WO2012093722A1 - 共重合ポリアミド - Google Patents
共重合ポリアミド Download PDFInfo
- Publication number
- WO2012093722A1 WO2012093722A1 PCT/JP2012/050183 JP2012050183W WO2012093722A1 WO 2012093722 A1 WO2012093722 A1 WO 2012093722A1 JP 2012050183 W JP2012050183 W JP 2012050183W WO 2012093722 A1 WO2012093722 A1 WO 2012093722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- polyamide
- copolymerized polyamide
- diamine
- copolymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/36—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the present invention relates to a copolymerized polyamide and a copolymerized polyamide composition.
- Polyamides represented by polyamide 6 and polyamide 66 are excellent in molding processability, mechanical properties or chemical resistance. Polyamides are widely used as various parts materials for automobiles, electric and electronic, industrial materials, industrial materials, daily use and household goods.
- polyamides are increasingly used for exterior materials and interior materials, and the level of required properties such as heat resistance, strength, and surface appearance of polyamide materials is further improved. Above all, since the temperature in the engine room is also increasing, there is an increasing demand for higher heat resistance for the polyamide material.
- Polyamides such as PA6 and PA66 have a low melting point and cannot satisfy these requirements in terms of heat resistance.
- PA6T terephthalic acid and hexamethylenediamine
- PA6T is a high-melting-point polyamide having a melting point of about 370 ° C., it is difficult to obtain a molded product having sufficient characteristics due to severe pyrolysis of the polyamide even if a molded product is obtained by melt molding.
- PA6T may be abbreviated to aliphatic polyamides such as PA6 and PA66, or amorphous aromatic polyamides composed of isophthalic acid and hexamethylenediamine (hereinafter abbreviated as “PA6I”).
- PA6I amorphous aromatic polyamides composed of isophthalic acid and hexamethylenediamine
- PA6I high melting point semi-aromatic polyamides
- 6T copolymer polyamides composed mainly of terephthalic acid and hexamethylene diamine, whose melting point has been lowered to about 220-340 ° C. Have been proposed).
- Patent Document 1 discloses an aromatic polyamide (hereinafter, referred to as “a mixture of hexamethylene diamine and 2-methylpentamethylene diamine”), which is composed of an aromatic dicarboxylic acid and an aliphatic diamine. "May be abbreviated as” PA6T / 2MPDT ").
- PA46 high melting point aliphatic polyamide composed of adipic acid and tetramethylene diamine
- Patent Documents 2 and 3 describe semialicyclic polyamides of alicyclic polyamides (hereinafter sometimes referred to as “PA6C”) composed of 1,4-cyclohexanedicarboxylic acid and hexamethylenediamine and other polyamides. (Hereinafter, it may be abbreviated as “PA6C copolymer polyamide”).
- PA6C semialicyclic polyamides of alicyclic polyamides
- Patent Document 2 discloses that an electric and electronic member made from a semi-alicyclic polyamide containing 1 to 40% 1,4-cyclohexanedicarboxylic acid as a dicarboxylic acid unit can withstand a temperature under soldering conditions.
- Patent Document 3 discloses that an automobile part made of a polyamide composition substantially composed of units derived from an aliphatic dicarboxylic acid and an aliphatic diamine has fluidity and toughness. It is disclosed that it is excellent in.
- Patent Document 4 discloses that a polyamide comprising a dicarboxylic acid unit containing 1,4-cyclohexanedicarboxylic acid and a diamine unit containing 2-methyl-1,8-octanediamine is light resistance, toughness, moldability and lightness. And excellent heat resistance. Further, as a method for producing the polyamide, 1,4-cyclohexanedicarboxylic acid and 1,9-nonanediamine are reacted at 230 ° C. or lower to form a prepolymer, and the prepolymer is solid-phase polymerized at 230 ° C. to obtain a melting point of 311 A process for producing polyamides at 0C is disclosed.
- Patent Document 5 discloses that a polyamide using 1,4-cyclohexanedicarboxylic acid having a trans / cis ratio of 50/50 to 97/3 as a raw material is excellent in heat resistance, low water absorption, light resistance, and the like. It is disclosed.
- Patent Document 6 discloses a polyamide obtained by polymerizing 1,4-cyclohexanedicarboxylic acid and a diamine having a substituent branched from the main chain.
- Patent Document 7 discloses a polyamide obtained by polymerizing 1,4-cyclohexanedicarboxylic acid, undecamethylenediamine, and 1,6-diaminohexane.
- Patent Document 8 discloses a polyamide obtained by polymerizing 1,4-cyclohexanedicarboxylic acid, 1,12-diaminododecane, and 1,6-diaminohexane.
- JP-T 6-503590 Japanese National Patent Publication No. 11-512476 JP 2001-514695 A Japanese Patent Laid-Open No. 9-12868 International Publication No. 2002/048239 Pamphlet International Publication No. 2009/113590 Japanese Patent Publication No. 64-2131 International Publication No. 2008/149862 Pamphlet
- 6T copolymer polyamide certainly has the characteristics of low water absorption, high heat resistance, and high chemical resistance, it has low fluidity and insufficient moldability and molded product surface appearance. Inferior in light resistance. Therefore, improvement is desired in applications where the surface appearance and light resistance of molded products are required, such as exterior parts. In addition, the specific gravity is large, and improvement in lightness is also desired.
- the PA6T / 2MPDT disclosed in Patent Document 1 can partially improve the problems of the conventional PA6T copolymer polyamide, but in terms of fluidity, moldability, toughness, molded product surface appearance, and light resistance. The level of improvement is insufficient.
- PA46 has good heat resistance and moldability, but has a high water absorption rate, and has a problem that dimensional change due to water absorption and deterioration of mechanical properties are remarkably large. Dimensional change required for automotive applications, etc. There are cases where the demand cannot be met.
- the PA6C copolymer polyamides disclosed in Patent Documents 2 and 3 also have problems such as high water absorption and insufficient fluidity.
- Patent Documents 4 and 5 are also insufficiently improved in terms of toughness, rigidity, and fluidity.
- the polyamide disclosed in Patent Document 6 has a high water absorption rate, and a phenomenon in which the pellets are blocked during handling of the pellets, particularly at the time of transfer, is seen in terms of low water absorption, low blocking properties, and releasability. Improvement may be necessary.
- the polyamide disclosed in Patent Document 7 may need to be improved in terms of low blocking properties and releasability.
- the polyamide disclosed in Patent Document 8 may need to be improved in terms of plasticization time stability, vibration fatigue characteristics, surface appearance, and continuous productivity.
- the problems to be solved by the present invention are copolymer polyamides excellent in strength, high temperature strength, low water absorption, low blocking properties, releasability and plasticizing time stability, vibration fatigue properties, surface appearance and continuousness. It is to provide a copolymerized polyamide composition excellent in productivity. Furthermore, the problem to be solved by the present invention is to provide a copolymerized polyamide having a high proportion of units composed of biomass-derived raw materials (biomass plasticity) and capable of reducing the environmental burden.
- the inventors of the present invention have made extensive studies to solve the above problems. As a result, the inventors have found that a polyamide obtained by polymerizing a specific dicarboxylic acid, a specific diamine, and a specific copolymerization component as constituent components can solve the above problems, and has completed the present invention.
- the present invention is as follows.
- [6] The copolymer polyamide according to any one of [1] to [5], wherein the dicarboxylic acid other than the (c-1) alicyclic dicarboxylic acid is an aliphatic dicarboxylic acid having 10 or more carbon atoms.
- (C-1) The copolyamide according to any one of [1] to [6], wherein the dicarboxylic acid other than the alicyclic dicarboxylic acid is sebacic acid and / or dodecanedioic acid.
- (C-1) The copolyamide according to any one of [1] to [5], wherein the dicarboxylic acid other than the alicyclic dicarboxylic acid is isophthalic acid.
- C-1) dicarboxylic acids other than alicyclic dicarboxylic acids (C-2) a diamine having fewer carbon atoms than the diamine of (b), (C-3) Lactam and / or aminocarboxylic acid.
- a copolymer polyamide excellent in strength, high temperature strength, low water absorption, low blocking property, releasability and plasticizing time stability, and a copolymer excellent in vibration fatigue properties, surface appearance and continuous productivity can be provided. Furthermore, since the copolymer polyamide of the present invention has a high proportion of units composed of biomass-derived raw materials (biomass plasticity), the environmental burden can be reduced.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
- the copolymerized polyamide of the present embodiment is a copolymerized polyamide obtained by polymerizing the following (a), (b) and (c) and satisfying the following conditions (1) to (3).
- the ratio of carbon number to amide group number is 8 or more.
- the melting peak temperature T pm obtained when the temperature is raised at 20 ° C./min and the melting peak temperature obtained when the temperature is raised again at 20 ° C./min The difference from T pm-1 (T pm -T pm-1 ) is 30 ° C. or less.
- the polyamide means a polymer having an amide (—NHCO—) bond in the main chain.
- (A) Alicyclic dicarboxylic acid examples include alicyclic dicarboxylic acids having 3 to 10 carbon atoms in the alicyclic structure.
- An acid preferably an alicyclic dicarboxylic acid having 5 to 10 carbon atoms in the alicyclic structure.
- Specific examples of (a) alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, and the like.
- the alicyclic dicarboxylic acid used in the present embodiment may be unsubstituted or may have a substituent.
- substituents examples include alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
- the (a) alicyclic dicarboxylic acid used in the present embodiment is preferably 1,4-cyclohexanedicarboxylic acid from the viewpoint of heat resistance, low water absorption, strength and rigidity.
- the alicyclic dicarboxylic acid used in the present embodiment one kind may be used, or two or more kinds may be used in combination.
- Alicyclic dicarboxylic acids have trans and cis geometric isomers.
- the alicyclic dicarboxylic acid as a raw material monomer either a trans isomer or a cis isomer may be used, or a mixture of various proportions of a trans isomer and a cis isomer may be used.
- Alicyclic dicarboxylic acids are isomerized at a high temperature to have a certain ratio, and the cis isomer has a higher water solubility in the equivalent salt with diamine than the trans isomer.
- the acid has a trans isomer / cis isomer ratio in a molar ratio of preferably 50/50 to 0/100, more preferably 40/60 to 10/90, and further preferably 35/65 to 15/85. It is.
- the trans / cis ratio (molar ratio) of the alicyclic dicarboxylic acid can be determined by liquid chromatography (HPLC) or nuclear magnetic resonance spectroscopy (NMR).
- HPLC liquid chromatography
- NMR nuclear magnetic resonance spectroscopy
- the trans isomer / cis isomer ratio (molar ratio) in this specification is determined by 1 H-NMR.
- the diamine having 8 or more carbon atoms used in the present embodiment is not limited as long as it is a diamine having 8 or more carbon atoms, and may be an unsubstituted linear aliphatic diamine, for example, methyl group, ethyl group, n
- a branched aliphatic diamine having a substituent such as an alkyl group having 1 to 4 carbon atoms such as -propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group, an alicyclic diamine, an aromatic It may be a group diamine.
- the number of carbon atoms in (b) diamine used in the present embodiment is preferably 8 to 20, more preferably 8 to 15, and still more preferably 8 to 12.
- diamine having 8 or more carbon atoms used in the present embodiment include octamethylene diamine, 2-methyloctamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, Decamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, 2,4-dimethyloctamethylenediamine, metaxylylenediamine, orthoxylylenediamine Examples include amines and paraxylylenediamine.
- the diamine having 8 or more carbon atoms used in the present embodiment includes octamethylenediamine, 2-methyloctamethylenediamine, nonamethylenediamine, decamethylene from the viewpoints of heat resistance, low water absorption, strength and rigidity.
- Diamine, undecamethylenediamine and dodecamethylenediamine are preferred, more preferably 2-methyloctamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine, and even more preferably decamethylenediamine.
- Dodecamethylenediamine particularly preferably decamethylenediamine.
- the diamine having the largest number of carbon atoms is used as the component (b), and other diamines having 8 or more carbon atoms are described in (c-2) ) Component.
- the (c) copolymerization component used in the present embodiment includes (c-1) a dicarboxylic acid other than the alicyclic dicarboxylic acid, (c-2) a diamine having a smaller number of carbon atoms than the diamine (b), and (c -3) At least one selected from the group consisting of lactams and / or aminocarboxylic acids.
- the copolymerized polyamide of the present embodiment has at least one selected from the group consisting of (c-1) to (c-3) as a copolymerization component, and therefore has strength, high-temperature strength, low water absorption, and low blocking. Excellent in properties, releasability and plasticization time stability.
- the copolymerized polyamide composition containing the copolymerized polyamide is excellent in vibration fatigue characteristics, surface appearance, and continuous productivity.
- the copolymerized polyamide of the present embodiment is particularly excellent in low water absorption and surface appearance when (c-1) is used as a copolymerization component. Further, the copolymerized polyamide of the present embodiment is particularly excellent in strength, high temperature strength, low blocking property and releasability when (c-2) is used as a copolymerization component. Furthermore, the copolymerized polyamide of the present embodiment is particularly excellent in high-temperature strength and releasability when (c-3) is used as a copolymerization component.
- (C) Copolymerization component combined with (a) alicyclic dicarboxylic acid and (b) diamine having 8 or more carbon atoms may be one kind, or two or more kinds may be combined.
- (c-1), (c-2) and (c-3) can be freely combined.
- two types from (c-1) may be used, Two types may be combined from c-2) and (c-3), or one type from (c-1) and one type from (c-2).
- the amount of the (c) copolymerization component is preferably 5.0 mol% or more and 22.5 mol% or less, more preferably 100 mol% of the total component amount of the copolymerized polyamide. Is 7.5 mol% or more and 20.0 mol% or less, and more preferably 10.0 mol% or more and 18.0 mol% or less.
- (C) By making the compounding quantity of a copolymerization component into the said range, it can be set as the copolymer polyamide excellent in intensity
- the copolymerized polyamide composition containing the copolymerized polyamide is excellent in vibration fatigue characteristics, surface appearance, and continuous productivity.
- (c-1) Dicarboxylic acids other than alicyclic dicarboxylic acids examples include aliphatic dicarboxylic acids and aromatic dicarboxylic acids.
- aliphatic dicarboxylic acid examples include malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylglutaric acid, 2,2-diethylsuccinic acid, and 2,3-diethylglutaric acid.
- Glutaric acid 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecane
- Examples thereof include linear or branched aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as diacid, eicosane diacid, and diglycolic acid.
- aromatic dicarboxylic acid examples include unsubstituted or various terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5-sodium sulfoisophthalic acid. And aromatic dicarboxylic acids having 8 to 20 carbon atoms substituted with the above substituents.
- Examples of the various substituents include, for example, an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, an arylalkyl group having 7 to 10 carbon atoms, a halogen group such as a chloro group and a bromo group, and 1 carbon atom.
- ⁇ 6 silyl groups, and sulfonic acid groups and their salts such as sodium salts.
- the dicarboxylic acid other than the alicyclic dicarboxylic acid used in the present embodiment is preferably an aliphatic dicarboxylic acid from the viewpoints of heat resistance, fluidity, toughness, low water absorption, strength and rigidity. Yes, more preferably, it is an aliphatic dicarboxylic acid having 6 or more carbon atoms.
- (c-1) dicarboxylic acids other than alicyclic dicarboxylic acids are preferably aliphatic dicarboxylic acids having 10 or more carbon atoms from the viewpoint of heat resistance and low water absorption.
- Examples of the aliphatic dicarboxylic acid having 10 or more carbon atoms include sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and eicosanedioic acid.
- (c-1) dicarboxylic acids other than alicyclic dicarboxylic acids are preferably sebacic acid and / or dodecanedioic acid from the viewpoint of heat resistance.
- the dicarboxylic acid other than the alicyclic dicarboxylic acid used in the present embodiment is preferably an aromatic dicarboxylic acid from the viewpoints of heat resistance, fluidity, toughness, low water absorption, strength and rigidity. Yes, more preferred is an aromatic dicarboxylic acid having 8 carbon atoms.
- isophthalic acid is preferable from the viewpoint of heat resistance, fluidity, surface appearance, and the like.
- (c-1) dicarboxylic acids other than alicyclic dicarboxylic acids are trivalent or higher polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid, as long as the object of the present embodiment is not impaired.
- An acid may be included.
- polyvalent carboxylic acid one kind may be used, or two or more kinds may be used in combination.
- the ratio (mol%) of (a) alicyclic dicarboxylic acid in (a) alicyclic dicarboxylic acid and (c-1) dicarboxylic acid other than alicyclic dicarboxylic acid is not particularly limited, but is 50 to 100 mol. % Is preferable, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%.
- the copolymerized polyamide composition containing the copolymerized polyamide is excellent in vibration fatigue characteristics, surface appearance, and continuous productivity.
- the dicarboxylic acid is not limited to the compounds described as the dicarboxylic acid, and may be a compound equivalent to the dicarboxylic acid.
- the compound equivalent to the dicarboxylic acid is not particularly limited as long as it can be a dicarboxylic acid structure similar to the dicarboxylic acid structure derived from the dicarboxylic acid, and examples thereof include anhydrides and halides of dicarboxylic acids. Can be mentioned.
- Examples of the diamine having a smaller number of carbon atoms than the diamine (b) used in the present embodiment include aliphatic diamines, alicyclic diamines, and aromatic diamines.
- aliphatic diamine examples include ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, Straight chain aliphatic diamines such as tridecamethylenediamine, 2-methylpentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, And branched aliphatic diamines such as 2,4-dimethyloctamethylenediamine.
- alicyclic diamine examples include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,3-cyclopentanediamine, and the like.
- aromatic diamine examples include aromatic diamines such as metaxylylenediamine, orthoxylylenediamine, and paraxylylenediamine.
- the diamine having a smaller number of carbon atoms than the diamine (b) used in the present embodiment is preferably a fatty acid from the viewpoint of heat resistance, fluidity, toughness, low water absorption, strength, rigidity and the like.
- An aliphatic diamine and an alicyclic diamine more preferably an aliphatic diamine having 4 to 13 carbon atoms, still more preferably an aliphatic diamine having 4 to 10 carbon atoms, and particularly preferably 4 to 10 carbon atoms. 7 aliphatic diamines.
- the diamine having a smaller number of carbon atoms than the diamine of (b) includes a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine within the range not impairing the object of the present embodiment. But you can.
- polyvalent aliphatic amine one kind may be used, or two or more kinds may be used in combination.
- the ratio (mol%) of (b) the diamine having 8 or more carbon atoms in the diamine having 8 or more carbon atoms and (c-2) the diamine having a lower carbon number than the diamine (b) is not particularly limited. However, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 60 to 100 mol%.
- the copolymerized polyamide composition containing the copolymerized polyamide is excellent in vibration fatigue characteristics, surface appearance, and continuous productivity.
- the addition amount of the dicarboxylic acid and the addition amount of the diamine are preferably in the vicinity of the same molar amount.
- the molar amount of the diamine should be 0.9 to 1.2 with respect to the molar amount of the dicarboxylic acid as a whole. Is more preferably 0.95 to 1.1, and still more preferably 0.98 to 1.05.
- the (c-3) lactam and / or aminocarboxylic acid used in the present embodiment means a lactam and / or aminocarboxylic acid that can be condensed (condensed).
- the copolymer polyamide obtained in this embodiment is obtained by polymerizing (a) an alicyclic dicarboxylic acid, (b) a diamine having 8 or more carbon atoms, and (c-3) a lactam and / or an aminocarboxylic acid.
- the (c-3) lactam and / or aminocarboxylic acid is preferably a lactam and / or aminocarboxylic acid having 4 to 14 carbon atoms, and a lactam and / or aminocarboxylic acid having 6 to 12 carbon atoms. More preferably, it is an acid.
- lactam examples include butyrolactam, pivalolactam, ⁇ -caprolactam, caprilactam, enantolactam, undecanolactam, laurolactam (dodecanolactam), and the like.
- lactam from the viewpoint of toughness, ⁇ -caprolactam, undecanolactam, laurolactam and the like are preferable, and ⁇ -caprolactam and laurolactam are more preferable.
- aminocarboxylic acid examples include ⁇ -aminocarboxylic acid and ⁇ , ⁇ -amino acid, which are compounds in which the lactam is ring-opened.
- the aminocarboxylic acid is preferably a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms substituted with an amino group at the ⁇ position.
- 6-aminocaproic acid, 11-aminoundecanoic acid, And 12-aminododecanoic acid, and examples of the aminocarboxylic acid include paraaminomethylbenzoic acid.
- 11-aminoundecanoic acid, 12-aminododecanoic acid and the like are more preferable as the aminocarboxylic acid from the viewpoint of low water absorption and toughness.
- the addition amount (mol%) of lactam and / or aminocarboxylic acid is not particularly limited, but (a) an alicyclic dicarboxylic acid, (b) a diamine having 8 or more carbon atoms, and (c- 3) It is preferably 0.5 mol% or more and 20 mol% or less, more preferably 2 mol% or more and 18 mol% or less, with respect to the molar amount of each monomer of lactam and / or aminocarboxylic acid.
- (C-3) Copolymer polyamide having excellent heat resistance, low water absorption, strength, releasability, etc., when the addition amount of lactam and / or aminocarboxylic acid is 0.5 mol% or more and 20 mol% or less It can be.
- End sealant when polymerizing the copolymerized polyamide, in addition to the components (a) to (c), a known end-capping agent can be further added to adjust the molecular weight.
- Examples of the end capping agent include monocarboxylic acids, monoamines, acid anhydrides such as phthalic anhydride, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like, from the viewpoint of thermal stability. And monocarboxylic acids and monoamines are preferred.
- terminal blocking agent one kind may be used, or two or more kinds may be used in combination.
- the monocarboxylic acid that can be used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
- the monocarboxylic acid one kind may be used, or two or more kinds may be used in combination.
- the monoamine that can be used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group.
- methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine Aliphatic monoamines such as decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; and aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine; Etc.
- monoamines one kind may be used, or two or more kinds may be used in combination.
- the alicyclic dicarboxylic acid structure exists as a geometric isomer of a trans isomer and a cis isomer.
- the trans isomer ratio in the portion derived from the alicyclic dicarboxylic acid represents the ratio of the trans isomer in the entire alicyclic dicarboxylic acid in the copolymerized polyamide.
- the trans isomer ratio is preferably 50 to 85 mol%, more preferably 50 to 80 mol%, and still more preferably 65 to 80 mol%.
- the raw material (a) alicyclic dicarboxylic acid it is preferable to use an alicyclic dicarboxylic acid having a trans isomer / cis isomer ratio (molar ratio) of 50/50 to 0/100 as described above.
- the trans isomer ratio in the portion derived from (a) the alicyclic dicarboxylic acid in the copolymerized polyamide is within the above range (for example, 50 to 80 mol%).
- the copolymer polyamide When the trans isomer ratio is within the above range, the copolymer polyamide has a high melting point, toughness, strength, rigidity and stability at plasticization time, and also has a high thermal rigidity due to high Tg, However, it has the property of simultaneously satisfying fluidity, which is a property contrary to heat resistance, and high crystallinity. Moreover, the copolymerized polyamide composition containing the copolymerized polyamide is excellent in surface appearance and continuous productivity.
- Examples of the method for controlling the trans isomer ratio in the portion derived from the (a) alicyclic dicarboxylic acid in the copolymerized polyamide within the above range include, for example, a method for polymerizing the copolymerized polyamide and a method for controlling the polymerization conditions. Is mentioned.
- a method for polymerizing the copolymerized polyamide and a method for controlling the polymerization conditions. Is mentioned.
- the polymerization pressure is controlled to a high pressure of 23 to 50 kg / cm 2 (gauge pressure), preferably 25 kg / cm 2 (gauge pressure) or higher, and the pressure in the tank is maintained at atmospheric pressure while heating is continued.
- gauge pressure 23 to 50 kg / cm 2
- gauge pressure 25 kg / cm 2
- Examples include a method of reducing pressure while taking 30 minutes or more until the gauge pressure becomes 0 kg / cm 2 .
- the trans isomer ratio in the copolymerized polyamide is, for example, that 30 to 40 mg of copolymerized polyamide is dissolved in 1.2 g of hexafluoroisopropanol deuteride, and the resulting solution is analyzed by 1 H-NMR. It can be determined by measuring. Specifically, in the case of 1,4-cyclohexanedicarboxylic acid, 1.98 ppm peak areas derived from the trans isomer and 1.77 ppm and 1.86 ppm derived from the cis isomer in 1 H-NMR measurement. The trans isomer ratio can be determined from the ratio to the peak area.
- the biomass plasticity of the copolymerized polyamide according to the present embodiment is preferably 25% or more.
- the biomass plasticity means the proportion of units composed of biomass-derived raw materials in the copolymerized polyamide, and is calculated by the method described in the following examples.
- a more preferable bioplastic degree is 30% or more.
- the upper limit of the biomass plasticity degree of the copolyamide according to the present embodiment is not particularly limited, it is, for example, 80%.
- the biomass-derived raw material means a monomer that can be synthesized using a component such as a plant as a starting material among the components (a) to (c) that are components of the copolymerized polyamide.
- a component such as a plant
- the biomass-derived raw material means a monomer that can be synthesized using a component such as a plant as a starting material among the components (a) to (c) that are components of the copolymerized polyamide.
- ricinoleic acid triglyceride which is the main component of castor oil
- synthesized from sebacic acid, decamethylenediamine and 11-aminoundecanoic acid and sunflower seed components synthesized from azelaic acid and cellulose
- pentamethylenediamine and ⁇ -aminobutyric acid examples thereof include pentamethylenediamine and ⁇ -aminobutyric acid.
- Biomass is accumulated by absorbing carbon dioxide in the atmosphere through photosynthesis. Therefore, even when carbon dioxide is released into the atmosphere by combustion after using plastics made from these materials, it is originally in the atmosphere. Therefore, the carbon dioxide concentration in the atmosphere does not increase.
- a high degree of biomass plasticity in the copolyamide is very effective for reducing the environmental load.
- Examples of a method for increasing the degree of biomass plasticity of the copolymerized polyamide include a method for increasing the blending ratio of the above-described biomass-derived raw materials when producing the copolymerized polyamide.
- the molecular weight of the copolymerized polyamide according to the present embodiment uses sulfuric acid relative viscosity ⁇ r at 25 ° C. as an index.
- the sulfuric acid relative viscosity ⁇ r at 25 ° C. of the copolymerized polyamide according to the present embodiment is preferably 1.5 to 7.0, more preferably in view of mechanical properties such as toughness, strength and rigidity, and moldability. Is 1.7 to 6.0, and more preferably 1.9 to 5.5.
- Examples of the method for controlling the sulfuric acid relative viscosity ⁇ r at 25 ° C. of the copolymerized polyamide within the above range include, for example, the addition amount of a diamine and an end-capping agent as additives during hot melt polymerization of the copolymerized polyamide, and the polymerization conditions And a method for controlling the above.
- the measurement of the sulfuric acid relative viscosity ⁇ r at 25 ° C. of the copolymerized polyamide can be performed according to JIS-K6920 as described in the following examples.
- the melting peak temperature (melting point) T pm-1 of the copolymerized polyamide according to the present embodiment is preferably 280 ° C. or higher, more preferably 280 ° C. or higher and 330 ° C. or lower, from the viewpoint of heat resistance. Preferably they are 300 degreeC or more and 330 degrees C or less, Most preferably, they are 310 degreeC or more and 325 degrees C or less.
- a copolymer polyamide having a melting peak temperature T pm-1 of 330 ° C. or lower is preferable because it can suppress thermal decomposition in melt processing such as extrusion and molding.
- the copolymerization component is the above components (a) to (c), and the blending ratio of the copolymerization component is as described above. And a method of controlling within the range.
- the melting peak temperature (melting point), crystallization peak temperature and crystallization enthalpy of the copolymerized polyamide can be measured by differential scanning calorimetry (DSC) according to JIS-K7121. Specifically, it can be measured as follows.
- DSC differential scanning calorimetry
- Diamond-DSC manufactured by PERKIN-ELMER can be used as a measuring device. The measurement conditions are such that about 10 mg of the sample is heated from 50 ° C. to 350 ° C. at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere. The endothermic peak that appears at this time is the melting peak, and the peak that appears on the highest temperature side is the melting peak temperature Tpm . Subsequently, after being kept at 350 ° C.
- the exothermic peak appearing at this time is defined as a crystallization peak
- the crystallization peak temperature is defined as T pc-1
- the crystallization peak area is defined as a crystallization enthalpy.
- the temperature is increased again from 50 ° C. to 350 ° C. at a temperature increase rate of 20 ° C./min.
- the endothermic peak that appears on the highest temperature side at this time is the melting peak temperature T pm-1
- the endothermic peak that appears on the lowest temperature side is the melting peak temperature T pm-2 .
- the difference (T pm -T pm-1 ) between the melting peak temperature T pm and the melting peak temperature T pm-1 is 30 ° C. or less, and is in the range of 0 to 20 ° C.
- the temperature is preferably in the range of 0 to 10 ° C.
- a copolymerized polyamide having a difference between the melting peak temperature T pm and the melting peak temperature T pm-1 (T pm -T pm-1 ) within the above range is excellent in plasticization time stability. Moreover, the copolymerized polyamide composition containing the copolymerized polyamide is excellent in surface appearance and continuous productivity.
- the copolymer component is the above (a ) To (c), and the blending ratio of the copolymer component is in the above range, and the ratio of the trans isomer derived from (a) alicyclic dicarboxylic acid in the copolymer polyamide is in the range of 65 to 80 mol%.
- the method of controlling the inside is mentioned.
- the melting peak temperature T pm-2 of the copolymerized polyamide of the present embodiment is preferably 270 ° C. or more, more preferably 270 to 320 ° C. from the viewpoint of heat resistance, and more preferably 280 to 310 ° C. More preferably, it is in the range.
- the copolymerization component is the above components (a) to (c), and the blending ratio of the copolymerization component is the above-mentioned range. And a method of controlling within the range.
- the difference between the melting peak temperature T pm-1 and the melting peak temperature T pm-2 (T pm-1 -T pm-2 ) is preferably 30 ° C. or less, A range of 10 to 20 ° C. is more preferable.
- the difference (T pm-1 -T pm-2 ) between the melting peak temperature T pm-1 and the melting peak temperature T pm-2 in the copolymerized polyamide is within the above range, the viewpoint of releasability and low blocking property To preferred.
- T pm-1 -T pm-2 As a method for controlling the difference (T pm-1 -T pm-2 ) between the melting peak temperature T pm-1 and the melting peak temperature T pm-2 in the copolymerized polyamide within the above range, for example, Examples thereof include a method of controlling the blending ratio of the copolymer component within the above-mentioned ranges as the components (a) to (c).
- the crystallization peak temperature T pc-1 of the copolyamide according to the present embodiment is preferably 250 ° C. or higher, more preferably 260 ° C. or higher and 300 ° C. or lower, from the viewpoints of low blocking properties and releasability.
- the copolymer components are the above components (a) to (c), and the blending ratio of the copolymer components is within the above range. And a method of controlling them.
- the crystallization peak temperature T pc-2 of the copolymerized polyamide of the present embodiment is preferably 240 ° C. or higher, more preferably in the range of 240 to 280 ° C. from the viewpoint of low blocking properties and releasability. .
- the copolymer components are the above components (a) to (c), and the blending ratio of the copolymer components is within the above range. And a method of controlling them.
- the difference (T pc-1 -T pc-2 ) between the crystallization peak temperature T pc-1 and the crystallization peak temperature T pc-2 is 10 ° C. or less. Is preferred.
- the smaller the difference between the crystallization peak temperature T pc-1 and the crystallization peak temperature T pc-2 (T pc-1 -T pc-2 ) the faster the crystallization rate is. It means that the crystal structure is stable.
- the number of carbon atoms of the copolymer components (a) to (c) should be an even number.
- the carbon chain is linear, or the ratio of carbon number to amide group number (carbon number / amide group number) in the copolymerized polyamide is 8 or more and less than 9.
- the crystallization enthalpy of the copolyamide according to the present embodiment is preferably 10 J / g or more, more preferably 15 J / g or more, and still more preferably, from the viewpoints of heat resistance, low blocking properties and releasability. 20 J / g or more.
- the upper limit of the crystallization enthalpy of the copolymerized polyamide of the present embodiment is not particularly limited, but is 100 J / g or less.
- the ratio of the number of carbons to the number of amide groups (number of carbons / number of amide groups) in the copolymerized polyamide is 8 or more, Examples thereof include a method of controlling the blending ratio of the copolymer component within the above-mentioned range as the components (a) to (c).
- the glass transition temperature Tg of the copolymerized polyamide in the present embodiment is preferably 90 ° C. or higher and 170 ° C. or lower, more preferably 90 ° C. or higher and 140 ° C. or lower, and further preferably 100 ° C. or higher and 140 ° C. or lower.
- the glass transition temperature Tg is preferably 90 ° C. or higher and 170 ° C. or lower, more preferably 90 ° C. or higher and 140 ° C. or lower, and further preferably 100 ° C. or higher and 140 ° C. or lower.
- a method for controlling the glass transition temperature Tg of the copolymerized polyamide within the above range for example, a method for controlling the blending ratio of the copolymerized component within the above-mentioned range by using the copolymerized component as the above-mentioned components (a) to (c). Etc.
- the glass transition temperature Tg can be measured by differential scanning calorimetry (DSC) according to JIS-K7121. Specifically, it can measure by the method as described in the Example mentioned later.
- the copolymerized polyamide of the present embodiment has a difference (T pc-1 ⁇ ) between the crystallization peak temperature T pc-1 obtained when cooled at 20 ° C./min and the glass transition temperature Tg in differential scanning calorimetry.
- Tg is 140 ° C. or higher, more preferably 145 ° C. or higher, and further preferably 150 ° C. or higher.
- the larger the difference between the crystallization peak temperature T pc-1 and the glass transition temperature Tg (T pc-1 -Tg) the wider the temperature range that can be crystallized and the more stable the crystal structure of the copolyamide. It means that.
- Copolymer polyamides having a difference between the crystallization peak temperature T pc-1 and the glass transition temperature Tg (T pc-1 -Tg) of 140 ° C. or higher are excellent in low blocking properties and releasability.
- the upper limit of the difference (T pc-1 -Tg) between the crystallization peak temperature T pc-1 and the glass transition temperature Tg is not particularly limited, but is 300 ° C. or less.
- the copolymer components are the components (a) to (c) described above. And a method of controlling the blending ratio of the copolymer component within the above-described range.
- the number of carbon atoms of the copolymer components (a) to (c) must be an even number, It is preferable that the chain is linear, or the ratio of carbon number to amide group number (carbon number / amide group number) in the copolymerized polyamide is 8 or more and less than 9.
- the polymer terminal of the copolymerized polyamide in this embodiment is classified and defined as follows. That is, 1) amino terminal, 2) carboxyl terminal, 3) terminal by a sealant, and 4) other terminal.
- the polymer terminal of the copolymerized polyamide means a terminal part of a polymer chain obtained by polymerizing dicarboxylic acid and diamine by an amide bond.
- the polymer terminal of the copolymerized polyamide is one or more of these terminals 1) to 4).
- the amino terminal is a polymer terminal to which an amino group (—NH 2 group) is bonded, and is derived from a raw material diamine.
- the carboxyl end is a polymer end to which a carboxyl group (—COOH group) is bonded, and is derived from the raw dicarboxylic acid.
- the terminal by a sealing agent is the polymer terminal sealed with carboxylic acid or amine added at the time of superposition
- the other terminal is a polymer terminal not classified in the above 1) to 4). For example, the terminal generated by deammonia reaction at the amino terminal, the terminal generated by decarboxylation from the carboxyl terminal, etc. Can be mentioned.
- the ratio ⁇ amino terminal amount / (amino terminal amount + carboxyl terminal amount) ⁇ of the amino terminal amount to the total amount of the amino terminal amount and the carboxyl terminal amount of the copolymerized polyamide of the present embodiment is not particularly limited. It is preferable that it is 3 or more. More preferably, it is 0.5 or more, More preferably, it is 0.7 or more.
- the upper limit of the ratio of amino terminal amount to the total amount of amino terminal amount and carboxyl terminal amount of the copolymerized polyamide of the present embodiment ⁇ amino terminal amount / (amino terminal amount + carboxyl terminal amount) ⁇ is less than 1.0. Preferably there is.
- the ratio of the amino terminal amount to the total amount of the amino terminal amount and the carboxyl terminal amount of the copolymer polyamide 0.3 or more, the strength, toughness, thermal stability and hydrolysis resistance of the copolymer polyamide are improved. be able to.
- the copolymerized polyamide composition containing the copolymerized polyamide is excellent in vibration fatigue characteristics.
- the ratio ⁇ amino terminal amount / (amino terminal amount + carboxyl terminal amount) ⁇ of the amino terminal amount to the total amount of the amino terminal amount and the carboxyl terminal amount of the copolymerized polyamide for example, thermal melting of the copolymerized polyamide
- thermal melting of the copolymerized polyamide examples thereof include a method of controlling the addition amount of the diamine and the end-capping agent as additives during polymerization and the polymerization conditions.
- the amount of amino terminal bound to the polymer terminal is measured by neutralization titration. Specifically, 3.0 g of polyamide is dissolved in 100 mL of a 90 mass% phenol aqueous solution, and the obtained solution is titrated with 0.025N hydrochloric acid to determine the amino terminal amount. The end point is determined from the indicated value of the pH meter.
- the amount of carboxyl terminal bound to the polymer terminal is measured by neutralization titration. Specifically, 4.0 g of polyamide is dissolved in 50 mL of benzyl alcohol, and the resulting solution is titrated with 0.1 N NaOH to determine the carboxyl end amount. The end point is determined from the discoloration of the phenolphthalein indicator.
- the ratio of carbon number to amide group number is 8 or more, preferably 8.2 or more and less than 9 from the viewpoint of low water absorption.
- the ratio of carbon number to amide group number is an index indicating the amino group concentration of the copolymerized polyamide.
- the copolymerization component is the above-mentioned components (a) to (c), and the blending ratio of the copolymerization component is changed.
- the method of controlling to the range mentioned above is mentioned.
- An index indicating the amino group concentration (the number of carbon atoms / the number of amide groups) can be obtained by calculating the average value of the number of carbon atoms per amide group in the copolymerized polyamide. Specifically, it can be determined by the method described in Examples described later.
- the method for producing the copolyamide according to the present embodiment is not particularly limited as long as it is a method capable of obtaining a copolyamide satisfying the characteristics such as the above conditions (1) to (3).
- a copolymerized polyamide comprising a step of polymerizing (a) at least one alicyclic dicarboxylic acid, (b) at least one diamine having 8 or more carbon atoms, and (c) at least one copolymer component. The manufacturing method of these is mentioned.
- the method for producing a copolymerized polyamide according to the present embodiment preferably further includes a step of increasing the degree of polymerization of the copolymerized polyamide.
- Examples of the method for producing the copolyamide according to the present embodiment include various methods as exemplified below: 1) A method in which an aqueous solution or a suspension of water of a dicarboxylic acid, a diamine salt or a mixture thereof is heated and polymerized while maintaining a molten state (hereinafter sometimes referred to as “hot melt polymerization method”). 2) A method of increasing the degree of polymerization while maintaining the solid state of the polyamide obtained by the hot melt polymerization method at a temperature below the melting point (hereinafter sometimes abbreviated as “hot melt polymerization / solid phase polymerization method”).
- a method of polymerizing using a dicarboxylic acid halide component equivalent to a dicarboxylic acid and a diamine component (“solution method”).
- a production method including a hot melt polymerization method is preferable, and when producing a copolymerized polyamide by a hot melt polymerization method, it is preferable to maintain a molten state until the polymerization is completed. In order to maintain a molten state, it is necessary to produce it under polymerization conditions suitable for the copolymerized polyamide composition.
- the polymerization pressure in the hot melt polymerization method is controlled to a high pressure of 23 to 50 kg / cm 2 (gauge pressure), preferably 25 kg / cm 2 (gauge pressure) or higher, and the pressure in the tank is increased while heating is continued.
- gauge pressure 23 to 50 kg / cm 2
- gauge pressure 25 kg / cm 2
- a method of decreasing the pressure while taking 30 minutes or more until atmospheric pressure gauge pressure is 0 kg / cm 2
- the copolymerized polyamide obtained by such a production method can satisfy the characteristics such as the conditions (1) to (3) and the trans isomer ratio described above.
- the trans isomer ratio of the portion derived from (a) alicyclic dicarboxylic acid in the obtained copolymerized polyamide is 85. It is preferable to carry out the polymerization while maintaining the trans isomer ratio at 80% or less, and in particular, by maintaining the trans isomer ratio at 80% or less, more preferably 65 to 80%, the color tone, tensile elongation, and plasticization time stability are further improved. An excellent and high-melting copolymer polyamide can be obtained. Moreover, the copolymerized polyamide composition containing the copolymerized polyamide is excellent in surface appearance and continuous productivity.
- the heating temperature is increased and / or the heating time is increased in order to increase the degree of polymerization and increase the melting point of the copolymerized polyamide.
- the polyamide may be colored by heating or the tensile elongation may be lowered due to thermal degradation.
- the rate of increase in molecular weight may be significantly reduced.
- a method for producing a copolymerized polyamide according to the present embodiment a method of producing a copolymerized polyamide by 1) a hot melt polymerization method and 2) a hot melt polymerization / solid phase polymerization method is preferable. With such a production method, it is easy to maintain the trans isomer ratio in the copolymerized polyamide at 80% or less, and the obtained copolymerized polyamide is excellent in color tone and plasticization time stability. Furthermore, the copolymerized polyamide composition containing the copolymerized polyamide is excellent in surface appearance and continuous productivity.
- the polymerization form may be a batch type or a continuous type.
- the polymerization apparatus is not particularly limited, and examples thereof include known apparatuses such as an autoclave type reactor, a tumbler type reactor, and an extruder type reactor such as a kneader.
- the method for producing the copolymerized polyamide according to the present embodiment is not particularly limited as long as it is a method capable of obtaining a copolymerized polyamide that satisfies the above-mentioned characteristics (1) to (3).
- Copolymerized polyamide can be produced by a batch-type hot melt polymerization method described below.
- Examples of a method for producing a copolymerized polyamide by a batch-type hot melt polymerization method include the following methods.
- a hot melt polymerization method it is preferable to maintain a molten state until the polymerization is completed. In order to maintain a molten state, it is necessary to produce it under polymerization conditions suitable for the copolymerized polyamide composition.
- a solution of about 40 to 60% by mass containing a copolymerized polyamide component (components (a) to (c) above) was heated to a temperature of 110 to 180 ° C.
- the solution In a concentration tank operated at a pressure of (gauge pressure), the solution is concentrated to about 65 to 90% by mass to obtain a concentrated solution. The concentrated solution is then transferred to an autoclave and heating is continued until the pressure in the vessel is about 23-50 kg / cm 2 (gauge pressure). Thereafter, the pressure is maintained at about 23 to 50 kg / cm 2 (gauge pressure) while removing water and / or gas components.
- a pressure suitable for the copolymerized polyamide composition is necessary. Particularly when a diamine having a large carbon number is used, the pressure in the container is 25 kg / cm 2 (gauge pressure) or more.
- the pressure in the container is reduced to atmospheric pressure (gauge pressure is 0 kg / cm 2 ).
- gauge pressure is 0 kg / cm 2
- pressurization is performed with an inert gas such as nitrogen to extrude the polyamide melt as a strand.
- the final temperature of the resin temperature is preferably higher by 10 ° C. or more than T pm-1 in order to maintain a molten state.
- the strand can be cooled and cut to obtain copolymerized polyamide pellets.
- the copolymerized polyamide composition of the present embodiment includes at least one selected from the group consisting of the above-mentioned copolymerized polyamide and an inorganic filler, a nucleating agent, a lubricant, a stabilizer, and a polymer other than the copolymerized polyamide. And ingredients.
- inorganic filler examples include, but are not limited to, for example, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, aluminum borate fiber, clay, glass flake, talc, kaolin, mica, hydrotalcite, Calcium carbonate, magnesium carbonate, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, titanium oxide, silicon oxide, magnesium oxide, calcium silicate, sodium aluminosilicate , Magnesium silicate, ketjen black, acetylene black, furnace black, carbon nanotube, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, montmorillonite, swellable fluorine mica and Apatite, and the like.
- glass fiber from the group consisting of glass fiber, carbon fiber, wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate fiber, aluminum borate fiber and clay
- one or more selected are preferred.
- one or more selected from the group consisting of glass fiber, carbon fiber, wollastonite, kaolin, mica, talc, calcium carbonate, and clay is more preferable.
- the glass fiber or the carbon fiber may have a round or flat cross section.
- a flat cross section examples include, but are not limited to, a rectangular shape, an oval shape close to a rectangular shape, an elliptical shape, and a saddle shape with a narrowed central portion in the longitudinal direction.
- the “flattening ratio” in this specification refers to a value represented by D2 / D1, where D2 is the major axis of the fiber cross section and D1 is the minor axis of the fiber cross section (a perfect circle is a flat shape). The rate is about 1.)
- the number average fiber diameter is 3 to 30 ⁇ m
- the weight average fiber length is 100 to 750 ⁇ m
- the weight average from the viewpoint of imparting excellent mechanical strength to the copolymerized polyamide composition Those having an aspect ratio (L / D) of 10 to 100 between the fiber length (L) and the number average fiber diameter (D) can be suitably used.
- the flatness is preferably 1.5 or more, more preferably 1.5 to 10.0, more preferably 2.5 to 10.0, and even more preferably 3.1 to 6.0.
- the aspect ratio is within the above range, it can be effectively prevented from being crushed during mixing, kneading, molding, or other processing with other components, and a desired effect can be sufficiently obtained for the molded product.
- the thickness of the glass fiber or carbon fiber having an aspect ratio of 1.5 or more is not limited to the following, but the minor axis D1 of the fiber section is 0.5 to 25 ⁇ m and the major axis D2 of the fiber section is 1.25 to 250 ⁇ m. It is preferable that Within the above range, the difficulty of spinning the fiber can be effectively avoided, and the strength of the molded product can be improved without reducing the contact area with the resin (polyamide).
- the short diameter D1 is more preferably 3 to 25 ⁇ m, still more preferably 3 to 25 ⁇ m, and the flatness is larger than 3.
- glass fibers and carbon fibers having an aspect ratio of 1.5 or more are obtained by using the methods described in, for example, Japanese Patent Publication No. 3-59019, Japanese Patent Publication No. 4-13300, Japanese Patent Publication No. 4-32775, and the like. Can be manufactured.
- an orifice plate that surrounds a plurality of orifice outlets and has a convex edge extending downward from the bottom surface, or an outer peripheral tip of a nozzle tip having one or more orifice holes
- a glass fiber having a flatness ratio of 1.5 or more produced by using any one of the nozzle chips for spinning a modified cross-section glass fiber provided with a plurality of convex edges extending downward from the glass fiber is preferred.
- fiber strands may be used as rovings as they are, or a cutting step may be obtained and used as chopped glass strands.
- the number average fiber diameter and the weight average fiber length in the present specification are values obtained by the following method.
- the copolymerized polyamide composition is placed in an electric furnace, and the contained organic matter is incinerated. From the residue after the treatment, 100 or more glass fibers (or carbon fibers) are arbitrarily selected and observed with a scanning electron microscope (SEM) to measure the fiber diameter of these glass fibers (or carbon fibers). To obtain the number average fiber diameter.
- the weight average fiber length is obtained by measuring the fiber length using the SEM photograph of the 100 or more glass fibers (or carbon fibers) taken at a magnification of 1,000 times.
- the above glass fiber or carbon fiber may be surface-treated with a silane coupling agent or the like.
- the silane coupling agent include, but are not limited to, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane.
- Examples include aminosilanes, mercaptosilanes such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane, epoxy silanes, and vinyl silanes.
- one or more selected from the group consisting of the above-mentioned components is preferable, and aminosilanes are more preferable.
- an unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer containing the carboxylic acid anhydride-containing unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer containing the carboxylic acid anhydride-containing unsaturated vinyl monomer;
- a copolymer containing a carboxylic acid anhydride-containing unsaturated vinyl monomer and an unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer may be used individually by 1 type and may be used in combination of 2 or more type.
- unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer containing the carboxylic acid anhydride-containing unsaturated vinyl monomer;
- a copolymer containing epoxy as a structural unit, an epoxy compound, a polyurethane resin, and combinations thereof are preferable. More preferably, a copolymer containing a carboxylic acid anhydride-containing unsaturated vinyl monomer and an unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer as a structural unit, and a polyurethane resin, And combinations thereof.
- Glass fiber and carbon fiber can be obtained by drying the fiber strand produced by applying the sizing agent to the fiber using a known method such as a roller-type applicator in the known fiber production process. Obtained by continuous reaction.
- the fiber strand may be used as a roving as it is, or may be used as a chopped glass strand by further obtaining a cutting step.
- Such a sizing agent preferably imparts (adds) a solid content equivalent to 0.2 to 3% by mass, more preferably 0.3 to 2% by mass, relative to 100% by mass of glass fiber or carbon fiber. Apply (add).
- the addition amount of the sizing agent is preferably 0.2% by mass or more as a solid content with respect to 100% by mass of the glass fiber or the carbon fiber.
- the addition amount of the sizing agent is preferably 3% by mass or less.
- Inorganic fillers other than glass fiber and carbon fiber include wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate fiber, boron from the viewpoint of improving the strength, rigidity and surface appearance of the molded product.
- Aluminum acid fiber and clay are preferred. More preferably wollastonite, kaolin, mica, talc, calcium carbonate and clay, more preferably wollastonite, kaolin, mica, talc, even more preferably wollastonite, mica, especially Wollastonite is preferable.
- These inorganic fillers may be used individually by 1 type, and may be used in combination of 2 or more type.
- the average particle diameter of inorganic fillers other than glass fibers and carbon fibers is preferably 0.01 to 38 ⁇ m, more preferably 0.03 to 30 ⁇ m, from the viewpoint of improving toughness and the surface appearance of the molded product, and 0.05 Is more preferably from 25 to 25 ⁇ m, still more preferably from 0.10 to 20 ⁇ m, particularly preferably from 0.15 to 15 ⁇ m.
- a copolymerized polyamide composition excellent in toughness and the surface appearance of a molded product can be obtained.
- the thickness is 0.1 ⁇ m or more, a copolymerized polyamide composition having an excellent balance between cost and powder handling surface and physical properties (fluidity, etc.) can be obtained.
- those having a needle-like shape such as wollastonite have the number average fiber diameter (hereinafter also simply referred to as “average fiber diameter”) as the average particle diameter.
- average fiber diameter the number average fiber diameter
- the maximum value of the length is defined as the (number average) fiber diameter.
- average fiber length About the weight average fiber length (hereinafter, also simply referred to as “average fiber length”) of the above-mentioned needle-like shape, the preferred range of the above-mentioned number average fiber diameter, and the following weight average fiber length (L)
- L weight average fiber length
- the surface appearance of the molded product is improved, and the metal such as an injection molding machine From the viewpoint of preventing the wear of the adhesive parts, 1.5 to 10 is preferable, 2.0 to 5 is more preferable, and 2.5 to 4 is more preferable.
- the inorganic filler other than the glass fiber and the carbon fiber used in the present embodiment may be surface-treated using a silane coupling agent or a titanate coupling agent.
- silane coupling agent include, but are not limited to, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane.
- examples include aminosilanes, mercaptosilanes such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane, epoxy silanes, and vinyl silanes.
- Such a surface treating agent may be previously treated on the surface of the inorganic filler, or may be added when the copolymerized polyamide and the inorganic filler are mixed.
- the addition amount of the surface treatment agent is preferably 0.05 to 1.5% by mass with respect to 100% by mass of the inorganic filler.
- the content of the inorganic filler is preferably 1 to 200 parts by mass, more preferably 2 to 150 parts by mass, and further preferably 5 to 120 parts by mass with respect to 100 parts by mass of the copolyamide. Particularly preferred is 10 to 80 parts by mass.
- the content of the inorganic filler By setting the content of the inorganic filler to 1 part by mass or more with respect to 100 parts by mass of the copolymerized polyamide, the effect of improving the strength and rigidity of the obtained copolymerized polyamide composition is exhibited. On the other hand, by setting the content of the inorganic filler to 200 parts by mass or less with respect to 100 parts by mass of the copolymer polyamide, a copolymer polyamide composition excellent in extrudability and moldability can be obtained.
- the nucleating agent is not limited to the following, but the addition increases the crystallization peak temperature of the copolymerized polyamide composition or reduces the difference between the extrapolation start temperature and the extrapolation end temperature of the crystallization peak. It means a substance capable of obtaining the effect of refining the spherulites of the obtained molded product or making the size uniform. Examples include talc, boron nitride, mica, kaolin, calcium carbonate, barium sulfate, silicon nitride, carbon black, potassium titanate, and molybdenum disulfide.
- the nucleating agent may be used alone or in combination of two or more.
- the nucleating agent is preferably talc or boron nitride from the viewpoint of the nucleating agent effect.
- a nucleating agent having a number average particle diameter of 0.01 to 10 ⁇ m is preferable because of its high nucleating agent effect.
- the molded product is dissolved in a solvent in which polyamide such as formic acid is soluble, and, for example, 100 or more nucleating agents are arbitrarily selected from the obtained insoluble components. It can be obtained by observing with an optical microscope or a scanning electron microscope.
- the blending amount of the nucleating agent is preferably 0.001 to 1 part by mass, more preferably 0.001 to 0.5 part by mass, and further preferably 0 to 100 parts by mass of the copolyamide. 0.001 to 0.09 parts by mass.
- the blending amount of the nucleating agent By setting the blending amount of the nucleating agent to 0.001 part by mass or more with respect to 100 parts by mass of the copolyamide, the heat resistance of the polyamide composition is improved, and the blending amount of the nucleating agent is reduced. By setting the amount to 1 part by mass or less with respect to 100 parts by mass of the copolymerized polyamide, a copolymerized polyamide composition having excellent toughness can be obtained.
- lubricant examples include, but are not limited to, higher fatty acids, higher fatty acid metal salts, higher fatty acid esters, and higher fatty acid amides.
- Lubricant may be used alone or in combination of two or more.
- higher fatty acids include, for example, stearic acid, palmitic acid, behenic acid, erucic acid, oleic acid, lauric acid, and saturated or unsaturated, linear or branched aliphatic having 8 to 40 carbon atoms.
- examples thereof include monocarboxylic acids, and stearic acid and montanic acid are preferable.
- the higher fatty acid one kind may be used, or two or more kinds may be used in combination.
- the higher fatty acid metal salt is a metal salt of the higher fatty acid.
- the metal element constituting the higher fatty acid metal salt is preferably a group 1, 2, 3 element of the periodic table of elements, zinc, aluminum or the like, more preferably first, such as calcium, sodium, potassium, magnesium, etc. Examples include Group 2 elements and aluminum.
- Examples of the higher fatty acid metal salt include calcium stearate, aluminum stearate, zinc stearate, magnesium stearate, calcium montanate, sodium montanate, calcium palmitate and the like. Metal salts and the like are preferable.
- the higher fatty acid metal salt one kind may be used, or two or more kinds may be used in combination.
- the higher fatty acid ester is an esterified product of the higher fatty acid and alcohol.
- An ester of an aliphatic carboxylic acid having 8 to 40 carbon atoms and an aliphatic alcohol having 8 to 40 carbon atoms is preferable.
- Examples of the aliphatic alcohol include stearyl alcohol, behenyl alcohol, and lauryl alcohol.
- higher fatty acid esters examples include stearyl stearate and behenyl behenate.
- the higher fatty acid ester one kind may be used, or two or more kinds may be used in combination.
- the higher fatty acid amide is an amide compound of the higher fatty acid.
- higher fatty acid amides include stearic acid amide, oleic acid amide, erucic acid amide, ethylene bis stearyl amide, ethylene bis oleyl amide, N-stearyl stearyl amide, N-stearyl erucamide, and the like.
- the higher fatty acid amide is preferably stearic acid amide, erucic acid amide, ethylene bisstearyl amide, and N-stearyl erucamide, more preferably ethylene bisstearyl amide and N-stearyl erucamide.
- the higher fatty acid amide one kind may be used, or two or more kinds may be used in combination.
- the lubricant is preferably a higher fatty acid metal salt or a higher fatty acid amide, and more preferably a higher fatty acid metal salt, from the viewpoint of improving moldability.
- the content of the lubricant in the copolymerized polyamide composition of the present embodiment is preferably 0.001 to 1 part by mass, more preferably 0.03 to 1 part by mass with respect to 100 parts by mass of the copolymerized polyamide. 0.5 parts by mass.
- the content of the lubricant is within the above range, a copolymerized polyamide composition having excellent releasability and plasticizing time stability and excellent toughness can be obtained, and the molecular chain can be cleaved. It is possible to prevent an extreme decrease in the molecular weight of the polyamide.
- ⁇ Stabilizer> examples include, but are not limited to, for example, phenol-based heat stabilizers, phosphorus-based heat stabilizers, amine-based heat stabilizers, and groups 3, 4, and 11 to 14 of the periodic table of elements. Metal salts of these elements, and halides of alkali metals and alkaline earth metals.
- phenol-based heat stabilizers examples include hindered phenol compounds.
- the hindered phenol compound has a property of imparting excellent heat resistance and light resistance to resins such as polyamide and fibers.
- hindered phenol compound examples include N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide), pentaerythrityl-tetrakis [ 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide), Triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5) -Methylphenyl) propynyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxapyro [5,5] undecane, 3,5-di-tert-butyl-4- Roxybenzylphosphonate
- N, N′-hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide)] is preferable from the viewpoint of improving heat aging resistance.
- the content of the phenol-based heat stabilizer in the copolymerized polyamide composition is preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the copolymerized polyamide composition. More preferably, it is 0.1 to 1 part by mass.
- content of a phenol type heat stabilizer exists in said range, the heat-resistant aging property of a copolymerization polyamide composition can be improved further, and also the amount of gas generation can be reduced.
- Examples of the phosphorus heat stabilizer include pentaerythritol phosphite compound, trioctyl phosphite, trilauryl phosphite, tridecyl phosphite, octyl diphenyl phosphite, trisisodecyl phosphite, phenyl diisodecyl phosphite, phenyl di ( Tridecyl) phosphite, diphenylisooctylphosphite, diphenylisodecylphosphite, diphenyl (tridecyl) phosphite, triphenylphosphite, tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) Phosphite, tris (2,4-di-t-butyl-5-methylphenyl
- pentaerythritol phosphite compound and / or tris (2,4-di-t-butyl) Phenyl) phosphite is preferred.
- pentaerythritol phosphite compound include, but are not limited to, for example, 2,6-di-t-butyl-4-methylphenyl phenyl pentaerythritol diphosphite, 2,6-di-t-butyl.
- pentaerythritol type phosphite compounds listed above bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite is used from the viewpoint of reducing the gas generation amount of the copolymerized polyamide composition.
- Bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis ( 2,6-di-t-octyl-4-methylphenyl) pentaerythritol diphosphite is preferably used, preferably bis (2,6-di-t-butyl-4-methylphenyl) Pentaerythritol diphosphite is more preferred.
- the content of the phosphorus-based heat stabilizer in the copolymerized polyamide composition is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the copolymerized polyamide composition. More preferably, it is 0.1 to 1 part by mass.
- the content of the phosphorous heat stabilizer is within the above range, the heat aging resistance of the copolymerized polyamide composition can be further improved, and the amount of gas generated can be reduced.
- amine heat stabilizer examples include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2, 2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy- 2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy -2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarba Yloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6
- the content of the amine heat stabilizer in the copolymerized polyamide composition is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the copolymerized polyamide composition. More preferably, it is 0.1 to 1 part by mass.
- the content of the amine heat stabilizer is within the above range, the heat aging resistance of the copolymerized polyamide composition can be further improved, and the amount of gas generated can be reduced.
- the metal salts of the elements of Groups 3, 4, and 11-14 of the Periodic Table of Elements are not limited as long as they are salts of metals belonging to these groups. From the viewpoint of further improving the heat aging resistance of the copolymerized polyamide composition, a copper salt is preferable.
- copper salts include, but are not limited to, copper halides (copper iodide, cuprous bromide, cupric bromide, cuprous chloride, etc.), copper acetate, copper propionate, benzoic acid.
- Examples thereof include copper, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate and copper stearate, and a copper complex in which copper is coordinated to a chelating agent such as ethylenediamine and ethylenediaminetetraacetic acid. These may be used alone or in combination of two or more.
- the copolymerized polyamide composition has excellent heat aging resistance and can effectively suppress metal corrosion of the screw or cylinder part (hereinafter also simply referred to as “metal corrosion”) during extrusion. Things are obtained.
- the content of the copper salt in the copolymerized polyamide composition is preferably 0.01 to 0.60 parts by mass, more preferably 0.02 with respect to 100 parts by mass of the copolymerized polyamide. Is 0.40 parts by mass.
- the content of the copper salt is within the above range, the heat aging resistance of the copolymerized polyamide composition can be further improved, and copper precipitation and metal corrosion can be effectively suppressed.
- alkali metal and alkaline earth metal halides include, but are not limited to, potassium iodide, potassium bromide, potassium chloride, sodium iodide and sodium chloride, and mixtures thereof.
- potassium iodide and / or potassium bromide is preferable from the viewpoint of improving heat aging resistance and suppressing metal corrosion, and more preferably potassium iodide.
- the content of the alkali metal and alkaline earth metal halides in the copolymerized polyamide composition is preferably 0.00 with respect to 100 parts by mass of the copolymerized polyamide. 05 to 20 parts by mass, more preferably 0.2 to 10 parts by mass.
- the content of the alkali metal and alkaline earth metal halide is within the above range, the heat-resistant aging property of the copolymerized polyamide composition can be further improved, and copper precipitation and metal corrosion can be effectively suppressed. it can.
- the components of the heat stabilizer described above may be used singly or in combination of two or more.
- a mixture of a copper salt and a halide of an alkali metal and an alkaline earth metal is preferable.
- the ratio of the copper salt to the halide of the alkali metal and alkaline earth metal is preferably 2/1 to 40/1, more preferably 5 /, as the molar ratio of halogen to copper (halogen / copper). 1 to 30/1. In the above-mentioned range, the heat aging resistance of the copolymerized polyamide composition can be further improved.
- halogen / copper When the above halogen / copper is 2/1 or more, it is preferable because precipitation of copper and metal corrosion can be effectively suppressed. On the other hand, when the halogen / copper is 40/1 or less, corrosion of the screw of the molding machine and the like can be prevented without substantially impairing mechanical properties (toughness and the like).
- Polymers other than copolyamide examples include, but are not limited to, polyamides other than the copolymerized polyamide, polyester, liquid crystal polyester, polyphenylene sulfide, polyphenylene ether, polycarbonate, polyarylate, phenol resin, and epoxy resin.
- polyamide other than the copolymerized polyamide examples include polyamide 66, polyamide 56, polyamide 46, polyamide 610, polyamide 612, polyamide 6T, polyamide 6I, polyamide 6, polyamide 11, polyamide 12, polyamide MXD6, and the like.
- a homopolymer or a copolymer may be mentioned.
- polyester examples include polybutylene terephthalate, polytrimethylene terephthalate, polyethylene terephthalate, and polyethylene naphthalate.
- the amount of the polymer other than the copolyamide is preferably 1 to 200 parts by mass, more preferably 5 to 100 parts by mass, and further preferably 5 to 50 parts by mass with respect to 100 parts by mass of the copolyamide. .
- additives conventionally used for polyamide for example, colorants such as pigments and dyes (colored master batches) are used within the range not impairing the purpose of the present embodiment.
- colorants such as pigments and dyes (colored master batches) are used within the range not impairing the purpose of the present embodiment.
- a flame retardant e.g., a flame retardant, a fibrillating agent, a fluorescent bleaching agent, a plasticizer, an antioxidant, an ultraviolet absorber, an antistatic agent, a fluidity improver, a spreading agent, an elastomer, and the like.
- the content of the other raw materials depends on the type and the polyamide composition. Therefore, there is no particular limitation as long as the object of the present embodiment is not impaired.
- the method for producing the copolymerized polyamide composition according to the present embodiment is not particularly limited as long as it is a production method including a step of melt-kneading the raw material components containing the above-mentioned copolymerized polyamide. It is preferable to include a step of melt-kneading the raw material component containing the above-mentioned copolymerized polyamide with an extruder, and setting the temperature of the extruder to the melting peak temperature T pm-1 + 30 ° C. or less of the above-mentioned copolymerized polyamide.
- melt-kneading the raw material component containing the copolymerized polyamide for example, a method in which the copolymerized polyamide and other raw materials are mixed using a tumbler, a Henschel mixer, etc., supplied to a melt-kneader, kneaded, or uniaxial or 2 Examples include a method of blending other raw materials from the side feeder into the copolyamide that has been melted by a shaft extruder.
- all the components may be supplied to the same supply port at once, or the components may be supplied from different supply ports. Good.
- the melt kneading temperature is preferably about 250 to 375 ° C. as the resin temperature.
- the melt kneading time is preferably about 0.25 to 5 minutes.
- the apparatus for performing melt kneading is not particularly limited, and a known apparatus, for example, a melt kneader such as a single or twin screw extruder, a Banbury mixer, and a mixing roll can be used.
- a melt kneader such as a single or twin screw extruder, a Banbury mixer, and a mixing roll can be used.
- the molded article of the present embodiment includes the above-described copolymer polyamide or copolymer polyamide composition.
- the molded product of the present embodiment is obtained by using the above-mentioned copolymerized polyamide or copolymerized polyamide composition by a known molding method such as press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding. , Hollow molding, multi-layer molding, melt spinning, and the like.
- the molded article of the present embodiment is obtained from the above-mentioned copolymerized polyamide or copolymerized polyamide composition, it is excellent in heat resistance, moldability, mechanical strength, low water absorption, vibration fatigue characteristics, and surface appearance. Therefore, the molded product of the present embodiment is used as various parts such as automobile parts, electric and electronic parts, home appliance parts, OA equipment parts, portable equipment parts, industrial equipment parts, daily necessities and household goods, and for extrusion applications. It can be used suitably. Among these, the molded product of the present embodiment is suitably used as an automobile part, an electronic part, a home appliance part, an OA equipment part, or a portable equipment part.
- the automobile parts are not particularly limited, and examples thereof include intake system parts, cooling system parts, fuel system parts, interior parts, exterior parts, and electrical parts.
- the automobile intake system parts are not particularly limited, and examples include an air intake manifold, an intercooler inlet, an exhaust pipe cover, an inner bush, a bearing retainer, an engine mount, an engine head cover, a resonator, and a throttle body.
- the automobile cooling system parts are not particularly limited, and examples thereof include a chain cover, a thermostat housing, an outlet pipe, a radiator tank, an oil netter, and a delivery pipe.
- the automobile fuel system parts are not particularly limited, and examples thereof include a fuel delivery pipe and a gasoline tank case.
- the automobile interior part is not particularly limited, and examples thereof include an instrument panel, a console box, a glove box, a steering wheel, and a trim.
- the automobile exterior parts are not particularly limited, and examples include a mall, a lamp housing, a front grill, a mud guard, a side bumper, a door mirror stay, and a roof rail.
- the automobile electrical component is not particularly limited, and examples thereof include a connector, a wire harness connector, a motor component, a lamp socket, a sensor on-vehicle switch, and a combination switch.
- the electrical and electronic parts are not particularly limited, and examples thereof include connectors, reflectors for light emitting devices, switches, relays, printed wiring boards, electronic parts housings, outlets, noise filters, coil bobbins, and motor end caps. Can be mentioned.
- the portable device component is not particularly limited, and examples thereof include a cellular phone, a smartphone, a personal computer, a portable game device, a case such as a digital camera, and a structure.
- Industrial equipment parts are not particularly limited, and examples thereof include gears, cams, insulating blocks, valves, electric tool parts, agricultural equipment parts, engine covers, and the like.
- Daily goods and household goods are not particularly limited, and examples include buttons, food containers, and office furniture.
- the extrusion application is not particularly limited, and can be used for, for example, a film, a sheet, a filament, a tube, a rod, and a hollow molded product.
- the molded product according to the present embodiment has a thin part (for example, a thickness of 0.5 mm), and further undergoes a heat treatment process (for example, for an SMT connector or a light emitting device). It is particularly suitable for electrical / electronic components such as reflectors and switches. Moreover, since the molded product of this Embodiment is excellent in the surface external appearance, it is preferably used also as a molded product which formed the coating film on the molded product surface.
- the method for forming the coating film is not particularly limited as long as it is a known method, and for example, it can be performed by coating such as spraying or electrostatic coating.
- the paint used for the coating is not particularly limited as long as it is a known one, and a melamine cross-linked polyester polyol resin paint, an acrylic urethane paint, or the like can be used.
- ⁇ Diamine> (1) 1,10-diaminodecane (decamethylenediamine) (C10DA)
- Product name 1,10-decanediamine (manufactured by Ogura Gosei Co., Ltd.) (2) 1,12-diaminododecane (dodecamethylenediamine) (C12DA) (manufactured by Tokyo Chemical Industry Co., Ltd.) (3) 1,6-diaminohexane (hexamethylenediamine) (C6DA) (manufactured by Tokyo Chemical Industry Co., Ltd.) (4) Pentamethylenediamine (C5DA) (Aldrich) (5) Octamethylenediamine (C8DA) (manufactured by Tokyo Chemical Industry Co., Ltd.) (6) 1,9-nonamethylenediamine (C9DA) (manufactured by Aldrich) (7) Undecamethylenediamine (C11DA) (manufactured by Tokyo Chemical Industry Co., Ltd
- ⁇ Lactam and / or aminocarboxylic acid> (1) ⁇ -Caprolactam (CPL) (Wako Pure Chemical Industries, Ltd.) (2) 11-aminoundecanoic acid (11AU) (Aldrich) (3) 12-aminododecanoic acid (12AD) (Aldrich)
- GF Glass fiber
- ECS03T275H Average fiber diameter (average particle diameter) 10 ⁇ m (circular shape), cut length 3 mm
- Melting peak temperature (melting point), crystallization peak temperature, crystallization enthalpy The melting peak temperature (melting point), crystallization peak temperature, and crystallization enthalpy of the copolymerized polyamides obtained in Examples and Comparative Examples were determined according to JIS. Measurement was performed using Diamond-DSC manufactured by PERKIN-ELMER according to -K7121. The measurement conditions were such that about 10 mg of the sample was heated from 50 ° C. to 350 ° C. at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere. The endothermic peak appearing at this time was taken as the melting peak, and the peak appearing on the highest temperature side was taken as the melting peak temperature Tpm .
- the peak that appeared on the highest temperature side at this time was defined as the melting peak temperature Tpm-1, and the peak that appeared on the lowest temperature side was defined as the melting peak temperature Tpm-2 . Further, after being kept at 350 ° C. for 3 minutes, it was cooled from 350 ° C. to 50 ° C. at a cooling rate of 50 ° C./min. The crystallization peak temperature appearing at this time was defined as T pc-2 .
- the glass transition temperature of the copolymerized polyamide obtained in Examples and Comparative Examples was measured using Diamond-DSC manufactured by PERKIN-ELMER according to JIS-K7121.
- the measurement conditions were as follows. A sample in a molten state obtained by melting the sample on a hot stage (EP80 manufactured by Mettler) was rapidly cooled using liquid nitrogen and solidified to obtain a measurement sample. Using 10 mg of the measurement sample, the glass transition temperature Tg was measured by increasing the temperature in the range of 30 to 350 ° C. under the condition of a temperature increase rate of 20 ° C./min.
- the trans isomerization rate in the copolymerized polyamides obtained in Examples and Comparative Examples was determined as follows. 30-40 mg of polyamide was dissolved in 1.2 g of hexafluoroisopropanol deuteride, and 1 H-NMR was measured using the resulting solution. In the case of 1,4-cyclohexanedicarboxylic acid, from the ratio of the peak area of 1.98 ppm derived from the trans isomer and the peak areas of 1.77 ppm and 1.86 ppm derived from the cis isomer in 1 H-NMR measurement. The trans isomer ratio in the copolymerized polyamide was determined.
- Ratio of carbon number to amide group number (carbon number / amide group number)
- the average value of the number of carbon atoms per amide group was determined by calculation. Specifically, the ratio of the number of carbons to the number of amide groups (carbon number / number of amide groups) was determined by dividing the number of carbons contained in the molecular species main chain by the number of amide groups contained in the molecular main chain. The ratio of the number of carbon atoms to the number of amide groups (carbon number / amide group number) was used as an index indicating the amino group concentration in the copolymerized polyamide.
- Biomass plastic degree In the copolymer polyamide obtained by the Example and the comparative example, mass% of the unit comprised with the raw material derived from biomass was computed as a biomass plastic degree. Specifically, pentamethylenediamine, which uses sebacic acid as a raw material and uses sebacic acid, 1,10-diaminodecane, 11-aminoundecanoic acid and glucose as raw materials, was used as a biomass-derived raw material. In the copolymerized polyamides obtained in Examples and Comparative Examples, the proportion of units derived from sebacic acid and 1,10-diaminodecane was calculated, and the proportion was defined as the biomass plasticity.
- a tensile test was performed at 23 ° C. and a tensile speed of 50 mm / min in accordance with ISO 527, and a tensile yield stress was measured to obtain a tensile strength. Further, the tensile strength at 120 ° C. was measured in the same manner except that the temperature was changed to 120 ° C.
- the increment of the mass after water absorption with respect to the mass before water absorption was taken as the water absorption amount
- Plasticization time for each of Ai 1000 shots
- X1 arithmetic average of plasticization time for 1000 shots It was determined that the smaller the standard deviation ( ⁇ ), the better the plasticization time stability.
- dumbbell injection molding test pieces were obtained from the pellets of the copolymerized polyamide composition.
- a tensile load was applied at 1 to obtain the stress (MPa) at which the material breaks 100,000 times. It was evaluated that the greater the fracture stress (MPa) obtained, the better the vibration fatigue characteristics.
- IG320 manufactured by HORIBA
- the halogen concentration is combusted in a flask in which the sample is replaced with high-purity oxygen, and the generated gas is collected in an absorbing solution.
- the iodine in the collected solution is 1 / 100N silver nitrate solution.
- Quantification was performed using potentiometric titration.
- the molar ratio of halogen to copper (halogen / Cu) was calculated by converting the molecular weight into a mole using the above quantitative values.
- Example 1 The polyamide polymerization reaction was carried out as follows by the “hot melt polymerization method”.
- the obtained aqueous solution and (b) 17 g (0.10 mol) of C10DA, which is an additive at the time of melt polymerization, were charged into an autoclave (made by Nitto Koatsu) with an internal volume of 5.4 L, and the liquid temperature (internal temperature) The temperature was kept at 50 ° C., and the atmosphere in the autoclave was replaced with nitrogen. The liquid temperature was continuously heated from about 50 ° C. until the pressure in the autoclave tank reached about 2.5 kg / cm 2 as gauge pressure (hereinafter, all pressure in the tank was expressed as gauge pressure). (The liquid temperature in this system was about 145 ° C.).
- the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) was about 325 ° C.
- the resin temperature was kept at about 325 ° C., and the inside of the tank was maintained under a reduced pressure of about 53.3 kPa (400 torr) for 30 minutes with a vacuum apparatus to obtain a polymer.
- the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut and discharged in a pellet form to obtain copolymer polyamide pellets.
- Examples 2 to 26 and Comparative Examples 1 to 7 The compounds and amounts shown in Tables 1 to 4 were used as (a) alicyclic dicarboxylic acid, (b) diamine having 8 or more carbon atoms, (c) copolymerization component, and additive during melt polymerization. In addition, except that the final temperature of the resin was changed to the temperature described in Tables 1 to 4, the polyamide was subjected to a polymerization reaction by the method described in Example 1 (“hot melt polymerization method”). Pellets were obtained.
- the polyamide polymerization reaction was carried out as follows by the “hot melt polymerization method”.
- the polymerization method was in accordance with the production method described in Patent Document 7 (Japanese Patent Publication No. Sho 64-2131).
- (c-2) 100 g (0.86 mol) of C6DA were dissolved in 1500 g of distilled water to obtain about 50 equimolar amounts of raw material monomers.
- a mass% homogeneous aqueous solution was made.
- the obtained aqueous solution was charged into an autoclave (made by Nitto High Pressure Co., Ltd.) having an internal volume of 5.4 L, kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the autoclave was purged with nitrogen.
- the liquid temperature is continuously heated from about 50 ° C. to 210 ° C., and the pressure in the autoclave tank is expressed as gauge pressure (hereinafter, all pressure in the tank is expressed as gauge pressure) to 17.5 kg / cm 2 . Heating was continued while removing water out of the system to keep it.
- the internal temperature was raised to 345 ° C., and the pressure was reduced while taking about 120 minutes until the pressure in the tank reached atmospheric pressure (gauge pressure was 0 kg / cm 2 ). Thereafter, nitrogen gas was allowed to flow through the tank for 30 minutes, the heater temperature was adjusted so that the final temperature of the resin temperature (liquid temperature) was about 350 ° C., and a polymer was obtained. Thereafter, the obtained polymer was pressurized with nitrogen to form a strand from the lower nozzle (nozzle), water-cooled, cut and discharged in a pellet form to obtain copolymer polyamide pellets. Each physical property of the obtained copolymerized polyamide was measured based on the above method. The measurement results are shown in Table 8.
- the polyamide polymerization reaction was carried out as follows by the “prepolymer / solid phase polymerization method”.
- the polymerization method was in accordance with the production method described in Patent Document 8 (International Publication No. 2008/149862 pamphlet).
- (c-2) 99 g (0.85 mol) of C6DA were dissolved in 1500 g of distilled water to obtain about 50 equimolar amounts of raw material monomers.
- a mass% homogeneous aqueous solution was made.
- the obtained aqueous solution was charged into an autoclave (made by Nitto Koatsu Co., Ltd.) having an internal volume of 5.4 L, kept warm until the liquid temperature (internal temperature) reached 50 ° C., and the inside of the autoclave was purged with nitrogen.
- the solution in the autoclave was stirred and the internal temperature was raised to 160 ° C. over 50 minutes. Thereafter, the internal temperature was kept at 160 ° C. for 30 minutes, and heating was continued while removing water vapor from the autoclave to the outside of the system, and the aqueous solution was concentrated to a concentration of about 70% by mass.
- the removal of water was stopped, and heating was continued until the pressure in the tank reached about 35 kg / cm 2 (the liquid temperature in this system was about 250 ° C.).
- the prepolymer was obtained by reacting for 1 hour until the final temperature reached 300 ° C. while removing water out of the system.
- the prepolymer was pulverized to a size of 3 mm or less, and then dried at 100 ° C. for 24 hours in an atmosphere in which nitrogen gas was flowed at a flow rate of 20 L / min. Thereafter, the prepolymer was subjected to solid phase polymerization at 280 ° C.
- Glass fiber is supplied as an inorganic filler in the proportions (parts by mass) shown in Tables 9 to 11 from the side feed port in a state where the resin is sufficiently melted, and the melt-kneaded product extruded from the die head is in the form of strands
- pellets of a copolymerized polyamide composition were obtained.
- the physical properties of the pellets of the obtained copolymerized polyamide composition were measured based on the methods (14), (15) and (16) above. The measurement results are shown in Tables 9 to 11 below.
- the tensile speed in the tensile test was 5 mm / min.
- the copolymerized polyamide composition containing the copolymerized polyamide and the glass fiber obtained in Examples 1 to 26 has a surface appearance, vibration fatigue characteristics, and continuous properties. It was confirmed that productivity was excellent.
- Example 53 to 55 As raw materials for the copolymerized polyamide composition, the following copolymerized polyamide, the above-described inorganic filler, copper compound, and metal halide were used.
- glass fiber is supplied as an inorganic filler from the side feed port on the downstream side of the twin-screw extruder (the resin supplied from the top feed port is sufficiently melted) in the ratio (part by mass) shown in Table 12.
- the melt-kneaded product extruded from the die head was cooled in a strand shape and pelletized to obtain a copolymer polyamide composition pellet.
- the physical properties of the pellets of the obtained copolymerized polyamide composition were measured based on the above methods (17), (18) and (19). The measurement results are shown in Table 12 below.
- the tensile speed in the tensile test was 5 mm / min.
- a copolymerized polyamide composition is obtained.
- the copolymerized polyamide and the copolymerized polyamide composition according to the present invention are suitably used as molding materials for various parts such as automobiles, electric and electronic, industrial materials, industrial materials, and daily and household products. Have industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Polyamides (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
特許文献7には、1,4-シクロヘキサンジカルボン酸とウンデカメチレンジアミンと1,6-ジアミノヘキサンとを重合したポリアミドが開示されている。特許文献8には、1,4-シクロヘキサンジカルボン酸と1,12-ジアミノドデカンと1,6-ジアミノヘキサンとを重合したポリアミドが開示されている。
特許文献7に開示されたポリアミドは、低ブロッキング性、離型性の面で改善が必要な場合がある。
特許文献8に開示されたポリアミドは、可塑化時間安定性、振動疲労特性、表面外観及び連続生産性の面で改善が必要な場合がある。
(a)少なくとも1種の脂環族ジカルボン酸と、
(b)1種の炭素数8以上のジアミンと、
(c)下記(c-1)~(c-3)からなる群から選ばれる少なくとも1種の共重合成分と、を重合させて得られ、かつ下記条件(1)~(3)を満足する、共重合ポリアミド;
(c-1)脂環族ジカルボン酸以外のジカルボン酸、
(c-2)前記(b)のジアミンより炭素数の少ないジアミン、
(c-3)ラクタム及び/又はアミノカルボン酸、
(1)JIS-K7121に準じた示差走査熱量測定において、20℃/minで冷却したときに得られる結晶化ピーク温度Tpc-1と、ガラス転移温度Tgとの差(Tpc-1-Tg)が140℃以上であること、
(2)炭素数とアミド基数との比(炭素数/アミド基数)が8以上であること、
(3)JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解ピーク温度Tpmと、20℃/minで再度昇温したときに得られる融解ピーク温度Tpm-1との差(Tpm-Tpm-1)が30℃以下であること。
[2]
前記(a)脂環族ジカルボン酸が、1,4-シクロヘキサンジカルボン酸である、[1]に記載の共重合ポリアミド。
[3]
前記(a)脂環族ジカルボン酸に由来する部分におけるトランス異性体比率が65~80モル%である、[1]又は[2]に記載の共重合ポリアミド。
[4]
アミノ末端量とカルボキシル末端量との総量に対するアミノ末端量の比{アミノ末端量/(アミノ末端量+カルボキシル末端量)}が0.5以上1.0未満である、[1]~[3]のいずれかに記載の共重合ポリアミド。
[5]
前記(b)1種の炭素数8以上のジアミンがデカメチレンジアミンである、[1]~[4]のいずれかに記載の共重合ポリアミド。
[6]
前記(c-1)脂環族ジカルボン酸以外のジカルボン酸が、炭素数10以上の脂肪族ジカルボン酸である、[1]~[5]のいずれかに記載の共重合ポリアミド。
[7]
前記(c-1)脂環族ジカルボン酸以外のジカルボン酸が、セバシン酸及び/又はドデカン二酸である、[1]~[6]のいずれかに記載の共重合ポリアミド。
[8]
前記(c-1)脂環族ジカルボン酸以外のジカルボン酸が、イソフタル酸である、[1]~[5]のいずれかに記載の共重合ポリアミド。
[9]
前記(c-2)前記(b)のジアミンより炭素数の少ないジアミンが、炭素数4~7の脂肪族ジアミンである、[1]~[8]のいずれかに記載の共重合ポリアミド。
[10]
JIS-K7121に準じた示差走査熱量測定において、20℃/minで冷却したときに得られる結晶化ピーク温度Tpc-1と、50℃/minで再度冷却したときに得られる結晶化ピーク温度Tpc-2との差(Tpc-1-Tpc-2)が10℃以下である、[1]~[9]のいずれかに記載の共重合ポリアミド。
[11]
前記(c)共重合成分の配合量が、共重合ポリアミドの全構成成分量100モル%に対し、7.5モル%以上20.0モル%以下である、[1]~[10]のいずれかに記載の共重合ポリアミド。
[12]
バイオマスプラスチック度が25%以上である、[1]~[11]のいずれかに記載の共重合ポリアミド。
[13]
[1]~[12]のいずれかに記載の共重合ポリアミドと、
無機充填材、造核剤、潤滑剤、安定剤、及び共重合ポリアミド以外のポリマーからなる群から選ばれる1種以上の成分と、を含む共重合ポリアミド組成物。
[14]
[1]~[12]のいずれかに記載のポリアミド共重合体、又は[13]に記載の共重合ポリアミド組成物を含む成形品。
[15]
自動車部品、電子部品、家電部品、OA機器部品又は携帯機器部品として用いられる、[14]に記載の成形品。
[16]
(a)少なくとも1種の脂環族ジカルボン酸と、
(b)1種の炭素数8以上のジアミンと、
(c)下記(c-1)~(c-3)からなる群から選ばれる少なくとも1種の共重合成分と、を重合させる工程を含み、
該重合工程で得られるポリアミド共重合体中の(a)脂環族ジカルボン酸に由来する部分におけるトランス異性体比率を65~80%に維持する、[1]~[12]のいずれかに記載のポリアミド共重合体の製造方法;
(c-1)脂環族ジカルボン酸以外のジカルボン酸、
(c-2)前記(b)のジアミンより炭素数の少ないジアミン、
(c-3)ラクタム及び/又はアミノカルボン酸。
[17]
[1]~[12]のいずれかに記載の共重合ポリアミドを含む原料成分を押出機で溶融混練する工程を含み、
前記押出機の設定温度を[1]に記載の融解ピーク温度Tpm-1+30℃以下とする、共重合ポリアミド組成物の製造方法。
本実施の形態の共重合ポリアミドは、下記(a)、(b)及び(c)を重合させて得られ、かつ下記条件(1)~(3)を満足する共重合ポリアミドである。
(a)少なくとも1種の脂環族ジカルボン酸。
(b)1種の炭素数8以上のジアミン。
(c)特定の少なくとも1種の共重合成分。
(1)JIS-K7121に準じた示差走査熱量測定において、20℃/minで冷却したときに得られる結晶化ピーク温度Tpc-1と、ガラス転移温度Tgとの差(Tpc-1-Tg)が140℃以上であること。
(2)炭素数とアミド基数との比(炭素数/アミド基数)が8以上であること。
(3)JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解ピーク温度Tpmと、20℃/minで再度昇温したときに得られる融解ピーク温度Tpm-1との差(Tpm-Tpm-1)が30℃以下であること。
本実施の形態に用いる(a)脂環族ジカルボン酸(以下「脂環式ジカルボン酸」とも記される。)としては、例えば、脂環構造の炭素数が3~10である脂環族ジカルボン酸、好ましくは脂環構造の炭素数が5~10である脂環族ジカルボン酸が挙げられる。(a)脂環族ジカルボン酸の具体例としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、及び1,3-シクロペンタンジカルボン酸などが挙げられる。
本実施の形態に用いる(b)炭素数8以上のジアミンとしては、炭素数8以上のジアミンであれば制限はなく、無置換の直鎖脂肪族ジアミンでも、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びtert-ブチル基などの炭素数1~4のアルキル基などの置換基を有する分岐状脂肪族ジアミンでも、脂環族ジアミンでも、芳香族ジアミンでもよい。本実施の形態に用いる(b)ジアミンにおける炭素数は、8~20であることが好ましく、8~15であることがより好ましく、8~12であることがさらに好ましい。
本実施の形態に用いる(c)共重合成分は、(c-1)脂環族ジカルボン酸以外のジカルボン酸、(c-2)前記(b)のジアミンより炭素数の少ないジアミン、並びに(c-3)ラクタム及び/又はアミノカルボン酸からなる群から選ばれる少なくとも1種である。
本実施の形態に用いる(c-1)脂環族ジカルボン酸以外のジカルボン酸としては、例えば、脂肪族ジカルボン酸及び芳香族ジカルボン酸などが挙げられる。
本実施の形態に用いる(c-1)脂環族ジカルボン酸以外のジカルボン酸としては、耐熱性、流動性、靭性、低吸水性、強度及び剛性などの観点で、好ましくは芳香族ジカルボン酸であり、より好ましくは、炭素数8の芳香族ジカルボン酸である。
中でも、(c-1)脂環族ジカルボン酸以外のジカルボン酸としては、耐熱性、流動性、表面外観などの観点で、イソフタル酸が好ましい。
本実施の形態に用いる(c-2)前記(b)のジアミンより炭素数の少ないジアミンとしては、例えば、脂肪族ジアミン、脂環族ジアミン及び芳香族ジアミンなどが挙げられる。
本実施の形態に用いる(c-3)ラクタム及び/又はアミノカルボン酸とは、重(縮)合可能なラクタム及び/又はアミノカルボン酸を意味する。
中でも、アミノカルボン酸としては、低吸水、靭性の観点で、11-アミノウンデカン酸、12-アミノドデカン酸などがより好ましい。
本実施の形態において、共重合ポリアミドを重合する際に、上記(a)~(c)成分以外に、分子量調節のために公知の末端封止剤をさらに添加することができる。
本実施の形態の共重合ポリアミドにおいて、脂環族ジカルボン酸構造は、トランス異性体及びシス異性体の幾何異性体として存在する。
共重合ポリアミド中の(a)脂環族ジカルボン酸に由来する部分におけるトランス異性体比率を上記範囲内に制御する方法としては、例えば、共重合ポリアミドの重合方法、並びに重合条件を制御する方法などが挙げられる。熱溶融重合法により共重合ポリアミドを製造する際には、重合が終了するまで、溶融状態を保持することが好ましい。溶融状態を保持するためには、共重合ポリアミド組成に適した重合条件で製造することが必要となる。具体的には、例えば、重合圧力を23~50kg/cm2(ゲージ圧)、好ましくは25kg/cm2(ゲージ圧)以上の高圧に制御し、加熱を続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分以上かけながら降圧する方法などが挙げられる。
共重合ポリアミドの25℃の硫酸相対粘度ηrを上記範囲内に制御する方法としては、例えば、共重合ポリアミドの熱溶融重合時の添加物としてのジアミン及び末端封止剤の添加量、並びに重合条件を制御する方法などが挙げられる。
共重合ポリアミドの融解ピーク温度(融点)Tpm-1を前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。
測定装置としては、PERKIN-ELMER社製Diamond-DSCを用いることができる。測定条件は、窒素雰囲気下、試料約10mgを昇温速度20℃/minで50℃から350℃まで昇温する条件とする。このときに現れる吸熱ピークを融解ピークとし、もっとも高温側に現れるピークを融解ピーク温度Tpmとする。続いて、350℃で3分間保った後、冷却速度20℃/minで350℃から50℃まで冷却する。このときに現れる発熱ピークを結晶化ピークとし、結晶化ピーク温度をTpc-1、結晶化ピーク面積を結晶化エンタルピーとする。続いて、50℃で3分間保った後、再度昇温速度20℃/minで50℃から350℃まで昇温する。このときに現れるもっとも高温側に現れる吸熱ピークを融解ピーク温度Tpm-1とし、もっとも低温側に現れる吸熱ピークを融解ピーク温度Tpm-2とする。なお、このときに現れる吸熱ピークが1つの場合は、該吸熱ピークを融解ピーク温度Tpm-1及びTpm-2(Tpm-1=Tpm-2)とする。さらに、350℃で3分間保った後、冷却速度50℃/minで350℃から50℃まで冷却する。このときに現れる結晶化ピーク温度をTpc-2とする。
共重合ポリアミドの融解ピーク温度(融点)Tpm-2を前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。
共重合ポリアミドにおける融解ピーク温度Tpm-1と融解ピーク温度Tpm-2との差(Tpm-1-Tpm-2)を前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。
共重合ポリアミドの結晶化ピーク温度Tpc-1を前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。
共重合ポリアミドの結晶化ピーク温度Tpc-2を前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。
共重合ポリアミドにおける結晶化ピーク温度Tpc-1と結晶化ピーク温度Tpc-2との差(Tpc-1-Tpc-2)を前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。また、(Tpc-1-Tpc-2)を小さくし、共重合ポリアミドを安定な結晶構造にするためには、共重合成分(a)~(c)成分の炭素数を偶数とすることや、炭素鎖を直鎖状とすることや、共重合ポリアミド中の炭素数とアミド基数との比(炭素数/アミド基数)を8以上9未満とすることが好ましい。
共重合ポリアミドの結晶化エンタルピーを前記範囲内に制御する方法としては、例えば、共重合ポリアミド中の炭素数とアミド基数との比(炭素数/アミド基数)を8以上とし、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法が挙げられる。
共重合ポリアミドのガラス転移温度Tgを前記範囲内に制御する方法としては、例えば、共重合成分を上記(a)~(c)成分とし、共重合成分の配合比率を上述した範囲に制御する方法などが挙げられる。
すなわち、1)アミノ末端、2)カルボキシル末端、3)封止剤による末端、及び4)その他の末端である。
共重合ポリアミドのポリマー末端とは、ジカルボン酸とジアミンとがアミド結合により重合したポリマー鎖の末端部分を意味する。前記共重合ポリアミドのポリマー末端は、これら1)~4)の末端のうちの1種以上である。
2)カルボキシル末端は、カルボキシル基(-COOH基)が結合したポリマー末端であり、原料のジカルボン酸に由来する。
3)封止剤による末端は、重合時に添加した、カルボン酸又はアミンにより封止されたポリマー末端である。
4)その他の末端は、上記の1)~4)に分類されないポリマー末端であり、例えば、アミノ末端が脱アンモニア反応して生成した末端や、カルボキシル末端から脱炭酸反応して生成した末端等が挙げられる。
本実施の形態に係る共重合ポリアミドの製造方法としては、上述した条件(1)~(3)等の特性を満たす共重合ポリアミドが得られる方法であれば特に限定されるものではなく、上述した(a)少なくとも1種の脂環族ジカルボン酸と、(b)少なくとも1種の炭素数8以上のジアミンと、(c)少なくとも1種の共重合成分とを重合させる工程を含む、共重合ポリアミドの製造方法が挙げられる。
1)ジカルボン酸、ジアミン塩又はその混合物の、水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下「熱溶融重合法」と略称する場合がある。)。
2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下「熱溶融重合・固相重合法」と略称する場合がある。)。
3)ジカルボン酸と等価なジカルボン酸ハライド成分と、ジアミン成分とを用いて重合させる方法(「溶液法」)。
中でも、熱溶融重合法を含む製造方法が好ましく、熱溶融重合法により共重合ポリアミドを製造する際には、重合が終了するまで、溶融状態を保持することが好ましい。溶融状態を保持するためには、共重合ポリアミド組成に適した重合条件で製造することが必要となる。例えば、該熱溶融重合法における重合圧力を23~50kg/cm2(ゲージ圧)、好ましくは25kg/cm2(ゲージ圧)以上の高圧に制御し、加熱を続けながら、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで30分以上かけながら降圧する方法などが挙げられる。このような製造方法により得られる共重合ポリアミドは、上述した条件(1)~(3)やトランス異性体比率等の特性を満たすことができる。
水を溶媒として、共重合ポリアミド成分(上記(a)~(c)成分)を含有する約40~60質量%の溶液を、110~180℃の温度及び約0.35~6kg/cm2(ゲージ圧)の圧力で操作される濃縮槽で、約65~90質量%に濃縮して濃縮溶液を得る。次いで、該濃縮溶液をオートクレーブに移し、容器における圧力が約23~50kg/cm2(ゲージ圧)になるまで加熱を続ける。その後、水及び/又はガス成分を抜きながら圧力を約23~50kg/cm2(ゲージ圧)に保つ。ここで、溶融状態を保持するためには、共重合ポリアミド組成に適した圧力が必要であり、特に炭素数の大きいジアミンを用いた際には容器における圧力が25kg/cm2(ゲージ圧)以上であることが好ましい。容器における温度が約250~350℃に達した時点で、容器における圧力を大気圧まで降圧する(ゲージ圧は、0kg/cm2)。ここで、溶融状態を保持するためには、加熱を続けながら、30分以上かけながら降圧することが好ましい。大気圧に降圧後、必要に応じて減圧することにより、副生する水を効果的に除くことができる。その後、窒素などの不活性ガスで加圧し、ポリアミド溶融物をストランドとして押し出す。樹脂温度(液温)の最終温度は溶融状態を保持するためTpm-1より10℃以上高い方が好ましい。該ストランドを、冷却、カッティングして共重合ポリアミドのペレットを得ることができる。
本実施の形態の共重合ポリアミド組成物は、上述した共重合ポリアミドと、無機充填材、造核剤、潤滑剤、安定剤、及び共重合ポリアミド以外のポリマーからなる群から選ばれる1種以上の成分と、を含む。
無機充填材としては、以下に制限されないが、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、クレー、ガラスフレーク、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、モンモリロナイト、膨潤性フッ素雲母及びアパタイトが挙げられる。
造核剤としては、以下に制限されないが、添加により共重合ポリアミド組成物の、結晶化ピーク温度を上昇させたり、結晶化ピークの補外開始温度と補外終了温度との差を小さくしたり、得られる成形品の球晶を微細化又はサイズの均一化させたりする効果が得られる物質のことを意味する。例えば、タルク、窒化ホウ素、マイカ、カオリン、炭酸カルシウム、硫酸バリウム、窒化珪素、カーボンブラック、チタン酸カリウム、及び二硫化モリブデンなどが挙げられる。
潤滑剤としては、以下に限定されないが、例えば、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、及び高級脂肪酸アミド挙げられる。
安定剤としては、以下に制限されないが、例えば、フェノール系熱安定剤、リン系熱安定剤、アミン系熱安定剤、並びに元素周期律表の第3族、第4族及び第11~14族の元素の金属塩、並びにアルカリ金属及びアルカリ土類金属のハロゲン化物などが挙げられる。
共重合ポリアミド以外のポリマーとしては、以下に制限されないが、例えば、共重合ポリアミド以外のポリアミド、ポリエステル、液晶ポリエステル、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリカーボネート、ポリアリレート、フェノール樹脂、エポキシ樹脂等が挙げられる。
本実施の形態に係る共重合ポリアミド組成物の製造方法としては、上述の共重合ポリアミドを含む原料成分を溶融混練する工程を含む製造方法であれば、特に限定されるものではないが、例えば、上述の共重合ポリアミドを含む原料成分を押出機で溶融混練する工程を含み、前記押出機の設定温度を、上述の共重合ポリアミドの融解ピーク温度Tpm-1+30℃以下とする方法が好ましい。
本実施の形態の成形品は、上述の共重合ポリアミド又は共重合ポリアミド組成物を含む。
本実施の形態の成形品は、上述の共重合ポリアミド又は共重合ポリアミド組成物を、公知の成形方法、例えばプレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、及び溶融紡糸など、一般に知られているプラスチック成形方法を用いて成形することにより得られる。
携帯機器部品としては、特に限定されるものではなく、例えば、携帯電話、スマートフォン、パソコン、携帯ゲーム機器、デジタルカメラなどの筐体、及び構造体などが挙げられる。
また、本実施の形態の成形品は、表面外観に優れるので、成形品表面に塗装膜を形成させた成形品としても好ましく用いられる。塗装膜の形成方法は公知の方法であれば特に制限はなく、例えば、スプレー法、静電塗装法などの塗装によることができる。また、塗装に用いる塗料は、公知のものであれば特に限定されず、メラミン架橋タイプのポリエステルポリオール樹脂塗料、アクリルウレタン系塗料などを用いることができる。
本実施例において下記化合物を用いた。
(1)1,4-シクロヘキサンジカルボン酸(CHDC)
商品名:1,4-CHDA HPグレード(トランス体/シス体=25/75)(イーストマンケミカル社製)
(2)セバシン酸(C10DC)
商品名:セバシン酸TA(伊藤製油社製)
(3)ドデカン二酸(C12DC)(和光純薬工業社製)
(4)アジピン酸(ADA)(和光純薬工業社製)
(5)イソフタル酸(IPA)(和光純薬工業社製)
(1)1,10-ジアミノデカン(デカメチレンジアミン)(C10DA)
商品名:1,10-デカンジアミン(小倉合成工業社製)
(2)1,12-ジアミノドデカン(ドデカメチレンジアミン)(C12DA)(東京化成工業社製)
(3)1,6-ジアミノヘキサン(ヘキサメチレンジアミン)(C6DA)(東京化成工業社製)
(4)ペンタメチレンジアミン(C5DA)(アルドリッチ社製)
(5)オクタメチレンジアミン(C8DA)(東京化成工業社製)
(6)1,9-ノナメチレンジアミン(C9DA)(アルドリッチ社製)
(7)ウンデカメチレンジアミン(C11DA)(東京化成工業社製)
(1)ε-カプロラクタム(CPL)(和光純薬工業社製)
(2)11-アミノウンデカン酸(11AU)(アルドリッチ社製)
(3)12-アミノドデカン酸(12AD)(アルドリッチ社製)
ガラス繊維(GF) 日本電気硝子製 商品名 ECS03T275H 平均繊維径(平均粒径)10μm(真円状)、カット長3mm
ヨウ化銅(CuI)和光純薬工業製 商品名 ヨウ化銅(I)
ヨウ化カリウム(KI)和光純薬工業製 商品名 ヨウ化カリウム
エチレンビスステアリルアミド ライオン製 商品名 アーモワックス EBS
(1)融解ピーク温度(融点)、結晶化ピーク温度、結晶化エンタルピー
実施例及び比較例で得られた共重合ポリアミドの、融解ピーク温度(融点)、結晶化ピーク温度及び結晶化エンタルピーを、JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。測定条件は、窒素雰囲気下、試料約10mgを昇温速度20℃/minで50℃から350℃まで昇温する条件とした。このときに現れる吸熱ピークを融解ピークとし、もっとも高温側に現れたピークを融解ピーク温度Tpmとした。続いて、350℃で3分間保った後、冷却速度20℃/minで350℃から50℃まで冷却した。このときに現れる発熱ピークを結晶化ピークとし、結晶化ピーク温度をTpc-1、結晶化ピーク面積を結晶化エンタルピーとした。続いて、50℃で3分間保った後、再度昇温速度20℃/minで50℃から350℃まで昇温した。このときに現れるもっとも高温側に現れたピークを融解ピーク温度Tpm-1とし、もっとも低温側に現れたピークを融解ピーク温度Tpm-2とした。さらに、350℃で3分間保った後、冷却速度50℃/minで350℃から50℃まで冷却した。このときに現れる結晶化ピーク温度をTpc-2とした。
実施例及び比較例で得られた共重合ポリアミドのガラス転移温度を、JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。測定条件は、以下のとおりとした。試料をホットステージ(Mettler社製EP80)で溶融させて得られた溶融状態のサンプルを、液体窒素を用いて急冷し、固化させ、測定サンプルとした。当該測定サンプル10mgを用いて、昇温速度20℃/minの条件下、30~350℃の範囲で昇温して、ガラス転移温度Tgを測定した。
実施例及び比較例で得られた共重合ポリアミドの25℃における硫酸相対粘度ηrを、JIS-K6920に準じて測定した。具体的には、98%硫酸を用いて、1%の濃度の溶解液((ポリアミド1g)/(98%硫酸100mL)の割合)を作成し、25℃の温度条件下で測定した。
実施例及び比較例で得られた共重合ポリアミドにおけるトランス異性化率を以下のとおり求めた。
ポリアミド30~40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、得られた溶液を用い、1H-NMRを測定した。1,4-シクロヘキサンジカルボン酸の場合、1H-NMR測定における、トランス異性体に由来する1.98ppmのピーク面積とシス異性体に由来する1.77ppm及び1.86ppmのピーク面積との比率から共重合ポリアミドにおけるトランス異性体比率を求めた。
実施例及び比較例で得られた共重合ポリアミドにおいて、ポリマー末端に結合するアミノ末端量を、中和滴定により以下のとおり測定した。
ポリアミド3.0gを90質量%フェノール水溶液100mLに溶解し、得られた溶液を用い、0.025Nの塩酸で滴定を行い、アミノ末端量(μ当量/g)を求めた。終点はpH計の指示値から決定した。
実施例及び比較例で得られた共重合ポリアミドにおいて、ポリマー末端に結合するカルボキシル末端量を、中和滴定により以下のとおり測定した。
ポリアミド4.0gをベンジルアルコール50mLに溶解し、得られた溶液を用い、0.1NのNaOHで滴定を行い、カルボキシル末端量(μ当量/g)を求めた。終点はフェノールフタレイン指示薬の変色から決定した。
実施例及び比較例で得られた共重合ポリアミドにおいて、アミド基1個あたりの炭素数の平均値(炭素数/アミド基数)を計算により求めた。具体的には、分子種主鎖中に含まれる炭素数を分子主鎖中に含まれるアミド基数で割り返すことにより炭素数とアミド基数との比(炭素数/アミド基数)を求めた。該炭素数とアミド基数との比(炭素数/アミド基数)を、共重合ポリアミドにおけるアミノ基濃度を示す指標とした。
実施例及び比較例で得られた共重合ポリアミドにおいて、バイオマス由来の原料にて構成されるユニットの質量%をバイオマスプラスチック度として算出した。具体的には、ひまし油を原料としている、セバシン酸、1,10-ジアミノデカン、11-アミノウンデカン酸及びグルコースを原料としている、ペンタメチレンジアミンを、バイオマス由来の原料とした。そして、実施例及び比較例で得られた共重合ポリアミドにおいて、セバシン酸及び1,10-ジアミノデカンに由来するユニットの割合を算出し、当該割合をバイオマスプラスチック度とした。尚、ポリアミドの重合においては、アミド結合の形成の際に、ジアミン中の2つの水素原子と、ジカルボン酸中の2つの酸素原子と、2つの水素原子とから、2モルの水分子が生成することを考慮して算出した。
実施例及び比較例で得られた共重合ポリアミドのペレットを、射出成形機[PS-40E:日精樹脂株式会社製]を用いて、ISO 3167に準拠し、多目的試験片A型の成形片に成形した。具体的な成形条件は、射出+保圧時間25秒、冷却時間15秒、金型温度を80℃、溶融樹脂温度を共重合ポリアミドの高温側の融解ピーク温度(Tpm-1)+20℃に設定した。
上記(9)のとおり多目的試験片A型の成形片を成形した後の絶乾状態(dry as mold)で、多目的試験片A型の成形片の試験前質量(吸水前質量)を測定した。次に、多目的試験片A型の成形片を、80℃の純水中に72時間浸漬させた。その後、水中から多目的試験片A型の成形片を取り出し、表面の付着水分をふき取り、恒温恒湿(23℃、50RH%)雰囲気下に30分放置後、試験後質量(吸水後質量)を測定した。吸水前質量に対しての吸水後質量の増分を吸水量とし、吸水前質量に対する吸水量の割合を、試行数n=3で求め、その平均値を吸水率とした。
実施例及び比較例で得られた共重合ポリアミドのペレットを、L/D(押出機のシリンダーの長さ/押出機のシリンダー径)=48(バレル数:12)の二軸押出機[ZSK-26MC:コペリオン社製(ドイツ)]を用いて、押出機の上流側供給口からダイまでを340℃に設定し、スクリュー回転数200rpm、吐出量25kg/hで溶融混練した。ダイから排出されたストランド1.5mを20℃の水浴に浸漬し、ストランドカッターによりカッティングしてペレットを得た。このとき水浴の浸漬時間を約2秒になるようにした。得られたペレット5kgを、角度:45度、投入口の径:500mm、排出口の径:50mmのステンレス製漏斗に投入し、漏斗上でブロッキングし、残留したポリアミドの割合を測定した。
上記(9)における射出成形機[PS-40E:日精樹脂株式会社製]を用いて、射出+保圧時間5秒、金型温度を共重合ポリアミドのTgと同じ温度に設定し、溶融樹脂温度を共重合ポリアミドの高温側の融解ピーク温度(Tpm-1)+20℃に設定して、実施例及び比較例で得られた共重合ポリアミドから、長さ128mm×巾12.8mm×厚さ0.75mmの成形片を成形した。冷却時間を調整し、金型から成形品が問題なく離型する最短の冷却時間を、離型性として評価した。当該冷却時間を短縮することは、生産性の向上に繋がる。
実施例及び比較例で得られた共重合ポリアミドのペレットを、射出成形機[PS-40E:日精樹脂株式会社製]を用いて、ISO 3167に準拠し、多目的試験片A型の成形片に成形した。具体的な成形条件は、射出+保圧時間25秒、冷却時間15秒、金型温度を120℃、溶融樹脂温度を共重合ポリアミドの高温側の融解ピーク温度(Tpm-1)+20℃に設定し、1000ショットまで成形し、ISO試験片を得た。
該射出成形の各ショットにおいて、共重合ポリアミドのペレットが可塑化状態となるまでの時間(以下「可塑化時間」とも記す。)を測定した。該測定値に基づき、可塑化時間安定性(標準偏差)を下記式により求めた。
X1=1000ショットの可塑化時間の相加平均
上記の標準偏差(σ)が小さいほど、可塑化時間安定性に優れるものと判断した。
ASTM引張試験用のダンベル射出成形試験片(3mm厚)を用いて、ASTM D638に準じて破壊応力(MPa)の測定を行った。実施例及び比較例で得られた共重合ポリアミド組成物のペレットからダンベル射出成形試験片を以下のとおり成形した。射出成形機(日精樹脂(株)製PS40E)にASTM引張試験(ASTM D638)用のダンベル試験片(3mm厚)の金型(金型温度=Tg+20℃)を取り付けて、シリンダー温度=(Tpm-1+10)℃~(Tpm-1+30)℃で成形を行って、共重合ポリアミド組成物のペレットからダンベル射出成形試験片を得た。得られたASTM引張試験用のダンベル射出成形試験片(3mm厚)について、株式会社鷺宮製作所製油圧サーボ疲労試験機EHF-50-10-3を用い、120℃の雰囲気下、周波数20Hzの正弦波にて引張り荷重を負荷し、100,000回で破壊する応力(MPa)を求めた。求めた破壊応力(MPa)が大きいほど振動疲労特性に優れると評価した。
実施例及び比較例で得られた共重合ポリアミド組成物のペレットから平板プレート成形片を以下のとおり作製した。射出成形機[FN-3000:日精樹脂株式会社製]を用いて、冷却時間25秒、スクリュー回転数200rpm、金型温度をTg+20℃、シリンダー温度=(Tpm-1+10)℃~(Tpm-1+30)℃に設定し、充填時間が1.0±0.1秒の範囲となるように、射出圧力及び射出速度を適宜調整し、共重合ポリアミド組成物ペレットから平板プレート成形片(13cm×13cm、厚さ3mm)を作製した。このようにして作製した平板プレート成形片の中央部を、光沢計(HORIBA製IG320)を用いてJIS-K7150に準じて60度グロスを測定した。該測定値が大きいほど表面外観に優れると判断した。
実施例及び比較例で得られた共重合ポリアミド組成物のペレット5kgを金属バットに広げ、目視にて目やに起因の異物の数(個/5kg)を測定した。該測定値を連続生産性(成形加工性)の指標とした。すなわち、目やに起因の異物の数(個/5kg)が少ないほど連続生産性に優れると評価した。
実施例及び比較例で得られた共重合ポリアミド組成物について、銅濃度、ハロゲン濃度、及びハロゲンと銅とのモル比(ハロゲン/Cu)を以下のとおり測定した。
銅濃度は、試料に硫酸を加え、加熱しながら硝酸を滴下し有機分を分解し、該分解液を純水にて定容しICP発光分析(高周波プラズマ発光分析)法により定量した。ICP発光分析装置は、SEIKO電子工業社製Vista-Proを用いた。
ハロゲン濃度は、ヨウ素を例にとると、試料を高純度酸素で置換したフラスコ中で燃焼し、発生したガスを吸収液に捕集し、該捕集液中のヨウ素を1/100N硝酸銀溶液による電位差滴定法を用いて定量した。
ハロゲンと銅とのモル比(ハロゲン/Cu)は、上記それぞれの定量値を用いて分子量からモルに換算し算出した。
実施例及び比較例で得られた共重合ポリアミド組成物の強度半減期(日)を以下のとおり測定した。
上記(14)のASTM引張試験用のダンベル射出成形試験片(3mm厚)を熱風オーブン中で200℃、所定時間処理した後、ASTM-D638に準じて引張強度を測定した。そして熱処理前に測定した引張強度に対する熱処理後の引張強度を引張強度保持率として算出し、引張強度保持率が50%となる熱処理時間を強度半減期とした。
実施例及び比較例で得られた共重合ポリアミド組成物の浸漬後の引張強度保持率(%)を以下のとおり測定した。 上記(14)のASTM引張試験用のダンベル射出成形試験片(3mm厚)を、120℃のエチレングリコール50%水溶液に、24時間、720時間浸漬し、室温に放置した後、上記(9)の方法の引張試験を行い、引張強度を測定した。720時間浸漬後に測定した引張強度の、24時間浸漬後に測定した引張強度に対する割合を浸漬後の引張強度保持率として求めた。
「熱溶融重合法」によりポリアミドの重合反応を以下のとおり実施した。
(a)脂環族ジカルボン酸、(b)炭素数8以上のジアミン、(c)共重合成分、及び、溶融重合時の添加物として、表1~4に記載の化合物及び量を用いたこと、並びに樹脂温度の最終温度を表1~4に記載の温度にしたこと以外は、実施例1に記載した方法でポリアミドの重合反応を行って(「熱溶融重合法」)、共重合ポリアミドのペレットを得た。
「熱溶融重合法」によりポリアミドの重合反応を以下のとおり実施した。
該重合法は、前記特許文献7(特公昭64-2131号公報)に記載されている製法に準じた。
(a)CHDC750g(4.36モル)、(b)C10DA600g(3.48モル)、及び(c-2)C6DA100g(0.86モル)を蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作った。
得られた水溶液を内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。液温を約50℃から加熱を続けて210℃とし、オートクレーブの槽内の圧力を、ゲージ圧として(以下、槽内の圧力は全てゲージ圧として表記する。)、17.5kg/cm2に保つため水を系外に除去しながら、加熱を続けた。その後、内温を345℃まで昇温し、槽内の圧力が大気圧(ゲージ圧は0kg/cm2)になるまで120分ほどかけながら降圧した。その後、槽内に窒素ガスを30分間流し、樹脂温度(液温)の最終温度が約350℃になるようにヒーター温度を調整し、重合体を得た。その後、得られた重合体を、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、共重合ポリアミドのペレットを得た。
得られた共重合ポリアミドの各物性について上記方法に基づいて測定した。該測定結果を表8に示す。
「プレポリマー・固相重合法」によりポリアミドの重合反応を以下のとおり実施した。
該重合法は、前記特許文献8(国際公開第2008/149862号パンフレット)に記載されている製法に準じた。
(a)CHDC726g(4.22モル)、(b)C12DA675g(3.37モル)、及び(c-2)C6DA99g(0.85モル)を蒸留水1500gに溶解させ、原料モノマーの等モル約50質量%均一水溶液を作った。
得られた水溶液を、内容積5.4Lのオートクレーブ(日東高圧製)に仕込み、液温(内温)が50℃になるまで保温して、オートクレーブ内を窒素置換した。
前記オートクレーブ内の溶液を攪拌し、50分かけて内温を160℃に昇温した。その後内温を30分、160℃に保ち、前記オートクレーブ内から水蒸気を系外に除去しながら、加熱を続けて、水溶液の濃度が約70質量%になるまで濃縮した。水の除去を止め、槽内の圧力が約35kg/cm2になるまで加熱を続けた(この系での液温は約250℃であった。)。槽内の圧力を約35kg/cm2に保つため、水を系外に除去しながら、最終温度が300℃になるまで1時間反応させ、プレポリマーを得た。
このプレポリマーを3mm以下の大きさまで粉砕した後、窒素ガスを20L/分の流量で流した雰囲気の下、100℃で24時間乾燥した。その後、窒素ガスを200mL/分の流量で流した雰囲気の下、280℃で10時間プレポリマーを固相重合し、ポリアミドを得た。このポリアミドの組成及び重合の条件を表4に示した。また、得られたポリアミドの各物性について上記方法に基づいて測定した。該測定結果を表8に示した。
共重合ポリアミド組成物の原料として以下の共重合ポリアミド及び上述した無機充填材を用いた。
実施例1~26で得られた共重合ポリアミド、並びに比較例2、8及び9で得られたポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%に調整して、ポリアミド組成物の原料として用いた。
2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tpm-1+20℃(実施例1で得られた共重合ポリアミドを用いた場合、300+20=320℃)、スクリュー回転数300rpm)を用いて、以下のとおり共重合ポリアミド組成物を製造した。該2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整した共重合ポリアミド(100質量部)を供給し、前記2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維を表9~11に示す割合(質量部)で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズして共重合ポリアミド組成物のペレットを得た。
得られた共重合ポリアミド組成物のペレットの各物性について上記(14)、(15)及び(16)の方法に基づき測定した。該測定結果を下記表9~11に示す。
なお、引張試験における引張速度は5mm/minで実施した。
共重合ポリアミド組成物の原料として以下の共重合ポリアミド、上述した無機充填材、銅化合物及び金属ハロゲン化物を用いた。
実施例5、13、及び22で得られた共重合ポリアミドを、窒素気流中で乾燥し水分率を約0.2質量%に調整して、ポリアミド組成物の原料として用いた。
KI 85.1質量部、エチレンビスステアリルアミド10質量部を混合し、KIとエチレンビスステアリルアミドとの混合物を得た。該混合物にCuI 4.9質量部をよく混合し、ディスクペレッター(不二パウダル社製F5-11-175)で顆粒化し、顆粒(1)を得た。
2軸押出機(東芝機械(株)製TEM35、L/D=47.6(D=37mmφ)、設定温度Tpm-1+20℃(この場合、300+20=320℃)、スクリュー回転数300rpm)を用いて、以下のとおり共重合ポリアミド組成物を製造した。該2軸押出機の最上流部に設けられたトップフィード口より、上記水分率を調整した共重合ポリアミド(100質量部)、上記で製造した顆粒(1)(6.1質量部)を供給し、前記2軸押出機の下流側(トップフィード口より供給された樹脂が充分溶融している状態)のサイドフィード口より無機充填材としてガラス繊維を表12に示す割合(質量部)で供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズして共重合ポリアミド組成物のペレットを得た。
得られた共重合ポリアミド組成物のペレットの各物性について上記(17)、(18)及び(19)の方法に基づき測定した。該測定結果を下記表12に示す。
なお、引張試験における引張速度は5mm/minで実施した。
Claims (17)
- (a)少なくとも1種の脂環族ジカルボン酸と、
(b)1種の炭素数8以上のジアミンと、
(c)下記(c-1)~(c-3)からなる群から選ばれる少なくとも1種の共重合成分と、を重合させて得られ、かつ下記条件(1)~(3)を満足する、共重合ポリアミド;
(c-1)脂環族ジカルボン酸以外のジカルボン酸、
(c-2)前記(b)のジアミンより炭素数の少ないジアミン、
(c-3)ラクタム及び/又はアミノカルボン酸、
(1)JIS-K7121に準じた示差走査熱量測定において、20℃/minで冷却したときに得られる結晶化ピーク温度Tpc-1と、ガラス転移温度Tgとの差(Tpc-1-Tg)が140℃以上であること、
(2)炭素数とアミド基数との比(炭素数/アミド基数)が8以上であること、
(3)JIS-K7121に準じた示差走査熱量測定において、20℃/minで昇温したときに得られる融解ピーク温度Tpmと、20℃/minで再度昇温したときに得られる融解ピーク温度Tpm-1との差(Tpm-Tpm-1)が30℃以下であること。 - 前記(a)脂環族ジカルボン酸が、1,4-シクロヘキサンジカルボン酸である、請求項1に記載の共重合ポリアミド。
- 前記(a)脂環族ジカルボン酸に由来する部分におけるトランス異性体比率が65~80モル%である、請求項1又は2に記載の共重合ポリアミド。
- アミノ末端量とカルボキシル末端量との総量に対するアミノ末端量の比{アミノ末端量/(アミノ末端量+カルボキシル末端量)}が0.5以上1.0未満である、請求項1~3のいずれか1項に記載の共重合ポリアミド。
- 前記(b)1種の炭素数8以上のジアミンがデカメチレンジアミンである、請求項1~4のいずれか1項に記載の共重合ポリアミド。
- 前記(c-1)脂環族ジカルボン酸以外のジカルボン酸が、炭素数10以上の脂肪族ジカルボン酸である、請求項1~5のいずれか1項に記載の共重合ポリアミド。
- 前記(c-1)脂環族ジカルボン酸以外のジカルボン酸が、セバシン酸及び/又はドデカン二酸である、請求項1~6のいずれか1項に記載の共重合ポリアミド。
- 前記(c-1)脂環族ジカルボン酸以外のジカルボン酸が、イソフタル酸である、請求項1~5のいずれか1項に記載の共重合ポリアミド。
- 前記(c-2)前記(b)のジアミンより炭素数の少ないジアミンが、炭素数4~7の脂肪族ジアミンである、請求項1~8のいずれか1項に記載の共重合ポリアミド。
- JIS-K7121に準じた示差走査熱量測定において、20℃/minで冷却したときに得られる結晶化ピーク温度Tpc-1と、50℃/minで再度冷却したときに得られる結晶化ピーク温度Tpc-2との差(Tpc-1-Tpc-2)が10℃以下である、請求項1~9のいずれか1項に記載の共重合ポリアミド。
- 前記(c)共重合成分の配合量が、共重合ポリアミドの全構成成分量100モル%に対し、7.5モル%以上20.0モル%以下である、請求項1~10のいずれか1項に記載の共重合ポリアミド。
- バイオマスプラスチック度が25%以上である、請求項1~11のいずれか1項に記載の共重合ポリアミド。
- 請求項1~12のいずれか1項に記載の共重合ポリアミドと、
無機充填材、造核剤、潤滑剤、安定剤、及び共重合ポリアミド以外のポリマーからなる群から選ばれる1種以上の成分と、を含む共重合ポリアミド組成物。 - 請求項1~12のいずれか一項に記載のポリアミド共重合体、又は請求項13に記載の共重合ポリアミド組成物を含む成形品。
- 自動車部品、電子部品、家電部品、OA機器部品又は携帯機器部品として用いられる、請求項14に記載の成形品。
- (a)少なくとも1種の脂環族ジカルボン酸と、
(b)1種の炭素数8以上のジアミンと、
(c)下記(c-1)~(c-3)からなる群から選ばれる少なくとも1種の共重合成分と、を重合させる工程を含み、
該重合工程で得られるポリアミド共重合体中の(a)脂環族ジカルボン酸に由来する部分におけるトランス異性体比率を65~80%に維持する、請求項1~12のいずれか一項に記載のポリアミド共重合体の製造方法;
(c-1)脂環族ジカルボン酸以外のジカルボン酸、
(c-2)前記(b)のジアミンより炭素数の少ないジアミン、
(c-3)ラクタム及び/又はアミノカルボン酸。 - 請求項1~12のいずれか1項に記載の共重合ポリアミドを含む原料成分を押出機で溶融混練する工程を含み、
前記押出機の設定温度を請求項1に記載の融解ピーク温度Tpm-1+30℃以下とする、共重合ポリアミド組成物の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012551887A JP5497921B2 (ja) | 2011-01-07 | 2012-01-06 | 共重合ポリアミド |
US13/990,937 US9611356B2 (en) | 2011-01-07 | 2012-01-06 | Copolymer polyamide |
CN201280004469.1A CN103314034B (zh) | 2011-01-07 | 2012-01-06 | 共聚聚酰胺 |
KR1020137015553A KR101530464B1 (ko) | 2011-01-07 | 2012-01-06 | 공중합 폴리아미드 |
EP12732338.4A EP2662397A4 (en) | 2011-01-07 | 2012-01-06 | POLYAMIDE COPOLYMER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011002061 | 2011-01-07 | ||
JP2011-002061 | 2011-01-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012093722A1 true WO2012093722A1 (ja) | 2012-07-12 |
Family
ID=46457572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/050183 WO2012093722A1 (ja) | 2011-01-07 | 2012-01-06 | 共重合ポリアミド |
Country Status (6)
Country | Link |
---|---|
US (1) | US9611356B2 (ja) |
EP (1) | EP2662397A4 (ja) |
JP (1) | JP5497921B2 (ja) |
KR (1) | KR101530464B1 (ja) |
CN (1) | CN103314034B (ja) |
WO (1) | WO2012093722A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014010607A1 (ja) | 2012-07-09 | 2014-01-16 | 旭化成ケミカルズ株式会社 | ポリアミド、ポリアミド組成物及び成形品 |
JP2014111756A (ja) * | 2012-11-12 | 2014-06-19 | Kuraray Co Ltd | ポリアミド樹脂組成物 |
WO2014104699A1 (ko) * | 2012-12-28 | 2014-07-03 | 제일모직 주식회사 | 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품 |
KR20140086854A (ko) * | 2012-12-28 | 2014-07-08 | 제일모직주식회사 | 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 제품 |
WO2014203606A1 (ja) * | 2013-06-20 | 2014-12-24 | 旭化成ケミカルズ株式会社 | ポリアミド樹脂組成物及び成形体 |
JP2015101676A (ja) * | 2013-11-26 | 2015-06-04 | チェイル インダストリーズ インコーポレイテッド | ポリアミド樹脂およびこれを用いたポリアミド成形体 |
JP2015129244A (ja) * | 2014-01-08 | 2015-07-16 | 旭化成ケミカルズ株式会社 | 摺動部品 |
JP2015129243A (ja) * | 2014-01-08 | 2015-07-16 | 旭化成ケミカルズ株式会社 | ポリアミド組成物及び成形品 |
JPWO2017150410A1 (ja) * | 2016-03-03 | 2018-12-27 | 宇部興産株式会社 | ポリアミド樹脂及びそれからなるフィルム |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101630907B1 (ko) * | 2013-08-12 | 2016-06-15 | 주식회사 엘지화학 | 페닐 카르복실산 캡핑 폴리옥시알킬렌, 및 이를 이용한 광학성 폴리카보네이트 공중합체의 제조방법 |
US9422398B2 (en) | 2014-05-30 | 2016-08-23 | Industrial Technology Research Institute | Copolymer, and method for preparing a monomer used to form the copolymer |
CN104325595A (zh) * | 2014-09-07 | 2015-02-04 | 上海沪帆汽车塑料件有限公司 | 高效节温器壳体的一模多出制备方法 |
TWI519687B (zh) * | 2014-12-19 | 2016-02-01 | 展頌股份有限公司 | 消光聚醯胺56纖維及其製造方法 |
FR3057572A1 (fr) | 2016-10-19 | 2018-04-20 | Arkema France | Utilisation d'un polyamide semi-aromatique dans un melange de polyamide aliphatique comprenant des fibres de verre a section circulaire pour limiter le gauchissement |
FR3057573A1 (fr) * | 2016-10-19 | 2018-04-20 | Arkema France | Utilisation de fibres de verre a section circulaire dans un melange comprenant un polyamide semi-aromatique et un polyamide aliphatique pour ameliorer les proprietes mecaniques dudit melange |
US11192979B2 (en) | 2017-03-30 | 2021-12-07 | Asahi Kasei Kabushiki Kaisha | Polyamide composition and molded article |
CN109970969B (zh) * | 2019-04-10 | 2021-06-22 | 山东广垠新材料有限公司 | 一种三元共聚低熔点尼龙的制备方法 |
TWI789730B (zh) * | 2020-05-11 | 2023-01-11 | 財團法人工業技術研究院 | 共聚物與其形成方法 |
KR20220046155A (ko) * | 2020-10-07 | 2022-04-14 | 현대자동차주식회사 | 유리 장섬유 강화 열가소성 수지 조성물 및 이를 포함하는 성형품 |
CN113444241B (zh) * | 2021-06-28 | 2023-01-10 | 广州辰东新材料有限公司 | 一种聚酰胺及其制备方法 |
CN113896886B (zh) * | 2021-09-24 | 2023-07-25 | 珠海万通特种工程塑料有限公司 | 一种呋喃二酸基聚酰胺及其制备方法和一种呋喃二酸基聚酰胺组合物 |
CN114507343B (zh) * | 2022-03-09 | 2024-03-22 | 金发科技股份有限公司 | 一种聚酰胺及其制备方法与应用 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS642131A (en) | 1987-06-24 | 1989-01-06 | Shimizu Corp | System for preparing process management table |
JPH0359019A (ja) | 1989-07-26 | 1991-03-14 | Bayer Ag | バインダとして(メタ)アクリロイル基を有するポリウレタンを含む粉末コーテイング組成物 |
JPH0413300A (ja) | 1990-04-28 | 1992-01-17 | Fujitsu Ltd | 半導体記憶装置 |
JPH0432775A (ja) | 1990-05-30 | 1992-02-04 | Copal Co Ltd | 加速度センサ |
JPH06503590A (ja) | 1990-12-12 | 1994-04-21 | デユポン・カナダ・インコーポレーテツド | テレフタル酸コポリアミド |
JPH0912868A (ja) | 1995-06-26 | 1997-01-14 | Kuraray Co Ltd | ポリアミド組成物 |
JPH11512476A (ja) | 1995-09-19 | 1999-10-26 | ディーエスエム エヌ.ブイ. | ポリアミド組成物から成る電気及び電子部材 |
JP2000053762A (ja) * | 1998-08-11 | 2000-02-22 | Toray Ind Inc | 共重合ポリアミド、その製造方法、及びその用途 |
JP2001514695A (ja) | 1997-03-13 | 2001-09-11 | ディーエスエム エヌ.ブイ. | ポリアミド組成物から作られた自動車部品 |
WO2002048239A1 (fr) | 2000-12-11 | 2002-06-20 | Asahi Kasei Kabushiki Kaisha | Polyamide |
WO2008149862A1 (ja) | 2007-06-04 | 2008-12-11 | Asahi Kasei Chemicals Corporation | ポリアミド-ポリフェニレンエーテル樹脂組成物及びフィルム |
WO2009113590A1 (ja) | 2008-03-12 | 2009-09-17 | 旭化成ケミカルズ株式会社 | ポリアミド、ポリアミド組成物及びポリアミドの製造方法 |
JP2010248324A (ja) * | 2009-04-13 | 2010-11-04 | Asahi Kasei Chemicals Corp | ポリアミド組成物からなる自動車冷却系部品 |
JP2010265380A (ja) * | 2009-05-14 | 2010-11-25 | Asahi Kasei Chemicals Corp | 熱可塑性樹脂組成物及びその成形体 |
JP2011026568A (ja) * | 2009-06-23 | 2011-02-10 | Asahi Kasei Chemicals Corp | ポリアミド組成物 |
JP2011219697A (ja) * | 2010-04-14 | 2011-11-04 | Asahi Kasei Chemicals Corp | ポリアミド組成物及びポリアミド組成物からなる成形体 |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582327A (ja) | 1981-06-29 | 1983-01-07 | Toray Ind Inc | 共重合ポリアミドおよびその製造法 |
EP0073557B1 (en) | 1981-06-29 | 1985-09-25 | Toray Industries, Inc. | Copolyamide, process for producing thereof and copolyamide molding composition comprising thereof |
JPS61174141A (ja) | 1985-01-25 | 1986-08-05 | Nitto Boseki Co Ltd | ガラス繊維及びその製造方法 |
DE3667779D1 (de) | 1985-03-23 | 1990-02-01 | Nitto Boseki Co Ltd | Glasspinnfaden und verfahren zu seiner herstellung. |
EP0558649B1 (en) | 1990-11-20 | 1997-02-05 | E.I. Du Pont De Nemours And Company | Terpolyamides and multipolyamides containing amide units of 2-methylpentamethylenediamine and products prepared therefrom |
DE4111670A1 (de) | 1991-04-10 | 1992-10-15 | Schering Ag | Polyamidharze und deren verwendung fuer den reliefdruck |
JP3001685B2 (ja) | 1991-07-09 | 2000-01-24 | 広栄化学工業株式会社 | ジアミンの製造法 |
JP3181697B2 (ja) | 1992-07-20 | 2001-07-03 | 旭化成株式会社 | 結晶性ポリアミド及びその組成物 |
US5270437A (en) | 1992-11-13 | 1993-12-14 | E. I. Du Pont De Nemours And Company | Process for making partially aromatic polyamides containing 2-methylpentamethylenediamine units |
DE4430932A1 (de) | 1994-08-31 | 1996-03-07 | Hoechst Ag | Flammgeschützte Polyesterformmasse |
DE19519820A1 (de) | 1995-05-31 | 1996-12-05 | Bayer Ag | Thermostabile, witterungsbeständige Polyamidformmassen |
JPH10292113A (ja) | 1997-04-18 | 1998-11-04 | Hitachi Ltd | 液晶配向膜用組成物 |
SG71170A1 (en) | 1997-11-18 | 2000-03-21 | Mitsui Chemicals Inc | Process for preparing aromatic polyamides |
US6121388A (en) | 1998-05-12 | 2000-09-19 | Toray Industries, Inc. | Polyamide resin composition |
WO2000058248A1 (en) | 1999-03-25 | 2000-10-05 | Eastman Chemical Company | Process for producing 1,4-cyclohexanedimethanol with enhanced cis-isomer content |
JP3589088B2 (ja) | 1999-05-27 | 2004-11-17 | 宇部興産株式会社 | 逐次二軸延伸フィルム |
US6297345B1 (en) | 1999-05-27 | 2001-10-02 | Ube Industries, Ltd. | Polyamide having excellent stretching properties |
DE60119452T2 (de) | 2000-02-16 | 2007-05-24 | Asahi Kasei Kabushiki Kaisha | Polyamidharzzusammensetzung |
JP2003119378A (ja) | 2000-09-12 | 2003-04-23 | Kuraray Co Ltd | ポリアミド樹脂組成物 |
TW521082B (en) | 2000-09-12 | 2003-02-21 | Kuraray Co | Polyamide resin composition |
JP2002097265A (ja) | 2000-09-22 | 2002-04-02 | Mitsubishi Gas Chem Co Inc | ポリアミドの製造方法 |
JP2002309083A (ja) | 2001-04-10 | 2002-10-23 | Kuraray Co Ltd | ポリアミド組成物 |
JP2003002966A (ja) | 2001-06-22 | 2003-01-08 | Toyobo Co Ltd | ポリアミド樹脂 |
JP2003138012A (ja) | 2001-11-08 | 2003-05-14 | Ube Ind Ltd | 延伸性に優れたポリアミド |
KR100429468B1 (ko) | 2002-02-15 | 2004-05-03 | 안금순 | 트랜스포머용 보빈 |
JP4165106B2 (ja) | 2002-04-04 | 2008-10-15 | 東レ株式会社 | ポリペンタメチレンアジパミド樹脂およびその製造方法 |
JP2003292614A (ja) | 2002-04-05 | 2003-10-15 | Toray Ind Inc | ポリアミド樹脂 |
US7491763B2 (en) | 2002-07-10 | 2009-02-17 | Asahi Kasei Chemicals Corporation | Polyamide composition |
JP4168702B2 (ja) | 2002-08-21 | 2008-10-22 | 東レ株式会社 | ポリペンタメチレンアジパミド樹脂の製造方法 |
JP4458231B2 (ja) | 2002-10-08 | 2010-04-28 | 三菱瓦斯化学株式会社 | ポリアミドおよび樹脂組成物 |
JP4451130B2 (ja) | 2002-12-20 | 2010-04-14 | 旭化成ケミカルズ株式会社 | 高分子量ポリアミド樹脂組成物の製造方法 |
WO2004076541A2 (en) | 2003-02-21 | 2004-09-10 | General Electric Company | Translucent thermoplastic composition, method for making the composition and articles molded there from. |
DE10316873A1 (de) | 2003-04-11 | 2004-11-11 | Ems-Chemie Ag | Flammgeschützte Polyamidformmassen |
US20050113496A1 (en) | 2003-10-03 | 2005-05-26 | Yuji Saga | Flame resistant polyamide resin composition containing phenolic resin and articles made therefrom |
JP4854977B2 (ja) | 2005-03-28 | 2012-01-18 | 旭化成ケミカルズ株式会社 | ポリアミド樹脂組成物の製造方法 |
CN101155877B (zh) | 2005-04-08 | 2011-03-23 | 三井化学株式会社 | 阻燃性聚酰胺组合物 |
CN101305051B (zh) | 2005-11-10 | 2013-01-02 | 旭化成化学株式会社 | 阻燃性优异的树脂组合物 |
JP2008038125A (ja) | 2005-11-10 | 2008-02-21 | Asahi Kasei Chemicals Corp | 難燃性に優れた樹脂組成物 |
EP2017298B1 (en) | 2006-04-11 | 2016-09-21 | Asahi Kasei Kabushiki Kaisha | Method for producing polyamide masterbatch |
JP5436745B2 (ja) | 2006-04-25 | 2014-03-05 | 旭化成ケミカルズ株式会社 | 難燃性ポリアミド樹脂組成物 |
JP5236473B2 (ja) | 2006-07-18 | 2013-07-17 | 旭化成ケミカルズ株式会社 | ポリアミド組成物 |
JP4871175B2 (ja) | 2007-03-12 | 2012-02-08 | 株式会社神戸製鋼所 | 長繊維強化熱可塑性樹脂ペレットの製造方法 |
JP4674827B2 (ja) | 2008-03-12 | 2011-04-20 | 旭化成ケミカルズ株式会社 | ポリアミド及びポリアミドの製造方法 |
US20120178876A1 (en) | 2009-09-08 | 2012-07-12 | Asahi Kasei Chemicals Corporation | Polyamide copolymer and molded product |
KR101370098B1 (ko) | 2009-09-11 | 2014-03-04 | 아사히 가세이 케미칼즈 가부시키가이샤 | 폴리아미드 및 폴리아미드 조성물 |
JP2011225830A (ja) | 2010-03-31 | 2011-11-10 | Toray Ind Inc | ポリアミド樹脂の製造方法 |
-
2012
- 2012-01-06 EP EP12732338.4A patent/EP2662397A4/en not_active Withdrawn
- 2012-01-06 US US13/990,937 patent/US9611356B2/en active Active
- 2012-01-06 KR KR1020137015553A patent/KR101530464B1/ko active IP Right Grant
- 2012-01-06 CN CN201280004469.1A patent/CN103314034B/zh not_active Expired - Fee Related
- 2012-01-06 JP JP2012551887A patent/JP5497921B2/ja not_active Expired - Fee Related
- 2012-01-06 WO PCT/JP2012/050183 patent/WO2012093722A1/ja active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS642131A (en) | 1987-06-24 | 1989-01-06 | Shimizu Corp | System for preparing process management table |
JPH0359019A (ja) | 1989-07-26 | 1991-03-14 | Bayer Ag | バインダとして(メタ)アクリロイル基を有するポリウレタンを含む粉末コーテイング組成物 |
JPH0413300A (ja) | 1990-04-28 | 1992-01-17 | Fujitsu Ltd | 半導体記憶装置 |
JPH0432775A (ja) | 1990-05-30 | 1992-02-04 | Copal Co Ltd | 加速度センサ |
JPH06503590A (ja) | 1990-12-12 | 1994-04-21 | デユポン・カナダ・インコーポレーテツド | テレフタル酸コポリアミド |
JPH0912868A (ja) | 1995-06-26 | 1997-01-14 | Kuraray Co Ltd | ポリアミド組成物 |
JPH11512476A (ja) | 1995-09-19 | 1999-10-26 | ディーエスエム エヌ.ブイ. | ポリアミド組成物から成る電気及び電子部材 |
JP2001514695A (ja) | 1997-03-13 | 2001-09-11 | ディーエスエム エヌ.ブイ. | ポリアミド組成物から作られた自動車部品 |
JP2000053762A (ja) * | 1998-08-11 | 2000-02-22 | Toray Ind Inc | 共重合ポリアミド、その製造方法、及びその用途 |
WO2002048239A1 (fr) | 2000-12-11 | 2002-06-20 | Asahi Kasei Kabushiki Kaisha | Polyamide |
WO2008149862A1 (ja) | 2007-06-04 | 2008-12-11 | Asahi Kasei Chemicals Corporation | ポリアミド-ポリフェニレンエーテル樹脂組成物及びフィルム |
WO2009113590A1 (ja) | 2008-03-12 | 2009-09-17 | 旭化成ケミカルズ株式会社 | ポリアミド、ポリアミド組成物及びポリアミドの製造方法 |
JP2010248324A (ja) * | 2009-04-13 | 2010-11-04 | Asahi Kasei Chemicals Corp | ポリアミド組成物からなる自動車冷却系部品 |
JP2010265380A (ja) * | 2009-05-14 | 2010-11-25 | Asahi Kasei Chemicals Corp | 熱可塑性樹脂組成物及びその成形体 |
JP2011026568A (ja) * | 2009-06-23 | 2011-02-10 | Asahi Kasei Chemicals Corp | ポリアミド組成物 |
JP2011219697A (ja) * | 2010-04-14 | 2011-11-04 | Asahi Kasei Chemicals Corp | ポリアミド組成物及びポリアミド組成物からなる成形体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2662397A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9228057B2 (en) | 2012-07-09 | 2016-01-05 | Asahi Kasei Chemicals Corporation | Polyamide, polyamide composition, and molded article |
KR20170019493A (ko) | 2012-07-09 | 2017-02-21 | 아사히 가세이 케미칼즈 가부시키가이샤 | 폴리아미드, 폴리아미드 조성물 및 성형품 |
WO2014010607A1 (ja) | 2012-07-09 | 2014-01-16 | 旭化成ケミカルズ株式会社 | ポリアミド、ポリアミド組成物及び成形品 |
JP2014111756A (ja) * | 2012-11-12 | 2014-06-19 | Kuraray Co Ltd | ポリアミド樹脂組成物 |
WO2014104699A1 (ko) * | 2012-12-28 | 2014-07-03 | 제일모직 주식회사 | 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품 |
KR20140086854A (ko) * | 2012-12-28 | 2014-07-08 | 제일모직주식회사 | 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 제품 |
KR101685244B1 (ko) | 2012-12-28 | 2016-12-09 | 롯데첨단소재(주) | 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 제품 |
CN105283508A (zh) * | 2013-06-20 | 2016-01-27 | 旭化成化学株式会社 | 聚酰胺树脂组合物和成型体 |
WO2014203606A1 (ja) * | 2013-06-20 | 2014-12-24 | 旭化成ケミカルズ株式会社 | ポリアミド樹脂組成物及び成形体 |
JPWO2014203606A1 (ja) * | 2013-06-20 | 2017-02-23 | 旭化成株式会社 | ポリアミド樹脂組成物及び成形体 |
US9783677B2 (en) | 2013-06-20 | 2017-10-10 | Asahi Kasei Chemicals Corporation | Polyamide resin composition and molded body |
JP2015101676A (ja) * | 2013-11-26 | 2015-06-04 | チェイル インダストリーズ インコーポレイテッド | ポリアミド樹脂およびこれを用いたポリアミド成形体 |
JP2015129243A (ja) * | 2014-01-08 | 2015-07-16 | 旭化成ケミカルズ株式会社 | ポリアミド組成物及び成形品 |
JP2015129244A (ja) * | 2014-01-08 | 2015-07-16 | 旭化成ケミカルズ株式会社 | 摺動部品 |
JPWO2017150410A1 (ja) * | 2016-03-03 | 2018-12-27 | 宇部興産株式会社 | ポリアミド樹脂及びそれからなるフィルム |
Also Published As
Publication number | Publication date |
---|---|
EP2662397A1 (en) | 2013-11-13 |
CN103314034B (zh) | 2015-01-07 |
JPWO2012093722A1 (ja) | 2014-06-09 |
KR20130086067A (ko) | 2013-07-30 |
KR101530464B1 (ko) | 2015-06-19 |
JP5497921B2 (ja) | 2014-05-21 |
CN103314034A (zh) | 2013-09-18 |
US9611356B2 (en) | 2017-04-04 |
EP2662397A4 (en) | 2014-12-03 |
US20130261256A1 (en) | 2013-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5497921B2 (ja) | 共重合ポリアミド | |
JP5964964B2 (ja) | ポリアミド、ポリアミド組成物及び成形品 | |
TWI472552B (zh) | 聚醯胺及聚醯胺組成物 | |
JP6039945B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5942229B2 (ja) | ポリアミド及びポリアミド組成物 | |
JP2011042782A (ja) | ポリアミド組成物及びポリアミド組成物を成形した成形体 | |
JP2020055940A (ja) | ポリアミド組成物、成形品及び半芳香族ポリアミド | |
JP5942122B2 (ja) | 長繊維強化ポリアミド樹脂組成物ペレット及び成形品 | |
JP2015129243A (ja) | ポリアミド組成物及び成形品 | |
JP5942109B2 (ja) | ポリアミド組成物及びポリアミド組成物を成形した成形体 | |
JP6843698B2 (ja) | ポリアミド組成物及び成形品 | |
JP6034074B2 (ja) | 共重合ポリアミド | |
JP5965230B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5997525B2 (ja) | 共重合ポリアミド組成物及び成形品 | |
JP5997526B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP7440996B2 (ja) | ポリアミド組成物及び成形品 | |
JP5637772B2 (ja) | ポリアミド溶着成形品 | |
JP6067254B2 (ja) | 共重合ポリアミド | |
JP6042114B2 (ja) | 共重合ポリアミド及び共重合ポリアミド組成物 | |
JP6042110B2 (ja) | 共重合ポリアミド | |
JP6042121B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP6013813B2 (ja) | 共重合ポリアミド組成物及び成形品 | |
JP2022051850A (ja) | ポリアミド組成物及び成形品 | |
JP2023050575A (ja) | ポリアミド組成物、成形品、及びポリアミド組成物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12732338 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012551887 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137015553 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13990937 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012732338 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |