[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012172713A1 - 道路形状判定装置、車載用画像認識装置、撮像軸調整装置およびレーン認識方法 - Google Patents

道路形状判定装置、車載用画像認識装置、撮像軸調整装置およびレーン認識方法 Download PDF

Info

Publication number
WO2012172713A1
WO2012172713A1 PCT/JP2012/001576 JP2012001576W WO2012172713A1 WO 2012172713 A1 WO2012172713 A1 WO 2012172713A1 JP 2012001576 W JP2012001576 W JP 2012001576W WO 2012172713 A1 WO2012172713 A1 WO 2012172713A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
imaging
lane
road
Prior art date
Application number
PCT/JP2012/001576
Other languages
English (en)
French (fr)
Inventor
高浜 琢
文紀 武田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/125,832 priority Critical patent/US20140118552A1/en
Priority to EP12801148.3A priority patent/EP2720213A4/en
Priority to CN201280026555.2A priority patent/CN103582907B/zh
Priority to JP2013520407A priority patent/JP5733395B2/ja
Publication of WO2012172713A1 publication Critical patent/WO2012172713A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/0215Sensor drifts or sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30256Lane; Road marking

Definitions

  • the present invention relates to a technique for recognizing a lane shape or the like on which a vehicle travels by a camera mounted on the vehicle.
  • the left and right lane markers in the traveling lane in which the vehicle is traveling are image-recognized based on the result captured by the camera. Then, the intersection of the extension lines is obtained from the recognized left and right lane markers, and these are collected and averaged to obtain the camera mounting angle error.
  • the present invention has been made in view of the above problems, and an object of the present invention is to determine whether or not the imaging angle of an imaging unit provided in a vehicle is a straight road with a smaller calculation load.
  • the periphery of the vehicle is imaged by an imaging unit provided in the vehicle, and the lane shape of the traveling lane in which the vehicle travels is recognized from the captured image.
  • the left and right positions located in the vicinity region are based on the lane shape in the vicinity region that is relatively close to the host vehicle and the lane shape in a distant region that is far from the host vehicle among the recognized lane shapes.
  • the deviation of the intersection of the extension line that approximates the lane marker with a straight line and the intersection of the extension line that linearly approximates the left and right lane markers located in the far region portion is determined to be equal to or less than a preset threshold value, it is determined as a straight road.
  • FIG. 1 It is a figure showing an example of vehicles carrying an in-vehicle image recognition device concerning a 1st embodiment of the present invention.
  • It is a functional block diagram which shows an example of a structure of the vehicle-mounted image recognition apparatus which concerns on 1st Embodiment of this invention.
  • 3 is a functional block diagram illustrating an example of a configuration of a lane shape recognition unit 102.
  • FIG. It is a schematic diagram which shows the concept of the process in the lane shape recognition part. It is a schematic diagram which shows the concept in the case of performing a lane recognition process by classifying a near field and a far field.
  • It is a flowchart which shows an example of the process in the vehicle-mounted image recognition apparatus which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a diagram illustrating an example of a vehicle equipped with an in-vehicle image recognition device according to the present embodiment.
  • the in-vehicle image recognition apparatus according to the present embodiment is an apparatus for recognizing a lane in which a vehicle travels from an image captured by an in-vehicle camera.
  • the vehicle 1 includes a camera 10 incorporating an image processing device 10a, a vehicle speed detection device 20, a steering angle detection device 30, a steering angle control device 40, and a steering angle actuator 50.
  • the camera 10 captures an image in front of the vehicle 1.
  • the camera 10 is a digital camera provided with an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). More specifically, the camera 10 is a progressive scan type 3CMOS camera that captures images at high speed.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the camera 10 is installed, for example, at the front center of the ceiling of the vehicle 1 so as to image the front of the vehicle 1 and images the traveling road ahead of the vehicle 1 through the windshield. Yes.
  • any other installation mode can be used as long as it is a camera that captures an image of the traveling path of the host vehicle 1.
  • the camera 10 can be attached to the rear of the vehicle 1 like a back view camera, or can be attached to the front end of the vehicle 1 such as a bumper, and the vanishing point is not reflected in the field of view of the camera 10. You can also.
  • the virtual vanishing point can be calculated by detecting the edge of the lane marker and calculating the approximate straight line.
  • the image processing apparatus 10a is an apparatus that executes the lane recognition process according to the present embodiment. That is, the camera 10 incorporating the image processing apparatus 10a of FIG. 1 corresponds to the in-vehicle image recognition apparatus according to the present embodiment. Information output from the image processing device 10 a, the vehicle speed detection device 20, and the steering angle detection device 30 is input to the steering angle control device 40. Then, the steering angle control device 40 outputs a signal for realizing target steering to the steering angle actuator 50.
  • the camera 10 and the steering angle control device 40 are each provided with a microcomputer, peripheral components thereof, drive circuits for various actuators, and the like, and transmit / receive information to / from each other via a communication circuit.
  • the lane recognition process according to the present embodiment is realized by the hardware configuration as described above.
  • the camera 10 incorporating the image processing apparatus 10a functionally has an imaging unit 101, a lane shape recognition unit 102, a vehicle behavior recognition unit 103, an imaging angle derivation unit 104, and an information bias determination unit 105.
  • the imaging angle correction unit 106 is provided.
  • the imaging unit 101 images the periphery of the vehicle 1.
  • the lane shape recognition unit 102 recognizes the lane shape of the travel lane in which the vehicle 1 travels from the captured image captured by the imaging unit 101.
  • a traveling lane detection method for example, a known method described in JP-A-2004-252827 may be employed.
  • a method for calculating the shape of the traveling lane and the position and posture of the vehicle for example, a known method described in Japanese Patent Application Laid-Open No. 2004-318618 may be employed.
  • the lane shape recognizing unit 102 obtains the intersection coordinates from the extension lines of the pair of left and right lane markers in the far region and the nearby region, using the lane shape recognized in this way. For example, the intersection coordinates are obtained from the extension lines of a pair of left and right lane markers in the far and near areas by the following method. That is, the lane shape recognition unit 102 analyzes the captured image of the imaging unit 101, and the yaw angle C of the vehicle 1, the pitch angle D of the vehicle 1, the height H of the imaging unit 101 from the road surface, and the lateral displacement from the lane center. An arithmetic unit for calculating A and the curvature B of the traveling lane is provided.
  • the lane shape recognition unit 102 outputs the yaw angle C of the vehicle 1, the lateral displacement A from the center of the lane, and the curvature B of the traveling lane calculated by the calculation device to the steering angle control device 40. Thereby, for example, automatic steering of the vehicle 1 is realized.
  • FIG. 3 is a diagram illustrating a configuration example of the lane shape recognition unit 102.
  • FIG. 4 is a schematic diagram showing the concept of processing in the lane shape recognition unit 102.
  • the lane shape recognition unit 102 includes a white line candidate point detection unit 200, a lane recognition processing unit 300, and an optical axis correction unit 400.
  • the white line candidate point detection unit 200 detects white line candidate points to be lane markings based on image data captured by the imaging unit 101.
  • the white line candidate point detection unit 200 acquires an image obtained by imaging the travel path of the host vehicle 1 from the imaging unit 101, and detects the white line edge Ed by performing image processing.
  • the position of the image processing frame F is determined based on road parameters (road shape and vehicle posture with respect to the road) described later with respect to the lane markings (white lines) positioned on the left and right of the acquired captured image.
  • the set image processing frame F is subjected to, for example, primary spatial differentiation using a Sobel filter to emphasize the edge of the boundary between the white line and the road surface, and then extract the white line edge Ed.
  • the lane recognition processing unit 300 includes a road shape calculation unit 310 that linearly approximates the road shape, and a road parameter estimation unit 320 that estimates the road shape and the vehicle posture with respect to the road.
  • the road shape calculation unit 310 passes pixels whose intensity of the white line edge Ed extracted by the white line candidate point detection unit 200 is equal to or greater than a preset threshold Edth, and more than a preset number of pixels Pth, and An approximate straight line Rf of the road shape is calculated by extracting a straight line connecting one point on the upper side and one lower side of the detection region by Hough transform.
  • the road image data obtained by photographing is divided into two areas, a distant area and a vicinity, and the road shape is linearly approximated in each area (see FIG. 5).
  • the road parameter estimation unit 320 estimates a road parameter (road shape and vehicle attitude with respect to the road) as a road model equation from the approximate straight line Rf detected by the road shape calculation unit 310 using the following equation (1). .
  • the parameters A, B, C, D, and H in the equation (1) are road parameters and vehicle state quantities estimated by the road parameter estimation unit 320.
  • the parameters A, B, C, D, and H are the lateral displacement (A) with respect to the lane of the vehicle 1, the road curvature (B), the yaw angle (C) with respect to the lane of the host vehicle 1, and the pitch of the vehicle 1, respectively.
  • W is a constant indicating the lane width (the distance between the inside of the left and right white lines on the actual road)
  • f is a camera perspective transformation constant
  • j is a parameter for distinguishing the left and right white lines
  • j 0 for the left white line
  • For the right white line, j 1.
  • (x, y) is the coordinates on the road image at an arbitrary point on the inner edge of the left or right white line, taking the upper left of the road image as the origin, the right direction is the x-axis positive direction, the lower direction Is the positive y-axis direction.
  • the optical axis correction unit 400 includes a straight road determination unit 410 that determines that the travel path of the host vehicle 1 is a straight road, and a parallel travel determination unit that determines that the host vehicle 1 travels parallel to the travel path. 420 and a virtual vanishing point calculation unit 430 that calculates a virtual vanishing point from the approximate straight line Rf of the road shape.
  • the straight road determination unit 410 compares the degree of coincidence between the slope of the linear equation and the intercept value of the approximate straight line Rf of the distant and neighboring road shapes calculated by the road shape calculation unit 310, so that the traveling road of the host vehicle 1 It is determined whether or not is a straight road.
  • the parallel travel determination unit 420 determines that the host vehicle 1 is traveling in parallel with the travel path from the vehicle posture with respect to the travel path of the host vehicle 1 estimated by the road parameter estimation unit 320. Specifically, the parallel running determination unit 420 uses the lateral displacement A of the host vehicle 1 with respect to the lane, which is one of the vehicle state quantities estimated by the road parameter estimation unit 320, from the difference between the current value and the past value. The lateral speed (the differential value of the lateral displacement A) with respect to the lane of the host vehicle 1 is calculated. When the calculated lateral speed is equal to or less than a preset threshold value, it is determined that the host vehicle 1 is traveling in parallel with the travel path. The fact that the host vehicle 1 is traveling in parallel with the travel path indicates that the host vehicle 1 is traveling straight when the travel path is a straight road.
  • the virtual vanishing point calculation unit 430 determines that the straight road determination unit 410 and the parallel travel determination unit 420 determine that the travel path of the host vehicle 1 is a straight road and the host vehicle 1 travels parallel to the travel path of the host vehicle 1. In this state, the intersection of the right and left approximate straight lines Rf of the road shape is calculated as a virtual vanishing point.
  • FIG. 5 is a schematic diagram showing a concept when a lane recognition process is performed by dividing a near area and a far area.
  • a curved road having a relatively large radius is shown as an example.
  • the lane shape recognition unit 102 divides the image data captured by the imaging unit 101 into a near region (lower image portion) and a far region (image center portion), and in each region, white line candidate inspection is performed.
  • the exit unit 200 and the lane recognition processing unit 300 detect the white line edge Ed and the approximate straight line Rf.
  • the straight road determination unit 410 determines whether or not the traveling road is a straight line. For example, the straight road determination unit 410 determines that these approximate straight lines Rf match when the slopes and intercepts of the approximate straight lines Rf in the near and far regions are within a preset threshold.
  • the travel path is determined to be a straight line.
  • the vehicle behavior recognition unit 103 recognizes the behavior of the vehicle 1 provided with the imaging unit 101. Specifically, the vehicle behavior recognition unit 103 detects the vehicle speed (traveling speed) of the vehicle 1 detected by the vehicle speed detection device 20, the steering angle detected by the steering angle detection device 30, the front and rear of the vehicle detected by an acceleration sensor (not shown), and The behavior of the vehicle 1 is determined based on the acceleration in the vehicle width direction, the yaw rate value detected by the yaw rate sensor, and the like.
  • the imaging angle deriving unit 104 obtains the imaging angle of the imaging unit 101 from the lane shape recognition of the lane shape recognition unit 102.
  • the information bias determination unit 105 determines whether or not there is a bias with respect to at least one of the lane shape recognition unit 102 and the vehicle behavior recognition unit 103.
  • the imaging angle correction unit 106 corrects the imaging angle of the imaging unit 101 using the imaging angle output by the imaging angle deriving unit 104 when the information bias determination unit 105 determines that the bias is equal to or less than a preset threshold value.
  • step S ⁇ b> 101 the lane shape recognition unit 102 reads an image in front of the vehicle 1 captured by the imaging unit 101.
  • step S102 the vehicle behavior recognition unit 103 reads the vehicle speed of the vehicle 1 detected by the vehicle speed detection device 20, the steering angle detected by the steering angle detection device 30, and the like.
  • step S103 the lane shape recognition unit 102 processes the captured image of the imaging unit 101 read in step S101 to recognize the traveling lane in which the vehicle 1 is traveling, and the position and vehicle posture of the vehicle 1 with respect to the traveling lane. Etc. are calculated.
  • step S104 the lane shape recognition unit 102 uses the lane shape recognized in step S103 to obtain the intersection coordinates from the extension lines of a pair of left and right lane markers in the far and near areas. As described above, in the present step, the intersection coordinates of the neighboring area obtained by the lane shape recognition unit 102 are defined as (Pn_x, Pn_y), and the intersection coordinates of the far area are defined as (Pf_x, Pf_y).
  • step S105 the straight road determination unit 410 determines whether or not the road is a straight road from the intersection coordinates of the distant area and the near area obtained in step S104 by the following expression. If the following expression is satisfied, the process proceeds to step S106. Otherwise, the process proceeds to step S110. abs (Pn_x-Pf_x) ⁇ TH_Px (0-1)
  • abs (A) is a function that returns the absolute value of A.
  • the value of HP_Px is a positive value set in advance, such as 1.0. Note that satisfying the above equation (0-1) means that the intersection coordinates on the extension of the left and right lane markers detected from the area only in the vicinity of the camera imaging screen and the intersection coordinates on the extension of the left and right lane markers detected from the far field are , Being close. In other words, the fact that this condition is satisfied means that the straight lines are in the same direction from a distant place to the vicinity.
  • step S106 the parallel running determination unit 420 uses the lateral offset position (the distance in the left-right direction to the lane marker) Y of the host vehicle with respect to the host lane obtained in step S103 as input, and performs pseudo time differentiation using the following transfer function. Then, the lateral speed Ydot of the host vehicle is calculated. If the following expression (0-4) is satisfied, the process proceeds to step S107, and otherwise, the process proceeds to step S110.
  • G (Z -1 ) (c-cZ -2 ) / (1-aZ -1 + bZ -2 ) (0-2)
  • Ydot G (Z -1 ) Y (0-3) abs (Ydot) ⁇ TH_Ydot (0-4)
  • Z ⁇ 1 is a delay operator, and coefficients a, b, and c are all positive numbers, and these are discretized at a sampling period of 50 ms so as to have a preset frequency characteristic.
  • the value of TH_Ydot is a positive value set in advance, such as 0.03, for example, and may be a large value according to the height of the vehicle speed.
  • satisfying the above expression (0-4) means that the vehicle has not moved laterally with respect to the lane marker. In other words, it means that the vehicle is traveling along the lane marker without wobbling from side to side. Further, when the above equations (0-1) and (0-4) are satisfied at the same time, it means that the vehicle is traveling straight on a straight road.
  • step S107 the straight road determination unit 410 determines whether or not the road curvature Row obtained in step S103 satisfies all the following conditions. If the road curvature Row satisfies all of the following conditions, the process proceeds to step S108, and otherwise, the process proceeds to step S110. abs (Row) ⁇ TH_ROW (1-1) abs (SumTotalRow + Row) ⁇ TH_ROW (1-2)
  • abs (A) is a function that returns the absolute value of A.
  • SumTotalRow is the total value of the road curvature Row.
  • TH_ROW is a threshold value when the traveling lane is regarded as a straight road.
  • the information bias determination unit 105 determines that the traveling lane is a straight road when the absolute value of the road curvature Row and the absolute value of the sum SumTotalRow + Row are less than TH_ROW.
  • the value of TH_ROW is a preset positive value such as 0.0003, for example.
  • the imaging angle of the imaging unit 101 is corrected in step S108 and subsequent steps.
  • the reason why the imaging angle of the image capturing unit 101 is corrected only in a scene corresponding to a straight road is that, in the case of a straight road, the point at infinity of the straight road becomes the center coordinate on the image when image processing is performed. It is. That is, in general, it is more accurate to obtain the center coordinates from the intersection of the pair of left and right markers recognized on the straight road than the case where the center coordinates are obtained by correcting from the estimated curvature value on the curved road. Because.
  • step S108 the sum total value SumTotalRow of road curves is updated by the following equation.
  • SumTotalRow SumTotalRow + Row (1-3)
  • the imaging angle correction unit 106 corrects the imaging angle of the imaging unit 101 by the following equation and determines the corrected imaging angle of the imaging unit 101.
  • FOE_X_est 0.9 * FOE_X_est + 0.1 * Pn_x (1-4)
  • FOE_Y_est 0.9 * FOE_Y_est + 0.1 * Pn_y (1-5)
  • FOE_X_est and FOE_Y_est are coordinates on the captured image of the front of the vehicle 1 corresponding to the imaging angle of the imaging unit 101, and the initial value is initial adjustment at a factory or the like (calibration of mounting error called factory aiming or the like) ) Is a measurement value of a camera mounting error (also referred to as a camera imaging angle error) with respect to a fixed target.
  • the coordinates calculated by the above formulas (1-4) and (1-5) are used as the origin coordinates when performing the lane recognition process in the subsequent step S103.
  • aiming refers to optical axis adjustment.
  • step S110 the past value used in the filter and the counter value used in the timer are updated and the process ends. Note that the value of SumTotalRow is initialized to “0” before the processing flow of FIG. 6 is executed.
  • the on-vehicle image recognition apparatus described above recognizes the lane shape of a travel lane in which the vehicle 1 travels from a captured image of the image capturing unit 101 that captures a travel path around the vehicle 1. Further, the imaging angle of the imaging unit 101 is obtained from the recognized lane shape. Then, it is determined whether or not the recognized lane shape is biased with respect to the recognized lane shape, and the imaging angle of the imaging unit 101 is corrected using the imaging angle when it is determined that there is no bias.
  • the imaging angle error of the imaging unit can be accurately detected with less processing load. Can be corrected.
  • the standard deviation calculation unit is not provided.
  • a result targeting a specific state in which the vehicle travels straight on a straight road without any bias is input. It may be corrected. In this case, the input value tends to have a normal distribution, so that the correction accuracy is also high.
  • the in-vehicle image recognition apparatus of the present embodiment is an in-vehicle image recognition apparatus provided in the vehicle 1.
  • the imaging unit 101 images the periphery of the vehicle 1.
  • the lane shape recognition unit 102 recognizes the lane shape of the traveling lane in which the vehicle 1 travels from the captured image of the imaging unit 101.
  • the imaging angle deriving unit 104 obtains the imaging angle of the imaging unit 101 from the lane shape recognized by the lane shape recognition unit 102.
  • the straight road determination unit 410 is located in the vicinity region based on the lane shape in the vicinity region relatively close to the host vehicle and the lane shape in the far region far from the host vehicle among the lane shapes recognized by the lane shape recognition unit.
  • the deviation of the intersection of the extension line obtained by linearly approximating the left and right lane markers and the intersection of the extension line obtained by linearly approximating the left and right lane markers located in the distant region portion is determined.
  • the imaging angle correction unit 106 corrects the imaging angle of the imaging unit 101 using the imaging angle obtained by the imaging angle deriving unit 104 when the straight road determination unit 410 determines that the bias is within the threshold.
  • the imaging angle of the imaging unit can be estimated with a smaller calculation load even when the road shape is biased, such as driving on a highway only one way or on a road with many right curves. it can.
  • the straight path can be determined with higher accuracy by using the deviation of the intersection.
  • the straight road determination unit 410 has the absolute value of the value indicating the recognized lane shape of the lane shape recognized by the lane shape recognition unit 102 smaller than a predetermined threshold, and the sum of the values indicating the lane shape. Is smaller than the threshold, it is determined that the bias is within the threshold. Further, the information bias determination unit 105 determines the bias using the road curvature recognized by the lane shape recognition unit 102. This makes it possible to estimate the imaging angle of the imaging unit with less computational load even when the road shape is biased, such as driving on a highway only on one way or on a road with many right curves. Can do.
  • the vehicle speed detection device 20 detects the vehicle speed of the vehicle 1.
  • the steering angle detection device 30 detects the steering angle of the vehicle 1.
  • the vehicle behavior recognition unit 103 recognizes the behavior of the vehicle 1 from the vehicle speed detected by the vehicle speed detection device 20 and the steering angle detected by the steering angle detection unit 30. If it is determined that the deviation from the behavior of the vehicle 1 recognized by the vehicle behavior recognition unit 103 is within the threshold, the imaging angle of the imaging unit 101 is corrected. As a result, the imaging angle of the imaging unit can be estimated with a smaller calculation load even when the road shape is biased, such as driving on a highway only one way or on a road with many right curves. it can.
  • the lane shape recognition unit 102 detects a parameter related to road curvature.
  • the information bias determination unit 105 determines that the parameter value related to the road curvature has converged within a predetermined range.
  • the information bias determination unit 105 integrates parameter values within a preset time from the time of determining the convergence.
  • the information bias determination unit 105 determines the straight running state of the vehicle by determining that the integrated value is within a predetermined value. Then, the image recognition apparatus performs an aiming process when the information bias determination unit 105 determines that the vehicle is in a straight traveling state.
  • the imaging angle of the imaging unit can be estimated with a smaller calculation load even when the road shape is biased, such as driving on a highway only one way or on a road with many right curves. it can.
  • FIG. 7 is a diagram illustrating an example of the configuration of the in-vehicle image recognition apparatus according to the present embodiment.
  • the in-vehicle image recognition apparatus according to the present embodiment includes an imaging unit 101, a lane shape recognition unit 102, a vehicle behavior recognition unit 103, an imaging angle derivation unit 104, an information bias determination unit 105, an imaging angle correction unit 106, and a standard deviation calculation unit. 107.
  • the standard deviation calculating unit 107 calculates the standard deviation of the imaging angle obtained by the imaging angle deriving unit 104 when the information bias determining unit 105 determines that there is no bias.
  • the imaging angle correction unit 106 corrects the imaging angle of the imaging unit 101 according to the standard deviation calculated by the standard deviation calculation unit 107.
  • step S ⁇ b> 201 the lane shape recognition unit 102 reads an image in front of the vehicle 1 captured by the imaging unit 101.
  • step S202 the vehicle behavior recognition unit 103 detects the vehicle speed of the vehicle 1 detected by the vehicle speed detection device 20, the steering angle detected by the steering angle detection device 30, the longitudinal acceleration detected by the acceleration sensor, and the yaw rate sensor. Read the yaw rate value of each.
  • step S203 the lane shape recognition unit 102 processes the captured image of the imaging unit 101 read in step S201 to recognize the traveling lane in which the vehicle 1 is traveling, and the position and vehicle posture of the vehicle 1 with respect to the traveling lane. Etc. are calculated.
  • step S204 the lane shape recognition unit 102 uses the lane shape recognized in step S203 to obtain the intersection coordinates from the extension lines of a pair of left and right lane markers in the far and near regions. As described above, in the present step, the intersection coordinates of the neighboring area obtained by the lane shape recognition unit 102 are defined as (Pn_x, Pn_y), and the intersection coordinates of the far area are defined as (Pf_x, Pf_y).
  • step S205 the straight road determination unit 410 determines whether or not the road is a straight road from the intersection coordinates of the far area and the near area obtained in step S204 by the following equation. If all of the following expressions are satisfied, the process proceeds to step S206. Otherwise, the process proceeds to step S213. This process is the same as step S105 of the first embodiment. abs (Pn_x-Pf_x) ⁇ TH_PX (2-1) abs (Pn_y-Pf_y) ⁇ TH_PY (2-2)
  • TH_PX is a threshold value for the difference in intersection coordinates between the distant region and the nearby region in the horizontal direction of the imaging screen.
  • TH_PY is a threshold value for a difference in intersection coordinates between a far area and a near area in the vertical direction of the imaging screen.
  • the parallel running determination unit 420 receives as input the lateral offset position (lateral distance to the lane marker) Y of the host vehicle with respect to the host lane obtained in step S203, and uses the above formulas (0-2) (0-3). ) Is pseudo-differentiated with respect to the transfer function to calculate the lateral speed Ydot of the host vehicle. If the above expression (0-4) is satisfied, the process proceeds to step S207. Otherwise, the process proceeds to step S213.
  • step S207 the information bias determination unit 105 determines whether or not all the conditions of the following expression are satisfied. If all the conditions of the following expression are satisfied, the process proceeds to step S208. Otherwise, the process proceeds to step S213.
  • YawRate is a yaw rate value representing the speed of the vehicle 1 in the rotational direction.
  • SumTotalYR is the total value of YawRate.
  • TH_YR is a threshold value when the vehicle 1 is considered to be traveling straight, and if the absolute value of YawRate and the total value SumTotalYR of YawRate is less than TH_YR, the vehicle 1 is regarded as traveling straight (formula (2-5), (2-6)).
  • VspDot is the acceleration in the longitudinal direction of the vehicle 1.
  • TH_VD is a threshold value when the vehicle 1 is considered to be traveling at a constant speed. When the absolute value of VspDot is less than TH_VD, the vehicle 1 is regarded as traveling at a constant speed. SumTotalVD is the total value of VspDot.
  • step S208 the imaging angle of the imaging unit 101 is corrected.
  • the reason why the imaging angle of the imaging unit 101 is corrected in a scene where the vehicle 1 travels straight on a straight road and there is no bias between the travel path and the travel is as follows. Street.
  • a time delay in hardware such as capturing of a captured image of the image capturing unit 101 and a time delay in software such as image processing always occur, but even in that case, disturbance due to the behavior of the vehicle 1 may occur. This is because it is difficult to be influenced and the intersection coordinates corresponding to the imaging angle of the imaging unit 101 are calculated with high accuracy. Further, even when the difference in encounter frequency between the right curve and the left curve is large, the camera mounting angle error is reduced. It can be obtained correctly.
  • step S208 SumTotalPx, SumTotalPy, SumTotalYR, SumTotalVD, and SumCount are updated and the coordinate data of the neighboring intersections are stored in the collection memory according to the following equations.
  • SumTotalPx SumTotalPx + Pn_x-Pf_x (2-9)
  • SumTotalPy SumTotalPy + Pn_y-Pf_y (2-10)
  • SumTotalYR SumTotalYR + YawRate (2-11)
  • SumTotalVD SumTotalVD + VspDot (2-12)
  • SumCount SumCount + 1 (2-15)
  • FOE_X_DataRcd [] is a parameter for storing the horizontal coordinate on the captured image in front of the traveling direction of the vehicle 1
  • FOE_Y_DataRcd [] stores the vertical coordinate on the captured image in front of the traveling direction of the vehicle 1. It is a parameter to do.
  • These parameters are stored in a RAM memory or the like (not shown).
  • SumCount is a counter that counts the number of collected coordinate data of neighboring intersections, and the initial value is “0”. Note that SumCount is initialized before the processing flow of FIG. 8 is executed.
  • step S210 the imaging angle deriving unit 104 calculates the imaging angle of the imaging unit 101 using the following equations (2-17) and (2-18). Further, the standard deviation calculation unit 107 calculates the standard deviation of the imaging angle of the imaging unit 101 by the following equations (2-19) and (2-20).
  • FOE_X_e_tmp ⁇ FOE_X_DataRcd / SumCount (2-17)
  • FOE_Y_e_tmp ⁇ FOE_Y_DataRcd / SumCount
  • FOE_X_stdev ⁇ (FOE_X_e_tmp-FOE_X_DataRcd) 2 / SumCount
  • FOE_Y_stdev ⁇ (FOE_Y_e_tmp-FOE_Y_DataRcd) 2 / SumCount (2-20)
  • ⁇ in the above equation is an operator for calculating the sum of the number of coordinate data of the neighboring intersections represented by SumCount.
  • step S ⁇ b> 211 the variation of the imaging angle candidates of the imaging unit 101 obtained by the imaging angle deriving unit 104 is determined. Specifically, if all the conditions of the following equation are satisfied, the process proceeds to step S212, and if not, the process proceeds to step S213.
  • TH_STDEV represents a threshold value indicating a variation allowed for the imaging angle candidate of the imaging unit 101 obtained by the imaging angle deriving unit 104.
  • TH_STDEV takes a positive value such as 1.0 pix, for example. That is, when the values of the standard deviations FOE_X_stdev and FOE_Y_stdev obtained in step S210 are smaller than TH_STDEV, it is determined that the variation of the imaging angle candidates of the imaging unit 101 obtained by the imaging angle deriving unit 104 is small. In S212, the imaging angle of the imaging unit 101 is corrected.
  • the correction accuracy can be improved as compared with the first embodiment by performing the correction only when the variation from the obtained standard deviation is small. Furthermore, the correction accuracy of the imaging angle based on the present invention performed after factory aiming can be defined as a specific value.
  • step S212 the imaging angle correction unit 106 determines the corrected imaging angle of the imaging unit 101 by the following equation. These coordinates are used as the origin coordinates when performing the lane recognition process in the subsequent step S203.
  • FOE_X_est FOE_X_e_tmp (2-23)
  • FOE_Y_est FOE_Y_e_tmp (2-24)
  • step S213 the past value used in the filter or the counter value used in the timer is updated and the process ends. Note that each value of SumCount is initialized to “0” before the processing flow of FIG. 8 is executed.
  • the on-vehicle image recognition apparatus of this embodiment is the same as that of the first embodiment except for the configuration of the standard deviation calculation unit 107.
  • the standard deviation calculation unit 107 calculates the standard deviation of the imaging angle of the imaging unit 101 when it is determined that there is no bias. Then, the imaging angle of the imaging unit 101 is corrected according to the calculated standard deviation. Thereby, the accuracy of estimation of the imaging angle of the imaging unit 101 can be improved.
  • the standard deviation calculation unit 107 calculates the standard deviation of the imaging angle obtained by the imaging angle deriving unit 104 when the information bias determination unit 105 determines that the bias is within the threshold.
  • the imaging angle correction unit 106 corrects the imaging angle of the imaging unit 101 according to the standard deviation calculated by the standard deviation calculation unit 107.
  • the information bias determination unit 105 determines the presence or absence of information bias and collects only the information determined to have no bias and calculates the standard deviation, only a small number of data (for example, the number of 50 data) However, the tendency to become a normal distribution becomes strong, and a correct determination of the degree of variation can be realized with a small calculation load.
  • the behavior of the vehicle 1 recognized by the vehicle behavior recognition unit 103 is information regarding the rotational behavior of the vehicle 1 in the vehicle width direction. Further, the vehicle behavior recognition unit 103 recognizes the behavior of the vehicle 1 from the position in the vehicle width direction of the vehicle 1 with respect to the travel lane recognized by the lane shape recognition unit 102 or the time change of the yaw angle. Thereby, the accuracy of estimation of the imaging angle of the imaging unit 101 can be improved.
  • FIG. 9 is a diagram illustrating an example of the configuration of the in-vehicle image recognition apparatus according to the present embodiment.
  • the in-vehicle image recognition apparatus according to the present embodiment includes an imaging unit 101, a lane shape recognition unit 102, a vehicle behavior recognition unit 103, an imaging angle derivation unit 104, an information bias determination unit 105, an imaging angle correction unit 106, and a standard deviation calculation unit. 107 and an end unit 108.
  • the standard deviation calculated by the standard deviation calculating unit 107 is less than a predetermined value
  • the ending unit 108 ends the correction of the imaging angle.
  • step S ⁇ b> 301 the lane shape recognition unit 102 reads an image in front of the vehicle 1 captured by the imaging unit 101.
  • step S302 the vehicle behavior recognizing unit 103 detects the vehicle width direction speed of the vehicle 1 detected by the vehicle speed detection device 20, the steering angle detected by the steering angle detection device 30, and the longitudinal acceleration detected by the acceleration sensor. The yaw rate value from the yaw rate sensor is read.
  • step S303 the lane shape recognition unit 102 processes the captured image of the imaging unit 101 read in step S301 to recognize the traveling lane in which the vehicle 1 is traveling, and the position and vehicle posture of the vehicle 1 with respect to the traveling lane. Etc. are calculated.
  • step S304 the end unit 108 determines whether the imaging angle correction processing of the imaging unit 101 has been completed. If it has been completed, step S305 follows. If it is not completed, step S314 follows. Specifically, if the condition of the following expression is satisfied, the process proceeds to step S305, and if not, the process proceeds to step S314.
  • FlgAimComplt is a flag indicating whether or not the imaging angle correction processing of the imaging unit 101 has been completed.
  • the initial value of FlgAimComplt is “0”.
  • step S305 the lane shape recognition unit 102 uses the lane shape recognized in step S303 to obtain the intersection coordinates from the extension lines of a pair of left and right lane markers in the far and near areas.
  • the intersection coordinates of the neighboring area obtained by the lane shape recognition unit 102 are defined as (Pn_x, Pn_y), and the intersection coordinates of the far area are defined as (Pf_x, Pf_y).
  • step S306 the straight road determination unit 410 determines whether or not the road is a straight road from the intersection coordinates of the distant area and the vicinity area obtained in step S305 by the following expression. If all of the above equations (2-1) and (2-2) are satisfied, the process proceeds to step S307, and otherwise, the process proceeds to step S314. This process is the same as step S205 of the second embodiment.
  • step S307 the parallel running determination unit 420 receives as input the lateral offset position (lateral distance to the lane marker) Y of the own vehicle with respect to the own lane obtained in step S303, and the above equations (0-2) (0-3) ) Is pseudo-differentiated with respect to the transfer function to calculate the lateral speed Ydot of the host vehicle. If the above equation (0-4) is satisfied, the process proceeds to step S308. Otherwise, the process proceeds to step S314. This process is the same as step S206 in the second embodiment.
  • step S308 the information bias determination unit 105 determines whether or not all the conditions of the following expression are satisfied. If all the conditions of the following equation are satisfied, the process proceeds to step S309, and otherwise, the process proceeds to step S314.
  • ysoku is a parameter indicating the speed of the vehicle 1 in the vehicle width direction.
  • the speed in the vehicle width direction of the state variable of the lane recognition Kalman filter used in the lane recognition process in step S303 may be used as it is, or the position in the vehicle width direction to the travel lane is equivalent to time differentiation. It is.
  • SumTotalYsoku is the total value of ysoku.
  • TH_YS is a threshold value when the vehicle 1 is regarded as traveling straight, and as shown in the equations (3-4) and (3-5), the absolute value of the vehicle width direction speed ysoku and its sum SumTotalYsoku + ysoku When the absolute value of is less than TH_YS, it is determined that the vehicle 1 is traveling straight.
  • the yaw rate of the state variable of the lane recognition Kalman filter used in the lane recognition process of step S303 may be used as it is.
  • the yaw angle with respect to the lane may be time differentiated.
  • the meanings of expressions other than expressions (3-4) and (3-5) are the same as those in the first embodiment and the second embodiment.
  • SumTotalRow SumTotalRow + Row (3-10)
  • SumTotalYsoku SumTotalYsoku + ysoku (3-11)
  • SumTotalYR SumTotalYR + YawRate (3-12)
  • SumTotalVD SumTotalVD + VspDot (3-13)
  • FOE_X_DataRcd [SumCount] Pn_x (3-14)
  • FOE_Y_DataRcd [SumCount] Pn_y (3-15)
  • SumCount SumCount + 1 (3-16)
  • step S313 the imaging angle correction unit 106 sets a completion flag FlgAimComplt of the imaging angle estimation process of the imaging unit 101 and determines the imaging angle of the imaging unit 101 according to the following equation. These coordinates are used as the origin coordinates when performing the lane recognition process in the subsequent step S303.
  • FlgAimComplt 1 (3-17)
  • FOE_Y_est FOE_Y_e_tmp (3-19)
  • step S314 the past value used in the filter or the counter value used in the timer is updated and the process ends. Note that before executing the processing flow of FIG. 10, each value of FlgAimComplt and SumTotalRow is initialized to “0”.
  • the on-vehicle image recognition apparatus of this embodiment is the same as that of the second embodiment except for the configuration of the end unit 108.
  • the end unit 108 ends the correction of the imaging angle when the calculated standard deviation is less than a predetermined value. Thereby, once it is determined that the variation of the imaging angle candidates of the imaging unit 101 is small, the processing for correcting the imaging angle can be completed, so the processing load of the in-vehicle image recognition device is reduced. can do.
  • FIG. 11 is a diagram illustrating the effects achieved by the in-vehicle image recognition device according to the present embodiment.
  • the graph shown in FIG. 11 is a result of executing the lane recognition process according to the present embodiment in a scene where there are many gentle curves on the highway.
  • the data in a range 70 surrounded by a circle is data indicating the result of Pn_x calculated in step S305.
  • the data in range 71 is the result of Pn_x collected in step S307.
  • the worst values indicated by the broken lines 80 and 81 approach the true value of 120.0 pixels by about 10 pixels. It was also confirmed from the standard deviation that the variation was almost halved (down about 44%). Furthermore, the number of data was reduced from 8000 to 50, and the processing load of standard deviation was also reduced.
  • the behavior of the vehicle 1 recognized by the vehicle behavior recognition unit 103 is information regarding the translational behavior of the vehicle 1 in the vehicle width direction. Further, the vehicle behavior recognition unit 103 recognizes the behavior of the vehicle 1 from the position in the vehicle width direction of the vehicle 1 with respect to the travel lane recognized by the lane shape recognition unit 102 or the time change of the yaw angle. Thereby, the accuracy of estimation of the imaging angle of the imaging unit 101 can be improved.
  • the vehicle speed detection device 20 constitutes a vehicle speed detection unit.
  • the steering angle detection device 30 constitutes a steering angle detection unit.
  • the lane shape recognition unit 102 constitutes a parameter detection unit.
  • the vehicle behavior recognition unit 103, or the vehicle speed detection device 20, the steering angle detection device 30, and the steering angle control device 40 constitute a parameter detection unit.
  • the straight road determination unit 410 constitutes an intersection bias determination unit and a recognition bias determination unit.
  • the information bias determination unit 105 constitutes a convergence determination unit, an integration unit, and a straight traveling state determination unit.
  • the imaging angle derivation unit 104 and the imaging angle correction unit 106 constitute an aiming execution unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 車両に備えられた撮像部の撮像角度をより少ない演算負荷で推定する。車両(1)に備えられる車載用画像認識装置は、車両(1)周辺の走路を撮像するカメラ(10)の撮像画像から車両(1)が走行する走行レーンのレーン形状を認識する。また、認識したレーン形状からカメラ(10)の撮像角度を求める。そして、認識したレーン形状に対する偏りの有無を判定し、偏りが無いと判定された時の撮像角度を用いてカメラ(10)の撮像角度を補正する。また、偏りが無いと判定された時の撮像角度の標準偏差を算出し、この算出した標準偏差に応じてカメラ(10)の撮像角度を補正する。また、車両(1)の速度と操舵角を検出して車両(1)の挙動を認識し、この車両(1)の挙動に対する偏りの有無を判定することで、カメラ(10)の撮像角度を補正する。

Description

道路形状判定装置、車載用画像認識装置、撮像軸調整装置およびレーン認識方法
 本発明は、車両に搭載されるカメラによって車両が走行するレーン形状などを認識する技術に関する。
 特許文献1に記載の白線認識装置では、カメラで撮像した結果から、車両が走行している走行レーンにおける左右のレーンマーカを画像認識する。そして、認識した左右のレーンマーカからその延長線の交点を求め、それを集めて平均化することでカメラ取付け角度誤差を求める。
特開2000-242899号公報
 特許文献1の白線認識技術では、車両挙動(ヨーレートや横速度など)や道路形状(曲率など)の変化はカメラの撮像角度を求める際の誤差要因となる場合が多い。よって、特許文献1の白線認識技術では、これらの誤差要因による影響を低減するためには車両挙動や道路形状の変化が起こり難い直線路を多く走行する必要がある。しかし、一般的な高速道路では、直線路のようでも実際には緩い曲率を有する場合が多いことから、長距離を走行して大量のデータを集める必要がある。
 また、この場合、大量のデータを演算するため、車載用のプロセッサにとってはリアルタイム処理を行う為に演算負荷がかかるといった問題が生じる。
 本発明は、上記課題に鑑みてなされたものであり、車両に備えられた撮像部の撮像角度をより少ない演算負荷で直進路か否かを判定することを目的とする。
 上記課題を解決するために、本発明の一態様は、車両に備えられた撮像部で前記車両周辺を撮像し、その撮像画像から前記車両が走行する走行レーンのレーン形状を認識する。また、本発明の一態様は、前記認識したレーン形状のうち相対的に自車両に近い近傍領域のレーン形状と自車両から遠い遠方領域のレーン形状とに基づき、上記近傍領域に位置する左右のレーンマーカを直線近似した延長線の交点と、遠方領域部分に位置する左右のレーンマーカを直線近似した延長線の交点との交点の偏りが、予め設定した閾値以下と判定すると直線路と判定する。
 本発明によれば、より少ない演算負荷で直線路の判定をすることが可能となる。
本発明の第1実施形態に係る車載用画像認識装置を搭載した車両の一例を示す図である。 本発明の第1実施形態に係る車載用画像認識装置の構成の一例を示す機能ブロック図である。 レーン形状認識部102の構成の一例を示す機能ブロック図である。 レーン形状認識部102における処理の概念を示す模式図である。 近傍領域と遠方領域とを区分してレーン認識処理を行う場合の概念を示す模式図である。 本発明の第1実施形態に係る車載用画像認識装置における処理の一例を示すフロー図である。 本発明の第2実施形態に係る車載用画像認識装置の構成の一例を示す機能ブロック図である。 本発明の第2実施形態に係る車載用画像認識装置における処理の一例を示すフロー図である。 本発明の第3実施形態に係る車載用画像認識装置の構成の一例を示す機能ブロック図である。 本発明の第3実施形態に係る車載用画像認識装置における処理の一例を示すフロー図である。 本発明の第3実施形態に係る車載用画像認識装置の効果を説明する図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示す。
(第1実施形態)
(車載用画像認識装置の構成)
 図1は、本実施形態に係る車載用画像認識装置を搭載した車両の一例を示す図である。本実施形態に係る車載用画像認識装置は、車両に備えられ、車載カメラが撮像した画像から車両が走行するレーン認識を行うための装置である。車両1は、画像処理装置10aを内蔵するカメラ10と、車速検出装置20と、操舵角検出装置30と、操舵角制御装置40と、操舵角アクチュエータ50とを備える。
 カメラ10は、車両1前方の画像を撮影する。
 カメラ10は、例えば、CCD(Charge Coupled Device)あるいはCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を備えたデジタルカメラである。より具体的には、カメラ10は、高速に撮像するプログレッシブスキャン式の3CMOSカメラである。
 なお、カメラ10は、例えば、車両1の室内における天井の前方中央部に車両1の前方を撮像するように設置してあり、フロントガラスを通して車両1の前方の走行路を撮像するようになっている。ただし、このような設置態様の他、自車両1の走行路を撮像するカメラであれば、他の設置態様とすることができる。例えば、バックビューカメラのように車両1の後方にカメラ10を取り付けることや、バンパ等の車両1の前端に取り付けることもでき、またカメラ10の視野内に消失点が映らない設置態様とすることもできる。いずれの場合においても、レーンマーカのエッジの検出および近似直線の算出を行うことにより、仮想消失点を算出することができる。
 また、画像処理装置10aは、本実施形態に係るレーン認識処理が実行する装置である。つまり、図1の画像処理装置10aを内蔵するカメラ10は、本実施形態に係る車載用画像認識装置に該当する。
 画像処理装置10a、車速検出装置20、および操舵角検出装置30から出力される情報は操舵角制御装置40へ入力される。そして、操舵角制御装置40は、目標とする操舵を実現するための信号を操舵角アクチュエータ50へ出力する。
 また、カメラ10や操舵角制御装置40は、それぞれマイクロコンピュータとその周辺部品や各種アクチュエータの駆動回路などを備え、互いに通信回路を介して情報を送受信する。以上のようなハードウェア構成によって、本実施形態に係るレーン認識処理が実現される。
 画像処理装置10aを内蔵するカメラ10は、機能的には、図2に示すように、撮像部101、レーン形状認識部102、車両挙動認識部103、撮像角度導出部104、情報偏り判定部105、撮像角度補正部106を備える。
 撮像部101は、車両1の周辺を撮像する。
 レーン形状認識部102は、撮像部101の撮像した撮像画像から車両1が走行する走行レーンのレーン形状を認識する。走行レーンの検出方法としては、例えば、特開2004-252827号公報に記載されている公知の方法を採用すればよい。また、走行レーンの形状や車両1の位置や姿勢などの算出方法としては、例えば、特開2004-318618号公報に記載されている公知の方法を採用すればよい。
 また、レーン形状認識部102は、このようにして認識したレーン形状を用いて、遠方領域と近傍領域における左右一対のレーンマーカの延長線からその交点座標を求める。例えば、以下のような方法によって、遠方領域と近傍領域における左右一対のレーンマーカの延長線からその交点座標を求める。
 すなわち、レーン形状認識部102は、撮像部101の撮影画像を解析し、車両1のヨー角C、車両1のピッチ角D、路面からの撮像部101の高さH、レーン中心からの横変位Aおよび走行レーンの曲率Bを算出する演算装置を備えている。なお、レーン形状認識部102は、この演算装置によって算出した車両1のヨー角C、車線中心からの横変位Aおよび走行車線の曲率Bを、操舵角制御装置40に出力する。これにより、例えば車両1の自動操舵等が実現される。
 図3は、レーン形状認識部102の構成例を示す図である。また、図4は、レーン形状認識部102における処理の概念を示す模式図である。
 図3において、レーン形状認識部102は、白線候補点検出部200と、レーン認識処理部300と、光軸補正部400とを含む。
 白線候補点検出部200は、撮像部101が撮影した画像データに基づいて、車線区分線となる白線の候補点を検出する。
 白線候補点検出部200では、図4に示すように、撮像部101から自車両1の走行路を撮像した画像を取得し、画像処理を行うことで白線エッジEdを検出する。本実施形態における画像処理では、取得した撮像画像の左右に位置する車線区分線(白線)に対し、後述する道路パラメータ(道路形状およびこの道路に対する車両姿勢)を基に画像処理枠Fの位置を設定する。次に、設定した画像処理枠Fに対して、例えばSobelフィルタによる一次空間微分を施して、白線と路面との境界のエッジを強調した後、白線エッジEdを抽出する。
 レーン認識処理部300は、道路形状を直線近似する道路形状算出部310と、道路形状および道路に対する車両姿勢を推定する道路パラメータ推定部320とを含んでいる。
 道路形状算出部310は、図4に示すように、白線候補点検出部200によって抽出した白線エッジEdの強度が予め設定した閾値Edth以上の画素を、予め設定した画素数Pth以上通過し、かつ検出領域の上辺の1点と下辺の1点を結ぶ直線を、ハフ変換により抽出することにより道路形状の近似直線Rfを算出する。本実施形態においては、撮影して得た道路の画像データを遠方と近傍と2つの領域に分けて、それぞれの領域で道路形状を直線近似する(図5参照)。
 道路パラメータ推定部320は、道路形状算出部310によって検出した道路形状の近似直線Rfから、次式(1)を用いて、道路モデル式として道路パラメータ(道路形状および道路に対する車両姿勢)を推定する。
Figure JPOXMLDOC01-appb-M000001
 ここで、(1)式におけるパラメータ、A,B,C,D,Hは、道路パラメータ推定部320において推定する道路パラメータおよび車両状態量となる。そして、パラメータ、A,B,C,D,Hは、それぞれ、車両1の車線に対する横変位(A)、道路曲率(B)、自車両1の車線に対するヨー角(C)、車両1のピッチ角(D)、および路面からの撮像部101の高さ(H)である。
 また、Wは車線幅(実際の道路上における左右白線内側間の距離)を示す定数、fはカメラ透視変換定数、jは左右の白線を区別するパラメータであり、左白線のときj=0、右白線のときj=1とする。また、(x,y)は、左または右白線の車線内側端部上の任意の点の道路画像上の座標であり、道路画像左上を原点に取り、右方向がx軸正方向、下方向がy軸正方向とする。
 光軸補正部400は、自車両1の走行路が直線路であることを判定する直線路判定部410と、自車両1が走行路と平行に走行していることを判定する平行走行判定部420と、道路形状の近似直線Rfから仮想消失点を算出する仮想消失点算出部430とを含んでいる。
 直線路判定部410は、道路形状算出部310によって算出した遠方と近傍の道路形状の近似直線Rfについて、直線式の傾きと切片の値の一致度合いを比較することで、自車両1の走行路が直線路であるか否かを判定する。
 平行走行判定部420は、道路パラメータ推定部320によって推定した自車両1の走行路に対する車両姿勢から、自車両1が走行路と平行に走行していることを判定する。具体的には、平行走行判定部420は、道路パラメータ推定部320によって推定した車両状態量の1つである車線に対する自車両1の横変位Aを用いて、現在値と過去値との差分から自車両1の車線に対する横速度(横変位Aの微分値)を算出する。そして、算出した横速度が予め設定した閾値以下である場合に、自車両1が走行路と平行に走行していると判定する。自車両1が走行路と平行に走行しているとは、走行路が直線路の場合には、自車両1が直進走行していることを示す。
 仮想消失点算出部430は、直線路判定部410と平行走行判定部420とによる判定が、自車両1の走行路が直線路かつ、自車両1が自車両1の走行路と平行に走行している状態となっている場合に、道路形状の左右近似直線Rfの交点を仮想消失点として算出する。
 図5は、近傍領域と遠方領域とを区分してレーン認識処理を行う場合の概念を示す模式図である。なお、図5においては、比較的半径の大きい曲線路を例として示している。
 図5に示すように、レーン形状認識部102は、撮像部101が撮影した画像データを近傍領域(画像下部)と遠方領域(画像中央部)とに区分し、それぞれの領域において、白線候補点検出部200およびレーン認識処理部300が白線エッジEdおよび近似直線Rfの検出を行う。さらに、それらの一致度合いを基に、直線路判定部410が、走行路が直線であるか否かを判定する。例えば、直線路判定部410は、近傍領域と遠方領域とにおける近似直線Rfそれぞれの傾きおよび切片が予め設定した閾値以内の差である場合に、これらの近似直線Rfが一致しているものと判定し、走行路が直線であると判定する。
 以上のようにして求められた近傍領域における交点座標と遠方領域における交点座標を、以下においては、それぞれ、(Pn_x, Pn_y)、(Pf_x,Pf_y)、と定義する。
 図2に戻り、車両挙動認識部103は、撮像部101が備えられている車両1の挙動を認識する。具体的には、車両挙動認識部103は、車速検出装置20が検出する車両1の車速(走行速度)、操舵角検出装置30が検出する操舵角度、図示しない加速度センサが検出する車両の前後および車幅方向の加速度、ヨーレートセンサが検出するヨーレート値、などによって車両1の挙動を判断する。
 撮像角度導出部104は、レーン形状認識部102のレーン形状の認識から撮像部101の撮像角度を求める。
 情報偏り判定部105は、レーン形状認識部102および車両挙動認識部103の少なくとも一方に対する偏りの有無を判定する。
 撮像角度補正部106は、情報偏り判定部105において偏り予め設定した閾値以下と判定したときの撮像角度導出部104の出力した撮像角度を用いて撮像部101の撮像角度を補正する。
(車載用画像認識装置における処理フロー)
 以下、図6に示すフローチャートを参照して、本実施形態に係る車載用画像認識装置における処理について説明する。なお、図6の車載用画像認識装置の処理は、予め設定された時間間隔(例えば50ms(ミリ秒))ごとに繰り返し行われる。
 ステップS101において、レーン形状認識部102は、撮像部101が撮像した車両1の前方の画像を読み込む。また、ステップS102において、車両挙動認識部103は、車速検出装置20が検出した車両1の車速や、操舵角検出装置30が検出した操舵角などを読み込む。
 ステップS103において、レーン形状認識部102は、ステップS101で読み込んだ撮像部101の撮像画像を処理して、車両1が走行中の走行レーンを認識するとともに、走行レーンに対する車両1の位置や車両姿勢などを算出する。
 また、ステップS104では、レーン形状認識部102は、ステップS103で認識したレーン形状を用いて、遠方領域と近傍領域における左右一対のレーンマーカの延長線からその交点座標を求める。なお、上述したように、本ステップにおいてレーン形状認識部102で求められる近傍領域の交点座標を(Pn_x, Pn_y)と定義し、遠方領域の交点座標を(Pf_x,Pf_y)と定義する。
 ステップS105において、直線路判定部410は、ステップS104で求めた遠方領域と近傍領域のそれぞれの交点座標から次式により直線路か否かを判定する。次式を満たす場合にはステップS106へ移行する。それ以外の場合にはステップS110へ移行する。
 abs(Pn_x-Pf_x) ≦ TH_Px   (0-1)
 上記式(0-1)式において、abs(A)はAの絶対値を返す関数である。又、HP_Pxの値は、例えば1.0などの予め設定した正の値である。なお、上記式(0-1)を満たすということは、カメラ撮像画面の近傍だけの領域から検出した左右レーンマーカの延長上の交点座標と、遠方領域から検出した左右レーンマーカの延長上の交点座標が、近接していることである。つまり、この条件が成り立つことは、遠方から近傍までの同じ方向の直線であることを意味している。
 ステップS106において、平行走行判定部420はステップS103で求めた自車線に対する自車両の横方向オフセット位置(レーンマーカまでの左右方向の距離)Yを入力として次式の伝達関数により擬似的に時間微分し、自車両の横方向速度Ydotを算出する。そして、次式(0-4)を満足する場合にはステップS107へ移行し、そうでない場合にはステップS110へ移行する。
 G(Z-1)=(c-cZ―2)/(1-aZ-1+bZ-2)    (0-2)
 Ydot =G(Z-1)Y            (0-3)
 abs(Ydot) ≦ TH_Ydot       (0-4)
 ここで、Z-1は遅れ演算子であり、係数a,b,cはいずれも正数であって、これらは予め設定した周波数特性を有するようにサンプリング周期50msで離散化されたものである。またTH_Ydotの値は、例えば0.03などの予め設定した正の値であって、車速の高さに応じた大きな値にしても良い。なお、上記式(0-4)を満たすということは、自車がレーンマーカに対して横方向に移動していない。つまり、レーンマーカに沿って左右にふらつくことが無い状態で走行していることを意味している。更に、上記式(0-1)と(0-4)とを同時に満たす場合には、真っ直ぐな道路を真っ直ぐ走行していることを意味している。
 ステップS107では、直線路判定部410は、ステップS103で求めた道路曲率Rowが次式の条件を全て充足するか否かを判断する。道路曲率Rowが次式の条件を全て充足する場合にはステップS108へ、それ以外の場合にはステップS110へ、それぞれ進む。
abs( Row ) < TH_ROW              (1-1)
abs( SumTotalRow + Row ) < TH_ROW    (1-2)
 上記式(1-1)、(1-2)において、abs( A )はAの絶対値を返す関数である。また、SumTotalRowは道路曲率Rowの総和値である。また、TH_ROWは走行レーンを直線路であるとみなす場合の閾値である。情報偏り判定部105は、道路曲率Rowの絶対値およびその総和SumTotalRow + Rowの絶対値がTH_ROW未満である場合には、走行レーンは直線路であると判定する。なお、TH_ROWの値は、例えば0.0003などの予め設定した正の値である。
 つまり、ステップS1057及びステップS107においてレーン形状認識部102で認識された走行レーンが直線路であると認められる場合に、ステップS108以降において撮像部101の撮像角度の補正を行う。このように撮像部101の撮像角度を補正するのを直線路に相当するシーンに限る理由は、直線路の場合、直線路の無限遠地点が画像処理を行う際の画像上、中心座標となるからである。つまり、一般的に、カーブ路にて推定曲率値から補正して中心座標を求める場合よりも直線路にて認識した左右一対のマーカの延長線上交点から中心座標を求めた方が高精度になるからである。
 次に、ステップS108では、次式により道路曲線の総和値SumTotalRowの更新を行う。
SumTotalRow = SumTotalRow + Row            (1-3)
 ステップS109では、撮像角度補正部106は、次式により撮像部101の撮像角度を補正し、補正後の撮像部101の撮像角度として決定する。
FOE_X_est = 0.9 * FOE_X_est + 0.1 * Pn_x    (1-4)
FOE_Y_est = 0.9 * FOE_Y_est + 0.1 * Pn_y    (1-5)
 なお、FOE_X_estとFOE_Y_estは、撮像部101の撮像角度に相当する車両1の正面の撮像画像上の座標であって、その初期値は工場などで初期調整(工場エーミングなどと呼ばれる取付け誤差のキャリブレーション)として実施された、固定ターゲットに対するカメラ取付け誤差(カメラ撮像角度誤差とも呼ぶ)の測定値である。上記式(1-4)、(1-5)で算出された座標は、以降のステップS103のレーン認識処理を行う際の原点座標として用いられる。ここで、エーミングとは光軸調整を指す。
 ステップS110では、フィルターなどで使う過去値やタイマーなどで使うカウンター値を更新して終了する。
 なお、図6の処理フローを実行する前に、SumTotalRowの値は“0”に初期化しておく。
(まとめ)
 上記説明した車載用画像認識装置は、車両1周辺の走路を撮像する撮像部101の撮像画像から車両1が走行する走行レーンのレーン形状を認識する。また、認識したレーン形状から撮像部101の撮像角度を求める。そして、認識したレーン形状の認識したレーン形状に対する偏りの有無を判定し、偏りが無いと判定された時の撮像角度を用いて撮像部101の撮像角度を補正する。
 これにより、片道だけ高速道路を走行したり、右カーブが多い道路を走行するなど、道路形状に偏りがある場合であっても、撮像部の撮像角度の誤差を、より少ない処理負荷で、正確に補正することが出来る。
 なお、本実施形態では標準偏差算出部を有しないが、偏りが無い状態で、直線路を直進するという特定の状態を狙った結果を入力として、上記(1-4)(1-5)で補正しても良い。この場合、入力値は正規分布になる傾向が強くなるため、補正精度も高い状態となる。
(第1実施形態の効果)
 本実施形態は、次のような効果を奏する。
(1)本実施形態の車載用画像認識装置は、車両1に備えられる車載用画像認識装置である。撮像部101は車両1周辺を撮像する。レーン形状認識部102は撮像部101の撮像画像から車両1が走行する走行レーンのレーン形状を認識する。撮像角度導出部104はレーン形状認識部102の認識したレーン形状から撮像部101の撮像角度を求める。直線路判定部410は、前記レーン形状認識部が認識したレーン形状のうち相対的に自車両に近い近傍領域のレーン形状と自車両から遠い遠方領域のレーン形状とに基づき、上記近傍領域に位置する左右のレーンマーカを直線近似した延長線の交点と、遠方領域部分に位置する左右のレーンマーカを直線近似した延長線の交点との交点の偏りを判定する。撮像角度補正部106は直線路判定部410において偏りが閾値以内と判定したときの撮像角度導出部104の求めた撮像角度を用いて撮像部101の撮像角度を補正する。
 これにより、片道だけ高速道路を走行したり、右カーブが多い道路を走行するなど、道路形状に偏りがある場合であっても、撮像部の撮像角度を、より少ない演算負荷で推定することができる。
 また、交点の偏りを利用することで、より精度良く直進路の判定をすることができる。
(2)直線路判定部410は、レーン形状認識部102が認識したレーン形状の認識したレーン形状を示す値の絶対値が予め定められた閾値よりも小さく、かつ、レーン形状を示す値の総和が閾値よりも小さい場合に偏りが閾値以内と判定する。また、情報偏り判定部105は、レーン形状認識部102で認識される道路曲率を用いて偏りを判定する。
 これにより、片道だけ高速道路を走行したり、右カーブが多い道路を走行するなど、道路形状に偏りがある場合であっても、撮像部の撮像角度の推定を、より少ない演算負荷で行なうことができる。
(3)車速検出装置20は、車両1の車速を検出する。操舵角検出装置30は、車両1の操舵角を検出する。車両挙動認識部103は、車速検出装置20が検出した車速と、操舵角検出部30が検出した操舵角から、車両1の挙動を認識する。車両挙動認識部103が認識した車両1の挙動に対する偏りが閾値以内と判定すると、撮像部101の撮像角度を補正する。
 これにより、片道だけ高速道路を走行したり、右カーブが多い道路を走行するなど、道路形状に偏りがある場合であっても、撮像部の撮像角度を、より少ない演算負荷で推定することができる。
(4)レーン形状認識部102は、道路曲率に関するパラメータを検出する。情報偏り判定部105は、道路曲率に関するパラメータの値が、予め定められた範囲以内に収束していることを判定する。情報偏り判定部105は、前記収束の判定をした時点から予め設定した時間内のパラメータ値を積算する。情報偏り判定部105は、積算した積算値が、予め定められた値以内であることを判定することで、車両の直線走行状態を判定する。そして、画像認識装置は、情報偏り判定部105が直線走行状態であると判定した場合には、エーミング処理を行なう。
 これにより、片道だけ高速道路を走行したり、右カーブが多い道路を走行するなど、道路形状に偏りがある場合であっても、撮像部の撮像角度を、より少ない演算負荷で推定することができる。
(第2実施形態)
 次に、第2実施形態について図面を参照して説明する。なお、上記第1実施形態と同様な構成について同一の符号を付して説明する。
(車載用画像認識装置の構成)
 本実施形態の基本構成は、上記第1実施形態と同様である。ただし、本実施形態の車載用画像認識装置は、標準偏差算出部をさらに備える点が異なる。
 図7は、本実施形態に係る車載用画像認識装置の構成の一例を示す図である。本実施形態に係る車載用画像認識装置は、撮像部101、レーン形状認識部102、車両挙動認識部103、撮像角度導出部104、情報偏り判定部105、撮像角度補正部106、標準偏差算出部107を備える。
 標準偏差算出部107は、情報偏り判定部105において偏りが無いと判定された時の撮像角度導出部104が求めた撮像角度の標準偏差を算出する。
 また、撮像角度補正部106は、標準偏差算出部107で算出した標準偏差に応じて撮像部101の撮像角度を補正する。
(車載用画像認識装置における処理フロー)
 以下、図8に示すフローチャートを参照して、本実施形態に係る車載用画像認識装置における処理について説明する。なお、図8の車載用画像認識装置の処理は、予め設定された時間間隔(例えば50ms(ミリ秒))ごとに繰り返し行われる。
 ステップS201において、レーン形状認識部102は、撮像部101が撮像した車両1の前方の画像を読み込む。また、ステップS202において、車両挙動認識部103は、車速検出装置20が検出した車両1の車速、操舵角検出装置30が検出した操舵角、加速度センサにより検出される前後方向の加速度、ヨーレートセンサからのヨーレート値をそれぞれ読み込む。
 ステップS203において、レーン形状認識部102は、ステップS201で読み込んだ撮像部101の撮像画像を処理して、車両1が走行中の走行レーンを認識するとともに、走行レーンに対する車両1の位置や車両姿勢などを算出する。また、ステップS204では、レーン形状認識部102は、ステップS203で認識したレーン形状を用いて、遠方領域と近傍領域における左右一対のレーンマーカの延長線からその交点座標を求める。なお、上述したように、本ステップにおいてレーン形状認識部102で求められる近傍領域の交点座標を(Pn_x, Pn_y)、遠方領域の交点座標を(Pf_x, Pf_y)と定義する。
 ステップS205において、直線路判定部410はステップS204で求めた遠方領域と近傍領域とのそれぞれの交点座標から次式により直線路か否かを判断する。次式をすべて満たす場合にはステップS206へ移行し、それ以外の場合にはステップS213へ移行する。この処理は第1実施形態のステップS105と同様な処理である。
abs( Pn_x - Pf_x ) < TH_PX    (2-1)
abs( Pn_y - Pf_y ) < TH_PY    (2-2)
 上記式において、TH_PXは撮像画面の水平方向における遠方領域と近傍領域の交点座標の違いについての閾値である。TH_PYは撮像画面の鉛直方向における遠方領域と近傍領域の交点座標の違いについての閾値である。
 ステップS206において、平行走行判定部420はステップS203で求めた自車線に対する自車両の横方向オフセット位置(レーンマーカまでの左右方向の距離)Yを入力として、上記式(0-2)(0-3)の伝達関数によりに擬似的に時間微分し、自車両の横方向速度Ydotを算出する。そして、上記式(0-4)を満足する場合にはステップS207へ移行し、そうでない場合にはステップS213へ移行する。
 ステップS207において、情報偏り判定部105は、次式の条件を全て充足するか否かを判断する。次式の条件を全て充足する場合にはステップS208へ、それ以外の場合にはステップS213へ、それぞれ進む。
abs( SumTotalPx + Pn_x - Pf_x ) < TH_PX    (2-3)
abs( SumTotalPy + Pn_y - Pf_y ) < TH_PY    (2-4)
abs( YawRate ) < TH_YR                    (2-5)
abs( SumTotalYR + YawRate ) < TH_YR         (2-6)
abs( VspDot ) < TH_VD                       (2-7)
abs( SumTotalVD + VspDot ) < TH_VD          (2-8)
 また、YawRateは車両1の回転方向の速度を表すヨーレート値である。SumTotalYRはYawRateの総和値である。また、TH_YRは車両1が直進しているとみなす場合の閾値であって、YawRateの絶対値およびYawRateの総和値SumTotalYRがTH_YR未満である場合には、車両1は直進しているとみなす(式(2-5)、(2-6))。
 また、VspDotは車両1の前後方向の加速度である。また、TH_VDは車両1が一定速度で走行をしているとみなす場合の閾値であって、VspDotの絶対値がTH_VD未満である場合には、車両1は一定速度で走行しているとみなす。また、SumTotalVDはVspDotの総和値である。
 つまり、車両挙動認識部103およびレーン形状認識部102で認識したレーン形状から車両1が直線路を直進走行していると認められる場合(ステップS205とS206の条件をともに満足する場合)で、かつ、走行路に偏りが無く(上記式(2-3)と(2-4)を満足し)、かつ、走行に偏りが無い(上記式(2-5)~(2-8)をすべて満足する)場合に、ステップS208以降において撮像部101の撮像角度の補正を行う。このように、撮像部101の撮像角度を補正するのを車両1が直線路を直進走行しているシーンで、かつ、走行路と走行に偏りが無い場合に限定している理由は、以下の通りである。
 すなわち、撮像部101の撮像画像の取り込み等のハードウェア面での時間遅れや、画像処理などのソフトウェア面での時間遅れは必ず生じるものであるが、その場合でも、車両1の挙動による外乱の影響を受け難くして、撮像部101の撮像角度に相当する交点座標を高精度に算出するためであり、さらに、右カーブと左カーブの遭遇頻度の差が大きい場合でもカメラの取付け角度誤差を正しく求めることが出来る。
 次に、ステップS208では、次式により、SumTotalPx、SumTotalPy、SumTotalYR、SumTotalVD、SumCountの更新、および、近傍交点の座標データの収集用メモリへの格納を行う。
SumTotalPx = SumTotalPx + Pn_x - Pf_x    (2-9)
SumTotalPy = SumTotalPy + Pn_y - Pf_y    (2-10)
SumTotalYR = SumTotalYR + YawRate         (2-11)
SumTotalVD = SumTotalVD + VspDot          (2-12)
FOE_X_DataRcd[ SumCount ] = Pn_x          (2-13)
FOE_Y_DataRcd[ SumCount ] = Pn_y          (2-14)
SumCount = SumCount + 1                   (2-15)
 上記式において、FOE_X_DataRcd[ ] は車両1の進行方向の正面の撮像画像上の水平方向座標を格納するパラメータであり、FOE_Y_DataRcd[ ] は車両1の進行方向の正面の撮像画像上の鉛直座標を格納するパラメータである。これらのパラメータは、図示しないRAMメモリ等に記憶される。
 なお、SumCountは収集された近傍交点の座標データの個数をカウントするカウンターであって、初期値は“0”とする。なお、SumCountの初期化は図8の処理フローを実行する前に行われる。
 ステップS209では、収集された近傍交点の座標データの個数が50個以上であるか否かを判断する。具体的には、次式の条件を満足する場合(近傍交点の座標データの個数が50個以上である場合)にはステップS210へ、それ以外の場合にはステップS213へ、それぞれ進む。
SumCount >= 50           (2-16)
 ステップS210では、撮像角度導出部104は、次式(2-17)、(2-18)により撮像部101の撮像角度の算出を行う。また、標準偏差算出部107は、次式(2-19)、(2-20)により撮像部101の撮像角度の標準偏差の算出を行う。
FOE_X_e_tmp = Σ FOE_X_DataRcd / SumCount    (2-17)
FOE_Y_e_tmp = Σ FOE_Y_DataRcd / SumCount    (2-18)
FOE_X_stdev = √Σ ( FOE_X_e_tmp - FOE_X_DataRcd ) 2 / SumCount
                                               (2-19)
FOE_Y_stdev = √Σ ( FOE_Y_e_tmp - FOE_Y_DataRcd ) 2 / SumCount
                                               (2-20)
 ここで、上記式におけるΣとは、SumCountで表される近傍交点の座標データの個数分の総和を求める演算子である。
 次に、ステップS211では、撮像角度導出部104で求められた撮像部101の撮像角度の候補のばらつきを判断する。具体的には、次式の条件をすべて満たせばステップS212へ、そうでなければステップS213へ、それぞれ進む。
FOE_X_stdev < TH_STDEV    (2-21)
FOE_Y_stdev < TH_STDEV    (2-22)
 TH_STDEVは、撮像角度導出部104で求められた撮像部101の撮像角度の候補に対して許容するばらつきを示す閾値を表す。TH_STDEVは、例えば1.0pixなどの正の値をとる。すなわち、ステップS210で求めた標準偏差FOE_X_stdev、FOE_Y_stdevの各値がTH_STDEVよりも小さい場合には、撮像角度導出部104で求められた撮像部101の撮像角度の候補のばらつきが小さいと判断し、ステップS212において撮像部101の撮像角度の補正を行う。
 このように、求めた標準偏差からバラツキが小さい場合に限定して補正を行うことで、第1実施形態よりも補正精度を高めることが出来る。更に、工場エーミング後に行う、本発明に基づく撮像角度の補正精度を具体的な値に規定することができる。
 ステップS212では、撮像角度補正部106は、次式により補正後の撮像部101の撮像角度を決定する。また、これらの座標は、以降のステップS203のレーン認識処理を行う際の原点座標として用いられる。
FOE_X_est = FOE_X_e_tmp    (2-23)
FOE_Y_est = FOE_Y_e_tmp    (2-24)
 ステップS213では、フィルターなどで使う過去値やタイマーなどで使うカウンター値を更新して終了する。
 なお、図8の処理フローを実行する前に、SumCountの各値は“0”に初期化しておく。
(まとめ)
 本実施形態の車載用画像認識装置は、標準偏差算出部107以外の構成については、第1実施形態と同様である。
 本実施形態の車載用画像認識装置は、標準偏差算出部107が、偏りが無いと判定された時の撮像部101の撮像角度の標準偏差を算出する。そして、この算出した標準偏差に応じて撮像部101の撮像角度を補正する。
 これにより、撮像部101の撮像角度の推定の精度を高めることができる。
(第2実施形態の効果)
 本実施形態は、第1実施形態の効果に加えて、次の効果を奏する。
(1)標準偏差算出部107は、情報偏り判定部105において偏りが閾値以内と判定されたときの撮像角度導出部104が求めた撮像角度の標準偏差を算出する。また、撮像角度補正部106は、標準偏差算出部107で算出した標準偏差に応じて撮像部101の撮像角度を補正する。
 これにより、撮像部101の撮像角度の推定の精度を高めることができる。また、情報偏り判定部105にて情報の偏りの有無を判定し、偏りがないと判定された情報のみを収集して標準偏差を算出しているため、少ないデータ数(例えば50のデータ数だけ)でも正規分布となる傾向が強くなり、ばらつき度合いの正しい判定を少ない演算負荷で実現できる。
(2)本実施形態においては、車両挙動認識部103にて認識された車両1の挙動は、車両1の車幅方向の回転挙動に関する情報である。また、車両挙動認識部103は、レーン形状認識部102にて認識された走行レーンに対する車両1の車幅方向の位置もしくはヨー角度の時間変化から車両1の挙動を認識する。
 これにより、撮像部101の撮像角度の推定の精度を高めることができる。
(第3実施形態)
 次に、第3実施形態について図面を参照して説明する。なお、上記第1実施形態および第2実施形態と同様な構成について同一の符号を付して説明する。
(車載用画像認識装置の構成)
 本実施形態の基本構成は、上記第2実施形態と同様である。ただし、本実施形態の車載用画像認識装置は、終了部をさらに備える点が異なる。
 図9は、本実施形態に係る車載用画像認識装置の構成の一例を示す図である。本実施形態に係る車載用画像認識装置は、撮像部101、レーン形状認識部102、車両挙動認識部103、撮像角度導出部104、情報偏り判定部105、撮像角度補正部106、標準偏差算出部107、終了部108を備える。
 終了部108は、標準偏差算出部107で算出した標準偏差が予め定められた値未満である場合には、撮像角度の補正を終了させる。
(車載用画像認識装置における処理フロー)
 以下、図10に示すフローチャートを参照して、本実施形態に係る車載用画像認識装置における処理について説明する。なお、図10の車載用画像認識装置の処理は、予め設定された時間間隔(例えば50ms(ミリ秒))ごとに繰り返し行われる。
 ステップS301において、レーン形状認識部102は、撮像部101が撮像した車両1の前方の画像を読み込む。また、ステップS302において、車両挙動認識部103は、車速検出装置20が検出した車両1の車幅方向の速度、操舵角検出装置30が検出した操舵角、加速度センサにより検出される前後方向の加速度、ヨーレートセンサからのヨーレート値をそれぞれ読み込む。
 ステップS303において、レーン形状認識部102は、ステップS301で読み込んだ撮像部101の撮像画像を処理して、車両1が走行中の走行レーンを認識するとともに、走行レーンに対する車両1の位置や車両姿勢などを算出する。
 ステップS304では、終了部108において撮像部101の撮像角度の補正処理が完了しているか判断する。完了している場合にはステップS305へ進み、完了していない場合にはステップS314へ進む。具体的には、次式の条件を満足すればステップS305へ、そうでなければステップS314へ、それぞれ進む。
FlgAimComplt < 1    (3-1)
 上記式(3-1)において、FlgAimComplt は撮像部101の撮像角度の補正処理が完了しているか否かを示すフラグであり、FlgAimComplt = “0”である場合には撮像部101の撮像角度の補正処理は完了していないことを意味し、FlgAimComplt = “1”である場合には撮像部101の撮像角度の補正処理は完了していることを意味する。また、FlgAimCompltの初期値は“0”とする。
 ステップS305では、レーン形状認識部102は、ステップS303で認識したレーン形状を用いて、遠方領域と近傍領域における左右一対のレーンマーカの延長線からその交点座標を求める。なお、上述したように、本ステップにおいてレーン形状認識部102で求められる近傍領域の交点座標を(Pn_x, Pn_y)、遠方領域の交点座標を(Pf_x, Pf_y)と定義する。
 ステップS306において、直線路判定部410は、ステップS305で求めた遠方領域と近傍領域とのそれぞれの交点座標から次式により直線路か否かを判断する。上記式(2-1)(2-2)をすべて満たす場合にはステップS307へ移行し、それ以外の場合にはステップS314へ移行する。この処理は第2実施形態のステップS205と同様な処理である。
 ステップS307において、平行走行判定部420はステップS303で求めた自車線に対する自車両の横方向オフセット位置(レーンマーカまでの左右方向の距離)Yを入力として、上記式(0-2)(0-3)の伝達関数によりに擬似的に時間微分し、自車両の横方向速度Ydotを算出する。そして、上記式(0-4)を満足する場合にはステップS308へ移行し、そうでない場合にはステップS314へ移行する。この処理は第2実施形態のステップS206と同様な処理である。
 ステップS308において、情報偏り判定部105は、次式の条件を全て充足するか否かを判断する。次式の条件を全て充足する場合にはステップS309へ、それ以外の場合にはステップS314へ、それぞれ進む。
abs( Row ) < TH_ROW                  (3-2)
abs( SumTotalRow + Row ) < TH_ROW    (3-3)
abs( ysoku ) < TH_YS                 (3-4)
abs( SumTotalYsoku + ysoku ) < TH_YS   (3-5)
abs( YawRate ) < TH_YR               (3-6)
abs( SumTotalYR + YawRate ) < TH_YR   (3-7)
abs( VspDot ) < TH_VD                (3-8)
abs( SumTotalVD + VspDot ) < TH_VD    (3-9)
 上記式において、ysokuは車両1の車幅方向における速度を示すパラメータである。Ysokuの値としては、ステップS303のレーン認識処理で用いるレーン認識用カルマンフィルタの状態変数の車幅方向速度をそのまま用いてもよいし、走行レーンまでの車幅方向の位置を時間微分しても等価である。また、SumTotalYsokuはysokuの総和値である。TH_YSは車両1が直進走行しているとみなす場合の閾値であり、式(3-4)、(3-5)に示されるように、車幅方向速度ysokuの絶対値およびその総和SumTotalYsoku + ysokuの絶対値がTH_YS未満である場合には、車両1が直進走行していると判定する。
 同様に、上記式(3-6)と(3-7)における車両1のヨーレート値YawRateは、ステップS303のレーン認識処理で用いるレーン認識用カルマンフィルタの状態変数のヨーレートをそのまま用いてもよいし、レーンに対するヨー角度を時間微分してもよい。
 なお、式(3-4)、(3-5)以外の式の意味については、第1実施形態および第2実施形態と同様である。
 次に、ステップS309では、次式によりSumTotalRow、SumTotalYsoku、SumTotalYR、SumTotalVD、SumCountの更新、および、近傍交点の座標データの収集用メモリへの格納を行う。
SumTotalRow = SumTotalRow + Row          (3-10)
SumTotalYsoku = SumTotalYsoku + ysoku    (3-11)
SumTotalYR = SumTotalYR + YawRate        (3-12)
SumTotalVD = SumTotalVD + VspDot         (3-13)
FOE_X_DataRcd[ SumCount ] = Pn_x         (3-14)
FOE_Y_DataRcd[ SumCount ] = Pn_y         (3-15)
SumCount = SumCount + 1                     (3-16)
 また、ステップS310からS312における処理は、図8のステップS209からS211における処理と同様である。
 そして、ステップS313では、撮像角度補正部106は、次式により、撮像部101の撮像角度の推定処理の完了フラグFlgAimCompltを立てるとともに、撮像部101の撮像角度を決定する。また、これらの座標は、以降のステップS303のレーン認識処理を行う際の原点座標として用いられる。
FlgAimComplt = 1           (3-17)
FOE_X_est = FOE_X_e_tmp    (3-18)
FOE_Y_est = FOE_Y_e_tmp    (3-19)
 ステップS314では、フィルターなどで使う過去値やタイマーなどで使うカウンター値を更新して終了する。
 なお、図10の処理フローを実行する前に、FlgAimComplt、SumTotalRowの各値は“0”に初期化しておく。
(まとめ)
 本実施形態の車載用画像認識装置は、終了部108以外の構成については、第2実施形態と同様である。
 本実施形態の車載用画像認識装置は、終了部108が、算出された標準偏差が予め定められた値未満である場合には、撮像角度の補正を終了させる。
 これにより、一旦、撮像部101の撮像角度候補のばらつきが小さいと判断された場合には、撮像角度を補正するための処理を完了させることができるため、車載用画像認識装置の処理負荷を軽減することができる。
 図11は、本実施形態の車載用画像認識装置が奏する効果について示す図である。図11に示されるグラフは、高速道路の緩いカーブが多い場面で、本実施形態に係るレーン認識処理を実行した結果である。
 図11において、丸で囲まれた範囲70のデータは、ステップS305で算出されるPn_xの結果を示すデータである。また範囲71のデータは、ステップS307で収集されるPn_xの結果である。
 図11の結果によれば、破線80と破線81で示されるそれぞれの最悪値が約10画素分、真値120.0画素に近づいている。また、標準偏差からも、ばらつきがほぼ半減(約44%減)することも確認された。さらに、データ数が8000から50に減り、標準偏差の処理負荷も低減された。
(第3実施形態の効果)
 本実施形態は、第1実施形態および第2実施形態の効果に加えて、次の効果を奏する。(1)終了部108は、標準偏差算出部107で算出した標準偏差が予め定められた値未満である場合には、撮像角度の補正を終了させる。
 これにより、一旦、撮像部101の撮像角度候補のばらつきが小さいと判断された場合には、撮像角度を補正するための処理を完了させることができるため、車載用画像認識装置の処理負荷を軽減することができる。
(2)本実施形態においては、車両挙動認識部103にて認識された車両1の挙動は、車両1の車幅方向の並進挙動に関する情報である。また、車両挙動認識部103は、レーン形状認識部102にて認識された走行レーンに対する車両1の車幅方向の位置もしくはヨー角度の時間変化から車両1の挙動を認識する。
 これにより、撮像部101の撮像角度の推定の精度を高めることができる。
 ここで、上記説明において、車速検出装置20は車速検出部を構成する。操舵角検出装置30は操舵角検出部を構成する。レーン形状認識部102はパラメータ検出部を構成する。車両挙動認識部103、もしくは、車速検出装置20と操舵角検出装置30と操舵角制御装置40は、パラメータ検出部を構成する。直線路判定部410は、交点偏り判定部、認識偏り判定部を構成する。情報偏り判定部105は、収束判定部、積算部、および直線走行状態判定部を構成する。撮像角度導出部104および撮像角度補正部106は、エーミング実行部を構成する。
 以上、本願が優先権を主張する日本国特許出願2011-131222(2011年6月13日出願)の全内容はここに引用例として包含される。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明な事である。
 1 車両
 10 カメラ
 10a 画像処理装置
 20 車速検出装置
 30 操舵角検出装置
 40 操舵角制御装置
 50 操舵角アクチュエータ
 101 撮像部
 102 レーン形状認識部
 103 車両挙動認識部
 104 撮像角度導出部
 105 判定部
 106 撮像角度補正部
 107 標準偏差算出部
 108 終了部
 200 白線候補点検出部
 300 レーン認識処理部
 310 道路形状算出部
 320 道路パラメータ推定部
 400 光軸補正部
 410 直線路判定部
 420 平行走行判定部
 430 仮想消失点算出部
 

Claims (13)

  1.  前記車両周辺を撮像する撮像部と、
     前記撮像部が撮像した撮像画像に基づき前記車両が走行する走行レーンのレーン形状を認識するレーン形状認識部と、
     自車両が走行路と平行に走行していることを判定する平行走行判定部と、
     前記レーン形状認識部が認識したレーン形状のうち相対的に自車両に近い近傍領域のレーン形状と自車両から遠い遠方領域のレーン形状とに基づき、上記近傍領域に位置する左右のレーンマーカを直線近似した延長線の交点と、遠方領域部分に位置する左右のレーンマーカを直線近似した延長線の交点との交点の偏りを判定する交点偏り判定部と、
     前記交点偏り判定部において前記交点の偏りが予め設定した閾値以下と判定したときに直線路と判定する直線路判定部と、
     を備えることを特徴とする道路形状判定装置。
  2.  請求項1に記載の道路形状判定装置と、
     前記道路形状判定装置が直進路と判定したときに、前記撮像部の撮像角度を補正する撮像角度補正部と、
    を備えることを特徴とする車載用画像認識装置。
  3.  前記レーン形状認識部が認識したレーン形状から前記撮像部の撮像角度を求める撮像角度導出部を更に備え、
     前記撮像角度補正部は、前記道路形状判定装置が直進路と判定したときの前記撮像角度導出部が求めた撮像角度を用いて前記撮像部の撮像角度を補正する請求項2に記載の車載用画像認識装置。
  4.  前記交点偏り判定部において交点の偏りが予め設定した閾値以下と判定されたときの前記撮像角度導出部が求めた前記撮像角度の標準偏差を算出する標準偏差算出部をさらに備え、
     前記撮像角度補正部は、前記標準偏差算出部が算出した標準偏差に応じて前記撮像部の撮像角度を補正することを特徴とする請求項3に記載の車載用画像認識装置。
  5.  前記標準偏差算出部が算出した標準偏差が予め定められた値未満である場合には、前記撮像角度の補正を終了させることを特徴とする請求項4に記載の車載用画像認識装置。
  6.  前記レーン形状認識部で認識される道路曲率を用いて認識したレーン形状に対する偏りから走行路の形状を判定する認識偏り判定部を更に備え、
     前記撮像角度補正部は、前記交点偏り判定部において前記交点の偏りが予め設定した閾値以下と判定し、且つ前記認識偏り判定部において直進路と判定したときに、前記撮像部の撮像角度を補正することを特徴とする請求項2から5のいずれか一項に記載の車載用画像認識装置。
  7.  前記認識偏り判定部は、前記レーン形状認識部が認識したレーン形状に対する偏りの絶対値が予め定められた閾値よりも小さく、かつ、前記偏りの総和が前記閾値よりも小さい場合に直進路と判定することを特徴とする請求項6に記載の車載用画像認識装置。
  8.  前記車両の車速を検出する車速検出部と、
     前記車両の操舵角を検出する操舵角検出部と、
     前記車速検出部が検出した車速と、前記操舵角検出部が検出した操舵角から、車両の挙動を認識する車両挙動認識部と、を更に有し、
     前記撮像角度補正部は、更に、前記車両挙動認識部が認識した車両の挙動に対する偏りが予め設定した設定閾値以下と判定したときに、前記撮像部の撮像角度を補正することを特徴とする請求項2から7のいずれか一項に記載の車載用画像認識装置。
  9.  前記車両挙動認識部にて認識された前記車両の挙動は、前記車両の車幅方向の並進挙動に関する情報であることを特徴とする請求項8に記載の車載用画像認識装置。
  10.  前記車両挙動認識部にて認識された前記車両の挙動は、前記車両の車幅方向の回転挙動に関する情報であることを特徴とする請求項8に記載の車載用画像認識装置。
  11.  前記車両挙動認識部は、前記レーン形状認識部にて認識された前記走行レーンに対する前記車両の車幅方向の位置もしくはヨー角度の時間変化から前記車両の挙動を認識することを特徴とする請求項8に記載の車載用画像認識装置。
  12.  車両に備えられた撮像部の撮像軸を自動調整する撮像軸調整装置であって、
     道路曲率に関するパラメータを検出するパラメータ検出部と、
     前記道路曲率に関するパラメータの値が、予め定められた範囲以内に収束していることを判定する収束判定部と、
     前記収束判定部が判定した時点から所定時間内のパラメータ値を積算する積算部と、
     前記積算部が積算した積算値が、予め定められた値以内であることを判定することで、前記車両の直線走行状態を判定する直線走行状態判定部と、
     前記直線走行状態判定部が直線走行状態であると判定した場合には、エーミング処理を行なうエーミング実行部と、
    を備えることを特徴とする撮像軸調整装置。
  13.  車両に備えられた撮像部で前記車両周辺を撮像し、その撮像した撮像画像から前記車両が走行する走行レーンのレーン形状を認識し、その認識したレーン形状から前記撮像部の撮像角度を求め、
     前記認識したレーン形状のうち相対的に自車両に近い近傍領域のレーン形状と自車両から遠い遠方領域のレーン形状とに基づき、上記近傍領域に位置する左右のレーンマーカを直線近似した延長線の交点と、遠方領域部分に位置する左右のレーンマーカを直線近似した延長線の交点との交点の偏りが、予め設定した閾値以下と判定したときの前記検出した撮像角度を用いて前記撮像部の撮像角度を補正することを特徴とするレーン認識方法。
PCT/JP2012/001576 2011-06-13 2012-03-07 道路形状判定装置、車載用画像認識装置、撮像軸調整装置およびレーン認識方法 WO2012172713A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/125,832 US20140118552A1 (en) 2011-06-13 2012-03-07 Road shape determining device, in-vehicle image recognizing device, imaging axis adjusting device, and lane recognizing method
EP12801148.3A EP2720213A4 (en) 2011-06-13 2012-03-07 DEVICE FOR DETERMINING A ROAD PROFILE, VEHICLE INTERNAL IMAGE RECOGNITION DEVICE, APPARATUS FOR ADJUSTING A PICTURE BASE AXIS AND TRACE RECOGNITION METHOD
CN201280026555.2A CN103582907B (zh) 2011-06-13 2012-03-07 车载用图像识别装置及车道识别方法
JP2013520407A JP5733395B2 (ja) 2011-06-13 2012-03-07 車載用画像認識装置、撮像軸調整装置およびレーン認識方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-131222 2011-06-13
JP2011131222 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012172713A1 true WO2012172713A1 (ja) 2012-12-20

Family

ID=47356734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001576 WO2012172713A1 (ja) 2011-06-13 2012-03-07 道路形状判定装置、車載用画像認識装置、撮像軸調整装置およびレーン認識方法

Country Status (5)

Country Link
US (1) US20140118552A1 (ja)
EP (1) EP2720213A4 (ja)
JP (1) JP5733395B2 (ja)
CN (1) CN103582907B (ja)
WO (1) WO2012172713A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991474A (zh) * 2013-02-14 2014-08-20 本田技研工业株式会社 车辆的转向控制装置
JP2018005617A (ja) * 2016-07-04 2018-01-11 株式会社Soken 走路形状認識装置、走路形状認識方法
US10800412B2 (en) * 2018-10-12 2020-10-13 GM Global Technology Operations LLC System and method for autonomous control of a path of a vehicle
US20200408586A1 (en) * 2018-03-22 2020-12-31 Panasonic Intellectual Property Management Co., Ltd. Axle load measuring apparatus and axle load measuring method
WO2022145054A1 (ja) * 2021-01-04 2022-07-07 日本電気株式会社 画像処理装置、画像処理方法、及び記録媒体
JP7359922B1 (ja) 2022-09-26 2023-10-11 株式会社デンソーテン 情報処理装置、情報処理方法およびプログラム

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747482B2 (ja) * 2010-03-26 2015-07-15 日産自動車株式会社 車両用環境認識装置
WO2014170989A1 (ja) * 2013-04-18 2014-10-23 西日本高速道路エンジニアリング四国株式会社 道路走行面の形状を調査する装置
JP6093314B2 (ja) * 2014-02-14 2017-03-08 株式会社デンソー 境界線認識装置
JP6299373B2 (ja) * 2014-04-18 2018-03-28 富士通株式会社 撮像方向の正常性の判定方法、撮像方向の正常性の判定プログラムおよび撮像方向の正常性の判定装置
JP6189816B2 (ja) * 2014-11-19 2017-08-30 株式会社Soken 走行区画線認識装置
JP6389119B2 (ja) * 2014-12-25 2018-09-12 株式会社デンソー 車線境界線認識装置
JP6363518B2 (ja) * 2015-01-21 2018-07-25 株式会社デンソー 区画線認識装置
KR101673776B1 (ko) * 2015-06-05 2016-11-07 현대자동차주식회사 자동차용 헤드유닛 및 카메라 유닛의 고장 진단 방법
KR101748269B1 (ko) * 2015-11-11 2017-06-27 현대자동차주식회사 자율 주행 차량의 조향 제어 방법 및 장치
KR102433791B1 (ko) 2015-11-20 2022-08-19 주식회사 에이치엘클레무브 차선 이탈 경고 장치 및 방법
KR102503253B1 (ko) * 2015-12-14 2023-02-22 현대모비스 주식회사 주변 차량 인지 시스템 및 방법
US20170307743A1 (en) * 2016-04-22 2017-10-26 Delphi Technologies, Inc. Prioritized Sensor Data Processing Using Map Information For Automated Vehicles
DE102016207436A1 (de) 2016-04-29 2017-11-02 Ford Global Technologies, Llc System und Verfahren zum Steuern- und/oder Regeln eines Lenksystems eines Fahrzeugs sowie Fahrzeug
JP6637399B2 (ja) * 2016-09-30 2020-01-29 株式会社デンソー 領域認識装置及び領域認識方法
CN110140158A (zh) * 2017-01-10 2019-08-16 三菱电机株式会社 行驶路径识别装置及行驶路径识别方法
JP2018173834A (ja) * 2017-03-31 2018-11-08 本田技研工業株式会社 車両制御装置
CN106910358B (zh) * 2017-04-21 2019-09-06 百度在线网络技术(北京)有限公司 用于无人车的姿态确定方法和装置
JP6627822B2 (ja) * 2017-06-06 2020-01-08 トヨタ自動車株式会社 車線変更支援装置
CN108099905B (zh) * 2017-12-18 2020-08-18 深圳大学 车辆偏航检测方法、系统及机器视觉系统
CN108229386B (zh) * 2017-12-29 2021-12-14 百度在线网络技术(北京)有限公司 用于检测车道线的方法、装置和介质
CN108427417B (zh) * 2018-03-30 2020-11-24 北京图森智途科技有限公司 自动驾驶控制系统及方法、计算机服务器和自动驾驶车辆
CN108921079B (zh) * 2018-06-27 2022-06-10 盯盯拍(深圳)技术股份有限公司 拍摄角度调整方法、拍摄角度调整设备以及车载摄像装置
CN112352260B (zh) * 2018-06-27 2024-09-17 日本电信电话株式会社 车道估计装置、方法以及计算机可读存储介质
KR102132899B1 (ko) * 2018-10-08 2020-07-21 주식회사 만도 교차로에서의 경로 생성 장치 및 교차로에서의 차량 제어 장치 및 방법
CN113016179A (zh) * 2018-11-15 2021-06-22 松下知识产权经营株式会社 摄像机系统和车辆
US10728461B1 (en) * 2019-01-31 2020-07-28 StradVision, Inc. Method for correcting misalignment of camera by selectively using information generated by itself and information generated by other entities and device using the same
CN112686904A (zh) * 2020-12-14 2021-04-20 深兰人工智能(深圳)有限公司 车道划分方法、装置、电子设备和存储介质
CN112862899B (zh) * 2021-02-07 2023-02-28 黑芝麻智能科技(重庆)有限公司 用于图像获取设备的外参标定方法、装置和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242899A (ja) 1999-02-24 2000-09-08 Mitsubishi Electric Corp 白線認識装置
JP2002259995A (ja) * 2001-03-06 2002-09-13 Nissan Motor Co Ltd 位置検出装置
JP2004252827A (ja) 2003-02-21 2004-09-09 Nissan Motor Co Ltd 車線認識装置
JP2004318618A (ja) 2003-04-17 2004-11-11 Nissan Motor Co Ltd 車線認識装置
JP2008003959A (ja) * 2006-06-23 2008-01-10 Omron Corp 車両用通信システム
JP2009234543A (ja) * 2008-03-28 2009-10-15 Mazda Motor Corp 車両の車線逸脱警報装置
WO2010140578A1 (ja) * 2009-06-02 2010-12-09 日本電気株式会社 画像処理装置、画像処理方法、及び画像処理用プログラム
JP2011221983A (ja) * 2010-03-26 2011-11-04 Nissan Motor Co Ltd 車両用環境認識装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624035B2 (ja) * 1988-09-28 1994-03-30 本田技研工業株式会社 走行路判別装置
US5359666A (en) * 1988-09-28 1994-10-25 Honda Giken Kogyo Kabushiki Kaisha Driving way judging device and method
JP3357749B2 (ja) * 1994-07-12 2002-12-16 本田技研工業株式会社 車両の走行路画像処理装置
JP3521860B2 (ja) * 2000-10-02 2004-04-26 日産自動車株式会社 車両の走行路認識装置
JP3645196B2 (ja) * 2001-02-09 2005-05-11 松下電器産業株式会社 画像合成装置
DE602006020231D1 (de) * 2005-12-06 2011-04-07 Nissan Motor Detektionsvorrichtung und -verfahren
JP4820221B2 (ja) * 2006-06-29 2011-11-24 日立オートモティブシステムズ株式会社 車載カメラのキャリブレーション装置およびプログラム
JP2008241446A (ja) * 2007-03-27 2008-10-09 Clarion Co Ltd ナビゲーション装置及びその制御方法
JP4801821B2 (ja) * 2007-09-21 2011-10-26 本田技研工業株式会社 道路形状推定装置
JP5375958B2 (ja) * 2009-06-18 2013-12-25 富士通株式会社 画像処理装置および画像処理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242899A (ja) 1999-02-24 2000-09-08 Mitsubishi Electric Corp 白線認識装置
JP2002259995A (ja) * 2001-03-06 2002-09-13 Nissan Motor Co Ltd 位置検出装置
JP2004252827A (ja) 2003-02-21 2004-09-09 Nissan Motor Co Ltd 車線認識装置
JP2004318618A (ja) 2003-04-17 2004-11-11 Nissan Motor Co Ltd 車線認識装置
JP2008003959A (ja) * 2006-06-23 2008-01-10 Omron Corp 車両用通信システム
JP2009234543A (ja) * 2008-03-28 2009-10-15 Mazda Motor Corp 車両の車線逸脱警報装置
WO2010140578A1 (ja) * 2009-06-02 2010-12-09 日本電気株式会社 画像処理装置、画像処理方法、及び画像処理用プログラム
JP2011221983A (ja) * 2010-03-26 2011-11-04 Nissan Motor Co Ltd 車両用環境認識装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2720213A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991474A (zh) * 2013-02-14 2014-08-20 本田技研工业株式会社 车辆的转向控制装置
JP2018005617A (ja) * 2016-07-04 2018-01-11 株式会社Soken 走路形状認識装置、走路形状認識方法
US20200408586A1 (en) * 2018-03-22 2020-12-31 Panasonic Intellectual Property Management Co., Ltd. Axle load measuring apparatus and axle load measuring method
US11976960B2 (en) * 2018-03-22 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Axle load measuring apparatus and axle load measuring method
US10800412B2 (en) * 2018-10-12 2020-10-13 GM Global Technology Operations LLC System and method for autonomous control of a path of a vehicle
WO2022145054A1 (ja) * 2021-01-04 2022-07-07 日本電気株式会社 画像処理装置、画像処理方法、及び記録媒体
JP7505596B2 (ja) 2021-01-04 2024-06-25 日本電気株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP7359922B1 (ja) 2022-09-26 2023-10-11 株式会社デンソーテン 情報処理装置、情報処理方法およびプログラム
JP2024047398A (ja) * 2022-09-26 2024-04-05 株式会社デンソーテン 情報処理装置、情報処理方法およびプログラム

Also Published As

Publication number Publication date
US20140118552A1 (en) 2014-05-01
JP5733395B2 (ja) 2015-06-10
CN103582907B (zh) 2016-07-20
EP2720213A4 (en) 2015-03-11
CN103582907A (zh) 2014-02-12
EP2720213A1 (en) 2014-04-16
JPWO2012172713A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5733395B2 (ja) 車載用画像認識装置、撮像軸調整装置およびレーン認識方法
CN106096525B (zh) 一种复合型车道识别系统及方法
US8670590B2 (en) Image processing device
EP3179445B1 (en) Outside environment recognition device for vehicles and vehicle behavior control device using same
JP3711405B2 (ja) カメラを利用した車両の道路情報抽出方法及びシステム
US7542835B2 (en) Vehicle image processing device
JP3780848B2 (ja) 車両の走行路認識装置
US11398051B2 (en) Vehicle camera calibration apparatus and method
US20100201814A1 (en) Camera auto-calibration by horizon estimation
EP2933790A1 (en) Moving object location/attitude angle estimation device and moving object location/attitude angle estimation method
EP3282389B1 (en) Image processing apparatus, image capturing apparatus, moving body apparatus control system, image processing method, and program
US8730325B2 (en) Traveling lane detector
US20150363653A1 (en) Road environment recognition system
US10235579B2 (en) Vanishing point correction apparatus and method
CN111164648B (zh) 移动体的位置推断装置及位置推断方法
JP6035095B2 (ja) 車両の衝突判定装置
JP3961584B2 (ja) 区画線検出装置
US20120128211A1 (en) Distance calculation device for vehicle
EP3287948B1 (en) Image processing apparatus, moving body apparatus control system, image processing method, and program
JP6963490B2 (ja) 車両制御装置
JP3319383B2 (ja) 走行路認識装置
JP5559650B2 (ja) 車線推定装置
WO2014167393A1 (en) Travel path detection apparatus and travel path detection method
EP3288260B1 (en) Image processing device, imaging device, equipment control system, equipment, image processing method, and carrier means
EP3825648A1 (en) Object detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520407

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012801148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012801148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14125832

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE