WO2012008072A1 - Solid-state image pickup device - Google Patents
Solid-state image pickup device Download PDFInfo
- Publication number
- WO2012008072A1 WO2012008072A1 PCT/JP2011/002238 JP2011002238W WO2012008072A1 WO 2012008072 A1 WO2012008072 A1 WO 2012008072A1 JP 2011002238 W JP2011002238 W JP 2011002238W WO 2012008072 A1 WO2012008072 A1 WO 2012008072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- glass substrate
- wiring board
- printed wiring
- transparent glass
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 125
- 229910000679 solder Inorganic materials 0.000 claims abstract description 58
- 238000002844 melting Methods 0.000 claims abstract description 48
- 238000003384 imaging method Methods 0.000 claims description 82
- 230000008018 melting Effects 0.000 claims description 47
- 239000000853 adhesive Substances 0.000 claims description 34
- 230000001070 adhesive effect Effects 0.000 claims description 34
- 239000011521 glass Substances 0.000 abstract description 94
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000007789 sealing Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0203—Containers; Encapsulations, e.g. encapsulation of photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02325—Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14636—Interconnect structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14685—Process for coatings or optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a solid-state imaging device.
- the present invention relates to a small solid-state imaging device formed using a solid-state imaging device such as a monitoring camera, a medical camera, an in-vehicle camera, and an information communication terminal camera.
- a conventional imaging device using a semiconductor imaging element is formed by combining parts such as an LSI mounted with a lens, a semiconductor imaging element, a driving circuit thereof, a signal processing circuit, and the like in a housing or a structure, and combining them. .
- the mounting structure based on such a combination was formed by mounting each element on a printed circuit board on a flat plate.
- the demand for further thinning of individual devices has been increasing year by year due to the demand for further thinning of cellular phones and the like, and in order to respond to the demand, a flexible wiring board is used or a transparent member is directly attached. Attempts have been made to make the imaging device thinner by flip-chip mounting the IC.
- the glass substrate and the printed wiring board are electrically connected via the solder ball. However, when this electrical connection is made, the glass substrate may be broken.
- the reflow temperature of the mounting portion is about 250 ° C. at the peak. Further, during cooling after reflow, a load is applied to the mounting portion due to the difference in contraction between the two substrates, and the translucent substrate may be destroyed.
- the present invention has been made in view of the above circumstances, and is capable of preventing the translucent substrate from being destroyed when the translucent substrate is mounted on a printed wiring board or used.
- An object is to provide an apparatus.
- a solid-state imaging device of the present invention includes a solid-state imaging device, a translucent substrate on which the solid-state imaging device is mounted, a printed wiring board on which the translucent substrate is mounted via a low melting point solder as a joining member, The solid-state imaging device is arranged between the translucent board and the printed wiring board, and the imaging area is arranged to face the translucent board.
- This configuration can prevent the translucent substrate from being broken when the translucent substrate is mounted on the printed wiring board.
- low melting point solder it is possible to suppress an increase in the reflow temperature of the mounting part, so that the shrinkage difference between the translucent board and the printed wiring board during cooling after reflow is reduced, and the mounting part is Therefore, it is possible to suppress the breakage of the translucent substrate.
- the solid-state imaging device of the present invention includes a solid-state imaging device, a translucent substrate on which the solid-state imaging device is mounted, and a print on which the translucent substrate is mounted via a conductive adhesive as a bonding member.
- This configuration can prevent the translucent substrate from being broken when the translucent substrate is mounted on the printed wiring board. Furthermore, since the elastic modulus of the conductive adhesive is smaller than that of the low melting point solder, when the deformation amount (strain) of the translucent substrate is the same, the stress is relatively smaller than the above (Equation 1). Value. Accordingly, it is possible to further suppress the breakage of the translucent substrate.
- the translucent substrate it is possible to prevent the translucent substrate from being destroyed when the translucent substrate is mounted on a printed wiring board or used.
- FIG. 1 is a partially exploded perspective view of a solid-state imaging device according to a first embodiment of the present invention.
- FIG. 2 is a partial assembly diagram of the solid-state imaging device according to the first embodiment of the present invention.
- 1 is a partially exploded perspective view of a solid-state imaging device according to a first embodiment of the present invention.
- Assembly completion drawing of solid-state imaging device according to first embodiment of the present invention Sectional drawing of the assembly completion state of the solid-state imaging device in the 1st Embodiment of this invention It is a figure which shows an example of the stress concerning a transparent glass substrate at the time of the temperature fall after the reflow in the embodiment of the present invention, (A) When using a conventional solder ball, (B) When using a low melting point solder ball, (C) The figure which shows when the conductive adhesive is used (A) Sectional view of a first modification of the assembly completion state of the solid-state imaging device according to the first embodiment of the present invention, (B) Second view of the assembly completion state of the solid-state imaging device according to the first embodiment of the present invention.
- Cross section of the modification (A) Sectional view of the first example of the assembly completion state of the solid-state imaging device according to the second embodiment of the present invention, (B) Second example of the assembly completion state of the solid-state imaging device according to the second embodiment of the present invention.
- the solid-state imaging device of this embodiment includes a solid-state imaging device, a transparent glass substrate on which the solid-state imaging device is mounted, and a printed wiring board on which the transparent glass substrate is mounted via a low melting point solder ball as a joining member.
- the solid-state imaging device is arranged between the transparent glass substrate and the printed wiring board, and the imaging region is arranged so as to face the transparent glass substrate.
- FIG. 1 is a partially exploded perspective view of the solid-state imaging device of the present embodiment.
- Electrode pads 2 and 4 are formed on the transparent glass substrate 1.
- the electrode pads 2 and the electrode pads 4 are wired by the wiring pattern 3 on the surface of the transparent glass substrate 1 and are electrically connected.
- the electrode pad 2 is for connection with the solid-state image sensor 5, and the electrode pad 4 is for electrical connection with a printed wiring board 9 (see FIG. 3) that extracts the signal of the solid-state image sensor 5 to the outside.
- an imaging region (light receiving area) 6 is arranged to face the electrode pad 2 of the transparent glass substrate 1.
- metal bumps 15 are formed on the electric wiring pads on the surface of the solid-state imaging device 5 (see FIG. 5) and mounted on the electrode pads 2.
- an insulating sealing resin 7 is injected in order to ensure the adhesion strength and electrical connection reliability of the solid-state imaging device 5 (see FIG. 2).
- FIG. 2 is a partial assembly diagram of the solid-state imaging device of the present embodiment.
- the solid-state imaging device 5 is mounted on the transparent glass substrate 1 and the insulating sealing resin 7 is injected.
- the insulating sealing resin 7 surrounds the periphery of the metal bump 15 (see FIG. 5) of the solid-state imaging device 5 without leaking into the imaging region 6 and ensures adhesion strength.
- a flux is applied, and a low melting point solder ball 8 as a joining member is attached by reflow.
- FIG. 3 is a partially exploded perspective view of the solid-state imaging device of the present embodiment.
- Cream solder is printed on the printed wiring board 9.
- the transparent glass substrate 1 on which the solid-state imaging device 5 is mounted and the low melting point solder balls 8 are attached is reversed and placed on the printed wiring board 9 and soldered by reflow. Thereby, the transparent glass substrate 1 and the printed wiring board 9 are electrically connected. Further, the strength of the periphery of the low melting point solder ball 8 is reinforced by an underfill (sealing resin) (not shown).
- the insulating sealing resin 7 injected in the previous process is exposed. In this state, a lens housing 12 in which the lens 11 is installed from above is prepared.
- this lens housing 12 When this lens housing 12 is mounted with the surface of the printed wiring board 9 on the side where the transparent glass substrate 1 is mounted as a reference surface and integrated with the printed wiring board 9, a solid-state imaging device is completed.
- the lens 11, the transparent glass substrate 1, the solid-state imaging device 5, and the printed wiring board 9 are arranged in this order from the subject side. As shown in FIG. 3, the lens 11 and the transparent glass substrate 1 are not in contact with each other when the lens housing 12 is mounted on the printed wiring board 9.
- FIG. 4 is an assembly completion diagram of the solid-state imaging device of the present embodiment.
- FIG. 5 is a cross-sectional view of the completed assembly of the solid-state imaging device of the present embodiment.
- the transparent glass substrate 1 is mounted on the surface of the printed wiring board 9 via a low melting point solder ball 8, and the periphery of the low melting point solder ball 8 is reinforced by an underfill (not shown).
- the low melting point solder ball 8 is in contact with an electrode pad (not shown) on the surface of the printed wiring board 9.
- a solid-state imaging device 5 having an imaging region 6 is mounted on the transparent glass substrate 1 via metal bumps 15, and an insulating sealing resin 7 is injected and cured without a shortage around the solid-state imaging device 5.
- the insulating sealing resin 7 does not leak into the imaging region 6 of the solid-state imaging device 5. This is achieved by using a UV curable material for the insulating sealing resin 7 at the time of manufacture, and performing sealing injection while irradiating the imaging region 6 with UV light.
- the solid-state imaging device chip is becoming thinner, and it is desirable to use a light-shielding substrate as the printed wiring board 9 in order to prevent light from coming from the back surface. It is desirable to use a light shielding resin such as a resin. Further, a ceramic substrate, a glass substrate on which a light-shielding film is formed, and the like are also applicable.
- the low melting point solder for example, “L20-BLT5-T8F” manufactured by Senju Metal Co., Ltd. is used.
- This low melting point solder is a solder that can be reflowed in a low temperature range (170 ° C. to 190 ° C.). It has a composition of Sn-58Bi and has a melting point: 139 ° C., reflow peak temperature: 160 ° C., Young's modulus: 33.0 GPa, and expansion coefficient: 15.4 ppm / ° C.
- the transparent glass substrate for example, a glass substrate having a Young's modulus: 72.9 GPa and a linear expansion coefficient of 7.2 M ⁇ 10 ⁇ 6 / ° C. is used.
- an optical filter film or an antireflection film may be used instead of the transparent glass substrate 1.
- 6A to 6C are diagrams showing an example of stress applied to the transparent glass substrate 1 when the temperature decreases after reflow.
- the temperature of the transparent glass substrate 1 at the time of reflow is about 220 ° C.
- the temperature drops to room temperature (about 25 ° C.).
- the maximum stress generated in the transparent glass substrate 1 (here, the stress applied to the vicinity of the solder ball) is set to 100. This state is shown in FIG.
- the temperature of the transparent glass substrate 1 at the time of reflow is about 140 ° C., and the transparent after reflow is transparent.
- the temperature of the glass substrate 1 decreases to room temperature (about 25 ° C.).
- the maximum stress generated in the transparent glass substrate 1 is about 45. This state is shown in FIG.
- the stress applied to the transparent glass substrate 1 after reflow is smaller when the low melting point solder ball 8 of the present embodiment is used than when the conventional solder ball is used, the transparent glass substrate 1 is not easily broken. .
- the printed wiring board 9 may have an opening in a region facing the solid-state imaging element 5. Accordingly, when the transparent glass substrate 1 is mounted on the printed wiring board 9 via the low melting point solder ball 8 even when the length of the low melting point solder ball 8 in the thickness direction (X direction) is relatively short. In addition, the transparent glass substrate 1 can be mounted without being destroyed, and the printed wiring board 9 and the transparent glass substrate 1 are not in contact with each other.
- the printed wiring board 9 may have a cavity portion 10, and an electrode pad (not shown) for mounting may be formed outside the cavity portion 10.
- the mounting electrode pad and the low melting point solder ball 8 are in contact with each other, and the low melting point solder ball 8 and the electrode pad 4 on the glass substrate 1 are in contact with each other.
- the length in the thickness direction (X direction) of the low melting point solder ball 8 and the length in the thickness direction (X direction) of the cavity portion 10 of the printed wiring board 9 Is longer than the distance between the solid-state imaging device 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
- a low melting point solder paste (printed solder) 18 is used as a joining member for joining the printed wiring board 9 and the transparent glass substrate 1.
- the configuration is basically the same as that of the solid-state imaging device according to the first embodiment except that the low melting point solder paste 18 is used as the joining member.
- the specification of the low melting point solder used for the low melting point solder paste 18 is the same as the specification of the low melting point solder used for the low melting point solder ball 8 described in the first embodiment. Therefore, the temperature change of the transparent glass substrate 1 and the stress applied to the transparent glass substrate 1 during reflow when the low melting point solder paste 18 is used are the same as when the low melting point solder ball 8 is used (FIG. 6 ( B)).
- the low melting point solder paste 18 is printed on the electrode pads of the printed wiring board 9.
- the transparent glass substrate 1 is placed on the printed wiring board 9 by adjusting the electrode pads of the transparent glass board 1 to be arranged on the electrode pads of the printed wiring board 9 on which the low melting point solder paste 18 is printed and applied. To do.
- the transparent glass substrate 1 and the printed wiring board 9 are joined via the low melting point solder paste 18 by heating the low melting point solder paste 18.
- the printed wiring board 9 when the low melting point solder paste 18 is used, for example, the following two types are conceivable.
- the printed wiring board 9 may have an opening in a region facing the solid-state imaging element 5.
- the printed wiring board 9 may have a cavity portion 10, and an electrode pad (not shown) for mounting may be formed outside the cavity portion 10.
- the mounting electrode pad and the low melting point solder paste 18 are in contact with each other, and the low melting point solder paste 18 and the electrode pad 4 on the glass substrate 1 are in contact with each other.
- the length in the thickness direction (X direction) of the low melting point solder paste 18 and the length in the thickness direction (X direction) of the cavity portion 10 of the printed wiring board 9 Is longer than the distance between the solid-state imaging device 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
- a conductive adhesive (conductive paste) 28 is used as a bonding member for bonding the printed wiring board 9 and the transparent glass substrate 1.
- the configuration is basically the same as that of the solid-state imaging device according to the first embodiment except that the conductive adhesive 28 is used as the joining member.
- conductive adhesive 28 of this embodiment for example, a solder substitute conductive adhesive “H9626D” manufactured by NAMICS is used.
- This conductive adhesive is a solventless thermosetting conductive adhesive and has the following characteristics.
- composition Ag Viscosity: 47 Pa ⁇ s / 25 ° C. T.A. I. : 5.0, Specific gravity: 3.7, Specific resistance value: 2.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm by TMA method Adhesive strength: 40 N / mm 2 by DMA method Linear expansion coefficient: ⁇ 1: 40 ppm by DMA method, ⁇ 2: 100 ppm, Glass fiber temperature: 120 ° C. Young's modulus: 6.5 GPa, Purity: 3.0 ppm for Na (atomic absorption spectrophotometer), 25 ppm for Cl (ion chromatograph)
- the conductive adhesive is cured by maintaining the state of the conductive adhesive at 150 degrees for 30 minutes.
- the frozen (about ⁇ 20 ° C.) conductive adhesive 28 is left until it reaches room temperature. Then, the conductive adhesive 28 is applied on the electrode pads of the printed wiring board 9, and the electrode pads of the transparent glass substrate 1 are arranged on the electrode pads of the printed wiring board 9 to which the conductive adhesive 28 is applied. Adjust and place the transparent glass substrate 1. Subsequently, the conductive adhesive 28 is heated (150 ° C. ⁇ 30 minutes) to thermally cure the conductive adhesive 28, and the transparent glass substrate 1 and the printed wiring board 9 are bonded via the conductive adhesive 28. To do.
- the temperature of the transparent glass substrate 1 during heating is about 150 ° C. 25 ° C).
- the maximum stress generated in the transparent glass substrate 1 (here, the stress applied to the vicinity of the conductive adhesive 28) is about 50. This state is shown in FIG.
- the stress applied to the transparent glass substrate 1 after the heating to room temperature is reduced by using the conductive adhesive 28 of the present embodiment, compared with the case of using the conventional solder balls. Is harder to break.
- the printed wiring board 9 when the conductive adhesive 28 is used, for example, the following three types are conceivable.
- the printed wiring board 9 may have an opening in a region facing the solid-state imaging element 5. Thereby, even if it is a case where the length of the thickness direction (X direction) of the conductive adhesive 28 is comparatively short, the transparent glass substrate 1 does not break down, and the printed wiring board 9 and the transparent glass substrate 1 It is possible to mount without contact.
- the printed wiring board 9 may have a cavity portion 10, and an electrode pad (not shown) for mounting may be formed outside the cavity portion 10.
- the mounting electrode pad and the conductive adhesive 28 are in contact with each other, and the conductive adhesive 28 and the electrode pad 4 of the transparent glass substrate 1 are in contact with each other.
- the length of the conductive adhesive 28 in the thickness direction (X direction) and the length of the cavity portion 10 of the printed wiring board 9 in the thickness direction (X direction) Is longer than the distance between the solid-state imaging device 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
- the printed wiring board 9 may have a flat plate shape, and metal bumps may be formed at predetermined positions.
- the conductive adhesive 28 is applied to the region where the metal bumps are formed. This metal bump functions as an electrode portion of the printed wiring board 9, and the metal bump and the conductive adhesive 28 are in contact with each other, and the conductive adhesive 28 and the electrode pad 4 of the transparent glass substrate 1 are in contact with each other.
- the sum of the length in the thickness direction (X direction) of the metal bump and the length in the thickness direction (X direction) of the conductive adhesive 28 is solid-state imaging. It is longer than the distance between the element 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
- the transparent glass substrate 1 and the print can be printed after reflowing or cooling after heating.
- Thermal contraction with the wiring board 9 can be absorbed. Thereby, it can suppress that a load is added to a mounting part by the shrinkage
- the present invention is useful for a solid-state imaging device or the like that can prevent the translucent substrate from being destroyed when the translucent substrate is mounted on or used on a printed wiring board.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Studio Devices (AREA)
Abstract
Disclosed is a solid-state image pickup device wherein a translucent substrate can be prevented from breaking at the time of mounting the translucent substrate on a printed wiring board. The solid-state image pickup device is provided with a solid-state image pickup element (5), a transparent glass substrate (1) having the solid-state image pickup element (5) mounted thereon, and a printed wiring board (9) having the transparent glass substrate (1) mounted thereon with a low-melting point solder ball (8) therebetween as a bonding member. The solid-state image pickup element (5) is disposed between the transparent glass substrate (1) and the printed wiring board (9), and an image pickup region (6) is disposed to face the transparent glass substrate (1).
Description
本発明は、固体撮像装置に関する。特に、監視カメラ、医療用カメラ、車載カメラ、情報通信端末用カメラなどの固体撮像素子を用いて形成される小型の固体撮像装置に関する。
The present invention relates to a solid-state imaging device. In particular, the present invention relates to a small solid-state imaging device formed using a solid-state imaging device such as a monitoring camera, a medical camera, an in-vehicle camera, and an information communication terminal camera.
近年、携帯電話、車載部品等で小型カメラの需要が急速に進展している。この種の小型カメラには、レンズなどの光学系を介して入力される画像を固体撮像素子により電気信号として出力する固体撮像装置が使用されている。そして、この撮像装置の小型化、高性能化に伴い、カメラがより小型化し各方面での使用が増え、映像入力装置としての市場を広げている。従来の半導体撮像素子を用いた撮像装置は、レンズ、半導体撮像素子、その駆動回路および信号処理回路などを搭載したLSI等の部品を夫々筐体あるいは構造体に形成して、これらを組み合わせている。
In recent years, the demand for small cameras for mobile phones, in-vehicle parts, etc. is rapidly increasing. In this type of small camera, a solid-state imaging device that outputs an image input through an optical system such as a lens as an electrical signal by a solid-state imaging device is used. With the downsizing and higher performance of this image pickup apparatus, the camera has become smaller and the use in various fields has increased, expanding the market as a video input apparatus. A conventional imaging device using a semiconductor imaging element is formed by combining parts such as an LSI mounted with a lens, a semiconductor imaging element, a driving circuit thereof, a signal processing circuit, and the like in a housing or a structure, and combining them. .
このような組み合わせによる実装構造は、平板上のプリント基板上に各素子を搭載することによって形成されていた。しかし、携帯電話等のさらなる薄型化への要求から個別のデバイスに対する薄型化への要求が年々高くなってきており、その要求に答えるために、フレキシブル配線板を用いたり、透光性部材に直接ICをフリップチップ実装したりして、より薄い撮像装置とする試みが行われている。
The mounting structure based on such a combination was formed by mounting each element on a printed circuit board on a flat plate. However, the demand for further thinning of individual devices has been increasing year by year due to the demand for further thinning of cellular phones and the like, and in order to respond to the demand, a flexible wiring board is used or a transparent member is directly attached. Attempts have been made to make the imaging device thinner by flip-chip mounting the IC.
従来の撮像装置としてのカメラモジュールとして、固体撮像素子を実装したガラス基板をプリント回路基板に実装し、その上にレンズユニットを直接搭載したものが知られている(例えば、特許文献1参照)。
2. Description of the Related Art As a conventional camera module as an image pickup apparatus, there is known a camera module in which a glass substrate on which a solid-state image pickup device is mounted is mounted on a printed circuit board and a lens unit is directly mounted thereon (for example, see Patent Document 1).
特許文献1のカメラモジュールでは、半田ボールを介してガラス基板とプリント配線基板とが電気的に接続されるが、この電気的接続を行うときに、ガラス基板が破壊することがあった。
In the camera module of Patent Document 1, the glass substrate and the printed wiring board are electrically connected via the solder ball. However, when this electrical connection is made, the glass substrate may be broken.
ここで、材料の強度を示す1つの尺度として、弾性率がある。弾性率Eは、加えられた力(応力σ)と変形量(ひずみε)の関係を示す値であり、
E=σ/ε[Pa]・・・(式1)
で表される。ガラスの弾性率は、一般にE=50[Pa]~90[Pa]と比較的大きく、負荷による発生応力が大きくなる。また、ガラスは脆性破壊しやすい(上記εの値が小さい)材料であるので、局所的に応力が集中しやすく、弾性限界付近で破壊してしまうことがある。 Here, there is an elastic modulus as one scale indicating the strength of the material. Elastic modulus E is a value indicating the relationship between applied force (stress σ) and deformation (strain ε),
E = σ / ε [Pa] (Formula 1)
It is represented by The elastic modulus of glass is generally relatively large, E = 50 [Pa] to 90 [Pa], and the stress generated by the load increases. Further, since glass is a material that easily breaks brittlely (the value of ε is small), stress tends to concentrate locally, and may break near the elastic limit.
E=σ/ε[Pa]・・・(式1)
で表される。ガラスの弾性率は、一般にE=50[Pa]~90[Pa]と比較的大きく、負荷による発生応力が大きくなる。また、ガラスは脆性破壊しやすい(上記εの値が小さい)材料であるので、局所的に応力が集中しやすく、弾性限界付近で破壊してしまうことがある。 Here, there is an elastic modulus as one scale indicating the strength of the material. Elastic modulus E is a value indicating the relationship between applied force (stress σ) and deformation (strain ε),
E = σ / ε [Pa] (Formula 1)
It is represented by The elastic modulus of glass is generally relatively large, E = 50 [Pa] to 90 [Pa], and the stress generated by the load increases. Further, since glass is a material that easily breaks brittlely (the value of ε is small), stress tends to concentrate locally, and may break near the elastic limit.
特許文献1のカメラモジュールでは、半田ボールを介したプリント配線板とガラス基板との実装時には、実装部分のリフロー温度がピーク時に約250℃となる。そして、リフロー後の冷却時に両基板の収縮差により実装部分へ負荷が加わり、透光性基板が破壊することがあった。
In the camera module of Patent Document 1, when the printed wiring board and the glass substrate are mounted via the solder ball, the reflow temperature of the mounting portion is about 250 ° C. at the peak. Further, during cooling after reflow, a load is applied to the mounting portion due to the difference in contraction between the two substrates, and the translucent substrate may be destroyed.
本発明は、上記事情に鑑みてなされたものであって、透光性基板がプリント配線基板へ実装されるとき又は使用されるときに、透光性基板が破壊することを防止可能な固体撮像装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is capable of preventing the translucent substrate from being destroyed when the translucent substrate is mounted on a printed wiring board or used. An object is to provide an apparatus.
本発明の固体撮像装置は、固体撮像素子と、前記固体撮像素子が実装される透光性基板と、前記透光性基板が接合部材としての低融点半田を介して実装されるプリント配線基板と、を備え、前記固体撮像素子が、前記透光性基板と前記プリント配線基板との間に配置され、撮像領域が前記透光性基板に対向するように配置されている。
A solid-state imaging device of the present invention includes a solid-state imaging device, a translucent substrate on which the solid-state imaging device is mounted, a printed wiring board on which the translucent substrate is mounted via a low melting point solder as a joining member, The solid-state imaging device is arranged between the translucent board and the printed wiring board, and the imaging area is arranged to face the translucent board.
この構成により、透光性基板がプリント配線基板へ実装されるときに、透光性基板が破壊することを防止可能である。つまり、低融点半田を用いることで、実装部分のリフロー温度の上昇を抑制することができるので、リフロー後の冷却時の透光性基板とプリント配線基板との収縮差が小さくなり、実装部分への負荷が軽減されるため、透光性基板が破壊することを抑制することができる。
This configuration can prevent the translucent substrate from being broken when the translucent substrate is mounted on the printed wiring board. In other words, by using low melting point solder, it is possible to suppress an increase in the reflow temperature of the mounting part, so that the shrinkage difference between the translucent board and the printed wiring board during cooling after reflow is reduced, and the mounting part is Therefore, it is possible to suppress the breakage of the translucent substrate.
また、本発明の固体撮像装置は、固体撮像素子と、前記固体撮像素子が実装される透光性基板と、前記透光性基板が接合部材としての導電性接着剤を介して実装されるプリント配線基板と、を備え、前記固体撮像素子が、前記透光性基板と前記プリント配線基板との間に配置され、前記固体撮像素子が、撮像領域が前記透光性基板に対向するように配置されている。
The solid-state imaging device of the present invention includes a solid-state imaging device, a translucent substrate on which the solid-state imaging device is mounted, and a print on which the translucent substrate is mounted via a conductive adhesive as a bonding member. A wiring board, wherein the solid-state imaging device is disposed between the translucent substrate and the printed wiring board, and the solid-state imaging device is disposed such that an imaging region faces the translucent substrate. Has been.
この構成により、透光性基板がプリント配線基板へ実装されるときに、透光性基板が破壊することを防止可能である。さらに、導電性接着剤は、低融点半田よりも弾性率が小さいため、透光性基板の変形量(ひずみ)が同量である場合には、上記(式1)より、応力が比較的小さな値となる。したがって、透光性基板の破壊をより抑制することができる。
This configuration can prevent the translucent substrate from being broken when the translucent substrate is mounted on the printed wiring board. Furthermore, since the elastic modulus of the conductive adhesive is smaller than that of the low melting point solder, when the deformation amount (strain) of the translucent substrate is the same, the stress is relatively smaller than the above (Equation 1). Value. Accordingly, it is possible to further suppress the breakage of the translucent substrate.
本発明によれば、透光性基板がプリント配線基板へ実装されるとき又は使用されるときに、透光性基板が破壊することを防止できる。
According to the present invention, it is possible to prevent the translucent substrate from being destroyed when the translucent substrate is mounted on a printed wiring board or used.
以下に、本発明の実施形態について、図面を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
本実施形態の固体撮像装置は、固体撮像素子と、固体撮像素子が実装される透明ガラス基板と、透明ガラス基板が接合部材としての低融点半田ボールを介して実装されるプリント配線基板と、備え、固体撮像素子が、透明ガラス基板とプリント配線基板との間に配置され、撮像領域が透明ガラス基板に対向するように配置されている。 (First embodiment)
The solid-state imaging device of this embodiment includes a solid-state imaging device, a transparent glass substrate on which the solid-state imaging device is mounted, and a printed wiring board on which the transparent glass substrate is mounted via a low melting point solder ball as a joining member. The solid-state imaging device is arranged between the transparent glass substrate and the printed wiring board, and the imaging region is arranged so as to face the transparent glass substrate.
本実施形態の固体撮像装置は、固体撮像素子と、固体撮像素子が実装される透明ガラス基板と、透明ガラス基板が接合部材としての低融点半田ボールを介して実装されるプリント配線基板と、備え、固体撮像素子が、透明ガラス基板とプリント配線基板との間に配置され、撮像領域が透明ガラス基板に対向するように配置されている。 (First embodiment)
The solid-state imaging device of this embodiment includes a solid-state imaging device, a transparent glass substrate on which the solid-state imaging device is mounted, and a printed wiring board on which the transparent glass substrate is mounted via a low melting point solder ball as a joining member. The solid-state imaging device is arranged between the transparent glass substrate and the printed wiring board, and the imaging region is arranged so as to face the transparent glass substrate.
図1は、本実施形態の固体撮像装置の部分分解斜視図である。
透明ガラス基板1に電極パッド2、4が形成されており、電極パッド2と電極パッド4は、それぞれが透明ガラス基板1表面上で配線パターン3により配線され、電気接続されている。電極パッド2は固体撮像素子5との接続用であり、電極パッド4は固体撮像素子5の信号を外部に取り出すプリント配線基板9(図3参照)との電気接続用である。固体撮像素子5は、撮像領域(受光エリア)6が透明ガラス基板1の電極パッド2に対向して配置されている。そして、固体撮像素子5の表面の電気配線パッド上に金属バンプ15が形成され(図5参照)、電極パッド2に実装される。このとき、固体撮像素子5の密着強度と電気接続信頼性を確保するために絶縁性封止樹脂7が注入される(図2参照)。 FIG. 1 is a partially exploded perspective view of the solid-state imaging device of the present embodiment.
Electrode pads 2 and 4 are formed on the transparent glass substrate 1. The electrode pads 2 and the electrode pads 4 are wired by the wiring pattern 3 on the surface of the transparent glass substrate 1 and are electrically connected. The electrode pad 2 is for connection with the solid-state image sensor 5, and the electrode pad 4 is for electrical connection with a printed wiring board 9 (see FIG. 3) that extracts the signal of the solid-state image sensor 5 to the outside. In the solid-state imaging device 5, an imaging region (light receiving area) 6 is arranged to face the electrode pad 2 of the transparent glass substrate 1. Then, metal bumps 15 are formed on the electric wiring pads on the surface of the solid-state imaging device 5 (see FIG. 5) and mounted on the electrode pads 2. At this time, an insulating sealing resin 7 is injected in order to ensure the adhesion strength and electrical connection reliability of the solid-state imaging device 5 (see FIG. 2).
透明ガラス基板1に電極パッド2、4が形成されており、電極パッド2と電極パッド4は、それぞれが透明ガラス基板1表面上で配線パターン3により配線され、電気接続されている。電極パッド2は固体撮像素子5との接続用であり、電極パッド4は固体撮像素子5の信号を外部に取り出すプリント配線基板9(図3参照)との電気接続用である。固体撮像素子5は、撮像領域(受光エリア)6が透明ガラス基板1の電極パッド2に対向して配置されている。そして、固体撮像素子5の表面の電気配線パッド上に金属バンプ15が形成され(図5参照)、電極パッド2に実装される。このとき、固体撮像素子5の密着強度と電気接続信頼性を確保するために絶縁性封止樹脂7が注入される(図2参照)。 FIG. 1 is a partially exploded perspective view of the solid-state imaging device of the present embodiment.
図2は、本実施形態の固体撮像装置の部分組立図である。
図1で説明したように、透明ガラス基板1上に固体撮像素子5が実装され、絶縁性封止樹脂7が注入されている。絶縁性封止樹脂7は、撮像領域6へ漏れ出すことなく、固体撮像素子5の金属バンプ15(図5参照)の周囲を取り囲んで、密着強度を確保している。また、電極パッド4上には、フラックスが塗布され、接合部材としての低融点半田ボール8がリフローにより取り付けられている。 FIG. 2 is a partial assembly diagram of the solid-state imaging device of the present embodiment.
As described with reference to FIG. 1, the solid-state imaging device 5 is mounted on the transparent glass substrate 1 and the insulating sealing resin 7 is injected. The insulating sealing resin 7 surrounds the periphery of the metal bump 15 (see FIG. 5) of the solid-state imaging device 5 without leaking into the imaging region 6 and ensures adhesion strength. On the electrode pad 4, a flux is applied, and a low melting point solder ball 8 as a joining member is attached by reflow.
図1で説明したように、透明ガラス基板1上に固体撮像素子5が実装され、絶縁性封止樹脂7が注入されている。絶縁性封止樹脂7は、撮像領域6へ漏れ出すことなく、固体撮像素子5の金属バンプ15(図5参照)の周囲を取り囲んで、密着強度を確保している。また、電極パッド4上には、フラックスが塗布され、接合部材としての低融点半田ボール8がリフローにより取り付けられている。 FIG. 2 is a partial assembly diagram of the solid-state imaging device of the present embodiment.
As described with reference to FIG. 1, the solid-
図3は、本実施形態の固体撮像装置の部分分解斜視図である。
プリント配線基板9にはクリーム半田が印刷されている。固体撮像素子5が実装され低融点半田ボール8が取り付けられた透明ガラス基板1は、反転してプリント配線基板9上に載せられ、リフローにより半田実装される。これにより、透明ガラス基板1とプリント配線基板9とが電気的に接続される。さらに、低融点半田ボール8の周囲はアンダーフィル(封止樹脂)(図示せず)により強度補強されている。図3の例では、前工程で注入した絶縁性封止樹脂7が露出している。この状態で上部からレンズ11が設置されているレンズ筐体12を準備する。このレンズ筐体12を、プリント配線基板9の透明ガラス基板1が実装された側の表面を基準面として装着し、プリント配線基板9と一体化すると、固体撮像装置が完成する。固体撮像装置が完成した状態では、被写体側から、レンズ11、透明ガラス基板1、固体撮像素子5、及びプリント配線基板9の順に配列される。なお、図3に示すように、レンズ筐体12がプリント配線基板9に実装された状態では、レンズ11と透明ガラス基板1とは接触しない。 FIG. 3 is a partially exploded perspective view of the solid-state imaging device of the present embodiment.
Cream solder is printed on the printedwiring board 9. The transparent glass substrate 1 on which the solid-state imaging device 5 is mounted and the low melting point solder balls 8 are attached is reversed and placed on the printed wiring board 9 and soldered by reflow. Thereby, the transparent glass substrate 1 and the printed wiring board 9 are electrically connected. Further, the strength of the periphery of the low melting point solder ball 8 is reinforced by an underfill (sealing resin) (not shown). In the example of FIG. 3, the insulating sealing resin 7 injected in the previous process is exposed. In this state, a lens housing 12 in which the lens 11 is installed from above is prepared. When this lens housing 12 is mounted with the surface of the printed wiring board 9 on the side where the transparent glass substrate 1 is mounted as a reference surface and integrated with the printed wiring board 9, a solid-state imaging device is completed. When the solid-state imaging device is completed, the lens 11, the transparent glass substrate 1, the solid-state imaging device 5, and the printed wiring board 9 are arranged in this order from the subject side. As shown in FIG. 3, the lens 11 and the transparent glass substrate 1 are not in contact with each other when the lens housing 12 is mounted on the printed wiring board 9.
プリント配線基板9にはクリーム半田が印刷されている。固体撮像素子5が実装され低融点半田ボール8が取り付けられた透明ガラス基板1は、反転してプリント配線基板9上に載せられ、リフローにより半田実装される。これにより、透明ガラス基板1とプリント配線基板9とが電気的に接続される。さらに、低融点半田ボール8の周囲はアンダーフィル(封止樹脂)(図示せず)により強度補強されている。図3の例では、前工程で注入した絶縁性封止樹脂7が露出している。この状態で上部からレンズ11が設置されているレンズ筐体12を準備する。このレンズ筐体12を、プリント配線基板9の透明ガラス基板1が実装された側の表面を基準面として装着し、プリント配線基板9と一体化すると、固体撮像装置が完成する。固体撮像装置が完成した状態では、被写体側から、レンズ11、透明ガラス基板1、固体撮像素子5、及びプリント配線基板9の順に配列される。なお、図3に示すように、レンズ筐体12がプリント配線基板9に実装された状態では、レンズ11と透明ガラス基板1とは接触しない。 FIG. 3 is a partially exploded perspective view of the solid-state imaging device of the present embodiment.
Cream solder is printed on the printed
図4は、本実施形態の固体撮像装置の組立完成図である。図5は、本実施形態の固体撮像装置の組立て完成図の断面図である。
プリント配線基板9の表面に低融点半田ボール8を介して、透明ガラス基板1が実装されており、低融点半田ボール8の周囲はアンダーフィル(図示せず)により強度補強されている。低融点半田ボール8は、プリント配線基板9の表面上の電極パッド(図示せず)と接している。透明ガラス基板1には、撮像領域6を持つ固体撮像素子5が金属バンプ15を介して実装され、その周囲には絶縁性封止樹脂7が不足無く注入硬化されている。また、絶縁性封止樹脂7は、固体撮像素子5の撮像領域6へ漏れ出していない。これは、製造時に絶縁性封止樹脂7にUV硬化性の材料を用い、撮像領域6にUV光を照射しながら封止注入することにより達成している。 FIG. 4 is an assembly completion diagram of the solid-state imaging device of the present embodiment. FIG. 5 is a cross-sectional view of the completed assembly of the solid-state imaging device of the present embodiment.
Thetransparent glass substrate 1 is mounted on the surface of the printed wiring board 9 via a low melting point solder ball 8, and the periphery of the low melting point solder ball 8 is reinforced by an underfill (not shown). The low melting point solder ball 8 is in contact with an electrode pad (not shown) on the surface of the printed wiring board 9. A solid-state imaging device 5 having an imaging region 6 is mounted on the transparent glass substrate 1 via metal bumps 15, and an insulating sealing resin 7 is injected and cured without a shortage around the solid-state imaging device 5. Further, the insulating sealing resin 7 does not leak into the imaging region 6 of the solid-state imaging device 5. This is achieved by using a UV curable material for the insulating sealing resin 7 at the time of manufacture, and performing sealing injection while irradiating the imaging region 6 with UV light.
プリント配線基板9の表面に低融点半田ボール8を介して、透明ガラス基板1が実装されており、低融点半田ボール8の周囲はアンダーフィル(図示せず)により強度補強されている。低融点半田ボール8は、プリント配線基板9の表面上の電極パッド(図示せず)と接している。透明ガラス基板1には、撮像領域6を持つ固体撮像素子5が金属バンプ15を介して実装され、その周囲には絶縁性封止樹脂7が不足無く注入硬化されている。また、絶縁性封止樹脂7は、固体撮像素子5の撮像領域6へ漏れ出していない。これは、製造時に絶縁性封止樹脂7にUV硬化性の材料を用い、撮像領域6にUV光を照射しながら封止注入することにより達成している。 FIG. 4 is an assembly completion diagram of the solid-state imaging device of the present embodiment. FIG. 5 is a cross-sectional view of the completed assembly of the solid-state imaging device of the present embodiment.
The
なお、固体撮像素子チップの薄型化は進む一方であり、裏面からの光りの回りこみを防止するために、プリント配線基板9としては、遮光性基板を用いるのが望ましく、樹脂基板であればエポキシ樹脂などの遮光性樹脂を用いるのが望ましい。また、セラミック基板、遮光膜を形成したガラス基板なども適用可能である。
Note that the solid-state imaging device chip is becoming thinner, and it is desirable to use a light-shielding substrate as the printed wiring board 9 in order to prevent light from coming from the back surface. It is desirable to use a light shielding resin such as a resin. Further, a ceramic substrate, a glass substrate on which a light-shielding film is formed, and the like are also applicable.
次に、低融点半田ボール8に用いられる低融点半田及び透明ガラス基板1の詳細な仕様について説明する。
低融点半田としては、例えば、千住金属社製の「L20-BLT5-T8F」を用いる。この低融点半田は、低温域(170℃~190℃)でのリフローが可能な半田である。そして、Sn-58Biの組成であり、融点:139℃、リフローピーク温度:160℃、ヤング率:33.0GPa、膨張係数:15.4ppm/℃、の特性を有する。 Next, detailed specifications of the low melting point solder and thetransparent glass substrate 1 used for the low melting point solder ball 8 will be described.
As the low melting point solder, for example, “L20-BLT5-T8F” manufactured by Senju Metal Co., Ltd. is used. This low melting point solder is a solder that can be reflowed in a low temperature range (170 ° C. to 190 ° C.). It has a composition of Sn-58Bi and has a melting point: 139 ° C., reflow peak temperature: 160 ° C., Young's modulus: 33.0 GPa, and expansion coefficient: 15.4 ppm / ° C.
低融点半田としては、例えば、千住金属社製の「L20-BLT5-T8F」を用いる。この低融点半田は、低温域(170℃~190℃)でのリフローが可能な半田である。そして、Sn-58Biの組成であり、融点:139℃、リフローピーク温度:160℃、ヤング率:33.0GPa、膨張係数:15.4ppm/℃、の特性を有する。 Next, detailed specifications of the low melting point solder and the
As the low melting point solder, for example, “L20-BLT5-T8F” manufactured by Senju Metal Co., Ltd. is used. This low melting point solder is a solder that can be reflowed in a low temperature range (170 ° C. to 190 ° C.). It has a composition of Sn-58Bi and has a melting point: 139 ° C., reflow peak temperature: 160 ° C., Young's modulus: 33.0 GPa, and expansion coefficient: 15.4 ppm / ° C.
また、透明ガラス基板1としては、例えば、ヤング率:72.9GPa、線膨張係数:7.2M×10-6/℃のガラス基板を用いる。
Further, as the transparent glass substrate 1, for example, a glass substrate having a Young's modulus: 72.9 GPa and a linear expansion coefficient of 7.2 M × 10 −6 / ° C. is used.
なお、透明ガラス基板1と同様の仕様であれば、透明ガラス基板1の代わりに、光学フィルタ膜、あるいは反射防止膜を形成したものを用いてもよい。
If the specification is the same as that of the transparent glass substrate 1, an optical filter film or an antireflection film may be used instead of the transparent glass substrate 1.
次に、透明ガラス基板1をプリント配線基板9に実装するときの透明ガラス基板1の温度変化及び透明ガラス基板1にかかる応力の一例について説明する。図6(A)~(C)は、リフロー後の温度低下時に透明ガラス基板1にかかる応力の一例を示す図である。
Next, an example of the temperature change of the transparent glass substrate 1 and the stress applied to the transparent glass substrate 1 when the transparent glass substrate 1 is mounted on the printed wiring board 9 will be described. 6A to 6C are diagrams showing an example of stress applied to the transparent glass substrate 1 when the temperature decreases after reflow.
仮に、従来の半田ボールを用いて透明ガラス基板1をプリント配線基板9に実装する場合には、リフロー時の透明ガラス基板1の温度は約220℃であるが、リフロー後の透明ガラス基板1の温度は常温(約25℃)まで低下する。この場合に透明ガラス基板1に発生する最大応力(ここでは、半田ボール付近にかかる応力)を100とする。この様子を図6(A)に示している。
If the transparent glass substrate 1 is mounted on the printed wiring board 9 using conventional solder balls, the temperature of the transparent glass substrate 1 at the time of reflow is about 220 ° C. The temperature drops to room temperature (about 25 ° C.). In this case, the maximum stress generated in the transparent glass substrate 1 (here, the stress applied to the vicinity of the solder ball) is set to 100. This state is shown in FIG.
一方、本実施形態の低融点半田ボール8を用いて透明ガラス基板1をプリント配線基板9に実装する場合には、リフロー時の透明ガラス基板1の温度は約140℃であり、リフロー後の透明ガラス基板1の温度は常温(約25℃)まで低下する。この場合、透明ガラス基板1に発生する最大応力(ここでは、低融点半田ボール8付近にかかる応力)は約45となる。この様子を図6(B)に示している。このように、従来の半田ボールを用いる場合よりも本実施形態の低融点半田ボール8を用いる方が、リフロー後に透明ガラス基板1にかかる応力が小さくなるので、透明ガラス基板1が破壊しにくくなる。
On the other hand, when the transparent glass substrate 1 is mounted on the printed wiring board 9 using the low melting point solder balls 8 of the present embodiment, the temperature of the transparent glass substrate 1 at the time of reflow is about 140 ° C., and the transparent after reflow is transparent. The temperature of the glass substrate 1 decreases to room temperature (about 25 ° C.). In this case, the maximum stress generated in the transparent glass substrate 1 (here, the stress applied to the vicinity of the low melting point solder ball 8) is about 45. This state is shown in FIG. Thus, since the stress applied to the transparent glass substrate 1 after reflow is smaller when the low melting point solder ball 8 of the present embodiment is used than when the conventional solder ball is used, the transparent glass substrate 1 is not easily broken. .
次に、本実施形態のプリント配線基板9の形状の変形例について、図7を用いて説明する。
図1~図5では、プリント配線基板9として平板形状の基板を用いることを説明したが、これ以外の形状であってもよい。 Next, a modified example of the shape of the printedwiring board 9 of the present embodiment will be described with reference to FIG.
1 to 5, it has been described that a flat substrate is used as the printedwiring board 9, but other shapes may be used.
図1~図5では、プリント配線基板9として平板形状の基板を用いることを説明したが、これ以外の形状であってもよい。 Next, a modified example of the shape of the printed
1 to 5, it has been described that a flat substrate is used as the printed
例えば、図7(A)に示すように、プリント配線基板9は、固体撮像素子5と対向する領域に開口部を有してもよい。これにより、低融点半田ボール8の厚み方向(X方向)の長さが比較的短い場合であっても、プリント配線基板9に低融点半田ボール8を介して透明ガラス基板1が実装されるときに、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
For example, as shown in FIG. 7A, the printed wiring board 9 may have an opening in a region facing the solid-state imaging element 5. Accordingly, when the transparent glass substrate 1 is mounted on the printed wiring board 9 via the low melting point solder ball 8 even when the length of the low melting point solder ball 8 in the thickness direction (X direction) is relatively short. In addition, the transparent glass substrate 1 can be mounted without being destroyed, and the printed wiring board 9 and the transparent glass substrate 1 are not in contact with each other.
また、図7(B)に示すように、プリント配線基板9は、キャビティ部10を有し、キャビティ部10の外側に実装用の電極パッド(図示せず)が形成されていてもよい。この実装用の電極パッドと低融点半田ボール8とが接触し、低融点半田ボール8とガラス基板1の電極パッド4とが接触する。また、プリント配線基板9に透明ガラス基板1を実装した状態では、低融点半田ボール8の厚み方向(X方向)の長さとプリント配線基板9のキャビティ部10の厚み方向(X方向)の長さとの和が、固体撮像素子5と透明ガラス基板1との距離よりも長い。これにより、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
Further, as shown in FIG. 7B, the printed wiring board 9 may have a cavity portion 10, and an electrode pad (not shown) for mounting may be formed outside the cavity portion 10. The mounting electrode pad and the low melting point solder ball 8 are in contact with each other, and the low melting point solder ball 8 and the electrode pad 4 on the glass substrate 1 are in contact with each other. When the transparent glass substrate 1 is mounted on the printed wiring board 9, the length in the thickness direction (X direction) of the low melting point solder ball 8 and the length in the thickness direction (X direction) of the cavity portion 10 of the printed wiring board 9 Is longer than the distance between the solid-state imaging device 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
(第2の実施形態)
本発明の第2の実施形態の固体撮像装置では、プリント配線基板9と透明ガラス基板1とを接合する接合部材として、低融点半田ペースト(印刷半田)18を用いる。接合部材として低融点半田ペースト18を用いる点以外は、基本的には第1の実施形態における固体撮像装置と同様の構成である。なお、低融点半田ペースト18に用いられる低融点半田の仕様は、第1の実施形態で説明した低融点半田ボール8に用いられる低融点半田の仕様と同様である。したがって、低融点半田ペースト18を用いた場合のリフロー時の透明ガラス基板1の温度変化及び透明ガラス基板1にかかる応力についても、低融点半田ボール8を用いた場合と同様である(図6(B)参照)。 (Second Embodiment)
In the solid-state imaging device according to the second embodiment of the present invention, a low melting point solder paste (printed solder) 18 is used as a joining member for joining the printedwiring board 9 and the transparent glass substrate 1. The configuration is basically the same as that of the solid-state imaging device according to the first embodiment except that the low melting point solder paste 18 is used as the joining member. The specification of the low melting point solder used for the low melting point solder paste 18 is the same as the specification of the low melting point solder used for the low melting point solder ball 8 described in the first embodiment. Therefore, the temperature change of the transparent glass substrate 1 and the stress applied to the transparent glass substrate 1 during reflow when the low melting point solder paste 18 is used are the same as when the low melting point solder ball 8 is used (FIG. 6 ( B)).
本発明の第2の実施形態の固体撮像装置では、プリント配線基板9と透明ガラス基板1とを接合する接合部材として、低融点半田ペースト(印刷半田)18を用いる。接合部材として低融点半田ペースト18を用いる点以外は、基本的には第1の実施形態における固体撮像装置と同様の構成である。なお、低融点半田ペースト18に用いられる低融点半田の仕様は、第1の実施形態で説明した低融点半田ボール8に用いられる低融点半田の仕様と同様である。したがって、低融点半田ペースト18を用いた場合のリフロー時の透明ガラス基板1の温度変化及び透明ガラス基板1にかかる応力についても、低融点半田ボール8を用いた場合と同様である(図6(B)参照)。 (Second Embodiment)
In the solid-state imaging device according to the second embodiment of the present invention, a low melting point solder paste (printed solder) 18 is used as a joining member for joining the printed
低融点半田ペースト18を用いてプリント配線基板9と透明ガラス基板1とを接合する工程では、まず、プリント配線基板9の電極パッド上に低融点半田ペースト18を印刷塗布する。続いて、低融点半田ペースト18が印刷塗布されたプリント配線基板9の電極パッドに透明ガラス基板1の電極パッドが配置されるように調整して、プリント配線基板9に透明ガラス基板1を載置する。続いて、低融点半田ペースト18を加熱することで、透明ガラス基板1とプリント配線基板9とを低融点半田ペースト18を介して接合する。
In the process of bonding the printed wiring board 9 and the transparent glass substrate 1 using the low melting point solder paste 18, first, the low melting point solder paste 18 is printed on the electrode pads of the printed wiring board 9. Subsequently, the transparent glass substrate 1 is placed on the printed wiring board 9 by adjusting the electrode pads of the transparent glass board 1 to be arranged on the electrode pads of the printed wiring board 9 on which the low melting point solder paste 18 is printed and applied. To do. Subsequently, the transparent glass substrate 1 and the printed wiring board 9 are joined via the low melting point solder paste 18 by heating the low melting point solder paste 18.
次に、本実施形態のプリント配線基板9の形状について、図8を用いて説明する。
Next, the shape of the printed wiring board 9 of this embodiment will be described with reference to FIG.
低融点半田ペースト18を用いる場合のプリント配線基板9の形状としては、例えば以下の2種類が考えられる。例えば、図8(A)に示すように、プリント配線基板9は、固体撮像素子5と対向する領域に開口部を有してもよい。これにより、低融点半田ペースト18の厚み方向(X方向)の長さが比較的短い場合であっても、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
As the shape of the printed wiring board 9 when the low melting point solder paste 18 is used, for example, the following two types are conceivable. For example, as illustrated in FIG. 8A, the printed wiring board 9 may have an opening in a region facing the solid-state imaging element 5. Thereby, even if the length of the low melting point solder paste 18 in the thickness direction (X direction) is relatively short, the transparent glass substrate 1 is not destroyed, and the printed wiring board 9 and the transparent glass substrate 1 are It is possible to mount without contact.
また、図8(B)に示すように、プリント配線基板9は、キャビティ部10を有し、キャビティ部10の外側に実装用の電極パッド(図示せず)が形成されていてもよい。この実装用の電極パッドと低融点半田ペースト18とが接触し、低融点半田ペースト18とガラス基板1の電極パッド4とが接触する。また、プリント配線基板9に透明ガラス基板1を実装した状態では、低融点半田ペースト18の厚み方向(X方向)の長さとプリント配線基板9のキャビティ部10の厚み方向(X方向)の長さとの和が、固体撮像素子5と透明ガラス基板1との距離よりも長い。これにより、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
Further, as shown in FIG. 8B, the printed wiring board 9 may have a cavity portion 10, and an electrode pad (not shown) for mounting may be formed outside the cavity portion 10. The mounting electrode pad and the low melting point solder paste 18 are in contact with each other, and the low melting point solder paste 18 and the electrode pad 4 on the glass substrate 1 are in contact with each other. When the transparent glass substrate 1 is mounted on the printed wiring board 9, the length in the thickness direction (X direction) of the low melting point solder paste 18 and the length in the thickness direction (X direction) of the cavity portion 10 of the printed wiring board 9 Is longer than the distance between the solid-state imaging device 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
(第3の実施形態)
本発明の第3の実施形態の固体撮像装置では、プリント配線基板9と透明ガラス基板1とを接合する接合部材として、導電性接着剤(導電性ペースト)28を用いる。接合部材として導電性接着剤28を用いる点以外は、基本的には第1の実施形態における固体撮像装置と同様の構成である。 (Third embodiment)
In the solid-state imaging device according to the third embodiment of the present invention, a conductive adhesive (conductive paste) 28 is used as a bonding member for bonding the printedwiring board 9 and the transparent glass substrate 1. The configuration is basically the same as that of the solid-state imaging device according to the first embodiment except that the conductive adhesive 28 is used as the joining member.
本発明の第3の実施形態の固体撮像装置では、プリント配線基板9と透明ガラス基板1とを接合する接合部材として、導電性接着剤(導電性ペースト)28を用いる。接合部材として導電性接着剤28を用いる点以外は、基本的には第1の実施形態における固体撮像装置と同様の構成である。 (Third embodiment)
In the solid-state imaging device according to the third embodiment of the present invention, a conductive adhesive (conductive paste) 28 is used as a bonding member for bonding the printed
本実施形態の導電性接着剤28としては、例えば、ナミックス社製のハンダ代替導電性接着剤「H9626D」を用いる。この導電性接着剤は、無溶剤型の熱硬化タイプ導電接着剤であり、以下の特性を有する。
As the conductive adhesive 28 of this embodiment, for example, a solder substitute conductive adhesive “H9626D” manufactured by NAMICS is used. This conductive adhesive is a solventless thermosetting conductive adhesive and has the following characteristics.
組成:Ag
粘度:47Pa・s/25℃、
T.I.:5.0、
比重:3.7、
比抵抗値:TMA法で2.0×10-4Ω・cm、
接着強度:DMA法で40N/mm2、
線膨張率:DMA法でα1:40ppm、α2:100ppm、
ガラス繊維温度:120℃、
ヤング率:6.5GPa、
純度:Na(原子吸光分光光度計)では3.0ppm、Cl(イオンクロマトグラフ)では25ppm Composition: Ag
Viscosity: 47 Pa · s / 25 ° C.
T.A. I. : 5.0,
Specific gravity: 3.7,
Specific resistance value: 2.0 × 10 −4 Ω · cm by TMA method
Adhesive strength: 40 N / mm 2 by DMA method
Linear expansion coefficient: α1: 40 ppm by DMA method, α2: 100 ppm,
Glass fiber temperature: 120 ° C.
Young's modulus: 6.5 GPa,
Purity: 3.0 ppm for Na (atomic absorption spectrophotometer), 25 ppm for Cl (ion chromatograph)
粘度:47Pa・s/25℃、
T.I.:5.0、
比重:3.7、
比抵抗値:TMA法で2.0×10-4Ω・cm、
接着強度:DMA法で40N/mm2、
線膨張率:DMA法でα1:40ppm、α2:100ppm、
ガラス繊維温度:120℃、
ヤング率:6.5GPa、
純度:Na(原子吸光分光光度計)では3.0ppm、Cl(イオンクロマトグラフ)では25ppm Composition: Ag
Viscosity: 47 Pa · s / 25 ° C.
T.A. I. : 5.0,
Specific gravity: 3.7,
Specific resistance value: 2.0 × 10 −4 Ω · cm by TMA method
Adhesive strength: 40 N / mm 2 by DMA method
Linear expansion coefficient: α1: 40 ppm by DMA method, α2: 100 ppm,
Glass fiber temperature: 120 ° C.
Young's modulus: 6.5 GPa,
Purity: 3.0 ppm for Na (atomic absorption spectrophotometer), 25 ppm for Cl (ion chromatograph)
また、導電性接着剤が150度の状態を30分間維持することで、導電性接着剤が硬化する。
Also, the conductive adhesive is cured by maintaining the state of the conductive adhesive at 150 degrees for 30 minutes.
導電性接着剤28を用いてプリント配線基板9と透明ガラス基板1とを接合する工程では、まず、冷凍(約-20℃)された導電性接着剤28を常温になるまで放置する。そして、プリント配線基板9の電極パッド上に導電性接着剤28を塗布し、導電性接着剤28が塗布されたプリント配線板9の電極パッドに透明ガラス基板1の電極パッドが配置されるように調整して、透明ガラス基板1を載置する。続いて、導電性接着剤28を加熱(150℃×30分)することで、導電性接着剤を熱硬化させ、透明ガラス基板1とプリント配線基板9とを導電性接着剤28を介して接合する。
In the step of bonding the printed wiring board 9 and the transparent glass substrate 1 using the conductive adhesive 28, first, the frozen (about −20 ° C.) conductive adhesive 28 is left until it reaches room temperature. Then, the conductive adhesive 28 is applied on the electrode pads of the printed wiring board 9, and the electrode pads of the transparent glass substrate 1 are arranged on the electrode pads of the printed wiring board 9 to which the conductive adhesive 28 is applied. Adjust and place the transparent glass substrate 1. Subsequently, the conductive adhesive 28 is heated (150 ° C. × 30 minutes) to thermally cure the conductive adhesive 28, and the transparent glass substrate 1 and the printed wiring board 9 are bonded via the conductive adhesive 28. To do.
次に、透明ガラス基板1をプリント配線基板9に実装するときの透明ガラス基板1の温度変化及び透明ガラス基板1にかかる応力の一例について説明する。
Next, an example of the temperature change of the transparent glass substrate 1 and the stress applied to the transparent glass substrate 1 when the transparent glass substrate 1 is mounted on the printed wiring board 9 will be described.
本実施形態の導電性接着剤28を用いて透明ガラス基板1をプリント配線基板9に実装する場合には、加熱時の透明ガラス基板1の温度は約150℃であり、加熱後には常温(約25℃)まで低下する。この場合、透明ガラス基板1に発生する最大応力(ここでは、導電性接着剤28付近にかかる応力)は約50となる。この様子を図6(C)に示している。このように、従来の半田ボールを用いる場合よりも本実施形態の導電性接着剤28を用いる方が、加熱後常温となった後に透明ガラス基板1にかかる応力が小さくなるので、透明ガラス基板1が破壊しにくくなる。
When the transparent glass substrate 1 is mounted on the printed wiring board 9 using the conductive adhesive 28 of the present embodiment, the temperature of the transparent glass substrate 1 during heating is about 150 ° C. 25 ° C). In this case, the maximum stress generated in the transparent glass substrate 1 (here, the stress applied to the vicinity of the conductive adhesive 28) is about 50. This state is shown in FIG. As described above, the stress applied to the transparent glass substrate 1 after the heating to room temperature is reduced by using the conductive adhesive 28 of the present embodiment, compared with the case of using the conventional solder balls. Is harder to break.
次に、本実施形態のプリント配線基板9の形状について、図9を用いて説明する。
Next, the shape of the printed wiring board 9 of this embodiment will be described with reference to FIG.
導電性接着剤28を用いる場合のプリント配線基板9の形状としては、例えば以下の3種類が考えられる。例えば、図9(A)に示すように、プリント配線基板9は、固体撮像素子5と対向する領域に開口部を有してもよい。これにより、導電性接着剤28の厚み方向(X方向)の長さが比較的短い場合であっても、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
As the shape of the printed wiring board 9 when the conductive adhesive 28 is used, for example, the following three types are conceivable. For example, as illustrated in FIG. 9A, the printed wiring board 9 may have an opening in a region facing the solid-state imaging element 5. Thereby, even if it is a case where the length of the thickness direction (X direction) of the conductive adhesive 28 is comparatively short, the transparent glass substrate 1 does not break down, and the printed wiring board 9 and the transparent glass substrate 1 It is possible to mount without contact.
また、図9(B)に示すように、プリント配線基板9は、キャビティ部10を有し、キャビティ部10の外側に実装用の電極パッド(図示せず)が形成されていてもよい。この実装用の電極パッドと導電性接着剤28とが接触し、導電性接着剤28と透明ガラス基板1の電極パッド4とが接触する。また、プリント配線基板9に透明ガラス基板1を実装した状態では、導電性接着剤28の厚み方向(X方向)の長さとプリント配線基板9のキャビティ部10の厚み方向(X方向)の長さとの和が、固体撮像素子5と透明ガラス基板1との距離よりも長い。これにより、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
Further, as shown in FIG. 9B, the printed wiring board 9 may have a cavity portion 10, and an electrode pad (not shown) for mounting may be formed outside the cavity portion 10. The mounting electrode pad and the conductive adhesive 28 are in contact with each other, and the conductive adhesive 28 and the electrode pad 4 of the transparent glass substrate 1 are in contact with each other. Further, in the state where the transparent glass substrate 1 is mounted on the printed wiring board 9, the length of the conductive adhesive 28 in the thickness direction (X direction) and the length of the cavity portion 10 of the printed wiring board 9 in the thickness direction (X direction) Is longer than the distance between the solid-state imaging device 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
また、図9(C)に示すように、プリント配線基板9の形状が平板形状であり、所定の位置に金属バンプが形成されていてもよい。図9(C)の固体撮像装置では、金属バンプが形成された領域に導電性接着剤28が塗布される。この金属バンプがプリント配線基板9の電極部として機能し、金属バンプと導電性接着剤28とが接し、導電性接着剤28と透明ガラス基板1の電極パッド4と接する。また、プリント配線基板9に透明ガラス基板1を実装した状態では、金属バンプの厚み方向(X方向)の長さと導電性接着剤28の厚み方向(X方向)の長さとの和が、固体撮像素子5と透明ガラス基板1との距離よりも長い。これにより、透明ガラス基板1が破壊することなく、かつ、プリント配線基板9と透明ガラス基板1が接触することなく実装することが可能である。
Further, as shown in FIG. 9C, the printed wiring board 9 may have a flat plate shape, and metal bumps may be formed at predetermined positions. In the solid-state imaging device of FIG. 9C, the conductive adhesive 28 is applied to the region where the metal bumps are formed. This metal bump functions as an electrode portion of the printed wiring board 9, and the metal bump and the conductive adhesive 28 are in contact with each other, and the conductive adhesive 28 and the electrode pad 4 of the transparent glass substrate 1 are in contact with each other. In the state where the transparent glass substrate 1 is mounted on the printed wiring board 9, the sum of the length in the thickness direction (X direction) of the metal bump and the length in the thickness direction (X direction) of the conductive adhesive 28 is solid-state imaging. It is longer than the distance between the element 5 and the transparent glass substrate 1. Thereby, it is possible to mount without the transparent glass substrate 1 being destroyed and without the printed wiring board 9 and the transparent glass substrate 1 being in contact with each other.
このように、各実施形態における接合部材としての低融点半田ボール8、低融点半田ペースト18、及び導電性接着剤28を用いることで、リフロー後又は加熱後の冷却時に、透明ガラス基板1とプリント配線基板9との熱収縮を吸収することができる。これにより、両基板の収縮差により実装部分へ負荷が加わり、透明ガラス基板1が破壊することを抑制することができる。
Thus, by using the low melting point solder ball 8, the low melting point solder paste 18, and the conductive adhesive 28 as the joining members in each embodiment, the transparent glass substrate 1 and the print can be printed after reflowing or cooling after heating. Thermal contraction with the wiring board 9 can be absorbed. Thereby, it can suppress that a load is added to a mounting part by the shrinkage | contraction difference of both board | substrates, and the transparent glass substrate 1 destroys.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2010年7月16日出願の日本特許出願No.2010-161798に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2010-161798 filed on Jul. 16, 2010, the contents of which are incorporated herein by reference.
本出願は、2010年7月16日出願の日本特許出願No.2010-161798に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2010-161798 filed on Jul. 16, 2010, the contents of which are incorporated herein by reference.
本発明は、透光性基板がプリント配線基板へ実装される又は使用されるときに、透光性基板が破壊することを防止可能な固体撮像装置等に有用である。
The present invention is useful for a solid-state imaging device or the like that can prevent the translucent substrate from being destroyed when the translucent substrate is mounted on or used on a printed wiring board.
1 透明ガラス基板
2、4 電極パッド
3 配線パターン
5 固体撮像素子
6 撮像領域
7 絶縁性封止樹脂
8 低融点半田ボール
9 プリント配線基板
10 キャビティ部
11 レンズ
12 レンズ筐体
15 金属バンプ
18 低融点半田ペースト
28 導電性接着剤 DESCRIPTION OFSYMBOLS 1 Transparent glass substrate 2, 4 Electrode pad 3 Wiring pattern 5 Solid-state image sensor 6 Imaging area 7 Insulating sealing resin 8 Low melting point solder ball 9 Printed wiring board 10 Cavity part 11 Lens 12 Lens housing 15 Metal bump 18 Low melting point solder Paste 28 Conductive adhesive
2、4 電極パッド
3 配線パターン
5 固体撮像素子
6 撮像領域
7 絶縁性封止樹脂
8 低融点半田ボール
9 プリント配線基板
10 キャビティ部
11 レンズ
12 レンズ筐体
15 金属バンプ
18 低融点半田ペースト
28 導電性接着剤 DESCRIPTION OF
Claims (2)
- 固体撮像素子と、
前記固体撮像素子が実装される透光性基板と、
前記透光性基板が接合部材としての低融点半田を介して実装されるプリント配線基板と、
を備え、
前記固体撮像素子は、前記透光性基板と前記プリント配線基板との間に配置され、撮像領域が前記透光性基板に対向するように配置された固体撮像装置。 A solid-state image sensor;
A translucent substrate on which the solid-state imaging device is mounted;
A printed wiring board on which the translucent board is mounted via low melting point solder as a joining member;
With
The solid-state imaging device is disposed between the translucent substrate and the printed wiring board, and the solid-state imaging device is disposed so that an imaging region faces the translucent substrate. - 固体撮像素子と、
前記固体撮像素子が実装される透光性基板と、
前記透光性基板が接合部材としての導電性接着剤を介して実装されるプリント配線基板と、
を備え、
前記固体撮像素子は、前記透光性基板と前記プリント配線基板との間に配置され、撮像領域が前記透光性基板に対向するように配置された固体撮像装置。 A solid-state image sensor;
A translucent substrate on which the solid-state imaging device is mounted;
A printed wiring board on which the translucent substrate is mounted via a conductive adhesive as a bonding member;
With
The solid-state imaging device is disposed between the translucent substrate and the printed wiring board, and the solid-state imaging device is disposed so that an imaging region faces the translucent substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010161798A JP2012023667A (en) | 2010-07-16 | 2010-07-16 | Solid-state image pickup device |
JP2010-161798 | 2010-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012008072A1 true WO2012008072A1 (en) | 2012-01-19 |
Family
ID=45469092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002238 WO2012008072A1 (en) | 2010-07-16 | 2011-04-15 | Solid-state image pickup device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012023667A (en) |
WO (1) | WO2012008072A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768389A (en) * | 2012-07-20 | 2018-03-06 | 株式会社尼康 | Shooting unit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2014DN07833A (en) * | 2012-03-20 | 2015-04-24 | Alpha Metals |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002158326A (en) * | 2000-11-08 | 2002-05-31 | Apack Technologies Inc | Semiconductor device and manufacturing method thereof |
JP2002223378A (en) * | 2000-11-14 | 2002-08-09 | Toshiba Corp | Image pickup unit, its producing method and electric apparatus |
JP2003163345A (en) * | 2001-11-27 | 2003-06-06 | Canon Inc | Radiation converting substrate, radiation detector |
JP2007288755A (en) * | 2006-04-14 | 2007-11-01 | Optopac Co Ltd | Camera module |
-
2010
- 2010-07-16 JP JP2010161798A patent/JP2012023667A/en not_active Withdrawn
-
2011
- 2011-04-15 WO PCT/JP2011/002238 patent/WO2012008072A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002158326A (en) * | 2000-11-08 | 2002-05-31 | Apack Technologies Inc | Semiconductor device and manufacturing method thereof |
JP2002223378A (en) * | 2000-11-14 | 2002-08-09 | Toshiba Corp | Image pickup unit, its producing method and electric apparatus |
JP2003163345A (en) * | 2001-11-27 | 2003-06-06 | Canon Inc | Radiation converting substrate, radiation detector |
JP2007288755A (en) * | 2006-04-14 | 2007-11-01 | Optopac Co Ltd | Camera module |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768389A (en) * | 2012-07-20 | 2018-03-06 | 株式会社尼康 | Shooting unit |
Also Published As
Publication number | Publication date |
---|---|
JP2012023667A (en) | 2012-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7110033B2 (en) | Imaging device having an imaging element mounted on a substrate | |
JP4304163B2 (en) | Imaging module and manufacturing method thereof | |
WO2014109094A1 (en) | Method for manufacturing semiconductor device, semiconductor device, and endoscope | |
US11728447B2 (en) | Semiconductor device and imaging apparatus | |
US9509890B2 (en) | Solid image pickup apparatus | |
JP2008135814A (en) | Camera module package | |
CN111988500B (en) | Image forming unit and image forming apparatus | |
US10356907B2 (en) | Endoscope, electronic unit and method for manufacturing electronic unit | |
JP2010252164A (en) | Solid-state image sensing device | |
JP2013219468A (en) | Image pickup module | |
JP2007165420A (en) | Semiconductor device | |
JP5389970B2 (en) | Imaging module and imaging module manufacturing method | |
JP2002299592A (en) | Semiconductor device | |
WO2012008072A1 (en) | Solid-state image pickup device | |
JP2007300032A (en) | Optical module and its manufacturing method | |
JP4681648B2 (en) | Resin sealing module, optical module, and resin sealing method | |
US7420267B2 (en) | Image sensor assembly and method for fabricating the same | |
KR100705529B1 (en) | Rfid tag | |
KR20080051445A (en) | Image sensor module and manufacturing method thereof and camera module having the same | |
CN112997313A (en) | Sensor module | |
KR20170064323A (en) | Camera module | |
JP2019076358A (en) | Image pickup module, endoscope, and method of manufacturing image pickup module | |
TW202429962A (en) | Camera module packaging structure | |
KR101037481B1 (en) | Method of Fabricating Camera Module | |
JP2001035885A (en) | Printed circuit board and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11806409 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11806409 Country of ref document: EP Kind code of ref document: A1 |