[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012073552A1 - Co2回収システム - Google Patents

Co2回収システム Download PDF

Info

Publication number
WO2012073552A1
WO2012073552A1 PCT/JP2011/067157 JP2011067157W WO2012073552A1 WO 2012073552 A1 WO2012073552 A1 WO 2012073552A1 JP 2011067157 W JP2011067157 W JP 2011067157W WO 2012073552 A1 WO2012073552 A1 WO 2012073552A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
lean solution
recovery system
heat
absorption liquid
Prior art date
Application number
PCT/JP2011/067157
Other languages
English (en)
French (fr)
Inventor
飯嶋 正樹
靖幸 八木
一彦 貝原
Original Assignee
三菱重工業株式会社
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 関西電力株式会社 filed Critical 三菱重工業株式会社
Priority to CA2814470A priority Critical patent/CA2814470C/en
Priority to US13/879,304 priority patent/US20130206010A1/en
Priority to EP11844393.6A priority patent/EP2659948A4/en
Priority to AU2011338126A priority patent/AU2011338126B8/en
Publication of WO2012073552A1 publication Critical patent/WO2012073552A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a CO 2 recovery system using an absorption liquid that removes CO 2 contained in exhaust gas.
  • the step of removing and recovering CO 2 from the combustion exhaust gas using the CO 2 absorption liquid as described above includes a step of bringing the combustion exhaust gas and the CO 2 absorption liquid into contact with each other in a CO 2 absorption tower, and an absorption liquid that has absorbed CO 2. Is used in the absorption liquid regeneration tower to liberate CO 2 and regenerate the absorption liquid, and circulate again to the CO 2 absorption tower for reuse (Patent Document 1).
  • the reboiler's thermal energy required in the regeneration process will be consumed in large quantities. It is necessary to further reduce and save energy.
  • an object of the present invention is to provide a CO 2 recovery system that further reduces the thermal energy of the reboiler and saves energy.
  • the first aspect of the present invention to solve the problems described above is brought into contact with CO 2 absorbing liquid to absorb the exhaust gas and CO 2 containing the cooled CO 2 removing CO 2 from the exhaust gas CO and 2 absorber, the lean solution cooled to recover the absorbent regenerator to regenerate the absorbing solution to release CO 2 from the CO 2 absorbent having absorbed CO 2, the heat of the lean solution discharged from the absorbing solution regeneration tower And a CO 2 recovery system.
  • the lean solution temperature lowering means includes a flash drum for flushing the lean solution, and a flash steam compressor for supplying the flushed water vapor to the absorption liquid regeneration tower under pressure. in the CO 2 recovery system, comprising.
  • a third invention is the CO 2 recovery system according to the first invention, wherein the lean solution temperature lowering means comprises a boiler feed water heat exchanger used for heating boiler feed water.
  • the thermal energy of the reboiler can be further reduced to save energy.
  • FIG. 1 is a schematic diagram of a CO 2 recovery system according to the first embodiment.
  • FIG. 2 is a schematic diagram of a CO 2 recovery system according to the second embodiment.
  • FIG. 3 is a schematic diagram of a CO 2 recovery system according to the third embodiment.
  • FIG. 4 is a schematic diagram of a CO 2 recovery system according to the prior art.
  • FIG. 1 is a schematic diagram of a CO 2 recovery system according to the first embodiment.
  • a CO 2 recovery system 10 is cooled by an exhaust gas cooling device 14 that cools an exhaust gas 12 containing CO 2 discharged from industrial equipment such as a boiler 11 and a gas turbine with cooling water 13.
  • the flue gas 12 and CO 2 containing CO 2 by contacting the CO 2 absorbing liquid 15 to absorb from the flue gas 12 and the CO 2 absorber 16 for removing CO 2 was, CO 2 absorbent having absorbed CO 2 ( A rich solution) 17 and an absorption liquid regeneration tower 18 for regenerating the absorption liquid 15 by releasing CO 2 .
  • the regenerated absorbent (lean solution) 15 from which CO 2 has been removed by the absorbent regenerator 18 is reused as the CO 2 absorbent 15.
  • the exhaust gas 12 containing CO 2 is first pressurized by the exhaust gas blower 20 and then sent to the exhaust gas cooling device 14 where it is cooled by the cooling water 13. , And sent to the CO 2 absorption tower 16.
  • the CO 2 absorption tower 16 is provided with packing sections 16A and 16B inside the tower, and the counter contact efficiency between the exhaust gas 12 and the CO 2 absorbing liquid 15 is improved by the packing section 16A disposed at the bottom of the tower.
  • the opposing contact efficiency between the exhaust gas 12 and the cooling water 19 is improved.
  • the flue gas 12 is contacted ⁇ stream and the CO 2 absorbing liquid 15, for example an amine, CO 2 in the flue gas 12, a chemical reaction (R-NH 2 + H 2 O + CO 2 ⁇ R-NH
  • the purified exhaust gas 21 that has been absorbed into the CO 2 absorbent 15 by 3 HCO 3 ) and from which CO 2 has been removed is discharged out of the system.
  • the absorbing liquid 17 that has absorbed CO 2 is also referred to as a “rich solution”.
  • the rich solution 17 is pressurized by the rich solution pump 22, and in the rich / lean solution heat exchanger 23, the absorption solution (lean solution) 15 regenerated by removing CO 2 in the absorption solution regeneration tower 18. It is heated by heat exchange and then supplied to the absorption liquid regeneration tower 18.
  • the heat-exchanged rich solution 17 is introduced into the absorption liquid regeneration tower 18 from the upper part of the absorption liquid regeneration tower 18, and generates an endothermic reaction due to water vapor when flowing down in the absorption liquid regeneration tower 18. releasing of CO 2, it is reproduced.
  • the absorbing solution from which a part or most of CO 2 has been released in the absorbing solution regeneration tower 18 is referred to as a “semi-lean solution”.
  • This semi-lean solution becomes an absorbent from which almost all of the CO 2 has been removed by the time it reaches the lower part of the absorbent regeneration tower 18.
  • the absorbing solution regenerated by removing almost all of the CO 2 is called a “lean solution”.
  • the lean solution 15 is indirectly heated by the saturated steam 25 in the regeneration superheater 24.
  • CO 2 gas 26 accompanied by water vapor released from the rich solution 17 and the semi-lean solution is led out from the top of the absorption liquid regeneration tower 18, and the water vapor is condensed by the condenser 27.
  • the water 26b is separated, and the CO 2 gas 26a is discharged out of the system and recovered.
  • the water 26 b separated by the separation drum 28 is supplied to the upper part of the absorption liquid regeneration tower 18 by the condensed water circulation pump 29.
  • the regenerated absorption liquid (lean solution) 15 is cooled by the rich solution 17 in the rich / lean solution heat exchanger 23, subsequently pressurized by the lean solvent pump 30, and further cooled by the lean solvent cooler 31. Then, it is supplied again to the CO 2 absorption tower 16 and reused as the CO 2 absorption liquid 15.
  • reference numeral 11a is a flue of an industrial facility such as a boiler 11 or a gas turbine
  • 11b is a chimney
  • 18A and 18B are filling sections
  • 18C is a mist eliminator
  • 32 is water vapor condensed water.
  • the CO 2 recovery system may be retrofitted for recovering CO 2 from an existing exhaust gas 12 source or may be simultaneously attached to a new exhaust gas 12 source.
  • the chimney 11b is provided with a door that can be opened and closed, and is closed when the CO 2 recovery system is in operation. Further, although the exhaust gas 12 source is operating, it is set to be opened when the operation of the CO 2 recovery system is stopped.
  • a lean solution temperature lowering means 50 for recovering the heat of the lean solution 15 discharged from the absorption liquid regeneration tower 18 is provided, so that the heat of the lean solution 15 is effectively used. That is, since the lean solution 15 is superheated by the steam 15a indirectly heated by the saturated steam 25 in the absorption liquid regeneration tower 18, it is discharged out of the system at about 120 ° C. and is supplied to the rich / lean solution heat exchanger 23. be introduced. At this time, the heat is recovered by the lean solution temperature lowering means 50 and the temperature of the lean solution 15 is lowered, so that the heat exchange capacity of the rich / lean solution heat exchanger 23 can be reduced. This is because when the temperature of the rich solution 17 is 50 ° C.
  • the temperature of the lean solution 15 for heat exchange is as high as 120 ° C.
  • the rich solution 17 after the heat exchange is performed. Since the temperature of 110 is 110 ° C., the temperature difference is 60 ° C.
  • the temperature of the lean solution 15 introduced into the rich / lean solution heat exchanger 23 becomes 100 ° C. or less, and the temperature of the rich solution 17 after heat exchange is 95 ° C. It becomes. Therefore, since the rise of the rich solution 17 is reduced by 15 ° C., the heat exchange capacity of the rich / lean solution heat exchanger 23 is reduced accordingly.
  • the temperature of the rich solution 17 introduced into the absorption liquid regeneration tower 18 is lowered, so that the amount of reboiler heat for removing almost all CO 2 from the rich solution 17 can be greatly reduced.
  • the amount of reboiler heat refers to the heat capacity necessary for regenerating the absorbent in the absorbent regenerator 18.
  • the breakdown is as follows: (a) heat of reaction Q 1 for regenerating the absorption liquid, (b) heat loss Q 2 taken out as a solution from the absorption liquid regeneration tower 18, (c) exhausted together with CO 2 from the absorption liquid regeneration tower 18.
  • the sum Q R of the loss of heat Q 3 taken out as steam.
  • FIG. 2 is a schematic diagram of a CO 2 recovery system according to the second embodiment.
  • a flash drum 51 that flushes the lean solution 15 and the flushed water vapor are supplied into the absorption liquid regeneration tower 18 with pressure.
  • a flash steam compressor 52 a flash steam compressor
  • the lean solution 15 By flushing the lean solution 15 with the flash drum 51, the lean solution 15 becomes 100 ° C.
  • the temperature of the lean solution 15 introduced into the rich / lean solution heat exchanger 23 via the lean solution pump 53 is 100 ° C. or lower.
  • the temperature T 1 of the lean solution 15 discharged from the absorption liquid regeneration tower 18 is 120 ° C., for example, the lean solution 15 is flushed by the flash drum 51, so that the temperature T of the lean solution 15 after flushing is reached. 2 becomes 100 ° C.
  • the heat exchange is performed when the temperature T 2 of the lean solution 15 introduced into the rich / lean solution heat exchanger 23 is 100 ° C. or less.
  • the temperature T 4 of 17 is 95 ° C.
  • the temperature T 5 after the heat exchange of the lean solution 15 is lowered to 55 ° C..
  • the temperature T 6 discharged to the outside as water vapor is 82.5 ° C.
  • the inside of the absorption liquid regeneration tower 18 is 0.9 kg / cm 2 G.
  • the breakdown of the reboiler heat quantity of the absorption liquid regeneration tower 18 includes (a) reaction heat quantity Q1 (404 kcal / kg CO 2 ) for regenerating the rich solution 17 and (b) loss taken out as a solution from the absorption liquid regeneration tower 18.
  • the amount of heat Q2 (55 kcal / kg CO 2 ) and (c) the total amount of loss heat Q 3 (86 kcal / kg CO 2 ) taken out as water vapor discharged together with CO 2 from the absorption liquid regeneration tower 18 (545 kcal / kg CO 2 ).
  • Reboiler heat of the absorbent regenerator 18 of the CO 2 recovery system 10A according to the present invention in Figure 2 whereas a 545kcal / kgCO 2, the absorbent regenerator of the CO 2 recovery system 10C according to the prior art of FIG. 4
  • the reboiler heat amount of 18 is 665 kcal / kg CO 2 , and it has been found that the reboiler heat amount can be significantly reduced.
  • the main purpose of the study was to increase the temperature of the rich solution 17 supplied into the absorption liquid regeneration tower 18 and to reduce the amount of reboiler heat in the tower.
  • FIG. 3 is a schematic diagram of a CO 2 recovery system according to the third embodiment.
  • the lean solution temperature lowering means 50 in the CO 2 recovery system 10 ⁇ / b > B includes a boiler feed water heat exchanger 62 used for heating the boiler feed water 61.
  • the lean solution 15 can be made 100 ° C. or lower, and the temperature of the lean solution 15 introduced into the rich / lean solution heat exchanger 23 becomes 100 ° C. or lower, The temperature of the rich solution 17 is 95 ° C.
  • the breakdown is as follows: (a) heat of reaction Q 1 (404 kcal / kg CO 2 ) for regenerating the absorbent, (b) heat loss Q 2 (55 cal / kg CO 2 ) taken out from the absorbent regenerator 18 as a solution (lean solution). 2), the (c) the sum Q R of the heat loss quantity Q 3 from the absorption solution regenerator 18 is taken out as steam 26 (155kcal / kgCO 2) ( 614kcal / kgCO 2).
  • the reboiler heat amount of 18 is 665 kcal / kg CO 2 , and it has been found that the reboiler heat amount can be significantly reduced.
  • the thermal energy of the reboiler required for the regeneration of the absorbent is greatly reduced when the CO 2 recovery amount is increased to a processing amount of, for example, 1000 t or more per day. And energy saving of the entire system can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 冷却されたCO2を含有する排ガス12とCO2を吸収するCO2吸収液15とを接触させて前記排ガス12からCO2を除去するCO2吸収塔16と、CO2を吸収したCO2吸収液(リッチ溶液)17からCO2を放出させて吸収液15を再生する吸収液再生塔18と、吸収液再生塔18から排出されたリーン溶液15の熱を回収するリーン溶液降温手段50とを有する。

Description

CO2回収システム
 本発明は、排ガス中に含まれるCO2を除去する吸収液を用いたCO2回収システムに関する。
 近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い尿素等の原料(化学用途)、原油増産、及び地球温暖化対策として、大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去、回収する方法及び回収されたCO2を大気へ放出することなく貯蔵する方法が精力的に研究されている。
 大量の燃焼排ガス中のCO2を回収・貯蔵する実用的な方法として、例えばアミン水溶液等のCO2吸収液と接触させる化学吸収法がある。前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、CO2吸収塔において燃焼排ガスとCO2吸収液とを接触させる工程、CO2を吸収した吸収液を吸収液再生塔において加熱し、CO2を遊離させると共に吸収液を再生して再びCO2吸収塔に循環して再使用するものが採用されている(特許文献1)。
 この従来の化学吸収法によるCO2回収装置の運転は、吸収液再生塔において高温のスチーム等でアミン水溶液とCO2とを分離させているが、このスチーム(エネルギー)の消費を最小化させる必要があった。そのため、これまで、二種類以上の異なるCO2吸収液を混合して用いる方法(特許文献2、3)、CO2吸収液を送給するプロセスを改良する方法が検討されていた(特許文献4)。
特開平7-51537号公報 特開2001-25627号公報 特開2005-254212号公報 米国特許第6800120号明細書
 しかしながら、上述のCO2吸収液を用いて燃焼排ガスのようなCO2を含有する排ガスからCO2を吸収除去・回収するシステムにおいては、燃焼設備に付加して設置されるため、その操業費用もできるだけ低減させる必要がある。特に吸収液を再生する吸収液再生塔においては、多量の熱エネルギーを消費するので、スチームのエネルギーをより軽減し、可能な限り省エネルギー化が可能なプロセスとする必要がある。
 また、従来のCO2回収システムが大型化し、CO2回収量が1日当たり例えば1000t以上の処理量となると、再生工程において要するリボイラの熱エネルギーも多量に消費することになるため、スチームのエネルギーをより軽減し、省エネルギー化を図る必要がある。
 本発明は、前記問題に鑑み、リボイラの熱エネルギーをより軽減し、省エネルギー化を図るCO2回収システムを提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、冷却されたCO2を含有する排ガスとCO2を吸収するCO2吸収液とを接触させて前記排ガスからCO2を除去するCO2吸収塔と、CO2を吸収したCO2吸収液からCO2を放出させて吸収液を再生する吸収液再生塔と、吸収液再生塔から排出されたリーン溶液の熱を回収するリーン溶液降温手段とを有することを特徴とするCO2回収システムにある。
 第2の発明は、第1の発明において、リーン溶液降温手段は、リーン溶液をフラッシュさせるフラッシュドラムと、このフラッシュさせた水蒸気を吸収液再生塔内に圧力をかけて供給するフラッシュ蒸気コンプレッサとを有することを特徴とするCO2回収システムにある。
 第3の発明は、第1の発明において、リーン溶液降温手段は、ボイラ給水の加熱に用いるボイラ給水熱交換器からなることを特徴とするCO2回収システムにある。
 本発明によれば、リボイラの熱エネルギーをより軽減し、省エネルギー化を図ることができる。
図1は、実施例1に係るCO2回収システムの概略図である。 図2は、実施例2に係るCO2回収システムの概略図である。 図3は、実施例3に係るCO2回収システムの概略図である。 図4は、従来技術に係るCO2回収システムの概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係るCO2回収システムについて、図面を参照して説明する。図1は、実施例1に係るCO2回収システムの概略図である。
 図1に示すように、CO2回収システム10は、例えばボイラ11やガスタービン等の産業設備から排出されたCO2を含有する排ガス12を冷却水13によって冷却する排ガス冷却装置14と、冷却されたCO2を含有する排ガス12とCO2を吸収するCO2吸収液15とを接触させて前記排ガス12からCO2を除去するCO2吸収塔16と、CO2を吸収したCO2吸収液(リッチ溶液)17からCO2を放出させて吸収液15を再生する吸収液再生塔18とを有する。
 このシステムでは、前記吸収液再生塔18でCO2を除去した再生吸収液(リーン溶液)15はCO2吸収液15として再利用する。
 このCO2回収システム10を用いたCO2回収方法では、まずCO2を含有する排ガス12は、排ガス送風機20により昇圧された後、排ガス冷却装置14に送られ、ここで冷却水13により冷却され、CO2吸収塔16に送られる。
 CO2吸収塔16は、塔内部に充填部16A、16Bが設けられ、塔下部に配設される充填部16Aで排ガス12とCO2吸収液15との対向接触効率を向上させている。塔上部に配設される充填部16Bでは、排ガス12と冷却水19との対向接触効率を向上させている。
 前記CO2吸収塔16において、排ガス12は例えばアミン系のCO2吸収液15と交向流接触し、排ガス12中のCO2は、化学反応(R-NH2+H2O+CO2→R-NH3HCO3)によりCO2吸収液15に吸収され、CO2が除去された浄化排ガス21は系外に放出される。CO2を吸収した吸収液17は「リッチ溶液」とも呼称される。このリッチ溶液17は、リッチ溶液ポンプ22により昇圧され、リッチ・リーン溶液熱交換器23において、吸収液再生塔18でCO2を除去されることにより再生された吸収液(リーン溶液)15との熱交換により加熱され、その後吸収液再生塔18に供給される。
 この熱交換されたリッチ溶液17は、吸収液再生塔18の上部から吸収液再生塔18内部に導入され、吸収液再生塔18内を流下する際に、水蒸気による吸熱反応を生じて、大部分のCO2を放出し、再生される。吸収液再生塔18内で一部または大部分のCO2を放出した吸収液は「セミリーン溶液」と呼称される。このセミリーン溶液は、吸収液再生塔18下部に至る頃には、ほぼ全てのCO2が除去された吸収液となる。このほぼ全てのCO2が除去されることにより再生された吸収液は「リーン溶液」と呼称される。このリーン溶液15は再生過熱器24で飽和水蒸気25により間接的に加熱される。
 また、吸収液再生塔18の塔頂部からは塔内においてリッチ溶液17及びセミリーン溶液から放出された水蒸気を伴ったCO2ガス26が導出され、コンデンサ27により水蒸気が凝縮され、分離ドラム28にて水26bが分離され、CO2ガス26aが系外に放出されて回収される。分離ドラム28にて分離された水26bは凝縮水循環ポンプ29にて吸収液再生塔18の上部に供給される。
 再生された吸収液(リーン溶液)15は、前記リッチ・リーン溶液熱交換器23にて前記リッチ溶液17により冷却され、つづいてリーンソルベントポンプ30にて昇圧され、さらにリーンソルベントクーラ31にて冷却された後、再びCO2吸収塔16に供給され、CO2吸収液15として再利用される。
 なお、図1中、符号11aはボイラ11やガスタービン等の産業設備の煙道であり、11bは煙突、18A、18Bは充填部、18Cはミストエリミネータ、32は水蒸気凝縮水である。前記CO2回収システムは、既設の排ガス12源からCO2を回収するために後付で設けられる場合と、新設排ガス12源に同時付設される場合とがある。煙突11bには開閉可能な扉を設置し、CO2回収システムの運転時は閉止する。また排ガス12源は稼動しているが、CO2回収システムの運転を停止した際は開放するように設定する。
 本実施例では、吸収液再生塔18から排出されたリーン溶液15の熱を回収するリーン溶液降温手段50を設けており、リーン溶液15の熱を有効利用するようにしている。
 すなわち、リーン溶液15は吸収液再生塔18で飽和水蒸気25により間接的に加熱された水蒸気15aにより過熱されているので、120℃程度で系外に排出され、リッチ・リーン溶液熱交換器23に導入される。
 この際、リーン溶液降温手段50によりその熱を回収し、リーン溶液15の温度を降下させることで、リッチ・リーン溶液熱交換器23の熱交換容量を小さくすることができる。
 これは、リッチ溶液17の温度が50℃でリッチ・リーン溶液熱交換器23に導入される場合、熱交換するリーン溶液15の温度が120℃と高い場合には、熱交換後のリッチ溶液17の温度は110℃となるので、その温度差が60℃となる。
 これに対し、リーン溶液15の温度を降下させることで、リッチ・リーン溶液熱交換器23に導入されるリーン溶液15の温度が100℃以下となり、熱交換後のリッチ溶液17の温度は95℃となる。
 よって、リッチ溶液17の上昇が15℃も少なくなるので、その分リッチ・リーン溶液熱交換器23の熱交換容量も小さくなる。
 この結果、吸収液再生塔18に導入されるリッチ溶液17の温度が下がるので、このリッチ溶液17からほぼ全てのCO2を除去するためのリボイラ熱量を大幅に下げることができる。
 ここで、リボイラ熱量とは、吸収液再生塔18において、吸収液を再生させるために必要な熱容量をいう。
 その内訳は、(a)吸収液を再生するための反応熱量Q1、(b)吸収液再生塔18から溶液として持ち出される損失熱量Q2、(c)吸収液再生塔18からCO2と共に排出される水蒸気として持ち出される損失熱量Q3の総和QRをいう。
 本実施例によれば、リーン溶液15の熱を回収するリーン溶液降温手段50を設けることにより、リボイラ熱量の総和を減らすことができ、この結果リボイラ熱量が低下するので、吸収液再生塔18側での熱使用量を大幅に低減することができる。
 本発明による実施例に係るCO2回収システムについて、図面を参照して説明する。図2は、実施例2に係るCO2回収システムの概略図である。
 図2に示すように、CO2回収システム10Aにおけるリーン溶液降温手段50としては、リーン溶液15をフラッシュさせるフラッシュドラム51と、このフラッシュさせた水蒸気を吸収液再生塔18内に圧力をかけて供給するフラッシュ蒸気コンプレッサ52とから構成されている。
 フラッシュドラム51でリーン溶液15をフラッシュすることで、リーン溶液15は100℃となる。そして、リーン溶液ポンプ53を介してリッチ・リーン溶液熱交換器23に導入されるリーン溶液15の温度は100℃以下となる。
 このように、吸収液再生塔18から排出されるリーン溶液15の温度T1が例えば120℃の場合、フラッシュドラム51でリーン溶液15をフラッシュすることで、フラッシュの後のリーン溶液15の温度T2は100℃となる。
 例えばリッチ溶液17の温度T3が50℃の場合、リッチ・リーン溶液熱交換器23に導入されるリーン溶液15の温度T2が100℃以下で熱交換されるので、熱交換後のリッチ溶液17の温度T4は95℃となる。なお、リーン溶液15の熱交換後の温度T5は55℃に低下する。なお、水蒸気として外部に排出する温度T6は82.5℃である。
 ここで、吸収液再生塔18の塔内は0.9kg/cm2Gである。
 よって、吸収液再生塔18に導入されるリッチ溶液17の温度が従来よりも低いので、吸収液再生塔18でのリボイラ熱量の低下を図ることができる。
 ここで、吸収液再生塔18のリボイラ熱量の内訳は、(a)リッチ溶液17を再生するための反応熱量Q1(404kcal/kgCO2)、(b)吸収液再生塔18から溶液として持ち出される損失熱量Q2(55kcal/kgCO2)、(c)吸収液再生塔18からCO2と共に排出される水蒸気として持ち出される損失熱量Q3(86kcal/kgCO2)の総和(545kcal/kgCO2)となる。
 これに対し、従来技術のように、リーン溶液15の熱を回収しない場合、例えばリッチ溶液17の温度T3が50℃の場合、リッチ・リーン溶液熱交換器23に導入されるリーン溶液15の温度T2が120℃で熱交換されるので、熱交換後のリッチ溶液17の温度T4は110℃となる。なお、リーン溶液15の熱交換後の温度T5は60℃に低下する。なお、水蒸気として外部に排出する温度T6は92.5℃である。
 よって、リボイラ熱量の内訳は、(a)吸収液を再生するための反応熱量Q1(404kcal/kgCO2)、(b)吸収液再生塔18から溶液として持ち出される損失熱量Q2(110cal/kgCO2)、(c)吸収液再生塔18からCO2と共に排出される水蒸気として持ち出される損失熱量Q3(151kcal/kgCO2)の総和QR(665kcal/kgCO2)となる。
 図2の本発明に係るCO2回収システム10Aの吸収液再生塔18のリボイラ熱量は、545kcal/kgCO2であるのに対し、図4の従来技術に係るCO2回収システム10Cの吸収液再生塔18のリボイラ熱量は、665kcal/kgCO2であり、大幅なリボイラ熱量の低減を図ることができることが判明した。
 このように、本発明によれば、表1に示すように、リーン溶液の熱を有効的に回収することで、吸収液再生塔18側における熱量の総和を大幅に低減することができると共に、ランニングコストの大幅な低減となる。
Figure JPOXMLDOC01-appb-T000001
 なお従来技術における提案では、吸収液再生塔18の塔内に供給するリッチ溶液17の温度を上昇させて、塔内でのリボイラ熱量を下げることを主眼として検討していたが、本発明のように、塔内のみならず、(b)吸収液再生塔18から溶液(リーン溶液)として持ち出される損失熱量Q2と、(c)吸収液再生塔18からCO2と共に排出される水蒸気として持ち出される損失熱量Q3(151kcal/kgCO2)とを考慮して全体として低減することとしたので、リーン溶液15の熱を回収することで、システム全体のエネルギー効率の向上を図ることができる。
 本発明による実施例に係るCO2回収システムについて、図面を参照して説明する。図3は、実施例3に係るCO2回収システムの概略図である。
 図3に示すように、CO2回収システム10Bにおけるリーン溶液降温手段50としては、ボイラ給水61の加熱に用いるボイラ給水熱交換器62から構成されている。
 ボイラ給水61と熱交換することで、リーン溶液15は100℃以下とすることができ、リッチ・リーン溶液熱交換器23に導入されるリーン溶液15の温度は100℃以下となり、熱交換後のリッチ溶液17の温度は95℃となる。
 その内訳は、(a)吸収液を再生するための反応熱量Q1(404kcal/kgCO2)、(b)吸収液再生塔18から溶液(リーン溶液)として持ち出される損失熱量Q2(55cal/kgCO2)、(c)吸収液再生塔18から水蒸気26として持ち出される損失熱量Q3(155kcal/kgCO2)の総和QR(614kcal/kgCO2)となる。
 図3の本発明に係るCO2回収システム10Bの吸収液再生塔18のリボイラ熱量は、614kcal/kgCO2であるのに対し、図4の従来技術に係るCO2回収システム10Cの吸収液再生塔18のリボイラ熱量は、665kcal/kgCO2であり、大幅なリボイラ熱量の低減を図ることができることが判明した。
 以上より、本発明のCO2回収システムによれば、CO2回収量が1日当たり例えば1000t以上の処理量となる大型化した場合における吸収液再生に要するリボイラの熱エネルギーの大幅な軽減を図ることができ、システム全体の省エネルギー化を図ることができる。
 10、10A、10B CO2回収システム
 11 ボイラ
 12 排ガス
 15 CO2吸収液(リーン溶液)
 16 CO2吸収塔
 17 リッチ溶液
 18 吸収液再生塔
 50 リーン溶液降温手段
 51 フラッシュドラム
 52 フラッシュ蒸気コンプレッサ
 61 ボイラ給水
 62 ボイラ給水熱交換器

Claims (3)

  1.  冷却されたCO2を含有する排ガスとCO2を吸収するCO2吸収液とを接触させて前記排ガスからCO2を除去するCO2吸収塔と、
     CO2を吸収したCO2吸収液からCO2を放出させて吸収液を再生する吸収液再生塔と、
     吸収液再生塔から排出されたリーン溶液の熱を回収するリーン溶液降温手段とを有することを特徴とするCO2回収システム。
  2.  請求項1において、
     リーン溶液降温手段は、
     リーン溶液をフラッシュさせるフラッシュドラムと、
     このフラッシュさせた水蒸気を吸収液再生塔内に圧力をかけて供給するフラッシュ蒸気コンプレッサとを有することを特徴とするCO2回収システム。
  3.  請求項1において、
     リーン溶液降温手段は、
     ボイラ給水の加熱に用いるボイラ給水熱交換器からなることを特徴とするCO2回収システム。
PCT/JP2011/067157 2010-12-01 2011-07-27 Co2回収システム WO2012073552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2814470A CA2814470C (en) 2010-12-01 2011-07-27 Co2 recovery system
US13/879,304 US20130206010A1 (en) 2010-12-01 2011-07-27 Co2 recovery system
EP11844393.6A EP2659948A4 (en) 2010-12-01 2011-07-27 C02 recovery system
AU2011338126A AU2011338126B8 (en) 2010-12-01 2011-07-27 CO2 recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268864 2010-12-01
JP2010268864A JP5737916B2 (ja) 2010-12-01 2010-12-01 Co2回収システム

Publications (1)

Publication Number Publication Date
WO2012073552A1 true WO2012073552A1 (ja) 2012-06-07

Family

ID=46171508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067157 WO2012073552A1 (ja) 2010-12-01 2011-07-27 Co2回収システム

Country Status (6)

Country Link
US (1) US20130206010A1 (ja)
EP (1) EP2659948A4 (ja)
JP (1) JP5737916B2 (ja)
AU (1) AU2011338126B8 (ja)
CA (1) CA2814470C (ja)
WO (1) WO2012073552A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792399A4 (en) * 2011-12-14 2015-08-19 Mitsubishi Hitachi Power Sys CHEMICAL CARBON DIOXIDE ABSORPTION SYSTEM INSTALLED WITH A STEAM REPRESSION DEVICE
JP5901296B2 (ja) * 2012-01-06 2016-04-06 三菱日立パワーシステムズ株式会社 Co2化学吸収システム
JP6088240B2 (ja) * 2012-12-20 2017-03-01 三菱日立パワーシステムズ株式会社 二酸化炭素の回収装置、及び該回収装置の運転方法
FR3008898B1 (fr) 2013-07-23 2023-01-13 Electricite De France Dispositif de captage de gaz acide contenu dans des fumees de combustion
US10378763B2 (en) * 2015-12-03 2019-08-13 General Electric Company Method and apparatus to facilitate heating feedwater in a power generation system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155172A (en) * 1978-03-07 1979-12-06 Benfield Corp Acidic gas removal from hot gas mixture
JPS61272288A (ja) * 1985-05-24 1986-12-02 スナムプロゲツチ・エス・ペ−・ア− 酸性ガスの除去法
JPS63151329A (ja) * 1986-12-16 1988-06-23 Osaka Gas Co Ltd 再生塔塔底液の抜き出し装置
JPH0751537A (ja) 1993-06-30 1995-02-28 Mitsubishi Heavy Ind Ltd Co2 含有ガス中のco2 を除去する方法
JP2001025627A (ja) 1999-06-10 2001-01-30 Praxair Technol Inc 複合アミンブレンドを使用する二酸化炭素の回収
US6800120B1 (en) 1998-11-23 2004-10-05 Fluor Corporation Split-flow process and apparatus
JP2005254212A (ja) 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2回収装置及び方法
JP2009519828A (ja) * 2005-12-19 2009-05-21 フルオー・テクノロジーズ・コーポレイシヨン 統合圧縮機/ストリッパーの構成および方法
JP2009179546A (ja) * 2008-02-01 2009-08-13 Mitsubishi Heavy Ind Ltd Co2回収装置及びろ過膜装置の洗浄方法
JP2009247932A (ja) * 2008-04-02 2009-10-29 Chiyoda Kako Kensetsu Kk 排ガス熱源を利用した二酸化炭素の除去方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043190C3 (de) * 1969-09-09 1979-02-15 Benson, Field & Epes, Berwyn, Pa. (V.St.A.) Verfahren zur Abtrennung von sauren Gasen aus heißen wasserdampfhaltigen Gasgemischen
US3714327A (en) * 1969-10-13 1973-01-30 G Giammarco Gas purification process
US4184855A (en) * 1977-12-29 1980-01-22 Union Carbide Corporation Process for CO2 removal
US5104630A (en) * 1990-11-13 1992-04-14 Uop Processes for removing carbonyl sulfide from hydrocarbon feedstreams
US5603908A (en) * 1992-09-16 1997-02-18 The Kansai Electric Power Co., Inc. Process for removing carbon dioxide from combustion gases
DE60324822D1 (de) * 2002-07-03 2009-01-02 Fluor Corp Verbesserte vorrichtung zum teilen von strömen
JP4274846B2 (ja) * 2003-04-30 2009-06-10 三菱重工業株式会社 二酸化炭素の回収方法及びそのシステム
US20070221065A1 (en) * 2006-03-23 2007-09-27 Adisorn Aroonwilas Heat recovery gas absorption process
NO333560B1 (no) * 2006-11-24 2013-07-08 Aker Clean Carbon As Fremgangsmåte og regenerator for regenerering av flytende CO2 absorbent.
CA2728220A1 (en) * 2008-06-19 2009-12-23 Shell Internationale Research Maatschappij B.V. Process for the removal of carbon dioxide from a gas
US8007570B2 (en) * 2009-03-11 2011-08-30 General Electric Company Systems, methods, and apparatus for capturing CO2 using a solvent
JP5479949B2 (ja) * 2009-04-08 2014-04-23 株式会社東芝 測定装置、測定方法、及び二酸化炭素回収システム
JP2010253370A (ja) * 2009-04-23 2010-11-11 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2回収方法
NO20092229L (no) * 2009-06-09 2010-12-10 Aker Clean Carbon As Reclaimer for absorbent
EP2442891A2 (en) * 2009-06-19 2012-04-25 Shell Internationale Research Maatschappij B.V. Process for the removal of carbon dioxide and/or hydrogen sulphide from a gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155172A (en) * 1978-03-07 1979-12-06 Benfield Corp Acidic gas removal from hot gas mixture
JPS61272288A (ja) * 1985-05-24 1986-12-02 スナムプロゲツチ・エス・ペ−・ア− 酸性ガスの除去法
JPS63151329A (ja) * 1986-12-16 1988-06-23 Osaka Gas Co Ltd 再生塔塔底液の抜き出し装置
JPH0751537A (ja) 1993-06-30 1995-02-28 Mitsubishi Heavy Ind Ltd Co2 含有ガス中のco2 を除去する方法
US6800120B1 (en) 1998-11-23 2004-10-05 Fluor Corporation Split-flow process and apparatus
JP2001025627A (ja) 1999-06-10 2001-01-30 Praxair Technol Inc 複合アミンブレンドを使用する二酸化炭素の回収
JP2005254212A (ja) 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2回収装置及び方法
JP2009519828A (ja) * 2005-12-19 2009-05-21 フルオー・テクノロジーズ・コーポレイシヨン 統合圧縮機/ストリッパーの構成および方法
JP2009179546A (ja) * 2008-02-01 2009-08-13 Mitsubishi Heavy Ind Ltd Co2回収装置及びろ過膜装置の洗浄方法
JP2009247932A (ja) * 2008-04-02 2009-10-29 Chiyoda Kako Kensetsu Kk 排ガス熱源を利用した二酸化炭素の除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2659948A4 *

Also Published As

Publication number Publication date
JP2012115779A (ja) 2012-06-21
AU2011338126A8 (en) 2015-10-08
EP2659948A4 (en) 2017-04-19
CA2814470C (en) 2015-11-24
AU2011338126B8 (en) 2015-10-08
AU2011338126B2 (en) 2015-09-17
AU2011338126A1 (en) 2013-05-09
EP2659948A1 (en) 2013-11-06
US20130206010A1 (en) 2013-08-15
CA2814470A1 (en) 2013-04-11
JP5737916B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
JP4690659B2 (ja) Co2回収装置
EP2722097B1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP5922451B2 (ja) Co2回収装置
JP5875245B2 (ja) Co2回収システム及びco2ガス含有水分の回収方法
JP2011000525A (ja) Co2回収装置及びco2回収方法
JP5591083B2 (ja) Co2回収システム
JP2008307520A (ja) Co2又はh2s除去システム、co2又はh2s除去方法
JP5738137B2 (ja) Co2回収装置およびco2回収方法
CA2851092A1 (en) Three-component absorbent, and device and method for removing co2 and/or h2s
JP5737916B2 (ja) Co2回収システム
JP5591075B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
WO2014129255A1 (ja) Co2及びh2sを含むガスの回収システム及び方法
KR20120007417A (ko) 산성가스 분리회수 장치
JP5237204B2 (ja) Co2回収装置及び方法
JP2011005368A (ja) Co2回収装置及び方法
JP2011000528A (ja) Co2回収装置及び方法
JP2015077537A (ja) 複合アミン吸収液、co2又はh2s又はその双方の除去装置及び方法
EP2848298B1 (en) Composite amine absorbing solution and method for removing co2, h2s, or both
KR20170114802A (ko) 탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집방법과 그 장치
Iijima et al. CO 2 recovery system
Yonekawa et al. CO 2 recovery apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011844393

Country of ref document: EP

Ref document number: 2814470

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13879304

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011338126

Country of ref document: AU

Date of ref document: 20110727

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE