[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012141123A1 - 電圧発生回路 - Google Patents

電圧発生回路 Download PDF

Info

Publication number
WO2012141123A1
WO2012141123A1 PCT/JP2012/059643 JP2012059643W WO2012141123A1 WO 2012141123 A1 WO2012141123 A1 WO 2012141123A1 JP 2012059643 W JP2012059643 W JP 2012059643W WO 2012141123 A1 WO2012141123 A1 WO 2012141123A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
bipolar transistor
circuit
resistance element
Prior art date
Application number
PCT/JP2012/059643
Other languages
English (en)
French (fr)
Inventor
真也 佐野
堀口 真志
隆博 三木
平木 充
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to JP2013509895A priority Critical patent/JP5693711B2/ja
Priority to CN201280018085.5A priority patent/CN103492971B/zh
Priority to EP12772041.5A priority patent/EP2698681B1/en
Priority to KR1020137026669A priority patent/KR101939859B1/ko
Priority to US14/009,715 priority patent/US9564805B2/en
Publication of WO2012141123A1 publication Critical patent/WO2012141123A1/ja
Priority to US15/388,308 priority patent/US9989985B2/en
Priority to US15/966,176 priority patent/US10289145B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors

Definitions

  • the present invention relates to a voltage generation circuit, and more particularly to a technique effective when applied to a reference voltage generation circuit in a semiconductor integrated circuit.
  • a reference voltage generation circuit for supplying a reference voltage to an A / D converter (ADC), a D / A converter (DAC), a regulator, a temperature sensor, etc. in the LSI is formed. Is done. Since the performance of the functional unit is highly dependent on the accuracy of the reference voltage, the reference voltage generation circuit is required to have low dependency on the semiconductor manufacturing process and low temperature dependency. Further, an operation with a low power supply voltage is also required.
  • a band gap reference hereinafter referred to as “BGR (Bandgap Reference)” circuit that generates a voltage based on a band gap value of silicon is often used as a reference voltage generation circuit.
  • Non-patent document 1 and Patent document 1 disclose examples of conventional BGR circuits.
  • Patent Document 2 discloses a BGR circuit corresponding to a low power supply voltage.
  • Non-Patent Document 2 discloses a BGR circuit in which the nonlinear temperature dependence of the output voltage is improved.
  • Non-Patent Documents 4 to 6 disclose an example of a correction circuit for correcting nonlinear temperature dependence with respect to the BGR circuit of Patent Document 1.
  • Non-Patent Document 7 discloses a method of correcting temperature characteristics by a current (I PTAT 2 ) proportional to the square of absolute temperature.
  • the BGR circuit is less affected by the offset of the amplifier unit, which is one of the components of the BGR circuit, and the mismatch of the current mirror circuit, and operates with a power supply voltage of 1 V or less and has a wide temperature range (for example, ⁇ 55 (1 ° C. to 160 ° C.), there is a demand for a device with little voltage fluctuation.
  • the present inventors considered that the conventional BGR circuit has the following problems, for example.
  • Non-Patent Document 1 which has a classic configuration among BGR circuits, is influenced by the offset of the amplifier, and has a feature that the output voltage varies greatly. Further, the output voltage is about 1.2 V, and it is difficult to reduce the power supply voltage of the BGR circuit. Furthermore, regarding temperature dependency, only temperature correction proportional to absolute temperature is performed, and therefore it is difficult to suppress variations in output voltage over a wide temperature range.
  • Patent Document 1 which is a classic configuration in the BGR circuit, is less affected by the offset of the amplifier than the BGR circuit of Non-Patent Document 1, but the output voltage is about 1.2V. Therefore, it is difficult to reduce the power supply voltage. As for temperature dependency, only temperature correction proportional to absolute temperature is performed, so it is difficult to suppress variations in output voltage over a wide temperature range.
  • the BGR circuit described in Patent Document 2 is based on the BGR circuit of Non-Patent Document 1, and has a circuit configuration that enables a low power supply voltage operation of 1 V or less. Similarly to the BGR circuit of Non-Patent Document 1, High dependency of output voltage on amplifier offset and temperature.
  • the BGR circuit described in Non-Patent Document 3 has a configuration in which the non-linear temperature dependency of the BGR circuit of Patent Document 2 is improved, and can reduce the power supply voltage and reduce the temperature dependency. High dependency.
  • the temperature correction method according to Non-Patent Document 7 is a correction using the current IPTAT 2 that changes from the absolute temperature 0K, and it is not easy to improve the temperature characteristics in the desired temperature range to be corrected. Even if employing a temperature correction method according to Non-Patent Document 7, of using the I PTAT 2 current generation circuit described in Non-Patent Document 4 to 6 to generate the current I PTAT 2, the circuit scale and the number of elements In addition, the circuit configuration is complicated and not suitable for lowering the power supply voltage.
  • An object of the present invention is to provide a voltage generation circuit in which an influence of an offset of an amplifier as a component on an output voltage is reduced.
  • Another object of the present invention is to provide a voltage generation circuit that can operate at a lower power supply voltage.
  • Still another object of the present invention is to provide a voltage generation circuit in which the temperature dependence of the output voltage is further reduced.
  • the voltage generating circuit includes a first bipolar transistor having an emitter terminal disposed on the first potential node side and an emitter area larger than the first bipolar transistor, the emitter terminal being an emitter terminal of the first bipolar transistor.
  • a second bipolar transistor whose base terminal is disposed on the collector side of the first bipolar transistor, one end disposed on the collector side of the first bipolar transistor, and the other end of the first bipolar transistor.
  • a current generator having a voltage-current converter that inputs a voltage and converts it into a current and supplies it to a node to which the first resistor and the second resistor are connected
  • a current is generated by adding the current according to the voltage difference voltage and the current according to the forward voltage of the PN junction.
  • the voltage generation circuit converts the generated current into a voltage and outputs the voltage.
  • this voltage generation circuit can reduce the influence of the offset of the component amplifier on the output voltage, and can be operated with a lower power supply voltage.
  • FIG. 1 is a block diagram illustrating an example of a reference voltage generation circuit according to the first embodiment.
  • FIG. 2 is a circuit diagram showing an example of a specific configuration of the reference voltage generating circuit according to the first embodiment.
  • FIG. 3 is a circuit diagram showing an example of the BGR core circuit 10 in the reference voltage generation circuit 1.
  • FIG. 4 is a circuit diagram showing an example of the BGR core circuit for analysis examined based on Non-Patent Document 1.
  • FIG. 5 is an example of a BGR core circuit for analysis examined based on Patent Document 1.
  • FIG. 6 is an explanatory diagram that quantitatively represents the input offset voltage dependency of the output voltage V BGR .
  • FIG. 7 is an enlarged view of FIG.
  • FIG. 8 is an explanatory diagram showing a simulation result of each BGR core circuit.
  • FIG. 1 is a block diagram illustrating an example of a reference voltage generation circuit according to the first embodiment.
  • FIG. 2 is a circuit diagram showing an example of a specific configuration of the reference voltage
  • FIG. 9 is an explanatory diagram of nonlinear dependence on the temperature of the base-emitter voltage VBE.
  • FIG. 10 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage circuit 1.
  • FIG. 11 is an explanatory diagram illustrating the principle of correction of nonlinear characteristics for the BGR circuit studied based on Patent Document 1.
  • FIG. 12 is an explanatory diagram showing a simulation result of the temperature dependence of the reference voltage generation circuit.
  • FIG. 13 is an explanatory diagram showing an example of the layout of the bipolar transistors Q 1 and Q 2 in the BGR core circuit 10.
  • FIG. 14 is a circuit diagram showing an example of the amplifier A1 of the reference voltage generation circuit 1.
  • FIG. 15 is a circuit diagram showing an example of the reference voltage generation circuit 1 having a startup circuit.
  • FIG. 16 is an explanatory diagram illustrating a circuit configuration example in which a low-pass filter (LPF) is inserted in the power supply line (Vcc).
  • FIG. 17 is an explanatory diagram illustrating an example of a system to which the reference voltage generation circuit 10 is applied.
  • FIG. 18 is a block diagram showing an example of a semiconductor integrated circuit device to which the reference voltage generation circuit 10 is applied.
  • FIG. 19 is a circuit diagram showing an example of a reference voltage generating circuit according to the second embodiment.
  • FIG. 20 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 2.
  • FIG. 20 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 2.
  • FIG. 21 is a circuit diagram showing an example of a reference voltage generating circuit according to the third embodiment.
  • FIG. 22 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 3.
  • FIG. 23 is a circuit diagram showing an example of a reference voltage generating circuit according to the fourth embodiment.
  • FIG. 24 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 4.
  • FIG. 25 is a circuit diagram showing an example of a reference voltage generating circuit according to the fifth embodiment.
  • FIG. 26 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 5.
  • FIG. 27 is a circuit diagram showing an example of a reference voltage generating circuit according to the sixth embodiment.
  • FIG. 28 is a circuit diagram showing an example of the BGR core circuit according to the seventh embodiment.
  • FIG. 29 is a circuit diagram illustrating an example of a BGR core circuit including a voltage generation unit that generates a voltage (VPTAT) proportional to absolute temperature.
  • FIG. 30 is a block diagram showing an example of a semiconductor integrated circuit device to which a reference voltage generation circuit composed of a BGR core circuit 10E and a non-linear correction circuit is applied.
  • FIG. 31 is a circuit diagram showing an example of a BGR core circuit according to the eighth embodiment.
  • FIG. 32 is a circuit diagram showing an example of the BGR core circuit according to the ninth embodiment.
  • FIG. 33 is a circuit diagram illustrating another example of a BGR core circuit including a voltage generation unit that generates a voltage (VPTAT) proportional to absolute temperature.
  • FIG. 34 is a circuit diagram showing an example of the BGR core circuit according to the tenth embodiment.
  • FIG. 35 is a circuit diagram showing an example of the BGR core circuit according to the eleventh embodiment.
  • FIG. 36 is a circuit diagram showing an example of the BGR core circuit according to the twelfth embodiment.
  • FIG. 37 is a circuit diagram showing an example of the BGR core circuit according to the thirteenth embodiment.
  • FIG. 38 is a circuit diagram showing an example of the amplifier A3 of the BGR core circuit 10L.
  • FIG. 39 is a circuit diagram showing an example of the BGR core circuit according to the fourteenth embodiment.
  • FIG. 40 is a circuit diagram showing an example of the BGR core circuit according to the fifteenth embodiment.
  • FIG. 41 is a circuit diagram showing an example of the BGR core circuit according to the sixteenth embodiment.
  • FIG. 42 is a circuit diagram showing an example of the BGR core circuit according to the seventeenth embodiment.
  • FIG. 43 is a circuit diagram showing an example of the BGR core circuit according to the eighteenth embodiment.
  • FIG. 44 is a circuit diagram showing an example of a reference voltage generating circuit according to the twentieth embodiment.
  • FIG. 45 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage circuit 7.
  • FIG. 46 is a circuit diagram showing an example of the reference voltage generating circuit according to the twenty-first embodiment.
  • FIG. 47 is a circuit diagram showing an example of the reference voltage generating circuit according to the twenty-second embodiment.
  • FIG. 48 is a circuit diagram showing an example of a reference voltage generating circuit according to the twenty-third embodiment.
  • a voltage generation circuit (1) includes a current PN and a current corresponding to a voltage difference ( ⁇ VBE) between base-emitter voltages of two bipolar transistors (Q1, Q2) having different emitter areas.
  • a current generator Q1, Q2, R1, R2, R3, A1, MP1, and MP2 that generates a current obtained by adding currents according to the forward voltage of the junction, and converts the input current to voltage and outputs the voltage And an output unit (R4).
  • the current generator has a first bipolar transistor (Q2) having an emitter terminal disposed on the first potential node (power supply Vcc node / ground node) side and an emitter area larger than the emitter area of the first bipolar transistor.
  • the emitter terminal is set to the same potential as the emitter terminal of the first bipolar transistor, the base terminal is disposed on the collector side of the first bipolar transistor, and one end of the first bipolar transistor.
  • the first resistance element (R2) is disposed on the collector side, the other end is disposed on the base side of the first bipolar transistor, the one end is disposed on the collector side of the second bipolar transistor, and the other end is disposed on the first bipolar transistor.
  • a second resistance element (R1) connected to the other end of the resistance element; and the first bipolar element A third resistance element (R3) provided between a base terminal of a transistor and the first potential node; a collector side voltage of the first bipolar transistor; and a collector side voltage of the second bipolar transistor;
  • An amplifier unit (A1) that outputs a voltage corresponding to a difference voltage between the two input voltages, an output voltage of the amplifier unit is input and converted into a current, and the converted current is converted into the first resistance element and the second resistor.
  • voltage-current conversion units (MP1, MP2) to be supplied to the output unit.
  • the BGR circuits of Patent Document 1 and Non-Patent Document 1 described above are proportional to the absolute temperature with respect to the base-emitter voltage VBE of the bipolar transistor (hereinafter, also referred to as “PTAT” (Proportional To Absolute Temperature)).
  • VBE base-emitter voltage
  • PTAT Proportional To Absolute Temperature
  • a coefficient (primary coefficient) proportional to temperature is canceled by adding VPTAT.
  • VBE is about 0.6 V
  • the output voltage is about 1.2 V, which is not suitable for low power supply voltage drive and low output voltage such that the power supply voltage is 1 V or less, for example.
  • the voltage generation circuit of Item 1 adds a current corresponding to the base-emitter voltage VBE of the first bipolar transistor flowing in the third resistance element and a current corresponding to the difference voltage (PTAT current). Since the coefficient proportional to the temperature is canceled and the added current is converted into a voltage and output, low power supply voltage drive and low voltage output are possible. Further, in contrast to the above-described configuration of the current generation unit, the third resistance element is provided between the base terminal of the first bipolar transistor and the first potential node, so that the voltage difference between the base and the emitter can be easily obtained. It is possible to generate a current corresponding to
  • the current generating unit includes a resistance element (R5) between an emitter terminal of the first bipolar transistor and the first potential node.
  • the common input voltage of the amplifier section can be increased by the resistance element.
  • the common input voltage of the amplifier unit can be lowered by the resistance element.
  • the two voltages input to the amplifier unit are a voltage obtained by dividing a voltage at a collector terminal of the first bipolar transistor, and a collector terminal of the second bipolar transistor. Is a voltage obtained by dividing the above voltage.
  • the amplifier section can be a PMOS differential input amplifier, and the design of the amplifier becomes easy.
  • the voltage-current converter includes a second potential node (ground node / power supply Vcc) whose source terminal is different from the first potential node via a resistance element (R16).
  • a first MOS transistor (MP1) having a drain terminal connected to a node to which the first resistance element and the second resistance element are connected, and a source side via the resistance element (R17).
  • a second MOS transistor (MP2) connected to the potential node and having a drain side connected to the input side of the output unit, and the gate terminals of the first MOS transistor and the second MOS transistor are connected to the output of the amplifier unit.
  • a voltage is input.
  • a voltage generation circuit (10D to 10H) generates a first current corresponding to a difference voltage between a base-emitter voltage of two bipolar transistors having different emitter areas.
  • a generator MP1, MP2, MP5, R1, R2, Q1, Q2 and a second current corresponding to a forward voltage of a PN junction based on the first current, and the first current and the first current
  • An output unit that generates and outputs a voltage based on two currents.
  • the current generator has a first bipolar transistor (Q2) having an emitter terminal disposed on the first potential node side and an emitter area larger than that of the first bipolar transistor, and the emitter terminal is the first bipolar transistor.
  • a second bipolar transistor (Q1) having the same potential as the emitter terminal of the transistor, a base terminal disposed on the collector side of the first bipolar transistor, one end disposed on the collector side of the first bipolar transistor, and the other end Is disposed on the base side of the first bipolar transistor, one end is disposed on the collector side of the second bipolar transistor, and the other end is connected to the other end of the first resistor element.
  • a second resistance element (R1) and a voltage on the collector side of the first bipolar transistor The voltage at the collector side of the second bipolar transistor is input, the amplifier unit (A1) that outputs a voltage corresponding to the difference voltage between the two input voltages, and the output voltage of the amplifier unit is input and converted to a current.
  • a voltage-current conversion unit (MP1, MP2) for supplying the converted current to a node (node of potential V3) to which the first resistance element and the second resistance element are connected and for supplying to the output unit.
  • the current generation unit includes a current corresponding to the voltage difference between the base and emitter voltages of two bipolar transistors having different emitter areas (the first current in item 6) and the forward direction of the PN junction. A current corresponding to the voltage (the second current in item 6) is generated and a current obtained by adding the two currents is output. In the current generating circuit of item 6, the current generator outputs the first current. That is, according to the current generation circuit of item 6, since the current proportional to the absolute temperature (the first current) can be output independently, the PTAT voltage can be easily generated.
  • the output unit is a fourth resistance element (R4) having one end connected to the first potential node and the other end receiving a current.
  • the first bipolar transistor and the second bipolar transistor are NPN-type bipolar transistors.
  • the first bipolar transistor and the second bipolar transistor are PNP-type bipolar transistors.
  • the voltage generation circuit of item 1 or the like adds a current corresponding to the base-emitter voltage VBE of the first bipolar transistor flowing in the third resistance element and a current corresponding to the difference voltage (PTAT current).
  • the temperature characteristic of the output voltage is improved by canceling the coefficient proportional to the temperature and converting the added current into the output voltage.
  • the voltage generation circuit of Item 11 generates a correction current having a nonlinear temperature characteristic according to the difference between the output voltage of the voltage generation unit and the forward voltage of the PN junction, and feeds back the current generation unit to the current generation unit.
  • the nonlinear temperature dependence of the output current of the generator improves the nonlinear temperature dependence of the output current of the generator.
  • the nonlinear temperature dependence of the output voltage is improved, and variations in the output voltage over a wider temperature range can be reduced.
  • by generating a current corresponding to the difference between two voltages (output voltage and forward voltage) having temperature dependence it is possible to generate a correction current that changes in a temperature range in which the temperature characteristics are to be corrected. According to this, the correction is easier than the case where the temperature characteristic is corrected using the PTAT current or the PTAT2 current (current proportional to the square of the absolute temperature) with the absolute temperature of 0K as a base point.
  • the correction circuit includes an emitter terminal connected to the first potential node via a fifth resistance element (R6), and a base terminal connected to the output side of the voltage generator.
  • R6 fifth resistance element
  • MP3, MP4 current mirror sections
  • the correction current can be easily generated.
  • the correction current feedback destination is R3 (FIGS. 19 and 21)
  • the correction current is fed back to the third resistance element.
  • the correction current can be easily fed back to the current generation unit, and the common input voltage of the amplifier unit can be increased by the resistance element.
  • the feedback destination of the correction current is the potential VB side (FIG. 23)
  • the correction current is fed back to one end of the second resistance element.
  • the feedback destination of the correction current is the resistor R4 (FIG. 25)
  • a correction current corresponding to a difference between the voltage generated by the output unit and the forward voltage of the PN junction is generated, and the correction current is fed back to the fourth resistance element (R4). It further has a correction circuit.
  • the correction circuit further includes a buffer circuit (A2) that inputs the output voltage of the voltage generation unit, buffers the output voltage, and outputs the buffered voltage to the base terminal of the third bipolar transistor.
  • A2 buffer circuit
  • the current mirror unit is a low voltage type current mirror circuit (MP3, MP4, MN3, MN4).
  • a voltage generation circuit (1-9, 11) includes a difference voltage between a base-emitter voltage of two bipolar transistors (Q1, Q2) operating at different current densities.
  • the nonlinear temperature dependence of the output voltage is improved, the variation of the output voltage in a wider temperature range can be reduced, and the PTAT current based on the absolute temperature of 0K or The correction is easier than the case where the temperature characteristic is corrected using PTAT 2 current (current proportional to the square of the absolute temperature).
  • the correction circuit includes a diode-connected first bipolar transistor (Q5) having an emitter terminal connected to a first potential node (ground node) via a first resistance element (R6, R62). ), A second bipolar transistor (Q7) having an emitter terminal connected to the collector side of the first bipolar transistor, a diode-connected collector terminal and a base terminal connected to the output side of the voltage generator, and the first A current output unit (Q6, Q8, MP1, MP2) that outputs a current corresponding to the current flowing through the one resistance element.
  • the correction current can be generated even when the output voltage of the voltage generator is about 1.2V, for example. It becomes easy.
  • the correction circuit includes an emitter terminal connected to the first potential node via the first resistance element (R6), a diode-connected first bipolar transistor (Q9), and an emitter terminal connected to the first potential node.
  • a second bipolar transistor (Q10) connected to the collector side of the first bipolar transistor and having a base terminal connected to the output side of the voltage generator, and a current corresponding to the current flowing to the collector side of the second bipolar transistor Current mirror circuit (MP11, MP12).
  • the correction current can be generated even when the output voltage of the voltage generator is about 1.2V, for example. It becomes easy.
  • the voltage generation unit includes a third bipolar transistor (Q2) having a collector terminal connected to the first potential node via a second resistance element (R22), A fourth bipolar transistor (Q1) having an emitter area larger than that of the third bipolar transistor and having a collector terminal connected to a first potential node via a third resistance element (R21); and the third bipolar transistor A fourth resistance element (R20) provided between the emitter terminal of the transistor and the emitter terminal of the fourth bipolar transistor, and a second resistor provided between the emitter terminal of the second bipolar transistor and the second potential node. And the correction current is fed back to the fifth resistance element.
  • the correction of the nonlinear temperature characteristic can be easily realized even for the BGR circuit that outputs about 1.2V.
  • the characteristics of the sub-threshold region of the MOS transistor are characteristics close to the I C -V BE characteristics of the bipolar transistor, according to the voltage generation circuit of Item 23, two voltages (output voltage and V GS) having temperature dependence are used. It is possible to generate a correction current that changes in a temperature range in which the temperature characteristic is desired to be corrected. As a result, similar to the term 11 and the like, the non-linear temperature dependence of the output voltage is improved, the variation of the output voltage in a wider temperature range can be reduced, and the PTAT current based on the absolute temperature 0K The correction is easier than the case where the temperature characteristic is corrected using PTAT 2 current (current proportional to the square of the absolute temperature). Further, since no bipolar transistor is used in the correction circuit, the correction circuit can be realized by a CMOS process.
  • [24] (Specific configuration of temperature correction circuit (MOSTr) 24.
  • a current mirror unit (MP3, MP4) for outputting a current corresponding to a current flowing on the drain side of the first MOS transistor.
  • the MOS transistor can be operated in the subthreshold region, and the correction current can be easily generated.
  • FIG. 1 is a block diagram showing an example of a reference voltage generation circuit according to the present embodiment.
  • the reference voltage generation circuit 1 shown in FIG. 1 generates a reference voltage V BGR and outputs a reference voltage V BGR (hereinafter also referred to as a BGR core circuit) 10 and a reference voltage V BGR according to the reference voltage V BGR.
  • a BGR core circuit a reference voltage V BGR
  • V BGR non-linear correction circuit
  • FIG. 2 is a circuit diagram showing an example of a specific circuit configuration of the reference voltage generating circuit 1.
  • the reference voltage generating circuit 1 shown in the figure is not particularly limited, but is formed on a single semiconductor substrate such as single crystal silicon by a known CMOS integrated circuit manufacturing technique.
  • the BGR core circuit 10 shown in the figure is configured to generate a current corresponding to a voltage difference ( ⁇ VBE) between the base-emitter voltages of two bipolar transistors Q1 and Q2 having different emitter areas and a base-emitter voltage VBE2 of the bipolar transistor Q2.
  • a current obtained by adding the corresponding currents is generated by the current generation unit 101, and the generated current is converted into a voltage V BGR by the voltage output unit 102 and output.
  • the current generation unit 101 includes, for example, NPN bipolar transistors Q1 and Q2, resistors R1, R2, R3, and R5, a differential amplifier A1, and P-channel MOS transistors MP1 and MP2, and a voltage output unit 102 Is composed of a resistor R4, for example.
  • the connection relationship of each element is as follows.
  • the emitter terminals of the bipolar transistors Q1 and Q2 are connected in common.
  • the emitter area of the bipolar transistor Q1 is increased to n (n is an integer of 2 or more) times that of the bipolar transistor Q2. That is, when the same current is passed through bipolar transistors Q1 and Q2, the emitter current density of bipolar transistor Q2 is set to be n times the emitter current density of transistor Q1.
  • One end of the resistor R1 is connected to the base terminal of the bipolar transistor Q2, and the other end is connected to the collector terminal of the bipolar transistor Q1.
  • One end of the resistor R2 is connected to one end of the resistor R1, and the other end is connected to the collector terminal of the bipolar transistor Q2.
  • Resistor R5 is provided between the commonly connected emitter terminal of bipolar transistors Q1 and Q2 and the ground node.
  • Resistor R3 is provided between the base terminal of bipolar transistor Q2 and the ground node.
  • the differential amplifier A1 inputs the collector-side potentials of the bipolar transistors Q1 and Q2.
  • the output voltage of the differential amplifier A1 is input to the gate terminal, and the source terminal is connected to the power supply node Vcc.
  • the feedback terminal is formed by connecting the drain terminal of the MOS transistor MP1 to the connection node of the resistors R1 and R2. Further, the drain terminal of the MOS transistor MP2 is connected to the resistor R4, whereby the current I is supplied to the resistor R4.
  • the correction circuit 20 shown in FIG. 2 receives the output voltage V BGR of the BGR core circuit 10, an amplifier A 2 constituting a voltage follower, a bipolar transistor Q 3 whose base terminal is connected to the output terminal of the amplifier A 2, and bipolar A resistor R6 provided between the emitter terminal of the transistor Q3 and the ground node, and a P-channel MOS transistor constituting a current mirror circuit that outputs a correction current I COMP according to the current flowing to the collector side of the bipolar transistor Q3 MP3 and MP4 are provided.
  • the correction current I COMP is fed back to the resistor R5.
  • the amplifier A2 is provided to supply the base current of the bipolar transistor Q3, and is omitted when the influence on the output voltage V BGR by supplying the base current directly from the MOS transistor MP2 can be ignored. Also good.
  • the detailed operation principle of the correction circuit 20 will be described later.
  • BGR core circuit 10 In order to facilitate understanding of the BGR core circuit 10, a detailed description will be given with reference to FIG. 3 showing only the BGR core circuit 10.
  • FIG. 3 is a circuit diagram showing an example of the BGR core circuit 10 in the reference voltage generation circuit 1. The figure shows a case where equivalently expressed by inserting the positive input of the amplifier A1 the offset of the amplifier as the input offset voltage V OS as an example.
  • the current flowing through the resistor R1 is I 1
  • the current flowing through the resistor R2 is I 2
  • the current flowing through MP1 and MP2 is I
  • the voltage at the connection point between the resistors R1 and R2 is V3
  • the mirror ratio of the current mirror circuit or the like will be described as 1: 1, but it is not particularly limited, and the mirror ratio can be changed.
  • the base current of the bipolar transistor is ignored for easy understanding, but the calculation including the base current is performed in the simulation or the like in the actual design.
  • the saturation current density of the bipolar transistor is Js
  • the unit area is A
  • the thermal voltage VT kT / q
  • k is the Boltzmann constant
  • T is the absolute temperature
  • q is the elementary charge
  • the base-emitter voltage VBE1 of Q1 is (Formula 1) is established for the base-emitter voltage VBE2 of Q2.
  • Equation 2 is established if feedback by the amplifier A1 is operating normally.
  • the output voltage V BGR can be expressed by (Equation 8). Further, as apparent from the equation, by setting the resistance ratio R4 ⁇ R3, the output voltage V BGR can be lowered (about 1.0 V or less).
  • FIG. 4 is a circuit diagram showing an example of the BGR core circuit for analysis examined based on Non-Patent Document 1.
  • Equation 11 (Equation 11) is established if feedback by the amplifier is operating normally.
  • the output voltage V BGR cancels the primary coefficient proportional to the temperature by adding the second and subsequent items to VBE. Therefore, it can be seen that the BGR circuit described in Non-Patent Document 1 has an output voltage V BGR of about 1.2 V, and is not suitable for low power supply voltage operation and low output voltage, for example, the power supply voltage is 1 V or less. .
  • FIG. 5 shows an example of a BGR core circuit for analysis examined based on Patent Document 1 as another conventional example.
  • Equation 20 holds if the feedback by the amplifier is operating normally.
  • I 1 is (Formula 24A).
  • D is (Formula 24B).
  • the output voltage V BGR cancels the primary coefficient proportional to the temperature by adding the second and subsequent items to VBE. Therefore, like the BGR circuit of FIG. 4, the BGR circuit described in Patent Document 1 has an output voltage V BGR of about 1.2 V, for example, a low power supply voltage operation and a low output voltage such that the power supply voltage is 1 V or less. It turns out that it is not suitable for conversion.
  • FIG. 6 is an explanatory diagram that quantitatively represents the input offset voltage dependence of the output voltage V BGR of each BGR core circuit.
  • Characteristic line of the BGR core circuit in the figure represents the (Formula 9), (Equation 18), and characteristics of [Delta] V BGR each when changing the offset voltage V OS in Equation (26). Note that the numerical examples shown in the description of the respective BGR core circuits described above are applied to the constants such as the resistance value in (Expression 9), (Expression 18), and (Expression 26).
  • the BGR core circuit 10 has lower input offset voltage dependency than the circuit topology of FIG.
  • FIG. 7 is an enlarged view of FIG. In the figure, the characteristic lines of the BGR core circuit 10 and the BGR core circuit (FIG. 5) based on Patent Document 1 are displayed.
  • the BGR core circuit 10 has a low input offset voltage dependency even when compared with the circuit topology of FIG. As apparent from (Equation 9), by selecting appropriate values for the resistance value and the emitter area ratio n of the bipolar transistor, it is possible to suppress variations in the output voltage V BGR as compared with the BGR core circuit of FIG.
  • FIG. 8 shows simulation results of the three BGR core circuits.
  • the element conditions in the simulation are a CMOS process gate length of 90 nm, a MOS transistor, a resistance and a capacitance are Typ models.
  • the figure shows the output voltage V BGR when the power supply voltage Vcc is changed from 0 V to 5.5 V when the junction temperature Tj is 25 ° C.
  • the power supply voltage Vcc can be operated from about 2.0V. This is because, as shown in (Equation 17) and (Equation 25), the output voltage V BGR has a configuration in which the primary coefficient proportional to the temperature is canceled by adding the PTAT voltage to VBE. Is also easily understood.
  • the output voltage V BGR is 1.0 V or less and the power supply voltage Vcc can be operated from about 1.0 V, as shown in FIG.
  • the This can be easily understood from (Equation 8). That is, the BGR core circuit 10 according to the present embodiment cancels the coefficient proportional to the temperature by adding the current corresponding to the VBE of the bipolar transistor Q2 flowing through the resistor R3 and the PTAT current proportional to the absolute temperature, Since the added current is converted into a voltage by the resistor R4 and output, a low voltage output is possible by adjusting the ratio of the resistor R3 and the resistor R4.
  • the influence of the offset of the amplifier A1 on the output voltage V BGR can be reduced. Further, since the lower output voltage V BGR can be generated by adjusting the ratio of the resistors R3 and R4, the operation can be performed with the lower power supply voltage Vcc. Further, as shown in FIGS. 2 and 3, the resistor R5 is inserted between the emitter terminals of the bipolar transistors Q1 and Q2 and the ground node, so that the common input voltage of the amplifier A1 can be shifted to a high level. Becomes easy.
  • the temperature dependence of the base-emitter voltage VBE of the bipolar transistor is expressed as (Equation 28) when the temperature dependence of the collector current IC is (Equation 27), as shown in Non-Patent Document 2 described above.
  • T R is a reference temperature.
  • is a constant depending on the device structure of the bipolar transistor, and the value is about 3.6 to 4.0.
  • V G0 is an extrapolated value to the absolute temperature 0K of the band gap voltage.
  • m is if the collector current I C is proportional to the absolute temperature becomes "1".
  • the first item is a constant independent of temperature
  • the second item is a term proportional to absolute temperature
  • the third item is not proportional to the absolute temperature but is a term indicating nonlinear dependence. That is, the base-emitter voltage VBE exhibits nonlinear dependence on temperature.
  • FIG. 9 is an explanatory diagram of nonlinear dependence on the temperature of the base-emitter voltage VBE.
  • the characteristic of the third item of (Equation 29) is a non-linear characteristic.
  • the straight line denoted by reference numeral 300 is shown for comparison and is an example of a characteristic proportional to temperature.
  • BGR core circuit 10 The general formulas (for example, (Expression 8), (Expression 17), and (Expression 25)) of the BGR circuit shown in (1) BGR core circuit 10 are as follows. It can be expressed as (Equation 30A) or (Equation 30B).
  • ⁇ V BE is a difference voltage between the base-emitter voltages VBE of the two bipolar transistors Q1 and Q2.
  • the temperature dependence of the base-emitter voltage VBE of the first item has nonlinearity. Therefore, only the second item proportional to the absolute temperature has a nonlinear temperature dependence. It can be seen that it is theoretically impossible to correct this. Therefore, in the reference voltage circuit 1 according to the present embodiment, the nonlinear voltage dependence correction of the output voltage V BGR is performed by the following method.
  • the output voltage V BGR can be lowered by adjusting the resistors R3 and R4, similarly to the BGR core circuit 10 of FIG. 3 described above.
  • the correction current I COMP can be expressed by (Equation 36) when the mirror ratio of MP3 and MP4 is 1: 1.
  • the above calculation is an approximate calculation.
  • values such as resistance and correction current I COMP are obtained from the above calculation. Some deviation occurs. The exact value can be obtained by simulation.
  • the bipolar transistor Q3 of the correction circuit 20 since it is assumed that the power supply voltage Vcc is about 1.0 V and the output voltage V BGR is set to about 0.63 V, the bipolar transistor Q3 of the correction circuit 20 has a one-stage configuration. As will be described later, when the output voltage is about 1.2 V, it is desirable that the bipolar transistor Q3 of the correction circuit 20 has a two-stage configuration.
  • FIG. 10 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage circuit 1.
  • VBGR_PTAT shows an example of a waveform when only correction by the voltage VPTAT proportional to the absolute temperature is performed on the base-emitter voltage VBE when the correction current I COMP is ignored.
  • the voltage VBGR_PTAT has a bowl shape, and the case where the circuit constants such as the resistance value are adjusted so that the temperature coefficient becomes zero on the low temperature side is shown.
  • Vth is an example of a voltage waveform corresponding to the third item of (Expression 35).
  • FIG. 11 is an explanatory diagram showing the principle of correction of nonlinear characteristics for the BGR circuit studied based on Patent Document 1.
  • a correction current I COMP that is not proportional to absolute temperature is supplied to the node of the potential V2 in order to correct nonlinear characteristics.
  • a current I PTAT 2 that is proportional to the square of the absolute temperature is assumed as the correction current I COMP .
  • (Formula 39) is established by Thevenin's theorem, the circuit between the node of the potential V1 and the ground node can be redrawn as a series connection of the resistor Rth and the voltage source Vth as shown in FIG. it can.
  • Thevenin equivalent voltage VTH has a characteristic (nonlinear characteristic) that increases on the high temperature side. Therefore, the output voltage V BGR when the correction current I COMP (I PTAT 2 ) is added is (Equation 40).
  • the output voltage V BGR is added with the nonlinear correction term (I COMP ⁇ R 12 ) from the absolute temperature 0K.
  • I COMP ⁇ R 12 the nonlinear correction term
  • the non-linear correction circuit 20 it is possible to generate a correction current I COMP by less simple circuit configuration number of elements, and the correction current so as to change the above predetermined temperature I COMP Therefore, the nonlinear correction of the output voltage V BGR can be easily performed in the target temperature range.
  • FIG. 12 is a diagram illustrating an example of temperature dependence of the reference voltage generation circuit by simulation. The figure shows the simulation results of the output voltage V BGR of the reference voltage generating circuit 1, the BGR circuit based on Non-Patent Document 1 (FIG. 4), and the BGR circuit based on Patent Document 1 (FIG. 5). It is.
  • (A) of the figure shows characteristic waveforms of the above three circuits
  • (B) of the figure shows temperature coefficient TC (ppm / ° C.) and temperature drift ⁇ V BGR ( The value of mV) is indicated.
  • the temperature coefficient TC is defined by (Formula 41A) by the BOX method
  • the temperature drift ⁇ V BGR is defined by (Formula 41B).
  • the power supply voltage Vcc is set to 3.0 V for the BGR circuit based on Non-Patent Document 1 (FIG. 4) and the BGR circuit based on Patent Document 1 (FIG. 5) because it is difficult to reduce the power supply voltage.
  • the variable range of temperature is ⁇ 40 ° C. to 125 ° C. Since the output voltage V BGR of the reference voltage generation circuit 1 is 1.0 V or less (about 0.63 V), the characteristics of the output voltage V BGR of the reference voltage generation circuit 1 are shown in FIG. 12A for comparison. The line is translated upward in the vertical axis.
  • the temperature drift ⁇ V BGR is from 2.6 mV. Although it is as large as about 3.2 mV, it can be seen that the reference voltage generation circuit 1 is suppressed to about 0.25 mV and about 1/10.
  • FIG. 13 is an explanatory diagram showing an example of the layout of the bipolar transistors Q1 and Q2 in the BGR core circuit 10. As shown in FIG. Although not particularly limited, the figure shows an example in which the collector is formed in the vertical direction using an n-type deep well dwel and the bipolar transistors Q1 and Q2 are surrounded by the n-type deep well dwel. Yes. Although not particularly limited, the case where the emitter area ratio of the bipolar transistors Q1 and Q2 is 8: 1 is shown as an example except (C) in FIG.
  • (A) of the figure shows a case where the n-type deep well dwel constituting the collector is formed in the two bipolar transistors Q1 and Q2 in the same size.
  • FIG. 8B in addition to the formation of the n-type deep well dwel shown in FIG. 8A, a dummy is included in the deep well dwel in which the bipolar transistor Q2 having the smaller emitter area is formed.
  • the size ratio of Q1 and Q2 is set to 8: 1 by wiring to one of the eight transistors in the region where Q2 is formed.
  • (C) in FIG. 9 includes nine n wells including dummy in each of the deep wells dwel in which the bipolar transistors Q1 and Q2 are formed, in addition to the formation of the n-type deep well dwel shown in FIG. A case where a bipolar transistor is arranged is shown. For example, when the size ratio of Q1 and Q2 is 9: 1 and one of them is a power of 2, if Q2 is taken as the transistor at the center of the transistor group arranged in the same number as Q1, further variation in dimensions Can be reduced.
  • FIG. 4D shows a case where nine bipolar transistors including a dummy are arranged in one deep well dwel in addition to the formation of the n-type deep well dwel shown in FIG. .
  • the transistor (B) in the center of the transistor group formed in the deep well dwel region is Q2
  • the other eight transistors (A) are Q1
  • the dimensional variation can be reduced, and It can be formed with a smaller area than (C) in FIG.
  • FIG. 14 is a circuit diagram showing an example of the amplifier A1 in the reference voltage generation circuit 1.
  • FIG. 1 is an example of an amplifier A1 having an N-channel MOS transistor as an input stage.
  • the amplifier shown in FIG. 1 includes a first stage part and an output stage part.
  • the first stage section includes two N-channel MOS transistors M1 and M2 constituting a differential input stage, a current source i1 provided between the source terminal and the ground node, the drain terminals of the M1 and M2, and a power source. It is formed between two P-channel MOS transistors M3 and M4 which are provided between the voltage Vcc and constitute an active load by a current mirror circuit.
  • the output stage section is provided between the P-channel MOS transistor M3, which has the first stage output signal input to the gate terminal and the source connected to the node of the power supply voltage Vcc, and the drain terminal and the ground node. It is comprised from the inverting amplifier circuit which uses the current source i3 as a load. A capacitor Cf and a resistor Rf as a phase compensation circuit are provided between the gate terminal and the drain terminal of M3.
  • FIG. 1 is another example of an amplifier A1 having an N-channel MOS transistor as an input stage.
  • the amplifier shown in FIG. 1 includes a first stage section, an output stage section, and a current source section.
  • the amplifier shown in the figure has a circuit configuration for the purpose of reducing power consumption, and includes a first-stage amplifier unit for differential input using an N-channel MOS transistor and an inverting amplifier circuit with a common source formed of a P-channel MOS transistor. An output stage and a current source for driving them are configured.
  • the current source unit converts the voltage difference between the gate-source voltages of the n-channel MOS transistors M12 and M13 with a resistor Rref in order to stably supply a very small current, and generates a converted current Iref.
  • the current Iref determines the bias currents i1 and i3 of the first stage and the output stage as a current mirror form by the MOS transistors M14 and M15.
  • the current sources M6 and M7 for supplying a constant current i2 are connected in parallel.
  • the constant current Iref flows in the MOS transistors M13 and M11 and the diode-connected M9, and the MOS transistors M6 to M9 are in the form of a current mirror, whereby the constant current i3 can be formed.
  • This facilitates phase compensation. That is, in addition to the conventionally used mirror compensation, pole zero compensation (Rf and Cf connected in series to the output stage) that is easy to design is possible.
  • the circuit configuration excluding the startup circuit is shown in order to facilitate understanding of the operation principle of the reference voltage generation circuit 1, but the reference voltage generation circuit 1 further includes a startup circuit.
  • FIG. 15 is a circuit diagram showing an example of the reference voltage generation circuit 1 having a startup circuit.
  • the reference voltage generation circuit 1 may become stable when the output voltage V BGR is 0 V at the start-up such as when the power supply voltage is turned on. As a countermeasure against this, a startup circuit 30 is provided in the reference voltage circuit 1 to start up by forcibly flowing a current.
  • the operation of the startup circuit 30 will be described.
  • V1 of the MOS transistor MP1 is Vcc
  • MP1 is off and no current flows.
  • the MOS transistor MP2 is also turned off, the output voltage V BGR becomes the ground potential, and the MOS transistor MN1 is turned off.
  • the potential V4 of the node to which the drain terminal of the MOS transistor MN1 is connected becomes Vcc ⁇
  • the gate potential V1 of MP1 drops from Vcc, and the BGR core circuit 10 can be operated with a normal bias.
  • the startup circuit 30 makes it possible to generate the output voltage V BGR without error when the power is turned on or when the sleep is released. Further, even if there is a disturbance or the like during normal operation, the output voltage V BGR is stably generated by recovering immediately. Further, according to the circuit configuration of the start-up circuit 30, the gate potential V4 of the MOS transistor MN2 is set to be equal to or lower than the threshold voltage VTHN of the MOS transistor MN2 by appropriately selecting the transistor sizes of the MOS transistors MP7, MN1, and MN2. Therefore, the current of the MOS transistor MN2 can be ignored and the operation of the BGR core circuit 10 can be prevented from being affected.
  • the startup circuit 30 is an example, and the reference voltage generation circuit 1 may be provided with a startup circuit having another circuit configuration.
  • FIG. 16 is an explanatory diagram showing a circuit configuration example in which a low-pass filter (LPF) is inserted in the power supply Vcc line.
  • LPF low-pass filter
  • a low-pass filter 60 is inserted in the power supply Vcc line as shown in the figure, and an output voltage Vcc_LPF of the low-pass filter 60 is obtained.
  • PSRR power supply rejection ratio
  • the low-pass filter 60 is realized by, for example, a resistance element and a capacitance element, but may have other circuit configurations as long as low-pass transmission characteristics can be obtained.
  • FIG. 17 is an explanatory diagram showing an example of a system to which the reference voltage generation circuit 10 is applied.
  • V BGR voltage and V BGR voltage generated by the reference voltage generating circuit 1 is AD converter based on the voltage generated in the reference, it converts the analog input signal into a digital signal.
  • FIG. DA converter An example of application to a DA converter is shown in FIG. DA converter based on the voltage generated on the basis of the generated V BGR voltage and V BGR voltage by the reference voltage generating circuit 1, it converts the digital input signal into an analog signal.
  • the reference current source generates and outputs the reference current IREF based on the VBGR voltage generated by the reference voltage generation circuit 1 or the voltage generated based on the V BGR voltage.
  • (D) of the figure shows an application example to a temperature sensor.
  • the temperature sensor measures the temperature based on the VPTAT voltage proportional to the temperature and the V BGR voltage having low temperature dependence, and outputs the measurement result.
  • a method of generating the VPTAT voltage will be described later.
  • FIG. 18 is a block diagram showing an example of a semiconductor integrated circuit device to which the reference voltage generation circuit 10 is applied.
  • the semiconductor integrated circuit device 100 is, for example, a system LSI with a built-in power supply circuit.
  • the semiconductor integrated circuit device 100 includes, for example, a power supply circuit 50, a CPU (central processing unit) 45, a register 46, a nonvolatile memory element 47, other peripheral circuits 48, and an input / output circuit 49.
  • the power supply circuit 50 includes, for example, a reference voltage generation circuit 10, a reference voltage buffer circuit 42, a main regulator 43 as a main power supply, a sub-regulator 44 as a standby power supply, and a power supply control unit 41. These circuits operate by receiving a power supply voltage VCC supplied from an external terminal, generate an internal voltage Vint obtained by stepping down the power supply voltage VCC, and configure a system LSI, such as a CPU 45, a register 46, a nonvolatile memory element 47, and others. It is supplied as an operating voltage for the peripheral circuit 48.
  • the reference voltage generation circuit 1 when the system LSI 100 is driven by a battery, low power supply voltage and low power consumption are required. However, each circuit cannot secure a sufficient margin due to the lower power supply voltage, so that a demand for more accurate characteristics is expected. Therefore, if the reference voltage generation circuit 1 according to the present embodiment is applied to the system LSI, low power supply voltage operation and low output voltage are possible and effective. In order to achieve higher accuracy, it is preferable that the reference voltage generation circuit 1 is configured by a CMOS process. In particular, the effect of the offset of the differential amplifier A1 is small (equivalent to a current mismatch), which is advantageous when mounted on an SOC (System on a chip) memory or a microprocessor. Further, a chopper may be employed to reduce the element mismatch of the amplifier A1, or a DEM (Dynamic Element Matching) may be employed to improve the matching of the MOS transistor.
  • the BGR core circuit 1 is configured as described above, so that the low voltage output and the low power supply voltage operation are possible, and the amplifier of the output voltage V BGR The influence of offset can be reduced. Further, the correction current I COMP is generated by the non-linear correction circuit 20 and fed back to the BGR core circuit 10, whereby the temperature dependency of the output voltage V BGR can be further reduced.
  • FIG. 19 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 2 shown in the figure includes a BGR core circuit 10A and a nonlinear correction circuit 20.
  • the BGR core circuit 10A has a configuration in which the resistor R5 is removed from the BGR core circuit 10 according to the first embodiment.
  • the feedback destination of the correction current I COMP is the resistor R3.
  • the resistor R3 is divided into a resistor R31 and a resistor R32, and the current I COMP is fed back to the connection node of each resistor.
  • the output voltage V BGR by the reference voltage generation circuit 2 is as follows.
  • Equation 42 is established from the Kirchhoff current law at the node of the potential V3.
  • correction current I COMP is expressed by (Equation 44).
  • the direction of the correction current I COMP is positive when flowing from the MOS transistor MP4 to the resistor R3 as shown in FIG.
  • FIG. 20 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 2.
  • the reference voltage generating circuit 2 determines that the negative temperature dependency (first item: VCTAT) of the base-emitter voltage VBE of the bipolar transistor Q2 is a voltage proportional to the absolute temperature (second item: VPTAT) and a nonlinear correction voltage ( The third item is corrected by VCOMP).
  • the correction current I COMP has a characteristic that increases on the high temperature side with the predetermined temperature T1 as in the reference voltage generation circuit 1, but the nonlinear correction voltage (third item: VCOMP) is a characteristic that becomes negative on the high temperature side. . Therefore, in the reference voltage generating circuit 2, as shown in FIG. 20, the sum (VBGR_PTAT) of the first item and the second item is optimized so that the temperature coefficient becomes zero on the high temperature side. Thereby, the temperature drift of the output voltage V BGR can be reduced.
  • the reference voltage generation circuit 2 As described above, according to the reference voltage generation circuit 2 according to the second embodiment, as in the reference voltage generation circuit 1, low voltage output and low power supply voltage operation are possible, and the influence of the offset of the amplifier on the output voltage V BGR is reduced. Can be made. In addition, the temperature dependence of the output voltage V BGR can be further reduced.
  • FIG. 21 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 3 shown in the figure includes a BGR core circuit 10A and a nonlinear correction circuit 20A.
  • the non-linear correction circuit 20A is configured to return the generated correction current I COMP and output it.
  • the feedback destination of the correction current is the resistor R3.
  • the resistor R3 is divided into a resistor R31 and a resistor R32, and is fed back to the connection node of each resistor.
  • the output voltage V BGR by the reference voltage generation circuit 3 is as follows.
  • the output voltage V BGR is calculated by the same method as the reference voltage generation circuit 2 according to the second embodiment. Is expressed as (Equation 47). Note that the third item (VCOMP) in (Equation 47) is a positive value on the high temperature side.
  • FIG. 22 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 3.
  • the reference voltage generation circuit 3 has a negative temperature dependency (first item: VCTAT) of the base-emitter voltage VBE of the bipolar transistor Q2 that is proportional to the absolute temperature (second item: VPTAT) and a nonlinear correction voltage (first item). Correct by 3 items: VCOMP).
  • the correction current I COMP has a characteristic that increases on the high temperature side with the predetermined temperature T1 as in the reference voltage generation circuit 1, but the correction current I COMP is folded by the current mirror circuit including the MOS transistors MN3 and MN4.
  • the correction current I COMP is drawn from the connection node between the resistors R31 and R32. Therefore, the nonlinear correction voltage (third item: VCOMP) becomes positive on the high temperature side. Therefore, in the reference voltage generation circuit 2, as shown in FIG.
  • the sum (VBGR_PTAT) of the first item and the second item is optimized so that the temperature coefficient becomes zero on the low temperature side. Thereby, the temperature drift of the output voltage V BGR can be reduced.
  • the above calculation is an approximate calculation as in the first embodiment, and accurate values such as a resistance value and a correction current value are obtained by simulation.
  • start-up circuits addition of a low-pass filter, and application to a system LSI can be applied as in the first embodiment.
  • the low voltage output and the low power supply voltage operation can be performed similarly to the reference voltage generation circuit 1, and the influence of the offset of the amplifier on the output voltage V BGR is reduced. Can be made. In addition, the temperature dependence of the output voltage V BGR can be further reduced.
  • FIG. 23 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 4 shown in the figure includes a BGR core circuit 10B and a nonlinear correction circuit 20B.
  • the BGR core circuit 10B has a configuration in which the resistor R5 is removed from the BGR core circuit 10.
  • the nonlinear correction circuit 20B has a configuration in which the current mirror circuit of the nonlinear correction circuit 20 is a folded current mirror circuit.
  • a bias voltage Vbias is supplied to the gate terminals of the MOS transistors MP3 and MP4 constituting the folded current mirror circuit, for example, from a self-bias circuit not shown.
  • the feedback destination of the correction current I COMP is a connection node between the resistor R2 and the collector terminal of the bipolar transistor Q2.
  • the output voltage V BGR of the reference voltage generation circuit 4 is as follows. Although not particularly limited, for the sake of simplicity, the mirror ratio of the correction current I COMP is set to 1: 1.
  • Equation 50 is a simple quadratic equation, solving this yields (Equation 51), and the output voltage V BGR becomes (Equation 52). However, (Formula 53) is assumed.
  • FIG. 24 is an explanatory diagram showing the principle of the method for correcting the nonlinear temperature characteristic by the reference voltage generation circuit 4.
  • the reference voltage generation circuit 4 has a negative temperature dependency (first item: VCTAT) of the base-emitter voltage VBE of the bipolar transistor Q2 that is proportional to the absolute temperature (second item: VPTAT) and a nonlinear correction voltage (first item). Correct by 3 items: VCOMP). Similar to the reference voltage generation circuit 1, the correction current I COMP has a characteristic of increasing on the high temperature side with the predetermined temperature T1 as a boundary, and the nonlinear correction voltage (third item: VCOMP) is positive on the high temperature side. Therefore, in the reference voltage generation circuit 4, as shown in FIG. 24, the sum (VBGR_PTAT) of the first item and the second item is optimized so that the temperature coefficient becomes zero on the low temperature side. Thereby, the temperature drift of the output voltage V BGR can be reduced.
  • the above calculation is an approximate calculation as in the first embodiment, and accurate values such as a resistance value and a correction current value are obtained by simulation.
  • start-up circuits addition of a low-pass filter, and application to a system LSI can be applied as in the first embodiment.
  • the low voltage output and the low power supply voltage operation can be performed similarly to the reference voltage generation circuit 1, and the influence of the offset of the amplifier on the output voltage V BGR is reduced. Can be made. In addition, the temperature dependence of the output voltage V BGR can be further reduced. Further, since the correction circuit 20B does not have a circuit configuration in which a current mirror circuit is stacked on the bipolar transistor Q3 like the correction circuit 20 or the like, the correction circuit 20B can operate with a lower power supply voltage. The correction circuit 20B can also be applied to a reference voltage generation circuit according to another embodiment.
  • FIG. 25 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 5 shown in the figure includes a BGR core circuit 10C and a nonlinear correction circuit 20.
  • the BGR core circuit 10C is configured by dividing the resistor R4 from the BGR core circuit 10 into a resistor R41 and a resistor R52.
  • the reference voltage generation circuit 1 differs from the reference voltage generation circuit 1 in that the feedback destination of the correction current I COMP is the connection node of the resistor R41 and the resistor R42.
  • the output voltage V BGR by the reference voltage generation circuit 5 is as follows.
  • Equation 55 is established from the Kirchhoff current law at the node of the potential V3.
  • correction current I COMP is expressed by (Equation 57).
  • the direction of the correction current I COMP is positive when flowing from the MOS transistor MP4 to the resistor R4 as shown in FIG.
  • FIG. 26 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage generation circuit 5.
  • the reference voltage generation circuit 5 has a negative temperature dependency (first item: VCTAT) of the base-emitter voltage VBE of the bipolar transistor Q2 in proportion to the absolute temperature (second item: VPTAT) and a nonlinear correction voltage (first item). Correct by 3 items: VCOMP).
  • the correction current I COMP has a characteristic of increasing on the high temperature side with the predetermined temperature T1 as a boundary. Therefore, the nonlinear correction voltage (third item: VCOMP) becomes positive on the high temperature side, and the Thevenin voltage component. Is added as Therefore, in the reference voltage generation circuit 5, as shown in FIG. 26, the sum (VBGR_PTAT) of the first item and the second item is optimized so that the temperature coefficient becomes zero on the low temperature side. Thereby, the temperature drift of the output voltage V BGR can be reduced.
  • start-up circuits addition of a low-pass filter, and application to a system LSI can be applied as in the first embodiment.
  • the reference voltage generation circuit 5 As described above, according to the reference voltage generation circuit 5 according to the fifth embodiment, as in the reference voltage generation circuit 1, low voltage output and low power supply voltage operation are possible, and the influence of the offset of the amplifier on the output voltage V BGR is reduced. Can be made. In addition, the temperature dependence of the output voltage V BGR can be further reduced.
  • the method of adding the correction current to the resistor R4 that generates the output voltage V BGR shown in the present embodiment is, for example, a BGR circuit configured to convert the current into a voltage and output the voltage as in Patent Document 2. Can also be applied, and the temperature dependence of the output voltage V BGR can be similarly reduced.
  • FIG. 27 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 6 shown in the figure includes a BGR core circuit 10 and a nonlinear correction circuit 20C. Unlike the nonlinear correction circuit 20 according to the first embodiment, the nonlinear correction circuit 20C generates the correction current I COMP using the characteristics of the subthreshold region of the MOS transistor.
  • the correction circuit 20C receives the output voltage V BGR of the BGR core circuit 10 and buffers the amplifier A2, the N-type MOS transistor MN6 that inputs the output voltage of the amplifier A2 to the gate terminal, and the gate terminal.
  • a correction current based on an N-type MOS transistor MN5 whose drain terminal is set to the potential is connected to the source terminal of MN6, a resistor R6 provided between the source terminal of MN5 and the ground node, and a current flowing through MN6.
  • P-type MOS transistors MP3 and MP4 constituting a current mirror circuit for outputting.
  • the MOS transistors MN5 and MN6 operate in the sub-threshold region. It is possible to generate a correction current I COMP that increases on the high temperature side with respect to the temperature. This makes it possible to improve the nonlinear temperature dependence of the output voltage, as in the first embodiment.
  • FIG. 27 shows an example in which one MOS transistor MN5 is inserted and a correction current is generated by two stages of MOS transistors.
  • the amplifier A2 is inserted as a buffer, but the output voltage V BGR of the BGR core circuit 10 may be directly input to the gate side of the MN6.
  • the feedback destination of the correction current I COMP generated by the method according to the present embodiment is not limited to the resistor R5, and may be a node of the resistor R3 or the potential VB as shown in other embodiments.
  • the reference voltage generation circuit 6 As described above, according to the reference voltage generation circuit 6 according to the sixth embodiment, as in the reference voltage generation circuit 1, low voltage output and low power supply voltage operation are possible, and the influence of the offset of the amplifier on the output voltage V BGR is reduced. Can be made. In addition, the temperature dependence of the output voltage V BGR can be further reduced.
  • FIG. 28 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10D shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10D has a configuration in which the resistor R5 and the resistor R3 are removed from the BGR core circuit 10 and the output stage circuit that generates the output voltage V BGR is changed.
  • the circuit of the output stage includes a bipolar transistor Q4 whose emitter terminal is grounded and diode-connected, a resistor R9 whose one end is grounded, and a collector side of the bipolar transistor Q4 and the other end of the resistor R9.
  • the resistor R8 is provided, and the node to which both ends of the resistor R8 are connected is connected to the drain side, and the MOS transistor MP2 and MP5 whose gate terminal is set to the same potential as the gate terminal of the MOS transistor MP1.
  • the output voltage V BGR of the BGR core circuit 10D is as follows.
  • the current I output from the MOS transistor MP1 does not include a current having a nonlinear temperature characteristic based on the base-emitter voltage VBE. That is, according to the BGR core circuit 10D, an IPAT current proportional to the temperature can be generated and output.
  • FIG. 29 is a circuit diagram showing an example of a BGR core circuit including a voltage generation unit that generates a voltage (VPTAT) proportional to the absolute temperature.
  • VTAT voltage
  • the BGR core circuit 10E shown in the figure includes a P-channel MOS transistor MP6 having the same source potential and gate potential as MP1, and a resistor provided between the drain terminal of MP6 and the ground node.
  • a PTAT voltage generation unit comprising R10 is provided. According to this, the PTAT voltage can be easily generated.
  • FIG. 30 is a block diagram showing an example of a semiconductor integrated circuit device to which a reference voltage generation circuit composed of a BGR core circuit 10E and a nonlinear correction circuit is applied.
  • the semiconductor integrated circuit device 101 is, for example, a system LSI with a built-in power supply circuit.
  • the semiconductor integrated circuit device 101 has a configuration in which a temperature sensor 52 is added to the semiconductor integrated circuit device (system LSI) 100 of FIG.
  • the temperature sensor 52 includes a reference voltage generation circuit 54 and an AD converter 53.
  • the reference voltage generation circuit 54 includes, for example, a BGR core circuit 10E and the nonlinear correction circuit 20 described above.
  • the BGR core circuits 10D and 10E according to the seventh embodiment similarly to the BGR circuit 10 according to the first embodiment, the low voltage output and the low power supply voltage operation are possible, and the amplifier of the output voltage V BGR The influence of offset can be reduced. In addition, the PTAT voltage can be easily generated.
  • FIG. 31 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10F shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10F has a configuration in which a resistor R81 is added to the collector side of the bipolar transistor Q4 with respect to the BGR core circuit 10D.
  • FIG. 32 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10G shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10G has a configuration in which the resistor R5 and the resistor R3 are removed from the BGR core circuit 10 and the output stage circuit that generates the output voltage V BGR is changed.
  • the circuit of the output stage includes a bipolar transistor Q4 whose emitter terminal is grounded and diode-connected, a resistor R9 whose one end is grounded, and between the collector side of the bipolar transistor Q4 and the other end of the resistor R9.
  • a MOS transistor MP5 having a drain terminal connected to a node to which the resistor R11 and the resistor R9 are connected and a gate terminal having the same potential as the gate terminal of the MOS transistor MP1.
  • the output voltage V BGR of the BGR core circuit 10G is (Equation 69).
  • FIG. 33 shows an example of a circuit provided with a voltage generator for generating a voltage (VPTAT) proportional to absolute temperature in the BGR core circuit 10G of FIG.
  • VTAT voltage proportional to absolute temperature
  • the BGR core circuit 10H shown in the figure includes a P channel MOS transistor MP6 having the same source potential and gate potential as MP1, and a resistor provided between the drain terminal of MP6 and the ground node.
  • a PTAT voltage generation unit comprising R10 is provided. According to this, the PTAT voltage can be easily generated.
  • the BGR core circuit 10H according to the ninth embodiment similarly to the BGR core circuit 10D, low voltage output and low power supply voltage operation can be performed, and the influence of the offset of the amplifier on the output voltage V BGR can be reduced. Can do. In addition, the PTAT voltage can be easily generated.
  • FIG. 34 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10I shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10I has a configuration in which the resistor R5 is removed from the BGR core circuit 10. As a result, the common input voltage of the amplifier A1 is lower than that of the BGR core circuit 10.
  • the output voltage V BGR of the BGR core circuit 10I is the same as that of the BGR core circuit 10. According to the BGR core circuit 10I, low voltage output and low power supply voltage operation are possible, and the offset of the amplifier with respect to the output voltage V BGR The influence can be reduced.
  • FIG. 35 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10J shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10J has a configuration in which the resistor R5 is removed from the BGR core circuit 10 and a resistor R7 is provided between the drain terminal of the MOS transistor MP1 and the connection node of the resistors R1 and R2. Thereby, the common input voltage of amplifier A1 can be adjusted.
  • the output voltage V BGR of the BGR core circuit 10J is the same as that of the BGR core circuit 10. According to the BGR core circuit 10J, low voltage output and low power supply voltage operation are possible, and the offset of the amplifier with respect to the output voltage V BGR The influence can be reduced.
  • FIG. 36 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10K shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10K has a configuration in which a resistor R7 is further provided between the drain terminal of the MOS transistor MP1 and the connection node of the resistors R1 and R2, with respect to the BGR core circuit 10. Thereby, the common input voltage of amplifier A1 can be adjusted.
  • the output voltage V BGR of the BGR core circuit 10K is the same as that of the BGR core circuit 10. According to the BGR core circuit 10K, low voltage output and low power supply voltage operation are possible, and the offset of the amplifier with respect to the output voltage V BGR The influence can be reduced.
  • FIG. 37 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10L shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10L has a configuration in which the resistor R5 is removed from the BGR core circuit 10 and the voltage on the collector side of the bipolar transistors Q1 and Q2 is divided and input to the amplifier A3.
  • a method of dividing voltage by resistors R12 and R13 and resistors R14 and R15 is shown. As a result, the common input voltage of the amplifier A3 can be lowered, and the design of the amplifier A3 is facilitated.
  • FIG. 38 is a circuit diagram showing an example of the amplifier A3.
  • a differential amplifier having a P-channel MOS transistor as an input stage can be used as the amplifier A3.
  • the voltage Vbp in the figure is a bias voltage.
  • the output voltage V BGR of the BGR core circuit 10L is the same as that of the BGR core circuit 10. According to the BGR core circuit 10L, low voltage output and low power supply voltage operation are possible, and the influence of the offset of the amplifier on the output voltage V BGR Can be reduced.
  • the method of dividing and adjusting the common input voltage of the amplifier A3 (A1) is also applicable to the BGR core circuit according to another embodiment.
  • the configuration example in which the resistor R5 is removed is shown, but the resistor R5 may remain connected.
  • FIG. 39 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10M shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10M removes the resistor R5 from the BGR core circuit 10, and provides a resistor R16 between the source terminal of the MOS transistor MP1 and the power supply Vcc, and a resistor R17 between the source terminal of the MOS transistor MP2 and the power supply Vcc. Is provided. According to this, the mismatch between the current of the MOS transistor MP1 and the current of the MOS transistor MP2 can be reduced by source degeneration.
  • the output voltage V BGR of the BGR core circuit 10L is the same as that of the BGR core circuit 10. According to the BGR core circuit 10L, low voltage output and low power supply voltage operation are possible, and the influence of the offset of the amplifier on the output voltage V BGR Can be reduced.
  • the above-described method of inserting the degeneration resistors R16 and R17 can be applied to the BGR core circuit according to another embodiment.
  • the configuration example in which the resistor R5 is removed is shown, but the resistor R5 may remain connected.
  • FIG. 40 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10N shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10N is a circuit configured using PNP bipolar transistors.
  • the specific circuit configuration is as follows. As shown in FIG. 40, the BGR core circuit 10N is connected to a pair of PNP-type bipolar transistors Q1P and Q2P whose emitter terminals are connected in common and one end of which is connected in common to the base terminal of the bipolar transistor Q2P. The other end includes resistors R1 and R2 connected to the collector terminals of the bipolar transistors Q1P and Q2P, and a resistor R3 provided between the base terminal of the bipolar transistor Q2P and the power supply Vcc.
  • the BGR core circuit 10 has a differential amplifier A1 that inputs the collector side potentials of the bipolar transistors Q1 and Q2, respectively, an output voltage of the differential amplifier A1 is input to the gate terminal, and a source terminal is connected to the ground node.
  • the drain terminal of the MOS transistor MN7 is connected to the connection node of the resistors R1 and R2, thereby forming a feedback loop.
  • the emitter area of the bipolar transistor Q1P is increased to n (n is an integer of 2 or more) times that of the bipolar transistor Q2P. That is, when the same current is supplied to bipolar transistors Q1P and Q2P, the emitter current density of bipolar transistor Q2P is set to be n times the emitter current density of transistor Q1P.
  • the BGR core circuit 10N having a configuration in which the BGR core circuit 10 is inverted, similarly to the BGR core circuit 10, the low voltage output and the low power supply voltage operation are possible, and the influence of the offset of the amplifier with respect to the output voltage V BGR is affected. Can be reduced.
  • FIG. 41 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10O shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10O has a configuration in which a resistor R5 is inserted between the node to which the resistors R1 and R2 are connected and the drain terminal of the MN7 with respect to the BGR core circuit 10N according to the fifteenth embodiment. According to this, it is possible to adjust to increase the common input voltage of the amplifier A1.
  • the output voltage V BGR of the BGR core circuit 10O is the same as that of the BGR core circuit 10N. According to the BGR core circuit 10O, low voltage output and low power supply voltage operation are possible, and the offset of the amplifier with respect to the output voltage V BGR The influence can be reduced.
  • FIG. 42 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10P shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • a resistor R5 is inserted between the node to which the resistors R1 and R2 are connected and the drain terminal of the MN7, so that the bipolar transistors Q1P and Q2P Is configured such that a resistor R7 is inserted between the node connected to the power source Vcc. According to this, it becomes possible to adjust the common input voltage of the amplifier A1.
  • the output voltage V BGR of the BGR core circuit 10P is the same as that of the BGR core circuit 10N. According to the BGR core circuit 10P, low voltage output and low power supply voltage operation are possible, and the offset of the amplifier with respect to the output voltage V BGR The influence can be reduced.
  • FIG. 43 is a circuit diagram showing an example of a BGR core circuit according to another embodiment of the present invention.
  • the BGR core circuit 10Q shown in the figure is an example of another circuit form of the BGR core circuit in the reference voltage generation circuit 1 described above.
  • the same reference numerals are assigned to the same components as those of the reference voltage generating circuit 1 according to the first embodiment, and the detailed description thereof is omitted.
  • the BGR core circuit 10Q is configured to generate the output voltage V BGR based on a current obtained by turning back the current flowing through the MN8.
  • the BGR core circuit 10Q further includes a current mirror circuit (MP8, MP9) that generates a current I based on the current of MN8 and supplies the current I to the resistor R4.
  • the BGR core circuit of the fifteenth to seventeenth embodiments is a method for obtaining the output voltage V BGR based on the power supply VCC, whereas the BGR core circuit 10Q according to the present embodiment uses the ground-based output voltage as a reference. Can be obtained. Further, similarly to the BGR core circuit 10N and the like, low voltage output and low power supply voltage operation are possible, and the influence of the offset of the amplifier on the output voltage V BGR can be reduced.
  • the configuration example in which the resistors R5 and R6 are inserted is shown, but a configuration in which one or both of the resistors R5 and R6 are removed may be employed.
  • FIG. 44 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generating circuit 7 shown in the figure has a configuration in which nonlinear correction is applied to a BGR core circuit having an output of about 1.2V.
  • FIG. 5 shows the BGR core circuit shown in FIG. 5 as an example of the BGR core circuit with about 1.2 V output.
  • the reference voltage generation circuit 7 shown in the figure includes a BGR core circuit 71 and a nonlinear correction circuit 72.
  • the BGR core circuit 71 has a circuit configuration based on the BGR core circuit of FIG.
  • the specific configuration is as follows.
  • the BGR core circuit 71 shown in FIG. 44 includes a pair of NPN bipolar transistors Q1 and Q2 whose base terminals are connected in common, a resistor R22 provided between the collector terminal of the bipolar transistor Q2 and the power supply Vcc.
  • the resistor R21 provided between the collector terminal of the bipolar transistor Q1 and the power supply Vcc
  • the resistor R20 provided between the emitter terminal of the bipolar transistor Q1 and the emitter terminal of the bipolar transistor Q2, and the emitter of the bipolar transistor Q2
  • a resistor R23 provided between the terminal and the ground (ground node).
  • the BGR core circuit includes a differential amplifier A1 that inputs the collector-side potentials of the bipolar transistors Q1 and Q2 and has an output connected to the base sides of the bipolar transistors Q1 and Q2.
  • the emitter area of the bipolar transistor Q1 is increased by n (n is an integer of 2 or more) times that of the bipolar transistor Q2. That is, when the same current is supplied to bipolar transistors Q1 and Q2, the emitter current density of bipolar transistor Q2 is set to be n times the emitter current density of transistor Q1.
  • the resistor R23 is divided into a resistor R23A and a resistor R23B, and the correction current I COMP is supplied to the connection node of both resistors.
  • the correction circuit 72 is configured to generate a correction current I COMP from the bipolar transistors Q5 to Q8 and the resistor R6 based on the output voltage V BGR and to feed back the correction current I COMP to the BGR core by a current mirror circuit composed of MP11 and MP12. is there.
  • the correction current I COMP by the correction circuit 72 is expressed by (Equation 72).
  • the principle of the generation of the correction current I COMP is the same as that of the correction circuit 20 according to the first embodiment.
  • the output voltage V BGR is about 1.2 V
  • the bipolar transistors Q5 and Q7 By stacking Q6 and Q8) in two stages, the base-emitter voltage VBE is doubled, and a suitable correction current I COMP is generated.
  • the VBE is doubled assuming that the VBE of the bipolar transistor is about 0.7 V at a low temperature and about 0.35 V at a high temperature, and the values of the output voltage V BGR and VBE are Accordingly, the number of bipolar transistors Q5 and Q7 (Q6, Q8) is adjusted.
  • FIG. 45 is an explanatory diagram showing the principle of the nonlinear temperature characteristic correction method by the reference voltage circuit 7.
  • VBGR_PTAT shown in FIG. 6A shows an example of a waveform when only correction of the voltage VPTAT proportional to the absolute temperature is considered to the base-emitter voltage VBE when the correction current I COMP is ignored.
  • the voltage VBGR_PTAT has a bowl shape, and the constant of each element is adjusted so that the temperature becomes a temperature coefficient of zero on the low temperature side.
  • FIG. 5B shows the correction current I COMP .
  • (C) of the same figure shows an example of a waveform when the correction voltage VCOMP is added to the output voltage VBGR_PTAT.
  • the correction method such adding the current I PTAT 2 proportional to the square of the absolute temperature is considered.
  • the nonlinear correction method of adding the current I PTAT 2 based on the absolute temperature 0K it is possible to obtain a current or voltage that changes sharply in the temperature range to be corrected (for example, the temperature range required by the specifications). Have difficulty. Therefore, in the reference voltage generation circuit 7 according to the present embodiment, as in the reference voltage generation circuit 1, a correction current I COMP whose characteristics change with a predetermined temperature T1 as a boundary is generated, and correction according to the correction current I COMP is performed.
  • Nonlinear correction is performed by adding the voltage VCOMP to the voltage VBGR_PTAT. According to this, as shown in FIG. 45D, it is possible to reduce the temperature drift in a predetermined temperature range. As shown in FIG. 45, the slope of the correction current I COMP can be controlled by the value of the resistor R6.
  • V BGR -2V BE5 , 7 in (Equation 72) can be expressed approximately by subtracting the base-emitter voltage VBE having a non-linear temperature characteristic from the linear (PTAT) corrected voltage V BGR.
  • the correction current I COMP is generated by the nonlinear correction circuit 72 and fed back to the BGR core circuit 71, thereby further reducing the temperature dependence of the output voltage V BGR. Can be made. Further, it is possible to reduce the value of the resistor R6 as compared with Embodiment 21 described later.
  • the temperature correction method using the nonlinear correction circuit 72 can be applied to BGR circuits of other topologies. Further, the current mirror circuit (MP11, MP12) of the non-linear correction circuit 72 can be cascoded if there is a margin in operating voltage, or by inserting a degenerate resistor on the source side as shown in FIG. Mismatch can be prevented.
  • FIG. 46 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 8 shown in the figure includes a BGR core circuit 71 and a nonlinear correction circuit 73.
  • the nonlinear correction circuit 73 divides the resistor R6 of the nonlinear correction circuit 72 according to the twentieth embodiment, provides a resistor R62 between the emitter terminal of the bipolar transistor Q5 and the ground node, and also connects the emitter terminal of the bipolar transistor Q6 and the ground.
  • a resistor R61 is provided between the node and the node.
  • the temperature dependence of the output voltage V BGR can be further reduced.
  • the temperature correction method using the non-linear correction circuit 73 can be applied to BGR circuits of other topologies. Further, the current mirror circuit (MP11, MP12) of the non-linear correction circuit 73 can be converted into a cascode if there is a margin in operating voltage, or a degenerate resistor can be inserted on the source side as shown in FIG. Mismatch can be prevented.
  • FIG. 47 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 9 shown in the figure includes a BGR core circuit 71 and a nonlinear correction circuit 74.
  • the nonlinear correction circuit 74 is a diode-connected bipolar transistor Q10 to which the output of the BGR core circuit is input to the base side, a bipolar transistor Q9 whose collector side is connected to the emitter side of the bipolar transistor Q10, and an emitter terminal of the bipolar transistor Q9 And a ground node and a resistor R6 and a current mirror circuit (MP11, MP12) that generates a correction current I COMP .
  • MP11, MP12 current mirror circuit
  • the temperature dependence of the output voltage V BGR can be further reduced.
  • the nonlinear correction circuit 74 does not have a configuration in which the current mirror circuit is cascoded but has a small number of elements, so that the chip area can be further reduced.
  • the temperature correction method using the nonlinear correction circuit 74 can be applied to BGR circuits of other topologies. Further, the current mirror circuit (MP11, MP12) of the non-linear correction circuit 73 can be converted into a cascode if there is a margin in operating voltage, or a degenerate resistor can be inserted on the source side as shown in FIG. Mismatch can be prevented.
  • FIG. 48 is a circuit diagram showing an example of a reference voltage generating circuit according to another embodiment of the present invention.
  • the reference voltage generation circuit 11 shown in the figure includes a BGR core circuit 75 and a nonlinear correction circuit 76.
  • the BGR core circuit 75 has a pair of NPN-type bipolar transistors Q1 and Q2 whose base terminals are connected in common, one end connected in common and connected to the base terminal of the bipolar transistor Q2, and the emitter side of the bipolar transistor Q1.
  • the bipolar transistor Q11 constitutes a non-linear correction circuit 76 together with the resistor R34 and the PNP bipolar transistor Q11P.
  • Bipolar transistor Q11P has a base terminal connected to the base terminal of bipolar transistor Q11, an emitter terminal connected to the other end of resistor R4, and a collector terminal connected to a connection node between resistors R11 and R12.
  • the correction current I COMP by the correction circuit 75 is expressed by (Expression 74).
  • the base-emitter voltage VBE is doubled by stacking the bipolar transistors Q11 and Q11P in two stages, and a suitable correction current I COMP Is generated. Note that the VBE is doubled assuming that the VBE of the bipolar transistor is about 0.7 V at a low temperature and about 0.35 V at a high temperature.
  • the temperature dependence of the output voltage V BGR can be further reduced. Further, by configuring the BGR core circuit 75 and the non-linear correction circuit 76 to share the elements, the number of elements can be reduced and the chip area can be further reduced.
  • the temperature correction method using the non-linear correction circuit 75 is applicable to BGR circuits having other similar topologies. Further, the current mirror circuit (MP1, MP2, MP3) of the non-linear correction circuit 75 can be cascoded if the operating voltage has a margin, or a degenerate resistor can be inserted on the source side as shown in FIG. Current mismatch can be prevented.
  • the types of combinations of the BGR core circuit and the non-linear correction circuit shown in the above-described Embodiments 1 to 22 are not limited to the above example, and other combinations are possible as long as the correction current I COMP can be appropriately fed back to the BGR core circuit. Even non-linear correction is possible.
  • any of the BGR core circuits 10I to 10Q can be applied instead of the BGR core circuit 10A.
  • the present invention relates to a voltage generation circuit, and can be widely applied to a reference voltage generation circuit in a semiconductor integrated circuit.
  • Reference voltage generation circuit 10 10A to 10Q, 71, 75 BGR core circuit 20, 20A to 20C, 72 to 74 Nonlinear correction circuit A, A1 to A3 Amplifier 300 Comparison straight line 30 Start-up circuit 41 Power supply Control unit 42 Reference buffer 43 Main regulator 44 Sub regulator 45 CPU 46 Register 47 Nonvolatile memory element 48 Other peripheral circuit 49 Input / output circuit 50 Power supply circuit 51 AD converter 52 DA converter 60 Low pass filter (LPF) 70 Regulator circuit (reference current source) 100, 101 Semiconductor integrated circuit device (system LSI) 51 Power supply circuit 52 Temperature sensor 53 AD converter 54 Reference voltage generation circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

電圧発生回路は、第1バイポーラトランジスタ(Q2)と、エミッタが第1電位ノード側でQ2のエミッタ側と同電位とされ、ベースがQ2のコレクタ側に配置される第2バイポーラトランジスタ(Q1)と、一端がQ2のコレクタ側に配置され他端がQ2のベース側に配置される第1抵抗素子(R2)と、一端がQ1のコレクタ側に配置され他端がR2の他端に接続される第2抵抗素子(R1)と、Q2のベースと第1電位ノードの間に設けられる第3抵抗素子(R3)と、Q1とQ2のコレクタ側の電圧の差電圧に応じた電圧を出力するアンプ部(A1)と、アンプ部の出力電圧を電流に変換してR1とR2の接続ノードに供給し、生成した電流を出力する電圧電流変換部(MP1、MP2)と、生成された電流に基づいて電圧を出力する電圧生成部(R4)を有する。

Description

電圧発生回路
 本発明は、電圧発生回路に関し、特に半導体集積回路における基準電圧発生回路に適用して有効な技術に関する。
 システムLSI等の半導体集積回路では、LSI内部のA/Dコンバータ(ADC)、D/Aコンバータ(DAC)、レギュレータ、及び温度センサ等に対して基準電圧を供給するための基準電圧発生回路が形成される。上記の機能部の性能は基準電圧の精度に大きく依存するため、基準電圧発生回路は半導体製造プロセスの依存性が低く、温度依存性が低いものが要求される。また、低い電源電圧での動作も要求される。このような要求から、シリコンのバンドギャップ値に基づく電圧を生成するバンドギャップレファレンス(以下、「BGR(Bandgap reference)」と称する。)回路が基準電圧発生回路に多く利用されている。
 従来のBGR回路の一例として、非特許文献1及び特許文献1に開示がある。また、低電源電圧化に対応したBGR回路について特許文献2に開示がある。
 BGR回路の基本的構成要素であるバイポーラトランジスタ(BJT(Bipolar junction transistor)とも称する。)のベース・エミッタ間電圧の温度依存性が非線形であることが知られており(例えば、非特許文献2を参照。)、非特許文献3には出力電圧の非線形な温度依存性を改善したBGR回路が開示されている。また、非特許文献4乃至6には、特許文献1のBGR回路等に対して、非線形な温度依存性を補正するための補正回路の一例が開示されている。更に、非特許文献7には絶対温度の2乗に比例する電流(IPTAT )により温度特性を補正する方法が開示されている。
米国特許第3887863号明細書 米国特許第6160391号明細書
Kuijk,K.E ,"A precision reference voltage source",IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.sc-8,No.3,JUNE 1973 Tsividis, Y.P. ,"Accurate analysis of temperature effects in Ic-VBE characteristics with application to bandgap reference sources",IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.sc-15,No.6,DECEMBER 1980) P. Malcovati, "Curvature-Compensated BiCMOS Bandgap with 1-V Supply Voltage", IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.sc-36,No.7,JULY 2001 Pease, R.A. ,"A new Fahrenheit temperature sensor", IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.sc-19,No.6,DECEMBER 1984 Paul, R.  Patra, A. ,"A temperature-compensated bandgap voltage Reference circuit for high precision applications ", India Annual Conference, 2004. Proceedings of the IEEE INDICON 2004. First Publication Date: 20-22 Dec. 2004 Paul, R. Patra, A. Baranwal, S. Dash, K. ,"Design of second-order sub-bandgap mixed-mode voltage reference circuit for low voltage applications",VLSI Design, 2005. 18th International Conference onIssue Date :3-7 Jan. 2005 Sundar, Siddharth ,"A low power high power supply rejection ratio bandgap reference for portable applications",Massachusetts Institute of Technology, 2008
 近年、BGR回路は、BGR回路の構成要素の一つであるアンプ部のオフセットやカレントミラー回路のミスマッチの影響が小さく、1V以下の電源電圧で動作し、且つ広範な温度範囲(例えば、-55℃から160℃)で電圧の変動の少ないものが求められるようになってきている。
 しかしながら、従来のBGR回路では、例えば以下のような問題があると本願発明者らは考えた。
 BGR回路の中で古典的な構成である非特許文献1に記載のBGR回路は、アンプのオフセットによる影響を受け、出力電圧のばらつきが大きい特徴がある。また、出力電圧は約1.2Vであり、BGR回路の低電源電圧化も困難な構成である。更に温度依存性に関しても絶対温度に比例した温度補正のみを行っているため、広範な温度範囲で出力電圧のばらつきを抑えることが困難である。
 同様にBGR回路の中では古典的な構成である特許文献1に記載のBGR回路は、非特許文献1のBGR回路に比べてアンプのオフセットによる影響を受け難いが、出力電圧は約1.2Vであり、低電源電圧化が困難な構成である。温度依存性に関しても絶対温度に比例した温度補正のみを行っているため、広範な温度範囲で出力電圧のばらつきを抑えることが困難である。
 特許文献2に記載のBGR回路は、非特許文献1のBGR回路をベースとし、1V以下の低電源電圧動作を可能とする回路構成とされるが、非特許文献1のBGR回路と同様に、出力電圧のアンプのオフセットに対する依存性と温度依存性が高い。
 非特許文献3に記載のBGR回路は、特許文献2のBGR回路の非線形な温度依存性を改善した構成であり、低電源電圧化と温度依存性の低減を可能としているが、アンプのオフセットに対する依存性が高い。
 非特許文献7による温度補正方法は、絶対温度0Kから変化する電流IPTAT を用いた補正であり、補正したい所望の温度範囲において温度特性を改善させるのは容易ではない。仮に非特許文献7による温度補正方法を採用したとしても、電流IPTAT を生成するのに非特許文献4乃至6に記載されたIPTAT 電流生成回路を用いるのでは、回路規模及び素子数が大きいうえ、回路構成が複雑であり、低電源電圧化に向かない。
 本発明の目的は、構成要素であるアンプのオフセットの出力電圧に対する影響を低減した電圧発生回路を提供することにある。
 本発明の別の目的は、より低い電源電圧で動作可能な電圧発生回路を提供することにある。
 本発明の更に別の目的は、出力電圧の温度依存性をより低減した電圧発生回路を提供することにある。
 本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 すなわち、本電圧発生回路は、エミッタ端子が第1電位ノード側に配置された第1バイポーラトランジスタと、前記第1バイポーラトランジスタより大きいエミッタ面積であって、エミッタ端子が前記第1バイポーラトランジスタのエミッタ端子と同電位とされるとともにベース端子が前記第1バイポーラトランジスタのコレクタ側に配置される第2バイポーラトランジスタと、一端が前記第1バイポーラトランジスタのコレクタ側に配置され、他端が前記第1バイポーラトランジスタのベース側に配置される第1抵抗素子と、一端が前記第2バイポーラトランジスタのコレクタ側に配置され、他端が前記第1抵抗素子の他端に接続される第2抵抗素子と、前記第1バイポーラトランジスタのベース端子と前記第1電位ノードとの間に設けられる第3抵抗素子と、前記2つのバイポーラトランジスタのコレクタ側の電圧を入力し、入力した2つの電圧の差電圧に応じた電圧を出力するアンプ部と、電圧電流変換部は前記アンプ部の出力電圧を入力して電流に変換して前記第1抵抗素子と前記第2抵抗素子が接続されるノードに供給する電圧電流変換部とを有する電流生成部によって、2つのバイポーラトランジスタのベース・エミッタ間電圧の差電圧に応じた電流とPN接合の順方向電圧に応じた電流を加算した電流を生成する。本電圧発生回路は、前記生成した電流を電圧に変換して出力する。
 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
 すなわち、本電圧発生回路は、構成要素であるアンプのオフセットの出力電圧に対する影響を低減し、且つ、より低い電源電圧で動作可能とされる。
図1は、実施の形態1に係る基準電圧発生回路の一例を示すブロック図である。 図2は、実施の形態1に係る基準電圧発生回路の具体的な構成の一例を示す回路図である。 図3は、基準電圧発生回路1におけるBGRコア回路10の一例を示す回路図である。 図4は、非特許文献1に基づいて検討した解析用のBGRコア回路の一例を示す回路図である。 図5は、特許文献1に基づいて検討した解析用のBGRコア回路の一例である。 図6は、出力電圧VBGRの入力オフセット電圧依存性を定量的に表した説明図である。 図7は、図6の拡大図である。 図8は、夫々のBGRコア回路のシミュレーション結果を示す説明図である。 図9は、ベース・エミッタ間電圧VBEの温度に対する非線形依存性についての説明図である。 図10は、基準電圧回路1による非線形温度特性の補正方法の原理を示す説明図である。 図11は、特許文献1を基に検討したBGR回路に対する非線形特性の補正の原理を示す説明図である。 図12は、基準電圧発生回路の温度依存性のシミュレーション結果を示す説明図である。 図13は、BGRコア回路10におけるバイポーラトランジスタQ1、Q2のレイアウトの一例を示す説明図である。 図14は、基準電圧発生回路1のアンプA1の一例を示す回路図である。 図15は、スタートアップ回路を備えた基準電圧発生回路1の一例を示す回路図である。 図16は、電源ライン(Vcc)にローパスフィルタ(LPF)を挿入した回路構成例を示す説明図である。 図17は、基準電圧発生回路10を適用したシステムの一例を示す説明図である。 図18は、基準電圧発生回路10を適用した半導体集積回路装置の一例を示すブロック図である。 図19は、実施の形態2に係る基準電圧発生回路の一例を示す回路図である。 図20は、基準電圧発生回路2による非線形温度特性の補正方法の原理を示す説明図である。 図21は、実施の形態3に係る基準電圧発生回路の一例を示す回路図である。 図22は、基準電圧発生回路3による非線形温度特性の補正方法の原理を示す説明図である。 図23は、実施の形態4に係る基準電圧発生回路の一例を示す回路図である。 図24は、基準電圧発生回路4による非線形温度特性の補正方法の原理を示す説明図である。 図25は、実施の形態5に係る基準電圧発生回路の一例を示す回路図である。 図26は、基準電圧発生回路5による非線形温度特性の補正方法の原理を示す説明図である。 図27は、実施の形態6に係る基準電圧発生回路の一例を示す回路図である。 図28は、実施の形態7に係るBGRコア回路の一例を示す回路図である。 図29は、絶対温度に比例した電圧(VPTAT)を生成する電圧生成部を備えたBGRコア回路の一例を示す回路図である。 図30は、BGRコア回路10Eと非線形補正回路から構成される基準電圧発生回路を適用した半導体集積回路装置の一例を示すブロック図である。 図31は、実施の形態8に係るBGRコア回路の一例を示す回路図である。 図32は、実施の形態9に係るBGRコア回路の一例を示す回路図である。 図33は、絶対温度に比例した電圧(VPTAT)を生成する電圧生成部を備えたBGRコア回路の別の一例を示す回路図である。 図34は、実施の形態10に係るBGRコア回路の一例を示す回路図である。 図35は、実施の形態11に係るBGRコア回路の一例を示す回路図である。 図36は、実施の形態12に係るBGRコア回路の一例を示す回路図である。 図37は、実施の形態13に係るBGRコア回路の一例を示す回路図である。 図38は、BGRコア回路10LのアンプA3の一例を示す回路図である。 図39は、実施の形態14に係るBGRコア回路の一例を示す回路図である。 図40は、実施の形態15に係るBGRコア回路の一例を示す回路図である。 図41は、実施の形態16に係るBGRコア回路の一例を示す回路図である。 図42は、実施の形態17に係るBGRコア回路の一例を示す回路図である。 図43は、実施の形態18に係るBGRコア回路の一例を示す回路図である。 図44は、実施の形態20に係る基準電圧発生回路の一例を示す回路図である。 図45は、基準電圧回路7による非線形温度特性の補正方法の原理を示す説明図である。 図46は、実施の形態21に係る基準電圧発生回路の一例を示す回路図である。 図47は、実施の形態22に係る基準電圧発生回路の一例を示す回路図である。 図48は、実施の形態23に係る基準電圧発生回路の一例を示す回路図である。
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
 〔1〕(BGRコア回路(図2、図34、図40等))
 本発明の代表的な実施の形態に係る電圧発生回路(1)は、エミッタ面積の異なる2つのバイポーラトランジスタ(Q1、Q2)のベース・エミッタ間電圧の差電圧(ΔVBE)に応じた電流とPN接合の順方向電圧に応じた電流を加算した電流を生成する電流生成部(Q1、Q2、R1、R2、R3、A1、MP1、及びMP2)と、入力された電流を電圧に変換して出力する出力部(R4)と、を有する。前記電流生成部は、エミッタ端子が第1電位ノード(電源Vccノード/接地ノード)側に配置された第1バイポーラトランジスタ(Q2)と、前記第1バイポーラトランジスタのエミッタ面積より大きいエミッタ面積を有し、エミッタ端子が前記第1バイポーラトランジスタのエミッタ端子と同電位とされ、ベース端子が前記第1バイポーラトランジスタのコレクタ側に配置される第2バイポーラトランジスタ(Q1)と、一端が前記第1バイポーラトランジスタのコレクタ側に配置され、他端が前記第1バイポーラトランジスタのベース側に配置される第1抵抗素子(R2)と、一端が前記第2バイポーラトランジスタのコレクタ側に配置され、他端が前記第1抵抗素子の他端に接続される第2抵抗素子(R1)と、前記第1バイポーラトランジスタのベース端子と前記第1電位ノードとの間に設けられる第3抵抗素子(R3)と、前記第1バイポーラトランジスタのコレクタ側の電圧と前記第2バイポーラトランジスタのコレクタ側の電圧を入力し、入力した2つの電圧の差電圧に応じた電圧を出力するアンプ部(A1)と、前記アンプ部の出力電圧を入力して電流に変換し、変換した電流を前記第1抵抗素子と前記第2抵抗素子が接続されるノード(電圧V3のノード)に供給するとともに、出力部に供給する電圧電流変換部(MP1、MP2)と、を有する。
 項1の電圧発生回路において、前記電流生成部を上記の構成とすることで、前記第1バイポーラトランジスタと前記第2バイポーラトランジスタのベース・エミッタ間電圧の差電圧に応じた電流に対するアンプ部のオフセットの影響を小さくすることができるから、電圧生成部によって生成される出力電圧に対するアンプ部のオフセットの影響をより小さくすることができる。
 前述した特許文献1及び非特許文献1のBGR回路は、バイポーラトランジスタのベース・エミッタ間電圧VBEに対して、絶対温度に比例(以下、「PTAT」(Propotional To Absolute Temperature)とも称する。)した電圧VPTATを加算することで温度に比例した係数(一次係数)をキャンセルする構成である。これにより、VBEが0.6V程度であることを考慮すると、出力電圧は1.2V程度となり、例えば電源電圧が1V以下のような低電源電圧駆動・低出力電圧化には向かない。一方、項1の電圧発生回路は、前記第3抵抗素子に流れる前記第1バイポーラトランジスタのベース・エミッタ間電圧VBEに応じた電流と、前記差電圧に応じた電流(PTAT電流)を加算することで温度に比例した係数をキャンセルし、加算した電流を電圧に変換して出力するから、低電源電圧駆動・低電圧出力が可能となる。また、電流生成部の上記構成に対して、前記第3抵抗素子を前記第1バイポーラトランジスタのベース端子と前記第1電位ノードとの間に設けることで、容易にベース・エミッタ間電圧の差電圧に応じた電流を生成することを可能とする。
 〔2〕(R5ありのBGRコア回路(図2、図42、図43等))
 項1の電圧発生回路において、前記電流生成部は、前記第1バイポーラトランジスタのエミッタ端子と前記第1電位ノードとの間に抵抗素子(R5)を有する。
 これによれば、前記抵抗素子によりアンプ部のコモン入力電圧を高くすること可能となる。
 〔3〕(R7ありのBGRコア回路(図35、図36、図41、図42))
 項1又は2の電圧発生回路において、前記電圧電流変換部からの前記第1抵抗素子と前記第2抵抗素子が接続されるノードへの電流供給は、抵抗素子(R7)を介して行われる。
 これによれば、前記抵抗素子によりアンプ部のコモン入力電圧を低くすることが可能となる。
 〔4〕(アンプに分圧して入力(BGRコア回路10L)(図37))
 項1乃至3のいずれかの電圧発生回路において、前記アンプ部に入力される2つの電圧は、前記第1バイポーラトランジスタのコレクタ端子の電圧を分圧した電圧と、前記第2バイポーラトランジスタのコレクタ端子の電圧を分圧した電圧である。
 これによれば、アンプ部のコモン入力電圧を低くすることできるから、例えばアンプ部をPMOS差動入力のアンプとすることができ、アンプの設計が容易となる。
 〔5〕(ソース・デジェネレーション構成の電圧電流変換部(図39))
 項1乃至4のいずれかの電圧発生回路において、前記電圧電流変換部は、ソース端子が抵抗素子(R16)を介して前記第1電位ノードと異なる電位の第2電位ノード(接地ノード/電源Vccノード)に接続され、ドレイン端子が前記第1抵抗素子及び前記第2抵抗素子が接続されるノードに接続される第1MOSトランジスタ(MP1)と、ソース側が抵抗素子(R17)を介して前記第2電位ノードに接続され、ドレイン側が前記出力部の入力側に接続される第2MOSトランジスタ(MP2)と、を有し、前記第1MOSトランジスタと前記第2MOSトランジスタのゲート端子には、前記アンプ部の出力電圧が入力される。
 これによれば、前記第1MOSトランジスタと前記第2MOSトランジスタの夫々のソース側に接続されたディジェネレーション(degeneration)抵抗により、前記第1MOSトランジスタの電流と前記第2MOSトランジスタの電流のミスマッチを低減することができる。
 〔6〕(IPTAT電流を独立して生成可能なBGRコア回路(図28、図29、図31~図33))
 本発明の代表的な別の実施の形態に係る電圧発生回路(10D~10H)は、エミッタ面積の異なる2つのバイポーラトランジスタのベース・エミッタ間電圧の差電圧に応じた第1電流を生成する電流生成部(MP1、MP2、MP5、R1、R2、Q1、Q2)と、前記第1電流に基づいてPN接合の順方向電圧に応じた第2電流を生成するとともに、前記第1電流と前記第2電流に基づいて電圧を生成して出力する出力部と、を有する。前記電流生成部は、エミッタ端子が第1電位ノード側に配置された第1バイポーラトランジスタ(Q2)と、前記第1バイポーラトランジスタのエミッタ面積より大きいエミッタ面積を有し、エミッタ端子が前記第1バイポーラトランジスタのエミッタ端子と同電位とされ、ベース端子が前記第1バイポーラトランジスタのコレクタ側に配置される第2バイポーラトランジスタ(Q1)と、一端が前記第1バイポーラトランジスタのコレクタ側に配置され、他端が前記第1バイポーラトランジスタのベース側に配置される第1抵抗素子(R2)と、一端が前記第2バイポーラトランジスタのコレクタ側に配置され、他端が前記第1抵抗素子の他端に接続される第2抵抗素子(R1)と、前記第1バイポーラトランジスタのコレクタ側の電圧と前記第2バイポーラトランジスタのコレクタ側の電圧を入力し、入力した2つの電圧の差電圧に応じた電圧を出力するアンプ部(A1)と、前記アンプ部の出力電圧を入力して電流に変換し、変換した電流を前記第1抵抗素子と前記第2抵抗素子が接続されるノード(電位V3のノード)に供給するとともに、出力部に供給する電圧電流変換部(MP1、MP2)と、を有する。
 これによれば、項1と同様に、出力電圧に対するアンプ部のオフセットの影響をより小さくすることができ、且つ低電源電圧駆動・低電圧出力が可能となる。更に以下の作用・効果がある。例えば項1の電圧発生回路では、電流生成部はエミッタ面積の異なる2つのバイポーラトランジスタのベース・エミッタ間電圧の差電圧に応じた電流(項6における前記第1電流)と、PN接合の順方向電圧に応じた電流(項6における前記第2電流)を生成し、2つの電流を加算した電流を出力するが、項6の電流発生回路では、電流生成部は前記第1電流を出力する。すなわち、項6の電流発生回路によれば、絶対温度に比例した電流(前記第1電流)を単独で出力することができるから、容易にPTAT電圧を生成することができる。
 〔7〕(BGRコア回路10Dの出力段構成(図28))
 項6の電圧発生回路において、前記出力部は、一端が前記第1電位ノードに接続され、他端に入力される電流に基づいてPN接合の順方向電圧に応じた電圧を生成する電圧生成部(Q4)と、一端が前記第1電位ノードに接続される第3抵抗素子(R9)と、前記電圧生成部の他端側と前記第3抵抗素子の他端側との間に設けられた第4抵抗素子(R8)と、を有し、前記第4抵抗素子が接続されるノードに前記第1電流が夫々供給される。
 これによれば、順方向電圧に基づく電流と前記第1電流を前記第3抵抗素子に流しこむことで出力電圧を生成するから、低電源電圧駆動・低電圧出力が容易となる。
 〔8〕(BGRコア回路10等の出力段構成(図2等))
 項1乃至5のいずれかの電圧発生回路において、前記出力部は、一端が前記第1電位ノードに接続され、他端に電流が入力される第4抵抗素子(R4)である。
 これによれば、容易に出力電圧を生成することができる。
 〔9〕(NPN型バイポーラトランジスタを利用したBGRコア回路(図2等))
 項1乃至8のいずれかの電圧発生回路において、前記第1バイポーラトランジスタ及び前記第2バイポーラトランジスタは、NPN型のバイポーラトランジスタである。
 〔10〕(PNP型バイポーラトランジスタを利用したBGRコア回路(図40~図43))
 項1乃至8のいずれかの電圧発生回路において、前記第1バイポーラトランジスタ及び前記第2バイポーラトランジスタは、PNP型のバイポーラトランジスタである。
 〔11〕(BGRコア回路+温度補正回路(図2等))
 項1乃至10のいずれかの電圧発生回路において、前記出力部によって生成された電圧(VBGR)とPN接合の順方向電圧との差分に応じた補正電流(ICOMP)を生成し、前記補正電流を前記電流生成部に帰還させる補正回路(20、20A、20B)を更に有する。
 項1等の電圧発生回路は、前記第3抵抗素子に流れる前記第1バイポーラトランジスタのベース・エミッタ間電圧VBEに応じた電流と、前記差電圧に応じた電流(PTAT電流)を加算することで温度に比例した係数をキャンセルし、加算した電流を出力電圧に変換することで出力電圧の温度特性を改善している。しかしながら、前述したようにベース・エミッタ間電圧の温度依存性は非線形であることから、出力電圧は非線形温度依存性を持つ。そこで、項11の電圧発生回路は、電圧生成部の出力電圧とPN接合の順方向電圧の差分に応じて非線形温度特性を持つ補正電流を生成し、前記電流生成部に帰還させることで前記電流生成部の出力電流の非線形温度依存性を改善する。これにより、出力電圧の非線形温度依存性が改善され、より広範な温度範囲における出力電圧のばらつきを低減させることができる。また、温度依存性がある2つの電圧(出力電圧と順方向電圧)の差分に応じた電流を生成することで、温度特性を補正したい温度範囲で変化する補正電流の生成が可能となる。これによれば、絶対温度0Kを基点としたPTAT電流やPTAT2電流(絶対温度の2乗に比例した電流)を用いて温度特性を補正する場合に比べて、補正が容易となる。
 〔12〕(補正回路の具体的構成(図2、図21、図23、図25))
 項11の電圧発生回路において、前記補正回路は、エミッタ端子が第5抵抗素子(R6)を介して前記第1電位ノードに接続され、ベース端子が前記電圧生成部の出力側に接続される第3バイポーラトランジスタ(Q3)と、前記第3バイポーラトランジスタのコレクタ端子に流れる電流に応じた電流を出力するカレントミラー部(MP3、MP4)と、を有する。
 これによれば、前記補正電流を容易に生成することができる。
 〔13〕(補正電流の帰還先がR3(図19、図21))
 項11又は12の電圧発生回路において、前記補正電流は、前記第3抵抗素子に帰還される。
 これによれば、前記電流生成部への前記補正電流の帰還が容易となる。
 〔14〕(補正電流の帰還先がR5(図2、図27))
 項11又は12の電圧発生回路において、前記第1バイポーラトランジスタのエミッタ端子は、抵抗素子(R5)を介して前記第1電位ノードに接続され、前記補正電流は、前記第1バイポーラトランジスタのエミッタ端子に帰還される。
 これによれば、前記電流生成部への前記補正電流の帰還が容易になるとともに、前記抵抗素子によりアンプ部のコモン入力電圧を高くすること可能となる。
 〔15〕(補正電流の帰還先が電位VB側(図23))
 項11又は12の電圧発生回路において、前記補正電流は、前記第2抵抗素子の一端に帰還される。
 これによれば、前記電流生成部への前記補正電流の帰還が容易となる。
 〔16〕(補正電流の帰還先が抵抗R4(図25))
 項8の電圧発生回路において、前記出力部によって生成された電圧とPN接合の順方向電圧との差分に応じた補正電流を生成し、前記補正電流を前記第4抵抗素子(R4)に帰還させる補正回路を更に有する。
 これによれば、前記電圧生成部への前記補正電流の帰還が容易となる。
 〔17〕(ボルテージフォロアA2の追加(図2等))
 項12の電圧発生回路において、前記補正回路は、前記電圧生成部の出力電圧を入力し、バッファして前記第3バイポーラトランジスタのベース端子に出力するバッファ回路(A2)を更に有する。
 これによれば、前記第3バイポーラトランジスタのベース電流による前記電圧生成部の出力電圧への影響を防止することができる。
 〔18〕(カレントミラー部のその他の実施例(図23))
 項12又は17の電圧発生回路において、前記カレントミラー部は、低電圧型のカレントミラー回路(MP3、MP4、MN3、MN4)である。
 これによれば、前記補正回路の低電源電圧化に資する。
 〔19〕(BGRコア回路(1.2V出力も含む)+非線形補正回路)(図44、図46、図47、図48、図2等)
 本発明の代表的な別の実施の形態に係る電圧発生回路(1~9、11)は、異なる電流密度で動作する2つのバイポーラトランジスタ(Q1、Q2)のベース・エミッタ間電圧の差電圧とPN接合の順方向電圧を所定の割合で加算した電圧を生成して出力する電圧生成部(10、10A~10Q、71、75)と、前記電圧生成部によって生成された電圧とPN接合の順方向電圧との差分に応じた補正電流(ICOMP)を生成し、前記補正電流を前記電圧生成部に帰還させる補正回路(20、20A、20B)と、を有する。
 これによれば、項11と同様に、出力電圧の非線形温度依存性が改善され、より広範な温度範囲における出力電圧のばらつきを低減させることができ、且つ絶対温度0Kを基点としたPTAT電流やPTAT電流(絶対温度の2乗に比例した電流)を用いて温度特性を補正する場合に比べて、補正が容易となる。
 〔20〕(1.2V出力に対応した非線形補正回路(図44、図46))
 項19の電圧発生回路において、前記補正回路は、エミッタ端子が第1抵抗素子(R6、R62)を介して第1電位ノード(接地ノード)に接続され、ダイオード接続された第1バイポーラトランジスタ(Q5)と、エミッタ端子が前記第1バイポーラトランジスタのコレクタ側に接続され、ダイオード接続されたコレクタ端子とベース端子が前記電圧生成部の出力側に接続される第2バイポーラトランジスタ(Q7)と、前記第1抵抗素子に流れる電流に応じた電流を出力する電流出力部(Q6、Q8、MP1、MP2)と、を有する。
 これによれば、前記第1バイポーラトランジスタと前記第2バイポーラトランジスタを2段積みとすることで、例えば前記電圧生成部の出力電圧が1.2V程度の場合であっても前記補正電流の生成が容易となる。
 〔21〕(1.2V出力に対応した非線形補正回路(図47))
 項19の電圧発生回路において、前記補正回路は、エミッタ端子が第1抵抗素子(R6)を介して第1電位ノードに接続され、ダイオード接続された第1バイポーラトランジスタ(Q9)と、エミッタ端子が前記第1バイポーラトランジスタのコレクタ側に接続され、ベース端子が前記電圧生成部の出力側に接続される第2バイポーラトランジスタ(Q10)と、前記第2バイポーラトランジスタのコレクタ側に流れる電流に応じた電流を出力するカレントミラー回路(MP11、MP12)と、を有する。
 これによれば、前記第1バイポーラトランジスタと前記第2バイポーラトランジスタを2段積みとすることで、例えば前記電圧生成部の出力電圧が1.2V程度の場合であっても前記補正電流の生成が容易となる。
 〔22〕(1.2V出力のBGRコア回路71(図44、図46、図47))
 項19乃至21のいずれかの電圧発生回路において、前記電圧生成部は、コレクタ端子が第2抵抗素子(R22)を介して前記第1電位ノードに接続される第3バイポーラトランジスタ(Q2)と、前記第3バイポーラトランジスタのエミッタ面積より大きいエミッタ面積を有し、コレクタ端子が第3抵抗素子(R21)を介して第1電位ノードに接続される第4バイポーラトランジスタ(Q1)と、前記第3バイポーラトランジスタのエミッタ端子と前記第4バイポーラトランジスタのエミッタ端子との間に設けられた第4抵抗素子(R20)と、前記第2バイポーラトランジスタのエミッタ端子と第2電位ノードとの間に設けられた第5抵抗素子(R23)と、を有し、前記補正電流は、前記第5抵抗素子に帰還される。
 これによれば、1.2V程度を出力するBGR回路に対しても、非線形温度特性の補正が容易に実現可能される。
 〔23〕(BGRコア回路+温度補正回路(MOSTr)(図27))
 項1乃至10のいずれかの電圧発生回路(6)において、前記出力部(10)によって生成された電圧とサブスレッショルド領域で動作されるMOSトランジスタ(MN5、MN6)のゲート・ソース間電圧との差分に応じた補正電流(ICOMP)を生成し、前記補正電流を前記電流生成部に帰還させる補正回路(20C)を更に有する。
 MOSトランジスタのサブスレッショルド領域の特性は、バイポーラトランジスタのI-VBE特性に近い特性となるから、項23の電圧発生回路によれば、温度依存性がある2つの電圧(出力電圧とVGS電圧)の差分に応じた電流を生成することで、温度特性を補正したい温度範囲で変化する補正電流の生成が可能となる。これにより、項11等と同様に、出力電圧の非線形温度依存性が改善され、より広範な温度範囲における出力電圧のばらつきを低減させることができ、且つ、絶対温度0Kを基点としたPTAT電流やPTAT電流(絶対温度の2乗に比例した電流)を用いて温度特性を補正する場合に比べて、補正が容易となる。また、前記補正回路にバイポーラトランジスタを用いないから、CMOSプロセスで補正回路を実現することができる。
 〔24〕(温度補正回路(MOSTr)の具体的構成)
 項23の電圧発生回路において、前記補正回路は、ゲート端子が前記出力部の出力側に配置される第1MOSトランジスタ(MN6)と、一端が前記第1電位ノードに接続される第4抵抗素子(R6)と、前記第1MOSトランジスタのソース端子と前記第4抵抗素子の他端との間に設けられ、ゲート端子とドレイン端子が同電位とされる1又は複数の第2MOSトランジスタ(MN5)と、前記第1MOSトランジスタのドレイン側に流れる電流に応じた電流を出力するカレントミラー部(MP3、MP4)と、を有する。
 これによれば、例えば前記第2NMOSトランジスタの段数を調整することで、MOSトランジスタをサブスレッショルド領域で動作させることができ、前記補正電流の生成が容易となる。
 2.実施の形態の詳細
 実施の形態について更に詳述する。
 ≪実施の形態1≫
 図1は、本実施の形態に係る基準電圧発生回路の一例を示すブロック図である。
 同図に示される基準電圧生成回路1は、基準電圧VBGRを生成して出力する電圧生成回路(以下、BGRコア回路とも称する。)10と、基準電圧VBGRに応じて、基準電圧VBGRの温度特性を補正するための補正電流を生成し、BGRコア回路に帰還させる非線形補正回路(以下、単に補正回路とも称する。)20を備える。
 図2は、基準電圧発生回路1の具体的な回路構成の一例を示す回路図である。同図に示される基準電圧発生回路1は、特に制限されないが、公知のCMOS集積回路の製造技術によって1個の単結晶シリコンのような半導体基板に形成されている。
 同図に示されるBGRコア回路10は、エミッタ面積の異なる2つのバイポーラトランジスタQ1、Q2のベース・エミッタ間電圧の差電圧(ΔVBE)に応じた電流とバイポーラトランジスタQ2のベース・エミッタ間電圧VBE2に応じた電流を加算した電流を電流生成部101によって生成し、生成した電流を電圧出力部102によって電圧VBGRに変換して出力する。
 電流生成部101は例えば、NPN型のバイポーラトランジスタQ1、Q2と、抵抗R1、R2、R3及びR5と、差動アンプA1と、Pチャネル型のMOSトランジスタMP1、MP2から構成され、電圧出力部102は例えば、抵抗R4から構成される。夫々の素子の接続関係は以下である。
 バイポーラトランジスタQ1、Q2はエミッタ端子が共通に接続される。バイポーラトランジスタQ1のエミッタ面積は、バイポーラトランジスタQ2のn(nは2以上の整数)倍に大きくされる。すなわち、バイポーラトランジスタQ1とQ2に同じ電流を流すようにしたとき、バイポーラトランジスタQ2のエミッタ電流密度がトランジスタQ1のエミッタ電流密度のn倍となるように設定される。抵抗R1は、一端がバイポーラトランジスタQ2のベース端子に接続され、他端がバイポーラトランジスタQ1のコレクタ端子に接続される。抵抗R2は、一端が抵抗R1の一端に接続され、他端がバイポーラトランジスタQ2のコレクタ端子に接続される。抵抗R5は、バイポーラトランジスタQ1、Q2の共通に接続されたエミッタ端子と接地ノードとの間に設けられる。抵抗R3は、バイポーラトランジスタQ2のベース端子と接地ノードとの間に設けられる。差動アンプA1は、バイポーラトランジスタQ1、Q2のコレクタ側の電位を夫々入力する。MOSトランジスタMP1、MP2は共に、差動アンプA1の出力電圧をゲート端子に入力し、ソース端子は電源ノードVccに接続される。MOSトランジスタMP1のドレイン端子が上記抵抗R1及びR2の接続ノードに接続されることで、フィードバックループが形成される。また、MOSトランジスタMP2のドレイン端子が抵抗R4に接続されることにより、電流Iが抵抗R4に供給される。BGRコア回路10の詳細な動作原理については後述する。
 図2に示される補正回路20は、BGRコア回路10の出力電圧VBGRを入力し、ボルテージフォロアを構成するアンプA2と、ベース端子がアンプA2の出力端子に接続されるバイポーラトランジスタQ3と、バイポーラトランジスタQ3のエミッタ端子と接地ノードとの間に設けられた抵抗R6と、バイポーラトランジスタQ3のコレクタ側に流れる電流に応じて補正電流ICOMPを出力するカレントミラー回路を構成するPチャネル型のMOSトランジスタMP3、MP4とを備える。特に制限されないが、補正電流ICOMPは抵抗R5に帰還される。このようにフィードバック方式とすることにより、補正回路に用いるアンプやカレントミラーといった要素回路に高い精度が必要されず、大きな面積や電流を追加することなく精度の向上が可能となる。なお、アンプA2はバイポーラトランジスタQ3のベース電流を供給するために設けたものであり、MOSトランジスタMP2から直接ベース電流を供給することによる出力電圧VBGRへの影響が無視できる場合には省略してもよい。補正回路20の詳細な動作原理については後述する。
 以下基準電圧発生回路1の動作原理について、BGRコア回路10と補正回路20に分けて詳細に説明する。
 (1)BGRコア回路10
 BGRコア回路10についての理解を容易にするため、BGRコア回路10のみを表した図3を用いて詳細に説明する。
 図3は、基準電圧発生回路1におけるBGRコア回路10の一例を示す回路図である。同図では、アンプのオフセットを入力オフセット電圧VOSとしてアンプA1の正側入力に挿入して等価的に表現した場合を一例として示している。
 同図において、抵抗R1に流れる電流をI、抵抗R2に流れる電流をI、MP1、MP2に流れる電流をI、抵抗R1と抵抗R2の接続点の電圧をV3とし、R=R=R12を仮定する。また、以降の説明では、カレントミラー回路等のミラー比を1:1として説明するが、特に限定されず、ミラー比を変えることも可能である。
 なお、以降の説明では理解を容易にするためバイポーラトランジスタのベース電流は無視して計算するが、実際の設計におけるシミュレーション等ではベース電流を含めた計算を行う。
 バイポーラトランジスタの飽和電流密度をJs、単位面積をA、熱電圧VT=kT/q、kをボルツマン定数、Tを絶対温度、qを電荷素量とすれば、Q1のベース・エミッタ間電圧VBE1とQ2のベース・エミッタ間電圧VBE2について(式1)が成立する。
Figure JPOXMLDOC01-appb-M000001
 アンプA1による帰還が正常に動作していれば、(式2)が成立する。
Figure JPOXMLDOC01-appb-M000002
 (式2)に(式1)を代入すると、(式3)が成立する。
Figure JPOXMLDOC01-appb-M000003
 また、電位V3のノードからアンプA1の入力までのキルヒホッフ電圧則から(式4)が成立し、整理すると電流IとIとの関係として(式5)が成立する。(式3)と(式5)から電流Iを消去すると(式6)のように近似できる。ただし、VOS/I・R12<<1を仮定している。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、(式6)のIについての2次方程式を解くと、Iは(式7A)となる。ただし、Dは(式7B)である。
Figure JPOXMLDOC01-appb-M000007
 したがって、出力電圧VBGRは(式8)で表すことができる。また、同式から明らかなように抵抗比R4<R3とすることにより出力電圧VBGRは低出力電圧化(約1.0V以下)とすることが可能とされる。
Figure JPOXMLDOC01-appb-M000008
 (式8)に基づいて、出力電圧VBGRのVOS=0からの誤差を示すΔVBGRを求めると、(式9)となる。
Figure JPOXMLDOC01-appb-M000009
 (式9)において、例えばR=315kΩ、R=160kΩ、R12=66kΩ、n=8、VT=26mV(温度が27℃の場合)とすると、VOS=10mVのときΔVBGRは、約2.54mVとなる。
 ここで、本実施の形態に係るBGRコア回路10の作用・効果を従来のBGR回路と比較するため、従来のBGR回路の動作原理について図4及び図5を用いて説明する。
 図4は、上記非特許文献1に基づいて検討した解析用のBGRコア回路の一例を示す回路図である。
 同図では、オフセット電圧VOSをアンプAの正側入力に挿入した場合を一例として示している。同図において、バイポーラトランジスタQ1、Q2のエミッタ面積比は1:nであり、電流をI、I、バイポーラトランジスタの飽和電流密度をJs、単位面積をA、R=R=R12と仮定する。
 同図において、Q1のベース・エミッタ間電圧VBE1とQ2のベース・エミッタ間電圧VBE2について(式10)が成立する。
Figure JPOXMLDOC01-appb-M000010
 アンプによる帰還が正常に動作していれば、(式11)が成立する。
Figure JPOXMLDOC01-appb-M000011
 (式11)に(式10)を代入すると、(式12A)すなわち、(式12B)が成立する。
Figure JPOXMLDOC01-appb-M000012
 また、電源VBGRからアンプAの入力までのキルヒホッフ電圧則から(式13)が成立し、電流IとIとの関係から(式14)が成立するから、(式15)のように近似できる。ただし、VOS/I・R12<<1を仮定している。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 ここで、(式15)は簡単な2次方程式に変形できるので、Iについて2次方程式を解くと、Iは(式16A)となる。ただし、Dは(式16B)である。
Figure JPOXMLDOC01-appb-M000016
 したがって、出力電圧VBGRは(式17)で表すことができる。
Figure JPOXMLDOC01-appb-M000017
 (式17)に示されるように、出力電圧VBGRは、VBEに対し第2項目以降を加算することにより温度に比例した一次係数をキャンセルしている。したがって、非特許文献1に記載のBGR回路は、出力電圧VBGRは約1.2Vとなり、例えば電源電圧が1V以下となるような低電源電圧動作及び低出力電圧化には向かないことがわかる。また、(式8)と(式17)において、バイポーラトランジスタQ1、Q2のベース・エミッタ間電圧VBEの差電圧に応じた電流I(I)を表す第2項目を比較すると、図4のBGRコア回路では、オフセット電圧VOSが加算される方向であるのに対し、本実施の形態に係るBGRコア回路10ではオフセット電圧VOSが減算される方向となっている。すなわち、本実施の形態に係るBGRコア回路10の方が、出力電圧VBGRに対するオフセット電圧VOSの影響が少ないことが理解される。具体的に、図4のBGRコア回路の出力電圧VBGRのVOS=0からの誤差を示すΔVBGRを求めると、(式18)となる。
Figure JPOXMLDOC01-appb-M000018
 (式18)において、例えばR12=827.45kΩ,R=100kΩ,n=8,VT=26mV(温度が27℃の場合)とすると、VOS=10mVのときΔVBGRは約91.8mVとなる。このことからも、オフセット電圧VOSによる出力電圧VBGRの誤差は、本実施の形態に係るBGRコア回路10よりも大きくなることが理解される。
 図5は、別の従来例として、上記特許文献1に基づいて検討した解析用のBGRコア回路の一例である。
 同図では、オフセット電圧VOSをアンプAの正側入力に挿入した場合を一例として示している。電流をバイポーラトランジスタQ1のコレクタ側に流れる電流をI、バイポーラトランジスタQ2のコレクタ側に流れる電流をI、バイポーラトランジスタの飽和電流密度をJs、単位面積をAとし、R2=R3=Rを仮定すると、Q1のベース・エミッタ間電圧VBE1とQ2のベース・エミッタ間電圧VBE2について(式19)が成立する。
Figure JPOXMLDOC01-appb-M000019
 アンプによる帰還が正常に動作していれば、(式20)が成立する。
Figure JPOXMLDOC01-appb-M000020
 また、電源VccからアンプAの入力までのキルヒホッフ電圧則から(式21)が成立し、電流IとIとの関係から(式22)が成立するから(式23)のように近似できる。ただし、VOS/I・R<<1を仮定している。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 ここで、同様にIについて2次方程式を解くと、Iは(式24A)となる。ただし、Dは(式24B)である。
Figure JPOXMLDOC01-appb-M000024
 したがって、出力電圧VBGRは(式25)で表すことができる。
Figure JPOXMLDOC01-appb-M000025
 (式25)に示されるように、出力電圧VBGRは、VBEに対し第2項目以降を加算することにより温度に比例した一次係数をキャンセルしている。したがって、図4のBGR回路と同様に、特許文献1に記載のBGR回路は、出力電圧VBGRは約1.2Vとなり、例えば電源電圧が1V以下となるような低電源電圧動作及び低出力電圧化には向かないことがわかる。
 ここで、出力電圧VBGRのVOS=0からの誤差を示すΔVBGRを求めると、(式26)となる。
Figure JPOXMLDOC01-appb-M000026
 (式26)において、例えば、R=540kΩ、R=38kΩ、n=8、VT=26mV(温度が27℃の場合)とすると、VOS=10mVのときΔVBGR=7.01mVとなり、出力電圧VBGRの誤差は図4のBGRコア回路と比較して1/10以下となる。
 図6は、各BGRコア回路の出力電圧VBGRの入力オフセット電圧依存性を定量的に表した説明図である。
 同図における各BGRコア回路の特性線は、(式9)、(式18)、及び(式26)におけるオフセット電圧VOSを変化させたときの夫々のΔVBGRの特性を表す。なお、(式9)、(式18)、及び(式26)における抵抗値等の定数には、前述した夫々のBGRコア回路の説明で示した数値例を適用している。
 同図に示されるように、本実施の形態に係るBGRコア回路10は、図4の回路トポロジに比較して入力オフセット電圧依存性が低いことが理解される。
 図7は、図6の拡大図である。同図には、BGRコア回路10と特許文献1に基づくBGRコア回路(図5)の特性線が表示されている。
 図7に示されるように、本実施の形態に係るBGRコア回路10は、図5の回路トポロジに比較しても入力オフセット電圧依存性が低いことが理解される。(式9)からも明らかのように、抵抗値、バイポーラトランジスタのエミッタ面積比nに適切な値を選択することにより図5のBGRコア回路よりも出力電圧VBGRのばらつきを抑えることができる。
 図8は、上記3つのBGRコア回路のシミュレーション結果である。シミュレーションにおける素子条件は、CMOSプロセスのゲート長90nm、MOSトランジスタ、抵抗及び容量はTypモデルである。同図では、ジャンクション温度Tjは25℃のときに電源電圧Vccを0Vから5.5Vまで変化させたときの出力電圧VBGRが示される。
 同図に示されるように、図4のBGRコア回路と図5のBGRコア回路の出力電圧VBGRは約1.2Vであるため、電源電圧Vccは約2.0Vから動作可能とされる。このことは、(式17)及び(式25)に示されるように、出力電圧VBGRが、VBEにPTAT電圧を加算することにより温度に比例した一次係数をキャンセルした構成となっていることからも容易に理解される。
 一方、本実施の形態に係るBGRコア回路10は、同図に示されるように、出力電圧VBGRが1.0V以下となり、電源電圧Vccは約1.0Vから動作可能となることが理解される。このことは(式8)からも容易に理解される。すなわち、本実施の形態に係るBGRコア回路10は、抵抗R3に流れるバイポーラトランジスタQ2のVBEに応じた電流と、絶対温度に比例したPTAT電流を加算することで温度に比例した係数をキャンセルし、加算した電流を抵抗R4により電圧に変換して出力する構成であるから、抵抗R3と抵抗R4の比を調整すれば低電圧出力が可能となる。
 以上に示されるように、本実施の形態に係るBGRコア回路10によれば、出力電圧VBGRに対するアンプA1のオフセットの影響を低減することができる。また、抵抗R3と抵抗R4の比を調整することでより低い出力電圧VBGRが生成可能となるから、より低い電源電圧Vccで動作が可能となる。更に、図2及び図3に示されるように、バイポーラトランジスタQ1、Q2のエミッタ端子と接地ノードとの間に抵抗R5が挿入することでアンプA1のコモン入力電圧を高くシフトさせることができ、設計が容易となる。
 (2)補正回路20
 補正回路20による温度補正の原理について説明する。
 先ず、バイポーラトランジスタのベース・エミッタ間電圧VBEの温度依存性について説明する。ベース・エミッタ間電圧の温度依存性は、前述した非特許文献2に示されるように、コレクタ電流ICの温度依存性を(式27)としたとき、(式28)と表される。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 ここでTは参照温度である。また、ηはバイポーラトランジスタのデバイス構造に依存する定数であり、値は約3.6~4.0である。VG0はバンドギャップ電圧の絶対温度0Kへ外挿値である。前述したように、mはコレクタ電流Iが絶対温度に比例している場合は“1”となる。(式28)を変形すると、(式29)となる。
Figure JPOXMLDOC01-appb-M000029
 (式29)において、第1項目が温度に依存しない定数であり、第2項目が絶対温度に比例する項である。また、第3項目が絶対温度に対して比例ではなく、非線形依存性を示す項である。すなわち、ベース・エミッタ間電圧VBEは温度に対して非線形依存性を示す。
 図9は、ベース・エミッタ間電圧VBEの温度に対する非線形依存性についての説明図である。
 同図に示されるように、(式29)の第3項目の特性は非線形な特性となる。なお、参照符号300の直線は比較のために示したものであり、温度に比例した特性の一例である。
 上記(1)BGRコア回路10において示したBGR回路の一般式(例えば、(式8)、(式17)、(式25))は、抵抗比により決まる定数をK、Lとおくと、(式30A)又は(式30B)のように表すことができる。ここで、ΔVBEは、2つのバイポーラトランジスタQ1、Q2のベース・エミッタ間電圧VBEの差電圧である。
Figure JPOXMLDOC01-appb-M000030
 (式30A)及び(式30B)からもわかるように、第1項目のベース・エミッタ間電圧VBEの温度依存性が非線形性をもつので、絶対温度に比例した第2項目だけでは、非線形温度依存を補正することは理論上不可能であることがわかる。そこで、本実施の形態に係る基準電圧回路1では、以下の方法により出力電圧VBGRの非線形温度依存の補正を行う。
 図2において、抵抗R5とバイポーラトランジスタQ1、Q2のエミッタ端子の接続点の電位をV2とし、補正電流をICOMPとする。また、理解を容易にするため、R=R=R12、I=I=IPTATと仮定する。このとき、IPTATは、VBE2=VBE1+R12・IPTATより、(式31)で表すことができる。
Figure JPOXMLDOC01-appb-M000031
 次に電流Iは、キルヒホッフ電流則から(式32)となり、抵抗R3に流れる電流IR3は(式33)と表されるから、電流Iは(式34)となる。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
 したがって、出力電圧VBGRは(式35)となる。
Figure JPOXMLDOC01-appb-M000035
 抵抗R3と抵抗R4を調整することで出力電圧VBGRを低電圧化できることは、前述した図3のBGRコア回路10と同様である。
 また、補正電流ICOMPは、MP3とMP4のミラー比を1:1とすれば、(式36)で表すことができる。
Figure JPOXMLDOC01-appb-M000036
 (式36)に示されるように、補正電流ICOMPは、出力電圧VBGRとバイポーラトランジスタQ3のベース・エミッタ間電圧VBE3の差電圧に基づいて生成される。低温側ではVBGR≦VBE3であるので補正電流ICOMPは流れず、高温側ではVBGR=VBE3となる温度から補正電流ICOMPが加算される。これにより、補正電流ICOMPは(式37)のように表される。
 したがって、基準電圧発生回路1では、(式35)の第1項目ベース・エミッタ端子VBEの非線形性を、第2項のIPTATで線形補正するとともに、第3項目の補正電流ICOMPにより非線形補正を行う。また、温度依存性がある2つの電圧(出力電圧VBGRとベース・エミッタ間電圧VBE3)の差分に応じて補正電流ICOMPを生成することで、VBGR=VBE3となる温度から補正電流ICOMPが加算されるように構成することができる。また、補正電流ICOMPの傾きは抵抗R6の値により制御することができる。これにより、温度特性を補正したい所望の温度範囲でVBGR=VBE3となるようにVBGRの特性を調整すれば、非線形温度特性を補正することが可能となる。
 なお、上記の計算は近似計算であり、実際はBGRコア回路10と補正回路20との間でループが形成され、帰還がかけられているので、抵抗や補正電流ICOMPなどの値は上記計算から多少のずれが生じる。正確な値はシミュレーションにより求めることが可能である。また、この例では電源電圧Vccが1.0V程度であり、出力電圧VBGRを約0.63Vに設定する場合を想定しているため、補正回路20のバイポーラトランジスタQ3を一段構成としているが、後述するように、出力電圧が1.2V程度の場合には、補正回路20のバイポーラトランジスタQ3を2段構成とすることが望ましい。
 図10は、基準電圧回路1による非線形温度特性の補正方法の原理を示す説明図である。
 同図において、VBGR_PTATは、補正電流ICOMPを無視したときのベース・エミッタ間電圧VBEに絶対温度に比例した電圧VPTATによる補正のみを行った場合の波形の一例を示している。また、電圧VBGR_PTATは、お碗型の形状であって、低温側で温度係数がゼロとなる温度をなるように抵抗値等の回路定数が調整された場合が示されている。更にVthは、(式35)の第3項目に対応する電圧の波形の一例である。同図に示されるように基準電圧回路1では、VBGR=VBE3となる温度T1から高温側で大きくなるような電圧Vthを加算することで出力電圧VBGRの温度依存性の低減を図ることができる。
 ここで、本実施の形態に係る非線形補正回路20の作用・効果を従来のBGR回路と比較するため、従来の温度補正方法について説明する。
 図11は、特許文献1を基に検討したBGR回路に対する非線形特性の補正の原理を示す説明図である。
 同図において、抵抗R1を2つの抵抗R11と抵抗R12に分け、その間のノードの電位をVとし、R11、R12の夫々の電流をIR11、IR12とする。
 補正電流ICOMPが加算されない場合の出力電圧VBGRは、(式38)で表される。
Figure JPOXMLDOC01-appb-M000038
 当該回路では、非線形特性の補正のため、絶対温度比例しない補正電流ICOMPを電位V2のノードに供給する。ここでは、補正電流ICOMPとして、絶対温度の2乗に比例する電流IPTAT を仮定する。この場合、テブナンの定理により(式39)が成り立つから、同図に示すように、電位V1のノードと接地ノードとの間の回路は、抵抗Rthと電圧源Vthの直列接続と描き直すことができる。
Figure JPOXMLDOC01-appb-M000039
 すなわち、テブナン等価電圧VTHは高温側で増大する特性(非線形特性)となる。したがって、補正電流ICOMP(IPTAT )を加算した場合の出力電圧VBGRは(式40)となる。
Figure JPOXMLDOC01-appb-M000040
 (式40)に示されるように、絶対温度の2乗に比例した電流IPTAT に基づく非線形補正の項(第3項目)が加えられると、VBGRの温度特性が3次曲線的となり、温度ドリフトが低減されることが理解される。前述したように、基準電圧源は一般に所定の温度範囲(例えば-55℃から160℃)においてフラットな温度特性が求められる。そのため、温度補正を行う場合、要求される温度範囲において補正を行うことが望ましい。しかしながら、例えば非特許文献3乃至5に記載のIPTAT 電流生成回路によって、電流IPTAT を生成した場合、その電流は絶対温度0Kから変化する電流である。そのため(式40)に示されるように、出力電圧VBGRは、絶対温度0Kから非線形補正の項(ICOMP・R12)が加算されることになる。このことは、所定の温度範囲における温度特性を改善させる場合には好適な方法ではない。実際に本願発明者等が事前に検討を行ったところ、上記のIPTAT 電流生成回路を用いてIPTAT を加算する補正方法では、適切な温度補正の実現が困難であった。また、上記のIPTAT 電流生成回路では、回路規模及び素子数が共に大きくなる上、回路構成が複雑で低電圧化には向いていない。一方、本実施の形態に係る非線形補正回路20によれば、素子数が少なく簡単な回路構成で補正電流ICOMPを生成することができ、且つ所定の温度以上で変化するように補正電流ICOMPを生成することができるから、目的とする温度範囲において出力電圧VBGRの非線形補正を容易に行うことが可能となる。
 図12は、シミュレーションによる基準電圧発生回路の温度依存性の一例を示す図である。同図には、基準電圧発生回路1と、非特許文献1に基づくBGR回路(図4)と、特許文献1に基づくBGR回路(図5)、の夫々の出力電圧VBGRのシミュレーション結果が示される。
 同図の(A)には、上記3つの回路の特性波形が示され、同図の(B)には、温度係数TC(ppm/℃)と温度変化による電圧変動である温度ドリフトΔVBGR(mV)の値が示される。温度係数TCはBOX法により(式41A)で定義され、温度ドリフトΔVBGRは(式41B)で定義される。
Figure JPOXMLDOC01-appb-M000041
 シミュレーションには、特定のゲート長90nmCMOSプロセスにより標準的に製造された、MOSトランジスタ、抵抗及び容量などの素子を想定したデバイスモデルを用いている。電源電圧Vccは、非特許文献1に基づくBGR回路(図4)及び特許文献1に基づくBGR回路(図5)については低電源電圧化が困難なため3.0Vとし、基準電圧発生回路1については1.0Vとした。温度の可変範囲は-40℃~125℃である。なお、基準電圧発生回路1の出力電圧VBGRは1.0V以下(約0.63V)であるので、図12の(A)では比較のため、基準電圧発生回路1の出力電圧VBGRの特性線を縦軸の上方向に平行移動させている。
 同図に示されるように、非特許文献1に基づくBGR回路(図4)及び特許文献1に基づくBGR回路(図5)は、線形補正のみであるので、温度ドリフトΔVBGRは2.6mVから3.2mV程度と大きいが、基準電圧発生回路1では、0.25mV程度と1/10程度に抑えられていることがわかる。
 次に基準電圧発生回路1における構成要素等について詳細に説明する。
 図13は、BGRコア回路10におけるバイポーラトランジスタQ1、Q2のレイアウトの一例を示す説明図である。特に制限されないが、同図ではコレクタをn型ディープウェルdwelを用いて縦方向に形成し、バイポーラトランジスタQ1、Q2の周囲をn型ディープウェルdwelで囲むように形成した場合が一例として示されている。また、特に制限されないが、同図の(C)を除き、バイポーラトランジスタQ1とQ2のエミッタ面積比を8:1とした場合が一例として示されている。
 同図の(A)には、2つのバイポーラトランジスタQ1とQ2にコレクタを構成するn型ディープウェルdwelのサイズを同じく形成した場合が示される。このように形成することで、容量結合により半導体基板から伝播する雑音の影響をQ1とQ2で等しくして、同相雑音としてキャンセルすることができる。
 同図の(B)には、同図の(A)に示したn型ディープウェルdwelの形成に加え、エミッタ面積の小さい方のバイポーラトランジスタQ2が形成されるディープウェルdwelにダミーを含めた8個のバイポーラトランジスタをQ1と同様に配置した場合が示される。この場合、Q2が形成される領域の8個のトランジスタのうち1つに配線を行うことにより、Q1とQ2のサイズ比を8:1とする。これにより、図13の(A)の効果に加え、トランジスタの形成時における寸法ばらつきの影響を低減することができる。
 同図の(C)には、同図の(A)に示したn型ディープウェルdwelの形成に加え、バイポーラトランジスタQ1、Q2が形成されるディープウェルdwelの夫々にダミーを含めた9個のバイポーラトランジスタを配置した場合が示される。例えばQ1とQ2のサイズ比が9:1のように、一方が2のべき乗となる場合には、Q1と同一個配置されたトランジスタ群の中心部のトランジスタをQ2をとすれば、更に寸法ばらつきを低減することができる。
 同図の(D)には、同図の(A)に示したn型ディープウェルdwelの形成に加え、1つのディープウェルdwelにダミーを含めた9個のバイポーラトランジスタを配置した場合が示される。この場合、ディープウェルdwel領域に形成されたトランジスタ群の中心にあるトランジスタ(B)をQ2とし、その他の8個のトランジスタ(A)をQ1とすれば、寸法ばらつきを低減することができ、且つ、同図の(C)よりも小さい面積で形成することができる。
 図14は、基準電圧発生回路1におけるアンプA1の一例を示す回路図である。
 同図の(A)は、Nチャネル型MOSトランジスタを入力段とするアンプA1の一例である。同図のアンプは、初段部と出力段部から構成される。初段部は、差動入力段を構成する2つのNチャネル型MOSトランジスタM1、M2と、そのソース端子と接地ノードとの間に設けられた電流現i1と、上記M1、M2のドレイン端子と電源電圧Vccとの間に設けられ、カレントミラー回路によりアクティブ負荷を構成する2つのPチャネル型MOSトランジスタM3、M4から構成される。また、出力段部は、初段の出力信号をゲート端子に入力し、ソースが電源電圧Vccのノードに接続されたPチャネル型MOSトランジスタM3と、そのドレイン端子と接地ノードとの間に設けられた電流源i3を負荷とするする反転増幅回路から構成される。M3のゲート端子とドレイン端子との間には、位相補償回路としてのキャパシタCfと抵抗Rfが設けられる。
 同図の(B)は、Nチャネル型MOSトランジスタを入力段とするアンプA1の別の一例である。同図のアンプは、初段部、出力段部、及び電流源部から構成される。基準電圧発生回路1を構成する場合、消費電力を下げることが必要であるが、その弊害としてアンプの利得が必要以上に高くなり、位相補償が困難になる虞がある。同図に示されるアンプは、消費電力の低減を目的とした回路構成であり、NチャネルMOSトランジスタによる差動入力の初段増幅部、PチャネルMOSトランジスタから構成されるソース接地の反転増幅回路からなる出力段、及びこれらを駆動する電流源で構成される。電流源部は、微小電流を安定に供給するためにnチャネルMOSトランジスタM12とM13のゲート・ソース間電圧の差電圧を抵抗Rrefにより電流変換し、変換した電流Irefを発生する。電流Irefは、MOSトランジスタM14、M15で電流ミラー形態として初段部と出力段部のバイアス電流i1、i3を決める。電流i1の電流値を小さく設定する場合、初段のアンプの利得が高くなり位相補償が難しくなるのを防ぐために、利得を決める要因となるカレントミラーを構成するMOSトランジスタM4、M5のそれぞれに対して一定電流i2を流す電流源M6とM7を並列接続して構成する。上記一定電流Irefは、MOSトランジスタM13、M11、及びダイオード接続のM9に流れ、MOSトランジスタM6~M9が電流ミラー形態とされることにより、定電流i3を形成することができる。これにより、位相補償が容易になる。つまり、従来用いられるミラー補償の他に、設計が容易なポールゼロ補償(RfとCfを出力段に直列に接続)が可能となる。
 上記図2の説明では、基準電圧発生回路1の動作原理の理解を容易にするため起動回路(スタートアップ回路)を除いた回路構成を示したが、基準電圧発生回路1は更にスタートアップ回路を備える。
 図15は、スタートアップ回路を備えた基準電圧発生回路1の一例を示す回路図である。
 基準電圧発生回路1は、電源電圧投入等の起動時に出力電圧VBGRが0Vで安定してしまう場合がある。この対策として、基準電圧回路1にスタートアップ回路30を設け、強制的に電流を流し込むことにより起動をかける。
 以下スタートアップ回路30の動作について説明する。例えば、MOSトランジスタMP1のゲート電位V1がVccのとき、MP1はオフしており電流は流れない。このとき、MOSトランジスタMP2もオフしているので、出力電圧VBGRはグランド電位となり、MOSトランジスタMN1はオフしている。MOSトランジスタMN1のドレイン端子が接続されるノードの電位V4は、MOSトランジスタMP7の閾値電圧をVTHPとすると、Vcc-|VTHP|となり、MOSトランジスタMN2がオンする。これにより、MP1のゲート電位V1は、Vccから下降し、BGRコア回路10は正常なバイアスで動作可能とされる。
 上記スタートアップ回路30により、電源投入時やスリープ解除時等に誤りなく出力電圧VBGRを発生させることが可能となる。また、通常動作時に外乱などがあった場合にもすぐに復帰して出力電圧VBGRが安定に生成される。更に、スタートアップ回路30の回路構成によれば、MOSトランジスタMP7、MN1及びMN2のトランジスタサイズを適切に選択することにより、MOSトランジスタMN2のゲート電位V4を、MOSトランジスタMN2の閾値電圧VTHN以下とすることができるので、MOSトランジスタMN2の電流は無視でき、BGRコア回路10の動作に影響を与えないようにすることができる。なお、上記スタートアップ回路30は一例であり、基準電圧発生回路1には他の回路構成のスタートアップ回路を設けてもよい。
 図16は、電源Vccラインにローパスフィルタ(LPF)を挿入した回路構成例を示す説明図である。
 本実施の形態に係るBGRコア回路10及び補正回路20は、回路規模及び消費電力が小さいため、同図に示されるように電源Vccラインにローパスフィルタ60を挿入し、ローパスフィルタ60の出力電圧Vcc_LPFをBGRコア回路10、補正回路20、レギュレータ回路(基準電流源)70等に供給する構成とすることができる。これにより、PSRR(power supply rejection ratio)を低減させ、電源電圧変動に対する耐性を高めることができる。ローパスフィルタ60は、例えば抵抗素子と容量素子で実現されるが、低域透過特性が得られるなら他の回路構成でもよい。
 次に、基準電圧発生回路10を適用したシステムについて説明する。
 図17は、基準電圧発生回路10を適用したシステムの一例を示す説明図である。
 同図の(A)には、AD変換器への適用例が示される。AD変換器が基準電圧発生回路1によって生成したVBGR電圧やVBGR電圧を基準に生成された電圧に基づいて、アナログ入力信号をディジタル信号に変換して出力する。
 同図の(B)には、DA変換器への適用例が示される。DA変換器が基準電圧発生回路1によって生成したVBGR電圧やVBGR電圧を基準に生成された電圧に基づいて、ディジタル入力信号をアナログ信号に変換して出力する。
 同図の(C)には、基準電流源への適用例が示される。基準電流源が基準電圧発生回路1によって生成したVBGR電圧やVBGR電圧を基準に生成された電圧に基づいて、基準電流IREFを生成して出力する。
 同図の(D)には、温度センサへの適用例が示される。温度センサは、温度に比例するVPTAT電圧と温度依存性の低いVBGR電圧に基づいて温度を測定し、測定結果を出力する。VPTAT電圧の生成方法は後述する。
 図18は、基準電圧発生回路10を適用した半導体集積回路装置の一例を示すブロック図である。
 特に制限されないが、半導体集積回路装置100は、例えば電源回路を内蔵したシステムLSIである。
 半導体集積回路装置100は、例えば、電源回路50、CPU(中央処理装置)45、レジスタ46、不揮発性記憶素子47、その他の周辺回路48、及び入出力回路49から構成される。電源回路50は、例えば、基準電圧発生回路10、参照電圧用バッファ回路42、主電源としてのメインレギュレータ43、スタンバイ用電源としてのサブレギュレータ44、及び電源制御部41から構成される。これらの回路は、外部端子から供給された電源電圧VCCを受けて動作し、それを降圧した内部電圧Vintを生成して、システムLSIを構成するCPU45、レジスタ46、不揮発性記憶素子47、及びその他周辺回路48の動作電圧として供給する。
 例えば上記システムLSI100がバッテリー駆動される場合は、低電源電圧・低消費電力が求められる。しかしながら、低電源電圧化により各回路は十分なマージンが確保できなくなるため、より高精度な特性の要求が予想される。そこで、本実施の形態に係る基準電圧発生回路1を上記システムLSIに適用すれば、低電源電圧動作・低出力電圧が可能であり有効である。また、より高精度化するため、基準電圧発生回路1はCMOSプロセスで構成することが好ましい。特に差動アンプA1のオフセットの影響が小さい(電流のミスマッチと等価)ことはSOC(System on a chip)用メモリ、マイクロプロセッサに搭載する際に好都合である。さらに、アンプA1の素子ミスマッチを低減させるためにチョッパーを採用したり、MOSトランジスタのマッチングを改善するためにDEM(Dynamic Element Matching)を採用したりしてもよい。
 以上実施の形態1に係る基準電圧発生回路1によれば、BGRコア回路1を上記の回路構成とすることで、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、非線形補正回路20により補正電流ICOMPを生成してBGRコア回路10に帰還させることで、出力電圧VBGRの温度依存性をより低減させることができる。
 ≪実施の形態2≫
 図19は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路2は、BGRコア回路10Aと非線形補正回路20を備える。BGRコア回路10Aは、実施の形態1に係るBGRコア回路10から抵抗R5を取り除いた構成である。
 基準電圧発生回路2において、補正電流ICOMPの帰還先は、抵抗R3とされる。特に制限されないが、本実施の形態では、抵抗R3を抵抗R31と抵抗R32に分け、夫々の抵抗の接続ノードに電流ICOMPを帰還させる構成とする。
 基準電圧発生回路2による出力電圧VBGRは以下となる。
 実施の形態1と同様にR=R=R12とすると、電位V3のノードでのキルヒホッフ電流則から(式42)が成り立つ。
Figure JPOXMLDOC01-appb-M000042
 また、テブナンの定理から(式43)が成り立つ。
Figure JPOXMLDOC01-appb-M000043
 更に、補正電流ICOMPは(式44)となる。ここで、補正電流ICOMPの向きは、図19に示すようにMOSトランジスタMP4から抵抗R3に流れ込む方向を正とする。
Figure JPOXMLDOC01-appb-M000044
 また、グランド(接地ノード)から電圧V3のノードまでのキルヒホッフ電圧則から(式45A)が成り立つから、IPAT電流は(式45B)となる。
Figure JPOXMLDOC01-appb-M000045
 (式42)に(式43)と(式45B)を代入して出力電圧VBGRを求めると、(式46)となる。ここで、(式46)の第3項目(VCOMP)が負の値であることに注意されたい。
Figure JPOXMLDOC01-appb-M000046
 図20は、基準電圧発生回路2による非線形温度特性の補正方法の原理を示す説明図である。
 基準電圧発生回路2は、バイポーラトランジスタQ2のベース・エミッタ間電圧VBEの負の温度依存性(第1項目:VCTAT)を、絶対温度に比例する電圧(第2項目:VPTAT)と非線形補正電圧(第3項目:VCOMP)により補正する。補正電流ICOMPは、基準電圧発生回路1と同様に所定温度T1を境に高温側で増加する特性となるが、非線形補正電圧(第3項目:VCOMP)は高温側で負となる特性である。そこで、基準電圧発生回路2では、図20に示されるように、第1項目と第2項目の和(VBGR_PTAT)が、高温側において温度係数がゼロとなるように最適化を行う。これにより、出力電圧VBGRの温度ドリフトを低減することが可能となる。
 なお上記計算は、実施の形態1と同様に近似計算であり、抵抗値や補正電流値等の正確な値はシミュレーションによって求められる。その他のスタートアップ回路やローパスフィルタの追加やシステムLSI等への応用は、実施の形態1と同様に適用可能である。
 以上実施の形態2に係る基準電圧発生回路2によれば、基準電圧発生回路1と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、出力電圧VBGRの温度依存性をより低減させることができる。
 ≪実施の形態3≫
 図21は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態1及び2と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路3は、BGRコア回路10Aと非線形補正回路20Aを備える。非線形補正回路20Aは、生成した補正電流ICOMPを折り返して出力する構成である。
 基準電圧発生回路3において、補正電流の帰還先は抵抗R3とされる。特に制限されないが、本実施の形態では、抵抗R3を抵抗R31と抵抗R32に分け、夫々の抵抗の接続ノードに帰還させる構成とする。
 基準電圧発生回路3による出力電圧VBGRは以下となる。
 補正電流ICOMPの向きを、図21に示すように抵抗R3からMOSトランジスタMP4に流れ込む方向と正とし、実施の形態2に係る基準電圧発生回路2と同様の方法により計算すると、出力電圧VBGRは(式47)と表される。ここで(式47)の第3項目(VCOMP)が高温側で正の値であることに注意されたい。
Figure JPOXMLDOC01-appb-M000047
 図22は、基準電圧発生回路3による非線形温度特性の補正方法の原理を示す説明図である。
 基準電圧発生回路3は、バイポーラトランジスタQ2のベース・エミッタ間電圧VBEの負の温度依存性(第1項目:VCTAT)を絶対温度に比例する電圧(第2項目:VPTAT)と非線形補正電圧(第3項目:VCOMP)により補正する。補正電流ICOMPは、基準電圧発生回路1と同様に所定温度T1を境に高温側で増加する特性となるが、MOSトランジスタMN3及びMN4からなるカレントミラー回路で補正電流ICOMP折り返しているため、補正電流ICOMPは抵抗R31とR32の接続ノードから引き抜かれることになる。そのため、非線形補正電圧(第3項目:VCOMP)は高温側で正となる。そこで、基準電圧発生回路2では、図22に示されるように、第1項目と第2項目の和(VBGR_PTAT)が、低温側において温度係数がゼロとなるように最適化を行う。これにより、出力電圧VBGRの温度ドリフトを低減することが可能となる。なお、上記計算は、実施の形態1と同様に近似計算であり、抵抗値や補正電流値等の正確な値はシミュレーションによって求められる。
 その他のスタートアップ回路やローパスフィルタの追加やシステムLSI等への応用は、実施の形態1と同様に適用可能である。
 以上実施の形態3に係る基準電圧発生回路3によれば、基準電圧発生回路1と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、出力電圧VBGRの温度依存性をより低減させることができる。
 ≪実施の形態4≫
 図23は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態1乃至3と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路4は、BGRコア回路10Bと非線形補正回路20Bを備える。BGRコア回路10Bは、BGRコア回路10から抵抗R5を取り除いた構成である。非線形補正回路20Bは、非線形補正回路20のカレントミラー回路をフォールデッド型のカレントミラー回路にした構成である。フォールデッド型のカレントミラー回路を構成するMOSトランジスタMP3、MP4のゲート端子にはバイアス電圧Vbiasが供給され、例えば、図示されないセルフバイアス回路等から供給される。
 基準電圧発生回路4において、補正電流ICOMPの帰還先は、抵抗R2とバイポーラトランジスタQ2のコレクタ端子の接続ノードとされる。
 基準電圧発生回路4の出力電圧VBGRは以下となる。なお、特に制限されないが、簡単のため、補正電流ICOMPのミラー比は1:1とする。
 実施の形態1と同様にR1=R2=R12とすると、バイポーラトランジスタの近似式から(式48A)及び(式48B)が成り立つ。
Figure JPOXMLDOC01-appb-M000048
 グランド(接地ノード)から電位V3のノードまでのキルヒホッフ電圧則より、(式49)が成立するので、電流I1は(式50)と近似することができる。ただし、ICOMP/I<<1を仮定している。
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
 (式50)は簡単な2次式となるから、これを解くと(式51)となり、出力電圧VBGRは、(式52)となる。ただし、(式53)を仮定している。
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
 したがって、出力電圧VBGRは、(式54)と表すことができる。
Figure JPOXMLDOC01-appb-M000054
 図24は、基準電圧発生回路4による非線形温度特性の補正方法の原理を示す説明図である。
 基準電圧発生回路4は、バイポーラトランジスタQ2のベース・エミッタ間電圧VBEの負の温度依存性(第1項目:VCTAT)を絶対温度に比例する電圧(第2項目:VPTAT)と非線形補正電圧(第3項目:VCOMP)により補正する。補正電流ICOMPは、基準電圧発生回路1と同様に、所定温度T1を境に高温側で増加する特性となり、非線形補正電圧(第3項目:VCOMP)は高温側で正となる。そこで、基準電圧発生回路4では、図24に示されるように、第1項目と第2項目の和(VBGR_PTAT)が、低温側において温度係数がゼロとなるように最適化を行う。これにより、出力電圧VBGRの温度ドリフトを低減することが可能となる。なお、上記計算は、実施の形態1と同様に近似計算であり、抵抗値や補正電流値等の正確な値はシミュレーションによって求められる。
 その他のスタートアップ回路やローパスフィルタの追加やシステムLSI等への応用は、実施の形態1と同様に適用可能である。
 以上実施の形態4に係る基準電圧発生回路4によれば、基準電圧発生回路1と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、出力電圧VBGRの温度依存性をより低減させることができる。また、補正回路20Bは、補正回路20等のようにバイポーラトランジスタQ3にカレントミラー回路を積んだ回路構成ではないので、より低い電源電圧で動作が可能である。補正回路20Bは、他の実施の形態に係る基準電圧発生回路にも適用可能である。
 ≪実施の形態5≫
 図25は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態1乃至4と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路5は、BGRコア回路10Cと非線形補正回路20を備える。BGRコア回路10Cは、BGRコア回路10から抵抗R4を抵抗R41と抵抗R52に分けた構成である。基準電圧発生回路1とは、補正電流ICOMPの帰還先を抵抗R41と抵抗R42の接続ノードにしていることが基準電圧発生回路1とは異なる。
 基準電圧発生回路5による出力電圧VBGRは以下となる。
 実施の形態1と同様にR=R=R12とすると、電位V3のノードでのキルヒホッフ電流則から(式55)が成り立つ。
Figure JPOXMLDOC01-appb-M000055
 また、(式56)が成り立つ。
Figure JPOXMLDOC01-appb-M000056
 更に、補正電流ICOMPは(式57)となる。ここで、補正電流ICOMPの向きは、図25に示すようにMOSトランジスタMP4から抵抗R4に流れ込む方向を正とする。
Figure JPOXMLDOC01-appb-M000057
 また、グランド(接地ノード)から電圧V3のノードまでのキルヒホッフ電圧則から(式58A)が成り立つから、IPAT電流は(式58B)となる。
Figure JPOXMLDOC01-appb-M000058
 (式55)に(式56)と(式58B)を代入し、テブナンの定理から出力電圧VBGRを求めると、(式59)となる。
Figure JPOXMLDOC01-appb-M000059
 図26は、基準電圧発生回路5による非線形温度特性の補正方法の原理を示す説明図である。
 基準電圧発生回路5は、バイポーラトランジスタQ2のベース・エミッタ間電圧VBEの負の温度依存性(第1項目:VCTAT)を絶対温度に比例する電圧(第2項目:VPTAT)と非線形補正電圧(第3項目:VCOMP)により補正する。補正電流ICOMPは、基準電圧発生回路1と同様に所定温度T1を境に高温側で増加する特性となるから、非線形補正電圧(第3項目:VCOMP)が高温側で正となり、テブナン電圧分として加算される。そこで、基準電圧発生回路5では、図26に示されるように、第1項目と第2項目の和(VBGR_PTAT)が、低温側において温度係数がゼロとなるように最適化を行う。これにより、出力電圧VBGRの温度ドリフトを低減することが可能となる。
 なお上記計算は、実施の形態1と同様に近似計算であり、抵抗値や補正電流値等の正確な値はシミュレーションによって求められる。
 その他のスタートアップ回路やローパスフィルタの追加やシステムLSI等への応用は、実施の形態1と同様に適用可能である。
 以上実施の形態5に係る基準電圧発生回路5によれば、基準電圧発生回路1と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、出力電圧VBGRの温度依存性をより低減させることができる。また、本実施の形態に示された出力電圧VBGRを生成する抵抗R4に補正電流を加算する方法は、例えば、特許文献2のように電流を電圧に変換して出力する構成のBGR回路にも適用することができ、同様に出力電圧VBGRの温度依存性を低減させることが可能である。
 ≪実施の形態6≫
 図27は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路6は、BGRコア回路10と非線形補正回路20Cを備える。非線形補正回路20Cは、実施の形態1に係る非線形補正回路20と異なり、MOSトランジスタのサブスレッショルド領域の特性を用いて補正電流ICOMPを生成する。補正回路20Cは、BGRコア回路10の出力電圧VBGRを入力し、バッファして出力するアンプA2と、アンプA2の出力電圧をゲート端子に入力するN型のMOSトランジスタMN6と、ゲート端子と同電位とされたドレイン端子がMN6のソース端子と接続されるN型のMOSトランジスタMN5と、MN5のソース端子と接地ノードとの間に設けられた抵抗R6と、MN6に流れる電流に基づいて補正電流を出力するためのカレントミラー回路を構成するP型のMOSトランジスタMP3、MP4と、から構成される。
 補正電流ICOMPは、MN5とMN6のゲート・ソース間電圧をVGS5、VGS6とすると、(式60)で表される。
Figure JPOXMLDOC01-appb-M000060
 MOSトランジスタのサブスレッショルド領域の特性は、バイポーラトランジスタのI-VBE特性に近い特性となるから、MOSトランジスタMN5、MN6がサブスレッショルド領域で動作することで、補正回路20等と同様に、所定温度を境に高温側で増加する補正電流ICOMPを生成することができる。これにより、実施の形態1等と同様に、出力電圧の非線形温度依存性を改善させることが可能となる。
 MOSトランジスタの段数は、MOSトランジスタのサブスレッショルド領域の特性に応じて変更可能である。図27では、1個のMOSトランジスタMN5を挿入し、2段のMOSトランジスタで補正電流を生成する場合を一例として示している。また、図27ではアンプA2をバッファとして挿入しているが、BGRコア回路10の出力電圧VBGRを直接MN6のゲート側に入力しても良い。
 本実施の形態に係る方法で生成された補正電流ICOMPの帰還先は、抵抗R5に限られず、他の実施の形態に示したように抵抗R3や電位VBのノード等であってもよい。
 その他のスタートアップ回路やローパスフィルタの追加やシステムLSI等への応用は、他の実施の形態と同様に適用可能である。
 以上実施の形態6に係る基準電圧発生回路6によれば、基準電圧発生回路1と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、出力電圧VBGRの温度依存性をより低減させることができる。
 ≪実施の形態7≫
 図28は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Dは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Dは、BGRコア回路10から抵抗R5及び抵抗R3を取り除くとともに、出力電圧VBGRを生成する出力段の回路を変更した構成である。具体的に、出力段の回路は、エミッタ端子が接地され、ダイオード接続されたバイポーラトランジスタQ4と、一端が接地された抵抗R9と、バイポーラトランジスタQ4のコレクタ側と抵抗R9の他端との間に設けられた抵抗R8と、抵抗R8の両端が接続されるノードにドレイン側が接続され、ゲート端子がMOSトランジスタMP1のゲート端子と同電位とされるMOSトランジスタMP2、MP5、から構成される。
 BGRコア回路10Dの出力電圧VBGRは以下となる。
 実施の形態1と同様にR=R=R12とすると、同図において、(式61)、(式62A)、及び(式62B)が成り立つ。
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000062
 (式61)、(式62A)、及び(式62B)から、電流IPTATは(式63)と表される。また、電流Iは、キルヒホッフの電流則から(式64)となる。
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000064
 図28の出力段にキルヒホッフの電流則を適用すると、電流IR8は(式65)となる。また、電流IR8とMP5のドレイン電流Iと和の電流が抵抗R9に流れるから、VBGRは(式66)となる。
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000066
 したがって、(式63)~(式66)より、(式67)となり、これを整理すると、出力電圧VBGRは(式68)となる。
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000068
 (式68)において、R/(R+R)<1とすれば、出力電圧VBGRを1.0V以下とすることができる。したがって、BGRコア回路10Dによれば、BGRコア回路10と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 また、上記(式64)から理解されるように、MOSトランジスタMP1から出力される電流Iはベース・エミッタ間電圧VBEに基づく非線形温度特性を有する電流を含まない。すなわち、BGRコア回路10Dによれば、温度に比例するIPAT電流を生成し、出力することができる。
 図29は、絶対温度に比例した電圧(VPTAT)を生成する電圧生成部を備えたBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Eは、BGRコア回路10Dに加え、ソース電位とゲート電位がMP1と同じくされるPチャネルMOSトランジスタMP6と、MP6のドレイン端子と接地ノードとの間に設けられた抵抗R10からなるPTAT電圧生成部を備える。これによれば、容易にPTAT電圧を生成することができる。
 図30は、BGRコア回路10Eと非線形補正回路から構成される基準電圧発生回路を適用した半導体集積回路装置の一例を示すブロック図である。
 特に制限されないが、半導体集積回路装置101は、例えば電源回路を内蔵したシステムLSIである。
 半導体集積回路装置101は、前述した図18の半導体集積回路装置(システムLSI)100に温度センサ52を追加した構成である。温度センサ52は、基準電圧発生回路54とAD変換器53から構成される。基準電圧発生回路54は、例えば、BGRコア回路10Eと前述した非線形補正回路20から構成される。
 以上実施の形態7に係るBGRコア回路10D、10Eによれば、実施の形態1に係るBGR回路10と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、容易にPTAT電圧を生成することができる。
 ≪実施の形態8≫
 図31は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Fは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Fは、BGRコア回路10Dに対して、バイポーラトランジスタQ4のコレクタ側に抵抗R81を追加した構成である。
 これによれば、BGR回路10Dと同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、容易にVPTAT電圧を生成することができる。
 ≪実施の形態9≫
 図32は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Gは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Gは、BGRコア回路10から抵抗R5及び抵抗R3を取り除くとともに、出力電圧VBGRを生成する出力段の回路を変更した構成である。具体的には、出力段の回路は、エミッタ端子が接地され、ダイオード接続されたバイポーラトランジスタQ4と、一端が接地された抵抗R9と、バイポーラトランジスタQ4のコレクタ側と抵抗R9の他端との間に設けられた抵抗R11と、抵抗R11と抵抗R9が接続されるノードにドレイン側が接続され、ゲート端子がMOSトランジスタMP1のゲート端子と同電位とされるMOSトランジスタMP5と、から構成される。
 BGRコア回路10Gの出力電圧VBGRは(式69)となる。
Figure JPOXMLDOC01-appb-M000069
 図33に、図32のBGRコア回路10Gに絶対温度に比例した電圧(VPTAT)を生成する電圧生成部を備えた回路の一例を示す。
 同図に示されるBGRコア回路10Hは、BGRコア回路10Gに加え、ソース電位とゲート電位がMP1と同じくされるPチャネルMOSトランジスタMP6と、MP6のドレイン端子と接地ノードとの間に設けられた抵抗R10からなるPTAT電圧生成部を備える。これによれば、容易にPTAT電圧を生成することができる。
 以上実施の形態9に係るBGRコア回路10Hによれば、BGRコア回路10Dと同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。また、容易にPTAT電圧を生成することができる。
 ≪実施の形態10≫
 図34は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Iは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Iは、BGRコア回路10から抵抗R5を取り除いた構成である。これにより、アンプA1のコモン入力電圧はBGRコア回路10よりも低くなる。BGRコア回路10Iの出力電圧VBGRは、BGRコア回路10と同様であり、BGRコア回路10Iによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 ≪実施の形態11≫
 図35は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Jは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Jは、BGRコア回路10から抵抗R5を取り除くとともに、MOSトランジスタMP1のドレイン端子と抵抗R1、R2の接続ノードとの間に抵抗R7を設けた構成である。これにより、アンプA1のコモン入力電圧を調整することができる。BGRコア回路10Jの出力電圧VBGRは、BGRコア回路10と同様であり、BGRコア回路10Jによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 ≪実施の形態12≫
 図36は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Kは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Kは、BGRコア回路10に対し、MOSトランジスタMP1のドレイン端子と抵抗R1、R2の接続ノードとの間に抵抗R7を更に設けた構成である。これにより、アンプA1のコモン入力電圧を調整することができる。BGRコア回路10Kの出力電圧VBGRは、BGRコア回路10と同様であり、BGRコア回路10Kによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 ≪実施の形態13≫
 図37は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Lは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Lは、BGRコア回路10から抵抗R5を取り除くとともに、バイポーラトランジスタQ1、Q2のコレクタ側の電圧を分圧してアンプA3に入力する構成である。同図には、一例として、抵抗R12及びR13と抵抗R14及びR15によって分圧する方法が示されている。これにより、アンプA3のコモン入力電圧を低くすることが可能となり、アンプA3の設計が容易となる。
 図38は、アンプA3の一例を示す回路図である。
 同図に示されるように、アンプのコモン入力電圧が低くされることで、アンプA3としてPチャネルMOSトランジスタを入力段とする差動増幅器を用いることが可能となる。なお、同図における電圧Vbpはバイアス電圧である。
 BGRコア回路10Lの出力電圧VBGRはBGRコア回路10と同様であり、BGRコア回路10Lによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 分圧してアンプA3(A1)のコモン入力電圧を調整する方法は、他の実施の形態に係るBGRコア回路にも適用可能である。また、本実施の形態では抵抗R5を取り除いた構成例を示したが、抵抗R5は接続されたままでもよい。
 ≪実施の形態14≫
 図39は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Mは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Mは、BGRコア回路10から抵抗R5を取り除き、MOSトランジスタMP1のソース端子と電源Vccとの間に抵抗R16を設けるとともに、MOSトランジスタMP2のソース端子と電源Vccとの間に抵抗R17を設けた構成である。これによれば、ソース・デジェネレーションにより、MOSトランジスタMP1の電流とMOSトランジスタMP2の電流のミスマッチを低減することができる。
 BGRコア回路10Lの出力電圧VBGRはBGRコア回路10と同様であり、BGRコア回路10Lによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 上記のディジェネレーション抵抗R16、R17を挿入する方法は、他の実施の形態に係るBGRコア回路にも適用可能である。また、本実施の形態では抵抗R5を取り除いた構成例を示したが、抵抗R5は接続されたままでもよい。
 ≪実施の形態15≫
 図40は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Nは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Nは、BGRコア回路10と異なり、PNPバイポーラトランジスタを用いて構成した回路である。具体的な回路構成は以下である。図40に示されるように、BGRコア回路10Nは、エミッタ端子が共通に接続される一対のPNP型のバイポーラトランジスタQ1P、Q2Pと、一端が共通に接続されてバイポーラトランジスタQ2Pのベース端子に接続され、他端がバイポーラトランジスタQ1P、Q2Pのコレクタ端子に接続される抵抗R1、R2と、バイポーラトランジスタQ2Pのベース端子と電源Vccとの間に設けられた抵抗R3を備える。更に、BGRコア回路10は、バイポーラトランジスタQ1、Q2のコレクタ側の電位を夫々入力する差動アンプA1と、差動アンプA1の出力電圧をゲート端子に入力し、ソース端子が接地ノードに接続されるNチャネル型のMOSトランジスタMN7、MN8と、MOSトランジスタMN8のドレイン端子と電源Vccとの間に設けられた抵抗R4とを備える。MOSトランジスタMN7のドレイン端子が上記抵抗R1及びR2の接続ノードに接続されることで、フィードバックループを形成している。上記バイポーラトランジスタQ1PとQ2Pは、バイポーラトランジスタQ1Pのエミッタ面積がバイポーラトランジスタQ2Pのn(nは2以上の整数)倍に大きくされる。すなわち、バイポーラトランジスタQ1PとQ2Pに同じ電流を流すようにしたとき、バイポーラトランジスタQ2Pのエミッタ電流密度がトランジスタQ1Pのエミッタ電流密度のn倍となるように設定される。
 ここで、R=R=R12とすると、IPTATは(式70)となるから、BGRコア回路10Nの出力電圧VBGRは(式71)となる。
Figure JPOXMLDOC01-appb-M000070
Figure JPOXMLDOC01-appb-M000071
 BGRコア回路10を反転した構成であるBGRコア回路10Nによれば、BGRコア回路10と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 ≪実施の形態16≫
 図41は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Oは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Oは、実施の形態15に係るBGRコア回路10Nに対して、抵抗R1と抵抗R2が接続されるノードとMN7のドレイン端子との間に抵抗R5を挿入した構成である。これによれば、アンプA1のコモン入力電圧を高くする調整を行うことが可能となる。BGRコア回路10Oの出力電圧VBGRは、BGRコア回路10Nと同様であり、BGRコア回路10Oによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 ≪実施の形態17≫
 図42は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Pは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Pは、実施の形態15に係るBGRコア回路10Nに対して、抵抗R1と抵抗R2が接続されるノードとMN7のドレイン端子との間に抵抗R5を挿入し、バイポーラトランジスタQ1PとQ2Pが接続されるノードと電源Vccとの間に抵抗R7を挿入した構成である。これによれば、アンプA1のコモン入力電圧を調整することが可能となる。BGRコア回路10Pの出力電圧VBGRは、BGRコア回路10Nと同様であり、BGRコア回路10Pによれば、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 ≪実施の形態18≫
 図43は、本発明の別の実施の形態に係るBGRコア回路の一例を示す回路図である。
 同図に示されるBGRコア回路10Qは、前述した基準電圧発生回路1におけるBGRコア回路の別の回路形態の一例である。同図において、実施の形態1に係る基準電圧発生回路1と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 BGRコア回路10Qは、実施の形態15に係るBGRコア回路10Nと異なり、MN8に流れる電流を折り返した電流に基づいて出力電圧VBGRを生成する構成である。具体的には、BGRコア回路10Qは、MN8の電流に基づいて電流Iを生成して抵抗R4に供給するカレントミラー回路(MP8、MP9)を更に備える。
 実施の形態15乃至17のBGRコア回路は、電源VCC基準の出力電圧VBGRを得る方式であったのに対し、本実施の形態に係るBGRコア回路10Qによれば、グランド基準の出力電圧を得ることが可能となる。また、BGRコア回路10N等と同様に、低電圧出力及び低電源電圧動作が可能となり、且つ出力電圧VBGRに対するアンプのオフセットの影響を低減させることができる。
 本実施の形態では抵抗R5及びR6を挿入した構成例を示したが、抵抗R5とR6のいずれか一方または双方を取り除いた構成としてもよい。
 ≪実施の形態19≫
 図44は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図に示される基準電圧発生回路7は、約1.2V出力のBGRコア回路に非線形補正を施した構成である。特に制限されないが、同図では約1.2V出力のBGRコア回路の一例として上記図5に示したBGRコア回路を示している。
 同図に示される基準電圧発生回路7は、BGRコア回路71と非線形補正回路72を備える。
 BGRコア回路71は、前述したように図5のBGRコア回路をベースとした回路構成である。具体的な構成は、以下である。図44に示されるBGRコア回路71は、ベース端子が共通に接続される一対のNPN型のバイポーラトランジスタQ1、Q2と、バイポーラトランジスタQ2のコレクタ端子と電源Vccとの間に設けられた抵抗R22と、バイポーラトランジスタQ1のコレクタ端子と電源Vccとの間に設けられた抵抗R21と、バイポーラトランジスタQ1のエミッタ端子とバイポーラトランジスタQ2のエミッタ端子との間に設けられた抵抗R20と、バイポーラトランジスタQ2のエミッタ端子とグランド(接地ノード)との間に設けられた抵抗R23と、を備える。更に、当該BGRコア回路は、バイポーラトランジスタQ1、Q2のコレクタ側の電位を夫々入力し、出力がバイポーラトランジスタQ1、Q2のベース側に接続される差動アンプA1を備える。上記バイポーラトランジスタQ1とQ2は、バイポーラトランジスタQ1のエミッタ面積がバイポーラトランジスタQ2のn(nは2以上の整数)倍に大きくされる。すなわち、バイポーラトランジスタQ1とQ2に同じ電流を流すようにしたとき、バイポーラトランジスタQ2のエミッタ電流密度がトランジスタQ1のエミッタ電流密度のn倍となるように設定される。また、抵抗R23は抵抗R23Aと抵抗R23Bに分割され、両抵抗の接続ノードに補正電流ICOMPが供給される。
 補正回路72は、出力電圧VBGRに基づいてバイポーラトランジスタQ5~Q8及び抵抗R6から補正電流ICOMPを生成し、MP11、MP12からなるカレントミラー回路によって補正電流ICOMPをBGRコアに帰還する構成である。補正回路72による補正電流ICOMPは、(式72)となる。
Figure JPOXMLDOC01-appb-M000072
 補正電流ICOMP生成の原理は、実施の形態1に係る補正回路20と同様であるが、BGRコア回路71の場合、出力電圧VBGRが約1.2Vであるため、バイポーラトランジスタQ5とQ7(Q6、Q8)を2段積みとすることでベース・エミッタ間電圧VBEを2倍とし、好適な補正電流ICOMPを生成する。なお、VBEを2倍としたのは、バイポーラトランジスタのVBEが低温で0.7V程度、高温で0.35V程度である場合を想定したものであり、出力電圧VBGRの値とVBEの値に応じて、バイポーラトランジスタQ5とQ7(Q6、Q8)の段数は調整される。
 なお上記の計算は近似計算であり、実際はBGRコア回路71と補正回路72との間でループが形成され、帰還がかけられているので、抵抗や補正電流ICOMPなどの値は上記計算から多少のずれが生じる。正確な値はシミュレーションにより求めることが可能である。
 図45は、基準電圧回路7による非線形温度特性の補正方法の原理を示す説明図である。
 同図の(A)に示されるVBGR_PTATは、補正電流ICOMPを無視したときのベース・エミッタ間電圧VBEに絶対温度に比例した電圧VPTATの補正のみを考えた場合の波形の一例を示している。また、電圧VBGR_PTATは、お碗型の形状であって、低温側で温度係数がゼロとなる温度をなるように各素子の定数を調整した場合が示されている。同図の(B)には、補正電流ICOMPが示される。同図の(C)には、出力電圧VBGR_PTATに対して補正電圧VCOMPを加算した場合の波形の一例が示される。
 前述したように、非線形な温度依存性を有する電圧VBGR_PTATの温度ドリフトを低減させるためには、絶対温度の2乗に比例する電流IPTAT を加算する等の補正方法が考えられる。しかしながら、絶対温度0Kを基点とした電流IPTAT を加算する非線形補正方法では、補正したい温度範囲(例えば、仕様書で要求される温度範囲等)において急峻に変化する電流や電圧を得ることが困難である。そこで、本実施の形態に係る基準電圧発生回路7では、基準電圧発生回路1と同様に、所定温度T1を境に特性が変化する補正電流ICOMPを生成し、補正電流ICOMPに応じた補正電圧VCOMPを電圧VBGR_PTATに加算することで非線形補正を行う。これによれば、図45の(D)に示されるように、所定の温度範囲において温度ドリフトを低減させることが可能となる。また、図45に示されるように、補正電流ICOMPの傾きは抵抗R6の値により制御することができる。
 なお図45の(C)の波形例は、非線形補正後の出力電圧VBGRの波形を強調するために描いたものであり、実際に“VBGR”と“2VBE5,7”の大小関係が入れ替わる温度T1は不連続ではなく連続であるため、出力電圧VBGRは図45の(D)に示されるように滑らかな曲線となる。
 また、(式72)の“VBGR-2VBE5,7”の項は、近似的に表現すると、線形(PTAT)補正された電圧VBGRから非線形な温度特性のベース・エミッタ間電圧VBEを引いた特性であり、より高次の項も含む曲線を描く。なお所定の温度範囲で温度ドリフトを低減させるには、図45の(B)における実線又は点線で示される特性のように単調増加していればよく、特に直線的でなくてもかまわない。
 以上実施の形態19に係る基準電圧発生回路7によれば、非線形補正回路72により補正電流ICOMPを生成してBGRコア回路71に帰還させることで、出力電圧VBGRの温度依存性をより低減させることができる。また、後述する実施の形態21と比較して抵抗R6の値を小さくすることが可能である。
 上記非線形補正回路72による温度補正方法は、他のトポロジのBGR回路にも適用可能である。また、非線形補正回路72のカレントミラー回路(MP11、MP12)は、動作電圧に余裕があればカスコード化したり、前述した図39のようにソース側にデジェネレート抵抗を挿入したりすることで、電流のミスマッチを防止することができる。
 ≪実施の形態20≫
 図46は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態19に係る基準電圧発生回路7と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路8は、BGRコア回路71と非線形補正回路73を備える。非線形補正回路73は、実施の形態20に係る非線形補正回路72の抵抗R6を分割し、バイポーラトランジスタQ5のエミッタ端子と接地ノードとの間に抵抗R62を設けると共に、バイポーラトランジスタQ6のエミッタ端子と接地ノードとの間に抵抗R61を設けた構成である。補正回路73による補正電流ICOMPは、R61=R62とすれば、(式73)となる。
Figure JPOXMLDOC01-appb-M000073
 実施の形態21に係る基準電圧発生回路8によれば、基準電圧発生回路7と同様に、出力電圧VBGRの温度依存性をより低減させることができる。
 上記非線形補正回路73による温度補正方法は、他のトポロジのBGR回路にも適用可能である。また、非線形補正回路73のカレントミラー回路(MP11、MP12)は、動作電圧に余裕があればカスコード化したり、前述した図39のようにソース側にデジェネレート抵抗を挿入したりすることで、電流のミスマッチを防止することができる。
 ≪実施の形態21≫
 図47は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図において、実施の形態20に係る基準電圧発生回路7と同様の構成要素等については、同一の符号を付して、その詳細な説明を省略する。
 同図に示される基準電圧発生回路9は、BGRコア回路71と非線形補正回路74を備える。非線形補正回路74は、BGRコア回路の出力がベース側に入力されるバイポーラトランジスタQ10と、ダイオード接続され、コレクタ側がバイポーラトランジスタQ10のエミッタ側と接続されるバイポーラトランジスタQ9と、バイポーラトランジスタQ9のエミッタ端子と接地ノードとの間に設けられた抵抗R6と、補正電流ICOMPを生成するカレントミラー回路(MP11、MP12)と、から構成される。バイポーラトランジスタQ9、Q10を2段積みとしているのは、実施の形態20に係る非線形補正回路72と同様の理由である。
 実施の形態21に係る基準電圧発生回路9によれば、基準電圧発生回路7と同様に、出力電圧VBGRの温度依存性をより低減させることができる。また、非線形補正回路74は、非線形補正回路72、73と異なりカレントミラー回路をカスコード化した構成ではなく素子数が少ないので、チップ面積をより低減させることができる。
 上記非線形補正回路74による温度補正方法は、他のトポロジのBGR回路にも適用可能である。また、非線形補正回路73のカレントミラー回路(MP11、MP12)は、動作電圧に余裕があればカスコード化したり、前述した図39のようにソース側にデジェネレート抵抗を挿入したりすることで、電流のミスマッチを防止することができる。
 ≪実施の形態22≫
 図48は、本発明の別の実施の形態に係る基準電圧発生回路の一例を示す回路図である。
 同図に示される基準電圧発生回路11は、BGRコア回路75と非線形補正回路76を備える。BGRコア回路75は、ベース端子が共通に接続される一対のNPN型のバイポーラトランジスタQ1、Q2と、一端が共通に接続されてバイポーラトランジスタQ2のベース端子に接続され、バイポーラトランジスタQ1のエミッタ側とバイポーラトランジスタQ2のエミッタ側との間に設けられた抵抗R20と、抵抗R23Aと抵抗R23Bに分割され、バイポーラトランジスタQ1、Q2のエミッタ端子と接地ノードとの間に設けられた抵抗R23と、カレントミラー回路を構成するMOSトランジスタMP13~MP15と、ダイオード接続されエミッタ側が接地ノードに接続されるNPN型のバイポーラトランジスタQ11と、バイポーラトランジスタQ1、Q2のベース端子とバイポーラトランジスタQ11のコレクタ端子との間に設けられた抵抗R33と、から構成される。また、前記バイポーラトランジスタQ11は、抵抗R34とPNP型バイポーラトランジスタQ11Pとともに非線形補正回路76を構成する。非線形補正回路76において、抵抗R34は、MOSトランジスタMP3のドレイン端子とバイポーラトランジスタQ1、Q2のベース端子の接続ノードに一端が接続される。また、バイポーラトランジスタQ11Pは、ベース端子がバイポーラトランジスタQ11のベース端子と接続され、エミッタ端子が抵抗R4の他端に接続され、コレクタ端子が抵抗R11とR12の接続ノードに接続される。
 補正回路75による補正電流ICOMPは(式74)となる。
Figure JPOXMLDOC01-appb-M000074
 BGRコア回路75の場合、出力電圧VBGRが約1.2Vであるため、バイポーラトランジスタQ11とQ11Pを2段積みとすることでベース・エミッタ間電圧VBEを2倍とし、好適な補正電流ICOMPを生成する。なお、VBEを2倍としたのは、バイポーラトランジスタのVBEが低温で0.7V程度、高温で0.35V程度である場合を想定したものである。
 実施の形態22に係る基準電圧発生回路11によれば、基準電圧発生回路7と同様に、出力電圧VBGRの温度依存性をより低減させることができる。また、BGRコア回路75と非線形補正回路76の構成素子を共有化させるように構成することで、素子数が少なくなり、チップ面積をより低減させることができる。
 上記非線形補正回路75による温度補正方法は、他の類似のトポロジのBGR回路にも適用可能である。また、非線形補正回路75のカレントミラー回路(MP1、MP2、MP3)は、動作電圧に余裕があればカスコード化したり、前述した図39のようにソース側にデジェネレート抵抗を挿入したりすることで、電流のミスマッチを防止することができる。
 以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
 例えば、上記実施の形態1乃至22において示したBGRコア回路と非線形補正回路の組み合わせの種類は上記の例に限られず、BGRコア回路に補正電流ICOMPを適切に帰還できれば、他の組み合わせであっても非線形補正が可能である。例えば、実施の形態2に係る基準電圧発生回路2において、BGRコア回路10Aの代わりにBGRコア回路10I~10Qの何れかを適用することも可能である。
 また、実施の形態1において基準電圧発生回路1にスタートアップ回路30とローパスフィルタ60を追加する例を示したが、これに限られず、他の実施の形態に係る基準電圧発生回路にも追加することができる。
 本発明は、電圧発生回路に関し、特に半導体集積回路における基準電圧発生回路に広く適用することができる。
 1~9、11 基準電圧発生回路
 10、10A~10Q、71、75 BGRコア回路
 20、20A~20C、72~74 非線形補正回路
 A、A1~A3 アンプ
 300 比較のための直線
 30 スタートアップ回路
 41 電源制御部
 42 参照バッファ
 43 メインレギュレータ
 44 サブレギュレータ
 45 CPU
 46 レジスタ
 47 不揮発性記憶素子
 48 その他周辺回路
 49 入出力回路
 50 電源回路
 51 AD変換器
 52 DA変換器
 60 ローパスフィルタ(LPF)
 70 レギュレータ回路(基準電流源)
 100、101 半導体集積回路装置(システムLSI)
 51 電源回路
 52 温度センサ
 53 AD変換器
 54 基準電圧発生回路

Claims (24)

  1.  エミッタ面積の異なる2つのバイポーラトランジスタのベース・エミッタ間電圧の差電圧に応じた電流とPN接合の順方向電圧に応じた電流を加算した電流を生成する電流生成部と、
     入力された電流を電圧に変換して出力する出力部と、を有する電圧発生回路であって、
     前記電流生成部は、エミッタ端子が第1電位ノード側に配置された第1バイポーラトランジスタと、
     前記第1バイポーラトランジスタのエミッタ面積より大きいエミッタ面積を有し、エミッタ端子が前記第1バイポーラトランジスタのエミッタ端子と同電位とされ、ベース端子が前記第1バイポーラトランジスタのコレクタ側に配置される第2バイポーラトランジスタと、
     一端が前記第1バイポーラトランジスタのコレクタ側に配置され、他端が前記第1バイポーラトランジスタのベース側に配置される第1抵抗素子と、
     一端が前記第2バイポーラトランジスタのコレクタ側に配置され、他端が前記第1抵抗素子の他端に接続される第2抵抗素子と、
     前記第1バイポーラトランジスタのベース端子と前記第1電位ノードとの間に設けられる第3抵抗素子と、
     前記第1バイポーラトランジスタのコレクタ側の電圧と前記第2バイポーラトランジスタのコレクタ側の電圧を入力し、入力した2つの電圧の差電圧に応じた電圧を出力するアンプ部と、
     前記アンプ部の出力電圧を入力して電流に変換し、変換した電流を前記第1抵抗素子と前記第2抵抗素子が接続されるノードに供給するとともに出力部に供給する電圧電流変換部と、を有する、電圧発生回路。
  2.  前記電流生成部は、前記第1バイポーラトランジスタのエミッタ端子と前記第1電位ノードとの間に抵抗素子を有する、請求項1記載の電圧発生回路。
  3.  前記電圧電流変換部からの前記第1抵抗素子と前記第2抵抗素子が接続されるノードへの電流供給は、抵抗素子を介して行われる、請求項1記載の電圧発生回路。
  4.  前記アンプ部に入力される2つの電圧は、前記第1バイポーラトランジスタのコレクタ端子の電圧を分圧した電圧と、前記第2バイポーラトランジスタのコレクタ端子の電圧を分圧した電圧である、請求項1記載の電圧発生回路。
  5.  前記電圧電流変換部は、ソース端子が抵抗素子を介して前記第1電位ノードと異なる電位の第2電位ノードに接続され、ドレイン端子が前記第1抵抗素子及び前記第2抵抗素子が接続されるノードに接続される第1MOSトランジスタと、
     ソース側が抵抗素子を介して前記第2電位ノードに接続され、ドレイン側が前記出力部の入力側に接続される第2MOSトランジスタと、を有し、
     前記第1MOSトランジスタと前記第2MOSトランジスタのゲート端子には、前記アンプ部の出力電圧が入力される、請求項1記載の電圧発生回路。
  6.  エミッタ面積の異なる2つのバイポーラトランジスタのベース・エミッタ間電圧の差電圧に応じた第1電流を生成する電流生成部と、
     前記第1電流に基づいてPN接合の順方向電圧に応じた第2電流を生成するとともに、前記第1電流と前記第2電流に基づいて電圧を生成して出力する出力部と、を有し、
     前記電流生成部は、エミッタ端子が第1電位ノード側に配置された第1バイポーラトランジスタと、
     前記第1バイポーラトランジスタのエミッタ面積より大きいエミッタ面積を有し、エミッタ端子が前記第1バイポーラトランジスタのエミッタ端子と同電位とされ、ベース端子が前記第1バイポーラトランジスタのコレクタ側に配置される第2バイポーラトランジスタと、
     一端が前記第1バイポーラトランジスタのコレクタ側に配置され、他端が前記第1バイポーラトランジスタのベース側に配置される第1抵抗素子と、
     一端が前記第2バイポーラトランジスタのコレクタ側に配置され、他端が前記第1抵抗素子の他端に接続される第2抵抗素子と、
     前記第1バイポーラトランジスタのコレクタ側の電圧と前記第2バイポーラトランジスタのコレクタ側の電圧を入力し、入力した2つの電圧の差電圧に応じた電圧を出力するアンプ部と、
     前記アンプ部の出力電圧を入力して電流に変換し、変換した電流を前記第1抵抗素子と前記第2抵抗素子が接続されるノードに供給するとともに出力部に供給する電圧電流変換部と、を有する、電圧発生回路。
  7.  前記出力部は、一端が前記第1電位ノードに接続され、他端に入力される電流に基づいてPN接合の順方向電圧に応じた電圧を生成する電圧生成部と、
     一端が前記第1電位ノードに接続される第3抵抗素子と、
     前記電圧生成部の他端側と前記第3抵抗素子の他端側との間に設けられた第4抵抗素子と、を有し、
     前記第4抵抗素子が接続されるノードに前記第1電流が夫々供給される、請求項6記載の電圧発生回路。
  8.  前記出力部は、一端が前記第1電位ノードに接続され、他端に電流が入力される第4抵抗素子である、請求項1記載の電圧発生回路。
  9.  前記第1バイポーラトランジスタ及び前記第2バイポーラトランジスタは、NPN型のバイポーラトランジスタである、請求項1記載の電圧発生回路。
  10.  前記第1バイポーラトランジスタ及び前記第2バイポーラトランジスタは、PNP型のバイポーラトランジスタである、請求項1記載の電圧発生回路。
  11.  前記出力部によって生成された電圧とPN接合の順方向電圧との差分に応じた補正電流を生成し、前記補正電流を前記電流生成部に帰還させる補正回路を更に有する、請求項1記載の電圧発生回路。
  12.  前記補正回路は、エミッタ端子が第5抵抗素子を介して前記第1電位ノードに接続され、ベース端子が前記電圧生成部の出力側に接続される第3バイポーラトランジスタと、
     前記第3バイポーラトランジスタのコレクタ端子に流れる電流に応じた電流を出力するカレントミラー部と、を有する、請求項11記載の電圧発生回路。
  13.  前記補正電流は、前記第3抵抗素子に帰還される、請求項12記載の電圧発生回路。
  14.  前記第1バイポーラトランジスタのエミッタ端子は、抵抗素子を介して前記第1電位ノードに接続され、
     前記補正電流は、前記第1バイポーラトランジスタのエミッタ端子に帰還される、請求項12記載の電圧発生回路。
  15.  前記補正電流は、前記第2抵抗素子の一端に帰還される、請求項12記載の電圧発生回路。
  16.  前記出力部によって生成された電圧とPN接合の順方向電圧との差分に応じた補正電流を生成し、前記補正電流を前記第4抵抗素子に帰還させる補正回路を更に有する、請求項8記載の電圧発生回路。
  17.  前記補正回路は、前記出力部の出力電圧を入力し、バッファして前記第3バイポーラトランジスタのベース端子に出力するバッファ回路を更に有する、請求項12記載の電圧発生回路。
  18.  前記カレントミラー部は、低電圧型のカレントミラー回路である、請求項12記載の電圧発生回路。
  19.  異なる電流密度で動作する2つのバイポーラトランジスタのベース・エミッタ間電圧の差電圧と、PN接合の順方向電圧を所定の割合で加算した電圧を生成して出力する電圧生成部と、
     前記電圧生成部によって生成された電圧とPN接合の順方向電圧との差分に応じた補正電流を生成し、前記補正電流を前記電圧生成部に帰還させる補正回路と、を有する電圧発生回路。
  20.  前記補正回路は、エミッタ端子が第1抵抗素子を介して第1電位ノードに接続され、ダイオード接続された第1バイポーラトランジスタと、
     エミッタ端子が前記第1バイポーラトランジスタのコレクタ側に接続され、ダイオード接続されたコレクタ端子とベース端子が前記電圧生成部の出力側に接続される第2バイポーラトランジスタと、
     前記第1抵抗素子に流れる電流に応じた電流を出力する電流出力部と、を有する、請求項19記載の電圧発生回路。
  21.  前記補正回路は、エミッタ端子が第1抵抗素子を介して第1電位ノードに接続され、ダイオード接続された第1バイポーラトランジスタと、
     エミッタ端子が前記第1バイポーラトランジスタのコレクタ側に接続され、ベース端子が前記電圧生成部の出力側に接続される第2バイポーラトランジスタと、
     前記第2バイポーラトランジスタのコレクタ側に流れる電流に応じた電流を出力するカレントミラー回路と、を有する、請求項19記載の電圧発生回路。
  22.  前記電圧生成部は、コレクタ端子が第2抵抗素子を介して前記第1電位ノードに接続される第3バイポーラトランジスタと、
     前記第3バイポーラトランジスタのエミッタ面積より大きいエミッタ面積を有し、コレクタ端子が第3抵抗素子を介して第1電位ノードに接続される第4バイポーラトランジスタと、
     前記第3バイポーラトランジスタのエミッタ端子と前記第4バイポーラトランジスタのエミッタ端子との間に設けられた第4抵抗素子と、
     前記第2バイポーラトランジスタのエミッタ端子と第2電位ノードとの間に設けられた第5抵抗素子と、を有し、
     前記補正電流は、前記第5抵抗素子に帰還される、請求項19記載の電圧発生回路。
  23.  前記出力部によって生成された電圧とサブスレッショルド領域で動作されるMOSトランジスタのゲート・ソース間電圧との差分に応じた補正電流を生成し、前記補正電流を前記電流生成部に帰還させる補正回路を更に有する、請求項1記載の電圧発生回路。
  24.  前記補正回路は、ゲート端子が前記出力部の出力側に配置される第1MOSトランジスタと、
     一端が前記第1電位ノードに接続される第4抵抗素子と、
     前記第1MOSトランジスタのソース端子と前記第4抵抗素子の他端との間に設けられ、ゲート端子とドレイン端子が同電位とされる1又は複数の第2MOSトランジスタと、
     前記第1MOSトランジスタのドレイン側に流れる電流に応じた電流を出力するカレントミラー部と、を有する、請求項23記載の電圧発生回路。
PCT/JP2012/059643 2011-04-12 2012-04-09 電圧発生回路 WO2012141123A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013509895A JP5693711B2 (ja) 2011-04-12 2012-04-09 電圧発生回路
CN201280018085.5A CN103492971B (zh) 2011-04-12 2012-04-09 电压产生电路
EP12772041.5A EP2698681B1 (en) 2011-04-12 2012-04-09 Voltage generating circuit
KR1020137026669A KR101939859B1 (ko) 2011-04-12 2012-04-09 전압 발생 회로
US14/009,715 US9564805B2 (en) 2011-04-12 2012-04-09 Voltage generating circuit
US15/388,308 US9989985B2 (en) 2011-04-12 2016-12-22 Voltage generating circuit
US15/966,176 US10289145B2 (en) 2011-04-12 2018-04-30 Voltage generating circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-088072 2011-04-12
JP2011088072 2011-04-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/009,715 A-371-Of-International US9564805B2 (en) 2011-04-12 2012-04-09 Voltage generating circuit
US15/388,308 Division US9989985B2 (en) 2011-04-12 2016-12-22 Voltage generating circuit

Publications (1)

Publication Number Publication Date
WO2012141123A1 true WO2012141123A1 (ja) 2012-10-18

Family

ID=47009296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059643 WO2012141123A1 (ja) 2011-04-12 2012-04-09 電圧発生回路

Country Status (6)

Country Link
US (3) US9564805B2 (ja)
EP (1) EP2698681B1 (ja)
JP (1) JP5693711B2 (ja)
KR (1) KR101939859B1 (ja)
CN (1) CN103492971B (ja)
WO (1) WO2012141123A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996283B2 (ja) * 2012-06-07 2016-09-21 ルネサスエレクトロニクス株式会社 電圧発生回路を備える半導体装置
US9791879B2 (en) * 2013-10-25 2017-10-17 Taiwan Semiconductor Manufacturing Company Limited MOS-based voltage reference circuit
US9864393B2 (en) * 2015-06-05 2018-01-09 Taiwan Semiconductor Manufacturing Company Ltd Voltage reference circuit
KR20170014953A (ko) * 2015-07-31 2017-02-08 에스케이하이닉스 주식회사 전압 생성 회로
WO2017139953A1 (zh) * 2016-02-18 2017-08-24 深圳市锐明技术股份有限公司 一种 dc-dc 电源控制电路及电子设备
CN105928632B (zh) * 2016-07-07 2019-02-22 杭州澜达微电子科技有限公司 一种温度传感器前端电路
TWI654509B (zh) 2018-01-03 2019-03-21 立積電子股份有限公司 參考電壓產生器
US10359801B1 (en) * 2018-05-29 2019-07-23 Iowa State University Research Foundation, Inc. Voltage reference generator with linear and non-linear temperature dependency elimination
US10775828B1 (en) * 2019-06-03 2020-09-15 Shanghai Zhaoxin Semiconductor Co., Ltd. Reference voltage generation circuit insensitive to element mismatch
US11526191B2 (en) * 2020-02-04 2022-12-13 Texas Instruments Incorporated Precision reference circuit
WO2021179212A1 (zh) * 2020-03-11 2021-09-16 深圳市汇顶科技股份有限公司 温度传感器、电子设备和温度检测系统
TWI738268B (zh) * 2020-03-27 2021-09-01 矽統科技股份有限公司 定電流充電裝置
KR102457465B1 (ko) 2020-05-22 2022-10-21 한국전자통신연구원 빔의 부엽 제어 기능을 갖는 위상 변환 회로 및 그 동작 방법
US11520364B2 (en) * 2020-12-04 2022-12-06 Nxp B.V. Utilization of voltage-controlled currents in electronic systems
JP7545901B2 (ja) * 2021-01-06 2024-09-05 ルネサスエレクトロニクス株式会社 半導体装置
US11714444B2 (en) * 2021-10-18 2023-08-01 Texas Instruments Incorporated Bandgap current reference
US11853096B2 (en) 2021-10-21 2023-12-26 Microchip Technology Incorporated Simplified curvature compensated bandgap using only ratioed components
KR20230159100A (ko) 2022-05-13 2023-11-21 삼성전자주식회사 밴드갭 기준 회로 및 이를 포함하는 전자 장치
FR3141250B1 (fr) * 2022-10-24 2024-09-13 St Microelectronics Grenoble 2 Circuit électronique comprenant un circuit de référence de tension et un circuit de test de démarrage
CN115932379B (zh) * 2022-12-27 2023-08-08 希荻微电子集团股份有限公司 高边电流检测电路、过流保护电路、校准方法及电子设备
CN116466787B (zh) * 2023-04-14 2023-12-12 江苏润石科技有限公司 一种输出电压可调的高精度带隙基准电路
CN117093049B (zh) * 2023-10-19 2023-12-22 上海芯龙半导体技术股份有限公司 基准电压源电路及参数调整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887863A (en) 1973-11-28 1975-06-03 Analog Devices Inc Solid-state regulated voltage supply
JPS603644B2 (ja) * 1976-08-16 1985-01-30 ア−ルシ−エ− コ−ポレ−ション 基準電圧発生装置
US6160391A (en) 1997-07-29 2000-12-12 Kabushiki Kaisha Toshiba Reference voltage generation circuit and reference current generation circuit
US20030058031A1 (en) * 2001-07-05 2003-03-27 Kevin Scoones Voltage reference circuit with increased intrinsic accuracy
JP2006059001A (ja) * 2004-08-18 2006-03-02 Toyota Motor Corp 基準電圧発生回路
JP2008513874A (ja) * 2004-09-15 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ バイアス回路

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063644B2 (ja) * 1989-05-27 1994-01-12 ティーディーケイ株式会社 薄膜磁気ヘッドにおけるパルス状ノイズ防止方法
US5424628A (en) * 1993-04-30 1995-06-13 Texas Instruments Incorporated Bandgap reference with compensation via current squaring
US6218822B1 (en) * 1999-10-13 2001-04-17 National Semiconductor Corporation CMOS voltage reference with post-assembly curvature trim
GB0011545D0 (en) * 2000-05-12 2000-06-28 Sgs Thomson Microelectronics Generation of a voltage proportional to temperature with accurate gain control
GB0011541D0 (en) * 2000-05-12 2000-06-28 Sgs Thomson Microelectronics Generation of a voltage proportional to temperature with a negative variation
FR2834086A1 (fr) * 2001-12-20 2003-06-27 Koninkl Philips Electronics Nv Generateur de tension de reference a performances ameliorees
JP3866606B2 (ja) * 2002-04-08 2007-01-10 Necエレクトロニクス株式会社 表示装置の駆動回路およびその駆動方法
JP4259860B2 (ja) * 2002-12-27 2009-04-30 三洋電機株式会社 ザッピング回路
US7439601B2 (en) * 2004-09-14 2008-10-21 Agere Systems Inc. Linear integrated circuit temperature sensor apparatus with adjustable gain and offset
US20070052473A1 (en) 2005-09-02 2007-03-08 Standard Microsystems Corporation Perfectly curvature corrected bandgap reference
JP4822431B2 (ja) * 2005-09-07 2011-11-24 ルネサスエレクトロニクス株式会社 基準電圧発生回路および半導体集積回路並びに半導体集積回路装置
JP4647448B2 (ja) * 2005-09-22 2011-03-09 ルネサスエレクトロニクス株式会社 階調電圧発生回路
TWI350436B (en) * 2005-10-27 2011-10-11 Realtek Semiconductor Corp Startup circuit, bandgap voltage genertor utilizing the startup circuit, and startup method thereof
JP4817825B2 (ja) * 2005-12-08 2011-11-16 エルピーダメモリ株式会社 基準電圧発生回路
US20090027030A1 (en) * 2007-07-23 2009-01-29 Analog Devices, Inc. Low noise bandgap voltage reference
JP5085238B2 (ja) * 2007-08-31 2012-11-28 ラピスセミコンダクタ株式会社 基準電圧回路
US7919999B2 (en) * 2007-10-18 2011-04-05 Micron Technology, Inc. Band-gap reference voltage detection circuit
JP5189882B2 (ja) * 2008-04-11 2013-04-24 ルネサスエレクトロニクス株式会社 温度センサ回路
CN102063139B (zh) * 2009-11-12 2013-07-17 登丰微电子股份有限公司 温度系数调整电路及温度补偿电路
US8179455B2 (en) * 2010-03-11 2012-05-15 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Optical black-level cancellation for optical sensors using open-loop sample calibration amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887863A (en) 1973-11-28 1975-06-03 Analog Devices Inc Solid-state regulated voltage supply
JPS603644B2 (ja) * 1976-08-16 1985-01-30 ア−ルシ−エ− コ−ポレ−ション 基準電圧発生装置
US6160391A (en) 1997-07-29 2000-12-12 Kabushiki Kaisha Toshiba Reference voltage generation circuit and reference current generation circuit
US20030058031A1 (en) * 2001-07-05 2003-03-27 Kevin Scoones Voltage reference circuit with increased intrinsic accuracy
JP2006059001A (ja) * 2004-08-18 2006-03-02 Toyota Motor Corp 基準電圧発生回路
JP2008513874A (ja) * 2004-09-15 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ バイアス回路

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
KUIJK, K. E: "A precision reference voltage source", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. SC-8, no. 3, June 1973 (1973-06-01)
P. MALCOVATI: "Curvature-Compensated BiCMOS Band gap with 1-V Supply Voltage", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. SC-36, no. 7, July 2001 (2001-07-01)
PAUL, R. PATRA; A. BARANWAL; S. DASH,K.: "Design of second-order sub-band gap mixed-mode voltage reference circuit for low voltage applications", VLSI DESIGN, 2005, 18TH INTERNATIONAL CONFERENCE, 3 January 2005 (2005-01-03)
PAUL, R.; PATRA, A.: "A temperature-compensated band gap voltage reference circuit for high precision applications", INDIA ANNUAL CONFERENCE, 2004, PROCEEDINGS OF THE IEE INDICON 2004, 20 December 2004 (2004-12-20)
PEASE, R. A.: "A new Fahrenheit temperature sensor", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. SC-19, no. 6, December 1984 (1984-12-01)
See also references of EP2698681A4
SUNDAR; SIDDHARTH: "A low power high power supply rejection ratio band gap reference for portable applications", 2008, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
TSIVIDIS, Y. P.: "Accurate analysis of temperature effects in Ic-VBE characteristics with application to band gap reference sources", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. SC-15, no. 6, December 1980 (1980-12-01)

Also Published As

Publication number Publication date
CN103492971A (zh) 2014-01-01
US9564805B2 (en) 2017-02-07
EP2698681B1 (en) 2023-03-29
KR101939859B1 (ko) 2019-01-17
JPWO2012141123A1 (ja) 2014-07-28
CN103492971B (zh) 2015-08-12
US20140015504A1 (en) 2014-01-16
EP2698681A4 (en) 2014-10-08
US20180253118A1 (en) 2018-09-06
US9989985B2 (en) 2018-06-05
EP2698681A1 (en) 2014-02-19
JP5693711B2 (ja) 2015-04-01
KR20140012717A (ko) 2014-02-03
US20170139436A1 (en) 2017-05-18
US10289145B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
JP5693711B2 (ja) 電圧発生回路
US7304466B1 (en) Voltage reference circuit compensated for non-linearity in temperature characteristic of diode
JP4817825B2 (ja) 基準電圧発生回路
JP5996283B2 (ja) 電圧発生回路を備える半導体装置
JP4616281B2 (ja) 低オフセット・バンドギャップ電圧基準
KR100981732B1 (ko) 밴드갭 기준전압 발생기
JP2008108009A (ja) 基準電圧発生回路
CN102541149B (zh) 基准电源电路
Nagulapalli et al. A 15uW, 12 ppm/° C curvature compensated bandgap in 0.85 V supply
JP2001216038A (ja) Cmos定電流レファレンス回路
US20120319793A1 (en) Oscillation circuit
US20070080740A1 (en) Reference circuit for providing a temperature independent reference voltage and current
An et al. A wide temperature range 4.6 ppm/° C piecewise curvature-compensated bandgap reference with no amplifiers
TWI716323B (zh) 電壓產生器
Zhang et al. High precision low power CMOS bandgap for RFID
Wang et al. A high-order temperature compensated CMOS bandgap reference
Gopal et al. Trimless, pvt insensitive voltage reference using compensation of beta and thermal voltage
Wu et al. An improved CMOS bandgap reference with self-biased cascoded current mirrors
JP6288627B2 (ja) 電圧発生回路を備える半導体装置
JP6185632B2 (ja) 電圧発生回路を備える半導体装置
Pawar et al. An Improved 24μA±0.5148% High-Precision Bandgap Current Reference integrated with 24mV Voltage Reference
Mu et al. A 5.8 ppm/° C bandgap reference with a preregulator
CN118466670A (zh) 一种带隙基准电路及其设计方法、芯片
Banu et al. Latest Concept to Generate Temperature Compensated Voltage Reference
CN116736926A (zh) 具有降噪和温度稳定性的带隙电路及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509895

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009715

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137026669

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012772041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE