[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012020909A1 - 콘덴싱 보일러의 잠열 열교환기 - Google Patents

콘덴싱 보일러의 잠열 열교환기 Download PDF

Info

Publication number
WO2012020909A1
WO2012020909A1 PCT/KR2011/002929 KR2011002929W WO2012020909A1 WO 2012020909 A1 WO2012020909 A1 WO 2012020909A1 KR 2011002929 W KR2011002929 W KR 2011002929W WO 2012020909 A1 WO2012020909 A1 WO 2012020909A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
latent heat
condensing boiler
flow path
combustion
Prior art date
Application number
PCT/KR2011/002929
Other languages
English (en)
French (fr)
Inventor
민태식
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to RU2013110506/06A priority Critical patent/RU2523936C1/ru
Priority to US13/814,002 priority patent/US20130125838A1/en
Priority to CA2807168A priority patent/CA2807168C/en
Priority to CN2011800399105A priority patent/CN103069225A/zh
Priority to EP11816525.7A priority patent/EP2604944A4/en
Publication of WO2012020909A1 publication Critical patent/WO2012020909A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/006Means for removing condensate from the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a latent heat exchanger of a condensing boiler, and more particularly, to match the exhaust direction of the combustion product and the discharge direction of the condensate to reduce the exhaust resistance of the combustion product and to smoothly discharge the condensate generated from the latent heat exchanger.
  • the coupling structure therein relates to a latent heat exchanger of a simple condensing boiler.
  • a boiler is a device for heating a desired area by heating a heat medium in a sealed container by a heat source.
  • the boiler includes a burner for burning fuel and a heat exchanger for transferring heat from the burned hot combustion air to the heating water.
  • the initial heat exchanger of the boiler uses only sensible heat generated during combustion of the burner and the high temperature combustion air is discharged through the exhaust hood as it is, so that the heat efficiency of the boiler is very low and it takes a long time to obtain the high temperature heating water.
  • boilers have a sensible heat exchanger that absorbs the sensible heat of the combustion products generated in the combustion chamber in order to increase the thermal efficiency, and a latent heat exchanger that absorbs the latent heat of water vapor contained in the combustion product heat exchanged in the sensible heat exchanger.
  • This type of boiler is called a condensing boiler.
  • 1 is a schematic view showing the structure of a conventional upward combustion condensing boiler.
  • a blower 11 is positioned at the bottom thereof, and the upstream combustion burner 12, the combustion chamber 13, the sensible heat exchanger 14, the latent heat exchanger 15, and the exhaust hood are disposed upward. 19) consists of a structure installed sequentially.
  • the latent heat exchanger 15 is disposed to be inclined above the sensible heat exchanger 14, and a lower side of the latent heat exchanger 15 is provided with a condensate outlet 18 through which the condensed water generated by the latent heat exchanger 15 is drained.
  • the upper portion of the latent heat exchanger (15) is provided with an upper guide (16) for inducing the flow direction of the combustion product, the lower portion of the latent heat exchanger (15) induces the flow direction of the combustion product and condensed water that falls
  • a lower guide 17 for guiding to the outlet 18 side is provided.
  • the combustion product passing through the sensible heat exchanger (14) is moved upward through one side of the lower guide (17), passes through the latent heat exchanger (15) inclined downwardly, and flows upward upward again to exhaust the exhaust. It is discharged through the hood 19.
  • the condensing boiler is configured as an upward combustion type, the exhaust direction of the combustion product and the discharge direction of the condensate become the same direction, so that the condensed water can be smoothly discharged without receiving the resistance of the combustion product.
  • the upper guide 16 is applied to the upper portion of the latent heat exchanger 15 and most of the lower portion as the configuration for switching the flow path of the combustion product as described above. And the lower guide 17 are installed, the structure of the latent heat exchanger 15 is complicated.
  • the lower guide 17 serving as the condensate receiver is positioned directly above the sensible heat exchanger 14 due to the contact with the high temperature combustion product passing through the sensible heat exchanger 14.
  • the temperature of the lower guide 17 is heated considerably high, so that even if the condensate generated as the combustion product passes through the latent heat exchanger 15 falls into the lower guide 17, a significant amount of the lower guide 17 is heated. Since the condensed water is regasified, the latent heat recovered by condensation is discharged again in the form of evaporated heat, thereby preventing the maximum condensation efficiency.
  • Figure 2 is a schematic diagram showing the structure of a conventional downward combustion condensing boiler.
  • a blower 21 is positioned at the top thereof, and a downward combustion burner 22, a combustion chamber 23, a sensible heat exchanger 24, and a latent heat exchanger 25 are positioned below the blower 21.
  • the condensate receiver 27 and the condensate outlet 28 are positioned below the latent heat exchanger 25, and an exhaust hood 29 is provided at one side thereof.
  • the heating water heated while passing through the sensible heat exchanger (24) and the latent heat exchanger (25) is transferred to a room through a supply pipe (26a) connected to one side of the sensible heat exchanger (24) to transfer the thermal energy, and then cooled to provide latent heat exchange.
  • a supply pipe (26a) connected to one side of the sensible heat exchanger (24) to transfer the thermal energy, and then cooled to provide latent heat exchange.
  • the heating water returned to the return pipe (26b) is introduced into the latent heat exchanger (25) again the combustion product passed through the sensible heat exchanger (24) It is configured to recover latent heat by condensing water vapor contained in.
  • the temperature of the combustion product is greatly reduced, so the temperature inside the condensate receiver (27) is formed very low to condense water.
  • the heat loss caused by the regasification of the liquefied water vapor can be minimized.
  • Such a downward combustion condensing boiler is evaluated as the most preferable condensing boiler structure in that it can recover the latent heat as much as possible, but there is a problem in that a burner capable of downward combustion is necessarily provided.
  • a burner applied to a boiler may be classified into a pre-mixed burner and a Bunsen burner.
  • the premix burner burns the premixed gas pre-mixed with the combustion gas and air in the mixing chamber.
  • the flame length is very short and the flame density is high. There is an advantage to install.
  • the Bunsen burner is a burner that supplies primary air necessary for combustion in the nozzle part that injects gas and supplies excess secondary air to a part where a flame is formed to realize complete combustion. Because of the long flame length and the low flame density, the flame tends to be directed upwards, so it is only applicable to upward combustion.
  • the use of a premixed burner capable of downcoming combustion is essential, but the premixed burner has a problem in that an expensive control system is used in order to realize poor combustion stability and very complicated combustion control.
  • the present invention has been made in order to solve the above problems, but there is no restriction on the use of the burner and the installation structure of the simple combustion upstream condensing boiler, but reducing the exhaust resistance of the combustion products and condensate generated from the latent heat exchanger It is an object of the present invention to provide a latent heat exchanger of a condensing boiler that can be smoothly discharged to improve the latent heat recovery efficiency.
  • the latent heat exchanger of the condensing boiler of the present invention for realizing the object as described above, the sensible heat exchanger that absorbs the combustion sensible heat generated in the burner, and absorbs the latent heat of steam included in the combustion product after the heat exchange in the sensible heat exchanger
  • a condensing boiler comprising a latent heat exchanger, an exhaust hood through which the combustion product passing through the latent heat exchanger is discharged, and a condensate outlet through which the condensed water generated by the latent heat exchanger is drained
  • the combustion product burned by the burner includes: After passing through the sensible heat exchanger vertically ascending to the latent heat exchanger, and descending obliquely outward while forming an acute angle with a horizontal plane, after the heat exchange is performed in the latent heat exchanger, it is characterized in that the vertical rise is discharged to the exhaust hood.
  • the inner and front sides of the latent heat exchanger exchange heat with the combustion product while forming a flow path such that the flow path of the combustion product vertically rising through the sensible heat exchanger is divided in the front and rear or left and right directions at an acute angle with a horizontal plane and descends at an angle.
  • the plurality of tubes may be configured to be inclined downward toward the outside of the front and rear of the latent heat exchanger at vertical intervals.
  • the tube has a width of the side that passes the combustion product is formed longer than the height of the front and rear both ends may be composed of a flat elliptical shape of the cross section.
  • the outer side of the tube provided in the front and rear inside the latent heat exchanger may be composed of a plurality of heat exchange fins are coupled to each other at predetermined intervals in the longitudinal direction of the tube.
  • the inner upper portion of the latent heat exchanger may be configured to be provided with an upper guide made of an inclined surface corresponding to the inclination angle of the front and rear both ends.
  • the condensate outlet is provided on one side of the lower portion of the latent heat exchanger, the lower side of the tube in the front and rear of the inner side of the latent heat exchanger, the lower side leading to the condensate outlet side to the condensate falling to the outer side of the tube to the lower side Guide may be provided.
  • the left and right both ends of the tube are respectively coupled to the left end plate and the right end plate having a tube insertion hole having a shape corresponding thereto, and the flow path of the heat medium flowing inside the tube is outside the left end plate and the right end plate.
  • the left channel cap and the right channel cap may be configured to be coupled to the left side to the right side, and the right side to the left side alternately.
  • the left flow path cap, the upper flow path cap for dividing and supplying the heat medium introduced into the inlet pipe into the tubes of the front and rear sides, a plurality of intermediate portion flow path caps are provided up and down on both sides of the front and rear to switch the flow path of the heat medium, and It consists of a set of lower flow path caps for collecting the heat medium passing through the tubes of the front and rear sides and discharged to the outlet pipe, the right flow path cap is provided up and down on the front and rear sides of the plurality of flow path caps for switching the flow path of the heat medium It may consist of a set.
  • the exhaust resistance of the combustion product is reduced by installing a plurality of downwardly inclined tubes up and down inside the latent heat exchanger to match the exhaust direction of the combustion product and the discharge direction of the condensate. And condensate can be discharged smoothly.
  • the flow path of the heat medium passing through the tube in the latent heat exchanger through the simple coupling structure of the tube, the heat exchange fins, the end plate and the flow path cap to be switched to the left and right alternately to form a flow path Therefore, the heat exchange efficiency may be improved by increasing the heat exchange area and time in a limited space inside the latent heat exchanger.
  • 1 is a schematic view showing the structure of a conventional upward combustion condensing boiler
  • Figure 2 is a schematic diagram showing the structure of a conventional downward combustion condensing boiler
  • FIG. 3 is a schematic view showing the structure of a condensing boiler to which the present invention is applied;
  • FIG. 4 is a longitudinal sectional view of FIG. 3;
  • FIGS. 5 and 6 are perspective views showing the latent heat exchanger structure of the condensing boiler according to the present invention.
  • FIG. 7 is an exploded perspective view of FIG. 5;
  • FIG. 8 is a cross-sectional view taken along the line A-A of FIG.
  • Figure 3 is a schematic view showing the structure of the condensing boiler to which the present invention is applied
  • Figure 4 is a longitudinal cross-sectional view of Figure 3
  • Figures 3 and 4 are seen from the left side of the condensing boiler.
  • the condensing boiler according to the present invention is provided with an upward combustion burner 12 and a combustion chamber 13 in which flames are formed upward in the upper side of the blower 11, and combustion generated in the burner 12 above.
  • a sensible heat exchanger 14 for absorbing sensible heat a latent heat exchanger 100 for absorbing latent heat of water vapor contained in a combustion product (exhaust gas) that has undergone heat exchange in the sensible heat exchanger 14, and the latent heat exchanger
  • the present invention reduces the exhaust resistance in the process of the combustion product burned in the burner 12 is discharged to the exhaust hood 19 through the sensible heat exchanger 14 and the latent heat exchanger 100 and the latent heat exchanger 100 Characterized in that the exhaust direction of the combustion product and the discharge direction of the condensate is configured so that the discharge of the condensate generated in the smoothly made.
  • a plurality of downwardly inclined tubes 140 and 140a are provided at vertical intervals, and the combustion products pass between the tubes 140 and 140a arranged up and down.
  • an upper guide 170 is formed at an inner upper portion of the latent heat exchanger 100 and includes a downward inclined surface corresponding to an inclination angle of the tubes 140 and 140a at both front and rear ends thereof.
  • the condensed water outlets condensate water condensed while passing through the latent heat exchanger 100 condensed on the outer surface of the tubes 140 and 140a and falls downward in the lower side of the tubes 140 and 140a.
  • Lower guides 180 and 180a leading to the side are provided.
  • the lower guides 180 and 180a may also guide a combustion product that rises vertically in the sensible heat exchanger 14 to the center portion of the latent heat exchanger 100.
  • the combustion products burnt by the burner 12 pass vertically through the sensible heat exchanger 14 and rise vertically toward the center of the latent heat exchanger 100.
  • the flow path is switched by the upper guide 170 and the inclined tubes 140 and 140a so as to be obliquely lowered in the front and rear or left and right directions while passing through the tubes 140 and 140a while forming an acute angle with the horizontal plane.
  • the flow is converted back vertically upward by the front and rear wall surfaces of the latent heat exchanger 100 and then discharged to the outside through the exhaust hood 19. .
  • the lower guides 180 and 180a in which the condensed water falls are installed while occupying a narrow area in front and rear of the sensible heat exchanger 14, respectively, even when the lower guides 180 and 180a are heated by the combustion heat, the condensed water and the lower guides ( Since the area and time of contact between 180 and 180a are relatively reduced compared to the prior art, it is possible to reduce the rate of regasification of condensed water.
  • the combustion products rise vertically without interference from the sensible heat exchanger (14) toward the inner center of the latent heat exchanger (100), and then are divided into front and rear and separated between the front tube (140) and the rear tube (140a). After moving obliquely through and vertically rising again to be discharged to the exhaust hood 19, there is an effect that can significantly reduce the exhaust resistance of the combustion product compared to the prior art.
  • FIG. 5 and 6 are perspective views showing the latent heat exchanger structure of the condensing boiler according to the present invention
  • Figure 5 is a perspective view from the left
  • Figure 6 is a perspective view from the right
  • Figure 7 is an exploded perspective view of Figure 5
  • Figure 8 is It is AA sectional drawing of FIG.
  • the tubes 140 and 140a spaced vertically spaced apart from the front and rear of the latent heat exchanger 100 are formed to be longer than the height of the front and rear ends of the side through which the combustion product passes.
  • the cross section is made of a flat elliptical shape, in which case the heat transfer area between the combustion product and the tubes (140, 140a) is increased and at the same time it is possible to reduce the flow resistance of the combustion product.
  • a plurality of heat exchange fins 130 and 130a having a plate shape are coupled to the outside of the tubes 140 and 140a at predetermined intervals in the longitudinal direction (left and right directions in the drawing). That is, a plurality of front heat exchangers having a tube insertion hole 131 corresponding to the outer circumferential surface shape of the tube 140 is formed up and down on the outside of the tubes 140; 141, 142, 143, 144, 145 and 146 disposed up and down on the front side of the latent heat exchanger 100.
  • Fins 130 are coupled, the tube insertion hole 131a up and down outside the tubes (140a; 141a, 142a, 143a, 144a, 145a, 146a) disposed up and down on the rear side of the latent heat exchanger (100) A plurality of rear heat exchange fins 130a formed are coupled.
  • the left ends of the tubes 140 and 140a are coupled to the left end plate 120 having the tube insertion holes 121 and 121a corresponding thereto, respectively, and the right ends of the tubes 140 and 140a are respectively inserted tube corresponding thereto.
  • the holes 151 and 151a are coupled to the right end plate 150 formed therein.
  • the outside of the left end plate 120 and the right end plate 150 induces the flow path of the heat medium flowing inside the tubes 140 and 140a to be alternately switched left and right in the latent heat exchanger 100.
  • the left channel cap 110 and the right channel cap 160 is combined.
  • the left end plate 120 is a tube insertion hole (so as to facilitate the coupling between the left end plate 120 and the left passage cap 110, and the right end plate 150 and the right passage cap 160).
  • 121, 121a is formed on the edge portion of the surface formed with a protruding surface toward the left side to the left side of the flow path cap 110 is fitted into the inner side of the four surfaces surrounded by the protruding surface
  • the right end plate 150 is a tube insertion hole Protruding surfaces are formed on the edges of the surfaces on which the surfaces 151 and 151a are formed, and the right channel cap 160 may be fitted into the four surfaces.
  • the left flow path cap 110 is provided with an upper flow path cap 111 for dividing and supplying the heat medium introduced into the inlet pipe 111a to the tubes 141 and 141a provided on both front and rear sides, and the top and bottom middle parts of the front and rear sides. And the heat medium passing through the middle flow path caps 112, 113, 112a and 113a for switching the flow path of the heat medium flowing through the tubes 142, 143, 144, 145, 142a, 143a, 144a and 145a, and the tubes 146 and 146a provided in the lower part of the front and rear sides. It is composed of a lower flow path cap 114 to collect and discharge to the outlet pipe (114a).
  • the right flow path cap 160 includes upper flow path caps 161 and 161a for switching flow paths of the tubes 141, 142, 141a and 142a provided in the upper and rear sides, and the tubes 143, 144, 143a and 144a provided in the middle parts of the front and rear sides.
  • the middle flow path caps 162 and 162a for switching the flow paths of the flow paths
  • the lower flow path caps 163 and 163a for switching the flow paths of the tubes 145, 146, 145a and 146a provided in the lower sides of the front and rear sides.
  • the latent heat exchanger 100 According to the coupling structure of the tubes 140 and 140a, the heat exchange fins 130 and 130a, the left and right end plates 120 and 150, and the left and right flow channel caps 110 and 160, the latent heat exchanger 100 as shown in FIG. )
  • the flow path through which the heat medium flows in the limited space inside is alternately switched from left to right and from right to left as indicated by the arrow, which can increase the heat transfer area and time with the combustion products, thereby improving heat exchange efficiency.
  • the coupling structure is simple, the production of the latent heat exchanger 100 also has an effect of facilitating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

본 발명은 버너의 사용에 제한이 없고 설치 구조가 간단한 상향 연소식 콘덴싱 보일러를 구성하되 연소생성물의 배기 저항을 감소시키고 잠열 열교환기에서 발생하는 응축수가 원활하게 배출될 수 있도록 하여 잠열 회수 효율을 향상시킬 수 있는 콘덴싱 보일러의 잠열 열교환기를 제공함에 그 목적이 있다. 이를 구현하기 위한 본 발명은, 버너에서 발생된 연소 현열을 흡수하는 현열 열교환기와, 상기 현열 열교환기에서 열교환을 마친 연소생성물에 포함된 수증기의 잠열을 흡수하는 잠열 열교환기와, 상기 잠열 열교환기를 통과한 연소생성물이 배출되는 배기후드 및 상기 잠열 열교환기에서 생성된 응축수가 배수되는 응축수 배출구를 포함하여 이루어진 콘덴싱 보일러에 있어서, 상기 버너에서 연소된 연소생성물은 상기 현열 열교환기를 통과하여 상기 잠열 열교환기로 수직 상승한 후, 수평면과 예각을 이루면서 외측으로 비스듬히 하강하여 상기 잠열 열교환기에서 열교환이 이루어진 후, 수직 상승하여 상기 배기후드로 배출되는 것을 특징으로 한다.

Description

콘덴싱 보일러의 잠열 열교환기
본 발명은 콘덴싱 보일러의 잠열 열교환기에 관한 것으로서, 더욱 상세하게는 연소생성물의 배기 방향과 응축수의 배출 방향을 일치시켜 연소생성물의 배기 저항을 감소하고 잠열 열교환기에서 발생하는 응축수의 원활한 배출이 가능하며 그 내부의 결합구조가 간단한 콘덴싱 보일러의 잠열 열교환기에 관한 것이다.
보일러는 밀폐된 용기 내의 열매체를 열원에 의해 가열시켜 원하는 지역을 난방하는 장치로, 연료를 연소시키는 버너와 연소된 고온의 연소공기에서 난방수로 열을 전달하는 열교환기로 구성된다.
초기 보일러의 열교환기는 버너의 연소시 발생하는 현열만을 이용하고 고온의 연소공기는 배기후드를 통해 그대로 배출시켜, 보일러의 열효율이 매우 낮았으며 고온의 난방수를 얻는데 오랜 시간이 소요되었다.
때문에 근래에 생산되는 보일러는 열효율을 증대시키기 위해 연소실에서 발생되는 연소생성물의 현열을 흡수하는 현열 열교환기와, 상기 현열 열교환기에서 열교환을 마친 연소생성물에 포함되어 있는 수증기의 잠열을 흡수하는 잠열 열교환기를 구비하는데, 이러한 방식의 보일러를 콘덴싱 보일러라 한다.
이러한 콘덴싱 보일러는 가스보일러 뿐만 아니라 기름보일러에도 실용화되어 보일러 효율의 증가 및 연료비 절감에 많은 기여를 하고 있다.
도 1은 종래 상향 연소식 콘덴싱 보일러의 구조를 보여주는 개략도이다.
종래 상향 연소식 콘덴싱 보일러는, 최하단에 송풍기(11)가 위치하고, 그 상측으로 상향 연소식 버너(12)와 연소실(13), 현열 열교환기(14), 잠열 열교환기(15) 및 배기후드(19)가 순차로 설치된 구조로 이루어져 있다.
상기 잠열 열교환기(15)는 현열 열교환기(14)의 상측에 경사지게 배치되고, 그 하부 일측에는 잠열 열교환기(15)에서 생성된 응축수가 배수되는 응축수 배출구(18)가 형성되어 있다.
상기 잠열 열교환기(15)의 상부에는 연소생성물의 흐름 방향을 유도하는 상부 가이드(16)가 구비되고, 잠열 열교환기(15)의 하부에는 연소생성물의 흐름 방향을 유도함과 아울러 낙하하는 응축수를 응축수 배출구(18) 측으로 유도하기 위한 하부 가이드(17)가 구비되어 있다.
상기 현열 열교환기(14)를 통과한 연소생성물은 하부 가이드(17)의 일측방을 경유하여 상측으로 이동된 후 잠열 열교환기(15) 내부를 하향 경사지게 통과하고, 다시 상향으로 유로가 전환되어 배기후드(19)를 통해 배출된다.
이러한 구성에 의하면, 콘덴싱 보일러를 상향 연소식으로 구성하면서도 연소생성물의 배기 방향과 응축수의 배출 방향이 동일한 방향이 되므로 연소생성물의 저항을 받지 않으면서 응축수가 원활하게 배출될 수 있다.
그러나 이러한 종래의 상향 연소식 콘덴싱 보일러의 잠열 열교환기의 구성에 의하면, 연소생성물의 유로를 상기와 같이 전환하기 위한 구성으로서 잠열 열교환기(15) 내측 상부와 하부의 대부분 영역에 걸쳐 상부 가이드(16)와 하부 가이드(17)가 설치되므로 잠열 열교환기(15)의 구조가 복잡해지는 문제점이 있다.
또한 연소생성물이 현열 열교환기(14)에서 잠열 열교환기(15)로 이동하는 과정에서 하부 가이드(17)와의 간섭에 의해 배기 저항을 받게 되고, 연소생성물이 잠열 열교환기(15) 내부의 일측에서 타측으로 유동하는 과정에서도 그 내부에 겹겹으로 설치된 다수의 열교환 튜브 및 이에 결합된 열교환핀 사이를 통과하면서 배기 저항을 받게 되어 연소생성물이 원활하게 배출되지 못하는 문제점이 있었다.
또한 종래 상향 연소식 콘덴싱 보일러는 현열 열교환기(14)의 직상방에 응축수받이 역할을 하는 하부 가이드(17)가 위치함에 따라서 현열 열교환기(14)를 통과한 고온의 연소생성물과의 접촉으로 인해 하부 가이드(17)의 온도가 상당히 높게 가열되며, 이에 따라 연소생성물이 잠열 열교환기(15)를 통과하면서 생성된 응축수가 하부 가이드(17)로 떨어진다 하더라도 가열된 하부 가이드(17)로 인해 상당량의 응축수가 재기화하게 되므로 응축으로 회수된 잠열이 다시 기화열의 형태로 배출되어 최대 응축 효율을 얻을 수 없게 되는 문제점이 있었다.
도 2는 종래 하향 연소식 콘덴싱 보일러의 구조를 보여주는 개략도이다.
종래 하향 연소식 콘덴싱 보일러는, 최상단에 송풍기(21)가 위치하고, 그 하측으로 하향 연소식 버너(22)와 연소실(23), 현열 열교환기(24), 잠열 열교환기(25)가 위치하며, 잠열 열교환기(25)의 하측에 응축수받이(27)와 응축수 배출구(28)가 위치하고 그 일측으로 배기후드(29)가 설치된 구조로 이루어져 있다.
상기 현열 열교환기(24)와 잠열 열교환기(25)를 경유하면서 가열된 난방수는 현열 열교환기(24)의 일측에 연결된 공급관(26a)을 통해 실내로 이송되어 열에너지를 전달한 후 냉각되어 잠열 열교환기(25)의 일측에 연결된 환수관(26b)으로 되돌아 오며, 상기 환수관(26b)으로 환수된 난방수는 다시 잠열 열교환기(25)로 유입되어 현열 열교환기(24)를 통과한 연소생성물에 포함된 수증기를 응축시켜 잠열을 회수하도록 구성되어 있다.
이러한 하향 연소식 콘덴싱 보일러의 경우 응축수의 중력에 의한 낙하 방향(즉, 연직하 방향)과 현열 열교환기(24)와 잠열 열교환기(25)를 통과하는 연소생성물의 배기 방향이 자연스럽게 일치하게 되는데, 이는 콘덴싱 보일러의 효율 향상에 매우 중요한 요인이 된다.
즉, 잠열 열교환기(25)를 지나면서 연소생성물 내의 수증기가 응축되어 잠열을 난방순환수에 전달한 후에는 연소생성물의 온도가 크게 떨어지게 되므로, 응축수받이(27) 내부의 온도가 매우 낮게 형성되어 응축수로 액화된 수증기의 재기화에 의한 열손실을 최소화할 수 있는 것이다.
이와 같은 하향 연소식 콘덴싱 보일러는 잠열을 최대한 회수할 수 있는 구조라는 점에서 가장 바람직한 콘덴싱 보일러의 구조로 평가되고 있으나, 하향 연소가 가능한 버너가 필수적으로 구비되어야 하는 제한이 따르는 문제점이 있다.
일반적으로 보일러에 적용되는 버너는 예혼합(Pre-mixed) 버너와 분젠(Bunsen) 버너로 구분할 수 있다.
이 중 예혼합 버너는 연소용 가스와 공기를 혼합실에서 미리 혼합한 예혼합가스를 연소시키는 방식으로, 화염길이가 매우 짧고 화염밀도가 높기 때문에 상향이나 하향, 측향 등 연소방향에 무관하게 버너를 설치할 수 있는 장점이 있다.
이에 반해 분젠 버너는 가스를 분사하는 노즐부에서 연소에 필요한 1차 공기를 공급하고, 화염이 형성되는 부위에 과잉 2차공기를 공급하여 완전연소를 실현시키는 버너로서, 2차공기와 반응하는 화염의 길이가 길고 화염밀도가 낮아 화염이 상방향으로 향하는 경향을 가지고 있기 때문에 상향 연소식에만 적용이 가능한 단점이 있다.
따라서 종래 하향 연소식 콘덴싱 보일러의 경우 하향 연소가 가능한 예혼합 버너의 사용이 필수적이지만, 예혼합 버너는 연소안정성이 떨어지고 매우 복잡한 연소제어를 구현하기 위하여 고가의 제어시스템이 사용되어야 하는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 버너의 사용에 제한이 없고 설치 구조가 간단한 상향 연소식 콘덴싱 보일러를 구성하되 연소생성물의 배기 저항을 감소시키고 잠열 열교환기에서 발생하는 응축수가 원활하게 배출될 수 있도록 하여 잠열 회수 효율을 향상시킬 수 있는 콘덴싱 보일러의 잠열 열교환기를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 콘덴싱 보일러의 잠열 열교환기는, 버너에서 발생된 연소 현열을 흡수하는 현열 열교환기와, 상기 현열 열교환기에서 열교환을 마친 연소생성물에 포함된 수증기의 잠열을 흡수하는 잠열 열교환기와, 상기 잠열 열교환기를 통과한 연소생성물이 배출되는 배기후드 및 상기 잠열 열교환기에서 생성된 응축수가 배수되는 응축수 배출구를 포함하여 이루어진 콘덴싱 보일러에 있어서, 상기 버너에서 연소된 연소생성물은 상기 현열 열교환기를 통과하여 상기 잠열 열교환기로 수직 상승한 후, 수평면과 예각을 이루면서 외측으로 비스듬히 하강하여 상기 잠열 열교환기에서 열교환이 이루어진 후, 수직 상승하여 상기 배기후드로 배출되는 것을 특징으로 한다.
이 경우 상기 잠열 열교환기의 내측 전후방에는, 상기 현열 열교환기를 통과하여 수직 상승한 연소생성물의 유로가 수평면과 예각을 이루면서 전후방 또는 좌우 방향으로 나뉘어져 비스듬히 하강하도록 유로를 형성하면서 상기 연소생성물과의 사이에 열교환이 이루어지는 다수의 튜브가 상하 간격을 두고 상기 잠열 열교환기의 전후방 외측을 향하여 하향 경사지게 배치된 것으로 구성될 수 있다.
또한 상기 튜브는 상기 연소생성물이 통과하는 측면의 폭이 전후 양단의 높이보다 길게 형성되어 그 단면이 납작한 타원형상으로 이루어진 것으로 구성될 수 있다.
또한 상기 잠열 열교환기 내측의 전후방에 구비된 튜브의 외측에는 상기 튜브의 길이 방향으로 소정 간격을 두고 다수의 열교환핀이 각각 결합되어 있는 것으로 구성될 수 있다.
또한 상기 잠열 열교환기의 내측 상부에는 전후방 양단부가 상기 튜브의 경사각에 대응되는 경사면으로 이루어진 상부 가이드가 구비된 것으로 구성될 수 있다.
또한 상기 응축수 배출구는 상기 잠열 열교환기의 하부 일측에 구비되고, 상기 잠열 열교환기의 내측 전후방의 상기 튜브의 하측에는 상기 튜브의 외측면에 고여서 하측으로 낙하하는 응축수를 상기 응축수 배출구 측으로 유도하는 하부 가이드가 구비된 것으로 구성될 수 있다.
또한 상기 튜브의 좌우 양측단은 이에 대응되는 형상의 튜브 삽입홀이 형성된 좌측 엔드플레이트와 우측 엔드플레이트에 각각 결합되고, 상기 좌측 엔드플레이트와 우측 엔드플레이트의 외측에는 상기 튜브 내부를 흐르는 열매체의 유로가 상기 잠열 열교환기 내부에서 좌측에서 우측으로, 그리고 우측에서 좌측으로 교번하여 전환되도록 유도하는 좌측 유로캡과 우측 유로캡이 각각 결합되어 있는 것으로 구성될 수 있다.
또한 상기 좌측 유로캡은, 입구관으로 유입된 열매체를 상기 전후방 양측의 튜브로 분할 공급하는 상부 유로캡과, 전후방 양측에 상하로 구비되어 열매체의 유로를 전환하는 복수의 중간부 유로캡과, 상기 전후방 양측의 튜브를 통과해 온 열매체를 취합하여 출구관으로 배출하는 하부 유로캡의 집합으로 이루어지고, 상기 우측 유로캡은, 전후방 양측에 상하로 구비되어 열매체의 유로를 전환하는 복수의 유로캡의 집합으로 이루어진 것으로 구성될 수 있다.
본 발명에 따른 콘덴싱 보일러의 잠열 열교환기에 의하면, 잠열 열교환기 내측의 전후방에 하향 경사진 다수의 튜브를 상하로 설치하여 연소생성물의 배기 방향과 응축수의 배출 방향을 일치시킴으로써 연소생성물의 배기 저항이 감소되고 응축수가 원활하게 배출될 수 있는 효과가 있다.
또한 본 발명에 의하면, 튜브와 열교환핀과 엔드플레이트 및 유로캡의 간단한 결합구조를 통하여 잠열 열교환기 내부에서 튜브를 통과하는 열매체의 흐름 방향이 좌,우측으로 교번하여 전환되도록 유로를 형성할 수 있게 되므로 잠열 열교환기 내부의 한정된 공간에서 열교환 면적과 시간을 증대시킴으로써 열교환 효율을 향상시킬 수 있는 효과가 있다.
도 1은 종래 상향 연소식 콘덴싱 보일러의 구조를 보여주는 개략도,
도 2는 종래 하향 연소식 콘덴싱 보일러의 구조를 보여주는 개략도,
도 3은 본 발명이 적용되는 콘덴싱 보일러의 구조를 보여주는 개략도,
도 4는 도 3의 종단면도,
도 5와 도 6은 본 발명에 따른 콘덴싱 보일러의 잠열 열교환기 구조를 보여주는 사시도,
도 7은 도 5의 분해 사시도,
도 8은 도 5의 A-A 선 단면도이다.
** 부호의 설명 **
11,21 : 송풍기 12,22 : 버너
13,23 : 연소실 14,24 : 현열 열교환기
15,25 : 잠열 열교환기 16 : 상부 가이드
17 : 하부 가이드 18,28 : 응축수 배출구
19,29 : 배기후드 26a : 공급관
26b : 환수관 27 : 응축수받이
100 : 잠열 열교환기 110 : 좌측 유로캡
111 : 상부 유로캡 111a : 입구관
112,112a,113,113a : 중간부 유로캡
114 : 하부 유로캡 114a : 출구관
120 : 좌측 엔드플레이트 121,121a,131,131a,151,151a : 튜브 삽입홀
130 : 전면 열교환핀 130a: 후면 열교환핀
140,141,142,143,144,145,146,140a,141a,142a,143a,144a,145a,146a : 튜브
150 : 우측 엔드플레이트 160 : 우측 유로캡
161 : 상부 유로캡 162 : 중간부 유로캡
163 : 하부 유로캡 170 : 상부 가이드
180,180a : 하부 가이드 190 : 응축수 배출구
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서, 종래기술과 동일한 기능 및 작용을 하는 구성요소에 대해서는 동일한 도면부호를 사용하기로 한다.
도 3은 본 발명이 적용되는 콘덴싱 보일러의 구조를 보여주는 개략도, 도 4는 도 3의 종단면도로서, 도 3과 도 4는 콘덴싱 보일러의 좌측에서 바라본 것이다.
본 발명에 따른 콘덴싱 보일러는, 송풍기(11)의 상측에 화염이 상향으로 형성되는 상향 연소식 버너(12)와 연소실(13)이 구비되고, 그 상측으로는 상기 버너(12)에서 발생된 연소 현열을 흡수하는 현열 열교환기(14)와, 상기 현열 열교환기(14)에서 열교환을 마친 연소생성물(배기가스)에 포함된 수증기의 잠열을 흡수하는 잠열 열교환기(100)와, 상기 잠열 열교환기(100)를 통과한 연소생성물이 배출되는 배기후드(19)가 설치되며, 상기 잠열 열교환기(100)의 하부 일측에는 잠열 열교환기(100)에서 생성된 응축수가 배출되는 응축수 배출구(190)가 형성되어 있다.
본 발명은 버너(12)에서 연소된 연소생성물이 현열 열교환기(14)와 잠열 열교환기(100)를 통과하여 배기후드(19)로 배출되는 과정에서 배기 저항을 감소시키고 잠열 열교환기(100)에서 생성되는 응축수의 배출이 원활하게 이루어질 수 있도록 연소생성물의 배기 방향과 응축수의 배출 방향이 일치되도록 구성된 것을 특징으로 한다.
이를 위한 구성으로, 상기 잠열 열교환기(100) 내부의 전방(도 3과 도 4에서 우측)과 후방(도 3과 도 4에서 좌측)에는 각각 전방과 후방을 향하여 수평면을 기준으로 예각을 이루면서 비스듬히 하향 경사진 다수의 튜브(140,140a)가 상하 간격을 두고 설치되어, 상하로 배치된 튜브(140,140a) 사이로 연소생성물이 통과하도록 구성되어 있다.
그리고 상기 잠열 열교환기(100)의 내측 상부에는 전후방 양단부가 상기 튜브(140,140a)의 경사각에 대응되는 하향의 경사면으로 이루어진 상부 가이드(170)가 구비되어 있다.
또한 상기 튜브(140,140a)의 하측에는 연소생성물에 포함된 수증기가 잠열 열교환기(100)를 통과하면서 응축되어 상기 튜브(140,140a)의 외측면에 고여서 하측으로 낙하하는 응축수를 상기 응축수 배출구(190) 측으로 유도하는 하부 가이드(180,180a)가 구비되어 있다. 상기 하부 가이드(180,180a)는 현열 열교환기(14)에서 수직으로 상승하는 연소생성물을 잠열 열교환기(100) 내부의 중앙부로 유도하는 역할도 한다.
이와 같은 잠열 열교환기(100)의 구조에 의하면, 버너(12)에 의해 연소된 연소생성물은 현열 열교환기(14)를 통과하여 잠열 열교환기(100) 내부의 중앙부를 향해 수직으로 상승하고, 수직 상방향으로 이동한 연소생성물은 상부 가이드(170)와 경사 배치된 튜브(140,140a)에 의해 유로가 전환되어 수평면과 예각을 이루면서 전후방 또는 좌우 방향으로 비스듬히 하강하여 튜브(140,140a) 사이를 통과하면서 튜브(140,140a) 내부를 흐르는 열매체와 열교환이 이루어진 후, 잠열 열교환기(100)의 전후방 벽면에 의해 그 흐름이 다시 수직 상방향으로 전환되어 취합된 후에 배기후드(19)를 통해 외부로 배출된다.
이때 튜브(140,140a) 사이를 통과하는 연소생성물의 배기 방향과 튜브(140,140a)의 외측면에 고인 후에 상기 튜브(140,140a)을 표면을 타고 하향 경사지게 흘러내리는 응축수의 흐름 방향 및 하부 가이드(180)의 상면으로 낙하하여 응축수 배출구(190) 측으로 유도되는 응축수의 배출 방향이 서로 일치하게 되므로 연소생성물의 저항을 받지 않으면서 응축수가 원활하게 배출될 수 있게 된다.
또한 도 1에 도시된 종래기술에서는 하부 가이드(17)가 현열 열교환기(14)의 직상측에 넓은 영역을 점유하면서 설치됨에 따라서 하부 가이드(17)의 상면으로 낙하한 응축수가 재기화하여 잠열 회수 효율이 떨어지고 연소생성물의 배기 저항이 커지게 되는 문제점이 있었다.
그러나 본 발명에서는 응축수가 낙하하는 하부 가이드(180,180a)가 현열 열교환기(14) 상측의 전후방에 각각 좁은 영역을 점유하면서 설치되므로 연소열에 의해 하부 가이드(180,180a)가 가열되더라도 응축수와 하부 가이드(180,180a)가 접촉하는 면적과 시간이 종래기술에 비해서 상대적으로 감소하게 되므로 응축수가 재기화하는 비율을 줄일 수 있게 된다.
또한 도 1에 도시된 종래기술에서는 현열 열교환기(14)로부터 잠열 열교환기(15)를 경유하는 연소생성물의 유로가 현열 열교환기(14)의 상부에서 일측으로 모아진 후 상측으로 이동하여 잠열 열교환기(15)의 일측단에서 타측단을 향하여 일방향으로 이동하면서 겹겹이 배치된 열교환 튜브와 열교환핀 사이를 통과하는 과정에서 배기 저항을 많이 받는 문제점이 있었다.
그러나 본 발명에서는 연소생성물이 현열 열교환기(14)로부터 잠열 열교환기(100) 내부 중앙부를 향하여 간섭을 받지 않고 수직 상승한 후에 전후방으로 나뉘어져 전방측 튜브(140) 사이와 후방측 튜브(140a) 사이를 통과하여 비스듬히 이동한 후에 다시 수직 상승하여 배기후드(19)로 배출되므로 종래기술에 비해 연소생성물의 배기 저항을 현저히 감소시킬 수 있는 효과가 있다.
이하에서는 잠열 열교환기(100) 내부에 튜브(140,140a)가 설치되는 구조 및 튜브(140,140a) 내부를 흐르는 열매체의 유로 구조를 설명하기로 한다.
도 5와 도 6은 본 발명에 따른 콘덴싱 보일러의 잠열 열교환기 구조를 보여주는 사시도로서, 도 5는 좌측에서 바라본 사시도, 도 6은 우측에서 바라본 사시도, 도 7은 도 5의 분해 사시도, 도 8은 도 5의 A-A 선 단면도이다.
도 5 내지 도 7을 참조하면, 잠열 열교환기(100) 내부의 전방과 후방에 상하로 이격되어 경사지게 배치되는 튜브(140,140a)는 연소생성물이 통과하는 측면의 폭이 전후 양단의 높이보다 길게 형성되어 그 단면이 납작한 타원형상으로 이루어진 것으로, 이 경우 연소생성물과 튜브(140,140a) 간의 전열 면적이 증대됨과 동시에 연소생성물의 흐름 저항을 감소시킬 수 있는 효과가 있다.
또한 상기 튜브(140,140a)의 외측에는 길이방향(도면에서는 좌우측 방향)으로 소정 간격을 두고 판 형상으로 이루어진 다수개의 열교환핀(130,130a)이 결합된다. 즉, 잠열 열교환기(100)의 전방측에 상하로 배치되는 튜브(140;141,142,143,144,145,146)의 외측에는 그 튜브(140)의 외주면 형상에 대응되는 튜브 삽입홀(131)이 상하로 형성된 다수의 전면 열교환핀(130)이 결합되고, 잠열 열교환기(100)의 후방측에 상하로 배치되는 튜브(140a;141a,142a,143a,144a,145a,146a)의 외측에는 튜브 삽입홀(131a)이 상하로 형성된 다수의 후면 열교환핀(130a)이 결합된다.
그리고 상기 튜브(140,140a)의 좌측단은 각각 이에 대응되는 튜브 삽입홀(121,121a)이 형성된 좌측 엔드플레이트(120)에 결합되고, 상기 튜브(140,140a)의 우측단은 각각 이에 대응되는 튜브 삽입홀(151,151a)이 형성된 우측 엔드플레이트(150)에 결합된다.
또한 상기 좌측 엔드플레이트(120)와 우측 엔드플레이트(150)의 외측에는 상기 튜브(140,140a)의 내부를 흐르는 열매체의 유로가 상기 잠열 열교환기(100) 내부에서 좌,우측으로 교번하여 전환되도록 유도하는 좌측 유로캡(110)과 우측 유로캡(160)이 결합된다.
여기서 상기 좌측 엔드플레이트(120)와 좌측 유로캡(110) 간의 결합과, 상기 우측 엔드플레이트(150)와 우측 유로캡(160) 간의 결합이 용이하도록, 좌측 엔드플레이트(120)는 튜브 삽입홀(121,121a)이 형성된 면의 가장자리부에는 좌측을 향하여 돌출면이 형성되어 그 돌출면으로 둘러싸인 4면의 내측으로 좌측 유로캡(110)이 끼워지게 되고, 상기 우측 엔드플레이트(150)는 튜브 삽입홀(151,151a)이 형성된 면의 가장자리부에는 우측을 향하여 돌출면이 형성되어 그 4면의 내측으로 우측 유로캡(160)이 끼워지도록 구성될 수 있다.
상기 좌측 유로캡(110)은, 입구관(111a)으로 유입된 열매체를 전후방 양측 상부에 구비된 튜브(141,141a)로 분할 공급하는 상부 유로캡(111)과, 전후방 양측 중간부에 상하로 구비되어 튜브(142,143,144,145,142a,143a,144a,145a) 내부를 흐르는 열매체의 유로를 전환하는 중간부 유로캡(112,113,112a,113a)과, 전후방 양측 하부에 구비된 튜브(146,146a)를 통과해 온 열매체를 취합하여 출구관(114a)으로 배출하는 하부 유로캡(114)으로 구성된다.
상기 우측 유로캡(160)은, 전후방 양측 상부에 구비된 튜브(141,142,141a,142a)의 유로를 전환하는 상부 유로캡(161,161a)과, 전후방 양측 중간부에 구비된 튜브(143,144,143a,144a)의 유로를 전환하는 중간부 유로캡(162,162a)과, 전후방 양측 하부에 구비된 튜브(145,146,145a,146a)의 유로를 전환하는 하부 유로캡(163,163a)으로 구성된다.
이와 같은 튜브(140,140a)와 열교환핀(130,130a)과 좌,우측 엔드플레이트(120,150) 및 좌,우측 유로캡(110,160)의 결합구조에 의하면, 도 8에 도시된 바와 같이 잠열 열교환기(100) 내부의 한정된 공간에서 열매체가 흐르는 유로가 화살표로 표시된 바와 같이 좌측에서 우측으로, 그리고 우측에서 좌측으로 교번하여 전환되므로 연소생성물과의 전열 면적과 시간을 증대시킬 수 있어 열교환 효율을 향상시킬 수 있고, 결합구조가 간단하므로 잠열 열교환기(100)의 제작 또한 용이해지는 효과가 있다.

Claims (8)

  1. 버너에서 발생된 연소 현열을 흡수하는 현열 열교환기와, 상기 현열 열교환기에서 열교환을 마친 연소생성물에 포함된 수증기의 잠열을 흡수하는 잠열 열교환기와, 상기 잠열 열교환기를 통과한 연소생성물이 배출되는 배기후드 및 상기 잠열 열교환기에서 생성된 응축수가 배수되는 응축수 배출구를 포함하여 이루어진 콘덴싱 보일러에 있어서,
    상기 버너에서 연소된 연소생성물은 상기 현열 열교환기를 통과하여 상기 잠열 열교환기로 수직 상승한 후, 수평면과 예각을 이루면서 외측으로 비스듬히 하강하여 상기 잠열 열교환기에서 열교환이 이루어진 후, 수직 상승하여 상기 배기후드로 배출되는 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  2. 제1항에 있어서,
    상기 잠열 열교환기의 내측 전후방에는,
    상기 현열 열교환기를 통과하여 수직 상승한 연소생성물의 유로가 수평면과 예각을 이루면서 전후방 또는 좌우 방향으로 나뉘어져 비스듬히 하강하도록 유로를 형성하면서 상기 연소생성물과의 사이에 열교환이 이루어지는 다수의 튜브가 상하 간격을 두고 상기 잠열 열교환기의 전후방 외측을 향하여 하향 경사지게 배치되어 있는 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  3. 제2항에 있어서,
    상기 튜브는 상기 연소생성물이 통과하는 측면의 폭이 전후 양단의 높이보다 길게 형성되어 그 단면이 납작한 타원형상으로 이루어진 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  4. 제2항에 있어서,
    상기 잠열 열교환기 내측의 전후방에 구비된 튜브의 외측에는 상기 튜브의 길이 방향으로 소정 간격을 두고 다수의 열교환핀이 각각 결합되어 있는 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  5. 제2항에 있어서,
    상기 잠열 열교환기의 내측 상부에는 전후방 양단부가 상기 튜브의 경사각에 대응되는 경사면으로 이루어진 상부 가이드가 구비된 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  6. 제2항에 있어서,
    상기 응축수 배출구는 상기 잠열 열교환기의 하부 일측에 구비되고,
    상기 잠열 열교환기의 내측 전후방의 상기 튜브의 하측에는 상기 튜브의 외측면에 고여서 하측으로 낙하하는 응축수를 상기 응축수 배출구 측으로 유도하는 하부 가이드가 구비된 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  7. 제2항 내지 제6항 중 어느 한 항에 있어서,
    상기 튜브의 좌우 양측단은 이에 대응되는 형상의 튜브 삽입홀이 형성된 좌측 엔드플레이트와 우측 엔드플레이트에 각각 결합되고, 상기 좌측 엔드플레이트와 우측 엔드플레이트의 외측에는 상기 튜브 내부를 흐르는 열매체의 유로가 상기 잠열 열교환기 내부에서 좌측에서 우측으로, 그리고 우측에서 좌측으로 교번하여 전환되도록 유도하는 좌측 유로캡과 우측 유로캡이 각각 결합되어 있는 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
  8. 제7항에 있어서,
    상기 좌측 유로캡은, 입구관으로 유입된 열매체를 상기 전후방 양측의 튜브로 분할 공급하는 상부 유로캡과, 전후방 양측에 상하로 구비되어 열매체의 유로를 전환하는 복수의 중간부 유로캡과, 상기 전후방 양측의 튜브를 통과해 온 열매체를 취합하여 출구관으로 배출하는 하부 유로캡의 집합으로 이루어지고,
    상기 우측 유로캡은, 전후방 양측에 상하로 구비되어 열매체의 유로를 전환하는 복수의 유로캡의 집합으로 이루어진 것을 특징으로 하는 콘덴싱 보일러의 잠열 열교환기.
PCT/KR2011/002929 2010-08-12 2011-04-22 콘덴싱 보일러의 잠열 열교환기 WO2012020909A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2013110506/06A RU2523936C1 (ru) 2010-08-12 2011-04-22 Теплообменник скрытой теплоты конденсационного котла
US13/814,002 US20130125838A1 (en) 2010-08-12 2011-04-22 Latent heat exchanger in condensing boiler
CA2807168A CA2807168C (en) 2010-08-12 2011-04-22 Latent heat exchanger in condensing boiler
CN2011800399105A CN103069225A (zh) 2010-08-12 2011-04-22 冷凝式锅炉的潜热式热交换器
EP11816525.7A EP2604944A4 (en) 2010-08-12 2011-04-22 LATEN HEAT EXCHANGER IN A CONDENSATION BOILER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100077878A KR101199621B1 (ko) 2010-08-12 2010-08-12 콘덴싱 보일러
KR10-2010-0077878 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012020909A1 true WO2012020909A1 (ko) 2012-02-16

Family

ID=45567838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002929 WO2012020909A1 (ko) 2010-08-12 2011-04-22 콘덴싱 보일러의 잠열 열교환기

Country Status (7)

Country Link
US (1) US20130125838A1 (ko)
EP (1) EP2604944A4 (ko)
KR (1) KR101199621B1 (ko)
CN (1) CN103069225A (ko)
CA (1) CA2807168C (ko)
RU (1) RU2523936C1 (ko)
WO (1) WO2012020909A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143630A (zh) * 2018-06-05 2022-10-04 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
US12130052B2 (en) 2019-12-30 2024-10-29 Kyungdong Navien Co., Ltd. Heat exchanger unit and method for manufacturing the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173328A1 (en) * 2012-05-15 2013-11-21 Cain Martin Thermal storage condensing boiler or heat exchanger
KR101435901B1 (ko) * 2012-12-26 2014-09-01 주식회사 경동나비엔 복수의 잠열 열교환부를 갖는 콘덴싱 보일러
US9903622B2 (en) 2014-03-25 2018-02-27 Provides Metalmeccanica S.R.L. Compact heat exchanger
KR20160015945A (ko) * 2014-08-01 2016-02-15 (주)귀뚜라미 고효율 친환경 현열 열교환기
US10005976B2 (en) * 2014-10-07 2018-06-26 Pride of the Hills Manufacturing, Inc. Heat exchanger on a fossil fuel processing assembly
RU2684360C2 (ru) * 2014-11-25 2019-04-08 Киунгдонг Навиен Ко., Лтд. Конденсационный котел
US10371413B2 (en) 2015-04-06 2019-08-06 Central Boiler, Inc. Boiler with access to heat exchangers
CA2926064C (en) 2015-04-06 2021-08-31 Dennis Brazier Boiler with access to heat exchangers
EP3093579A1 (en) * 2015-05-12 2016-11-16 I.C.I. CALDAIE S.p.A. Condensing boiler
JP6626662B2 (ja) * 2015-08-28 2019-12-25 パーパス株式会社 熱交換器および熱源機
KR101717097B1 (ko) * 2015-08-28 2017-03-16 주식회사 경동나비엔 열교환기
PT3411635T (pt) * 2016-02-01 2020-03-26 Intergas Heating Assets Bv Aparelho de água quente, descarga de gás de combustão para o mesmo e método para aquecer um fluido
JP6449190B2 (ja) * 2016-03-24 2019-01-09 株式会社ユタカ技研 ガス給湯器
US20170299274A1 (en) * 2016-04-18 2017-10-19 Daesung Celtic Enersys Co., Ltd. Heat exchanger
KR102365698B1 (ko) * 2018-06-05 2022-02-22 주식회사 경동나비엔 콘덴싱 보일러
CN109210791A (zh) * 2018-09-13 2019-01-15 哈尔滨哈锅锅炉容器工程有限责任公司 一种燃气热水锅炉尾部受热面冷凝水排放装置
CN112413899A (zh) * 2020-12-07 2021-02-26 艾欧史密斯(中国)热水器有限公司 冷凝换热器及其热水器
CN118499940B (zh) * 2024-07-22 2024-10-18 中建四局安装工程有限公司 一种用于大型水箱的热泵机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390521B1 (ko) * 2001-02-16 2003-07-04 주식회사 경동보일러 콘덴싱 보일러의 열교환기
KR100391259B1 (ko) * 2001-09-26 2003-07-12 주식회사 경동보일러 가스보일러의 상향 연소식 콘덴싱 방식 열교환기
KR100473083B1 (ko) * 2002-08-21 2005-03-08 주식회사 경동보일러 콘덴싱보일러의 열교환기
JP2007298260A (ja) * 2006-05-08 2007-11-15 Sanden Corp 熱交換器
JP2008002746A (ja) * 2006-06-22 2008-01-10 Kenji Umetsu 高性能空気熱交換器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585458B1 (fr) * 1985-07-25 1987-11-20 Gaz De France Chaudiere a condensation a panache attenue
JP2003343926A (ja) * 2002-05-23 2003-12-03 Kyungdong Boiler Co Ltd コンデンシングガスボイラーの熱交換器配置構造
FR2843189B1 (fr) * 2002-07-30 2004-10-15 Mer Joseph Le "echangeur de chaleur a condensation a double faisceau de tubes"
US6662758B1 (en) * 2003-03-10 2003-12-16 Kyungdong Boiler Co, Ltd. Condensing gas boiler for recollecting condensed latent heat using uptrend combustion
KR200338878Y1 (ko) * 2003-10-07 2004-01-16 대성산업 주식회사 가스보일러용 잠열흡수장치
JP2005321170A (ja) * 2004-05-11 2005-11-17 Noritz Corp 瞬間式加熱装置および給湯装置
RU2278333C2 (ru) * 2004-09-23 2006-06-20 ООО "ОКБ Теплосибмаш" Пароводяной водогрейный котел
JP2007183028A (ja) * 2006-01-05 2007-07-19 T Rad Co Ltd 潜熱回収用熱交換器
US8015950B2 (en) * 2006-04-24 2011-09-13 Rinnai Corporation Single can-type composite heat source machine
KR20090067760A (ko) * 2007-12-21 2009-06-25 주식회사 경동나비엔 상향 연소식 콘덴싱 보일러의 열교환기
KR200448105Y1 (ko) * 2008-05-26 2010-03-15 대성산업 주식회사 가스 보일러용 열교환 장치 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390521B1 (ko) * 2001-02-16 2003-07-04 주식회사 경동보일러 콘덴싱 보일러의 열교환기
KR100391259B1 (ko) * 2001-09-26 2003-07-12 주식회사 경동보일러 가스보일러의 상향 연소식 콘덴싱 방식 열교환기
KR100473083B1 (ko) * 2002-08-21 2005-03-08 주식회사 경동보일러 콘덴싱보일러의 열교환기
JP2007298260A (ja) * 2006-05-08 2007-11-15 Sanden Corp 熱交換器
JP2008002746A (ja) * 2006-06-22 2008-01-10 Kenji Umetsu 高性能空気熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2604944A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143630A (zh) * 2018-06-05 2022-10-04 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
CN115143630B (zh) * 2018-06-05 2023-12-05 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
US11835261B2 (en) 2018-06-05 2023-12-05 Kyungdong Navien Co., Ltd. Heat exchanger unit
US11835262B2 (en) 2018-06-05 2023-12-05 Kyungdong Navien Co., Ltd. Heat exchanger unit
US11879666B2 (en) 2018-06-05 2024-01-23 Kyungdong Navien Co., Ltd. Heat exchanger unit
US12130052B2 (en) 2019-12-30 2024-10-29 Kyungdong Navien Co., Ltd. Heat exchanger unit and method for manufacturing the same

Also Published As

Publication number Publication date
CA2807168A1 (en) 2012-02-16
CN103069225A (zh) 2013-04-24
EP2604944A1 (en) 2013-06-19
CA2807168C (en) 2016-01-19
US20130125838A1 (en) 2013-05-23
EP2604944A4 (en) 2016-06-01
KR20120015627A (ko) 2012-02-22
RU2523936C1 (ru) 2014-07-27
KR101199621B1 (ko) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2012020909A1 (ko) 콘덴싱 보일러의 잠열 열교환기
WO2017099381A1 (ko) 콘덴싱 방식의 연소기기
WO2015141995A1 (ko) 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
WO2016047859A1 (ko) 고효율 판형 열교환기
WO2012053713A1 (ko) 급기 예열기와 폐가스 순환구조를 구비한 연소기기
WO2014104575A1 (ko) 복수의 잠열 열교환부를 갖는 콘덴싱 보일러
WO2014112740A1 (ko) 급기 예열기를 구비한 연소장치
WO2014133261A1 (ko) 급배기 열교환기를 구비한 연소장치
WO2015194785A1 (ko) 저탕식 콘덴싱 보일러
WO2015141992A1 (ko) 열교환기
WO2014065479A1 (ko) 더미 관을 갖는 응축 열교환기
AU2007258214B2 (en) An advanced fired heater unit for use in refinery and petro-chemical applications
WO2012020908A2 (ko) 급기 예열기가 구비된 잠열 열교환기
WO2010147288A1 (ko) 열교환기
WO2014065478A1 (ko) 물집 열교환기
WO2011071247A2 (ko) 연소실이 구비된 열교환기 및 이를 포함하는 연소기기
WO2012070746A1 (ko) 급기공기를 이용한 연소실 냉각구조
WO2023063712A1 (ko) 열교환 장치
WO2016159709A1 (ko) 연소가스 유로가이드가 구비된 기름보일러
WO2016117862A1 (ko) 온수 보일러
WO2023128359A1 (ko) 열교환기
KR100391925B1 (ko) 콘덴싱 보일러의 상향 연소식 열교환기 구조
WO2010147334A2 (ko) 콘덴싱 보일러
CN220417677U (zh) 一种节能冷凝锅炉
KR100437667B1 (ko) 상향연소에 의한 응축잠열 회수 콘덴싱 가스보일러

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039910.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2807168

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13814002

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011816525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011816525

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013110506

Country of ref document: RU

Kind code of ref document: A