排出管58を流れて野菜室83にまで流下し、加湿器59によってミスト状に噴霧されるようになっている。
また、本実施形態においても、除湿器54による除湿と同時に冷却装置90による冷却を行うようにしたが、冷却装置90による冷却を行わずに、除湿器54による除湿のみを先行して行ってもよい。その場合には、以下のように除湿器54の動作を停止させた後、冷却装置90を起動する。
除湿器54の動作を停止させたら、冷却装置90が起動していない場合にはこれを起動し、さらに制御部98によって冷却機構95におけるダンパー96を開き、ファン97を回転動作させる。その際、ダンパー96の開状態の時間、及びファン97の回転動作による冷凍室73側から冷蔵室63側への冷気の流入を行う時間を、制御部98によって定常運転時より長くなるように制御する。
すると、冷凍室73内は冷却装置90によって定常運転時と同じに冷却されるため、この冷凍室73内から冷蔵室63側に十分な量の冷気が流入する。これにより、冷蔵室63内は定常運転時と同じに冷却されている冷凍室73と同じに、すなわちほぼ同じ温度に冷却されるようになる。そして、第1容器60における第1蓄熱部66の第1材料(第1蓄熱材料)は、冷蔵室63の定常運転時に比べて格段に速く冷却され、これによって第1材料は急速に冷熱を蓄え、液相から固相に相転移する。
また、このようにして氷点下の冷気が冷蔵室63内に十分な量流入し、冷蔵室63内が冷凍室73とほぼ同じ温度に冷却されると、特にパッキン部Pでは熱交換が大きくなり、熱の流入、すなわち冷熱の排出が多くなる。すると、冷蔵室63内の冷気(冷熱)はパッキンPを伝わってその外部(外側近傍部)Rを冷す。
ところが、このパッキンPの外部(外側近傍部)Rには吸湿材料172が配置されているので、吸湿材料172がパッキンPの外部(外側近傍部)Rやその近傍の空気中の湿度を吸着(吸湿)し、発熱している。したがって、このように吸湿材料172が発熱していることにより、図30(b)に示すようにパッキンPの外部(外側近傍部)Rではその温度が上昇し、これによって結露が防止されている。
その後、制御部98によって冷却機構95による冷蔵室63に対する非定常運転を停止させ、定常運転に移行(復帰)させる。すなわち、制御部98によってダンパー96、ファン97を定常運転モードで動作させ、冷凍室73内の冷気を冷蔵室63内に間欠的に流入させることにより、冷蔵室63内を設定温度に冷却保持する。
また、吸湿材料172の近傍に配置したコンデンサー164に対しては、このような定常運転に先立つ非定常運転時(新規購入時や停電後の復旧時における初期運転時)には、制御部98によって前記切換弁(図示せず)を制御し、該コンデンサー164内に冷媒が流通しない状態にしておく。すると、吸湿材料172はコンデンサー164によって加熱されないため、該吸湿材料172はパッキンPの外部(外側近傍部)Rやその近傍の空気中の湿度を良好に吸着(吸湿)し、発熱することでパッキンPの外部(外側近傍部)Rでの結露を確実に防止するようになる。
また、非定常運転の後の定常運転時には、制御部98によって前記切換弁(図示せず)を制御し、該コンデンサー164内に冷媒が流通する状態にする。すると、吸湿材料172はコンデンサー164によって例えば40℃程度に加熱されることにより、先に吸湿した水分を放出(脱湿)し、乾燥した状態になる。したがって、このような切換弁の切換による吸湿材料172の乾燥処理を定期的に、あるいは非定常運転時に先立って行うことにより、前述したようにパッキンPの外部(外側近傍部)Rでの結露を確実に防止することができる。
このような冷凍冷蔵庫170とその運転方法によれば、前記第2実施形態と同様に、定常運転に先立つ非定常運転時において、第1材料(第1蓄熱材材料)への冷熱の蓄えを比較的短時間で行うことができ、しかもこのような冷熱を蓄える機構を簡易な構成にしてコストが高くなるのを抑制することができる。また、このような冷却機構95による冷却の前に、冷蔵室63内を除湿器54で除湿するようにしたので、冷蔵室内に霜・結露が生じるのを抑制することができる。
さらに、冷却機構95によって冷蔵室63内を、定常運転で冷却される冷凍室73(第2容器70内)と同じに冷却した際、第1容器60において冷熱の排出量が相対的に大きい領域、すなわちパッキンPの外部(外側近傍部)Rに、吸湿時に発熱する吸湿材料172を配置しているので、冷蔵室63内の冷気によってこのパッキンPの外部(外側近傍部)Rで結露が起こるのを防止することができる。
また、吸湿材料172としてメソポーラスシリカを用い、この吸湿材料172の近傍にコンデンサー164を配置したので、コンデンサー164による加熱乾燥によって吸湿した吸湿材料172の吸水性を容易に再生することができる。したがって、吸湿材料172を頻繁に交換することなく、例えば係合凹部157内に配置した状態で長期に亘って使用することができる。
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、前記実施形態では除湿器54で凝縮した水を野菜室の加湿に用いたが、単に冷凍冷蔵庫50の外に排出し、冷却装置90の放熱器92等によって蒸発させるようにしてもよい。
上記第2、第3及び第6の実施の形態では、吸湿剤155、162、172は、非定常運転時におけるパッキンPの外部Rでの結露を防止するために用いられているが、本発明はこれに限られない。例えば、冷凍冷蔵庫150、160、170が日本の夏季のように高温多湿な環境で使用される場合には、吸湿剤155、162、172は、定常運転時においても、パッキンPの外部Rでの結露防止手段としての機能を発揮する。この場合、冷凍冷蔵庫150、160、170は、非定常運転動作を行わなくてもよいため、除湿器54を有していなくてもよい。
また、吸湿剤155、162、172が定常運転時にパッキンPの外部Rでの結露防止手段としての機能を発揮するので、冷凍冷蔵庫150、160、170が定常運転時におけるパッキンP周辺の結露防止のために高温(40℃程度)の冷媒の流れるコンデンサーあるいはヒーターを当該パッキンP周辺に有している場合、当該コンデンサーに常時冷媒を流したり当該ヒーターに常時電流を流したりしておく必要がない。このため、冷凍冷蔵庫150、160、170では、当該コンデンサーや当該ヒーターによるパッキン周辺部の過熱が間欠的になり、庫内への熱の流入量の減少、ヒーターの消費電力の削減による低消費電力化を図ることができる。なお、冷凍冷蔵庫160では、吸湿剤155は定常運転時も冷凍冷蔵庫160に取り付けられたまま使用される。また、冷凍冷蔵庫160、170では、コンデンサー164がパッキンP周辺の結露防止に用いられてもよいし、あるいは、コンデンサー164とは別に結露防止専用のコンデンサーが備えられていてもよい。
本発明は、周囲の生活温度より低温で貯蔵物を保管する保冷容器の分野において広く利用可能である。
1~5…冷蔵庫、10…容器本体、11,21…壁材、12,22…断熱部、14,24…蓄熱部、18…筐体、20…扉部材、30…反射層(赤外線反射層)、50…冷凍冷蔵庫(保冷容器)、54…除湿器、55…ファン、56…除湿器本体、57…容器、58…排出管、59…加湿器、60…第1容器、61…第1容器本体、62…第1蓋材、63…冷蔵室、64…壁材、65…第1断熱部、66…第1蓄熱部、70…第2容器、71…第2容器本体、72…第2蓋材、73…冷凍室、74…壁材、75…第2断熱部、76…第2蓄熱部、80…第3容器、81…第3容器本体、82…第3蓋材、83…野菜室、84…壁材、85…第3断熱部、86…第3蓄熱部、90…冷却装置(冷却手段)、100…貯蔵室、101…開口部、150…冷凍冷蔵庫、155…吸湿材料、160…冷凍冷蔵庫、162…吸湿材料、170…冷凍冷蔵庫、172…吸湿材料、AR1…第1の領域、
AR2…第2の領域、P…パッキン
AR2…第2の領域、P…パッキン
Claims (12)
- 電気的な冷却機能を有する貯蔵物の保冷容器であって、
定常運転において前記保冷容器の周囲の生活温度より低い温度で貯蔵物を保存する第1容器と、定常運転において前記第1容器より低い温度で貯蔵物を保存する第2容器と、定常運転において前記第1容器内を前記周囲の生活温度より低い温度に冷却するとともに、前記第2容器内を前記第1容器より低い温度に冷却する冷却手段と、を備え、
前記第1容器は、第1容器本体と該第1容器本体内の空間を開閉可能にする第1蓋材とを有し、前記第1容器本体および前記第1蓋材で囲まれた前記空間は、貯蔵物を冷蔵する冷蔵室を成しており、
前記第1容器本体および前記第1蓋材は、前記冷蔵室を囲んで設けられた第1断熱部と、前記冷蔵室と前記第1断熱部との間において少なくとも一部に設けられた第1蓄熱部と、を有し、
前記第1蓄熱部は、定常運転において前記冷蔵室内で制御可能な温度と前記保冷容器の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料からなる第1材料を用いて形成され、
前記冷蔵室には除湿器が設けられ、
前記冷却手段は、前記冷蔵室内を、定常運転で冷却される前記第2容器内と同じに冷却する冷却機構を有することを特徴とする保冷容器。 - 定常運転状態から電気的な冷却機能を停止した後の経時変化によって前記冷蔵室内に形成される温度分布において、相対的に前記生活温度に近づきやすい第1の領域の近傍に配置されている前記第1蓄熱部の一部は、前記生活温度に近づきにくい第2の領域の近傍に配置されている前記第1蓄熱部の他の一部よりも、前記材料の温度伝導率を、壁面の単位面積当たりの使用量で割った値が小さくなるように設けられていることを特徴とする請求項1記載の保冷容器。
- 前記第2容器は、第2容器本体と該第2容器本体内の空間を開閉可能にする開閉機構とを有し、前記第2容器本体内の前記空間は、貯蔵物を冷凍する冷凍室を成しており、
前記第2容器本体は、前記冷凍室を囲んで設けられた第2断熱部と、前記冷凍室と前記第2断熱部との間において少なくとも一部に設けられた第2蓄熱部と、を有し、
前記第2蓄熱部は、
定常運転において前記冷凍室内で制御可能な温度と前記保冷容器の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料からなる第2材料を用いて形成されていることを特徴とする請求項1又は2に記載の保冷容器。 - 前記第1容器には、前記冷蔵室内の温度を調節する温度調節機構が設けられており、
前記第1材料は、その固化時の相転移温度のピーク温度が、前記温度調節機構によって調整可能な前記冷蔵室内の温度範囲に含まれることを特徴とする請求項1から3のいずれか一項に記載の保冷容器。 - 前記冷却機構によって前記冷蔵室内を、定常運転で冷却される前記第2容器内と同じに冷却した際、前記第1容器において冷熱の排出量が相対的に大きい領域に、吸湿時に発熱する吸湿材料が配置されることを特徴とする請求項1から4のいずれか一項に記載の保冷容器。
- 前記吸湿材料が多孔質材料であることを特徴とする請求項5記載の保冷容器。
- 前記多孔質材料がゼオライトであることを特徴とする請求項6記載の保冷容器
- 前記吸湿材料がイモゴライトであることを特徴とする請求項5記載の保冷容器。
- 前記吸湿材料がメソポーラスシリカであることを特徴とする請求項5記載の保冷容器。
- 第3容器と、
前記除湿器で前記冷蔵室内を除湿した際に得られる水を、前記第3容器内の加湿に用いる加湿機構と、を有することを特徴とする請求項1から9のいずれか一項に記載の保冷容器。 - 電気的な冷却機能を有する貯蔵物の保冷容器であって、
定常運転において前記保冷容器の周囲の生活温度より低い温度で貯蔵物を保存する第1容器と、定常運転において前記第1容器より低い温度で貯蔵物を保存する第2容器と、定常運転において前記第1容器内を前記周囲の生活温度より低い温度に冷却するとともに、前記第2容器内を前記第1容器より低い温度に冷却する冷却手段と、前記第1容器において冷熱の排出量が相対的に大きい領域に配置されて吸湿時に発熱する吸湿材料と、を備え、
前記第1容器は、第1容器本体と該第1容器本体内の空間を開閉可能にする第1蓋材とを有し、前記第1容器本体および前記第1蓋材で囲まれた前記空間は、貯蔵物を冷蔵する冷蔵室を成しており、
前記第1容器本体および前記第1蓋材は、前記冷蔵室を囲んで設けられた第1断熱部と、前記冷蔵室と前記第1断熱部との間において少なくとも一部に設けられた第1蓄熱部と、を有し、
前記第1蓄熱部は、定常運転において前記冷蔵室内で制御可能な温度と前記保冷容器の周囲の生活温度との間の温度で、液相と固相との間の相転移が生じる1種以上の材料からなる第1材料を用いて形成されていること
を特徴とする保冷容器。 - 請求項1から10のいずれか一項に記載の保冷容器の運転方法であって、
前記定常運転に先立つ非定常運転時に、まず、前記除湿器によって前記冷蔵庫内を除湿し、
次いで、前記冷却機構によって前記冷蔵室内を、定常運転で冷却される前記第2容器内と同じに冷却して前記第1蓄熱部の前記第1材料を冷却し、
その後、前記定常運転を行うことを特徴とする保冷容器の運転方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-017088 | 2011-01-28 | ||
JP2011017088 | 2011-01-28 | ||
JP2011-248987 | 2011-11-14 | ||
JP2011248987 | 2011-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012102234A1 true WO2012102234A1 (ja) | 2012-08-02 |
Family
ID=46580801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051334 WO2012102234A1 (ja) | 2011-01-28 | 2012-01-23 | 保冷容器とその運転方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012102234A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017015375A (ja) * | 2015-07-07 | 2017-01-19 | 日立アプライアンス株式会社 | 冷蔵庫 |
CN108885046A (zh) * | 2016-03-23 | 2018-11-23 | 松下知识产权经营株式会社 | 冷藏库 |
CN112097440A (zh) * | 2019-06-18 | 2020-12-18 | 青岛海尔智能技术研发有限公司 | 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置 |
CN112097438A (zh) * | 2019-06-18 | 2020-12-18 | 青岛海尔智能技术研发有限公司 | 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58219379A (ja) * | 1982-06-15 | 1983-12-20 | 松下電器産業株式会社 | 蓄冷型保冷庫 |
JPH02171574A (ja) * | 1988-12-23 | 1990-07-03 | Matsushita Refrig Co Ltd | 蓄冷型保冷庫 |
JPH04254181A (ja) * | 1991-02-01 | 1992-09-09 | Hitachi Ltd | 冷蔵庫 |
JPH074807A (ja) * | 1993-03-31 | 1995-01-10 | Samsung Electronics Co Ltd | 冷蔵庫の蓄冷装置 |
JPH09303931A (ja) * | 1996-05-13 | 1997-11-28 | Sanyo Electric Co Ltd | 冷却貯蔵庫 |
JP2010043779A (ja) * | 2008-08-12 | 2010-02-25 | Mitsubishi Electric Corp | 蓄冷パネルおよびこれを備えた冷凍・冷蔵装置 |
-
2012
- 2012-01-23 WO PCT/JP2012/051334 patent/WO2012102234A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58219379A (ja) * | 1982-06-15 | 1983-12-20 | 松下電器産業株式会社 | 蓄冷型保冷庫 |
JPH02171574A (ja) * | 1988-12-23 | 1990-07-03 | Matsushita Refrig Co Ltd | 蓄冷型保冷庫 |
JPH04254181A (ja) * | 1991-02-01 | 1992-09-09 | Hitachi Ltd | 冷蔵庫 |
JPH074807A (ja) * | 1993-03-31 | 1995-01-10 | Samsung Electronics Co Ltd | 冷蔵庫の蓄冷装置 |
JPH09303931A (ja) * | 1996-05-13 | 1997-11-28 | Sanyo Electric Co Ltd | 冷却貯蔵庫 |
JP2010043779A (ja) * | 2008-08-12 | 2010-02-25 | Mitsubishi Electric Corp | 蓄冷パネルおよびこれを備えた冷凍・冷蔵装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017015375A (ja) * | 2015-07-07 | 2017-01-19 | 日立アプライアンス株式会社 | 冷蔵庫 |
CN108885046A (zh) * | 2016-03-23 | 2018-11-23 | 松下知识产权经营株式会社 | 冷藏库 |
CN112097440A (zh) * | 2019-06-18 | 2020-12-18 | 青岛海尔智能技术研发有限公司 | 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置 |
CN112097438A (zh) * | 2019-06-18 | 2020-12-18 | 青岛海尔智能技术研发有限公司 | 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8596084B2 (en) | Icemaker with reversible thermosiphon | |
EP2108096B1 (en) | Improved compact grille cabinet for room air-conditioners | |
JP5800575B2 (ja) | 冷蔵庫 | |
WO2009000722A3 (en) | Refrigerator for fresh products with temperature leveling means | |
US6820441B2 (en) | Adsorption cooling apparatus with buffer reservoir | |
JP2017537300A (ja) | 冷蔵庫 | |
WO2012102234A1 (ja) | 保冷容器とその運転方法 | |
JP4566111B2 (ja) | 低温貯蔵庫 | |
JP2024054372A (ja) | 熱調節システム | |
KR20180064059A (ko) | 냉동 및 온장고를 겸하는 냉풍건조장치 | |
WO2012070567A1 (ja) | 保管容器 | |
WO2012147678A1 (ja) | 蓄熱容器及び保温庫 | |
JP4357340B2 (ja) | 吸着式冷蔵庫 | |
JP2004324902A (ja) | 冷凍冷蔵庫 | |
JP2005308247A (ja) | 冷蔵庫 | |
JP2004333092A (ja) | 冷凍冷蔵庫 | |
EP4073437B1 (en) | Ventilation device | |
JP2005180797A (ja) | 乾燥庫 | |
JP2007093112A (ja) | 冷却貯蔵庫 | |
KR100866065B1 (ko) | 단열판넬이 구비된 국소복사냉방장치 | |
JPH074776A (ja) | 吸着式冷蔵庫及び吸着式冷凍装置と、その霜取方法 | |
EP3757484A1 (en) | Refrigerator appliance | |
KR20200001250A (ko) | 가전기기를 이용한 건물의 냉, 난방시스템 | |
KR20170050637A (ko) | 냉동 및 온장고를 겸하는 냉풍건조장치 | |
CN208859973U (zh) | 一种内部温差较小的冷藏柜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12738767 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12738767 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |