[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012147680A1 - 成膜方法 - Google Patents

成膜方法 Download PDF

Info

Publication number
WO2012147680A1
WO2012147680A1 PCT/JP2012/060834 JP2012060834W WO2012147680A1 WO 2012147680 A1 WO2012147680 A1 WO 2012147680A1 JP 2012060834 W JP2012060834 W JP 2012060834W WO 2012147680 A1 WO2012147680 A1 WO 2012147680A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
source gas
substrate
film
Prior art date
Application number
PCT/JP2012/060834
Other languages
English (en)
French (fr)
Inventor
田中 宏治
博一 上田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/113,134 priority Critical patent/US9034774B2/en
Priority to KR1020137027536A priority patent/KR101657341B1/ko
Priority to JP2013512347A priority patent/JP5660205B2/ja
Publication of WO2012147680A1 publication Critical patent/WO2012147680A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides

Definitions

  • the present invention relates to a film forming method, and more particularly to a film forming method used for manufacturing a semiconductor element.
  • ALD atomic layer deposition
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-138295
  • the ALD process will be briefly described as follows. First, a gas for chemical adsorption is supplied into the processing container, and the atomic layer is chemically adsorbed on the surface of the substrate to be processed. Then, the processing container is exhausted. Specifically, excess gas that has not been chemically adsorbed or gas that has been physically adsorbed on the chemical adsorption layer is removed. Thereafter, the chemically adsorbed layer is subjected to nitriding treatment, oxidation treatment, or the like for modification. Such a series of steps is repeated until a desired film thickness is reached.
  • An object of the present invention is to provide a film forming method capable of improving throughput and forming a high quality film.
  • the film forming method according to the present invention is a film forming method for forming a film on a substrate to be processed, wherein a first source gas is supplied onto the substrate to be processed, and the first source gas is supplied onto the substrate to be processed.
  • a first source gas supply step for adsorbing to form a first chemical adsorption layer, and a second different from the first source gas on the substrate to be processed on which the first chemical adsorption layer is formed A second raw material gas supply step of forming a second chemical adsorption layer by being adsorbed by the second raw material gas on the first chemical adsorption layer, and using microwave plasma,
  • a plasma processing step of performing plasma processing on the first and second chemical adsorption layers is a film forming method for forming a film on a substrate to be processed, wherein a first source gas is supplied onto the substrate to be processed, and the first source gas is supplied onto the substrate to be processed.
  • the plasma is applied to at least the first and second chemical adsorption layers formed by supplying the first and second source gases and adsorbing the first and second source gases. Since the treatment is performed, the number of plasma treatments can be reduced and the throughput can be improved when forming a film with a desired thickness. In addition, since the plasma treatment is performed on at least the first and second chemical adsorption layers to form a film having a desired film thickness, the possibility of causing plasma damage to the underlayer of the chemical adsorption layer is reduced. . Therefore, a high quality film can be formed.
  • the method includes a first source gas exhaust step of exhausting the first source gas after the first source gas supply step and before the second source gas supply step.
  • it includes a second source gas exhausting step for exhausting the second source gas after the second source gas supplying step.
  • the first source gas supply step includes a step of supplying a gas containing a halide.
  • the second source gas supply step includes a step of supplying a gas having a hydrogen bond.
  • the first source gas supply step is a step of supplying a gas containing Si 2 Cl 6 (hexachlorodisilane), and the second source gas supply step contains SiH 4 (silane). Supplying a gas.
  • the microwave plasma is generated by a radial line slot antenna (RLSA).
  • RLSA radial line slot antenna
  • the plasma processing step uses microwave plasma in the vicinity of the surface of the substrate to be processed, in which the plasma electron temperature is lower than 1.5 eV and the plasma electron density is higher than 1 ⁇ 10 11 cm ⁇ 3 . It was processing that was.
  • the film forming method is a method of forming a nitride film or an oxide film.
  • the plasma is applied to at least the first and second chemical adsorption layers formed by supplying the first and second source gases and adsorbing the first and second source gases. Since the treatment is performed, the number of plasma treatments can be reduced and the throughput can be improved when forming a film with a desired thickness. In addition, since the plasma treatment is performed on at least the first and second chemical adsorption layers to form a film having a desired film thickness, the possibility of causing plasma damage to the underlayer of the chemical adsorption layer is reduced. . Therefore, a high quality film can be formed as a whole.
  • FIG. 1 is a schematic cross-sectional view showing a part of a MOS type semiconductor device having a film formed by a film forming method according to an embodiment of the present invention.
  • the conductive layer is indicated by hatching.
  • MOS type semiconductor element 11 includes element isolation region 13, p-type well 14a, n-type well 14b, high-concentration n-type impurity diffusion region 15a, high-concentration p-type impurity on silicon substrate 12. Diffusion region 15b, n-type impurity diffusion region 16a, p-type impurity diffusion region 16b, and gate oxide film 17 are formed.
  • One of the high-concentration n-type impurity diffusion region 15a and the high-concentration p-type impurity diffusion region 15b formed so as to sandwich the gate oxide film 17 is a drain, and the other is a source.
  • a gate electrode 18 serving as a conductive layer is formed on the gate oxide film 17, and a gate sidewall 19 serving as an insulating film is formed on a side portion of the gate electrode 18. Furthermore, an insulating film 21 is formed on the silicon substrate 12 on which the gate electrode 18 and the like are formed. In the insulating film 21, a contact hole 22 that is continuous with the high concentration n-type impurity diffusion region 15 a and the high concentration p-type impurity diffusion region 15 b is formed, and a buried electrode 23 is formed in the contact hole 22. Further, a metal wiring layer 24 serving as a conductive layer is formed thereon.
  • an interlayer insulating film (not shown) to be an insulating layer and a metal wiring layer to be a conductive layer are alternately formed, and finally a pad (not shown) to be a contact point with the outside is formed.
  • the MOS type semiconductor element 11 is formed.
  • a semiconductor element having a film formed by the film forming method according to one embodiment of the present invention is adsorbed on the substrate to be processed by the first and second source gases to form a chemical adsorption layer.
  • a silicon oxide film formed by performing plasma treatment on the multilayer chemical adsorption layer formed and adsorbed by the first and second source gases is included as the gate oxide film 17, for example.
  • the insulating film formed by the film forming method according to an embodiment of the present invention is a silicon oxide film that constitutes the gate oxide film described above, and the first and second source gases are formed on the substrate to be processed.
  • a chemical adsorption layer is formed by adsorbing with the first and second raw material gases, and a multilayer chemical adsorption layer formed by adsorption with the first and second source gases is subjected to plasma treatment.
  • FIG. 2 is a schematic cross-sectional view showing the main part of the plasma processing apparatus used in the film forming method according to one embodiment of the present invention.
  • 3 is a view of the slot antenna plate included in the plasma processing apparatus shown in FIG. 2 as viewed from the lower side, that is, from the direction of arrow III in FIG. In FIG. 2, some of the members are not hatched for easy understanding.
  • a plasma processing apparatus 31 includes a processing container 32 that performs plasma processing on a substrate W to be processed therein, a gas for plasma excitation in the processing container 32, and a material used for plasma processing.
  • Gas a gas supply unit 33 for supplying a raw material gas in ALD, a disk-like support base 34 for supporting the substrate W to be processed, and plasma for generating plasma in the processing chamber 32 using microwaves
  • a generation mechanism 39 and a control unit (not shown) that controls the operation of the entire plasma processing apparatus 31 are provided.
  • the control unit controls the entire plasma processing apparatus 31 such as a gas flow rate in the gas supply unit 33 and a pressure in the processing container 32.
  • the processing container 32 includes a bottom portion 41 located on the lower side of the support base 34 and a side wall 42 extending upward from the outer periphery of the bottom portion 41.
  • the side wall 42 is substantially cylindrical.
  • An exhaust hole 43 for exhaust is provided in the bottom 41 of the processing container 32 so as to penetrate a part thereof.
  • the upper side of the processing container 32 is open, and a lid 44 disposed on the upper side of the processing container 32, a dielectric window 36 described later, and a seal member interposed between the dielectric window 36 and the lid 44.
  • the processing container 32 is configured to be hermetically sealed by an O-ring 45 as a sealing member.
  • the gas supply unit 33 includes a first gas supply unit 46 that blows gas toward the center of the substrate to be processed W, and a second gas supply unit 47 that blows gas from the peripheral side of the substrate to be processed W. .
  • the gas supply hole 30 for supplying gas in the first gas supply section 46 is more dielectric than the lower surface 48 of the dielectric window 36 which is the center in the radial direction of the dielectric window 36 and faces the support base 34. It is provided at a position retracted inward of the body window 36.
  • the first gas supply unit 46 adjusts the flow rate and the like by a gas supply system 49 connected to the first gas supply unit 46, and the inert gas for plasma excitation, the material gas for plasma processing, and the raw material for ALD Supply gas.
  • the second gas supply unit 47 is formed by providing a plurality of gas supply holes 50 for supplying plasma excitation gas, material gas, source gas, and the like in the processing vessel 32 in a part of the upper side of the side wall 42. Has been.
  • the plurality of gas supply holes 50 are provided at equal intervals in the circumferential direction.
  • the first gas supply unit 46 and the second gas supply unit 47 are supplied with the same kind of inert gas for plasma excitation, source gas, and the like from the same gas supply source.
  • another gas can also be supplied from the 1st gas supply part 46 and the 2nd gas supply part 47, and those flow ratios etc. can also be adjusted.
  • a high frequency power supply 58 for RF (radio frequency) bias is electrically connected to the electrode 61 in the support table 34 via the matching unit 59.
  • the high frequency power supply 58 can output a high frequency of 13.56 MHz, for example, with a predetermined power (bias power).
  • the matching unit 59 accommodates a matching unit for matching between the impedance on the high-frequency power source 58 side and the impedance on the load side such as the electrode 61, plasma, and the processing vessel 32. Includes a blocking capacitor for protecting the matching unit.
  • the support base 34 can support the substrate W to be processed thereon by an electrostatic chuck (not shown).
  • the support table 34 includes a temperature adjustment mechanism for heating and the like, and can be set to a desired temperature by a heater 29 provided inside the support table 34, for example.
  • the support base 34 is supported by an insulating cylindrical support 51 that extends vertically upward from the lower side of the bottom 41.
  • the exhaust hole 43 described above is provided so as to penetrate a part of the bottom 41 of the processing container 32 along the outer periphery of the cylindrical support part 51.
  • An exhaust chamber (not shown) protruding downward is provided so as to surround the exhaust hole 43, and an exhaust device (not shown) is connected via an exhaust pipe (not shown) connected to the exhaust chamber.
  • the exhaust device has a vacuum pump such as a turbo molecular pump.
  • the inside of the processing container 32 can be depressurized to a predetermined pressure by the exhaust device.
  • the plasma generation mechanism 39 is provided on the top and outside of the processing vessel 32.
  • the plasma generation mechanism 39 is disposed at a position facing the microwave generator 35 for generating plasma excitation microwaves and the support base 34, and the microwave generated by the microwave generator 35 is placed in the processing container 32.
  • a dielectric window 36 to be introduced and a plurality of slots 40 are provided.
  • the slot antenna plate is disposed above the dielectric window 36 and radiates microwaves to the dielectric window 36.
  • 37 and a dielectric member 38 that is disposed above the slot antenna plate 37 and that propagates a microwave introduced by a coaxial waveguide 56 to be described later in the radial direction.
  • a microwave generator 35 having a matching mechanism 53 is connected to an upper portion of a coaxial waveguide 56 for introducing a microwave through a waveguide 55 and a mode converter 54.
  • a TE mode microwave generated by the microwave generator 35 passes through the waveguide 55, is converted to a TEM mode by the mode converter 54, and propagates through the coaxial waveguide 56.
  • 2.45 GHz is selected as the frequency of the microwave generated by the microwave generator 35.
  • the dielectric window 36 has a substantially disc shape and is made of a dielectric. A part of the lower surface 48 of the dielectric window 36 is provided with an annular recess 57 that is recessed in a tapered shape for facilitating generation of a standing wave by the introduced microwave. Due to the concave portion 57, microwave plasma can be efficiently generated on the lower side of the dielectric window 36.
  • Specific materials for the dielectric window 36 include quartz and alumina.
  • the slot antenna plate 37 has a thin plate shape made of metal and has a disc shape. As shown in FIG. 2, the plurality of slot-like slots 40 are provided such that a pair of slots 40 are provided so as to be substantially perpendicular to the letter C, and the pair of slots 40 are predetermined in the circumferential direction. They are concentrically arranged at intervals. Also in the radial direction, a plurality of pairs of slots 40 are provided concentrically at predetermined intervals.
  • the microwave generated by the microwave generator 35 is propagated to the dielectric member 38 through the coaxial waveguide 56.
  • the microwave has a circulation path 60 for circulating a refrigerant or the like inside, and is sandwiched between the cooling antenna 52 and the slot antenna plate 37 for adjusting the temperature of the slot antenna plate 37, the dielectric window 36, the dielectric member 38, and the like.
  • the inside of the dielectric member 38 spreads radially outward in the radial direction, passes through the dielectric window 36 from the plurality of slots 40 provided in the slot antenna plate 37, and is introduced into the processing container 32.
  • the microwaves generate an electric field directly below the dielectric window 36 and generate plasma in the processing chamber 32.
  • the microwave plasma to be processed in the plasma processing apparatus 31 is radiated from a radial line slot antenna (RLSA) including the cooling jacket 52, the slot antenna plate 37, and the dielectric member 38 having the above-described configuration. Is generated in the processing container 32 by the microwave.
  • RLSA plasma the plasma generated in this way may be referred to as RLSA plasma.
  • FIG. 4 is a graph showing the relationship between the distance from the lower surface 48 of the dielectric window 36 in the processing chamber 32 and the plasma electron temperature when plasma is generated in the plasma processing apparatus 31.
  • FIG. 5 is a graph showing the relationship between the distance from the lower surface 48 of the dielectric window 36 in the processing container 32 and the electron density of the plasma when plasma is generated in the plasma processing apparatus 31.
  • the region immediately below dielectric window 36, specifically, region 26 up to about 10 mm indicated by a one-dot chain line in FIG. 4 is called a so-called plasma generation region.
  • the electron temperature is high and the electron density is higher than 1 ⁇ 10 12 cm ⁇ 3 .
  • a region 27 exceeding 10 mm indicated by a two-dot chain line is called a plasma diffusion region.
  • the electron temperature is about 1.0 to 1.3 eV, at least lower than 1.5 eV, and the electron density is about 1 ⁇ 10 12 cm ⁇ 3 , and at least higher than 1 ⁇ 10 11 cm ⁇ 3 .
  • Plasma processing for the substrate W to be processed is performed in such a plasma diffusion region, for example. That is, in the plasma treatment, microwave plasma having a plasma electron temperature lower than 1.5 eV and a plasma electron density higher than 1 ⁇ 10 11 cm ⁇ 3 is used in the vicinity of the surface of the substrate W to be processed. desirable.
  • FIG. 6 is a flowchart showing typical steps in the film forming method according to one embodiment of the present invention.
  • the temperature of the support table 34 at the time of plasma processing described later for example, an arbitrary temperature between 300 to 400 ° C. is selected.
  • a silicon nitride film (SiN film) is formed for film formation.
  • a natural oxide film, an organic substance, or the like adheres to the surface of the substrate to be processed W for example, Si 2 Cl 6 (hexachlorodisilane (hereinafter also referred to as “HCD”) may be formed on the substrate W to be processed.
  • the source gas chemical adsorption layer may not be formed even if the source gas containing the gas is supplied, in which case hydrogen plasma is generated in the processing chamber 32 and the surface of the substrate W to be processed is hydrogenated. Such a problem may deteriorate the uniformity and quality of the film to be formed, so that the surface condition of the substrate W to be processed can be obtained by performing the pretreatment process as described above.
  • the pretreatment process can be appropriately changed according to the type of the substrate to be processed W, the type of film to be formed, and the required film quality, for example, when the substrate to be processed W is a Si substrate, Chemisorption Without being performed, the substrate to be processed W may be directly subjected to nitridation using plasma, or organic substances may be removed by irradiating the substrate to be processed W with ultraviolet rays. These are optional steps performed as necessary, and can be omitted.
  • a first source gas containing a chlorine-based gas for example, Si 2 Cl 6 (HCD) is supplied from the gas supply units 46 and 47 to the surface of the substrate W to be processed, and is adsorbed by the first source gas.
  • a first chemical adsorption layer is formed (FIG. 6A).
  • the surface of the substrate to be processed W is terminated with hydrogen, so that H (hydrogen) on the surface of the substrate to be processed W and Cl (chlorine) of Si 2 Cl 6 (HCD) are formed. It reacts and becomes HCl.
  • the first chemical adsorption layer is formed by the chemical adsorption of SiCl 3 on the surface of the substrate W to be processed. In this case, the surface of the substrate to be processed W is terminated with chlorine.
  • the first raw material gas remaining unnecessarily in the processing container 32 is exhausted (FIG. 6B).
  • the gas in the processing container 32 can be removed from the exhaust hole 43 while supplying the purge gas for exhaust from the gas supply units 46 and 47.
  • argon (Ar) gas is used as the purge gas.
  • a second source gas different from the first source gas for example, a SiH 4 (silane) gas having a hydrogen bond
  • a SiH 4 (silane) gas having a hydrogen bond is supplied from the gas supply units 46 and 47.
  • a second chemical adsorption layer adsorbed by the second raw material gas is formed (FIG. 6C).
  • Cl (chlorine) on the surface of the substrate W to be processed reacts with H of SiH 4 as the second source gas to be desorbed as HCl.
  • the second chemical adsorption layer is formed by chemical adsorption of Si compounds (SiHx such as SiH, SiH 2 and SiH 3 ) on the surface of the substrate W to be processed.
  • SiHx such as SiH, SiH 2 and SiH 3
  • the second source gas is exhausted in the processing container 32 (FIG. 6D).
  • the exhaust gas is supplied from the gas supply units 46 and 47 while the purge gas for exhaust is being supplied from the exhaust hole 43 in the same manner as the exhaust of the first source gas described above.
  • the gas in 32 can be removed.
  • the formation of the first chemical adsorption layer by supplying the first raw material gas and the formation of the second chemical adsorption layer by supplying the second raw material gas are performed.
  • the steps shown in FIGS. 6A to 6D that is, the formation of the chemical adsorption layers of the first and second source gases are alternately performed a plurality of times, and a desired plasma treatment is performed.
  • a film thickness can be formed. For example, a film thickness of 0.2 to 20 nm is good.
  • the first and second chemisorption layers are alternately formed a plurality of times to form a desired film thickness, and the first and second chemisorption layers are subjected to plasma treatment with a nitrogen-containing gas plasma.
  • plasma nitriding is performed using the microwave plasma generated by the plasma processing apparatus 31 described above.
  • a gas for plasma processing or the like for example, an argon (Ar) gas as a plasma excitation gas and an ammonia (NH 3 ) gas as a nitrogen-containing gas from a gas supply unit 46 or 47 to supply a nitrogen-containing gas
  • the plasma nitriding treatment of the first and second chemical adsorption layers is performed with the plasma of the nitrogen-containing gas.
  • plasma oxidation is performed using a mixed gas of argon (Ar) gas and oxygen (O 2 ) gas as a plasma excitation gas.
  • FIGS. 6A to 6F After this plasma treatment, the plasma treatment gas is exhausted (FIG. 6F). Then, the steps of FIGS. 6A to 6F are repeated again to obtain a nitride film having a desired film thickness.
  • the first and second source gases are supplied, and the formed first and second chemical adsorption layers are subjected to plasma treatment.
  • the number of plasma treatments can be reduced, and the throughput can be improved.
  • the risk of plasma damage to the underlayer of the chemical adsorption layer is reduced. Therefore, a high quality film can be formed.
  • ALD can be performed at a relatively low temperature, and it is not necessary to perform a treatment such as 600 ° C. or higher unlike thermal ALD, so that a high-quality film can be formed at a low temperature.
  • the manufacturing process can be liberalized.
  • a gas containing BTBAS bis-tert-butyl-amino-silane
  • the ALD gas a gas containing BTBAS (bis-tert-butyl-amino-silane)
  • BTBAS bis-tert-butyl-amino-silane
  • a gas containing a relatively large molecular weight such as BTBAS is generally expensive and at least more expensive than a gas containing at least the relatively low molecular weight hexachlorodisilane or silane. Therefore, it is disadvantageous to use a large amount of such an expensive gas in the above-described film formation in view of cost.
  • the raw material gas supplied in the processing vessel is not chemically adsorbed but is relatively excessive and finally exhausted. From such a viewpoint, it is advantageous from the viewpoint of cost reduction to use the gas containing hexachlorodisilane or the gas containing silane.
  • the microwave plasma is generated by a radial line slot antenna (RLSA). Then, plasma damage during film formation can be greatly reduced. Therefore, according to such a film forming method, a high quality film can be formed. That is, since the plasma generated by the microwave emitted from the RLSA is used, the generated plasma is processed at a relatively low electron temperature. Moreover, since radicals are mainly generated, nitriding is performed using radicals. Then, when forming the nitride film, it is possible to greatly reduce physical damage due to charging damage or ion irradiation to the underlayer. Therefore, a high quality film can be formed.
  • RLSA radial line slot antenna
  • the first source gas in addition to the above-described Si 2 Cl 6 , SiCl 4 , Si 3 Cl 8 , SiH 2 Cl 2 or the like can be used as a chlorine-based gas. Further, a gas containing aluminum chloride or a gas containing Ge 2 Cl 6 is used. Specifically, the second source gas includes Si 2 H 4 , Si 3 H 8 , SiH 2 Cl 2 , and trimethylaluminum (TMAl) in addition to SiH 4 described above. A gas or a gas containing GeH 4 is used. Further, as the second source gas, a gas having an amino group or a gas having an alkyl group such as a methyl group or an ethyl group is used.
  • a pattern using a gas containing aluminum chloride as the first source gas, a gas using a gas containing trimethylaluminum as the second source gas, and Ge 2 Cl 6 as the first source gas There is a pattern using a gas and using a gas containing GeH 4 as the second source gas.
  • the formed film includes a nitride film and an oxide film.
  • silicon oxide film there are a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, a gallium oxide film, a gallium nitride film, a hafnium oxide film, a hafnium nitride film, a ruthenium oxide film, a ruthenium nitride film, and the like.
  • FIG. 7 is a graph showing the relationship between the nitride film thickness and the nitriding time.
  • the vertical axis represents the nitride film thickness ( ⁇ (angstrom))
  • the horizontal axis represents the nitriding time (minutes).
  • the nitride film thickness that is, the film thickness that can be nitrided by plasma treatment is between 12 and 14 angstroms. That is, in nitriding in plasma processing, there are few factors due to time, and nitriding can be performed in a short plasma nitriding time by setting the chemical adsorption layer within the above-described film thickness range. Therefore, in the above process, in the initial stage of the film forming process, in consideration of the influence on the target substrate W, a plasma nitriding process may be performed after a chemical adsorption layer of about 12 to 14 angstroms is formed.
  • FIG. 8 is a graph showing the relationship between the oxide film thickness and the oxidation time.
  • the vertical axis represents the oxide film thickness ( ⁇ (angstrom))
  • the horizontal axis represents the oxidation time (seconds).
  • the oxide film thickness increases as the oxidation time increases. That is, in the plasma oxidation, the chemical adsorption layer can be formed to an arbitrary thickness, and then the plasma oxidation treatment can be performed for a time corresponding to the thickness, whereby the film can be appropriately formed. Compared with plasma nitridation, the time efficiency of plasma oxidation is about 1/10.
  • the process conditions in the film formation include a temperature range of room temperature to less than 600 ° C., preferably 200 to 400 ° C., as the adsorption step.
  • the pressure range in the film formation is mainly in the range of 0.1 to 10 Torr. Further, in the case of forming a nitride film, it is 3 to 8 Torr, and in the case of forming an oxide film, it is 50 to 500 mTorr. The range is mainly adopted.
  • Table 1 shows a part of specific steps in forming the nitride film.
  • the initial nitriding step (step 1) plasma nitriding is performed on the substrate surface.
  • NH 3 gas is supplied at a flow rate of 400 sccm
  • N 2 gas is supplied at a flow rate of 900 sccm
  • Ar gas is supplied at a flow rate of 1200 sccm
  • the pressure is set at 5 Torr
  • the microwave power is set at 4000 W.
  • the surface state of the substrate to be processed is H-terminated.
  • this initial nitriding step (step 1) may be omitted if the substrate surface is in a state where an adsorption layer can be formed by supplying the source gas.
  • a Cl-based gas (first source gas) is supplied to form a first chemical adsorption layer on the surface of the substrate to be processed.
  • Ar gas is supplied at 1000 sccm
  • HCD gas as a Cl-based gas is supplied at a flow rate of 100 sccm
  • the pressure is set at 1 Torr.
  • unnecessary residual material gas is exhausted (step 3).
  • the surface state of the substrate to be processed is Cl-terminated.
  • step 4 second chemical adsorption layer forming step
  • an H-based gas (second raw material gas) is supplied to the second chemical adsorption layer on the second chemical adsorption layer.
  • a chemisorbed layer is formed.
  • Ar gas is supplied at a flow rate of 1000 sccm
  • SiH 4 gas as an H-based gas is supplied at a flow rate of 100 sccm
  • the pressure is set at 1 Torr.
  • unnecessary remaining source gas is exhausted (step 5).
  • Steps 4 and 5 the surface state of the substrate to be processed is H-terminated.
  • the Cl-based gas is supplied again to form the first chemical adsorption layer.
  • Ar gas is supplied at a flow rate of 1000 sccm
  • HCD gas as a Cl-based gas is supplied at 100 sccm
  • the pressure is set at 1 Torr.
  • unnecessary residual material gas is exhausted (step 7).
  • the surface state of the substrate to be processed is again Cl-terminated.
  • the H-based gas adsorption step (step 8), the H-based gas is supplied again to form a second chemical adsorption layer.
  • Ar gas is supplied at 1000 sccm
  • SiH 4 gas as H-based gas is supplied at a flow rate of 100 sccm
  • the pressure is set at 1 Torr.
  • unnecessary remaining source gas is exhausted (step 9).
  • Steps 8 and 9 the surface state of the substrate to be processed is again H-terminated.
  • Step 10 the Cl-based gas is supplied again to form the first chemical adsorption layer.
  • Ar gas is supplied at 1000 sccm
  • HCD gas as Cl-based gas is supplied at a flow rate of 100 sccm
  • the pressure is set at 1 Torr.
  • unnecessary residual material gas is exhausted (step 11).
  • Steps 10 and 11 the surface state of the substrate to be processed is again Cl-terminated.
  • the H-based gas is supplied again to form a second chemical adsorption layer.
  • Ar gas is supplied at 1000 sccm
  • SiH 4 gas as H-based gas is supplied at a flow rate of 100 sccm
  • the pressure is set at 1 Torr.
  • unnecessary residual material gas is exhausted (step 13).
  • Steps 12 and 13 the surface state of the substrate to be processed is again H-terminated.
  • adsorption by the Cl-based gas and the adsorption by the H-based gas are alternately performed three times while providing an exhaust process between the steps in the gas adsorption step.
  • a first chemisorption layer by supplying a Cl-based gas and a second chemisorption layer by supplying an H-based gas are formed alternately in three layers, and the first six atomic layers are chemisorbed. The layer will be adsorbed.
  • nitriding treatment is performed with plasma of atoms adsorbed by six atomic layers (step 14).
  • NH 3 gas is flowed at 400 sccm
  • N 2 gas is flowed at 900 sccm
  • Ar gas is flowed at 1200 sccm
  • the pressure is set at 5 Torr
  • the microwave power is set at 4000 W.
  • plasma nitriding treatment formation of the first nitride film of the atomic layer adsorbed by 6 atomic layers is performed.
  • the surface state of the substrate to be processed is H-terminated.
  • the flow from step 2 to step 14 is one cycle.
  • Steps 15 to 26 are repeated in the same manner as Steps 2 to 13 described above to adsorb the second 6 atomic layer chemical adsorption layer on the first nitride film, and to the second 6 atomic layer portion.
  • Plasma nitridation of the chemical adsorption layer is performed (step 27). That is, step 15 to step 27 are the next cycle. In this way, the second nitride film is formed.
  • a second nitride film is formed on the first nitride film, and a cycle necessary for gas adsorption and plasma nitridation is repeated so as to obtain a desired film thickness. Then, a nitride film having a desired film thickness formed on the substrate to be processed is obtained.
  • the first source gas exhausting step is included between the first source gas supplying step and the second source gas supplying step.
  • the first source gas may be exhausted only by supplying the source gas.
  • the second raw material gas exhausting step is included after the second raw material gas supplying step.
  • the present invention is not limited thereto, and the second raw material gas supplying step and the plasma processing gas supplying step include the second raw material gas exhausting step. You may comprise so that only exhaust of source gas may be performed.
  • a cover member that covers the support base is disposed, and the source gas is supplied in the space covered by the cover member. Good. By doing so, the amount of source gas can be reduced and the time can be shortened, and the film can be formed more efficiently.
  • the first and second source gases are alternately supplied, and the first chemical adsorption layer by the supply of the first source gas and the second chemical by the supply of the second source gas are supplied.
  • the adsorption layers are alternately formed, the present invention is not limited to this.
  • a third source gas different from the first and second source gases is supplied between them, and a third chemistry by supplying the third source gas is performed.
  • An adsorption layer may be formed.
  • other different types of source gases may be used. That is, in the present invention, at least two different source gases are supplied, a chemical adsorption layer is formed, and this is subjected to plasma treatment to form a film.
  • the plasma processing is performed by the microwave by RLSA using the slot antenna plate.
  • the present invention is not limited to this, and the microwave plasma processing apparatus having the comb-shaped antenna unit, the magnetron type A plasma processing apparatus may be used.
  • MOS type semiconductor element 12 silicon substrate, 13 element isolation region, 14a p type well, 14b n type well, 15a high concentration n type impurity diffusion region, 15b high concentration p type impurity diffusion region, 16a n type impurity diffusion region, 16b p-type impurity diffusion region, 17 gate oxide film, 18 gate electrode, 19 gate sidewall, 21 insulating film, 22 contact hole, 23 buried electrode, 24 metal wiring layer, 26, 27 region, 29 heater, 30, 50 gas Supply hole, 31 plasma processing apparatus, 32 processing container, 33 gas supply unit, 34 support base, 35 microwave generator, 36 dielectric window, 37 slot antenna plate, 38 dielectric member, 39 plasma generation mechanism, 40 slot hole , 41 bottom, 42 side walls, 43 exhaust holes, 44 lids , 45 O-ring, 46, 47 gas supply part, 48 lower surface, 49 gas supply system, 51 cylindrical support part, 52 cooling jacket, 53 matching mechanism, 54 mode converter, 55 waveguide, 56 coaxial waveguide, 57 recess, 58 high frequency power supply, 59 matching unit,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 成膜方法は、被処理基板上に、第一の原料ガスを供給し、被処理基板上に第一の原料ガスにより吸着される第一の化学吸着層を形成する第一の原料ガス供給工程(A)と、第一の化学吸着層が形成された被処理基板上に、第一の原料ガスとは異なる第二の原料ガスを供給し、第一の化学吸着層上に第二の原料ガスにより吸着される第二の化学吸着層を形成する第二の原料ガス供給工程(C)と、マイクロ波プラズマを用い、少なくとも第一および第二の化学吸着層に対して、プラズマ処理を行うプラズマ処理工程(E)とを含む。

Description

成膜方法
 この発明は、成膜方法に関するものであり、特に、半導体素子の製造に利用される成膜方法に関するものである。
 従来、LSI(Large Scale Integrated circuit)やCCD(Charge Coupled Device)、MOS(Metal Oxide Semiconductor)トランジスタ等に代表される半導体素子のゲート酸化膜等への高耐圧特性や優れたリーク特性が要求される絶縁層を形成する場合、熱CVD(Chemical Vapor Deposition)法を用いることが一般的であった。しかし、高い絶縁性が要求されるシリコン酸化膜を成膜する場合において、上述した熱CVDによるシリコン酸化膜の成膜によると、シリコン基板を高温に暴露する必要がある。そうすると、比較的低融点の物質、例えば、低融点の金属や高分子化合物により既にシリコン基板上に導電層等が形成されている場合、低融点金属の溶融等が生じる問題があった。
 一方、近年のデバイスの高集積化の観点から、3次元構造等への段差被覆性や均一性、絶縁膜内および界面に不純物や物理的な欠陥の無い高品質な膜が要求されている。これらを解決する手法として、基板表面に原子単位相当で反応ガスを周期的に供給することにより成膜することができる原子層堆積(ALD(Atomic Layer Deposition))が有効な手段の一つであることが知られている。
 ここで、原子層堆積(ALD)を用いて、シングルチャンバ、すなわち、一つのチャンバ(処理容器)内において、異なる堆積プロセスを実行する技術が、特開2007-138295号公報(特許文献1)に開示されている。
特開2007-138295号公報
 昨今においては、半導体素子に要求される特性の向上の観点から、成膜のさらなる薄膜化や成膜された薄膜の膜厚の均一性の向上が求められている。このような状況下において、特に複雑な形状、例えば、高アスペクト比の形状に対するカバレージ、いわゆる段差被覆性の観点によると、原子層堆積(ALD)プロセスを用いて処理を行うのが、有効である。
 ここで、ALDプロセスについて簡単に説明すると、以下の通りである。まず、処理容器内に化学吸着用のガスを供給し、被処理基板の表面に原子層を化学吸着させる。そして、処理容器内の排気を行う。具体的には、化学吸着されなかった余剰のガスや化学吸着層の上に物理吸着したガスの除去を行う。その後、化学吸着させた層に対して、窒化処理や酸化処理等を施し、改質を行う。このような一連の工程を、所望の膜厚に達するまで繰り返し行う。
 しかし、このようなALDプロセスによると、スループットの向上が図れないおそれがある。すなわち、原子層堆積プロセスにおいて、サイクル毎に化学吸着用のガスを処理容器内に充満させるのに、相当な時間がかかってしまうことになる。また、サイクル毎に処理容器内を窒化処理等に要する最適な圧力や温度とする時間もかかってしまう。
 この発明の目的は、スループットの向上を図ることができると共に、高品質な膜を成膜することができる成膜方法を提供することである。
 この発明に係る成膜方法は、被処理基板に成膜を行う成膜方法であって、被処理基板上に、第一の原料ガスを供給し、被処理基板上に第一の原料ガスにより吸着して第一の化学吸着層を形成する第一の原料ガス供給工程と、前記第一の化学吸着層が形成された前記被処理基板上に、前記第一の原料ガスとは異なる第二の原料ガスを供給し、第一の化学吸着層上に第二の原料ガスにより吸着して第二の化学吸着層を形成する第二の原料ガス供給工程と、マイクロ波プラズマを用い、少なくとも前記第一および第二の化学吸着層に対して、プラズマ処理を行うプラズマ処理工程とを含む。
 このような成膜方法によると、第一および第二の原料ガスを供給し、第一および第二の原料ガスによって吸着して形成した少なくとも第一および第二の化学吸着層に対して、プラズマ処理を行うので、所望の膜厚の成膜を行うに際し、プラズマ処理の回数を少なくすることができ、スループットの向上を図ることができる。また、少なくとも第一および第二の化学吸着層に対してプラズマ処理を行って所望の膜厚を有する成膜を行うため、化学吸着層の下地層に対してプラズマによるダメージを与えるおそれは低減する。したがって、高品質な膜を成膜することができる。
 好ましくは、第一の原料ガス供給工程の後であって第二の原料ガス供給工程の前に、第一の原料ガスの排気を行う第一の原料ガス排気工程を含む。
 さらに好ましくは、第二の原料ガス供給工程の後に、第二の原料ガスの排気を行う第二の原料ガス排気工程を含む。
 さらに好ましくは、第一の原料ガス供給工程は、ハロゲン化物を含むガスを供給する工程を含む。
 さらに好ましくは、第二の原料ガス供給工程は、水素結合を有するガスを供給する工程を含む。
 さらに好ましい一実施形態として、第一の原料ガス供給工程は、SiCl(ヘキサクロロジシラン)を含むガスを供給する工程であり、第二の原料ガス供給工程は、SiH(シラン)を含むガスを供給する工程を含む。
 さらに好ましくは、マイクロ波プラズマは、ラジアルラインスロットアンテナ(RLSA)により生成されている。
 さらに好ましくは、プラズマ処理工程は、被処理基板の表面近傍において、プラズマの電子温度が1.5eVよりも低く、かつプラズマの電子密度が1×1011cm-3よりも高いマイクロ波プラズマを用いた処理である。
 また、成膜方法は、窒化膜または酸化膜を成膜する方法である。
 このような成膜方法によると、第一および第二の原料ガスを供給し、第一および第二の原料ガスによって吸着して形成した少なくとも第一および第二の化学吸着層に対して、プラズマ処理を行うので、所望の膜厚の成膜を行うに際し、プラズマ処理の回数を少なくすることができ、スループットの向上を図ることができる。また、少なくとも第一および第二の化学吸着層に対してプラズマ処理を行って所望の膜厚を有する成膜を行うため、化学吸着層の下地層に対してプラズマによるダメージを与えるおそれは低減する。したがって、全体として高品質な膜を成膜することができる。
MOS型半導体素子の一部を示す概略断面図である。 この発明の一実施形態に係る成膜方法に用いられるプラズマ処理装置の要部を示す概略断面図である。 図2に示すプラズマ処理装置に含まれるスロットアンテナ板を板厚方向から見た図である。 誘電体窓の下面からの距離とプラズマの電子温度との関係を示すグラフである。 誘電体窓の下面からの距離とプラズマの電子密度との関係を示すグラフである。 この発明の一実施形態に係る成膜方法のうち、代表的な工程を示すフローチャートである。 窒化膜厚と窒化時間との関係を示すグラフである。 酸化膜厚と酸化時間との関係を示すグラフである。
 以下、この発明の実施の形態を、図面を参照して説明する。まず、この発明の一実施形態に係る成膜方法によって成膜される膜を有する半導体素子の構成について説明する。図1は、この発明の一実施形態に係る成膜方法によって成膜される膜を有するMOS型半導体素子の一部を示す概略断面図である。なお、図1に示すMOS型半導体素子において、導電層をハッチングで示している。
 図1を参照して、MOS型半導体素子11には、シリコン基板12上に、素子分離領域13、p型ウェル14a、n型ウェル14b、高濃度n型不純物拡散領域15a、高濃度p型不純物拡散領域15b、n型不純物拡散領域16a、p型不純物拡散領域16b、およびゲート酸化膜17が形成されている。ゲート酸化膜17を間に挟むように形成される高濃度n型不純物拡散領域15aおよび高濃度p型不純物拡散領域15bのいずれか一方は、ドレインとなり、他方はソースとなる。
 また、ゲート酸化膜17の上には、導電層となるゲート電極18が形成されており、ゲート電極18の側部には、絶縁膜となるゲート側壁部19が形成される。さらに、上記したゲート電極18等が形成されたシリコン基板12の上には、絶縁膜21が形成される。絶縁膜21には、高濃度n型不純物拡散領域15aおよび高濃度p型不純物拡散領域15bに連なるコンタクトホール22が形成され、コンタクトホール22内には穴埋め電極23が形成される。さらにその上に導電層となるメタル配線層24が形成される。さらに、絶縁層となる層間絶縁膜(図示せず)および導電層となるメタル配線層を交互に形成し、最後に外部との接点となるパッド(図示せず)を形成する。このようにMOS型半導体素子11が形成されている。
 この発明の一実施形態に係る成膜方法によって成膜される膜を有する半導体素子には、後述するように、被処理基板上に第一および第二の原料ガスによって吸着させて化学吸着層を形成し、第一および第二の原料ガスによって吸着して形成した複層の化学吸着層に対してプラズマ処理を行うことで形成されたシリコン酸化膜が、例えば、ゲート酸化膜17として含まれる。また、この発明の一実施形態に係る成膜方法によって成膜される絶縁膜は、上記したゲート酸化膜を構成するシリコン酸化膜であって、被処理基板上に第一および第二の原料ガスによって吸着させて化学吸着層を形成し、第一および第二の原料ガスによって吸着させて形成される複層の化学吸着層に対してプラズマ処理することにより成膜されている。
 次に、この発明の一実施形態に係る成膜方法に用いられるプラズマ処理装置の構成および動作について説明する。
 図2は、この発明の一実施形態に係る成膜方法に用いられるプラズマ処理装置の要部を示す概略断面図である。また、図3は、図2に示すプラズマ処理装置に含まれるスロットアンテナ板を下方側、すなわち、図2中の矢印IIIの方向から見た図である。なお、図2において、理解の容易の観点から、部材の一部のハッチングを省略している。
 図2および図3を参照して、プラズマ処理装置31は、その内部で被処理基板Wにプラズマ処理を行う処理容器32と、処理容器32内にプラズマ励起用のガスやプラズマ処理に用いられる材料ガス、ALDにおける原料ガス等を供給するガス供給部33と、その上で被処理基板Wを支持する円板状の支持台34と、マイクロ波を用い、処理容器32内にプラズマを発生させるプラズマ発生機構39と、プラズマ処理装置31全体の動作を制御する制御部(図示せず)とを備える。制御部は、ガス供給部33におけるガス流量、処理容器32内の圧力等、プラズマ処理装置31全体の制御を行う。
 処理容器32は、支持台34の下方側に位置する底部41と、底部41の外周から上方向に延びる側壁42とを含む。側壁42は、略円筒状である。処理容器32の底部41には、その一部を貫通するように排気用の排気孔43が設けられている。処理容器32の上部側は開口しており、処理容器32の上部側に配置される蓋部44、後述する誘電体窓36、および誘電体窓36と蓋部44との間に介在するシール部材としてのOリング45によって、処理容器32は密封可能に構成されている。
 ガス供給部33は、被処理基板Wの中央に向かってガスを吹付ける第一のガス供給部46と、被処理基板Wの周辺側からガスを吹付ける第二のガス供給部47とを含む。第一のガス供給部46においてガスを供給するガス供給孔30は、誘電体窓36の径方向中央であって、支持台34と対向する対向面となる誘電体窓36の下面48よりも誘電体窓36の内方側に後退した位置に設けられている。第一のガス供給部46は、第一のガス供給部46に接続されたガス供給系49により流量等を調整しながらプラズマ励起用の不活性ガスやプラズマ処理用の材料ガス、ALD用の原料ガス等を供給する。第二のガス供給部47は、側壁42の上部側の一部において、処理容器32内にプラズマ励起用のガスや材料ガス、原料ガス等を供給する複数のガス供給孔50を設けることにより形成されている。複数のガス供給孔50は、周方向に等間隔に設けられている。第一のガス供給部46および第二のガス供給部47には、同じガス供給源から同じ種類のプラズマ励起用の不活性ガスや原料ガス等が供給される。なお、要求や制御内容に応じて、第一のガス供給部46および第二のガス供給部47から別のガスを供給することもでき、それらの流量比等を調整することもできる。
 支持台34には、RF(radio frequency)バイアス用の高周波電源58がマッチングユニット59を介して支持台34内の電極61に電気的に接続されている。この高周波電源58は、例えば、13.56MHzの高周波を所定の電力(バイアスパワー)で出力可能である。マッチングユニット59は、高周波電源58側のインピーダンスと、主に電極61、プラズマ、処理容器32といった負荷側のインピーダンスとの間で整合をとるための整合器を収容しており、この整合器の中には、整合器を保護するためのブロッキングコンデンサが含まれている。
 支持台34は、静電チャック(図示せず)により、その上に被処理基板Wを支持可能である。また、支持台34は、加熱のための温度調整機構等を備え、例えば、支持台34の内部に設けられたヒータ29により所望の温度に設定可能である。支持台34は、底部41の下方側から垂直上方に延びる絶縁性の筒状支持部51に支持されている。上記した排気孔43は、筒状支持部51の外周に沿って処理容器32の底部41の一部を貫通するように設けられている。排気孔43を囲むように下方側に突出する排気室(図示せず)が設けられ、排気室に接続する排気管(図示せず)を介して排気装置(図示せず)が接続されている。排気装置は、ターボ分子ポンプなどの真空ポンプを有している。排気装置により、処理容器32内を所定の圧力まで減圧することができる。
 プラズマ発生機構39は、処理容器32の上部および外部に設けられる。プラズマ発生機構39は、プラズマ励起用のマイクロ波を発生させるマイクロ波発生器35と、支持台34と対向する位置に配置され、マイクロ波発生器35により発生させたマイクロ波を処理容器32内に導入する誘電体窓36と、複数のスロット40(図2参照)が設けられて構成しており、誘電体窓36の上方側に配置され、マイクロ波を誘電体窓36に放射するスロットアンテナ板37と、スロットアンテナ板37の上方側に配置され、後述する同軸導波管56により導入されたマイクロ波を径方向に伝播する誘電体部材38とを含む。
 マッチング機構53を有するマイクロ波発生器35は、導波管55およびモード変換器54を介して、マイクロ波を導入する同軸導波管56の上部に接続されている。例えば、マイクロ波発生器35で発生させたTEモードのマイクロ波は、導波管55を通り、モード変換器54によりTEMモードへ変換され、同軸導波管56を伝播する。マイクロ波発生器35において発生させるマイクロ波の周波数としては、例えば、2.45GHzが選択される。
 誘電体窓36は、略円板状であって、誘電体で構成されている。誘電体窓36の下面48の一部には、導入されたマイクロ波による定在波の発生を容易にするためのテーパ状に凹んだ環状の凹部57が設けられている。この凹部57により、誘電体窓36の下部側にマイクロ波によるプラズマを効率的に生成することができる。なお、誘電体窓36の具体的な材質としては、石英やアルミナ等が挙げられる。
 スロットアンテナ板37は、金属製の薄板状であって、円板状である。複数の長孔状のスロット40については、図2に示すように、一対のスロット40が略ハの字状に直交するように設けられており、一対をなしたスロット40が周方向に所定の間隔を開けて同心円状に設けられている。また、径方向においても、複数の一対のスロット40が所定の間隔を開けて同心円状に設けられている。
 マイクロ波発生器35により発生させたマイクロ波は、同軸導波管56を通って、誘電体部材38に伝播される。マイクロ波は、その内部に冷媒等を循環させる循環路60を有し、スロットアンテナ板37、誘電体窓36、誘電体部材38等の温度調整を行なう冷却ジャケット52とスロットアンテナ板37に挟まれた誘電体部材38の内部を径方向外側に向かって放射状に広がり、スロットアンテナ板37に設けられた複数のスロット40から誘電体窓36を透過して処理容器32内に導入される。マイクロ波は、誘電体窓36の直下に電界を生じさせ、処理容器32内にプラズマを生成させる。すなわち、プラズマ処理装置31において処理に供されるマイクロ波プラズマは、上記した構成の冷却ジャケット52、スロットアンテナ板37および誘電体部材38からなるラジアルラインスロットアンテナ(RLSA:Radial Line Slot Antenna)から放射されるマイクロ波により処理容器32内に生成される。なお、以下の説明においては、このようにして生成されたプラズマを、RLSAプラズマという場合がある。
 図4は、プラズマ処理装置31においてプラズマを発生させた際の処理容器32内における誘電体窓36の下面48からの距離とプラズマの電子温度との関係を示すグラフである。図5は、プラズマ処理装置31においてプラズマを発生させた際の処理容器32内における誘電体窓36の下面48からの距離とプラズマの電子密度との関係を示すグラフである。
 図4および図5を参照して、誘電体窓36の直下の領域、具体的には、図4に一点鎖線で示すおおよそ10mm程度までの領域26は、いわゆるプラズマ生成領域と呼ばれる。この領域26においては、電子温度が高く、電子密度が1×1012cm-3よりも大きい。一方、二点鎖線で示す10mmを越える領域27は、プラズマ拡散領域と呼ばれる。この領域27においては、電子温度が1.0~1.3eV程度、少なくとも1.5eVよりも低く、電子密度が1×1012cm-3程度、少なくとも1×1011cm-3よりも高い。後述する被処理基板Wに対するプラズマ処理は、例えば、このようなプラズマ拡散領域で行われる。すなわち、プラズマ処理は、被処理基板Wの表面近傍において、プラズマの電子温度が1.5eVよりも低く、かつプラズマの電子密度が1×1011cm-3よりも高いマイクロ波プラズマを用いることが望ましい。
 次に、この発明の一実施形態に係る成膜方法について説明する。図6は、この発明の一実施形態に係る成膜方法のうち、代表的な工程を示すフローチャートである。なお、後述するプラズマ処理時における支持台34の温度は、例えば、300~400℃の間の任意の温度が選択される。また、ここでは、成膜については、シリコン窒化膜(SiN膜)を形成するものとする。
 通常、被処理基板Wの表面において、例えば自然酸化膜、有機物等が付着していると、被処理基板W上に例えば、SiCl(ヘキサクロロジシラン(以下、「HCD」ということもある)を含むガスの原料ガスを供給しても、原料ガスの化学吸着層が形成されないことがある。この場合、処理容器32内に水素プラズマを発生させて、被処理基板Wの表面について、水素で終端させることが良い。このような問題は、製膜する膜の均一性や膜質が悪化する可能性がある。したがって、上記のように前処理工程を行うことで、被処理基板Wの表面状態を改善することができる。前処理工程は、被処理基板Wの種類、成膜する膜種、求められる膜質に応じて適宜変更することができる。例えば、被処理基板WがSi基板の場合、化学吸着を行わず、被処理基板Wに対し、プラズマを用いて直接窒化処理を行ってもよいし、被処理基板Wに紫外線を照射することで、有機物除去を行ってもよい。なお、前処理工程は、必要に応じて行われる任意の工程であって、省略することもできる。
 次に、支持台34上に被処理基板Wを静電チャックにより支持させる。そして、被処理基板Wの表面にガス供給部46、47から、塩素系ガス、例えば、SiCl(HCD)を含む第一の原料ガスを供給し、第一の原料ガスにより吸着される第一の化学吸着層を形成する(図6(A))。そうすると、上記前処理をした場合、被処理基板Wの表面は水素終端となっているため、被処理基板Wの表面のH(水素)とSiCl(HCD)のCl(塩素)とが反応し、HClとなって脱離する。そして、被処理基板Wの表面において、SiClが化学吸着することにより、第一の化学吸着層が形成される。この場合、被処理基板Wの表面においては、塩素で終端している。
 次に、処理容器32内において、不要に残留する第一の原料ガスの排気を行う(図6(B))。処理容器32内の第一の原料ガスの排気については、ガス供給部46、47から排気用のパージガスを供給しつつ、排気孔43から処理容器32内のガスを除去することができる。パージガスとしては、例えば、アルゴン(Ar)ガスが用いられる。この第一の原料ガスの排気工程により、化学吸着層の上に物理吸着した第一の原料ガスや、処理容器32内に余剰に存在する第一の原料ガスが、処理容器32内から効率良く早く取り除かれる。
 次に、ガス供給部46、47から第一の原料ガスとは異なる第二の原料ガス、例えば、水素結合を有するガスのSiH(シラン)ガスを供給し、第一の化学吸着層の上に、第二の原料ガスにより吸着される第二の化学吸着層を形成する(図6(C))。この場合、被処理基板Wの表面のCl(塩素)と、第二の原料ガスとしてのSiHのHとが反応し、HClとなって脱離する。そして、被処理基板Wの表面において、Si化合物(SiH、SiH、SiH等のSiHx)が化学吸着することにより、第二の化学吸着層が形成される。この場合、被処理基板Wの表面においては、水素で終端している。
 次に、処理容器32内において、第二の原料ガスの排気を行う(図6(D))。処理容器32内の第二の原料ガスの排気については、上記した第一の原料ガスの排気と同様に、ガス供給部46、47から排気用のパージガスを供給しつつ、排気孔43から処理容器32内のガスを除去することができる。
 このようにして、第一の原料ガスの供給による第一の化学吸着層の形成および第二の原料ガスの供給による第二の化学吸着層の形成を行う。そして、この図6(A)~図6(D)に示す工程、すなわち、第一および第二の原料ガスの化学吸着層の形成を、交互に複数回行い、プラズマ処理を行うのに所望の膜厚を形成することができる。例えば、0.2~20nmの膜厚が良い。
 次に、第一および第二の化学吸着層の形成を交互に複数回行い所望の膜厚を形成し、第一および第二の化学吸着層に対して、窒素含有ガスのプラズマによりプラズマ処理を行う(図6(E))。この場合、上記したプラズマ処理装置31により生成したマイクロ波プラズマを用いて、プラズマ窒化処理を行う。具体的には、ガス供給部46、47からプラズマ処理用のガス等、例えば、プラズマ励起用のガスとしてアルゴン(Ar)ガスと窒素含有ガスとしてアンモニア(NH)ガスを供給して窒素含有ガスのプラズマを生成し、窒素含有ガスのプラズマにより、第一および第二の化学吸着層のプラズマ窒化処理を行う。
 また、酸化膜を形成する場合は、プラズマ励起用のガスとしてアルゴン(Ar)ガスと酸素(O)ガスとの混合ガスを用いてプラズマ酸化処理を行う。
 このプラズマ処理の後、プラズマ処理用のガスを排気する(図6(F))。そして、再び、図6(A)~図6(F)の工程を繰り返し、所望の膜厚の窒化膜を得る。
 このように構成することにより、第一および第二の原料ガスを供給し、形成された第一および第二の化学吸着層に対して、プラズマ処理を行うので、所望の膜厚の成膜を行うに際し、プラズマ処理の回数を少なくすることができ、スループットの向上を図ることができる。また、化学吸着層の下地層に対してプラズマによるダメージを与えるおそれは低減する。したがって、高品質な膜を成膜することができる。
 この場合、比較的低温でALDを行うことができ、熱ALDのように、600℃以上とするような処理を行う必要がないので、低温で高品質な膜を成膜することができると共に、低融点金属を用いた半導体素子の製造等において、製造工程の自由化を図ることができる。
 ここで、ALDのガスとして、例えば、BTBAS(bis-tertiaryl-buthyl-amino-silane)を含むガスを用いる場合がある。しかし、このようなBTBASのような比較的分子量の大きな分子を含むガスについては、総じて高価であり、少なくとも上記した比較的低分子量のヘキサクロロジシランやシランを含むガスよりも高価である。したがって、このような高価なガスを、上記した成膜において多量に用いることは、コストの面を考慮すると、不利である。特に、処理容器内において供給される原料ガスについては、化学吸着されず、余剰となって最終的に排気されるものが比較的多い。このような観点から、上記したヘキサクロロジシランを含むガスやシランを含むガスを用いるのが、コストダウンの観点から、有利である。
 この場合、マイクロ波プラズマは、ラジアルラインスロットアンテナ(RLSA)により生成されている。そうすると、成膜時におけるプラズマダメージを大きく低減することができる。したがって、このような成膜方法によると、高品質な膜を形成することができる。すなわち、RLSAから放出されたマイクロ波によって生成されるプラズマを用いているため、生成されるプラズマにおいて、電子温度の比較的低いもので処理が行われる。また、主としてラジカルが生成されるため、ラジカルを用いて窒化処理が行われる。そうすると、窒化膜を形成する際に、下地層に対するチャージングダメージやイオン照射等による物理的なダメージを大きく低減することができる。したがって、高品質な膜を成膜することができる。
 なお、第一の原料ガスとしては、上記したSiClの他に、塩素系ガスとしてSiCl、SiCl、SiHCl等が使用できる。また、塩化アルミニウムを含むガスや、GeClを含むガスが用いられる。第二の原料ガスとしては、具体的には、上記したSiHの他に、水素系ガスとしてSi、Si、SiHCl、トリメチルアルミニウム(TMAl:Trimethyl Aluminium)を含むガスやGeHを含むガスが用いられる。また、第二の原料ガスとしては、アミノ基を有するガスや、メチル基やエチル基等、アルキル基を有するガスが用いられる。具体的な組み合わせの一例としては、第一の原料ガスとして塩化アルミニウムを含むガスを用い、第二の原料ガスとしてトリメチルアルミニウムを含むガスを用いるパターン、第一の原料ガスとしてGeClを含むガスを用い、第二の原料ガスとしてGeHを含むガスを用いるパターン等がある。また、形成される膜としては、窒化膜および酸化膜がある。具体的には、酸化ケイ素膜、窒化ケイ素膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化ガリウム膜、窒化ガリウム膜、酸化ハフニウム膜、窒化ハフニウム膜、酸化ルテニウム膜、窒化ルテニウム膜等がある。
 ここで、窒化膜の膜厚と窒化時間との関係について説明する。図7は、窒化膜厚と窒化時間との関係を示すグラフである。図7において、縦軸は、窒化膜厚(Å(オングストローム))を示し、横軸は、窒化時間(分)を示す。
 図7を参照して、窒化時間が1分程度、10分程度、20分程度において、窒化膜厚、すなわち、プラズマ処理により窒化ができる膜厚は、12~14オングストロームの間である。すなわち、プラズマ処理における窒化においては、時間に起因する要素は少なく、化学吸着層を上記した膜厚の範囲内として短いプラズマ窒化処理時間で窒化処理を行うことができる。したがって、上記した工程において、成膜工程の初期では、被処理基板Wへの影響を考慮して、12~14オングストローム程度の化学吸着層を形成した後、プラズマ窒化処理を行ってもよい。このようにすると、化学吸着層の下地層が窒化されるおそれを低減することができる。それ以降の工程では、確実に化学吸着層を窒化するため12オングストローム以下の化学吸着層を形成した後、プラズマ窒化を行うというサイクルを繰り返し、所望の膜厚の窒化膜を得ることにより、高品質な膜を効率的に得ることができる。
 次に、酸化膜の膜厚と酸化時間との関係について説明する。図8は、酸化膜厚と酸化時間との関係を示すグラフである。図8において、縦軸は、酸化膜厚(Å(オングストローム))を示し、横軸は、酸化時間(秒)を示す。
 図8を参照すると、酸化時間が長くなるにつれ、酸化膜厚が厚くなっていることが把握できる。すなわち、プラズマ酸化においては、化学吸着層を任意の厚さまで形成し、その後、厚さに応じた時間のプラズマ酸化処理を行うことにより、適切に成膜を行うことができる。なお、プラズマ窒化と比較して、プラズマ酸化については、時間効率が10分の1程度である。
 なお、成膜におけるプロセス条件については、吸着工程として、室温~600℃未満の温度範囲が良く、好ましくは、200~400℃の温度範囲である。また、成膜における圧力の範囲としては、0.1~10Torrの範囲が主に採用され、さらに、窒化膜の成膜の場合は3~8Torr、酸化膜の成膜の場合は50~500mTorrの範囲が主に採用される。
 ここで、以下に示す表1を参照して、窒化膜の成膜における具体的なプロセスを説明する。表1は、窒化膜を成膜する際の具体的な工程の一部を示すものである。
Figure JPOXMLDOC01-appb-T000001
 表1においては、左の列から順に工程、供給するガスの流量、圧力、マイクロ波電力、およびその時の被処理基板の表面状態を示している。そして、上の行から下の行に向かってプロセスを進行させるものである。表1中の「-」は、ガスを流していない状態や圧力を調整していない状態、マイクロ波電力を投入していない状態を示している。
 まず、初期窒化工程(ステップ1)において、基板表面に対してプラズマ窒化を行う。この場合、NHガスを400sccm、Nガスを900sccm、Arガスを1200sccmの流量で供給し、圧力を5Torrとし、マイクロ波電力を4000Wとして行う。この場合、被処理基板の表面状態は、H終端となる。また、基板表面が、原料ガスの供給による吸着層の形成が可能な状態であれば、この初期窒化工程(ステップ1)はなくても良い。基板表面に自然酸化膜や有機物が付着している場合は、水素プラズマ処理をして水素終端とするのが好ましい。
 次に、Cl系ガス吸着工程(ステップ2:第一の化学吸着層形成工程)において、Cl系ガス(第1の原料ガス)を供給して被処理基板の表面に第一の化学吸着層を形成する。この場合、Arガスを1000sccm、Cl系ガスとしてのHCDガスを100sccmの流量で供給し、圧力を1Torrとする。その後、不要に残留する原料ガスの排気を行う(ステップ3)。このステップ2、3では、被処理基板の表面状態は、Cl終端となる。
 その後、H系ガス吸着工程(ステップ4:第二の化学吸着層形成工程)において、H系ガス(第二の原料ガス)を供給して上記した第一の化学吸着層の上に第二の化学吸着層を形成する。この場合、Arガスを1000sccm、H系ガスとしてのSiHガスを100sccmの流量で供給し、圧力を1Torrとする。その後、不要に残留する原料ガスの排気を行う(ステップ5)。このステップ4、5では、被処理基板の表面状態は、H終端となる。
 次に、Cl系ガス吸着工程(ステップ6)において、再びCl系ガスを供給し、第一の化学吸着層を形成する。この場合、ステップ2と同様に、Arガスを1000sccmの流量、Cl系ガスとしてのHCDガスを100sccmで供給し、圧力を1Torrとする。その後、不要に残留する原料ガスの排気を行う(ステップ7)。このステップ6、7では、被処理基板の表面状態は、再びCl終端となる。
 その後、H系ガス吸着工程(ステップ8)において、再びH系ガスを供給し、第二の化学吸着層を形成する。この場合、ステップ4と同様に、Arガスを1000sccm、H系ガスとしてのSiHガスを100sccmの流量で供給し、圧力を1Torrとする。その後、不要に残留する原料ガスの排気を行う(ステップ9)。このステップ8、9では、被処理基板の表面状態は、再びH終端となる。
 次に、Cl系ガス吸着工程(ステップ10)において、再びCl系ガスを供給し、第一の化学吸着層を形成する。この場合、ステップ2、6と同様に、Arガスを1000sccm、Cl系ガスとしてのHCDガスを100sccmの流量で供給し、圧力を1Torrとする。その後、不要に残留する原料ガスの排気を行う(ステップ11)。このステップ10、11では、被処理基板の表面状態は、再びCl終端となる。
 その後、H系ガス吸着工程(ステップ12)において、再びH系ガスを供給し、第二の化学吸着層を形成する。この場合、ステップ4、8と同様に、Arガスを1000sccm、H系ガスとしてのSiHガスを100sccmの流量で供給し、圧力を1Torrとする。その後、不要に残留する原料ガスの排気を行う(ステップ13)。このステップ12、13では、被処理基板の表面状態は、再びH終端となる。
 このようにして、ガス吸着工程における各工程間に排気工程を設けながら、Cl系ガスによる吸着、およびH系ガスによる吸着を交互に3回ずつ行う。この実施形態においては、3層ずつ交互にCl系ガスの供給による第一の化学吸着層およびH系ガスの供給による第二の化学吸着層が形成され、第一の6原子層分の化学吸着層が吸着されることになる。
 そして、6原子層分吸着された原子のプラズマによる窒化処理を行う(ステップ14)。窒化工程においては、NHガスを400sccm、Nガスを900sccm、Arガスを1200sccm流し、圧力を5Torrとし、マイクロ波電力を4000Wとして行う。このようにして、6原子層分吸着された原子層のプラズマ窒化処理(第一の窒化膜形成)を行う。なお、この場合、被処理基板の表面状態は、H終端となる。また、この場合のステップ2~ステップ14の流れを、1サイクルとする。
 更に、上記のステップ2~13と同様にステップ15~ステップ26を繰り返し、第一の窒化膜上に、第二の6原子層分の化学吸着層を吸着させ、第二の6原子層分の化学吸着層のプラズマ窒化を行う(ステップ27)。すなわち、ステップ15~ステップ27が、次の1サイクルとなる。このようにして、第二の窒化膜の形成を行う。
 このようにして、第一の窒化膜の上に第二の窒化膜を形成し、所望の膜厚となるようにガス吸着およびプラズマ窒化の必要なサイクルを繰り返す。そして、被処理基板の上に形成された所望の膜厚を有する窒化膜を得る。
 なお、上記の実施の形態において、第一の原料ガス供給工程と第二の原料ガス供給工程との間に、第一の原料ガス排気工程を含むこととしたが、これに限らず、第二の原料ガスの供給により第一の原料ガスの排気のみを行うよう構成してもよい。また、第二の原料ガス供給工程の後に第二の原料ガス排気工程を含むこととしたが、これに限らず、第一の原料ガス供給工程やプラズマ処理用のガス供給工程において、第二の原料ガスの排気のみを行うよう構成してもよい。
 また、上記の実施の形態において、原料ガスを供給する工程を行う際に、支持台上を覆うカバー部材を配置させ、このカバー部材に覆われた空間において、原料ガスを供給するようにしてもよい。こうすることにより、原料ガスの量の低減や、時間短縮を図ることができ、より効率的に成膜することができる。
 なお、上記の実施の形態において、第一および第二の原料ガスを交互に供給し、第一の原料ガスの供給による第一の化学吸着層および第二の原料ガスの供給による第二の化学吸着層を交互に形成することとしたが、これに限らず、第一および第二の原料ガスと異なる第三の原料ガスをその間に供給し、第三の原料ガスの供給による第三の化学吸着層を形成することにしてもよい。さらには、他の異なる種類の原料ガスを用いることにしてもよい。すなわち、本願発明においては、少なくとも二種類の異なる原料ガスを供給し、化学吸着層を形成し、これをプラズマ処理して成膜するものである。
 また、上記の実施の形態においては、スロットアンテナ板を用いたRLSAによるマイクロ波によりプラズマ処理を行うこととしたが、これに限らず、くし型のアンテナ部を有するマイクロ波プラズマ処理装置、マグネトロン型プラズマ処理装置を用いてもよい。
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 11 MOS型半導体素子、12 シリコン基板、13 素子分離領域、14a p型ウェル、14b n型ウェル、15a 高濃度n型不純物拡散領域、15b 高濃度p型不純物拡散領域、16a n型不純物拡散領域、16b p型不純物拡散領域、17 ゲート酸化膜、18 ゲート電極、19 ゲート側壁部、21 絶縁膜、22 コンタクトホール、23 穴埋め電極、24 メタル配線層、26,27 領域、29 ヒータ、30,50 ガス供給孔、31 プラズマ処理装置、32 処理容器、33 ガス供給部、34 支持台、35 マイクロ波発生器、36 誘電体窓、37 スロットアンテナ板、38 誘電体部材、39 プラズマ発生機構、40 スロット孔、41 底部、42 側壁、43 排気孔、44 蓋部、45 Oリング、46,47 ガス供給部、48 下面、49 ガス供給系、51 筒状支持部、52 冷却ジャケット、53 マッチング機構、54 モード変換器、55 導波管、56 同軸導波管、57 凹部、58 高周波電源、59 マッチングユニット、60 循環路、61 電極。

Claims (9)

  1. 被処理基板に成膜を行う成膜方法であって、
     前記被処理基板上に、第一の原料ガスを供給し、前記被処理基板上に第一の原料ガスにより吸着して第一の化学吸着層を形成する第一の原料ガス供給工程と、
     前記第一の化学吸着層が形成された前記被処理基板上に、前記第一の原料ガスとは異なる第二の原料ガスを供給し、前記第一の化学吸着層上に第二の原料ガスにより吸着して第二の化学吸着層を形成する第二の原料ガス供給工程と、
     マイクロ波プラズマを用い、少なくとも前記第一および第二の化学吸着層に対して、プラズマ処理を行うプラズマ処理工程とを含む、成膜方法。
  2. 前記第一の原料ガス供給工程の後であって前記第二の原料ガス供給工程の前に、前記第一の原料ガスの排気を行う第一の原料ガス排気工程を含む、請求項1に記載の成膜方法。
  3. 前記第二の原料ガス供給工程の後に、前記第二の原料ガスの排気を行う第二の原料ガス排気工程を含む、請求項1に記載の成膜方法。
  4. 前記第一の原料ガス供給工程は、ハロゲン化物を含むガスを供給する工程を含む、請求項1に記載の成膜方法。
  5. 前記第二の原料ガス供給工程は、水素結合を有するガスを供給する工程を含む、請求項1に記載の成膜方法。
  6. 前記第一の原料ガス供給工程は、SiCl(ヘキサクロロジシラン)を含むガスを供給する工程であり、
     前記第二の原料ガス供給工程は、SiH(シラン)を含むガスを供給する工程を含む、請求項5に記載の成膜方法。
  7. 前記マイクロ波プラズマは、ラジアルラインスロットアンテナ(RLSA)により生成されている、請求項1に記載の成膜方法。
  8. 前記プラズマ処理工程は、前記被処理基板の表面近傍において、プラズマの電子温度が1.5eVよりも低く、かつプラズマの電子密度が1×1011cm-3よりも高いマイクロ波プラズマを用いた処理である、請求項1に記載の成膜方法。
  9. 窒化膜または酸化膜を成膜する、請求項1に記載の成膜方法。
PCT/JP2012/060834 2011-04-25 2012-04-23 成膜方法 WO2012147680A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/113,134 US9034774B2 (en) 2011-04-25 2012-04-23 Film forming method using plasma
KR1020137027536A KR101657341B1 (ko) 2011-04-25 2012-04-23 성막 방법
JP2013512347A JP5660205B2 (ja) 2011-04-25 2012-04-23 成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-096753 2011-04-25
JP2011096753 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012147680A1 true WO2012147680A1 (ja) 2012-11-01

Family

ID=47072199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060834 WO2012147680A1 (ja) 2011-04-25 2012-04-23 成膜方法

Country Status (5)

Country Link
US (1) US9034774B2 (ja)
JP (1) JP5660205B2 (ja)
KR (1) KR101657341B1 (ja)
TW (1) TW201305380A (ja)
WO (1) WO2012147680A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140013A (ja) * 2012-12-18 2014-07-31 Tokyo Electron Ltd 薄膜形成方法および薄膜形成装置
US20140273529A1 (en) * 2013-03-15 2014-09-18 Victor Nguyen PEALD of Films Comprising Silicon Nitride
US20140273527A1 (en) * 2013-03-13 2014-09-18 Asm Ip Holding B.V. Methods for forming silicon nitride thin films
JP2016500762A (ja) * 2012-11-07 2016-01-14 ユーピー ケミカル カンパニー リミテッド シリコン含有薄膜の製造方法
JP2016115814A (ja) * 2014-12-15 2016-06-23 東京エレクトロン株式会社 成膜方法
JP2017174918A (ja) * 2016-03-23 2017-09-28 東京エレクトロン株式会社 窒化膜の形成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9824881B2 (en) 2013-03-14 2017-11-21 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US9564309B2 (en) 2013-03-14 2017-02-07 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US9576792B2 (en) 2014-09-17 2017-02-21 Asm Ip Holding B.V. Deposition of SiN
US10410857B2 (en) 2015-08-24 2019-09-10 Asm Ip Holding B.V. Formation of SiN thin films
JP6576277B2 (ja) * 2016-03-23 2019-09-18 東京エレクトロン株式会社 窒化膜の形成方法
JP6728087B2 (ja) 2017-02-22 2020-07-22 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6952542B2 (ja) * 2017-06-21 2021-10-20 東京エレクトロン株式会社 プラズマ処理方法およびプラズマ処理装置
JP6873007B2 (ja) 2017-08-09 2021-05-19 東京エレクトロン株式会社 シリコン窒化膜の成膜方法及び成膜装置
US10580645B2 (en) 2018-04-30 2020-03-03 Asm Ip Holding B.V. Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors
JP7085929B2 (ja) 2018-07-13 2022-06-17 東京エレクトロン株式会社 成膜方法
JP7090568B2 (ja) 2019-01-30 2022-06-24 東京エレクトロン株式会社 成膜方法
KR20220081905A (ko) 2020-12-09 2022-06-16 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 증착용 실리콘 전구체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088062A1 (ja) * 2005-02-17 2006-08-24 Hitachi Kokusai Electric Inc. 半導体デバイスの製造方法および基板処理装置
WO2008035678A1 (fr) * 2006-09-19 2008-03-27 Tokyo Electron Limited Processus de nettoyage de plasma et procédé cvd plasma
JP2009509039A (ja) * 2005-09-21 2009-03-05 アプライド マテリアルズ インコーポレイテッド バッチaldリアクタのための処理プロセス
WO2011125395A1 (ja) * 2010-04-09 2011-10-13 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100269306B1 (ko) * 1997-07-31 2000-10-16 윤종용 저온처리로안정화되는금속산화막으로구성된완충막을구비하는집적회로장치및그제조방법
JP2004343031A (ja) * 2002-12-03 2004-12-02 Advanced Lcd Technologies Development Center Co Ltd 誘電体膜およびその形成方法ならびに誘電体膜を用いた半導体装置およびその製造方法
JP4601975B2 (ja) * 2004-03-01 2010-12-22 東京エレクトロン株式会社 成膜方法
US20050252449A1 (en) * 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US7365027B2 (en) * 2005-03-29 2008-04-29 Micron Technology, Inc. ALD of amorphous lanthanide doped TiOx films
JP4854245B2 (ja) * 2005-09-22 2012-01-18 東京エレクトロン株式会社 半導体装置の製造方法
US20070116888A1 (en) 2005-11-18 2007-05-24 Tokyo Electron Limited Method and system for performing different deposition processes within a single chamber
US7601648B2 (en) * 2006-07-31 2009-10-13 Applied Materials, Inc. Method for fabricating an integrated gate dielectric layer for field effect transistors
WO2008056742A1 (fr) * 2006-11-09 2008-05-15 Ulvac, Inc. Procédé de fabrication de film barrière
CN102027580A (zh) * 2008-05-13 2011-04-20 东京毅力科创株式会社 氧化硅膜的形成方法、氧化硅膜、半导体器件、以及半导体器件的制造方法
JP2010283145A (ja) * 2009-06-04 2010-12-16 Sony Corp 固体撮像素子及びその製造方法、電子機器
JPWO2011033987A1 (ja) * 2009-09-17 2013-02-14 東京エレクトロン株式会社 成膜方法、半導体素子の製造方法、絶縁膜および半導体素子
JP5454575B2 (ja) * 2009-09-17 2014-03-26 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
US20120263887A1 (en) 2011-04-13 2012-10-18 Varian Semiconductor Equipment Associates, Inc. Technique and apparatus for ion-assisted atomic layer deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088062A1 (ja) * 2005-02-17 2006-08-24 Hitachi Kokusai Electric Inc. 半導体デバイスの製造方法および基板処理装置
JP2009509039A (ja) * 2005-09-21 2009-03-05 アプライド マテリアルズ インコーポレイテッド バッチaldリアクタのための処理プロセス
WO2008035678A1 (fr) * 2006-09-19 2008-03-27 Tokyo Electron Limited Processus de nettoyage de plasma et procédé cvd plasma
WO2011125395A1 (ja) * 2010-04-09 2011-10-13 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500762A (ja) * 2012-11-07 2016-01-14 ユーピー ケミカル カンパニー リミテッド シリコン含有薄膜の製造方法
US10290493B2 (en) 2012-11-07 2019-05-14 Up Chemical Co., Ltd. Method for manufacturing silicon-containing thin film
JP2014140013A (ja) * 2012-12-18 2014-07-31 Tokyo Electron Ltd 薄膜形成方法および薄膜形成装置
US20140273527A1 (en) * 2013-03-13 2014-09-18 Asm Ip Holding B.V. Methods for forming silicon nitride thin films
US20140273529A1 (en) * 2013-03-15 2014-09-18 Victor Nguyen PEALD of Films Comprising Silicon Nitride
US9984868B2 (en) * 2013-03-15 2018-05-29 Applied Materials, Inc. PEALD of films comprising silicon nitride
JP2016115814A (ja) * 2014-12-15 2016-06-23 東京エレクトロン株式会社 成膜方法
JP2017174918A (ja) * 2016-03-23 2017-09-28 東京エレクトロン株式会社 窒化膜の形成方法
KR20170110518A (ko) * 2016-03-23 2017-10-11 도쿄엘렉트론가부시키가이샤 질화막의 형성 방법 및 기억 매체
KR102131487B1 (ko) * 2016-03-23 2020-08-05 도쿄엘렉트론가부시키가이샤 질화막의 형성 방법 및 기억 매체

Also Published As

Publication number Publication date
KR20140019803A (ko) 2014-02-17
JP5660205B2 (ja) 2015-01-28
TW201305380A (zh) 2013-02-01
US20140051263A1 (en) 2014-02-20
US9034774B2 (en) 2015-05-19
KR101657341B1 (ko) 2016-09-13
JPWO2012147680A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5660205B2 (ja) 成膜方法
US10699903B2 (en) Two-step process for gapfilling high aspect ratio trenches with amorphous silicon film
US9466483B2 (en) Film deposition apparatus and film deposition method
JP2020136677A (ja) 基材表面内に形成された凹部を充填するための周期的堆積方法および装置
CN111593329A (zh) 包括处理步骤的循环沉积方法及用于其的装置
CN112071754A (zh) 使用重整气体形成电子结构的方法、系统和形成的结构
JP4820864B2 (ja) プラズマ原子層成長方法及び装置
US20120164848A1 (en) Method for forming nitride film
JP2015180768A (ja) 基板処理装置及び半導体装置の製造方法並びに記録媒体
KR20170092462A (ko) 성막 방법
JP2017139451A (ja) 窒化膜の形成方法
KR20120043128A (ko) 플라즈마 cvd 방법, 질화 규소막의 형성 방법 및 반도체 장치의 제조 방법
US10643841B2 (en) Surface modification to improve amorphous silicon gapfill
US10151029B2 (en) Silicon nitride film forming method and silicon nitride film forming apparatus
WO2012011480A1 (ja) 層間絶縁層形成方法及び半導体装置
WO2011162136A1 (en) Film formation method, semiconductor-device fabrication method, insulating film and semiconductor device
KR102272502B1 (ko) 성막 방법 및 성막 장치
US20210198787A1 (en) Film forming method and system
TWI702304B (zh) 矽氮化膜之成膜方法及成膜裝置
US20080233764A1 (en) Formation of Gate Insulation Film
KR20120059557A (ko) 성막 방법, 반도체 소자의 제조 방법, 절연막 및 반도체 소자
US11171014B2 (en) Substrate processing method and substrate processing apparatus
WO2023047497A1 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512347

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137027536

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14113134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776611

Country of ref document: EP

Kind code of ref document: A1