WO2012026556A1 - 複雑形状フッ素ゴム成形体 - Google Patents
複雑形状フッ素ゴム成形体 Download PDFInfo
- Publication number
- WO2012026556A1 WO2012026556A1 PCT/JP2011/069232 JP2011069232W WO2012026556A1 WO 2012026556 A1 WO2012026556 A1 WO 2012026556A1 JP 2011069232 W JP2011069232 W JP 2011069232W WO 2012026556 A1 WO2012026556 A1 WO 2012026556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluororubber
- complex
- crosslinking
- shaped
- vdf
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
- C08L15/02—Rubber derivatives containing halogen
Definitions
- the present invention relates to a fluororubber molded product having a complicated shape.
- Rubber molded bodies having complicated shapes such as primer valves, flexible joints and expansion joints having bellows structures, boots, grommets, etc.
- Rubber molded bodies having complicated shapes are usually crosslinked by heating the rubber composition with a mold corresponding to the complicated shapes. Molding. However, when the mold is removed from the mold, the cross-linked body may be damaged due to the complicated shape.
- fluororubber is excellent in chemical resistance, oil resistance and heat resistance and has good compression set resistance at high temperatures (for example, Patent Documents 1 and 2).
- cross-linked fluororubbers are generally not as excellent in mechanical properties at high temperatures as non-fluorine rubbers, and there is a problem that they are easily damaged when molding a fluororubber molded product having a complicated shape as described above. there were.
- JP-A-60-55050 Japanese Patent Laid-Open No. 9-124871
- An object of the present invention is to provide a complex-shaped fluororubber molded article having excellent demolding properties during molding.
- the inventors focused on the loss elastic modulus (E ′′), and in the case of a molded body having a cross-linked fluororubber layer having a specific loss elastic modulus, in a high temperature environment exceeding 100 ° C.
- the present inventors have found that it has excellent mechanical properties such as hot strength, hot elongation and tear strength, and is less likely to break during demolding.
- the present invention has a crosslinked fluororubber layer obtained by crosslinking a fluororubber composition containing fluororubber (A) and carbon black (B), and the crosslinked fluororubber layer is subjected to a dynamic viscoelasticity test (measurement temperature). : 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz), the loss elastic modulus E ′′ relates to a complex-shaped fluororubber molded product having a viscosity of 400 kPa to 6000 kPa.
- the complex shape molded body is a molded body having a complex shape portion having a crosslinked fluororubber layer.
- a complicated shape part means a convex part, for example.
- the complex shaped molded body is preferably a molded body having one or more (or two or more) convex portions. More preferably, it is a molded body having one or more convex portions protruding in the outer peripheral direction of the cylinder.
- Examples of the complex shape molded body include a bellows structure molded body, a primer valve, and the like.
- the bellows structure is, for example, a structure having crests or troughs or both in the outer circumferential direction of the cylinder, and the crests or troughs may have a circular wave shape or a triangular wave shape.
- the complex shape molded body of the present invention is one of the preferred embodiments in that it is a bellows structure molded body from the viewpoint of excellent demoldability during molding.
- the primer valve is a pump for sending fuel to a carburetor (a float chamber of the carburetor) in advance so that the engine can be easily started.
- the primer valve has, for example, one peak portion in the outer peripheral direction of the cylinder, and the shape of the peak portion is a wave shape having an arc.
- the shape of the primer valve is, for example, the shape shown in FIG. 2.
- the primer valve 21 is disposed between the discharge side (engine side) hose 22 and the suction side (fuel tank side) hose 23.
- the complex shaped molded article of the present invention can be used for any of automotive primer valves, marine primer valves, aircraft primer valves, construction machinery primer valves, agricultural machinery primer valves, and mining machinery primer valves. For example, it is particularly useful as a marine primer valve.
- the crosslinked fluororubber layer has a storage elastic modulus E ′ of 1500 kPa or more and 20000 kPa or less in a dynamic viscoelasticity test (measurement temperature: 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz). Is preferred.
- Carbon black (B) that gives loss elastic modulus E ′′ and further storage elastic modulus E ′ to such a crosslinked fluororubber layer has a nitrogen adsorption specific surface area (N 2 SA) of 5 to 180 m 2 / g, and dibutyl Carbon black having a phthalate (DBP) oil absorption of 40 to 180 ml / 100 g is preferred because it forms a carbon gel network reinforcing structure with fluororubber and contributes to improvement of normal properties and mechanical properties at high temperatures.
- N 2 SA nitrogen adsorption specific surface area
- DBP dibutyl Carbon black having a phthalate
- fluororubber (A) vinylidene fluoride copolymer rubber, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer rubber, or tetrafluoroethylene / propylene copolymer rubber is used. Aging property) and oil resistance are preferable from the viewpoint of good.
- a crosslinking agent (C) and / or a crosslinking aid (D) can be further blended.
- the crosslinked fluororubber layer has a tensile elongation at break of 140 to 700% at 160 ° C., a tensile strength at break of 3 to 20 MPa, and a tear strength of 3 to 30 kN / m. This is preferable from the viewpoint of improving moldability.
- the crosslinked fluororubber layer has a tensile elongation at break of 110 to 700% at 200 ° C., a tensile strength at break of 2 to 20 MPa, and a tear strength of 3 to 30 kN / m. This is preferable from the viewpoint of improving moldability.
- the present invention has a crosslinked fluororubber layer obtained by crosslinking a fluororubber composition containing fluororubber (A) and carbon black (B), and the crosslinked fluororubber layer is subjected to a dynamic viscoelasticity test (measurement mode: Tension, distance between chucks: 20 mm, measurement temperature: 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz), lossy elastic modulus E ′′ is 400 kPa to 6000 kPa About.
- the complex-shaped fluororubber molded product of the present invention is excellent in mechanical properties under a high temperature environment exceeding 100 ° C., for example, hot strength, hot elongation, tear strength, etc. Excellent demolding property.
- TFE tetrafluoroethylene
- VdF vinylidene fluoride
- the fluoro rubber (A) is preferably non-perfluoro fluoro rubber or perfluoro fluoro rubber.
- Non-perfluoro fluororubbers include vinylidene fluoride (VdF) fluororubber, tetrafluoroethylene (TFE) / propylene (Pr) fluororubber, tetrafluoroethylene (TFE) / propylene (Pr) / vinylidene fluoride (VdF).
- VdF vinylidene fluoride
- TFE tetrafluoroethylene
- Pr propylene
- VdF vinylidene fluoride
- -Based fluoro rubber ethylene (Et) / hexafluoropropylene (HFP) -based fluoro rubber, ethylene (Et) / hexafluoropropylene (HFP) / vinylidene fluoride (VdF) -based fluoro rubber, ethylene (Et) / hexafluoropropylene (HFP) / tetrafluoroethylene (TFE) -based fluororubber, fluorosilicone-based fluororubber, or fluorophosphazene-based fluororubber, and the like. These may be used alone or in any combination as long as the effects of the present invention are not impaired.
- At least one selected from the group consisting of VdF-based fluororubber, TFE / Pr-based rubber, and TFE / Pr / VdF-based rubber is more preferable from the viewpoint of good heat aging resistance and oil resistance. is there.
- the VdF repeating unit is preferably 20 mol% or more and 90 mol% or less of the total number of moles of the VdF repeating unit and the repeating unit derived from another comonomer, and is preferably 40 mol% or more, 85 More preferably, it is at most mol%.
- a more preferred lower limit is 45 mol%, a particularly preferred lower limit is 50 mol%, and a more preferred upper limit is 80 mol%.
- the comonomer in the VdF rubber is not particularly limited as long as it is copolymerizable with VdF.
- TFE, HFP, PAVE, chlorotrifluoroethylene (CTFE), trifluoroethylene, trifluoropropylene, Tetrafluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene, hexafluoroisobutene, vinyl fluoride, iodine-containing fluorinated vinyl ether, and general formula (2) CH 2 CFR f (2) (Wherein Rf is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms) a fluorine-containing monomer such as a fluorine-containing monomer; ethylene (Et), propylene (Pr), alkyl Fluorine-free monomers such as vinyl ethers, monomers that give crosslinkable groups (cure sites), and reactive emulsifiers, etc.
- PMVE perfluoro (methyl vinyl ether)
- PPVE perfluoro (propyl vinyl ether)
- Examples of the fluorine-containing monomer (2) represented by the above formula (2) monomers R f is a fluoroalkyl group having a straight chain is preferably a perfluoroalkyl group R f is a linear single A monomer is more preferable. R f preferably has 1 to 6 carbon atoms.
- VdF rubber examples include VdF / HFP copolymer, VdF / TFE / HFP copolymer, VdF / CTFE copolymer, VdF / CTFE / TFE copolymer, VdF / PAVE copolymer, VdF / TFE / PAVE copolymer, VdF / HFP / PAVE copolymer, VdF / HFP / TFE / PAVE copolymer, VdF / HFP / TFE / PAVE copolymer, VdF / TFE / propylene (Pr) copolymer, and VdF / ethylene (Et) / HFP copolymer, VdF / At least one copolymer selected from the group consisting of copolymers of fluorine-containing monomer (2) represented by formula (2) is preferred, and other comonomers other than VdF More preferably, it has TFE, HFP, and /
- the VdF / HFP copolymer preferably has a VdF / HFP composition of (45 to 85) / (55 to 15) (mol%), more preferably (50 to 80) / (50 to 20). (Mol%), more preferably (60-80) / (40-20) (mol%).
- the VdF / TFE / HFP copolymer preferably has a VdF / TFE / HFP composition of (30 to 80) / (4 to 35) / (10 to 35) (mol%).
- the VdF / PAVE copolymer preferably has a VdF / PAVE composition of (65 to 90) / (35 to 10) (mol%).
- the VdF / TFE / PAVE copolymer preferably has a VdF / TFE / PAVE composition of (40-80) / (3-40) / (15-35) (mol%).
- the VdF / HFP / PAVE copolymer preferably has a VdF / HFP / PAVE composition of (65 to 90) / (3 to 25) / (3 to 25) (mol%).
- the composition of VdF / HFP / TFE / PAVE is (40 to 90) / (0 to 25) / (0 to 40) / (3 to 35) (mol%). (40 to 80) / (3 to 25) / (3 to 40) / (3 to 25) (mol%) is more preferable.
- the molar ratio of VdF / fluorine-containing monomer (2) unit is 85/15 to 20/80.
- VdF and other monomer units other than fluorine-containing monomer (2) are preferably 0 to 50 mol% of all monomer units, and VdF / mol% of fluorine-containing monomer (2) unit.
- the ratio is more preferably 80/20 to 20/80.
- the molar ratio of VdF / fluorinated monomer (2) unit is 85/15 to 50/50, and other monomer units other than VdF and fluorine-containing monomer (2) are all monomer units. Those having a content of 1 to 50 mol% are also preferred.
- TFE As monomers other than VdF and fluorine-containing monomer (2), TFE, HFP, PMVE, perfluoroethyl vinyl ether (PEVE), PPVE, CTFE, trifluoroethylene, hexafluoroisobutene, vinyl fluoride, Monomers exemplified as the above-mentioned VdF comonomer such as ethylene (Et), propylene (Pr), alkyl vinyl ether, a monomer giving a crosslinkable group, and a reactive emulsifier are preferable, and among them, PMVE, CTFE, HFP and TFE are preferred.
- VdF comonomer such as ethylene (Et), propylene (Pr), alkyl vinyl ether, a monomer giving a crosslinkable group, and a reactive emulsifier are preferable, and among them, PMVE, CTFE, HFP and TFE are preferred.
- the TFE / propylene (Pr) -based fluororubber is a fluorine-containing copolymer composed of 45 to 70 mol% of TFE and 55 to 30 mol% of propylene (Pr).
- a specific third component for example, PAVE may be contained in an amount of 0 to 40 mol%.
- the composition of Et / HFP is preferably (35 to 80) / (65 to 20) (mol%), (40 to 75) / (60 to 25) (mol%) is more preferred.
- the Et / HFP / TFE fluorororubber (copolymer) preferably has a composition of Et / HFP / TFE of (35 to 75) / (25 to 50) / (0 to 15) (mol%). (45 to 75) / (25 to 45) / (0 to 10) (mol%) is more preferable.
- perfluorofluororubber examples include those made of TFE / PAVE.
- the composition of TFE / PAVE is preferably (50 to 90) / (50 to 10) (mol%), more preferably (50 to 80) / (50 to 20) (mol%). More preferably, it is (55 to 75) / (45 to 25) (mol%).
- examples of PAVE include PMVE, PPVE, and the like, and these can be used alone or in any combination.
- the fluororubber preferably has a number average molecular weight of 5,000 to 500,000, more preferably 10,000 to 500,000, and particularly preferably 20,000 to 500,000.
- the fluororubber (A) preferably has a Mooney viscosity at 100 ° C. of 20 to 200, more preferably 30 to 180. Mooney viscosity is measured in accordance with ASTM-D1646 and JIS K6300.
- the non-perfluorofluorororubber and perfluorofluorororubber described above can be produced by conventional methods such as emulsion polymerization, suspension polymerization, and solution polymerization.
- a fluororubber having a narrow molecular weight distribution can be produced according to a polymerization method using an iodine (bromine) compound known as iodine (bromine) transfer polymerization.
- fluororubber when it is desired to lower the viscosity of the fluororubber composition, other fluororubber may be blended with the fluororubber (A).
- fluororubbers include low molecular weight liquid fluororubber (number average molecular weight of 1000 or more), low molecular weight fluororubber having a number average molecular weight of about 10,000, and fluororubber having a number average molecular weight of about 100,000 to 200,000.
- non-perfluorofluorororubber and perfluorofluororubber are the constitution of the main monomer, and those obtained by copolymerizing a monomer giving a crosslinkable group can also be suitably used.
- the monomer that gives a crosslinkable group may be any monomer that can introduce an appropriate crosslinkable group depending on the production method and the crosslinking system.
- an iodine atom, a bromine atom, a carbon-carbon double bond, a cyano group examples include known polymerizable compounds containing a carboxyl group, a hydroxyl group, an amino group, an ester group, and a chain transfer agent.
- CY 1 2 CY 2 R f 2 X 1 (3)
- Y 1 and Y 2 are a fluorine atom, a hydrogen atom or —CH 3 ; R f 2 may have one or more ether type oxygen atoms, and may have an aromatic ring, A linear or branched fluorine-containing alkylene group in which some or all of the hydrogen atoms are substituted with fluorine atoms; X 1 is an iodine atom or a bromine atom
- CY 1 2 CY 2 R f 3 CHR 1 -X 1 (4)
- R f 3 may have one or more ether type oxygen atoms, and part or all of the hydrogen atoms are substituted with fluorine atoms.
- a linear or branched fluorine-containing alkylene group that is, a linear or branched fluorine-containing alkylene group in which part or all of the hydrogen atoms are substituted with fluorine atoms, or part or all of the hydrogen atoms are fluorine atoms
- R 1 is hydrogen Atom or methyl group
- CY 4 2 CY 4 (CF 2 ) n -X 1 (5)
- Y 4 is the same or different and is a hydrogen atom or a fluorine atom, and n is an integer of 1 to 8.
- the general formula (23) As the iodine-containing monomer or bromine-containing monomer represented by the general formula (4), the general formula (23): (In the formula, m is an integer of 1 to 5, and n is an integer of 0 to 3) Preferred examples include iodine-containing fluorinated vinyl ethers represented by: Among them, ICH 2 CF 2 CF 2 OCF ⁇ CF 2 is preferable among these.
- preferred examples of the iodine-containing monomer or bromine-containing monomer represented by the general formula (5) include ICF 2 CF 2 CF ⁇ CH 2 and I (CF 2 CF 2 ) 2 CF ⁇ CH 2 .
- the iodine-containing monomer or bromine-containing monomer represented by the general formula (9) is preferably I (CF 2 CF 2 ) 2 OCF ⁇ CF 2 .
- preferred examples of the iodine-containing monomer or bromine-containing monomer represented by the general formula (22) include CH 2 ⁇ CHCF 2 CF 2 I and I (CF 2 CF 2 ) 2 CH ⁇ CH 2 .
- R 2 R 3 C ⁇ CR 4 —Z—CR 5 CR 6 R 7 (Wherein R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the same or different, all are H, or an alkyl group having 1 to 5 carbon atoms; Z is a linear or branched group; A bisolefin compound which may contain an oxygen atom, and is preferably an at least partially fluorinated alkylene or cycloalkylene group having 1 to 18 carbon atoms, or (per) fluoropolyoxyalkylene group). Preferred as a monomer for providing a functional group.
- (per) fluoropolyoxyalkylene group means “fluoropolyoxyalkylene group or perfluoropolyoxyalkylene group”.
- Z is preferably a (per) fluoroalkylene group having 4 to 12 carbon atoms, and R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are preferably hydrogen atoms.
- Z is a (per) fluoropolyoxyalkylene group, - (Q) p -CF 2 O- (CF 2 CF 2 O) m - (CF 2 O) n -CF 2 - (Q) p - (In the formula, Q is an alkylene group having 1 to 10 carbon atoms or an oxyalkylene group having 2 to 10 carbon atoms, p is 0 or 1, and m and n have an m / n ratio of 0.2 to 5.
- the (per) fluoropolyoxyalkylene group is preferably an integer such that the molecular weight of the (per) fluoropolyoxyalkylene group is in the range of 500 to 10,000, preferably 1000 to 4000. .
- Preferred bisolefins are CH 2 ⁇ CH— (CF 2 ) 4 —CH ⁇ CH 2 , CH 2 ⁇ CH— (CF 2 ) 6 —CH ⁇ CH 2 , Formula: CH 2 ⁇ CH—Z 1 —CH ⁇ CH 2 (Wherein Z 1 is —CH 2 OCH 2 —CF 2 O— (CF 2 CF 2 O) m — (CF 2 O) n —CF 2 —CH 2 OCH 2 — (m / n is 0.5)) ) Etc.
- the carbon black (B) is not particularly limited as long as it is a carbon black giving a loss elastic modulus E ′′ in the above range, more preferably a storage elastic modulus E ′ in the above range.
- Examples of such carbon black include furnace black, acetylene black, thermal black, channel black, and graphite.
- SAF-HS SAF-HS (N 2 SA: 142 m 2 / g, DBP: 130 ml / 100 g), SAF (N 2 SA: 142 m 2 / g, DBP: 115 ml / 100 g), N234 (N 2 SA: 126 m 2 / g, DBP: 125 ml / 100 g), ISAF (N 2 SA: 119 m 2 / g, DBP: 114 ml) / 100 g), ISAF-LS (N 2 SA: 106 m 2 / g, DBP: 75 ml / 100 g), ISAF-HS (N 2 SA: 99 m 2 / g, DBP: 129 ml / 100 g), N339 (N 2 SA: 93 m 2 / g, DBP: 119 ml / 100
- carbon black preferably has a nitrogen adsorption specific surface area (N 2 SA) of 5 to 180 m 2 / g and a dibutyl phthalate (DBP) oil absorption of 40 to 180 ml / 100 g. It is done.
- N 2 SA nitrogen adsorption specific surface area
- DBP dibutyl phthalate
- the nitrogen adsorption specific surface area (N 2 SA) is smaller than 5 m 2 / g, mechanical properties when blended with rubber tend to be reduced. From this viewpoint, the nitrogen adsorption specific surface area (N 2 SA) is 10 m 2. / G or more is preferable, 20 m 2 / g or more is more preferable, 30 m 2 / g or more is particularly preferable, and 40 m 2 / g or more is most preferable.
- the upper limit is preferably 180 m 2 / g from the viewpoint of easy availability.
- the mechanical properties when blended with rubber tend to decrease.
- 50 ml / 100 g or more, further 60 ml / 100 g or more, particularly 70 ml. / 100g or more is preferable.
- the upper limit is preferably 175 ml / 100 g, more preferably 170 ml / 100 g.
- the blending amount of carbon black (B) is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the fluororubber (A).
- a more preferable blending amount is preferably 6 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, and a balance of physical properties with respect to 100 parts by mass of the fluororubber (A) from the viewpoint of good balance of physical properties. Is preferably 49 parts by mass or less, and more preferably 45 parts by mass or less.
- a fluororubber composition for example, a dynamic process in a dynamic viscoelasticity test (measurement temperature: 100 ° C., measurement frequency: 1 Hz) with uncrosslinked rubber by a rubber process analyzer (RPA) Difference ⁇ G ′ (G ′ (1%) ⁇ G ′ (100%)) between the shear elastic modulus G ′ (1%) at a dynamic strain of 1% and the shear elastic modulus G ′ (100%) at a dynamic strain of 100% ) Of 120 kPa or more and 3,000 kPa or less can be suitably used.
- the difference ⁇ G ′ is used as an index for evaluating the reinforcing property of the rubber composition, and is measured and calculated by a dynamic viscoelasticity test using a rubber process analyzer.
- a fluororubber composition having a difference ⁇ G ′ in the range of 120 kPa to 3,000 kPa is advantageous in terms of normal physical properties and mechanical properties at high temperatures.
- the difference ⁇ G ′ is preferably 150 kPa or more, more preferably 160 kPa or more, from the viewpoint of good normal physical properties and mechanical properties at high temperatures, and 2,800 kPa from the viewpoint of favorable normal physical properties and mechanical properties at high temperatures.
- it is 2,500 kPa or less.
- a fluorororubber composition having a difference ⁇ G ′ of 120 kPa or more and 3,000 kPa or less can be prepared using, for example, a kneader or a roll kneader.
- a predetermined amount of fluororubber (A) and carbon black (B) and, if necessary, an organic amine compound and / or an acid acceptor described later are charged into a closed kneader, and the average shear rate of the rotor is 50 to 1000 ( 1 / second), preferably 100 to 1000 (1 / second), more preferably 200 to 1000 (1 / second), and the maximum temperature Tm of the kneading temperature is 80 to 220 ° C. (preferably 120 to 200 ° C.).
- the kneaded product is preferably kneaded at the maximum temperature Tm of 80 ° C. to 220 ° C. and discharged at that temperature.
- the closed kneader include a pressure kneader, a Banbury mixer, a uniaxial kneader, and a biaxial kneader.
- the fluororubber composition obtained by the above methods (1) and (2) does not contain a crosslinking agent (and / or a crosslinking aid (D)) or a crosslinking accelerator. Moreover, you may perform kneading
- the second and subsequent kneading conditions may be the same as the methods (1) and (2) except that the maximum temperature Tm of the kneading temperature is 140 ° C. or lower.
- One of the methods for preparing the crosslinkable fluorororubber composition used in the present invention is, for example, obtained by the above method (1) or (2), or the above methods (1) and (2).
- This is a method in which a cross-linking agent (C) (and / or a cross-linking aid (D)) and a cross-linking accelerator are further blended and kneaded with the fluororubber composition obtained repeatedly.
- the crosslinking agent (C) (and / or the crosslinking assistant (D)) and the crosslinking accelerator may be blended and kneaded at the same time.
- the crosslinking accelerator is blended and kneaded, and then the crosslinking agent (C) (and / or A crosslinking aid (D)) may be blended and kneaded.
- the kneading conditions of the crosslinking agent (C) (and / or the crosslinking assistant (D)) and the crosslinking accelerator are the methods of the above (1) and (2) except that the maximum temperature Tm of the kneading temperature is 130 ° C. or less. The same conditions are acceptable.
- Another method for preparing the crosslinkable fluorororubber composition is, for example, using a roll kneader with fluororubber (A) and carbon black (B), crosslinker (C) (and / or crosslink aid (D)), and crosslinking acceleration.
- A fluororubber
- B carbon black
- C crosslinker
- D crosslink aid
- Examples include a method of adding a predetermined amount of agents in an appropriate order, and kneading under an average rotor shear rate of 50 (1 / second) or more and a maximum kneading temperature Tm of 130 ° C. or less.
- a uniform dispersion may be used by previously mixing a fluororubber (A), a cross-linking agent (C) and a cross-linking accelerator.
- the fluororubber (A), the polyol-based crosslinking agent and the crosslinking accelerator are first kneaded, and then carbon black and an organic amine compound described later are blended and kneaded so that the maximum temperature Tm of the kneading temperature is 80 to 220 ° C. .
- an acid acceptor is blended and kneaded so that the maximum temperature Tm is 130 ° C. or lower.
- the range of the difference ⁇ G ′ is preferably satisfied in the fluororubber composition before blending the crosslinking agent (C) and / or the crosslinking assistant (D) and the crosslinking accelerator. Further, even in the fluororubber composition containing the crosslinking agent (C) and / or the crosslinking assistant (D) and the crosslinking accelerator, the difference ⁇ G ′ is preferably within the above range.
- the average shear rate is preferably 50 (1 / second) or more.
- the average shear rate is 50 (1 / second).
- the cross-linking agent (C) and / or the cross-linking aid (D) and the cross-linking accelerator can be obtained from the cross-linking system and the type of the fluororubber (A) to be cross-linked (for example, copolymer composition, presence / absence and type of cross-linking group) It can be appropriately selected depending on the specific use and usage of the complex shaped molded body and other kneading conditions.
- the crosslinking aid (D) refers to a compound that initiates a crosslinking reaction in a triazine crosslinking system described later, and a compound that promotes a crosslinking reaction in an oxazole crosslinking system, a thiazole crosslinking system, or an imidazole crosslinking system.
- crosslinking system for example, a peroxide crosslinking system, a polyol crosslinking system, a polyamine crosslinking system, an oxazole crosslinking system, a thiazole crosslinking system, an imidazole crosslinking system, a triazine crosslinking system, and the like can be employed.
- Peroxide crosslinking system In the case of crosslinking by a peroxide crosslinking system, since it has a carbon-carbon bond at the crosslinking point, a polyol crosslinking system having a carbon-oxygen bond at the crosslinking point and a polyamine crosslinking system having a carbon-nitrogen double bond are used. Compared with it, it is characterized by excellent chemical resistance and steam resistance.
- the crosslinking agent (C) is preferably a peroxide crosslinking type crosslinking agent.
- the peroxide crosslinking agent may be any peroxide that can easily generate a peroxy radical in the presence of heat or a redox system. Specifically, for example, 1,1-bis (t -Butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t-butylperoxy) -p-diisopropylbenzene, ⁇ , ⁇ -bis (t-butylperoxy) -m-diisopropylbenzene, ⁇ , ⁇ -bis (t-butylperoxy) -m -Diisopropylbenzene, 2,5-dimethyl-2,
- 2,5-dimethyl-2,5-di (t-butylperoxy) hexane or 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3 is preferable.
- crosslinking accelerators for peroxide crosslinking agents particularly organic peroxide crosslinking agents include triallyl cyanurate, triallyl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N '-M-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triallyl isocyanurate (1,3,5-tris (2,3,3-trifluoro -2-propenyl) -1,3,5-triazine-2,4,6-trione), tris (diallylamine) -S-triazine, triallyl phosphite, N, N-diallylacrylamide, 1,6-divinyldodeca Fluorohexane,
- any of a perfluoro fluoro rubber and a non-perfluoro fluoro rubber containing at least a TFE unit, a VdF unit, or a fluoromonomer unit of the formula (1) is used.
- at least one rubber selected from the group consisting of VdF rubber and TFE / Pr rubber is preferable.
- the fluorororubber (A) suitable for the peroxide crosslinking system is preferably a fluororubber containing iodine atoms and / or bromine atoms as crosslinking points.
- the iodine atom and / or bromine atom content is 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, and particularly 0.1 to 3% by mass from the viewpoint of a good balance of physical properties. Is preferred.
- the compounding amount of the peroxide crosslinking agent is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 9 parts by mass, particularly preferably 100 parts by mass of the fluororubber (A). 0.2 to 8 parts by mass.
- the peroxide crosslinking agent is less than 0.01 parts by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently, and when it exceeds 10 parts by mass, the balance of physical properties tends to decrease.
- the blending amount of the crosslinking accelerator is usually 0.01 to 10 parts by mass, preferably 0.1 to 9 parts by mass with respect to 100 parts by mass of the fluororubber (A).
- the amount of the crosslinking accelerator is less than 0.01 parts by mass, the crosslinking time tends to be too long to be practically used.
- the amount exceeds 10 parts by mass the crosslinking time becomes too short, and the physical property balance decreases. Tend.
- Polyol crosslinking system Crosslinking by a polyol crosslinking system is preferable in that it has a carbon-oxygen bond at the crosslinking point, has a small compression set, and is excellent in moldability.
- polyol crosslinking agent a compound conventionally known as a fluororubber crosslinking agent can be used.
- a polyhydroxy compound particularly, a polyhydroxy aromatic compound is preferably used from the viewpoint of excellent heat resistance.
- the polyhydroxy aromatic compound is not particularly limited.
- 2,2-bis (4-hydroxyphenyl) propane hereinafter referred to as bisphenol A
- 2,2-bis (4-hydroxyphenyl) perfluoropropane (Hereinafter referred to as bisphenol AF)
- resorcin 1,3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl, 4,4 ′ -Dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone, catechol, 2,2-bis (4-hydroxyphenyl) butane (hereinafter referred to as bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, , 2-bis (4-hydroxypheny ) Tetrafluorodichloropropane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydipheny
- a polyhydroxy compound is preferable from the viewpoint of small compression set such as a molded article to be obtained and excellent moldability, a polyhydroxy aromatic compound is more preferable because of excellent heat resistance, and bisphenol AF is preferable. Further preferred.
- the crosslinking reaction can be promoted by promoting the formation of intramolecular double bonds in the dehydrofluorination reaction of the fluororubber main chain and the addition of polyhydroxy compounds to the generated double bonds. it can.
- An onium compound is generally used as a crosslinking accelerator for polyol crosslinking.
- the onium compound is not particularly limited, and examples thereof include ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and monofunctional amine compounds. Of these, quaternary ammonium salts and quaternary phosphonium salts are preferred.
- the quaternary ammonium salt is not particularly limited.
- the quaternary phosphonium salt is not particularly limited.
- tetrabutylphosphonium chloride benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl.
- BTPPC benzyltriphenylphosphonium chloride
- BTPPC benzyltriphenylphosphonium chloride
- BTPPC benzyltriphenylphosphonium chloride
- a crosslinking accelerator a quaternary ammonium salt or a solid solution of a quaternary phosphonium salt and bisphenol AF
- a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 can also be used.
- any of a perfluoro fluorororubber and a non-perfluorofluororubber containing at least a TFE unit, a VdF unit, or a fluoromonomer unit of the formula (1) can be used.
- VdF rubber and TFE / Pr rubber are particularly preferable.
- the blending amount of the polyol crosslinking agent is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the fluororubber (A).
- the polyol crosslinking agent is less than 0.01 part by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently, and when it exceeds 10 parts by mass, the balance of physical properties tends to be lowered.
- the blending amount of the crosslinking accelerator is preferably 0.01 to 8 parts by mass, more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
- the crosslinking accelerator is less than 0.01 parts by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently, and when it exceeds 8 parts by mass, the balance of physical properties tends to decrease.
- Polyamine crosslinking system When crosslinked by polyamine crosslinking, it has a carbon-nitrogen double bond at the crosslinking point and is characterized by excellent dynamic mechanical properties. However, the compression set tends to be larger than when crosslinking is performed using a polyol crosslinking system or a peroxide crosslinking system.
- polyamine-based crosslinking agent examples include polyamine compounds such as hexamethylenediamine carbamate, N, N′-dicinnamylidene-1,6-hexamethylenediamine, and 4,4′-bis (aminocyclohexyl) methanecarbamate. Among these, N, N′-dicinnamylidene-1,6-hexamethylenediamine is preferable.
- any of a TFE unit, a VdF unit, or a perfluorofluororubber containing at least a fluorine-containing monomer unit of the formula (1) and a non-perfluorofluororubber can be used.
- VdF rubber and TFE / Pr rubber are particularly preferable.
- the compounding amount of the polyamine-based crosslinking agent is preferably 0.01 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the fluororubber (A).
- the polyamine crosslinking agent is less than 0.01 parts by mass, the crosslinking of the fluororubber (A) tends not to proceed sufficiently.
- the polyamine crosslinking agent exceeds 10 parts by mass, the balance of physical properties tends to decrease.
- the oxazole crosslinking system, thiazole crosslinking system, and imidazole crosslinking system are crosslinking systems that have a small compression set and excellent heat resistance.
- Formula (24) As a crosslinking agent used for an oxazole crosslinking system, a thiazole crosslinking system, and an imidazole crosslinking system, Formula (24): (Wherein R 1 is the same or different and is —NH 2 , —NHR 2 , —OH or —SH, and R 2 is a fluorine atom or a monovalent organic group) A compound comprising at least two compounds of formula (25): A compound of formula (26): (Wherein R f 1 is a perfluoroalkylene group having 1 to 10 carbon atoms) and formula (27): (Wherein, n is an integer of 1 to 10).
- formula (28) having two crosslinkable reactive groups represented by formula (24): (Wherein R 1 is the same as above, R 5 is —SO 2 —, —O—, —CO—, an alkylene group having 1 to 6 carbon atoms, a perfluoroalkylene group having 1 to 10 carbon atoms, a single bond) Hand, or , 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-mercaptophenyl) hexafluoropropane , 2,2-bis (3,4-diaminophenyl) hexafluoropropane, Formula (29): Wherein R 6 is the same or different and both are alkyl groups having 1 to 10 carbon atoms; alkyl groups having 1 to 10 carbon atoms containing fluorine atoms; phenyl groups; benzyl groups; fluorine atoms and / or
- 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (OH-AF), 2 is preferable because of its excellent heat resistance and particularly good crosslinking reactivity.
- 2-bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane (Nph-AF), 2,2-bis (3,4-diaminophenyl) hexafluoropropane (TA-AF) Further preferred.
- a crosslinking aid (D) may be used in combination because the crosslinking rate is greatly improved.
- Examples of the crosslinking aid (D) used in combination with the oxazole crosslinking system, thiazole crosslinking system, and imidazole crosslinking system include (D1) a compound that generates ammonia at 40 to 330 ° C., and (D2) inorganic nitride particles.
- (D1) Compound that generates ammonia at 40 to 330 ° C. (ammonia generating compound)
- ammonia generating compound (D1) the ammonia generated at the cross-linking reaction temperature (40 to 330 ° C.) causes the cross-linking to cause curing, and the cross-linking agent also accelerates the curing. Some also react with a small amount of water to generate ammonia.
- ammonia generating compound (D1) urea or a derivative thereof or an ammonium salt is preferably exemplified, and urea or an ammonium salt is more preferable.
- the ammonium salt may be an organic ammonium salt or an inorganic ammonium salt.
- urea derivatives such as biurea, thiourea, urea hydrochloride, biuret are also included.
- organic ammonium salts examples include compounds described in JP-A-9-111101, WO00 / 09603, and WO98 / 23675, such as ammonium perfluorohexanoate and ammonium perfluorooctanoate.
- Ammonium salt of polyfluorocarboxylic acid ammonium salt of polyfluorosulfonic acid such as ammonium perfluorohexanesulfonate and ammonium perfluorooctanesulfonate; polyfluoroalkyl such as ammonium perfluorohexanephosphate and ammonium perfluorooctanephosphate Group-containing phosphoric acid, ammonium salt of phosphonic acid; non-fluorinated carboxylic acid such as ammonium benzoate, ammonium adipate, ammonium phthalate, etc.
- Ammonium salts of acid can be exemplified.
- an ammonium salt of a fluorinated carboxylic acid, sulfonic acid or phosphoric acid is preferred.
- an ammonium salt of a non-fluorinated carboxylic acid, sulfonic acid or phosphoric acid is preferred from an inexpensive point of view. preferable.
- inorganic ammonium salts include compounds described in JP-A No. 9-111101, such as ammonium sulfate, ammonium carbonate, ammonium nitrate, and ammonium phosphate. Among them, ammonium phosphate is preferable in consideration of crosslinking characteristics.
- acetaldehyde ammonia hexamethylenetetramine, formamidine, formamidine hydrochloride, formamidine acetate, t-butyl carbamate, benzyl carbamate, HCF 2 CF 2 CH (CH 3 ) OCONH 2 , phthalamide and the like can be used.
- ammonia generating compounds (D1) may be used alone or in combination of two or more.
- the inorganic nitride particles (D2) are not particularly limited, but include silicon nitride (Si 3 N 4 ), lithium nitride, titanium nitride, aluminum nitride, boron nitride, vanadium nitride, Examples include zirconium nitride. Among these, silicon nitride particles are preferable because nano-sized fine particles can be supplied. These nitride particles may be used in combination of two or more.
- the particle size of the inorganic nitride particles (D2) is not particularly limited, but is preferably 1000 nm or less, more preferably 300 nm or less, and still more preferably 100 nm or less.
- the lower limit is not particularly limited.
- these inorganic nitride particles (D2) may be used in combination with an ammonia generating compound (D1).
- oxazole crosslinking systems thiazole crosslinking systems, and imidazole crosslinking systems are targeted for the following VdF rubbers having a specific crosslinkable group and TFE / Pr rubbers having a specific crosslinkable group.
- VdF rubber having specific crosslinkable group The specific VdF rubber is a co-polymer of VdF, at least one fluoroolefin selected from the group consisting of TFE, HFP and fluoro (vinyl ether), and a monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group. It is a VdF rubber that is a polymer.
- the fluoroolefin is preferably a perfluoroolefin.
- VdF copolymerization ratio it is important for the VdF copolymerization ratio to exceed 20 mol% to improve the vulnerability at low temperatures.
- CF 2 CFO (CF 2 CFY 2 O) p - (CF 2 CF 2 CF 2 O) q -R f 5
- Y 2 represents a fluorine atom or —CF 3
- R f 5 represents a perfluoroalkyl group having 1 to 5 carbon atoms
- p represents an integer of 0 to 5
- q represents 0 to Represents an integer of 5.
- CFX CXOCF 2 OR (31) Wherein X is F or H; R is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, a cyclic fluoroalkyl group having 5 to 6 carbon atoms, or a fluorooxyalkyl group, provided that H , Cl, Br, or I may contain 1 to 2 atoms) Can be used alone or in combination of two or more.
- PAVE perfluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether) are more preferable, and perfluoro (methyl vinyl ether) is particularly preferable.
- the copolymerization ratio of VdF and a specific fluoroolefin may be such that VdF exceeds 20 mol%, and in particular, a VdF rubber composed of 45 to 85 mol% of VdF and 55 to 15 mol% of a specific fluoroolefin. Further, a VdF rubber composed of 50 to 80 mol% of VdF and 50 to 20 mol% of a specific fluoroolefin is more preferable.
- VdF and specific fluoroolefins include VdF / HFP copolymer, VdF / HFP / TFE copolymer, VdF / PAVE copolymer, VdF / TFE / PAVE copolymer Preference is given to at least one copolymer selected from the group consisting of a polymer, a VdF / HFP / PAVE copolymer, and a VdF / HFP / TFE / PAVE copolymer.
- the VdF / HFP copolymer preferably has a VdF / HFP composition of 45 to 85/55 to 15 mol%, more preferably 50 to 80/50 to 20 mol%, and still more preferably 60 to 80/40 to 20 mol%.
- the VdF / TFE / HFP copolymer preferably has a VdF / TFE / HFP composition of 40 to 80/10 to 35/10 to 35 mol%.
- the VdF / PAVE copolymer preferably has a VdF / PAVE composition of 65 to 90/35 to 10 mol%.
- the VdF / TFE / PAVE copolymer preferably has a VdF / TFE / PAVE composition of 40 to 80/3 to 40/15 to 35 mol%.
- the VdF / HFP / PAVE copolymer preferably has a VdF / HFP / PAVE composition of 65 to 90/3 to 25/3 to 25 mol%.
- the VdF / HFP / TFE / PAVE copolymer is preferably 40 to 90/0 to 25/0 to 40/3 to 35, preferably 40 to 80/3 to 25. More preferred is / 3 to 40/3 to 25 mol%.
- the monomer containing a cyano group, a carboxyl group or an alkoxycarbonyl group is 0.1 to 5 mol% based on the total amount of VdF and a specific fluoroolefin from the viewpoint of good crosslinking properties and heat resistance. It is preferably 0.3 to 3 mol%, and more preferably.
- VdF rubbers having specific crosslinkable groups can be produced by a conventional method.
- VdF rubber having a specific crosslinkable group has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of 5 to 140, more preferably 5 to 120, and particularly 5 to 100 because of good processability. Is preferred.
- TFE / Pr rubber having specific crosslinkable group is a non-perfluoro having a TFE unit of 40 to 70 mol%, a Pr unit of 30 to 60 mol%, and a monomer unit having a cyano group, a carboxyl group or an alkoxycarbonyl group. It is rubber.
- VdF units and / or 0 to 15 mol% of PAVE units may be contained as necessary.
- the TFE unit is 40 to 70 mol%, preferably 50 to 65 mol%, and Pr and elastomer properties are obtained in this range.
- the Pr unit is 30 to 60 mol%, preferably 35 to 50 mol%, and elastomeric properties can be obtained in TFE and this range.
- Examples of the monomer having a cyano group, a carboxyl group, or an alkoxycarbonyl group include TFE / Pr having a specific crosslinkable group, including those described in the VdF rubber having a specific crosslinkable group. Can also be used for rubber.
- the VdF unit or PAVE unit which is an arbitrary unit, is up to 15 mol%, further up to 10 mol%, and if it exceeds this, the former is not preferable in terms of amine resistance and the latter is high in cost.
- the TFE / Pr rubber having a specific crosslinkable group usually has a Mooney viscosity (ML 1 + 10 (121 ° C.)) of 5 to 100.
- Mooney viscosity is less than 5, the crosslinkability is lowered and sufficient physical properties as a crosslinked rubber are not produced, and when it exceeds 100, the fluidity is lowered and the moldability tends to be deteriorated.
- a preferable Mooney viscosity (ML 1 + 10 (121 ° C.)) is 10 to 80.
- a TFE / Pr rubber having a specific crosslinkable group can be produced by an ordinary emulsion polymerization method.
- the polymerization rate of TFE and Pr is relatively slow, for example, when producing by a two-stage polymerization method (seed polymerization method). Can be manufactured efficiently.
- the amount of these oxazole-based, thiazole-based and imidazole-based crosslinking agents added is preferably 0.1 to 20 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the specific fluororubber. More preferably. If the cross-linking agent is less than 0.1 parts by mass, there is a tendency that practically sufficient mechanical strength, heat resistance and chemical resistance cannot be obtained, and if it exceeds 20 parts by mass, it takes a long time to cross-link. The cross-linked product tends to be hard and not flexible.
- the addition amount of the crosslinking assistant (D) is usually 100 parts by mass of the specific fluororubber.
- the amount is 0.01 to 10 parts by mass, preferably 0.02 to 5 parts by mass, and more preferably 0.05 to 3 parts by mass.
- Triazine crosslinking system The triazine crosslinking system is a crosslinking system having a small compression set and excellent heat resistance. In the triazine crosslinking system, only the crosslinking aid (D) that initiates the crosslinking reaction is used.
- crosslinking aid (D) used in the triazine crosslinking system for example, it is a crosslinking aid that can be used in combination with the crosslinking agent in the oxazole crosslinking system, thiazole crosslinking system, and imidazole crosslinking system (D1). Generates ammonia at 40 to 330 ° C. Examples thereof include (D2) inorganic nitride particles.
- the triazine crosslinking system is preferably a fluororubber in which at least one of the crosslinkable groups is a cyano group among the fluororubbers having a specific crosslinkable group targeted by the oxazole crosslinking system, thiazole crosslinking system, and imidazole crosslinking system.
- the addition amount of the ammonia generating compound (D1) may be appropriately selected depending on the amount of ammonia generated, but is usually 0.05 to 10 parts by mass with respect to 100 parts by mass of the cyano group-containing fluororubber.
- the amount is preferably 1 to 5 parts by mass, and more preferably 0.2 to 3 parts by mass. If the amount of the ammonia generating compound is too small, the crosslinking density is lowered, so that there is a tendency that the practically sufficient heat resistance and chemical resistance are not expressed. If the amount is too large, there is a concern of scorching and storage stability is deteriorated. Tend.
- the amount of the inorganic nitride particles (D2) added is usually 0.1 to 20 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the cyano group-containing fluororubber. It is more preferably 0.2 to 1 part by mass.
- the inorganic nitride particles (D2) are less than 0.1 parts by mass, the crosslinking density is low, and thus there is a tendency that practically sufficient heat resistance and chemical resistance are not expressed. There is a concern of scorching and the storage stability tends to be poor.
- a peroxide crosslinking system a polyol crosslinking system, an oxazole crosslinking system, a thiazole crosslinking system, an imidazole crosslinking system, or a triazine crosslinking system is preferable, and a crosslinking agent (C) suitable for each crosslinking system or It is preferable to use a crosslinking aid (D).
- a crosslinking agent of a peroxide crosslinking system, an oxazole crosslinking system, a thiazole crosslinking system and an imidazole crosslinking system, or a triazine crosslinking system it is more preferable to use a crosslinking agent of a peroxide crosslinking system, an oxazole crosslinking system, a thiazole crosslinking system and an imidazole crosslinking system, or a triazine crosslinking system.
- a normal rubber compound such as a filler, processing aid, plasticizer, colorant, tackifier, adhesion aid, acid acceptor, pigment, difficulty
- a filler such as a filler, processing aid, plasticizer, colorant, tackifier, adhesion aid, acid acceptor, pigment, difficulty
- lubricants such as a filler, processing aid, plasticizer, colorant, tackifier, adhesion aid, acid acceptor, pigment, difficulty
- flame retardants such as flame retardants, lubricants, light stabilizers, weathering stabilizers, antistatic agents, UV absorbers, antioxidants, mold release agents, foaming agents, fragrances, oils, softeners, polyethylene, polypropylene, polyamide, polyester, polyurethane You may mix
- Fillers include metal oxides such as calcium oxide, magnesium oxide, titanium oxide, and aluminum oxide; metal hydroxides such as magnesium hydroxide, aluminum hydroxide, and calcium hydroxide; magnesium carbonate, aluminum carbonate, calcium carbonate, carbonic acid Carbonates such as barium; silicates such as magnesium silicate, calcium silicate, sodium silicate and aluminum silicate; sulfates such as aluminum sulfate, calcium sulfate and barium sulfate; synthetic hydrotalcite, molybdenum disulfide, sulfide Metal sulfides such as iron and copper sulfide; diatomaceous earth, asbestos, lithopone (zinc sulfide / barium sulfide), graphite, carbon fluoride, calcium fluoride, coke, quartz fine powder, talc, mica powder, wollastonite, Carbon fiber, aramid fiber, various Isuka, glass fibers, organic reinforcing agents, organic fillers, polytetrafluoroethylene, mica
- the acid acceptor examples include calcium oxide, magnesium oxide, lead oxide, zinc oxide, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, and hydrotalcite. These may be used alone or in combination of two or more. May be. In any of the above-described kneading methods, these may be added in any step, but are preferably added when the fluororubber and carbon black are kneaded in a closed kneader or a roll kneader.
- higher fatty acids such as stearic acid, oleic acid, palmitic acid and lauric acid; higher fatty acid salts such as sodium stearate and zinc stearate; higher fatty acid amides such as stearic acid amide and oleic acid amide; oleic acid Higher fatty acid esters such as ethyl; Petroleum waxes such as carnauba wax and ceresin wax; Polyglycols such as ethylene glycol, glycerin and diethylene glycol; Aliphatic hydrocarbons such as petrolatum and paraffin; Silicone oils, silicone polymers, low molecular weight polyethylene Phthalic acid esters, phosphoric acid esters, rosin, (halogenated) dialkylamines, surfactants, sulfone compounds, fluorine-based auxiliaries, organic amine compounds, and the like.
- higher fatty acids such as stearic acid, oleic acid, palmitic acid and lauric acid
- the organic amine compound and the acid acceptor are preferably blended from the viewpoint that the reinforcing property is improved by coexisting the fluororubber (A) and the carbon black (B) in a closed kneader or a roll kneader. It is an agent.
- the kneading temperature is preferably such that the maximum temperature Tm of the kneading temperature is 80 ° C. to 220 ° C.
- Preferred examples of the organic amine compound include a primary amine represented by R 1 NH 2 , a secondary amine represented by R 1 R 2 NH, and a tertiary amine represented by R 1 R 2 R 3 N.
- R 1 , R 2 and R 3 are the same or different, and all are preferably an alkyl group having 1 to 50 carbon atoms, and the alkyl group may contain a benzene ring as a functional group, a double bond, a conjugated double Bonds may be included.
- the alkyl group may be linear or branched.
- Examples of primary amines include coconut amine, octylamine, laurylamine, stearylamine, oleylamine, beef tallow amine, 17-phenyl-heptadecylamine, octadec-7,11-dienylamine, octadec-7,9-dienylamine, octadec- 9-enylamine, 7-methyl-octadec-7-enylamine and the like.
- Examples of the secondary amine include distearylamine, and examples of the tertiary amine include dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, Examples include dimethyl myristyl amine, dimethyl palmityl amine, dimethyl stearyl amine, and dimethyl behenyl amine. Of these, amines having about 20 carbon atoms, particularly primary amines, are preferred from the standpoint of easy availability and reinforcement.
- the compounding amount of the organic amine compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (A).
- a more preferable blending amount is 0.1 parts by mass or more with respect to 100 parts by mass of the fluororubber (A) from the viewpoint of reinforcement, and 4 parts by mass or less from the viewpoint of reinforcement and ease of kneading. .
- metal hydroxides such as calcium hydroxide
- metal oxides such as magnesium oxide and zinc oxide, and hydrotalcite are preferable from the viewpoint of reinforcement, and particularly zinc oxide. Is preferred.
- the compounding amount of the acid acceptor is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the fluororubber (A). If the acid acceptor is too much, the physical properties tend to be lowered, and if it is too little, the reinforcing property tends to be lowered.
- a more preferable blending amount is 0.1 parts by mass or more with respect to 100 parts by mass of the fluororubber (A) from the viewpoint of reinforcement, and is preferably 8 parts by mass or less from the viewpoint of physical properties and ease of kneading. 5 parts by mass or less is more preferable.
- tackifier examples include coumarone resin, coumarone / indene resin, coumarone / indene / styrene resin, naphthenic oil, phenol resin, rosin, rosin ester, hydrogenated rosin derivative, terpene resin, modified terpene resin, terpene / phenol type Resin, hydrogenated terpene resin, ⁇ -pinene resin, alkylphenol / acetylene resin, alkylphenol / formaldehyde resin, styrene resin, C5 petroleum resin, C9 petroleum resin, alicyclic petroleum resin, C5 / C9 copolymer
- Examples include petroleum resins, xylene-formaldehyde resins, polyfunctional methacrylates, polyfunctional acrylates, metal oxides (eg, magnesium oxide), metal hydroxides, and the like.
- the blending amount is 100 parts by mass of the fluororubber (A). 1 to 20 parts by mass is preferred
- the complex-shaped fluororubber molded article of the present invention has a crosslinked fluororubber layer obtained by crosslinking molding of the fluororubber composition used in the present invention.
- the complex shaped molded body of the present invention may be composed of a single layer of a cross-linked fluororubber layer or a multilayer structure laminated with layers made of other materials.
- a conventional method for producing a shaped article having a complicated shape can be adopted except that the above-described fluororubber composition is used as the rubber composition.
- the fluororubber composition can be produced by crosslinking the fluororubber composition using a mold corresponding to a complicated shape and taking it out of the mold.
- the cross-linking and molding method for obtaining a complex-shaped molded body may be appropriately selected. For example, it can be obtained by cross-linking and molding using a general rubber molding machine having a complex-shaped mold. As the rubber molding machine, a compression press, an injection molding machine, an injection molding machine or the like can be used, and crosslinking is performed by heating. If secondary crosslinking is required depending on the purpose of use of the crosslinked product, oven crosslinking may be further performed.
- the obtained crosslinked fluororubber layer has a loss in a dynamic viscoelasticity test (measurement mode: tension, distance between chucks: 20 mm, measurement temperature: 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz).
- the elastic modulus E ′′ is 400 kPa or more and 6000 kPa or less.
- the loss elastic modulus E ′′ is measured with a rectangular test piece having a width of 3 mm and a thickness of 2 mm.
- the lower limit is preferably 420 kPa, more preferably 430 kPa.
- the upper limit is preferably 5900 kPa, More preferably, it is 5800 kPa.
- the crosslinked fluororubber layer has a storage elasticity in a dynamic viscoelasticity test (measurement mode: tension, distance between chucks: 20 mm, measurement temperature: 160 ° C., tensile strain: 1%, initial load: 157 cN, frequency: 10 Hz).
- the rate E ′ is more preferably 1500 kPa or more and 20000 kPa or less from the viewpoint of improvement in mechanical properties at high temperatures.
- the lower limit is preferably 1600 kPa, more preferably 1800 kPa, and the upper limit is preferably 19000 kPa, more preferably 18000 kPa.
- the storage elastic modulus E ' is measured with a rectangular test piece having a width of 3 mm and a thickness of 2 mm.
- the crosslinked fluororubber layer preferably has a tensile elongation at break of 140 to 700% at 160 ° C. because it has excellent demoldability of a complex shaped molded body.
- the tensile elongation at break at 160 ° C. is more preferably 150 to 700%, further preferably 180% or more, particularly preferably 200% or more, further preferably 650% or less, particularly preferably 600% or less.
- the cross-linked fluororubber layer has a tensile strength at 160 ° C. of 3 to 20 MPa, further 3.5 MPa or more, particularly 4 MPa or more, 17 MPa or less, particularly 15 MPa or less. It is preferable because it is excellent in demoldability.
- the crosslinked fluororubber layer has a tear strength at 160 ° C. of 3 to 30 kN / m, further 4 kN / m or more, particularly 5 kN / m or more, 29 kN / m or less, particularly 28 kN / m or less. It is preferable because it is excellent in the demolding property of the complex-shaped molded body.
- the tensile strength at break and tensile elongation at break are measured using a No. 6 dumbbell according to JIS-K6251.
- the crosslinked fluororubber layer preferably has a tensile elongation at break of 110 to 700% at 200 ° C. because it has excellent mold release properties for complex shaped molded bodies.
- the tensile elongation at break at 200 ° C. is more preferably 120 to 700%, further preferably 150% or more, particularly preferably 200% or more, further preferably 650% or less, and particularly preferably 600% or less.
- the cross-linked fluororubber layer has a tensile shape at 200 ° C. of 2 to 20 MPa, further 2.2 MPa or more, particularly 2.5 MPa or more, 17 MPa or less, particularly 15 MPa or less. It is preferable because the molded article has excellent demoldability.
- the crosslinked fluororubber layer has a tear strength at 200 ° C. of 3 to 30 kN / m, further 4 kN / m or more, particularly 5 kN / m or more, 29 kN / m or less, particularly 28 kN / m or less. It is preferable because it is excellent in the demolding property of the complex-shaped molded body.
- the crosslinked fluororubber layer preferably has a tensile elongation at break of 80 to 700% at 230 ° C. because it has excellent demoldability of a complex shaped molded body.
- the tensile elongation at break at 230 ° C. is more preferably 100 to 700%, further preferably 120% or more, particularly preferably 130% or more, further preferably 650% or less, particularly preferably 600% or less.
- the crosslinked fluororubber layer has a tensile shape at 230 ° C. of 1 to 20 MPa, further 1.2 MPa or more, particularly 1.5 MPa or more, 17 MPa or less, particularly 15 MPa or less. It is preferable because the molded article has excellent demoldability.
- the crosslinked fluororubber layer has a tear strength at 230 ° C. of 3 to 30 kN / m, further 4 kN / m or more, particularly 5 kN / m or more, 29 kN / m or less, particularly 28 kN / m or less. It is preferable because it is excellent in the demolding property of the complex shaped molded body.
- the fluororubber composition may be laminated with a layer made of another material before cross-linking, or the fluororubber composition may be cross-linked to form cross-linked fluorine. You may laminate
- examples of the layer made of another material include a layer made of other rubber, a layer made of a thermoplastic resin, various fiber reinforced layers, a canvas, and a metal foil layer.
- acrylonitrile-butadiene rubber or its hydrogenated rubber blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber
- a rubber comprising at least one selected from the group consisting of EPDM and acrylic rubber is preferred, and acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epichlorohydrin rubber More preferably, it is made of at least one rubber selected from the group consisting of:
- the thermoplastic resin is a heat composed of at least one selected from the group consisting of fluororesins, polyamide resins, polyolefin resins, polyester resins, polyvinyl alcohol resins, polyvinyl chloride resins, and polyphenylene sulfide resins.
- a plastic resin is preferable, and a thermoplastic resin made of at least one selected from the group consisting of a fluororesin, a polyamide resin, a polyvinyl alcohol resin, and a polyphenylene sulfide resin is more preferable.
- surface treatment may be performed as necessary.
- the type of the surface treatment is not particularly limited as long as it is a treatment method that enables adhesion.
- discharge treatment such as plasma discharge treatment or corona discharge treatment, wet metal sodium / naphthalene liquid treatment Etc.
- a primer treatment is also suitable as the surface treatment.
- Primer treatment can be performed according to a conventional method. When the primer treatment is performed, the surface of the fluororesin that has not been surface-treated can be treated, but after further pretreatment with plasma discharge treatment, corona discharge treatment, metal sodium / naphthalene liquid treatment, etc. Is more effective.
- the complex shape molded body of the present invention includes various industrial vehicle fields such as automobiles, construction machine vehicles, agricultural machine vehicles, and railway vehicles; machine tools, construction machines, agricultural machines, mining machines, industrial robots, chemical plants, and coating machines. It can be used as molded products in various engineering / mining machinery fields such as chemical transfer machines, food industry machines, hydraulic tools, etc .;
- Examples of the complex shape molded body of the present invention include a bellows structure molded body, and specifically include joint members such as a flexible joint and an expansion joint, boots, grommets, and the like.
- a joint member is a joint used for piping and piping equipment. It prevents vibration and noise generated from the piping system, absorbs expansion and contraction due to temperature changes and pressure changes, absorbs dimensional fluctuations, earthquakes, and subsidence. It is used for applications such as mitigating and preventing the effects of
- Flexible joints and expansion joints are preferably used as complex shaped molded bodies for shipbuilding piping, mechanical piping such as pumps and compressors, chemical plant piping, electrical piping, civil engineering and water piping, and automobiles. it can.
- Boots include, for example, constant velocity joint boots, dust covers, rack and pinion steering boots, pin boots, piston boots and other automobile boots, agricultural machine boots, industrial vehicle boots, building machine boots, hydraulic machine boots, empty It can be preferably used as a compact shaped article such as various industrial boots such as pressure machine boots, centralized lubricator boots, liquid transfer boots, fire fighting boots and various liquefied gas transfer boots.
- the complex shaped article of the present invention can also be suitably used for the primer valve shown below. Primer valves for automobiles, ships, aircraft, construction machinery, agricultural machinery, mining machinery and the like can be mentioned. For example, it is particularly useful as a marine primer valve.
- the complex shaped molded body of the present invention can also be suitably used for the following diaphragms.
- applications of automobile engines include diaphragms such as fuel systems, exhaust systems, brake systems, drive systems, and ignition systems that require heat resistance, oxidation resistance, fuel resistance, low gas permeability, and the like.
- the diaphragm used in the fuel system of the automobile engine include a fuel pump diaphragm, a carburetor diaphragm, a pressure regulator diaphragm, a pulsation damper diaphragm, an ORVR diaphragm, a canister diaphragm, an auto fuel cock diaphragm, and the like.
- Examples of the diaphragm used in the exhaust system of the automobile engine include a waste gate diaphragm, an actuator diaphragm, an EGR diaphragm, and the like.
- Examples of the diaphragm used for the brake system of the automobile engine include an air brake diaphragm.
- Examples of the diaphragm used in the drive system of the automobile engine include an oil pressure diaphragm.
- Examples of the diaphragm used in the ignition system of the automobile engine include a distributor diaphragm.
- Dynamic viscoelasticity test 1 Loss elastic modulus E ′′ and storage elastic modulus E ′ (measuring device) Dynamic measurement system DVA-220 manufactured by IT Measurement Control Co., Ltd. (Measurement condition) Test piece: Cross-linked rubber having a rectangular shape with a width of 3 mm and a thickness of 2 mm Measurement mode: Distance between tensile chucks: 20 mm Measurement temperature: 160 ° C Initial weight: 157 cN Frequency: 10Hz Then, the strain dispersion is measured, and the loss elastic modulus E ′′ and the storage elastic modulus E ′ at a tensile strain of 1% are calculated.
- Mooney viscosity (ML 1 + 10 (100 ° C.) Mooney viscosity was measured in accordance with ASTM-D1646 and JIS K6300. The measurement temperature is 100 ° C.
- This fluororubber was designated as fluororubber A2. .
- Zinc oxide kind (manufactured by Sakai Chemical Industry Co., Ltd.)
- Example 1 Using a kneading machine (TD35 100MB manufactured by Toshin Co., Ltd., rotor diameter: 30 cm, chip clearance: 0.1 cm), the fluororubber A1 was mixed under the kneading conditions of front rotor rotation speed: 29 rpm and back rotor rotation speed: 24 rpm. 30 parts by mass of carbon black B1 was kneaded with 100 parts by mass to prepare a fluororubber pre-compound. The maximum temperature of the discharged kneaded product was 170 ° C.
- a crosslinking agent 1 part by mass of a crosslinking agent is added to the fluororubber pre-compound under a kneading condition of a front roll rotation speed of 21 rpm, a back roll rotation speed of 19 rpm, and a roll gap of 0.1 cm by an 8-inch open roll (manufactured by Kansai Roll Co., Ltd.).
- 1.5 parts by mass of a crosslinking accelerator (TAIC) and 1 part by mass of zinc oxide were kneaded for 30 minutes to prepare a fluororubber full compound.
- the maximum temperature of the discharged kneaded material was 71 ° C.
- this fluororubber full compound was pressed at 160 ° C. for 30 minutes for crosslinking to produce a sheet-like test piece having a thickness of 2 mm.
- tensile elongation at break, tensile strength and tear strength were measured. The results are shown in Table 2.
- Examples 2 to 3 With an 8-inch open roll (manufactured by Kansai Roll Co., Ltd.), carbon of the amount shown in Table 1 was added to 100 parts by mass of fluororubber A1 under conditions of a front roll rotation speed of 21 rpm, a back roll rotation speed of 19 rpm, and a roll gap of 0.1 cm Black B1 and B2, a crosslinking agent, a crosslinking accelerator (TAIC) and zinc oxide were kneaded for 30 minutes to prepare a fluororubber full compound. The maximum temperature of the discharged kneaded material was 70 ° C.
- Example 4 Using a kneading machine (MixLabo 0.5L manufactured by Moriyama Co., Ltd., rotor diameter: 6.6 cm, tip clearance: 0.05 cm), the front rotor rotation speed: 60 rpm, the back rotor rotation speed: 50 rpm, and fluorine 20 parts by mass of carbon black B3, 0.5 parts by mass of stearylamine, and 1.0 parts by mass of zinc oxide were kneaded with 100 parts by mass of rubber A1 to prepare a fluororubber pre-compound. The maximum temperature of the discharged kneaded material was 175 ° C.
- this fluororubber full compound was pressed at 170 ° C. for 30 minutes for crosslinking to produce a sheet-like test piece having a thickness of 2 mm.
- tensile elongation at break, tensile strength and tear strength were measured. The results are shown in Table 2.
- Example 5 A fluororubber pre-compound was prepared under the same conditions as in Example 4 except that carbon black was changed to carbon black B4. The maximum temperature of the discharged kneaded material was 168 ° C. Moreover, the fluororubber full compound was prepared on the same conditions as Example 4 except having changed the crosslinking accelerator (TAIC) into 4 mass parts. The maximum temperature of the discharged kneaded product was 73 ° C.
- TAIC crosslinking accelerator
- this fluororubber full compound was pressed at 170 ° C. for 30 minutes for crosslinking to produce a sheet-like test piece having a thickness of 2 mm.
- tensile elongation at break, tensile strength and tear strength were measured. The results are shown in Table 2.
- Example 6 Example 5 except that the kneading machine (MixLab 0.5L manufactured by Moriyama Co., Ltd., rotor diameter: 6.6 cm, chip clearance: 0.05 cm) was changed to 120 rpm for the front rotor and 107 rpm for the back rotor.
- a fluororubber pre-compound was prepared under the same conditions. The maximum temperature of the discharged kneaded material was 175 ° C.
- the fluororubber full compound was prepared on the same conditions as Example 5 except having changed the crosslinking accelerator (TAIC) into 0.5 mass part. The maximum temperature of the discharged kneaded product was 72 ° C.
- TAIC crosslinking accelerator
- this fluororubber full compound was pressed at 170 ° C. for 30 minutes for crosslinking to produce a sheet-like test piece having a thickness of 2 mm.
- tensile elongation at break, tensile strength and tear strength were measured. The results are shown in Table 4.
- Example 7 A fluororubber pre-compound was prepared under the same conditions as in Example 6 except that the fluororubber was changed to fluororubber A2. The maximum temperature of the discharged kneaded product was 170 ° C. In addition, a fluororubber full compound was prepared under the same conditions as in Example 6. The maximum temperature of the discharged kneaded material was 70 ° C.
- this fluororubber full compound was pressed at 170 ° C. for 30 minutes for crosslinking to produce a sheet-like test piece having a thickness of 2 mm.
- tensile elongation at break, tensile strength and tear strength were measured. The results are shown in Table 4.
- Comparative Example 1 A fluororubber pre-compound was prepared under the same conditions as in Example 7 except that carbon black was changed to carbon black B2. The maximum temperature of the discharged kneaded product was 170 ° C. In addition, a fluororubber full compound was prepared under the same conditions as in Example 6. The maximum temperature of the discharged kneaded material was 70 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本願は、本明細書において全体にわたって参照として組み込まれた2010年8月25日出願の米国仮特許出願第61/376,997号の35U.S.C.§119(e)に基づく利益を請求する。
複雑形状成形体は、1個以上(又は2個以上)の凸部を有する成形体であることが好ましい。より好ましくは、円筒の外周方向に突出する凸部を1個又は2個以上有する成形体である。
複雑形状成形体としては、例えば、蛇腹構造成形体、プライマーバルブ等が挙げられる。
蛇腹構造は、例えば、円筒の外周方向に山部又は谷部、若しくはその両方を有する構造であり、山部又は谷部の形状は、円弧を帯びる波形状でもよいし、三角波形状でもよい。本発明の複雑形状成形体は、成形時の脱型性に優れる点から、蛇腹構造成形体であることが好ましい形態の一つである。
プライマーバルブは、エンジン始動が容易に行えるよう、あらかじめ、気化器(気化器のフロート室)へ燃料を送るためのポンプである。プライマーバルブは、例えば、円筒の外周方向に山部を一つ有するものであり、山部の形状は、円弧を帯びる波形状である。プライマーバルブの形状は、例えば、図2で示される形状であり、通常、プライマーバルブ21は、吐出側(エンジン側)ホース22と吸入側(燃料タンク側)ホース23との間に配置される。
本発明の複雑形状成形体は、自動車用プライマーバルブ、船舶用プライマーバルブ、航空機用プライマーバルブ、建設機械用プライマーバルブ、農業機械用プライマーバルブ、鉱業機械用プライマーバルブのいずれにも用いることができる。例えば、船舶用プライマーバルブとして特に有用である。
CF2=CF-Rf a (1)
(式中、Rf aは-CF3または-ORf b(Rf bは炭素数1~5のパーフルオロアルキル基))で表されるパーフルオロエチレン性不飽和化合物(たとえばヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)など)よりなる群から選ばれる少なくとも1種の単量体に由来する構造単位を含むことが好ましい。
CH2=CFRf (2)
(式中、Rfは炭素数1~12の直鎖または分岐したフルオロアルキル基)で表される含フッ素単量体などのフッ素含有単量体;エチレン(Et)、プロピレン(Pr)、アルキルビニルエーテル等のフッ素非含有単量体、架橋性基(キュアサイト)を与える単量体;並びに反応性乳化剤などが挙げられ、これらの単量体や化合物のなかから1種または2種以上を組み合わせて用いることができる。
(式中、Rf cは炭素数1~6の直鎖または分岐状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖または分岐状パーフルオロオキシアルキル基である)で表されるパーフルオロビニルエーテルを用いてもよく、CF2=CFOCF2OCF3 、CF2=CFOCF2OCF2CF3 、または、CF2=CFOCF2OCF2CF2OCF3を用いることが好ましい。
一般式(3):
CY1 2=CY2Rf 2X1 (3)
(式中、Y1、Y2はフッ素原子、水素原子または-CH3;Rf 2は1個以上のエーテル型酸素原子を有していてもよく、芳香環を有していてもよい、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基;X1はヨウ素原子または臭素原子)
で示される化合物が挙げられる。
CY1 2=CY2Rf 3CHR1-X1 (4)
(式中、Y1、Y2、X1は前記同様であり、Rf 3は1個以上のエーテル型酸素原子を有していてもよく水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基、すなわち水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素アルキレン基、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素オキシアルキレン基、または水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐状の含フッ素ポリオキシアルキレン基;R1は水素原子またはメチル基)
で示されるヨウ素含有モノマー又は臭素含有モノマー、一般式(5)~(22):
CY4 2=CY4(CF2)n-X1 (5)
(式中、Y4は、同一又は異なり、水素原子またはフッ素原子、nは1~8の整数)
CF2=CFCF2Rf 4-X1 (6)
(式中、
CF2=CFCF2(OCF(CF3)CF2)m
(OCH2CF2CF2)nOCH2CF2-X1 (7)
(式中、mは0~5の整数、nは0~5の整数)
CF2=CFCF2(OCH2CF2CF2)m
(OCF(CF3)CF2)nOCF(CF3)-X1 (8)
(式中、mは0~5の整数、nは0~5の整数)
CF2=CF(OCF2CF(CF3))mO(CF2)n-X1 (9)
(式中、mは0~5の整数、nは1~8の整数)
CF2=CF(OCF2CF(CF3))m-X1 (10)
(式中、mは1~5の整数)
CF2=CFOCF2(CF(CF3)OCF2)nCF(-X1)CF3
(11)
(式中、nは1~4の整数)
CF2=CFO(CF2)nOCF(CF3)-X1 (12)
(式中、nは2~5の整数)
CF2=CFO(CF2)n-(C6H4)-X1 (13)
(式中、nは1~6の整数)
CF2=CF(OCF2CF(CF3))nOCF2CF(CF3)-X1
(14)
(式中、nは1~2の整数)
CH2=CFCF2O(CF(CF3)CF2O)nCF(CF3)-X1
(15)
(式中、nは0~5の整数)、
CF2=CFO(CF2CF(CF3)O)m(CF2)n-X1(16)
(式中、mは0~5の整数、nは1~3の整数)
CH2=CFCF2OCF(CF3)OCF(CF3)-X1 (17)
CH2=CFCF2OCH2CF2-X1 (18)
CF2=CFO(CF2CF(CF3)O)mCF2CF(CF3)-X1
(19)
(式中、mは0以上の整数)
CF2=CFOCF(CF3)CF2O(CF2)n-X1 (20)
(式中、nは1以上の整数)
CF2=CFOCF2OCF2CF(CF3)OCF2-X1 (21)
CH2=CH-(CF2)nX1 (22)
(式中、nは2~8の整数)
(一般式(5)~(22)中、X1は前記と同様)
で表されるヨウ素含有モノマー、臭素含有モノマーなどが挙げられ、これらをそれぞれ単独で、または任意に組合わせて用いることができる。
で表されるヨウ素含有フッ素化ビニルエーテルが好ましく挙げられ、より具体的には、
(式中、R2、R3、R4、R5、R6およびR7は同じかまたは異なり、いずれもH、または炭素数1~5のアルキル基;Zは、直鎖もしくは分岐状の、酸素原子を含んでいてもよい、好ましくは少なくとも部分的にフッ素化された炭素数1~18のアルキレンもしくはシクロアルキレン基、または(パー)フルオロポリオキシアルキレン基)で示されるビスオレフィン化合物も架橋性基を与える単量体として好ましい。なお、本明細書において、「(パー)フルオロポリオキシアルキレン基」とは、「フルオロポリオキシアルキレン基又はパーフルオロポリオキシアルキレン基」を意味する。
Zは好ましくは炭素数4~12の(パー)フルオロアルキレン基であり、R2、R3、R4、R5、R6およびR7は好ましくは水素原子である。
Zが(パー)フルオロポリオキシアルキレン基である場合、
-(Q)p-CF2O-(CF2CF2O)m-(CF2O)n-CF2-(Q)p-
(式中、Qは炭素数1~10のアルキレン基または炭素数2~10のオキシアルキレン基であり、pは0または1であり、m及びnはm/n比が0.2~5となり且つ該(パー)フルオロポリオキシアルキレン基の分子量が500~10000、好ましくは1000~4000の範囲となるような整数である。)で表される(パー)フルオロポリオキシアルキレン基であることが好ましい。この式において、Qは好ましくは、-CH2OCH2-及び-CH2O(CH2CH2O)sCH2-(s=1~3)の中から選ばれる。
CH2=CH-(CF2)4-CH=CH2、
CH2=CH-(CF2)6-CH=CH2、
式:CH2=CH-Z1-CH=CH2
(式中、Z1は-CH2OCH2-CF2O-(CF2CF2O)m-(CF2O)n-CF2-CH2OCH2-(m/nは0.5))
などが挙げられる。
平均剪断速度(1/秒)=(π×D×R)/(60(秒)×c)
(式中、
D:ローター径またはロール径(cm)
R:回転速度(rpm)
c:チップクリアランス(cm。ローターとケーシングとの間隙の距離、またはロール同士の間隙の距離)
過酸化物架橋系により架橋する場合は、架橋点に炭素-炭素結合を有しているので、架橋点に炭素-酸素結合を有するポリオール架橋系および炭素-窒素二重結合を有するポリアミン架橋系に比べて、耐薬品性および耐スチーム性に優れているという特徴がある。
ポリオール架橋系により架橋する場合は、架橋点に炭素-酸素結合を有しており、圧縮永久歪みが小さく、成形性に優れているという特徴がある点で好適である。
ポリアミン架橋により架橋してなる場合は、架橋点に炭素-窒素二重結合を有しているものであり、動的機械特性に優れているという特徴がある。しかし、ポリオール架橋系または過酸化物架橋系架橋剤を用いて架橋する場合に比べて、圧縮永久歪みが大きくなる傾向がある。
オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系は、圧縮永久歪みが小さく、耐熱性に優れた架橋系である。
式(24):
式(29):
アンモニア発生化合物(D1)は、架橋反応温度(40~330℃)で発生したアンモニアが架橋を引き起こすことにより硬化を生じさせるとともに、架橋剤により硬化も促進する。また微量の水と反応して、アンモニアを発生させるものもある。
無機窒化物粒子(D2)としては、特に限定されるものではないが、窒化ケイ素(Si3N4)、窒化リチウム、窒化チタン、窒化アルミニウム、窒化ホウ素、窒化バナジウム、窒化ジルコニウムなどが挙げられる。これらの中でも、ナノサイズの微粒子が供給可能であることから、窒化ケイ素粒子であることが好ましい。また、これらの窒化物粒子は2種以上混合使用してもよい。
特定のVdF系ゴムは、VdFと、TFE、HFPおよびフルオロ(ビニルエーテル)よりなる群から選ばれる少なくとも1種のフルオロオレフィンと、シアノ基、カルボキシル基またはアルコキシカルボニル基を含有する単量体との共重合体であるVdF系ゴムである。上記フルオロオレフィンは、パーフルオロオレフィンが好ましい。
CF2=CFO(CF2CFY2O)p-(CF2CF2CF2O)q-Rf 5
(30)
(式中Y2は、フッ素原子または-CF3を表し、Rf 5は、炭素数1~5のパーフルオロアルキル基を表す。pは、0~5の整数を表し、qは、0~5の整数を表す。)
または、一般式(31):
CFX=CXOCF2OR (31)
(式中、XはFまたはH;Rは炭素数1~6の直鎖状もしくは分岐状のフルオロアルキル基、炭素数5~6の環状のフルオロアルキル基、またはフルオロオキシアルキル基。ただし、H、Cl、Br、Iから選択される1~2個の原子を含んでもよい)
で表されるものを1種または2種以上を組み合わせて用いることができる。
CY1 2=CY1(CF2)n-X1 (32)
(式中、Y1は水素原子またはフッ素原子、nは1~8の整数である)
CF2=CFCF2Rf 6-X1 (33)
(式中、Rf 6は-(OCF2)n-、-(OCF(CF3))n-
であり、nは0~5の整数である)
CF2=CF(OCF2CF(CF3))mO(CF2)n-X1
(34)
(式中、mは0~5の整数、nは1~8の整数である)
CF2=CF(OCF2CF(CF3))m-X1 (35)
(式中、mは1~5の整数)
(式(32)~(35)中、X1は、シアノ基(-CN基)、カルボキシル基(-COOH基)、またはアルコキシカルボニル基(-COOR基、Rは炭素数1~10のフッ素原子を含んでいてもよいアルキル基))で表される単量体などが挙げられ、これらをそれぞれ単独で、または任意に組み合わせて用いることができる。
特定の架橋性基を有するTFE/Pr系ゴムは、TFE単位40~70モル%とPr単位30~60モル%とシアノ基、カルボキシル基またはアルコキシカルボニル基を有する単量体単位を有する非パーフルオロゴムである。
トリアジン架橋系は、圧縮永久歪みが小さく、耐熱性に優れた架橋系である。トリアジン架橋系では、架橋反応を開始する架橋助剤(D)のみを用いる。
(I)架橋剤(C)(および/または架橋助剤(D))、要すれば架橋促進剤が混練された上記フッ素ゴム(A)とカーボンブラック(B)を含むフッ素ゴム組成物を調製し、
(II)蛇腹構造を与える金型が設置された 圧縮プレス成形機にフッ素ゴム組成物を入れ、
(III)130℃~230℃にて架橋して架橋フッ素ゴム層を含む架橋成形体を得、
(IV)得られた架橋成形体を130℃~230℃の温度にて金型から取り出す
方法が例示できる。
また、架橋フッ素ゴム層は、160℃において、3~30kN/m、更には4kN/m以上、特に5kN/m以上、また29kN/m以下、特に28kN/m以下の引裂き強度を有していることが、複雑形状成形体の脱型性に優れたものとなることから好ましい。破断時引張強度および引張破断伸びは、JIS-K6251に準じて、6号ダンベルを用いて測定する。
本発明の複雑形状成形体は、以下に示すプライマーバルブにも好適に用いることができる。自動車用、船舶用、航空機用、建設機械用、農業機械用、鉱業機械用などのプライマーバルブが挙げられる。例えば、船舶用プライマーバルブとして特に有用である。
例えば、自動車エンジンの用途としては、耐熱性、耐酸化性、耐燃料性、低ガス透過性などが求められる、燃料系、排気系、ブレーキ系、駆動系、点火系などのダイヤフラムが挙げられる。
自動車エンジンの燃料系に用いられるダイヤフラムとしては、例えば燃料ポンプ用ダイヤフラム、キャブレター用ダイヤフラム、プレッシャレギュレータ用ダイヤフラム、パルセーションダンパー用ダイヤフラム、ORVR用ダイヤフラム、キャニスター用ダイヤフラム、オートフューエルコック用ダイヤフラムなどが挙げられる。
自動車エンジンの排気系に用いられるダイヤフラムとしては、例えばウェイストゲート用ダイヤフラム、アクチュエータ用ダイヤフラム、EGR用ダイヤフラムなどが挙げられる。
自動車エンジンのブレーキ系に用いられるダイヤフラムとしては、例えばエアーブレーキ用ダイヤフラムなどが挙げられる。
自動車エンジンの駆動系に用いられるダイヤフラムとしては、例えばオイルプレッシャー用ダイヤフラムなどが挙げられる。
自動車エンジンの点火系に用いられるダイヤフラムとしては、例えばディストリビューター用ダイヤフラムなどが挙げられる。
(測定装置)
アイティー計測制御(株)製の動的粘弾性測定装置 DVA-220
(測定条件)
試験片:幅3mm×厚さ2mmサイズの長方体の架橋済みゴム
測定モード:引張
チャック間距離:20mm
測定温度:160℃
初期加重:157cN
周波数:10Hz
にて、歪み分散を測定し、引張歪み1%の損失弾性率E’’及び貯蔵弾性率E’を算出する。
(測定装置)
アルファテクノロジーズ社製ラバープロセスアナライザ(型式:RPA2000)
(測定条件)
100℃、1Hzにて歪み分散を測定し、せん断弾性率G’を求める。このとき、動的歪みを1%、100%として各々G’を求め、δG’(G’(1%)-G’(100%))を算出する。
オリエンテック社製のRTA-1T、(株)島津製作所製のAG-Iを用いて、JIS-K6251に準じて、6号ダンベルを用いて引張強度、引張破断伸びを測定する。測定温度は、25℃、160℃、200℃および230℃とする。また、切り込み無しアングル型を用いて引裂き強度を測定する。測定温度は、25℃、160℃、200℃とする。
図1に示すような金型Aと金型Bとからなる金型(L1=10mmΦ、L2=12mm、L3=8mm、L4=2mm、成形体の厚さ2mmt)を用い、フッ素ゴムフルコンパウンドを所定量仕込み、所定の条件で圧縮成形を行う。成形後、1.5MPaGのエアーで、金型Aより成形体1の脱型を行う。この際、割れ、裂けが発生した物については不良品扱いとする。5回成形し、成形体の不良率を求める。
ムーニー粘度は、ASTM-D1646およびJIS K6300に準拠して測定した。測定温度は100℃である。
A1:3Lのステンレススチール製のオートクレーブに純水0.99L、CH2=CFCF2OCF(CF3)CF2OCF(CF3)COONH4の50%水溶液を0.2g、F(CF2)3COONH4の50%水溶液1.072gを仕込み、系内を窒素ガスで充分に置換した。600rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/HFP=50/50モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS23.6mgを5mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点で追加モノマーであるVdF/HFP=78/22モル%の混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CF2)4Iの1.65gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの23.6mg/純水5ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを333g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度24.1質量%のフッ素ゴムのディスパージョンを得た。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/HFP=78/22(モル%)であり、ムーニー粘度(ML1+10(100℃))は55であった。このフッ素ゴムをフッ素ゴムA1とする。
B1:HAF(N2SA=79m2/g、DBP吸油量=101ml/100g)。東海カーボン(株)製の「シースト3」(商品名)
2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン。日油(株)製の「パーヘキサ25B」(商品名)
トリアリルイソシアヌレート(TAIC)。日本化成(株)製の「タイク」(商品名)
ステアリルアミン(ファーミン86T)(花王(株)製)
酸化亜鉛(一種)(堺化学工業(株)製)
混練機(トーシン(株)製のTD35 100MB、ローター直径:30cm、チップクリアランス:0.1cm)を用いて、フロントローター回転数:29rpm、バックローター回転数:24rpmの混練条件で、フッ素ゴムA1の100質量部にカーボンブラックB1の30質量部を混練し、フッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は170℃であった。
8インチオープンロール(関西ロール(株)製)により、フロントロール回転数21rpm、バックロール回転数19rpm、ロール間隙0.1cmの条件で、フッ素ゴムA1の100質量部に表1に示す量のカーボンブラックB1~B2、架橋剤、架橋促進剤(TAIC)、酸化亜鉛を30分間かけて混練し、フッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は70℃であった。
混練機((株)モリヤマ製のMixLabo0.5L、ローター直径:6.6cm、チップクリアランス:0.05cm)を用いて、フロントローター回転数:60rpm、バックローター回転数:50rpmの混練条件で、フッ素ゴムA1の100質量部にカーボンブラックB3の20質量部、ステアリルアミンの0.5質量部、酸化亜鉛の1.0質量部を混練し、フッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は175℃であった。
カーボンブラックをカーボンブラックB4に変更した以外は実施例4と同じ条件でフッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は168℃であった。また、架橋促進剤(TAIC)を4質量部に変更した以外は実施例4と同じ条件でフッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は73℃であった。
混練機((株)モリヤマ製のMixLabo0.5L、ローター直径:6.6cm、チップクリアランス:0.05cm)においてフロントローター回転数:120rpm、バックローター回転数:107rpmに変更した以外は実施例5と同じ条件でフッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は175℃であった。また、架橋促進剤(TAIC)を0.5質量部に変更した以外は実施例5と同じ条件でフッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は72℃であった。
フッ素ゴムをフッ素ゴムA2に変更した以外は実施例6と同じ条件でフッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は170℃であった。また、実施例6と同じ条件でフッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は70℃であった。
カーボンブラックをカーボンブラックB2に変更した以外は実施例7と同じ条件でフッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は170℃であった。また、実施例6と同じ条件でフッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は70℃であった。
12、22:凸部
21:プライマーバルブ
23:吐出側(エンジン側)ホース
24:吸入側(燃料タンク側)ホース
H1:成形体の凸部の高さ
W1:成形体の凸部の幅
Claims (17)
- フッ素ゴム(A)およびカーボンブラック(B)を含むフッ素ゴム組成物を架橋成形して得られる架橋フッ素ゴム層を有し、架橋フッ素ゴム層が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、400kPa以上6000kPa以下である複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、貯蔵弾性率E’が1500kPa以上20000kPa以下である請求項1記載の複雑形状フッ素ゴム成形体。
- フッ素ゴム組成物は、フッ素ゴム(A)100質量部に対してカーボンブラック(B)を5~50質量部含む請求項1または2記載の複雑形状フッ素ゴム成形体。
- カーボンブラック(B)が、窒素吸着比表面積(N2SA)が5~180m2/gであって、ジブチルフタレート(DBP)吸油量が40~180ml/100gであるカーボンブラックである請求項1~3のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- フッ素ゴム(A)が、フッ化ビニリデン系共重合体ゴム、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体ゴム、またはテトラフルオロエチレン/プロピレン系共重合体ゴムである請求項1~4のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- フッ素ゴム組成物が、架橋剤(C)および/または架橋助剤(D)を含む請求項1~5のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、160℃における引張破断伸びが140~700%である請求項1~6のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、160℃における破断時引張強度が3~20MPaである請求項1~7のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、160℃における引裂き強度が3~30kN/mである請求項1~8のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、200℃における引張破断伸びが110~700%である請求項1~9のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、200℃における破断時引張強度が2~20MPaである請求項1~10のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 架橋フッ素ゴム層が、200℃における引裂き強度が3~30kN/mである請求項1~11のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- 蛇腹構造成形体である請求項1~12のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- ジョイント部材である請求項1~13のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- ブーツである請求項1~13のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- グロメットである請求項1~13のいずれか1項に記載の複雑形状フッ素ゴム成形体。
- プライマーバルブである請求項1~13のいずれか1項に記載の複雑形状フッ素ゴム成形体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180040841.XA CN103068907B (zh) | 2010-08-25 | 2011-08-25 | 复杂形状氟橡胶成型体 |
EP11820018.7A EP2610303B1 (en) | 2010-08-25 | 2011-08-25 | Fluoro rubber molding with complex shape |
JP2012530723A JPWO2012026556A1 (ja) | 2010-08-25 | 2011-08-25 | 複雑形状フッ素ゴム成形体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37699710P | 2010-08-25 | 2010-08-25 | |
US61/376,997 | 2010-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012026556A1 true WO2012026556A1 (ja) | 2012-03-01 |
Family
ID=45723547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069232 WO2012026556A1 (ja) | 2010-08-25 | 2011-08-25 | 複雑形状フッ素ゴム成形体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8754161B2 (ja) |
EP (1) | EP2610303B1 (ja) |
JP (1) | JPWO2012026556A1 (ja) |
CN (1) | CN103068907B (ja) |
WO (1) | WO2012026556A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125735A1 (en) * | 2012-02-24 | 2013-08-29 | Daikin Industries, Ltd. | Fluororubber composition |
JPWO2012026006A1 (ja) * | 2010-08-25 | 2013-10-28 | 株式会社ブリヂストン | フッ素ゴム組成物及びタイヤ製造用ブラダー |
JPWO2012026007A1 (ja) * | 2010-08-25 | 2013-10-28 | 株式会社ブリヂストン | フッ素ゴム組成物及びタイヤ製造用ブラダー |
US9403954B2 (en) | 2012-01-20 | 2016-08-02 | Daikin Industries, Ltd. | Fluororubber composition and method for producing same |
KR101793673B1 (ko) * | 2016-06-22 | 2017-11-03 | 주식회사 대영특수고무 | 어큐뮬레이터용 다이어프램 |
US9976016B2 (en) | 2012-02-24 | 2018-05-22 | Daikin Industries, Ltd. | Fluororubber composition |
JP2018172634A (ja) * | 2017-03-31 | 2018-11-08 | 住友ベークライト株式会社 | エラストマーおよび成形体 |
US11898661B2 (en) | 2012-02-24 | 2024-02-13 | Daikin Industries, Ltd. | Fluororubber composition |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2587107B1 (en) | 2010-08-25 | 2018-07-11 | Daikin Industries, Ltd. | Hose |
EP2610301B1 (en) | 2010-08-25 | 2017-10-11 | Daikin Industries, Ltd. | Belt material |
US9006328B2 (en) | 2010-08-25 | 2015-04-14 | Daikin Industries, Ltd. | Fluororubber composition |
EP2568007B1 (en) | 2010-08-25 | 2017-10-04 | Daikin Industries, Ltd. | Fluororubber composition |
CN103080616B (zh) | 2010-08-25 | 2016-04-27 | 大金工业株式会社 | 密封材料 |
JP5842932B2 (ja) * | 2011-08-25 | 2016-01-13 | ダイキン工業株式会社 | ダイヤフラム |
US20130053494A1 (en) * | 2011-08-31 | 2013-02-28 | E. I. Du Pont De Nemours And Company | Curable fluoroelastomer composition and hot air hose made therefrom |
CN105705308B (zh) * | 2013-11-07 | 2017-12-29 | 旭硝子株式会社 | 脱模膜、以及半导体封装体的制造方法 |
JP6670442B2 (ja) * | 2016-03-16 | 2020-03-25 | 住友ゴム工業株式会社 | フッ素ゴムチューブ |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055050A (ja) | 1983-08-15 | 1985-03-29 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | 過酸化物加硫可能なフッ素ゴム組成物 |
JPH03122153A (ja) * | 1989-10-05 | 1991-05-24 | Asahi Chem Ind Co Ltd | 高い引張強度を有するフッ素ゴム加硫組成物 |
JPH09111081A (ja) | 1995-03-31 | 1997-04-28 | Nippon Mektron Ltd | 含フッ素エラストマー組成物 |
JPH09124871A (ja) | 1995-10-20 | 1997-05-13 | Ausimont Spa | フルオロエラストマー用硬化系、フルオロエラストマー及びその使用 |
WO1998023675A1 (en) | 1996-11-25 | 1998-06-04 | E.I. Du Pont De Nemours And Company | Perfluoroelastomer composition having enhanced curing performance |
JPH11147891A (ja) | 1997-11-14 | 1999-06-02 | Nippon Mektron Ltd | 含フッ素エラストマー用加硫促進剤の製造法 |
WO2000005959A1 (en) | 1998-07-30 | 2000-02-10 | Syngenta Participations Ag | Pesticidal compositions comprising 1,2,3-benzothiadiazole derivatives |
WO2000009603A1 (en) | 1998-08-10 | 2000-02-24 | Dupont Dow Elastomers L.L.C. | Curable perfluoroelastomer composition |
JP2003013041A (ja) * | 2001-06-28 | 2003-01-15 | Mitsubishi Cable Ind Ltd | シール用ゴム組成物およびそれを用いた耐二酸化炭素用シール |
Family Cites Families (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946271B2 (ja) | 1975-12-25 | 1984-11-12 | ダイキン工業株式会社 | フツソゴムソセイブツ |
JPS5946985B2 (ja) | 1979-12-19 | 1984-11-16 | ダイキン工業株式会社 | 加硫可能なフツ素ゴム組成物 |
JPS5837041A (ja) | 1981-08-28 | 1983-03-04 | Daikin Ind Ltd | フツ素ゴム組成物 |
JPS6157641A (ja) | 1984-07-09 | 1986-03-24 | イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− | フツ素化熱可塑性エラストマ−組成物 |
EP0168020B1 (en) | 1984-07-09 | 1989-10-18 | E.I. Du Pont De Nemours And Company | Fluorinated thermoplastic elastomer compositions |
JPS62252435A (ja) | 1986-04-24 | 1987-11-04 | Asahi Chem Ind Co Ltd | フッ素樹脂発泡体及びそれを使用したシール部材 |
DE3677526D1 (de) | 1985-11-12 | 1991-03-21 | Asahi Chemical Ind | Schaumfaehige fluor enthaltende polymerzusammensetzungen und die so erhaltenen fluorschaeume. |
JPS63286340A (ja) | 1987-05-19 | 1988-11-24 | Central Glass Co Ltd | 軟質系フッ素樹脂・ゴム積層体 |
JPH03217482A (ja) | 1990-01-22 | 1991-09-25 | Showa Electric Wire & Cable Co Ltd | 防振ゴム組成物 |
JP2528224B2 (ja) | 1991-09-27 | 1996-08-28 | 三井石油化学工業株式会社 | 耐熱防振ゴム用ゴム組成物 |
DE69322157T2 (de) * | 1992-04-03 | 1999-06-10 | E.I. Du Pont De Nemours And Co., Wilmington, Del. | Vulkanisierbare fluorelastomerzusammensetzung |
JP3274706B2 (ja) | 1992-06-18 | 2002-04-15 | 三井化学株式会社 | 耐熱防振ゴム用ゴム組成物 |
JP3134511B2 (ja) | 1992-07-09 | 2001-02-13 | ダイキン工業株式会社 | 新規なフッ素ゴム組成物 |
JPH07196881A (ja) * | 1993-12-02 | 1995-08-01 | E I Du Pont De Nemours & Co | 含フッ素系エラストマー加硫組成物 |
JP3307046B2 (ja) | 1993-12-29 | 2002-07-24 | ダイキン工業株式会社 | フッ素ゴム組成物および成形品 |
JPH07233331A (ja) | 1994-02-23 | 1995-09-05 | Nippon Steel Chem Co Ltd | カーボンブラック及びゴム組成物 |
JP3329599B2 (ja) | 1994-11-14 | 2002-09-30 | 株式会社ブリヂストン | 防振ゴム組成物 |
JP3327016B2 (ja) | 1994-12-06 | 2002-09-24 | ダイキン工業株式会社 | 低温シール性に優れたフッ素ゴム共重合体及びその硬化用組成物 |
IT1276980B1 (it) | 1995-10-20 | 1997-11-03 | Ausimont Spa | Composizioni fluoroelastomeriche |
JPH09188793A (ja) | 1996-01-09 | 1997-07-22 | Daikin Ind Ltd | 耐熱性フッ素ゴム組成物 |
JPH11240312A (ja) * | 1997-08-04 | 1999-09-07 | Bridgestone Corp | 空気入りタイヤ |
US6232390B1 (en) | 1997-10-31 | 2001-05-15 | Nok Corporation | Molding composition, molded composition and sealing device for sealing carbon dioxide |
JP3077689B2 (ja) | 1998-03-31 | 2000-08-14 | 東海ゴム工業株式会社 | 耐熱ホース |
JP2000193152A (ja) | 1998-12-24 | 2000-07-14 | Toyoda Gosei Co Ltd | 耐熱性ホース |
