[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012008282A1 - ドライエッチング剤及びドライエッチング方法 - Google Patents

ドライエッチング剤及びドライエッチング方法 Download PDF

Info

Publication number
WO2012008282A1
WO2012008282A1 PCT/JP2011/064524 JP2011064524W WO2012008282A1 WO 2012008282 A1 WO2012008282 A1 WO 2012008282A1 JP 2011064524 W JP2011064524 W JP 2011064524W WO 2012008282 A1 WO2012008282 A1 WO 2012008282A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dry etching
etching
silicon
tetrafluoropropene
Prior art date
Application number
PCT/JP2011/064524
Other languages
English (en)
French (fr)
Inventor
智典 梅崎
日比野 泰雄
勇 毛利
覚 岡本
亜紀応 菊池
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP11806613.3A priority Critical patent/EP2595179A4/en
Priority to CN201180034216.4A priority patent/CN103003925B/zh
Priority to US13/808,506 priority patent/US9017571B2/en
Priority to KR1020137003176A priority patent/KR101435490B1/ko
Publication of WO2012008282A1 publication Critical patent/WO2012008282A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a dry etching agent containing 1,1,1,3-tetrafluoropropene and a dry etching method using the same.
  • the dry etching method is a method in which a plasma is generated in a vacuum space to form a fine pattern on a material surface in units of molecules.
  • Patent Document 1 discloses a method of using a reactive gas containing a perfluoroketone having 4 to 7 carbon atoms as a cleaning gas or an etching gas as an alternative to PFCs and HFCs.
  • these decomposition products of perfluoroketone are not necessarily preferable as an etching gas because they contain not only a small amount of PFC having a high GWP but also a substance having a relatively high boiling point.
  • Patent Document 2 discloses a method of using a hydrofluoroether having 2 to 6 carbon atoms as a dry etching gas. Like Patent Document 1, these hydrofluoroethers generally have a high GWP, It was not preferable in terms of the global environment.
  • Patent Document 4 discloses a plasma etching method characterized by using hexafluoro-2-butyne, hexafluoro-1,3-butadiene, hexafluoropropene, or the like as an etching gas.
  • Patent Document 5 a. A mixture comprising an unsaturated fluorocarbon selected from the group consisting of hexafluorobutadiene, octafluoropentadiene, pentafluoropropene and trifluoropropyne, b. Hydrofluoromethane such as monofluoromethane or difluoromethane, c. An inert carrier gas A method of etching an oxide layer on a non-oxide layer made of a nitride layer using a gas is disclosed.
  • Patent Document 6 it is useful to use a chain perfluoroalkyne having 5 or 6 carbon atoms as a plasma reaction gas.
  • Patent Document 7 it is useful as a dry etching gas or a CVD gas.
  • a method for producing a perfluoroalkene compound or the like that is also useful as a raw material is disclosed.
  • Patent Document 8 discloses 1,3,3,3-tetrafluoropropene as an assist gas in laser-assisted etching.
  • Laser-assisted etching is a technology that activates a material thermally with laser light and excites an etchant to etch. Basically, a reactive gas is created by electric energy and reacted with a substrate to form a desired gas. This is a technology that uses a different excitation method from the dry etching that creates the shape.
  • Patent Document 9 discloses a gas containing 2,3,3,3-tetrafluoropropene as an etchant for the silicon oxide film layer.
  • 2,3,3,3-tetrafluoropropene is a substance that has been developed as a refrigerant for car air conditioners. It is a combustible gas having a combustion range at room temperature and in a dry state (in accordance with ASTM E681-04). Measurement).
  • 1,3,3,3-tetrafluoropropene does not show a combustion range in the measurement under the same conditions and is a safer substance.
  • Non-Patent Document 1 discloses that a linear unsaturated compound such as hexafluoropropene or hexafluorobutadiene is used for etching a silicon oxide-based material layer.
  • PFCs and HFCs are regulated substances because of their high GWP, and perfluoroketones, hydrofluoroethers, and hydrofluorovinyl ethers, which are substitutes for them, contain not only a high GWP PFC but also decomposed substances. Therefore, the development of a dry etching agent that has a small influence on the global environment and has the required performance has been demanded.
  • etching performance in the case of plasma etching, for example, F radicals are produced from CF 4 gas and SiO 2 is etched, so that etching is isotropic.
  • plasma etching for example, F radicals are produced from CF 4 gas and SiO 2 is etched, so that etching is isotropic.
  • an etchant having directivity in anisotropic etching rather than isotropic is preferable, and an etchant that has a low environmental impact and is highly economical is desired.
  • the present invention relates to a dry etching agent that has a wide process window by optimizing the molecular structure and gas composition of a gas, and can obtain a good processing shape without using a special apparatus, and a dry etching method using the same
  • the purpose is to provide.
  • the present invention provides the inventions described in [Invention 1] to [Invention 8] below.
  • invention 1 A dry etching agent containing 1,3,3,3-tetrafluoropropene, an additive gas, and an inert gas.
  • Oxidizing or reducing gas is H 2, O 2, O 3 , CO, CO 2, COCl 2, COF 2, CF 3 OF, NO 2, F 2, NF 3, Cl 2, Br 2, I 2, CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , and YFn (wherein , Y represents Cl, Br, or I, n represents an integer, and 1 ⁇ n ⁇ 7.)
  • the dry etching agent according to Invention 2 which is at least one gas selected from the group consisting of:
  • invention 4 The dry etching agent according to invention 1, wherein the inert gas is at least one gas selected from the group consisting of N 2 , He, Ar, Ne, and Kr.
  • invention 7 At least one selected from the group consisting of silicon dioxide, silicon nitride, polycrystalline silicon, amorphous silicon, and silicon carbide using a plasma gas obtained by converting the dry etching agent according to any one of inventions 1 to 6 into plasma.
  • a dry etching method that selectively etches various silicon-based materials.
  • [Invention 8] (A) 1,3,3,3-tetrafluoropropene; (B) at least one gas selected from the group consisting of H 2 , O 2 , CO, and COF 2 ; and Ar, ), (B), and Ar, the volumetric flow ratio is 1 to 45%: 1 to 50%: 5 to 98% (however, the total of the volumetric flow ratios of the respective gases is 100%), and CO 2 A dry etching method for selectively etching at least one silicon-based material selected from the group consisting of silicon, silicon nitride, polycrystalline silicon, amorphous silicon, and silicon carbide.
  • the dry etching agent of the present invention includes 1,3,3,3-tetrafluoropropene (CF 3 CH ⁇ CFH), H 2 , O 2 , O 3 , CO, CO 2 , COCl 2 , CF 3 OF.
  • Y represents Cl, Br, or I
  • n represents an integer, and 1 ⁇ n ⁇ 7
  • Y represents Cl, Br, or I
  • n represents an integer, and 1 ⁇ n ⁇ 7
  • an inert gas such as N 2 , He, or Ar
  • 1,3,3,3-tetrafluoropropene has a structure of CF 3 CH, and CF 3 + is easily formed, and also has a double bond and hydrogen that are easily polymerized in the molecule, which is advantageous for wall protection.
  • anisotropic etching can be achieved.
  • Particularly favorable conditions were also obtained by using specific amounts of additive gas.
  • the process window can be greatly expanded by mixing an oxidizing gas such as oxygen-containing gas and halogen-containing gas and reducing gas in the etchant, and the side etch rate can be increased without any special substrate excitation operation. It can also be used for processing that requires a small and high aspect ratio.
  • 1,3,3,3-tetrafluoropropene has one unsaturated double bond in the molecule, so it is highly decomposable by OH radicals in the atmosphere and contributes to global warming. Since it is remarkably lower than PFCs and HFCs such as CF 4 and CF 3 H, when it is used as a dry etching agent, there is an effect that the load on the environment is light.
  • the etching agent of the present invention can be used practically without any problem, and is very advantageous both industrially and globally.
  • the dry etching agent of the present invention includes 1,3,3,3-tetrafluoropropene represented by the chemical formula CF 3 CH ⁇ CFH.
  • CF 3 CH ⁇ CFH and other one or more organic compounds or inorganic compounds are mixed and used as an additive gas and an inert gas (details will be described later, “Additional gas” refers to an oxidizing gas such as O 2 or F 2 or a reducing gas such as H 2 or CO.
  • the gas is referred to as “oxidizing gas”, “oxygen-containing gas”, Sometimes referred to as “halogen-containing gas” or “reducing gas”).
  • halogen-containing gas or “reducing gas”.
  • stereoisomers exist for 1,3,3,3-tetrafluoropropene.
  • a trans isomer (E isomer) and a cis isomer (Z isomer) any isomer or a mixture of both can be used in the present invention.
  • the 1,3,3,3-tetrafluoropropene used in the present invention can be produced by a conventionally known method.
  • the present inventors relate to a process for producing 1,3,3,3-tetrafluoropropene in Japanese Patent No. 3465865 or Japanese Patent No. 3821514, which can be obtained on an industrial scale.
  • 3-Trifluoropropene can be obtained by the action of HF in the presence of a gas phase fluorination catalyst.
  • Japanese Patent No. 3465865 discloses a method capable of catalytically decomposing 1,1,3,3,3-pentafluoropropane in the gas phase.
  • 1,3,3,3-tetrafluoropropene has a double bond in the molecule, and this double bond is connected to the trifluoromethyl group (CF 3 group) by a single bond, so that CF with high etching efficiency is obtained. While 3 + ions are frequently generated, the double bond portion is characterized by being polymerized and deposited.
  • the F / C ratio is preferably as close to 1 as possible to prevent non-selective etching of the side wall of the material to be etched by polymerizing carbon atoms in the etching agent. Since 1,3,3,3-tetrafluoropropene used in the present invention has a small F / C ratio in the molecule of 1.33 and the side wall of the material to be etched is easily protected by polymer deposition, It is considered that the selectivity of the anisotropic etching is improved with respect to the isotropic etching by. In order to lower the F / C ratio, fluorinated propenes containing hydrogen are preferred.
  • fluorinated propenes examples include 1,2,3,3,3-pentafluoropropene, 1,1,3,3,3-pentafluoropropene, 3,3,3-trifluoropropene, and the like.
  • CF 3 CH ⁇ CFH which is a target in the present invention, is preferable.
  • the etching agent of the present invention can be used under various dry etching conditions, and various additives can be added depending on the physical properties, productivity, fine accuracy, etc. of the target film.
  • the etching agent of the present invention contains 1 to 45% by volume of 1,3,3,3-tetrafluoropropene, added gas (oxidizing gas, oxygen-containing gas, halogen-containing gas, reducing gas) and inert. It is preferable to mix the gases in a volume% range described later.
  • inert gas examples include N 2 , He, Ar, Ne, Kr, and the like. These inert gases can also be used as diluents, but in particular Ar, higher etching rates can be obtained due to the synergistic effect with 1,3,3,3-tetrafluoropropene.
  • the amount of inert gas added depends on the shape, performance, and target membrane characteristics of the device such as output and displacement, but is preferably 1 to 50 times the flow rate of 1,3,3,3-tetrafluoropropene.
  • an oxidizing gas when it is desired to increase the etching rate.
  • O 2 , COF 2 , F 2 , NF 3 , and Cl 2 are preferable, and O 2 is particularly preferable because the metal etching rate can be further accelerated.
  • 1 type or 2 or more types can also be mixed and added, and those skilled in the art can adjust suitably.
  • the amount of oxidizing gas added depends on the shape and performance of the device, such as output, and the characteristics of the target film, but is usually 1/10 to 30 times the flow rate of 1,3,3,3-tetrafluoropropene.
  • the ratio is preferably 1/10 to 20 times. If added in an amount exceeding 30 times, the excellent anisotropic etching performance of 1,3,3,3-tetrafluoropropene may be impaired.
  • the aforementioned flow rate of the oxidizing gas is less than 1/10, the deposits in which 1,3,3,3-tetrafluoropropene is polymerized may remarkably increase.
  • the oxidizing gas particularly when oxygen is added, the etching rate of the metal can be selectively accelerated. That is, the selectivity of the etching rate of the metal with respect to the oxide can be significantly improved, and the metal can be selectively etched.
  • an inert gas such as N 2 , He, Ar, Ne, or Kr is added together with the oxidizing gas.
  • one of the preferred embodiments of the dry etching agent of the present invention contains 1,3,3,3-tetrafluoropropene, oxidizing gas, and inert gas, and is preferable in the etching agent.
  • the composition is shown below together with volume percent. In addition, the sum total of the volume% of each gas is 100%.
  • the amount of these compounds to be added preferably varies the F / C ratio so as not to inhibit selective etching, and is preferably 0.01 to 2 times the volume of 1,3,3,3-tetrafluoropropene.
  • the compounds other than 1,3,3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene and the like do not change the F / C ratio, but protect the side walls. Can be used in combination.
  • the amount of reducing gas added is too large, the amount of F radicals acting on the etching may be significantly reduced and productivity may be reduced.
  • the etching rate of SiO 2 does not change, but the etching rate of Si decreases and the selectivity increases. Therefore, SiO 2 is selected with respect to the underlying silicon. It is possible to etch.
  • the dry etching agent of the present invention is formed of B, P, W, Si, Ti, V, Nb, Ta, Se, Te, Mo layered on a substrate such as silicon wafer, metal plate, glass, single crystal, and polycrystalline.
  • semiconductor materials silicon, silicon dioxide, silicon nitride, silicon carbide, silicon oxyfluoride or silicon carbide silicon-based material, tungsten, rhenium, their silicides, titanium or titanium nitride, ruthenium or ruthenium silicide, ruthenium nitride, Examples thereof include tantalum, tantalum oxide, oxytantalum fluoride, hafnium, hafnium oxide, oxyhafnium silicide, and hafnium zirconium oxide.
  • the etching method using the dry etching agent of the present invention is not particularly limited, and various etching methods such as reactive ion etching (RIE), electron cyclotron resonance (ECR) plasma etching, microwave etching, and reaction conditions are used. be able to.
  • the etching method used in the present invention is performed by generating a plasma of a target propene in an etching processing apparatus and etching a predetermined portion of a target workpiece in the apparatus. For example, in semiconductor manufacturing, a silicon-based oxide film or silicon nitride film is formed on a silicon wafer, a resist having a specific opening is applied on top, and the silicon-based oxide or silicon nitride film is removed. The resist opening is etched.
  • the etching method using the dry etching agent of the present invention is a structure in which mechanical element parts, sensors, actuators, and electronic circuits are laminated on a single silicon substrate, glass substrate, organic material, etc., so-called micro electro mechanical system (MEMS; can be applied to the etching during the manufacture of the substantially) the M icro E lectro M echanical S ystems . Also, by applying the method of the present invention, it is possible to manufacture semiconductors in existing products such as magnetic recording heads, pressure sensors, and acceleration sensors using MEMS.
  • MEMS micro electro mechanical system
  • a high-frequency induction type or microwave type apparatus is preferably used.
  • etching it is preferable to perform the etching at a gas pressure of 0.133 to 133 Pa in order to efficiently perform anisotropic etching.
  • the pressure is lower than 0.133 Pa, the etching rate is slow.
  • the pressure exceeds 133 Pa, the resist selectivity may be impaired.
  • Etching can be performed with the same volume ratio of the volume flow rate of 1,3,3,3-tetrafluoropropene, additive gas, and inert gas when etching is performed.
  • gas flow rate to be used depends on the size of the etching apparatus, those skilled in the art can appropriately adjust it according to the apparatus.
  • the temperature at which etching is performed is preferably 300 ° C. or lower, and is preferably 240 ° C. or lower for performing anisotropic etching. If the temperature exceeds 300 ° C., the tendency of the etching to proceed isotropic is increased, and the required processing accuracy cannot be obtained, and the resist is remarkably etched, which is not preferable.
  • the reaction time for performing the etching treatment is not particularly limited, but is generally about 5 to 30 minutes. However, since it depends on the progress after the etching treatment, it is preferable for those skilled in the art to adjust appropriately while observing the state of etching.
  • the selectivity of the etching rate between silicon and silicon oxide film for example, when processing contact holes is improved by mixing with the reducing gas described above and optimizing pressure, flow rate, temperature, etc. You can make it.
  • Examples of applying the dry etching agent of the present invention to contact hole processing and etching the interlayer insulating film (SiO 2 ) or silicon nitride film are shown in [Example 1] to [Example 10].
  • FIG. 1 Schematic diagram of the experimental apparatus used in this example is shown in FIG. 1
  • the pressure in the chamber 1 is set to 2 Pa, and the process gas is supplied from the high frequency power source 3 (13.56 MHz, 0.22 W / cm 2 ).
  • the active tumor produced by exciting was supplied to the sample 8 placed on the lower electrode 4 and etched.
  • a SiO 2 film or silicon nitride film having a thickness of 5 ⁇ m was formed on a single crystal silicon wafer, and a resist provided with an opening having a line width of 0.3 ⁇ m was applied on the film.
  • C 4 F 6 , CF 4 , F 2 and trans-1,3,3,3-tetrafluoropropene (abbreviated as 1234ze (E)) or 1234ze (E) and 2,3,3 Etching was performed for 30 minutes at a process pressure of 2 Pa with each of a mixed gas (volume ratio 80/20) of 3,3-tetrafluoropropene (abbreviated as 1234yf) and a mixed gas of oxygen.
  • the etching test results are shown in Table 1.
  • the dry etching agents of [Example 1], [Example 2], [Example 5], [Example 7], and [Example 9] according to the present invention are [Comparative Example]. 1], [Comparative Example 2], [Comparative Example 5], [Comparative Example 6], [Comparative Example 9], and [Comparative Example 11], compared with CF 4 , C 4 F 6 and F 2 , SiO 2 Compared to 2 , it has a high aspect ratio and low side etch rate, and a good contact hole processing shape is obtained.
  • the dry etching agents of [Example 3], [Example 4], [Example 6], [Example 8] and [Example 10] according to the present invention are [Comparative Example 3] and [Comparative Example 4].
  • the silicon nitride has a high aspect ratio, low It has a side etch rate, and a good contact hole processed shape is obtained.
  • the mixed gas of 1,1,1,3-tetrafluoropropene, an additive gas, and an inert gas targeted in the present invention can be used as a dry etching agent.
  • the etching method using the same can also be used as a semiconductor manufacturing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 本発明のドライエッチング剤は、(A)1,3,3,3-テトラフルオロプロペンと、(B)H2、O2、CO、O3、CO2、COCl2、CF3OF、COF2、NO2、F2、NF3、Cl2、Br2、I2、CH4、C22,C24,C26、C34、C36、C38、HI、HBr、HCl、NO、NH3、及びYFn(式中、YはCl、Br、又はIを表し、nは整数を表し、1≦n≦7である。)からなる群より選ばれる少なくとも1種の添加ガスと、(C)不活性ガスを含む。該ドライエッチング剤は、地球環境に対する影響が小さく、飛躍的にプロセスウインドウを広げることができ、特殊な基板の励起操作等なしにサイドエッチ率が小さく高アスペクト比が要求される加工にも対応できる。

Description

ドライエッチング剤及びドライエッチング方法
 本発明は、1,1,1,3-テトラフルオロプロペンを含むドライエッチング剤、及びそれを用いたドライエッチング方法に関する。
 今日、半導体製造においては、極めて微細な処理技術が求められており、湿式法に代わりドライエッチング法が主流になっている。ドライエッチング法は、真空空間において、プラズマを発生させて、物質表面上に微細なパターンを分子単位で形成させる方法である。
 二酸化ケイ素(SiO2)等の半導体材料のエッチングにおいては、下地材として用いられるシリコン、ポリシリコン、チッ化ケイ素等に対するSiO2のエッチング速度を大きくするため、エッチング剤として、CF4、CHF3、C26、C38、C48等のパーフルオロカーボン(PFC)類やハイドロフルオロカーボン(HFC)類が用いられてきた。これらのPFC類やHFC類は、いずれも大気寿命の長い物質であり、高い地球温暖化係数(GWP)を有していることから京都議定書(COP3)において排出規制物質となっている。半導体産業においては、経済性が高く、微細化が可能な低GWPの代替物質が求められてきた。
 そこで、特許文献1には、PFC類やHFC類の代替物質として、4~7個の炭素原子を有するパーフルオロケトンを含有する反応性ガスをクリーニングガスやエッチングガスとして用いる方法が開示されている。しかしながら、これらのパーフルオロケトンの分解物質には少なからず高GWPのPFCが含まれることや、沸点が比較的高い物質が含まれることから、必ずしもエッチングガスとして好ましくなかった。
 特許文献2には、2~6個の炭素原子を有するハイドロフルオロエーテルをドライエッチングガスとして用いる方法が開示されているが、特許文献1と同様、これらのハイドロフルオロエーテルについても総じてGWPが高く、地球環境的には好ましくなかった。
 このような背景の下、更なる低GWPを有し、かつ工業的にも製造が容易な化合物の開発が求められてきており、分子内に二重結合、三重結合を有する不飽和フルオロカーボンのエッチング用途での使用が検討されてきた。
 これに関連する従来技術として、特許文献3にはCa2a+1OCF=CF2を含むエーテル類、CF3CF=CFH、CF3CH=CF2等のフッ素化オレフィン類をSi膜、SiO2膜、Si34膜、または高融点金属シリサイト膜をエッチングする方法が開示されている。
 また、特許文献4に、ヘキサフルオロ-2-ブチン、ヘキサフルオロ-1,3-ブタジエンおよびヘキサフルオロプロペン等をエッチングガスとして用いることを特徴とするプラズマエッチング方法が開示されている。
 特許文献5には、a.ヘキサフルオロブタジエン、オクタフルオロペンタジエン、ペンタフルオロプロペン及びトリフルオロプロピンからなる群より選ばれる不飽和フルオロカーボン、b.モノフルオロメタン又はジフルオロメタン等のヒドロフルオロメタン、c.不活性なキャリアーガス、を含む混合ガスを用いて窒化物層からなる非酸化物層上の酸化物層をエッチングする方法が開示されている。
 また、特許文献6には、炭素数5または6の鎖状パーフルオロアルキンをプラズマ反応ガスとして用いることが、特許文献7では、ドライエッチングガスやCVDガスとして有用であり、また、含フッ素ポリマーの原料としても有用なパーフルオロアルケン化合物等の製造方法が開示されている。
 特許文献8には、レーザアシストエッチングにおいてアシストガスとして1,3,3,3-テトラフルオロプロペンが開示されている。レーザアシストエッチングはレーザ光によって材料を熱的に活性化するとともにエッチャントを励起してエッチングする技術であり、基本的には、電気エネルギーによって反応性の気体をつくりだし、基板と反応させて、所望の形状をつくるドライエッチングとは励起方法が異なる技術である。
 また、特許文献9において、シリコン酸化膜層に対するエッチング剤として、2,3,3,3-テトラフルオロプロペンを含むガスが開示されている。尚、2,3,3,3-テトラフルオロプロペンはカーエアコン用冷媒としても開発されている物質であり、常温、乾燥状態で燃焼範囲を有する可燃性ガス(ASTM E681-04に準じた方法で測定)である。一方、1,3,3,3-テトラフルオロプロペンは同条件の測定において燃焼範囲を示さず、より安全性の高い物質である。
 更に、非特許文献1では、ヘキサフルオロプロペン、ヘキサフルオロブタジエン等の直鎖不飽和化合物を、酸化シリコン系材料層のエッチングに用いることが開示されている。
特表2004-536448号公報 特開平10-140151号公報 特開平10-223614号公報 特開平9-191002号公報 特表2002-530863号公報 特開2003-282538号公報 特開2009-269892号公報 米国公開2008/191163号公報 国際公開2009/122771号公報
J.Appl.phys.Vol.42,5759-5764頁,2003年
 PFC類やHFC類はGWPが高いため規制対象物質であり、それらの代替物質であるパーフルオロケトン類、ハイドロフルオロエーテル類やハイドロフルオロビニルエーテル類は、分解物質に少なからず高GWPのPFCが含まれることや製造が難しく経済的でないことから、地球環境に対する影響が小さく、かつ必要とされる性能を有するドライエッチング剤の開発が求められている。
 エッチング性能については、プラズマエッチングの場合、例えばCF4のガスからFラジカルを作り、SiO2をエッチングすると等方性にエッチングされる。微細加工が要求されるドライエッチングにおいては、等方性よりも異方性エッチングに指向性をもつエッチング剤が好ましく、さらに地球環境負荷が小さく、かつ経済性の高いエッチング剤が望まれている。
 また、これまでのエッチングガスを用いる技術では特許文献5に記載のような複雑な工程や装置、限られた温度条件や基板、ガスへの振動付加等の操作が必要であり、プロセスウインドウが狭いという問題があった。
 本発明は、ガスの分子構造及びガス組成を好適化することにより、プロセスウインドウが広く、特殊な装置を使用することなく良好な加工形状が得られるドライエッチング剤、及びそれを用いたドライエッチング方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、ドライエッチングにおいて異方性エッチングに好適で、良好な加工形状が得られ、かつ地球環境への影響がより小さい代替物質として1,3,3,3-テトラフルオロプロペン(CF3CH=CFH)を見出した。
 すなわち、本発明は、以下の[発明1]~[発明8]に記載した発明を提供する。
 [発明1]
 1,3,3,3-テトラフルオロプロペン、添加ガス、及び不活性ガスを含むドライエッチング剤。
 [発明2]
 添加ガスが酸化性又は還元性ガスである、発明1に記載のドライエッチング剤。
 [発明3]
 酸化性又は還元性ガスがH2、O2、O3、CO、CO2、COCl2、COF2、CF3OF、NO2、F2、NF3、Cl2、Br2、I2、CH4、C22、C24、C26、C34、C36、C38、HF、HI、HBr、HCl、NO、NH3、及びYFn(式中、YはCl、Br、又はIを表し、nは整数を表し、1≦n≦7である。)からなる群より選ばれる少なくとも1種のガスである、発明2に記載のドライエッチング剤。
 [発明4]
 不活性ガスがN2、He、Ar、Ne、及びKrからなる群より選ばれる少なくとも1種のガスである、発明1に記載のドライエッチング剤。
 [発明5]
 1,3,3,3-テトラフルオロプロペンの含有率が1~45体積%である、発明1に記載のドライエッチング剤。
 [発明6]
 CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C3ClF3H、C48、C46、C58、及びC510からなる群より選ばれる少なくとも1種のガスをさらに含む、発明1乃至発明5の何れかに記載のドライエッチング剤。
 [発明7]
 発明1乃至発明6の何れかに記載のドライエッチング剤をプラズマ化して得られるプラズマガスを用いて、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン、及び炭化シリコンからなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングするドライエッチング方法。
 [発明8]
 (A)1,3,3,3-テトラフルオロプロペンと、(B)H2、O2、CO、及びCOF2からなる群より選ばれる少なくとも1種以上のガスと、Arを用い、(A)、(B)、及びArの体積流量比をそれぞれ1~45%:1~50%:5~98%(但し、各々のガスの体積流量比の合計は100%である。)とし、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン及び炭化シリコンからなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングするドライエッチング方法。
 前述の通り、1,1,1,2,3-ペンタフルオロプロペン、ヘキサフルオロ-2-ブチン、ヘキサフルオロ-1,3-ブタジエン、ヘキサフルオロプロペン等をエッチングガスとして用いることは既に知られている。これらのフッ素化オレフィン化合物はそれ自身、多くのフッ素原子を持ち、酸化シリコン系材料に対し高いエッチング速度を有することからも、一見好ましい方法ではあるが、複数の二重結合もしくは三重結合部位を持つ為、これらの化合物を製造するには幾分困難であった。
 また、本発明の対象とする化合物の類似化合物である1,1,1,2,3-ペンタフルオロプロペンについて特許文献3に開示されているが、実際にエッチングを行った実施例の記載がされておらず、本発明の対象とする化合物が、はたして高い選択比を持ち、かつ各種材料に対し、工業的に採用し得る程度のエッチング速度を有するのかどうか、不明であった。
 一方、本発明のドライエッチング剤は、1,3,3,3-テトラフルオロプロペン(CF3CH=CFH)に、H2、O2、O3、CO、CO2、COCl2、CF3OF、COF2、NO2、F2、NF3、Cl2、CH4、C22、C24、C26、C34、C36、C38、HF、HI、HBr、HCl、NO、NH3、及びYFn(式中、YはCl、Br、又はIを表し、nは整数を表し、1≦n≦7である。)等の添加ガス、及びN2、He、Ar等の不活性ガスを添加した混合ガスからなる。1,3,3,3-テトラフルオロプロペンを用い、特定の添加ガス及び特定の不活性ガスを共存させながらエッチングを行うことで、シリコン系材料層に対し選択性が高く、かつ高いエッチング速度で効率よくエッチングできる。1,3,3,3-テトラフルオロプロペンはCF3CHの構造を含み、CF3 +が形成されやすく、しかも分子中に高分子化しやすい二重結合および水素を有するため、壁保護に有利であり、異方性エッチングを達成することができる。添加ガスを特定の量を用いることで、特に好ましい条件も得た。特に、エッチング剤に含酸素ガス、含ハロゲンガス等の酸化性ガス、還元性ガスを混合することにより飛躍的にプロセスウインドウを広げることができ、特殊な基板の励起操作等なしにサイドエッチ率が小さく高アスペクト比が要求される加工にも対応できる。また、1,3,3,3-テトラフルオロプロペンは、分子内に1個の不飽和二重結合を有するため、大気中でのOHラジカル等による分解性が高く、地球温暖化への寄与もCF4やCF3H等のPFC類やHFC類より格段に低いことから、ドライエッチング剤とした場合、環境への負荷が軽いという効果を奏す。
 このように、本発明のエッチング剤は、実用的にも支障なく使用することができ、工業的にも地球環境的にも非常に優位性のあるものである。
本発明で用いた実験装置の概略図である。 エッチング処理により得られる、シリコンウェハ上の開口部を示す図である。
 以下、本発明のドライエッチング剤について詳細に説明する。
 本発明のドライエッチング剤は、化学式CF3CH=CFHで表される1,3,3,3-テトラフルオロプロペンを含む。具体的には、CF3CH=CFHと、他の1種または2種以上の有機化合物または無機化合物を添加ガス及び不活性ガスとして混合して用いることを特徴とする(詳細は後述するが、「添加ガス」とは、O2、F2等の酸化性ガス、若しくはH2、CO等の還元性ガスを示し、本明細書で当該ガスを「酸化性ガス」、「含酸素ガス」、「含ハロゲンガス」、「還元性ガス」と言うことがある)。尚、1,3,3,3-テトラフルオロプロペンに関しては、立体異性体が存在する。トランス体(E体)とシス体(Z体)を含むが、本発明においていずれかの異性体もしくは両者の混合物として用いることができる。
 本発明で用いる1,3,3,3-テトラフルオロプロペンは従来公知の方法で製造することができる。例えば、本発明者らは、1,3,3,3-テトラフルオロプロペンの製造法に関し、特許第3465865号または特許第3821514号にて、工業的規模で得られる1-クロロ-3,3,3-トリフルオロプロペンを気相フッ素化触媒存在下、HFを作用させることにより得ることができる。また、特許第3465865号に、1,1,3,3,3-ペンタフルオロプロパンを気相にて触媒的に分解し得る方法を開示している。
 1,3,3,3-テトラフルオロプロペンは、二重結合を分子中に有し、この二重結合が単結合によりトリフルオロメチル基(CF3基)とつながることで、エッチング効率の高いCF3 +イオンが高頻度で発生する一方、二重結合部分は高分子化して堆積するという特徴をもつ。
 エッチング剤中の炭素原子が高分子化して被エッチング材の側壁の非選択的なエッチングを防御するためF/C比はできるだけ1に近づくことが好ましい。本発明に使用する1,3,3,3-テトラフルオロプロペンは、分子中のF/C比が1.33と小さく、被エッチング材の側壁が高分子の堆積により保護されやすいため、Fラジカルによる等方的エッチングに対し、異方性エッチングの選択性を向上すると考えられる。F/C比を下げるには水素を含むフッ素化プロペン類が好ましい。このようなフッ素化プロペン類としては、1,2,3,3,3-ペンタフルオロプロペン、1,1,3,3,3-ペンタフルオロプロペン、3,3,3-トリフルオロプロペン等が挙げられるが、F/C比や燃焼性等の観点から、本発明で対象とするCF3CH=CFHが好ましい。
 本発明のエッチング剤は、各種ドライエッチング条件下で使用可能であり、対象膜の物性、生産性、微細精度等によって、種々の添加剤を加えることが可能である。
 本発明のエッチング剤には、1,3,3,3-テトラフルオロプロペンを1~45体積%含有させ、添加ガス(酸化性ガス、含酸素ガス、含ハロゲンガス、還元性ガス)及び不活性ガスをそれぞれ後述する体積%の範囲で混合させることが好ましい。
 不活性ガスとしてはN2、He、Ar、Ne、Kr等が挙げられる。これらの不活性ガスは希釈剤としても使用可能であるが、特にArでは1,3,3,3-テトラフルオロプロペンとの相乗効果によって、より高いエッチングレートが得られる。
 不活性ガスの添加量は出力、排気量等の装置の形状、性能や対象膜特性に依存するが、1,3,3,3-テトラフルオロプロペンの流量の1~50倍が好ましい。
 生産性を上げるために、エッチング速度を上げたい時は、酸化性ガスを添加することが好ましい。具体的には、O2、O3、CO、CO2、COCl2、COF2、NO2等の含酸素ガスや、F2、NF3、Cl2、Br2、I2、YFn(Y=Cl、Br、I、1≦n≦7)等の含ハロゲンガスが挙げられる。この中でも、金属のエッチング速度を更に加速することができることから、O2、COF2、F2、NF3、Cl2が好ましく、O2が特に好ましい。当該ガスについては、1種類、もしくは2種類以上を混合して添加することもでき、当業者が適宜調整することができる。
 酸化性ガスの添加量は出力等の装置の形状、性能や対象膜の特性に依存するが、通常、1,3,3,3-テトラフルオロプロペンの流量に対し1/10~30倍であり、好ましくは、1/10~20倍である。もし、30倍を超える量で添加する場合、1,3,3,3-テトラフルオロプロペンの優れた異方性エッチング性能が損なわれることがある。前述した酸化性ガスの流量が1/10より少ない場合には、1,3,3,3-テトラフルオロプロペンが高分子化した堆積物が著しく増加することがある。酸化性ガスとしては、特に酸素を添加すると選択的に金属のエッチングレートを加速することが可能となる。すなわち、酸化物に対する金属のエッチング速度の選択比を著しく向上でき、金属の選択エッチングが可能となる。
 尚、本発明では、酸化性ガスと共に、N2、He、Ar、Ne、Kr等の不活性ガスを添加する。
 このように、本発明のドライエッチング剤の好ましい実施形態の1つは、1,3,3,3-テトラフルオロプロペン、酸化性ガス、及び、不活性ガスを含むものであるが、当該エッチング剤における好ましい組成を、体積%と共に以下に示す。尚、各ガスの体積%の合計は100%である。
 例えば、1,3,3,3-テトラフルオロプロペン、及び酸化性ガス、及び、不活性ガスを共存させる場合の体積%は、それぞれ当該プロペン:酸化性ガス:不活性ガス=1~45%:1~50%:5~98%とすることが好ましく、さらに、4~40%:4~45%:15~92%とすることが特に好ましい。酸化性ガスまたは不活性ガスがそれぞれ2種類以上混在している場合は、各々の体積比が前述の割合になるように調整すると良い。
 また、CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C3ClF3H、C48、C46、C58、C510等のガスは、エッチングガスのF/C比を変動することができるため、本発明のドライエッチング剤に好適に用いられる。これらの化合物の添加量は、選択的エッチングを阻害しないようにF/C比を変動することが好ましく、1,3,3,3-テトラフルオロプロペンに対し0.01~2体積倍が望ましい。1,3,3,3-テトラフルオロプロペン以外の化合物のうち、2,3,3,3-テトラフルオロプロペン等(C342)は、F/C比を変動しないが、側壁保護等に影響するため組み合わせて用いることができる。
 また、等方的なエッチングを促進するFラジカル量の低減を所望するときは、CH4、C22、C24、C26、C34、C36、C38、HF、HI、HBr、HCl、NO、NH3、H2に例示される還元性ガスの添加が有効である。
 還元性ガスの添加量が多すぎる場合には、エッチングに働くFラジカルが著しく減量して、生産性が低下することがある。特に、H2、C22を添加するとSiO2のエッチング速度は変化しないのに対して、Siのエッチング速度は低下し、選択性が上がることから、下地のシリコンに対してSiO2を選択的にエッチングすることが可能である。
 次に、本発明のドライエッチング剤を用いたエッチング方法について説明する。
 本発明のドライエッチング剤は、シリコンウェハ、金属板、硝子、単結晶、多結晶等の基板上に重層した、B、P、W、Si、Ti、V、Nb、Ta、Se、Te、Mo、Re、Os、Ru、Ir、Sb、Ge、Au、Ag、As、Cr及びその化合物、具体的には、酸化物、窒化物、炭化物、フッ化物、オキシフッ化物、シリサイド及びこれらの合金のエッチング等、各種の被加工物に適用可能である。
 特に、半導体材料に対して有効に適用できる。半導体材料として、シリコン、二酸化シリコン、窒化シリコン、炭化シリコン、酸化フッ化シリコンまたは炭化酸化シリコンのシリコン系材料、タングステン、レニウム、それらのシリサイド、チタンあるいは窒化チタン、ルテニウムあるいはルテニウムシリサイド、ルテニウムナイトライド、タンタル、タンタルオキサイド、オキシタンタルフルオライド、ハフニム、ハフニウムオキサイド、オキシハフニウムシリサイド、ハフニムジルコニムオキサイドを挙げることができる。
 また、本発明のドライエッチング剤を用いたエッチング方法は、反応性イオンエッチング(RIE)、電子サイクロトロン共鳴(ECR)プラズマエッチング、マイクロ波エッチング等の各種エッチング方法、並びに反応条件は特に限定せず用いることができる。本発明で用いるエッチング方法は、エッチング処理装置内で対象とするプロペン類のプラズマを発生させ、装置内にある対象の被加工物の所定部位に対してエッチングすることにより行う。例えば半導体の製造において、シリコンウェハ上にシリコン系酸化物膜または窒化珪素膜を成膜し、特定の開口部を設けたレジストを上部に塗布し、シリコン系酸化物または窒化珪素膜を除去するようにレジスト開口部をエッチングする。
 本発明のドライエッチング剤を用いたエッチング方法は、機械要素部品、センサー、アクチュエータ、電子回路を一つのシリコン基板、ガラス基板、有機材料等の上に積層した構造、いわゆる微小電気機械システム(MEMS;icro lectro echanical ystemsの略)の製造時におけるエッチングにも適用できる。また、本発明の方法を応用することにより、MEMSを利用した磁気記録ヘッド、圧力センサー、加速度センサー等の既存製品における半導体の製造も可能となる。
 エッチングを行う際のプラズマ発生装置に関しては、特に限定はないが、例えば、高周波誘導方式及びマイクロ波方式の装置等が好ましく用いられる。
 エッチングを行う際の圧力は、異方性エッチングを効率よく行うために、ガス圧力は0.133~133Paの圧力で行うことが好ましい。0.133Paより低い圧力ではエッチング速度が遅くなり、一方、133Paを超える圧力ではレジスト選択比が損なわれることがある。
 エッチングを行う際の1,3,3,3-テトラフルオロプロペン、及び、添加ガス、及び、不活性ガスそれぞれの体積流量比率は、前述した体積%と同じ比率でもってエッチングを行うことができる。
 また、使用するガス流量は、エッチング装置のサイズに依存する為、当業者がその装置に応じて適宜調整することができる。
 また、エッチングを行う際の温度は300℃以下が好ましく、特に異方性エッチングを行うためには240℃以下とすることが望ましい。300℃を超える高温では等方的にエッチングが進行する傾向が強まり、必要とする加工精度が得られないこと、また、レジストが著しくエッチングされるために好ましくない。
 エッチング処理を行う反応時間は、特に限定はされないが、概ね5分~30分程度である。しかしながらエッチング処理後の経過に依存する為、当業者がエッチングの状況を観察しながら適宜調整するのが良い。
 尚、前述した還元性ガス等と混合して使用したり、圧力、流量、温度等を最適化することにより、例えばコンタクトホールの加工時のシリコンとシリコン酸化膜とのエッチング速度の選択性を向上させたりすることができる。
 以下、実施例により本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。
 本発明のドライエッチング剤をコンタクトホール加工に適用し、層間絶縁膜(SiO2)または窒化珪素膜をエッチングした例を[実施例1]~[実施例10]に示す。また、比較例としてパーフルオロカーボンであるCF4やF2、そしてジオレフィンであるC46(CF2=CF-CF=CF2)をそれぞれ使用した場合を[比較例1]~[比較例12]として示す。
 本実施例に用いる実験装置の概略図を図1に示す。
 チャンバー1内の上部電極5に接続されたガス導入口6からプロセスガスを導入後、チャンバー1内圧力を2Paに設定し、高周波電源3(13.56MHz、0.22W/cm2)によりプロセスガスを励起させ生成した活性腫を、下部電極4上に設置した試料8に対し供給しエッチングを行った。
 試料8としては、単結晶シリコンウェハ上にSiO2膜または窒化珪素膜を5μm成膜し、膜上に線幅0.3μmの開口部を設けたレジストを塗布したものを用いた。
 試料8に対して、C46、CF4、F2、並びにトランス-1,3,3,3-テトラフルオロプロペン(1234ze(E)と略す)、または1234ze(E)と2,3,3,3-テトラフルオロプロペン(1234yfと略す)との混合ガス(体積比80/20)の各々と酸素の混合ガスにてプロセス圧力2Paにてエッチングを30分間行った。
 エッチング処理後、シリコンウェハ断面をSEM観察することで、エッチング速度、アスペクト比及びサイドエッチ(側壁の削れ量)の開口部線幅との比率を比較した。サイドエッチ率R(%)は図2に示すように、R=(a/b)×100で表わされる。エッチング試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明に係る[実施例1]、[実施例2]、[実施例5]、[実施例7]、[実施例9]のドライエッチング剤は、[比較例1]、[比較例2]、[比較例5]、[比較例6]、[比較例9]、[比較例11]に示すCF4、C46,F2と比較して、SiO2に対し高アスペクト比、低サイドエッチ率であり、良好なコンタクトホール加工形状が得られている。本発明に係る[実施例3]、[実施例4]、[実施例6]、[実施例8]、[実施例10]のドライエッチング剤は、[比較例3]、[比較例4]、[比較例7]、[比較例8]、[比較例10]、[比較例12]に示すCF4,C46,F2と比較して、窒化ケイ素に対し高アスペクト比、低サイドエッチ率であり、良好なコンタクトホール加工形状が得られている。また、[実施例5]、[実施例6]、[実施例9]、[実施例10]に示すように、1234ze(E)と1234yfとの混合ガスを用いたドライエッチング剤の場合、酸素との反応性が高く、可燃性であり、かつ使用上安全性に問題があった1234yfが、1234ze(E)と混合させることで、安全性を高めることができ、また、流量並びに酸素流量を下げても、他の実施例と同様、アスペクト比、サイドエッチ率の良好なコンタクトホール加工形状が得られている。
 上記試験と同条件でのエッチング試験を0.1μmの開口幅を持つ試料で実施したところ、同様の結果を得た。
 以上の[実施例1]~[実施例10]の結果より、本発明におけるドライエッチング剤は、[比較例1]~[比較例12]の従来知られたCF4、C46に比べて、アスペクト比が、サイドエッチ率が小さい、良好なコンタクトホール加工形状が得られることが確認できる。
 本発明で対象とする1,1,1,3-テトラフルオロプロペンと添加ガス及び不活性ガスの混合ガスは、ドライエッチング剤として利用できる。また、それを用いたエッチング方法は、半導体の製造方法としても利用できる。
 以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。

Claims (8)

  1. 1,3,3,3-テトラフルオロプロペン、添加ガス、及び不活性ガスを含むドライエッチング剤。
  2. 添加ガスが酸化性又は還元性ガスである、請求項1に記載のドライエッチング剤。
  3. 酸化性又は還元性ガスがH2、O2、O3、CO、CO2、COCl2、COF2、CF3OF、NO2、F2、NF3、Cl2、Br2、I2、CH4、C22、C24、C26、C34、C36、C38、HF、HI、HBr、HCl、NO、NH3、及びYFn(式中、YはCl、Br、又はIを表し、nは整数を表し、1≦n≦7である。)からなる群より選ばれる少なくとも1種のガスである、請求項2に記載のドライエッチング剤。
  4. 不活性ガスがN2、He、Ar、Ne、及びKrからなる群より選ばれる少なくとも1種のガスである、請求項1に記載のドライエッチング剤。
  5. 1,3,3,3-テトラフルオロプロペンの含有率が1~45体積%である、請求項1に記載のドライエッチング剤。
  6. CF4、CF3H、CF22、CFH3、C26、C242、C25H、C38、C37H、C362、C353、C344、C335、C35H、C33H、C3ClF3H、C48、C46、C58、及びC510からなる群より選ばれる少なくとも1種のガスをさらに含む、請求項1乃至請求項5の何れかに記載のドライエッチング剤。
  7. 請求項1乃至請求項6の何れかに記載のドライエッチング剤をプラズマ化して得られるプラズマガスを用いて、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン、及び炭化シリコンからなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングするドライエッチング方法。
  8. (A)1,3,3,3-テトラフルオロプロペンと、(B)H2、O2、CO、及びCOF2からなる群より選ばれる少なくとも1種以上のガスと、Arを用い、(A)、(B)、及びArの体積流量比をそれぞれ1~45%:1~50%:5~98%(但し、各々のガスの体積流量比の合計は100%である。)とし、二酸化シリコン、窒化シリコン、多結晶シリコン、アモルファスシリコン及び炭化シリコンからなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングするドライエッチング方法。
PCT/JP2011/064524 2010-07-12 2011-06-24 ドライエッチング剤及びドライエッチング方法 WO2012008282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11806613.3A EP2595179A4 (en) 2010-07-12 2011-06-24 Dry etching agent and dry etching method
CN201180034216.4A CN103003925B (zh) 2010-07-12 2011-06-24 干蚀刻剂以及干蚀刻方法
US13/808,506 US9017571B2 (en) 2010-07-12 2011-06-24 Dry etching agent and dry etching method
KR1020137003176A KR101435490B1 (ko) 2010-07-12 2011-06-24 드라이 에칭제 및 드라이 에칭 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-158010 2010-07-12
JP2010158010 2010-07-12
JP2010246670 2010-11-02
JP2010-246670 2010-11-02
JP2011-137022 2011-06-21
JP2011137022A JP5434970B2 (ja) 2010-07-12 2011-06-21 ドライエッチング剤

Publications (1)

Publication Number Publication Date
WO2012008282A1 true WO2012008282A1 (ja) 2012-01-19

Family

ID=45469292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064524 WO2012008282A1 (ja) 2010-07-12 2011-06-24 ドライエッチング剤及びドライエッチング方法

Country Status (7)

Country Link
US (1) US9017571B2 (ja)
EP (1) EP2595179A4 (ja)
JP (1) JP5434970B2 (ja)
KR (1) KR101435490B1 (ja)
CN (1) CN103003925B (ja)
TW (1) TWI444456B (ja)
WO (1) WO2012008282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160910A1 (en) * 2013-03-28 2014-10-02 E. I. Du Pont De Nemours And Company Hydrofluoroolefin etching gas mixtures

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886214B2 (ja) * 2013-01-17 2016-03-16 Sppテクノロジーズ株式会社 プラズマエッチング方法
JP6211947B2 (ja) * 2013-07-31 2017-10-11 東京エレクトロン株式会社 半導体装置の製造方法
WO2015103003A1 (en) * 2013-12-30 2015-07-09 E. I. Du Pont De Nemours And Company Chamber cleaning and semiconductor etching gases
CN104022006B (zh) * 2014-05-23 2016-10-26 深圳市华星光电技术有限公司 一种干蚀刻设备及方法
KR101953044B1 (ko) * 2014-10-10 2019-02-27 칸토 덴카 코교 가부시키가이샤 규소 화합물용 에칭 가스 조성물 및 에칭 방법
KR102333443B1 (ko) * 2014-10-24 2021-12-02 삼성전자주식회사 반도체 소자의 제조 방법
EP3038169A1 (en) * 2014-12-22 2016-06-29 Solvay SA Process for the manufacture of solar cells
JP6544215B2 (ja) * 2015-01-23 2019-07-17 セントラル硝子株式会社 ドライエッチング方法
US9728422B2 (en) 2015-01-23 2017-08-08 Central Glass Company, Limited Dry etching method
KR20170121243A (ko) * 2015-02-25 2017-11-01 어플라이드 머티어리얼스, 인코포레이티드 금속 질화물의 선택적 제거를 위해 알킬 아민들을 사용하기 위한 방법들 및 장치
JP2016178223A (ja) * 2015-03-20 2016-10-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2016178222A (ja) 2015-03-20 2016-10-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6788176B2 (ja) 2015-04-06 2020-11-25 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
JP6788177B2 (ja) * 2015-05-14 2020-11-25 セントラル硝子株式会社 ドライエッチング方法、ドライエッチング剤及び半導体装置の製造方法
JP6327295B2 (ja) * 2015-08-12 2018-05-23 セントラル硝子株式会社 ドライエッチング方法
KR102496037B1 (ko) 2016-01-20 2023-02-06 삼성전자주식회사 플라즈마 식각 방법 및 장치
JP6110530B2 (ja) * 2016-02-10 2017-04-05 Sppテクノロジーズ株式会社 プラズマエッチング装置
CN108780749B (zh) * 2016-03-16 2022-10-14 日本瑞翁株式会社 等离子体蚀刻方法
JP6670672B2 (ja) * 2016-05-10 2020-03-25 東京エレクトロン株式会社 エッチング方法
JP6323540B1 (ja) * 2016-11-28 2018-05-16 セントラル硝子株式会社 ドライエッチング剤組成物及びドライエッチング方法
KR102303686B1 (ko) * 2017-02-28 2021-09-17 샌트랄 글래스 컴퍼니 리미티드 드라이 에칭제, 드라이 에칭 방법 및 반도체 장치의 제조방법
JP6438511B2 (ja) * 2017-03-09 2018-12-12 Sppテクノロジーズ株式会社 エッチング保護膜形成用デポガス、プラズマエッチング方法、及びプラズマエッチング装置
US11164751B2 (en) 2017-06-08 2021-11-02 Showa Denko K.K. Etching method
US11075084B2 (en) 2017-08-31 2021-07-27 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Chemistries for etching multi-stacked layers
US10586710B2 (en) * 2017-09-01 2020-03-10 Tokyo Electron Limited Etching method
KR102504833B1 (ko) 2017-11-16 2023-03-02 삼성전자 주식회사 식각 가스 혼합물과 이를 이용한 패턴 형성 방법과 집적회로 소자의 제조 방법
JP6928548B2 (ja) * 2017-12-27 2021-09-01 東京エレクトロン株式会社 エッチング方法
CN110718459A (zh) * 2018-07-13 2020-01-21 北京北方华创微电子装备有限公司 非等离子体刻蚀方法及刻蚀设备
US10593518B1 (en) * 2019-02-08 2020-03-17 Applied Materials, Inc. Methods and apparatus for etching semiconductor structures
WO2021260869A1 (ja) * 2020-06-25 2021-12-30 株式会社日立ハイテク 真空処理方法
JP2022159653A (ja) * 2021-04-05 2022-10-18 東京エレクトロン株式会社 エッチング方法及びエッチング処理装置
WO2024009815A1 (ja) * 2022-07-08 2024-01-11 東京エレクトロン株式会社 基板処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530345A (ja) * 2002-06-14 2005-10-06 ラム リサーチ コーポレーション 改善されたレジスト外形、および/または、エッチング外形特性を有する誘電体膜エッチング・プロセス
JP2007535611A (ja) * 2004-04-29 2007-12-06 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する組成物
JP2007537602A (ja) * 2004-05-11 2007-12-20 アプライド マテリアルズ インコーポレイテッド フルオロカーボン化学エッチングにおけるh2添加物を使用しての炭素ドープ酸化ケイ素エッチング

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897190A (ja) * 1994-09-22 1996-04-12 Ulvac Japan Ltd 透明導電性膜のドライエッチング方法
JPH09191002A (ja) 1996-01-10 1997-07-22 Sony Corp プラズマエッチング方法
US5814563A (en) * 1996-04-29 1998-09-29 Applied Materials, Inc. Method for etching dielectric using fluorohydrocarbon gas, NH3 -generating gas, and carbon-oxygen gas
JP3465865B2 (ja) 1996-06-20 2003-11-10 セントラル硝子株式会社 1,3,3,3−テトラフルオロプロペンの製造法
JP3821514B2 (ja) 1996-06-20 2006-09-13 セントラル硝子株式会社 1,3,3,3−テトラフルオロプロペンの製造法
JP2972786B2 (ja) 1996-11-05 1999-11-08 工業技術院長 ドライエッチング用ガス
JPH10223614A (ja) 1997-02-12 1998-08-21 Daikin Ind Ltd エッチングガスおよびクリーニングガス
US6387287B1 (en) 1998-03-27 2002-05-14 Applied Materials, Inc. Process for etching oxide using a hexafluorobutadiene and manifesting a wide process window
US6426304B1 (en) 2000-06-30 2002-07-30 Lam Research Corporation Post etch photoresist strip with hydrogen for organosilicate glass low-κ etch applications
WO2002021586A1 (fr) * 2000-09-07 2002-03-14 Daikin Industries, Ltd. Gaz d'attaque à sec et procédé correspondant
US6540930B2 (en) 2001-04-24 2003-04-01 3M Innovative Properties Company Use of perfluoroketones as vapor reactor cleaning, etching, and doping gases
JP3960095B2 (ja) 2002-03-22 2007-08-15 日本ゼオン株式会社 プラズマ反応用ガス及びその製造方法
WO2004109773A2 (en) 2003-05-30 2004-12-16 Tokyo Electron Limited Method and system for heating a substrate using a plasma
US20060118519A1 (en) * 2004-12-03 2006-06-08 Applied Materials Inc. Dielectric etch method with high source and low bombardment plasma providing high etch rates
US7560602B2 (en) * 2005-11-03 2009-07-14 Honeywell International Inc. Process for manufacture of fluorinated olefins
JP2009526339A (ja) 2006-02-10 2009-07-16 ザイラテックス・テクノロジー・リミテッド 位置誤差信号を生成する方法、データトラックを書き込む方法、並びに、ヘッドを検査するための方法および装置
US20080191163A1 (en) 2007-02-09 2008-08-14 Mocella Michael T Laser-Assisted Etching Using Gas Compositions Comprising Unsaturated Fluorocarbons
US7884254B2 (en) * 2007-08-08 2011-02-08 Honeywell International Inc. Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
JP2011124239A (ja) 2008-03-31 2011-06-23 Daikin Industries Ltd ドライエッチングガス及びそれを用いたドライエッチング方法
JP5365064B2 (ja) 2008-05-12 2013-12-11 日本ゼオン株式会社 新規含ハロゲン化合物及びそれらの製造方法
JP5277813B2 (ja) 2008-09-11 2013-08-28 セントラル硝子株式会社 フッ素化プロペンの製造方法
US8518293B2 (en) * 2010-09-03 2013-08-27 Honeywell International Inc. 1,3,3,3-tetrafluoropropene process azeotropes with HF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530345A (ja) * 2002-06-14 2005-10-06 ラム リサーチ コーポレーション 改善されたレジスト外形、および/または、エッチング外形特性を有する誘電体膜エッチング・プロセス
JP2007535611A (ja) * 2004-04-29 2007-12-06 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する組成物
JP2007537602A (ja) * 2004-05-11 2007-12-20 アプライド マテリアルズ インコーポレイテッド フルオロカーボン化学エッチングにおけるh2添加物を使用しての炭素ドープ酸化ケイ素エッチング

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160910A1 (en) * 2013-03-28 2014-10-02 E. I. Du Pont De Nemours And Company Hydrofluoroolefin etching gas mixtures
JP2016519216A (ja) * 2013-03-28 2016-06-30 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ヒドロフルオロオレフィンエッチングガス混合物

Also Published As

Publication number Publication date
US9017571B2 (en) 2015-04-28
TWI444456B (zh) 2014-07-11
US20130105728A1 (en) 2013-05-02
JP2012114402A (ja) 2012-06-14
JP5434970B2 (ja) 2014-03-05
KR101435490B1 (ko) 2014-08-28
EP2595179A1 (en) 2013-05-22
CN103003925A (zh) 2013-03-27
KR20130036320A (ko) 2013-04-11
CN103003925B (zh) 2016-05-18
EP2595179A4 (en) 2017-06-28
TW201217500A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
JP5434970B2 (ja) ドライエッチング剤
WO2013015033A1 (ja) ドライエッチング剤
TWI491710B (zh) Dry etchants and dry etching methods using them
CN114512399A (zh) 干式蚀刻方法
JP6989770B2 (ja) ドライエッチング剤、ドライエッチング方法及び半導体装置の製造方法
TWI621179B (zh) Dry etching method
JP5958600B2 (ja) ドライエッチング方法
JP2011176292A (ja) ドライエッチング剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003176

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011806613

Country of ref document: EP