JP2000240730A (ja) | 1999-02-24 | 2000-09-05 | Mitsuboshi Belting Ltd | 歯付ベルト |
JP3669874B2 (ja) | 1999-08-10 | 2005-07-13 | 電気化学工業株式会社 | 自動車用防振ゴム組成物及び防振部材 |
KR100659958B1 (ko) | 1999-11-04 | 2006-12-22 | 다이낑 고오교 가부시키가이샤 | 가교용 불소계 엘라스토머 조성물 |
JP2001150595A (ja) | 1999-11-30 | 2001-06-05 | Tokai Rubber Ind Ltd | パッキン構造体 |
JP4258933B2 (ja) | 2000-01-13 | 2009-04-30 | Nok株式会社 | フッ素ゴム加硫成形品の製造法 |
JP2003083479A (ja) | 2001-09-12 | 2003-03-19 | Tokai Rubber Ind Ltd | 耐熱ホースの製法およびそれにより得られた耐熱ホース |
JPWO2003074625A1 (ja) | 2002-03-05 | 2005-06-30 | ダイキン工業株式会社 | シール材 |
EP1518898A4 (en) | 2002-06-10 | 2006-12-06 | Uchiyama Mfg | FLUORESCENT RUBBER COMPOSITION AND ARTICLE COMPRISING VULCANIZED FLUORINATED RUBBER USING IT AND METHOD OF PRODUCING THE SAME |
JP2004210830A (ja) | 2002-12-27 | 2004-07-29 | Jsr Corp | エラストマー組成物およびその製造方法 |
US20040142135A1 (en) | 2003-01-21 | 2004-07-22 | 3M Innovative Properties Company | Fuel management system comprising a fluoroelastomer layer having a hydrotalcite compound |
JP4610856B2 (ja) | 2003-02-06 | 2011-01-12 | Nok株式会社 | フッ素ゴム系シール材用組成物及びフッ素ゴム系シール材 |
JP3884726B2 (ja) | 2003-06-11 | 2007-02-21 | 住友ゴム工業株式会社 | 導電性ベルト及びその製造方法 |
EP1642937A4 (en) | 2003-07-09 | 2007-07-18 | Yokohama Rubber Co Ltd | RUBBER COMPOSITION AND TIRE MADE THEREFROM |
KR101113618B1 (ko) | 2003-09-01 | 2012-02-17 | 제온 코포레이션 | 공액 디엔계 고무 조성물, 그 제조방법 및 고무 가교물 |
JP2005239835A (ja) | 2004-02-25 | 2005-09-08 | Nippon Valqua Ind Ltd | 架橋性フッ素ゴム組成物 |
JP2005315415A (ja) | 2004-03-31 | 2005-11-10 | Gates Unitta Asia Co | 動力伝達ベルト |
WO2005105917A1 (ja) | 2004-04-28 | 2005-11-10 | Daikin Industries, Ltd. | 含フッ素エラストマー組成物およびそれからなる成形品 |
JP4641387B2 (ja) * | 2004-06-01 | 2011-03-02 | 日産自動車株式会社 | 流体継手 |
ITMI20041252A1 (it) | 2004-06-22 | 2004-09-22 | Solvay Solexis Spa | Composizioni perfluoroelastomeriche |
JP2006022917A (ja) | 2004-07-09 | 2006-01-26 | Gates Unitta Asia Co | 歯付きベルト |
ITMI20041571A1 (it) | 2004-07-30 | 2004-10-30 | Solvay Solexis Spa | Perfluoroelastomeri |
WO2006040944A1 (ja) | 2004-10-08 | 2006-04-20 | Daikin Industries, Ltd. | フッ素ゴム組成物 |
JP4683207B2 (ja) | 2005-08-02 | 2011-05-18 | ゲイツ・ユニッタ・アジア株式会社 | 伝動ベルト |
JP4820623B2 (ja) | 2005-11-02 | 2011-11-24 | 積水化成品工業株式会社 | 発泡性ポリ乳酸系樹脂の製造方法 |
JP2007269008A (ja) | 2006-03-10 | 2007-10-18 | Tokai Rubber Ind Ltd | 耐熱エアーホース |
JP5061510B2 (ja) | 2006-06-13 | 2012-10-31 | 旭硝子株式会社 | 含フッ素弾性共重合体組成物および架橋ゴム |
ITMI20061290A1 (it) | 2006-07-03 | 2008-01-04 | Solvay Solexis Spa | Composizioni (per) fluoroelastometriche |
ITMI20061291A1 (it) | 2006-07-03 | 2008-01-04 | Solvay Solexis Spa | Composizioni (per) fluoroelastomeriche |
ITMI20061292A1 (it) | 2006-07-03 | 2008-01-04 | Solvay Solexis Spa | Composizioni (per) fluoroelastomeriche |
JP2008127429A (ja) | 2006-11-17 | 2008-06-05 | Denki Kagaku Kogyo Kk | 光硬化性樹脂組成物 |
WO2008078738A1 (ja) | 2006-12-26 | 2008-07-03 | Daikin Industries, Ltd. | 含フッ素エラストマーの製造方法および該製造方法により得られる含フッ素エラストマー |
JP5168918B2 (ja) | 2007-01-29 | 2013-03-27 | ユニマテック株式会社 | 含フッ素エラストマーおよびその組成物 |
JP2009024046A (ja) | 2007-07-17 | 2009-02-05 | Bridgestone Corp | 防振ゴム組成物及びそれを用いてなる防振ゴム |
JP5118914B2 (ja) | 2007-07-31 | 2013-01-16 | 東海ゴム工業株式会社 | 防振ゴム組成物およびその製法 |
EP2195350B1 (en) | 2007-09-14 | 2013-07-24 | 3M Innovative Properties Company | Ultra low viscosity iodine containing amorphous fluoropolymers |
WO2009035109A1 (ja) | 2007-09-14 | 2009-03-19 | Denki Kagaku Kogyo Kabushiki Kaisha | クロロプレンゴム組成物およびその用途 |
JP4767239B2 (ja) | 2007-10-25 | 2011-09-07 | ゲイツ・ユニッタ・アジア株式会社 | ベルトおよびベルト材料 |
JP5478820B2 (ja) | 2007-12-04 | 2014-04-23 | 住友ゴム工業株式会社 | 防振ゴム |
CN101981116B (zh) | 2008-03-27 | 2013-03-06 | 大金工业株式会社 | 过氧化物交联类含氟弹性体组合物 |
JP2009298949A (ja) | 2008-06-16 | 2009-12-24 | Bridgestone Corp | 耐熱防振ゴム組成物及び耐熱防振ゴム |
JP5311127B2 (ja) * | 2009-04-21 | 2013-10-09 | ニチアス株式会社 | ガスケット用素材 |
CN101724213A (zh) * | 2009-12-16 | 2010-06-09 | 天津鹏翎胶管股份有限公司 | 耐低温燃油胶管内胶层配方 |
US20110152487A1 (en) | 2009-12-17 | 2011-06-23 | 3M Innovative Properties Company | Peroxide cured partially fluorinated elastomers |
ES2620370T3 (es) | 2010-08-25 | 2017-06-28 | Daikin Industries, Ltd. | Artículo moldeado de fluorocaucho |
US20120077924A1 (en) | 2010-08-25 | 2012-03-29 | Daikin Industries, Ltd. | Fluororubber molded article |
EP2587107B1 (en) | 2010-08-25 | 2018-07-11 | Daikin Industries, Ltd. | Hose |
EP2568007B1 (en) | 2010-08-25 | 2017-10-04 | Daikin Industries, Ltd. | Fluororubber composition |
US9006328B2 (en) | 2010-08-25 | 2015-04-14 | Daikin Industries, Ltd. | Fluororubber composition |
CN103080215A (zh) | 2010-08-25 | 2013-05-01 | 大金工业株式会社 | 氟橡胶组合物的制造方法 |
US20120202938A1 (en) | 2010-08-25 | 2012-08-09 | E. I. Du Pont De Nemours And Company | Fluoroelastomer parts for oil and gas exploration and production |
CN103080616B (zh) | 2010-08-25 | 2016-04-27 | 大金工业株式会社 | 密封材料 |
US20120077938A1 (en) | 2010-08-25 | 2012-03-29 | Daikin Industries, Ltd. | Vibration isolation rubber |
EP2610301B1 (en) | 2010-08-25 | 2017-10-11 | Daikin Industries, Ltd. | Belt material |
-
2011
- 2011-08-25 US US13/217,444 patent/US8754161B2/en active Active
- 2011-08-25 JP JP2012530723A patent/JPWO2012026556A1/ja active Pending
- 2011-08-25 WO PCT/JP2011/069232 patent/WO2012026556A1/ja active Application Filing
- 2011-08-25 EP EP11820018.7A patent/EP2610303B1/en active Active
- 2011-08-25 CN CN201180040841.XA patent/CN103068907B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055050A (ja) | 1983-08-15 | 1985-03-29 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | 過酸化物加硫可能なフッ素ゴム組成物 |
JPH03122153A (ja) * | 1989-10-05 | 1991-05-24 | Asahi Chem Ind Co Ltd | 高い引張強度を有するフッ素ゴム加硫組成物 |
JPH09111081A (ja) | 1995-03-31 | 1997-04-28 | Nippon Mektron Ltd | 含フッ素エラストマー組成物 |
JPH09124871A (ja) | 1995-10-20 | 1997-05-13 | Ausimont Spa | フルオロエラストマー用硬化系、フルオロエラストマー及びその使用 |
WO1998023675A1 (en) | 1996-11-25 | 1998-06-04 | E.I. Du Pont De Nemours And Company | Perfluoroelastomer composition having enhanced curing performance |
JPH11147891A (ja) | 1997-11-14 | 1999-06-02 | Nippon Mektron Ltd | 含フッ素エラストマー用加硫促進剤の製造法 |
WO2000005959A1 (en) | 1998-07-30 | 2000-02-10 | Syngenta Participations Ag | Pesticidal compositions comprising 1,2,3-benzothiadiazole derivatives |
WO2000009603A1 (en) | 1998-08-10 | 2000-02-24 | Dupont Dow Elastomers L.L.C. | Curable perfluoroelastomer composition |
JP2003013041A (ja) * | 2001-06-28 | 2003-01-15 | Mitsubishi Cable Ind Ltd | シール用ゴム組成物およびそれを用いた耐二酸化炭素用シール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2610303A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012026006A1 (ja) * | 2010-08-25 | 2013-10-28 | 株式会社ブリヂストン | フッ素ゴム組成物及びタイヤ製造用ブラダー |
JPWO2012026007A1 (ja) * | 2010-08-25 | 2013-10-28 | 株式会社ブリヂストン | フッ素ゴム組成物及びタイヤ製造用ブラダー |
JP5764562B2 (ja) * | 2010-08-25 | 2015-08-19 | 株式会社ブリヂストン | フッ素ゴム組成物及びタイヤ製造用ブラダー |
JP5764563B2 (ja) * | 2010-08-25 | 2015-08-19 | 株式会社ブリヂストン | フッ素ゴム組成物及びタイヤ製造用ブラダー |
US9403954B2 (en) | 2012-01-20 | 2016-08-02 | Daikin Industries, Ltd. | Fluororubber composition and method for producing same |
WO2013125735A1 (en) * | 2012-02-24 | 2013-08-29 | Daikin Industries, Ltd. | Fluororubber composition |
US9499678B2 (en) | 2012-02-24 | 2016-11-22 | Daikin Industries, Ltd. | Fluororubber composition |
US9976016B2 (en) | 2012-02-24 | 2018-05-22 | Daikin Industries, Ltd. | Fluororubber composition |
US11898661B2 (en) | 2012-02-24 | 2024-02-13 | Daikin Industries, Ltd. | Fluororubber composition |
KR101793673B1 (ko) * | 2016-06-22 | 2017-11-03 | 주식회사 대영특수고무 | 어큐뮬레이터용 다이어프램 |
JP2018172634A (ja) * | 2017-03-31 | 2018-11-08 | 住友ベークライト株式会社 | エラストマーおよび成形体 |
JP7102763B2 (ja) | 2017-03-31 | 2022-07-20 | 住友ベークライト株式会社 | エラストマーおよび成形体 |
Also Published As
Publication number | Publication date |
---|---|
CN103068907B (zh) | 2015-07-22 |
US8754161B2 (en) | 2014-06-17 |
US20120095151A1 (en) | 2012-04-19 |
EP2610303B1 (en) | 2016-07-20 |
JPWO2012026556A1 (ja) | 2013-10-28 |
EP2610303A4 (en) | 2015-04-01 |
EP2610303A1 (en) | 2013-07-03 |
CN103068907A (zh) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012026556A1 (ja) | 複雑形状フッ素ゴム成形体 | |
JP6028835B2 (ja) | ホース | |
JP5686137B2 (ja) | フッ素ゴム組成物の製造方法 | |
JP6120572B2 (ja) | フッ素ゴム成形品 | |
JP5641049B2 (ja) | シール材 | |
JP6132552B2 (ja) | ベルト材 | |
JP5939306B2 (ja) | フッ素ゴム組成物 | |
WO2012026558A1 (ja) | 防振ゴム | |
JP5907276B2 (ja) | フッ素ゴム組成物 | |
JP5776840B2 (ja) | フッ素ゴム組成物、及び、その製造方法 | |
WO2012026553A1 (ja) | フッ素ゴム組成物 | |
JP5842932B2 (ja) | ダイヤフラム | |
JP2013173930A (ja) | 耐バイオディーゼル燃料部材 | |
JP2019094413A (ja) | フッ素ゴム層を有する複雑形状成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180040841.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11820018 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012530723 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2011820018 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011820018 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |