[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012049826A1 - リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ - Google Patents

リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ Download PDF

Info

Publication number
WO2012049826A1
WO2012049826A1 PCT/JP2011/005648 JP2011005648W WO2012049826A1 WO 2012049826 A1 WO2012049826 A1 WO 2012049826A1 JP 2011005648 W JP2011005648 W JP 2011005648W WO 2012049826 A1 WO2012049826 A1 WO 2012049826A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium ion
ion secondary
silicon oxide
negative electrode
Prior art date
Application number
PCT/JP2011/005648
Other languages
English (en)
French (fr)
Inventor
安田 幸司
剛央 藤田
木崎 信吾
下崎 新二
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to EP11832271.8A priority Critical patent/EP2618407A1/en
Priority to US13/877,691 priority patent/US20130224600A1/en
Priority to KR1020137011612A priority patent/KR101531451B1/ko
Priority to JP2012538566A priority patent/JP5600354B2/ja
Priority to CN201180049094.6A priority patent/CN103168380B/zh
Publication of WO2012049826A1 publication Critical patent/WO2012049826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a powder for a negative electrode material that can provide a lithium ion secondary battery that has a large discharge capacity, good cycle characteristics, and can withstand use at a practical level.
  • the present invention also relates to a lithium ion secondary battery negative electrode and a capacitor negative electrode, and a lithium ion secondary battery and a capacitor using the negative electrode material powder.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • Lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c, and the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). And a conductive assistant and a binder.
  • carbon-based materials have been used as negative electrode active materials for lithium ion secondary batteries.
  • a new negative electrode active material having a higher capacity of a lithium ion secondary battery than conventional ones a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.) Si, Ge, or a compound containing Sn and N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO As the negative electrode active material.
  • the silicon oxide powder can be a negative electrode active material having a larger effective charge / discharge capacity because it has less deterioration such as collapse of the crystal structure and generation of an irreversible substance due to occlusion and release of lithium ions during charge / discharge. Therefore, by using silicon oxide powder as the negative electrode active material, the capacity is higher than when carbon is used, and the cycle characteristics are better than when a high capacity negative electrode material such as Si or Sn alloy is used. This is because a lithium ion secondary battery can be expected to be obtained.
  • Patent Document 1 a silicon oxide and lithium or a substance containing lithium are used as both electrodes, and they are opposed to each other in a non-aqueous electrolyte and are energized between the two electrodes to electrochemically store lithium ions.
  • Lithium-containing silicon oxide or lithium-ion secondary battery production method using lithium-containing silicon oxide obtained by mixing and heating lithium or lithium with silicon or a silicon compound as a negative electrode active material has been proposed.
  • the irreversible capacity during the first charge / discharge is large (that is, the initial efficiency is not sufficient), and the cycle characteristics sufficiently reach the practical level. I cannot say that.
  • Patent Document 2 silicon dioxide powder and metal silicon powder are mixed to obtain a raw material, and the mixed raw material is heated to 1100 to 1600 ° C. in an inert gas atmosphere or under reduced pressure to generate silicon oxide (SiO) gas,
  • SiO silicon oxide
  • a method for producing amorphous silicon oxide powder in which the generated gas is deposited as silicon oxide (SiO x ) on the surface of a substrate cooled to 200 to 500 ° C., and the deposited silicon oxide is recovered. .
  • Patent Document 3 a conductive silicon composite for a negative electrode material of a nonaqueous electrolyte secondary battery in which a carbon film is formed on the surface of particles (conductive silicon composite) having a structure in which silicon microcrystals are dispersed in silicon dioxide, and The manufacturing method has been proposed.
  • the conductive silicon composite forming the carbon film is made from silicon oxide powder represented by the general formula SiO x (1.0 ⁇ x ⁇ 1.6) as a raw material, and the raw material has a predetermined temperature and Heat treatment is performed under atmospheric conditions to disproportionate to a composite of silicon and silicon dioxide, and it is obtained by chemical vapor deposition of a carbon film on the surface.
  • the present inventors have conducted various studies on amorphous silicon oxide powder (SiO x ) proposed in Patent Document 2 and disproportionated silicon oxide powder containing silicon and silicon dioxide proposed in Patent Document 3. It was. As a result, the behavior of the electrode of the lithium ion secondary battery differs depending on whether the amorphous silicon oxide powder is used for the negative electrode material (negative electrode active material) or the disproportionated silicon oxide powder is used for the negative electrode material. I found.
  • FIG. 2 (a) and 2 (b) are schematic views showing the distribution state of particles in the negative electrode material of a lithium ion secondary battery.
  • FIG. 2 (a) shows an amorphous silicon oxide powder
  • FIG. The case where the disproportionated silicon oxide powder is used for the negative electrode material is shown.
  • the negative electrode material is in a state in which silicon oxide (SiO x ) is uniformly distributed as shown in FIG.
  • the disproportionated silicon oxide powder is used, the negative electrode material is in a state in which silicon (Si) is dispersed in silicon dioxide (SiO 2 ) as shown in FIG. Become.
  • the reaction shown by the following formula (1) proceeds in the negative electrode material during the initial charge.
  • the Si—Li alloy (Li 4.4 Si) shown in the first term on the right side is the reversible capacity
  • the Li silicate (Li 4 SiO 4 ) shown in the second term on the right side is the component responsible for the irreversible capacity. It is.
  • the reason why Li silicate assumes an irreversible capacity is that Li silicate cannot release lithium ions.
  • silicon and silicon dioxide contained in the negative electrode material at the time of initial charge are represented by the following formulas (3) and (4): Each of the following reactions occurs. 2Si + 8.8Li + + 8.8e ⁇ ⁇ 2Li 4.4 Si (3) 2SiO 2 + 8.4Li + + 8.4e ⁇ ⁇ Li 4.4 Si + Li 4 SiO 4 (4)
  • the reaction shown in the above formula (4) hardly proceeds.
  • the negative electrode material using the disproportionated silicon oxide powder has a non-uniform distribution because silicon is dispersed in silicon dioxide.
  • the silicon dioxide contained in the negative electrode material only a part of the silicon dioxide close to the boundary surface with Si causes the reaction shown in the above formula (4).
  • the Li silicate produced in the negative electrode material by the reaction shown in the above formula (4) has a non-uniform distribution.
  • the theoretical characteristic of a lithium ion secondary battery at the time of using the disproportionated silicon oxide powder is that reversible capacity is y. It becomes 2007 mAh / g regardless of the value.
  • Table 1 shows the theoretical initial efficiency, theoretical efficiency after the second cycle, volume expansion relaxation ability and cycle in a lithium ion secondary battery using amorphous silicon oxide powder or disproportionated silicon oxide powder. Each characteristic feature is shown.
  • the theoretical initial efficiency is 76% when amorphous silicon oxide powder is used and 76 to 100% when disproportionated silicon oxide powder is used. It is better to use the oxidized silicon oxide powder.
  • the theoretical efficiency after the second cycle is that when using disproportionated silicon oxide powder, the silicon dioxide remaining by the reaction shown in the above equation (4) is also charged during the second and subsequent cycles. Since Li silicate carrying the irreversible capacity is generated from the part, it does not become 100%.
  • Li silicate is uniformly generated by the reaction shown in the formula (1) at the first charge, and the irreversible capacity does not increase after the second cycle. The theoretical efficiency is 100%.
  • the component responsible for the reversible capacity expands by attaching and detaching lithium ions during charge and discharge. -Since it shrinks, the volume of the negative electrode material changes.
  • the amorphous silicon oxide powder and the disproportionated silicon oxide powder are required to have the ability of the component that becomes an irreversible capacity to relieve the volume change of the component that bears the reversible capacity, particularly the expansion.
  • the ability to relieve the volume expansion is higher in Li silicate and lower in silicon dioxide than Li silicate bearing irreversible capacity component and silicon dioxide.
  • the irreversible capacity component is silicon dioxide contained in the silicon oxide powder and Li silicate produced by the reaction shown in the above formula (4).
  • silicon dioxide has a low ability to relieve volume expansion, and the produced Li silicate exists in a non-uniform distribution. For this reason, when the disproportionated silicon oxide powder is used, the effect of relaxing the volume expansion by the irreversible capacity component is not sufficient, and when the charge and discharge are repeated, the negative electrode material is finely crushed and the cycle characteristics deteriorate.
  • the irreversible capacity component is Li silicate, and the generated Li silicate is uniformly distributed in the negative electrode material. For this reason, it is excellent in the ability to relieve the volume expansion, the miniaturization of the negative electrode material can be reduced, and the cycle characteristics are improved.
  • the amorphous silicon oxide powder having good cycle characteristics is obtained by mixing silicon dioxide powder and metal silicon powder as a raw material, and heating the mixed raw material to produce silicon oxide (SiO) gas.
  • the generated silicon oxide gas is supplied to a substrate cooled to a predetermined temperature, vapor deposited and deposited as silicon oxide (SiO x ), and the deposited silicon oxide is pulverized.
  • FIG. 3 is a schematic diagram showing a state in which silicon oxide (SiO) gas is supplied to a substrate and vapor-deposited to form silicon oxide (SiO x ) when an amorphous silicon oxide powder is manufactured.
  • the figure shows a substrate 9 which is a deposition base and deposited silicon oxide (SiO x ) 11 deposited on the substrate.
  • the silicon oxide gas is supplied from the lower side to the substrate 9 as shown by the hatched arrows in FIG.
  • the vicinity of the interface 11a with the deposited silicon oxide substrate is kept at a low temperature because the substrate 9 is usually cooled to a predetermined temperature by cooling water flowing through the inside.
  • the deposition surface 11b on which the supplied silicon oxide gas is deposited is the radiant heat from the heated raw material. Or heated by the supplied high-temperature silicon oxide gas.
  • silicon oxide (SiO x ) has high heat insulation (low thermal conductivity), and the cooling effect by the substrate does not reach the deposition surface of the deposited silicon oxide. Near the surface is hot.
  • the precipitated silicon oxide exceeds 900 to 1000 ° C., it may be disproportionated into silicon and silicon dioxide. For this reason, in the conventional method for producing amorphous silicon oxide powder, the vicinity of the deposited silicon oxide vapor deposition surface becomes high temperature and disproportionates into silicon and silicon dioxide. As a result, the amorphous silicon oxide powder obtained by crushing the deposited silicon oxide contains silicon and silicon dioxide generated by the disproportionation reaction.
  • the present invention has been made in view of such circumstances, and has a large discharge capacity, good cycle characteristics, and a powder for a negative electrode material for a lithium ion secondary battery that can withstand use at a practical level. It aims at providing the lithium ion secondary battery negative electrode and capacitor negative electrode using the powder for negative electrode materials, and the lithium ion secondary battery and capacitor using this lithium ion secondary battery negative electrode and capacitor negative electrode.
  • amorphous silicon oxide powder has better cycle characteristics when used as a negative electrode material for lithium ion secondary batteries than disproportionated silicon oxide powder. Therefore, in order to improve the cycle characteristics, the present inventors use an amorphous silicon oxide powder in which disproportionation is suppressed as a negative electrode material, and it is important to generate Li silicate more uniformly in the negative electrode material. I thought.
  • the present inventors have conducted various tests and earnestly to obtain an amorphous silicon oxide powder in which the disproportionation reaction is completely suppressed when silicon oxide gas is supplied to the substrate to precipitate the deposited silicon oxide. Repeated examination. As a result, the disproportionation reaction was completely suppressed by controlling the temperature of the deposition surface of the deposited silicon oxide and the thickness of the deposited silicon oxide when the silicon oxide gas was supplied to the substrate to deposit the deposited silicon oxide. It was found that precipitated silicon oxide was obtained.
  • the present inventors have found that in a lithium ion secondary battery using a silicon oxide powder obtained from precipitated silicon oxide with suppressed disproportionation reaction as a negative electrode material, a charge curve (capacity-potential) at the time of initial charge is used. The potential plateau was expected to be observed when Li silicate was uniformly produced.
  • the generation potential of Li silicate was calculated to be 0.97 V or less on the basis of Li, and the generation potential of the Si—Li alloy was calculated to be 0.58 V or less on the basis of Li.
  • a lithium ion secondary battery was fabricated using amorphous silicon oxide powder that suppressed the disproportionation reaction when it was deposited, and the charge curve was determined by measuring the capacity and potential at the first charge. The test to obtain was done.
  • FIG. 4 is a diagram showing a charging curve at the time of initial charging in a lithium ion secondary battery using the amorphous silicon oxide powder of the present invention.
  • amorphous silicon oxide powder obtained from precipitated silicon oxide in which the disproportionation reaction was suppressed according to Example 1 of the present invention described later was used.
  • the figure also shows a charging curve at the time of initial charging by low-speed charging and a charging curve at the time of initial charging by high-speed charging.
  • the initial charge curve by low-speed charge is a charge curve at the time of the initial charge by low-speed charge shown as Example 1 of the present invention in Examples described later, and the current was set at 15 mA / g per 1 g of silicon oxide powder.
  • the current was 150 mA / g per gram of silicon oxide powder, and other conditions were the same as in the case of low speed charge.
  • the calculated Li silicate formation potential is 0.97 V or less on the Li basis and the Si—Li alloy formation potential is 0.58 V or less on the Li basis, whereas the observed Li silicate production potential is about Li basis.
  • the reason why the difference between the two is 0.5 V is considered to be that IR drop occurs due to electric resistance.
  • a test was performed to obtain a charge curve at the time of the first charge by low speed charge, and a potential plateau was generated. The potential to check was confirmed.
  • FIG. 5 is a diagram showing a charging curve at the time of initial charging by low-speed charging in a lithium ion secondary battery using the amorphous silicon oxide powder of the present invention or the conventional disproportionated silicon oxide powder.
  • the charging curve of Example 1 of the present invention is an amorphous silicon oxide powder obtained from precipitated silicon oxide that suppresses the disproportionation reaction. It is a charging curve.
  • a charge curve of Comparative Example 1 is a lithium ion secondary battery using disproportionated silicon oxide powder, and is a charge curve of a test shown as Comparative Example 1 in an example described later. is there.
  • the inventors of the present invention further conducted various tests, and as a result of intensive studies, if the potential plateau was observed at a potential of 0.45 V or more on the basis of Li during the initial charge by the slow charge, the initial charge was performed. In addition, it was found that Li silicate was uniformly generated in the negative electrode material, and the cycle characteristics could be improved.
  • the present invention has been completed on the basis of the above knowledge, and the following (1) to (5) lithium ion secondary battery negative electrode powder, the following (6) lithium ion secondary battery negative electrode and capacitor negative electrode, In addition, the gist of the lithium ion secondary battery and capacitor of (7) below.
  • the “lower silicon oxide powder” is a SiO x powder satisfying 0.4 ⁇ x ⁇ 1.2. A method for measuring x will be described later.
  • “having a charging potential of 0.45 to 1.0 V on the basis of Li at the time of initial charging” means that the charging potential obtained from the initial charging curve (capacity-voltage) by low-speed charging is based on Li. 0.45 to 1.0 V, that is, a potential plateau due to the generation of Li silicate is observed, which means that Li silicate is uniformly generated on the negative electrode material.
  • a method for obtaining an initial charge curve by low-speed charging and a method for obtaining a charge potential from the initial charge curve will be described later.
  • Si / C molar ratio value Si / C is 0.02 or less. That is, it means that most of the surface of the lower silicon oxide powder is covered with C and Si is hardly exposed.
  • a method for measuring the specific surface area by the BET method will be described later.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery and a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • 2 (a) and 2 (b) are schematic views showing the distribution state of particles in the negative electrode material of a lithium ion secondary battery.
  • FIG. 2 (a) shows an amorphous silicon oxide powder, and FIG. The case where the disproportionated silicon oxide powder is used for the negative electrode material is shown.
  • FIG. 3 is a schematic diagram showing a state in which silicon oxide (SiO) gas is supplied to a substrate and vapor-deposited to form silicon oxide (SiO x ) when an amorphous silicon oxide powder is manufactured.
  • SiO silicon oxide
  • FIG. 4 is a diagram showing a charge curve at the time of initial charge in a lithium ion secondary battery using the amorphous silicon oxide powder of the present invention.
  • FIG. 5 is a diagram showing a charging curve at the time of initial charging by low-speed charging in a lithium ion secondary battery using the amorphous silicon oxide powder of the present invention or the conventional disproportionated silicon oxide powder.
  • 6 (a) and 6 (b) are diagrams for explaining a method for obtaining a charging potential defined in the present invention from an initial charging curve by low-speed charging.
  • FIG. 6 (b) shows the charge curves in the case of Comparative Example 1, respectively.
  • FIG. 7 is a schematic diagram showing a configuration example of a lower silicon oxide production apparatus.
  • Powder for negative electrode material of lithium ion secondary battery of the present invention is a powder for negative electrode material made of lower silicon oxide powder, and is used for the first charge in the lithium ion secondary battery used for the negative electrode material.
  • the charge potential is 0.45 to 1.0 V on the basis of Li.
  • the lower silicon oxide powder is a SiO x powder satisfying 0.4 ⁇ x ⁇ 1.2 as described above.
  • the reason why x is in this range is that when the value of x is less than 0.4, the lithium ion secondary battery using the negative electrode material powder of the present invention and the capacitor are severely deteriorated due to charge / discharge cycles, and 1.2. This is because the capacity of the battery is reduced when the value exceeds.
  • x preferably satisfies 0.8 ⁇ x ⁇ 1.05.
  • the fact that the charging potential is 0.45 to 1.0 V on the basis of Li at the time of initial charging means that the charging potential that can be obtained from the initial charging curve (capacity-voltage) by low-speed charging is based on Li as described above. 0.45 to 1.0 V, that is, a potential plateau due to the generation of Li silicate is observed, which means that Li silicate is uniformly generated on the negative electrode material.
  • the negative electrode material powder of the present invention uniformly produces Li silicate during the initial charge, and since this Li silicate has a high ability to relieve volume expansion, the negative electrode material is finely crushed during charge and discharge. Can be reduced. Thereby, the cycling characteristics of a lithium ion secondary battery can be improved.
  • the charge potential at the time of initial charge is less than 0.45 V on the basis of Li
  • the distribution of Li silicate generated in the negative electrode material becomes uneven, volume expansion cannot be relaxed during charge and discharge, and cycle characteristics are descend.
  • the upper limit of the charging potential is defined as a point where the charging capacity is 0 mAh / g and the potential is 1.0 V on the basis of Li by a method of obtaining the charging potential from a charging curve described later. 0.0V.
  • the charging potential at the time of the first charging is increased, the Li silicate is generated more uniformly, and the cycle characteristics can be improved.
  • the charge potential at the time of the first charge is preferably 0.5 V or more on the basis of Li.
  • the negative electrode material powder of the present invention preferably has a conductive carbon film on the surface of the lower silicon oxide powder.
  • a conductive carbon film on the lower silicon oxide powder that is an insulator, the discharge capacity of a lithium ion secondary battery using the lower silicon oxide powder as a negative electrode material powder can be improved.
  • the proportion of the conductive carbon film is preferably 0.2 to 10% by mass.
  • the proportion of the carbon film is less than 0.2% by mass, the effect of imparting conductivity to the lower silicon oxide powder having the carbon film cannot be obtained.
  • the proportion of the carbon film exceeds 10% by mass, the proportion of the carbon film contributing to the charge / discharge capacity increases. In this case, since the charge / discharge capacity per unit mass of the carbon film is smaller than that of lower silicon oxide, the charge / discharge capacity of the lithium ion secondary battery is lowered.
  • the proportion of the carbon film is more preferably 0.2 to 2.5% by mass.
  • the negative electrode material powder of the present invention preferably has a specific surface area of 0.3 to 5 m 2 / g as measured by the BET method.
  • the specific surface area of the powder for negative electrode material is small, generation
  • a powder having an average particle size (D 50 ) of 1 to 15 ⁇ m, which is frequently used as a negative electrode material if the specific surface area is 5 m 2 / g or less, the amount of irreversible capacity component produced is sufficiently small, and the lithium ion secondary battery Good performance.
  • the specific surface area measured by the BET method is more preferably 0.5 to 3 m 2 / g.
  • the Li-based charging potential in the first charging can be obtained by the following procedure. In this procedure, the coin-shaped lithium ion secondary battery shown in FIG. 1 is manufactured, the initial charge by low-speed charging is performed using the manufactured lithium ion secondary battery, and the capacity and voltage at that time are measured. Then, the charging potential is obtained from the obtained initial charging curve.
  • the prepared slurry is applied to a copper foil having a thickness of 35 ⁇ m so that the active material layer has a thickness of 20 to 30 ⁇ m and an electrode weight of 0.9 to 1.3 g / cc.
  • the copper foil coated with the slurry is dried in an atmosphere of 80 ° C. for 15 minutes, then punched to a size of 11 mm in diameter, and further dried in a vacuum at 300 ° C. for 60 minutes to form the negative electrode 2.
  • the counter electrode 1c is a lithium foil having a diameter of 13 mm.
  • the electrolyte of separator 3 is a mixture of EC (ethylene carbonate) and DEC (diethyl carbonate) in a volume ratio of 1: 1, and LiPF 6 (lithium phosphorous hexafluoride) at a ratio of 1 mol / liter. A dissolved solution is obtained.
  • the separator 3 is a polyethylene porous film having a thickness of 30 ⁇ m.
  • a secondary battery charge / discharge test apparatus (manufactured by Nagano Co., Ltd.) can be used for charging.
  • the charge is 0.01 C when the discharge capacity of the lower silicon oxide powder is 1500 mAh / g until the voltage between both electrodes of the lithium ion secondary battery reaches 0 V (15 mA / g per 1 g of the lower silicon oxide powder).
  • constant current charging At this time, the capacitance and voltage are measured every 2 minutes. The relationship between the capacity and voltage (Li reference potential) at the time of the first charge by the obtained low-speed charge is graphed.
  • FIGS. 6A and 6B are diagrams illustrating a method for obtaining the charging potential defined in the present invention from the initial charging curve by low-speed charging.
  • FIG. 6B shows a charging curve in the case of Example 1 of the present invention
  • FIG. 6 (a) and 6 (b) show the relationship between the charge capacity measured at the time of the first charge by low-speed charge in the example described later and the potential of the Li reference
  • FIG. FIG. 6B is a charging curve according to Comparative Example 1.
  • the charging curve starts from a point where the charging capacity is 0 mAh / g and the Li-based potential is 1.0 V.
  • the point at which the Li reference potential reaches 0 V is defined as an end point, and the start point and the end point are connected by a straight line (hereinafter referred to as “straight line A”).
  • straight line B a straight line parallel to the straight line A and in contact with the charging curve
  • the straight line B having the shortest distance from the origin (0 mAh / g, 0 V) is defined as the straight line B.
  • the potential at the contact C between the straight line B and the charging curve is defined as a charging potential.
  • “having a conductive carbon film on the surface of the lower silicon oxide powder” means X-ray using AlK ⁇ - ray (1486.6 eV).
  • XPS photoelectron spectrometer
  • the carbon film ratio is determined by analyzing the CO 2 gas by the mass of the negative electrode powder and the carbon concentration analyzer (Leco, CS400) by oxygen stream combustion-infrared absorption method. Calculated from the result of the evaluated carbon content.
  • the crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
  • the specific surface area of the negative electrode material powder can be measured by the following BET method. 0.5 g of sample is put in a glass cell and dried under reduced pressure at 200 ° C. for about 5 hours. Then, the specific surface area is calculated from the nitrogen gas adsorption isotherm at the liquid nitrogen temperature ( ⁇ 196 ° C.) measured for this sample. The measurement conditions are as shown in Table 3.
  • the O content in the negative electrode material powder is quantitatively evaluated by analyzing 10 mg of a sample by an inert gas melting / infrared absorption method using an oxygen concentration analyzer (Leco, TC436). Calculated from the O content in the prepared sample.
  • Si content in the negative electrode material powder is determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and analyzing the resulting solution with an ICP emission spectrometer (manufactured by Shimadzu Corporation). To calculate from the Si content in the sample under quantitative evaluation. In this method, Si, SiO and SiO 2 are dissolved, and Si constituting them can be detected.
  • Calculation method of x of SiO x x of SiO x is the molar ratio (O / Si) of the O content and the Si content in the negative electrode material powder, and the O content and the Si content measured by the above measurement method Calculate using.
  • FIG. 7 is a schematic diagram showing a configuration example of a lower silicon oxide production apparatus.
  • This apparatus includes a vacuum chamber 5, and the vacuum chamber 5 includes a double-walled quartz tube 5 a at the lower portion of the side wall and a window plate 5 b at the upper wall.
  • the vacuum chamber 5 has an exhaust port 5d for exhausting the room atmosphere at the upper portion of the side wall, and a window portion 5c on the upper wall.
  • a carbon crucible 6 filled with a raw material 7 and a substrate 9 on which a supplied silicon oxide (SiO) gas is deposited are disposed in the vacuum chamber 5.
  • the substrate 9 has a structure in which cooling water flows therein, and has a pipe 10 for supplying and discharging cooling water to and from the substrate 9.
  • a high frequency coil 8 as a heating source is disposed so as to surround the crucible 6, and the high frequency coil 8 heats the raw material filled in the crucible 6 by high frequency induction heating.
  • a radiation thermometer 12 for measuring the temperature of the raw material heated in the crucible and a radiation thermometer 13 for measuring the temperature of the deposition surface 11b of the deposited silicon oxide deposited on the substrate 9. Be placed.
  • a radiation thermometer 12 for measuring the heated raw material is disposed immediately above the crucible 6 and performs measurement from the window portion 5 c on the upper wall of the vacuum chamber 5.
  • the radiation thermometer 13 for measuring the deposition surface 11b of the deposited silicon oxide performs measurement from a window portion (not shown) provided in the quartz tube 5a constituting the vacuum chamber.
  • a mixed granulated raw material 7 obtained by mixing silicon powder and silicon dioxide powder in a predetermined ratio as a raw material, and mixing, granulating and drying is used.
  • the mixed granulated raw material 7 is filled in the crucible 6 and heated to 1100 to 1400 ° C. by a high frequency coil 8 in a vacuum to generate (sublimate) silicon oxide (SiO) gas.
  • the silicon oxide gas generated by the sublimation rises (see the hatched arrow in the figure) and is deposited on the cooled substrate 9 to be deposited as precipitated silicon oxide (SiO x ) 11.
  • the amount of cooling water supplied to the substrate 9 is adjusted in accordance with the temperature of the deposited silicon oxide deposition surface 11 b measured by the radiation thermometer 13, and the deposited silicon oxide deposition surface 11 b measured by the radiation thermometer 13. Is controlled to 950 ° C. or less, and the film thickness of the deposited silicon oxide is set to 8 ⁇ m or less.
  • the deposition surface temperature of the deposited silicon oxide is preferably controlled to 900 ° C. or lower.
  • the reason why the deposited silicon oxide film is made as thin as 8 ⁇ m or less is that when the deposited silicon oxide film becomes thick, the silicon oxide has high heat insulation (low thermal conductivity). This is because it becomes difficult to control the temperature to 950 ° C. or lower, and the deposited silicon oxide may be disproportionated.
  • the film thickness of the deposited silicon oxide can be controlled by adjusting the raw material filling amount into the crucible.
  • the deposited silicon oxide 11 is removed from the substrate 9 and pulverized using a ball mill or the like to obtain the amorphous lower silicon oxide powder of the present invention.
  • the conductive carbon film is formed on the surface of the lower silicon oxide powder by CVD or the like. Specifically, a rotary kiln is used as an apparatus, and a gas mixture of a hydrocarbon gas or an organic substance-containing gas and an inert gas is used as a gas.
  • the conductive carbon film is formed at a temperature of 600 ° C to 900 ° C.
  • the treatment time is 20 to 120 minutes and is set according to the thickness of the conductive carbon film to be formed. This treatment time is a range in which SiC is not formed in the vicinity of the interface between the surface of the lower silicon oxide powder and the carbon film.
  • the lower silicon oxide powder formed with the conductive carbon film is subjected to heat treatment for 1 hour or less under vacuum at 600 ° C. to 750 ° C. Vacuuming during the heat treatment is performed with an oil diffusion pump, and the internal pressure is kept at 1 Pa or less while being measured with a Pirani gauge. Thereby, the tar component remaining in the conductive carbon film is removed, and the electrical conductivity is improved.
  • the heat treatment temperature is in the above range, the generation of SiC in the vicinity of the interface between the silicon oxide and the carbon film is suppressed.
  • Configuration of Lithium Ion Secondary Battery A configuration example of a coin-shaped lithium ion secondary battery using the powder for a lithium ion secondary battery negative electrode material and the lithium ion secondary battery negative electrode of the present invention is described with reference to FIG. explain. The basic configuration of the lithium ion secondary battery shown in FIG.
  • the negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the powder for negative electrode material of the lithium ion secondary battery of the present invention. Specifically, it can be comprised with the powder for lithium ion secondary battery negative electrode materials of this invention which is an active material, another active material, a conductive support material, and a binder. Of the constituent materials in the negative electrode material, the ratio of the powder for the negative electrode material of the lithium ion secondary battery of the present invention to the total of the constituent materials excluding the binder is 20% by mass or more. It is not always necessary to add an active material other than the powder for a negative electrode material of the lithium ion secondary battery of the present invention.
  • acetylene black, carbon black, or ketjen black can be used as the conductive additive
  • polyacrylic acid (PAA), polyvinylidene fluoride, or PI (polyimide) can be used as the binder.
  • the lithium ion secondary battery of the present invention uses the above-described powder for a lithium ion secondary battery negative electrode material and a lithium ion secondary battery negative electrode of the present invention, the discharge capacity is large, the cycle characteristics are good, and the practical level. Can withstand use in
  • the powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
  • the output of the high frequency coil 8 was adjusted according to the temperature of the heated raw material measured by the radiation thermometer 12, and the temperature of the heated raw material was controlled to 1200 ° C.
  • the high-frequency coil 8 uses MU-1700D manufactured by Sekisui Chemical Co., Ltd.
  • the radiation thermometer for measuring the temperature of the heated raw material and the deposited surface of the deposited lower silicon oxide is IR-SAI10N manufactured by Chino Corporation. Using.
  • an aluminum foil was wound around the portion of the substrate 9 to which the silicon oxide gas was supplied, and was deposited on the surface of the aluminum foil to obtain precipitated silicon oxide.
  • the obtained precipitated silicon oxide was removed together with the aluminum foil, and the aluminum foil was dissolved and removed by hydrochloric acid treatment.
  • the precipitated silicon oxide from which the aluminum foil had been removed was pulverized for 24 hours using an alumina ball mill to obtain a powder having an average particle size (D 50 ) of 4.8 ⁇ m.
  • An alumina ball mill having a ball diameter of 20 mm and a pot made of alumina was crushed at a rotation speed of 60 rpm.
  • the surface of the lower silicon oxide powder was electrically conductive by the procedures of “4. Method for forming conductive carbon film” and “5. Heat treatment method for lower silicon oxide powder on which conductive carbon film was formed”.
  • the lower silicon oxide powder on which the conductive carbon film was formed was subjected to heat treatment.
  • a rotary kiln was used as the apparatus, and a mixed gas of C 3 H 8 and Ar was used as the gas, and the treatment temperature was maintained for 20 minutes.
  • the lower silicon oxide powder on which the conductive carbon film was formed was heat-treated in an Ar gas atmosphere at 700 ° C. for 1 hour.
  • the carbon film ratio of the lower silicon oxide powder on which the conductive carbon film was formed was 2.5% by mass.
  • the coin-shaped lithium ion secondary battery shown in FIG. 1 was prepared by the procedure described in “2-1. Method for obtaining charge potential at initial charge by low-speed charge”. The capacity and voltage were measured at the time of initial charging by low-speed charging using the prepared lithium ion secondary battery, and the charging potential was determined from the obtained initial charging curve.
  • a charge / discharge test of 20 cycles was performed using the produced coin-shaped lithium ion battery, and the discharge capacities of the first and 20th cycles were measured, and the cycle characteristics were investigated.
  • a secondary battery charge / discharge test apparatus manufactured by Nagano Co., Ltd.
  • the value of charging is 0.1 C when the discharge capacity of the lower silicon oxide powder is 1500 mAh / g until the voltage between both electrodes of the lithium ion secondary battery reaches 0 V (150 mA / g per 1 g of the lower silicon oxide powder).
  • constant current charging was performed. The discharge was performed at a constant current of 0.1 C until the voltage between both electrodes of the lithium ion secondary battery reached 1.0 V.
  • Table 4 shows the test category, the temperature at which the deposition surface of the deposited silicon oxide was controlled (° C.), the processing temperature when forming the conductive carbon film (° C.), the presence or absence of Si peaks in X-ray diffraction (XRD), and slow charge. Shows the charge potential (V) based on Li when initially charged, the initial discharge capacity (mAh / g) in the charge / discharge test, the discharge capacity (mAh / g) at the 20th cycle, and the cycle characteristics (%).
  • the cycle characteristics (%) shown in Table 4 are maintenance rates of the discharge capacity at the 20th cycle relative to the initial discharge capacity.
  • Example 3 of the present invention the deposition surface of the deposited silicon oxide was controlled at 900 ° C. in order to suppress disproportionation of the deposited silicon oxide. There was a peak, and a part of the lower silicon oxide powder was disproportionated.
  • the lithium ion secondary battery obtained by Invention Example 3 had a Li-based charging potential of 0.47 V and a cycle characteristic of 81.3% when initially charged.
  • the deposition surface of the precipitated silicon oxide was controlled at 700 and 550 ° C. to suppress disproportionation of the precipitated silicon oxide, and the crushed lower silicon oxide powder was subjected to X-ray diffraction.
  • the Si peak was not present, that is, it was possible to suppress the disproportionation of the deposited silicon oxide.
  • the lithium ion secondary batteries obtained by Invention Examples 1 and 2 were charged for the first time, a potential plateau due to the formation of Li silicate was observed as shown in FIG. 5, and the charging potential based on Li was 0.52 and It was 0.59V.
  • the cycle characteristics were 82.4 and 83.4%.
  • the Li-based charging potential at the first charging and the cycle characteristics have a correlation, and if the Li-based charging potential at the first charging is 0.45 V or more, the volume at the first charging is It was confirmed that the cycle characteristics can be improved by uniformly producing Li silicate having a high ability to relieve expansion.
  • Example 4 the treatment temperature when forming the carbon film was set to 700 ° C., and the lower silicon oxide powder on which the carbon film was formed had no Si peak in X-ray diffraction. That is, in Example 4 of the present invention, the disproportionation of the lower silicon oxide powder can be suppressed, and the lithium ion secondary battery using the lower silicon oxide powder has a Li-based charging potential of 0.1 when initially charged. As a result, the cycle characteristics were 82.0%.
  • the initial discharge capacity is 1485 to 1522 mAh / g in the inventive examples 1 to 3 in which the carbon film was not formed on the surface of the lower silicon oxide powder, whereas it was 1776 mAh in the inventive example 4 in which the carbon film was formed. It was an excellent value of / g. From this, it became clear that the powder for negative electrode materials of the present invention can increase the discharge capacity by having a conductive carbon film on the surface thereof.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery and a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

低級酸化珪素粉末からなるリチウムイオン二次電池負極材用粉末であって、負極材に用いたリチウムイオン二次電池において、初回充電の際にLi基準で0.45~1.0Vに充電電位を有することにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる。ここで、初回充電の際の充電電位がLi基準で0.45~1.0Vであるとは、Liシリケートの生成による電位プラトーが観察され、負極材にLiシリケートが均一に生成されることを意味する。本発明の負極材用粉末は、初回充電の際にLi基準で0.45~1.0Vに充電電位を有することにより、充放電時に負極材が細かく砕かれ、サイクル特性が低下するのを抑制でき、良好となる。本発明の負極材用粉末は、その表面に導電性炭素皮膜を有するのが好ましく、導電性炭素皮膜の占める割合が0.2~10質量%であるのが好ましい。

Description

リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
 本発明は、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる負極材用粉末に関する。また、本発明は、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタに関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、図1に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガンスピネル(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。
 従来、リチウムイオン二次電池の負極活物質としては、カーボン系材料が用いられている。従来のものよりもリチウムイオン二次電池を高容量とする新規負極活物質として、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、リチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。
 これに対し、負極活物質としてSiO等、SiO(0<x≦2)で表される酸化珪素の粉末を用いることが、従来から試みられている。酸化珪素粉末は、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化が小さいことから、有効な充放電容量がより大きな負極活物質となり得る。そのため、酸化珪素粉末を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られることが期待できるからである。
 例えば、特許文献1では、ケイ素の酸化物と、リチウムもしくはリチウムを含有する物質を両電極とし、非水電解質中で対向させて両電極間に通電し、電気化学的にリチウムイオンを収蔵させることにより得られるリチウム含有ケイ素酸化物、または、ケイ素もしくはケイ素化合物と、リチウムもしくはリチウムを混合し、加熱することにより得られるリチウム含有ケイ素酸化物を負極活物質として用いたリチウムイオン二次電池の製造方法が提案されている。しかし、本発明者らの検討によれば、このリチウムイオン二次電池では、初回の充放電時における不可逆容量が大きく(すなわち、初期効率が十分ではなく)、またサイクル特性が実用レベルに十分達しているとはいえない。
 また、特許文献2では、二酸化珪素粉末と金属珪素粉末を混合して原料とし、混合原料を不活性ガス雰囲気または減圧下で1100~1600℃に加熱して酸化珪素(SiO)ガスを発生させ、発生させたガスを200~500℃に冷却された基体表面に酸化珪素(SiO)として析出させ、析出酸化珪素を回収するアモルファス(非晶質)な酸化珪素粉末の製造方法が提案されている。
 特許文献3では、珪素の微結晶が二酸化珪素に分散した構造を有する粒子(導電性珪素複合体)の表面に炭素皮膜を形成した非水電解質二次電池負極材用の導電性珪素複合体およびその製造方法が提案されている。特許文献3では、炭素皮膜を形成する導電性珪素複合体は、一般式SiO(1.0≦x<1.6)で表される酸化珪素粉末を原料とし、当該原料に所定の温度および雰囲気条件で熱処理を施して、珪素と二酸化珪素の複合体に不均化するとともに、その表面に炭素皮膜を化学蒸着することにより得られるとしている。
特許第2997741号公報 特許第3824047号公報 特許第3952180号公報
 本発明者らは、特許文献2で提案されるアモルファスな酸化珪素粉末(SiO)と、特許文献3で提案される不均化させて珪素および二酸化珪素を含む酸化珪素粉末について種々検討を行った。その結果、アモルファスな酸化珪素粉末を負極材(負極活物質)に用いる場合と、不均化させた酸化珪素粉末を負極材に用いる場合とで、リチウムイオン二次電池の電極の挙動が異なることを見出した。
 図2(a)および(b)は、リチウムイオン二次電池の負極材における粒子の分布状態を示す模式図であり、図2(a)はアモルファスな酸化珪素粉末を、図2(b)は不均化させた酸化珪素粉末を負極材に用いた場合をそれぞれ示す。アモルファスな酸化珪素粉末を用いた場合、負極材は、図2(a)に示すように酸化珪素(SiO)が均一に分布した状態となる。一方、不均化させた酸化珪素粉末を用いた場合、負極材は、図2(b)に示すように二酸化珪素(SiO)に珪素(Si)が分散した状態となり、不均一な分布となる。
 また、アモルファスな酸化珪素粉末を用いたリチウムイオン二次電池では、初回充電の際に負極材で下記(1)式に示す反応が進行する。ここで、酸化珪素(SiO)粉末はx=1とする。
  4SiO+17.2Li+17.2e→3Li4.4Si+LiSiO ・・・(1)
 上記(1)式において、右辺の第1項に示すSi-Li合金(Li4.4Si)は可逆容量、右辺の第2項に示すLiシリケート(LiSiO)は不可逆容量を担う成分である。ここで、Liシリケートが不可逆容量を担うのは、Liシリケートはリチウムイオンを放出することができないからである。
 アモルファスな酸化珪素粉末を負極材に用いた場合、初回充電の際に上記(1)式に示す反応が負極材内で進行すると、前記図2(a)に示すように酸化珪素(SiO)が均一に分布していることから、Liシリケートが負極材内で均一に生成される。本発明者らの検討によると、x=1である酸化珪素粉末(SiO)を負極材に用いた場合、リチウムイオン二次電池の理論上の特性は、上記(1)式に示す反応に基づくと、可逆容量が2007mAh/gであり、初期効率は76%であることがわかった。
 一方、x=1である酸化珪素粉末を不均化させると、下記(2)式に示す反応が進行し、珪素と二酸化珪素とが生成する。
  4SiO→2Si+2SiO ・・・(2)
 このような反応により不均化させた酸化珪素粉末を負極材として用いたリチウムイオン二次電池では、初回充電の際に負極材に含まれる珪素および二酸化珪素は下記(3)および(4)式に示す反応をそれぞれ起こす。
  2Si+8.8Li+8.8e→2Li4.4Si ・・・(3)
  2SiO+8.4Li+8.4e→Li4.4Si+LiSiO ・・・(4)
 ここで、二酸化珪素は電子伝導性およびLi伝導性を有さないことから、上記(4)式に示す反応は進行しにくい。また、前記図2(b)を用いて説明したとおり、不均化させた酸化珪素粉末を用いた負極材は、二酸化珪素中に珪素が分散し、不均一な分布となる。このため、負極材に含まれる二酸化珪素のうち、Siとの境界面に近い一部の二酸化珪素のみが上記(4)式に示す反応を起こす。その結果、上記(4)式に示す反応により負極材に生成されるLiシリケートは不均一な分布となる。
 上記(4)式の反応を起こす二酸化珪素の割合をy(ただし、0≦y≦1)とし、上記(2)~(4)式を総括すると下記(5)式が導かれる。
  4SiO+(8.8+8.4y)Li+(8.8+8.4y)e→(2+y)Li4.4Si+yLiSiO+(2-2y)SiO ・・・(5)
 上記(5)式に示す反応に基づいて本発明者らが検討したところ、不均化させた酸化珪素粉末を用いた場合のリチウムイオン二次電池の理論上の特性は、可逆容量はyの値に関係することなく2007mAh/gとなる。一方、初期効率は、y=0すなわち上記(4)式の反応が起こらなかった場合に100%であり、y=1すなわち全ての二酸化珪素が上記(4)式の反応をした場合に76%であることがわかった。
 このように、アモルファスな酸化珪素粉末を用いた場合と、不均化させた酸化珪素粉末を用いた場合とでリチウムイオン二次電池の初回充電時の挙動が異なる。さらに、本発明者らは、両者の2サイクル目以降の挙動について検討してまとめた。表1に、アモルファスな酸化珪素粉末または不均化させた酸化珪素粉末を用いたリチウムイオン二次電池における理論上の初期効率、理論上の2サイクル目以降の効率、体積膨張の緩和能力およびサイクル特性の特徴をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 理論上の初期効率は、上述のとおり、アモルファスな酸化珪素粉末を用いた場合が76%であり、不均化させた酸化珪素粉末を用いた場合が76~100%であることから、不均化させた酸化珪素粉末を用いる方が良好となる。しかし、2サイクル目以降の理論上の効率は、不均化させた酸化珪素粉末を用いた場合、2サイクル目以降の充電時にも、前記(4)式に示す反応により残存する二酸化珪素の一部から不可逆容量を担うLiシリケートが生成されることから、100%にならない。一方、アモルファスな酸化珪素粉末を用いた場合、初回充電時に前記(1)式に示す反応によりLiシリケートが均一に生成し、2サイクル目以降は不可逆容量が増加しないことから、2サイクル目以降の理論上の効率は100%になる。
 ここで、リチウムイオン二次電池では、アモルファスな酸化珪素粉末を用いた場合および不均化させた酸化珪素粉末を用いた場合ともに、可逆容量を担う成分が充放電時にリチウムイオンを着脱して膨張・収縮することから、負極材が体積変化する。この膨張・収縮の際に所定の粒度に調整された負極材の粒子が細かく砕かれると、サイクル特性が低下する。したがって、アモルファスな酸化珪素粉末および不均化させた酸化珪素粉末は、不可逆容量となる成分が可逆容量を担う成分の体積変化、特に膨張を緩和する能力を有することが要求される。
 この体積膨張を緩和する能力は、不可逆容量成分を担うLiシリケートと二酸化珪素を比較すると、Liシリケートが高く、二酸化珪素が低い。不均化させた酸化珪素粉末を用いた場合、不可逆容量成分は、酸化珪素粉末に含まれる二酸化珪素と、前記(4)式に示す反応により生成されたLiシリケートである。しかし、二酸化珪素は体積膨張を緩和する能力が低く、生成されたLiシリケートは不均一な分布で存在する。このため、不均化させた酸化珪素粉末を用いた場合、不可逆容量成分により体積膨張を緩和させる作用が十分でなく、充放電を繰り返すと負極材が細かく砕かれてサイクル特性が低下する。
 一方、アモルファスな酸化珪素粉末を用いた場合、不可逆容量成分はLiシリケートであり、生成されたLiシリケートは負極材内に均一に分布する。このため、体積膨張を緩和する能力に優れ、負極材の微細化を低減することができ、サイクル特性が良好となる。
 このサイクル特性が良好なアモルファスな酸化珪素粉末は、特許文献2に提案されるように、二酸化珪素粉末と金属珪素粉末を混合して原料とし、混合原料を加熱して酸化珪素(SiO)ガスを生成し、生成した酸化珪素ガスを所定の温度に冷却された基体に供給し、蒸着させて酸化珪素(SiO)として析出させ、析出酸化珪素を粉砕することにより得られる。
 図3は、アモルファスな酸化珪素粉末を製造する際、酸化珪素(SiO)ガスを基板に供給し、蒸着させて酸化珪素(SiO)として析出させる状態を示す模式図である。同図には、析出基体である基板9と、基板に析出した析出酸化珪素(SiO)11とを示す。酸化珪素ガスから析出酸化珪素を得る際は、同図のハッチングを施した矢印で示すように下方から酸化珪素ガスを基板9に供給して蒸着させ、析出酸化珪素11として析出させる。析出酸化珪素の基板との界面11a付近は、基板9は、通常、内部を流通する冷却水により所定の温度に冷却されていることから、低温に維持される。
 しかし、前記図3に示すような基板上に析出酸化珪素を析出させる方法では、析出酸化珪素の表面のうち、供給された酸化珪素ガスが蒸着する蒸着面11bは、加熱された原料からの輻射熱や、供給される高温の酸化珪素ガスにより加熱される。析出酸化珪素が厚膜になると、酸化珪素(SiO)は断熱性が高く(熱伝導性が低く)、基板による冷却効果が析出酸化珪素の蒸着面まで及ばないことから、析出酸化珪素の蒸着面付近が高温となる。
 ここで、析出酸化珪素は、900~1000℃を超えると珪素と二酸化珪素とに不均化するおそれがある。このため、従来のアモルファスな酸化珪素粉末の製造方法では、析出酸化珪素の蒸着面付近が高温となり、珪素と二酸化珪素に不均化する。その結果、析出酸化珪素を破砕したアモルファスな酸化珪素粉末には、不均化反応により生成した珪素と二酸化珪素が含まれる。
 本発明は、このような状況に鑑みてなされたものであり、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池の負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにこのリチウムイオン二次電池負極およびキャパシタ負極を用いたリチウムイオン二次電池およびキャパシタを提供することを目的とする。
 前述のとおり、アモルファスな酸化珪素粉末は、不均化させた酸化珪素粉末に比べ、リチウムイオン二次電池の負極材に用いた際にサイクル特性が良好である。したがって、本発明者らは、サイクル特性を向上させるには、不均化が抑制されたアモルファスな酸化珪素粉末を負極材に用い、負極材にLiシリケートをより均一に生成することが重要であると考えた。
 そこで、本発明者らは、酸化珪素ガスを基体に供給して析出酸化珪素を析出させる際に不均化反応を完全に抑制したアモルファスな酸化珪素粉末を得るため、種々の試験を行い、鋭意検討を重ねた。その結果、酸化珪素ガスを基体に供給して析出酸化珪素を析出させる際、析出酸化珪素の蒸着面の温度および析出酸化珪素の膜厚を制御することにより、不均化反応を完全に抑制した析出酸化珪素が得られることを知見した。
 さらに、本発明者らは、不均化反応を抑制した析出酸化珪素から得られた酸化珪素粉末を負極材に用いたリチウムイオン二次電池では、初回充電時の充電曲線(容量-電位)において、Liシリケートが均一に生成される際に電位プラトーが観察されると予想した。本発明者らが検討したところ、Liシリケートの生成電位はLi基準で0.97V以下、Si-Li合金の生成電位はLi基準で0.58V以下であると計算された。この予想をもとに、析出させる際に不均化反応を抑制したアモルファスな酸化珪素粉末を用いてリチウムイオン二次電池を作製し、初回充電の際の容量と電位を測定して充電曲線を得る試験を行った。
 図4は、本発明のアモルファスな酸化珪素粉末を用いたリチウムイオン二次電池における初回充電の際の充電曲線を示す図である。同図に示す充電曲線を得る試験は、後述する実施例の本発明例1により、不均化反応を抑制した析出酸化珪素から得たアモルファスな酸化珪素粉末を用いた。また、同図には、低速充電による初回充電の際の充電曲線と、高速充電による初回充電の際の充電曲線とを示す。低速充電による初回充電曲線は、後述する実施例で本発明例1として示す低速充電による初回充電の際の充電曲線であり、電流を酸化珪素粉末1gあたり15mA/gとして行った。一方、高速充電による初回充電は、電流を酸化珪素粉末1gあたり150mA/gとし、それ以外の条件は低速充電の場合と同じにした。
 同図から、高速充電による初回充電の場合は、Li基準で約0.35Vより卑な電位で電位プラトーが観察される。この電位プラトーは、計算によるSi-Li合金の生成電位(Li基準で0.58V以下)をより大きく卑であることから、Liシリケートのみが生成することによる電位プラトーではなく、LiシリケートおよびSi-Li合金が生成することによる電位プラトーであると考えられる。一方、低速充電による初回充電の場合は、Li基準で約0.5Vの電位で電位プラトーが観察される。この電位プラトーは高速充電の場合に確認されたSi-Li合金の生成による電位プラトーをより大きく貴であることから、Liシリケートのみが生成することによる電位プラトーであると考えられる。
 計算によるLiシリケートの生成電位はLi基準で0.97V以下、Si-Li合金の生成電位はLi基準で0.58V以下となるのに対し、観察されたLiシリケートの生成電位がLi基準で約0.5Vとなり、両者に差が生じたのは、電気抵抗によりIRドロップが発生したからであると考えられる。次に、不均化させた珪素と二酸化珪素の複合体からなる酸化珪素粉末を用いたリチウムイオン二次電池において、低速充電による初回充電の際の充電曲線を得る試験を行い、電位プラトーが発生する電位を確認した。
 図5は、本発明のアモルファスな酸化珪素粉末または従来の不均化させた酸化珪素粉末を用いたリチウムイオン二次電池における低速充電による初回充電の際の充電曲線を示す図である。同図において本発明例1の充電曲線と表示するものが、不均化反応を抑制した析出酸化珪素から得たアモルファスな酸化珪素粉末を用い、後述する実施例で本発明例1として示す試験の充電曲線である。また、比較例1の充電曲線と表示するものが、不均化させた酸化珪素粉末を用いたリチウムイオン二次電池によるものであり、後述する実施例で比較例1として示す試験の充電曲線である。
 同図から、不均化させた酸化珪素粉末を用いた場合(比較例1)は、充電開始後に電位がLi基準で0.1V以下になるまで急激に低下している。したがって、Liシリケートの生成による電位プラトーは、不均化させた酸化珪素粉末を用いた場合(比較例1)では観察されない。これらから、Liシリケートが均一に生成されることによる電位プラトーは、析出させる際に不均化反応を抑制したアモルファスな酸化珪素粉末を用いたリチウムイオン二次電池では、低速充電による初回充電の際に観察され、不均化させた酸化珪素粉末を用いた場合には観察されないことが明らかになった。
 本発明者らは、さらに種々の試験を行い、鋭意検討を重ねた結果、低速充電による初回充電の際に電位プラトーがLi基準で0.45V以上の電位で観察されれば、初回充電の際に負極材内にLiシリケートが均一に生成され、サイクル特性を向上できることを知見した。
 本発明は、上記の知見に基づいて完成したものであり、下記(1)~(5)のリチウムイオン二次電池負極材用粉末、下記(6)のリチウムイオン二次電池負極およびキャパシタ負極、ならびに下記(7)のリチウムイオン二次電池およびキャパシタを要旨としている。
(1)低級酸化珪素粉末からなるリチウムイオン二次電池負極材用粉末であって、負極材に用いたリチウムイオン二次電池において、初回充電の際にLi基準で0.45~1.0Vに充電電位を有することを特徴とするリチウムイオン二次電池負極材用粉末。
(2)前記低級酸化珪素粉末の表面に導電性炭素皮膜を有することを特徴とする上記(1)に記載のリチウムイオン二次電池負極材用粉末。
(3)前記導電性炭素皮膜の占める割合が0.2~10質量%であることを特徴とする上記(2)に記載のリチウムイオン二次電池負極材用粉末。
(4)CuKα線を用いたX線回折装置で測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満たすことを特徴とする上記(1)~(3)のいずれかに記載のリチウムイオン二次電池負極材用粉末。
(5)BET法で測定される比表面積が0.3~5m/gであることを特徴とする上記(1)~(4)のいずれかに記載のリチウムイオン二次電池負極材用粉末。
(6)上記(1)~(5)のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極またはキャパシタ負極。
(7)上記(6)に記載のリチウムイオン二次電池負極またはキャパシタ負極を用いたリチウムイオン二次電池またはキャパシタ。
 本発明において、「低級酸化珪素粉末」とは、0.4≦x≦1.2を満たすSiOの粉末である。xの測定方法については後述する。
 「初回充電の際にLi基準で0.45~1.0Vに充電電位を有する」とは、後述するように、低速充電による初回充電曲線(容量-電圧)から求められる充電電位がLi基準で0.45~1.0Vであること、すなわちLiシリケートの生成による電位プラトーが観察され、負極材にLiシリケートが均一に生成されていることを意味する。低速充電による初回充電曲線を得る方法および初回充電曲線から充電電位を求める方法については後述する。
 「表面に導電性炭素皮膜を有する」とは、後述するように、X線光電子分光分析装置を用いて表面分析を行った結果、SiとCのモル比の値Si/Cが0.02以下であること、すなわち低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態をいう。BET法による比表面積の測定方法については後述する。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池およびキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。
図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。 図2(a)および(b)は、リチウムイオン二次電池の負極材における粒子の分布状態を示す模式図であり、図2(a)はアモルファスな酸化珪素粉末を、図2(b)は不均化させた酸化珪素粉末を負極材に用いた場合をそれぞれ示す。 図3は、アモルファスな酸化珪素粉末を製造する際、酸化珪素(SiO)ガスを基板に供給し、蒸着させて酸化珪素(SiO)として析出させる状態を示す模式図である。 図4は、本発明のアモルファスな酸化珪素粉末を用いたリチウムイオン二次電池における初回充電の際の充電曲線を示す図である。 図5は、本発明のアモルファスな酸化珪素粉末または従来の不均化させた酸化珪素粉末を用いたリチウムイオン二次電池における低速充電による初回充電の際の充電曲線を示す図である。 図6(a)および(b)は、低速充電による初回充電曲線から、本発明で規定する充電電位を求める方法を説明する図であり、図6(a)は本発明例1の場合、図6(b)は比較例1の場合の充電曲線をそれぞれ示す。 図7は、低級酸化珪素の製造装置の構成例を示す模式図である。
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明の負極材用粉末は、低級酸化珪素粉末からなる負極材用粉末であって、負極材に用いたリチウムイオン二次電池において、初回充電の際にLi基準で0.45~1.0Vに充電電位を有することを特徴とする。
 低級酸化珪素粉末とは、前述のように0.4≦x≦1.2を満たすSiOの粉末である。xをこの範囲とする理由は、xの値が0.4を下回ると、本発明の負極材用粉末を用いたリチウムイオン二次電池およびキャパシタの充放電サイクルに伴う劣化が激しく、1.2を超えると電池の容量が小さくなるからである。また、xは、0.8≦x≦1.05を満たすことが好ましい。
 初回充電の際にLi基準で0.45~1.0Vに充電電位を有するとは、上述するように、低速充電による初回充電曲線(容量-電圧)から求めることができる充電電位がLi基準で0.45~1.0Vであること、すなわちLiシリケートの生成による電位プラトーが観察され、負極材にLiシリケートが均一に生成されていることを意味する。
 前述のとおり、不均化させた珪素と二酸化珪素の複合体からなる酸化珪素粉末をリチウムイオン二次電池の負極材に用いると、体積膨張を緩和する能力が低い二酸化珪素が存在するとともに、生成されるLiシリケートが不均一に分布することから、充放電時に負極材が細かく砕かれ、サイクル特性が低下する。これに対し、本発明の負極材用粉末は、初回充電の際にLiシリケートが均一に生成され、このLiシリケートは体積膨張を緩和する能力が高いことから、充放電時に負極材が細かく砕かれるのを低減できる。これにより、リチウムイオン二次電池のサイクル特性を向上させることができる。
 初回充電の際の充電電位がLi基準で0.45V未満であると、負極材に生成されるLiシリケートの分布が不均一となり、充放電時に体積膨張を緩和することができず、サイクル特性が低下する。一方、充電電位の上限は、後述する充電曲線から充電電位を求める方法で開始点を充電容量が0mAh/gかつ電位がLi基準で1.0Vである点と規定することから、Li基準で1.0Vとなる。また、初回充電の際の充電電位は、その値が大きくなるほどLiシリケートがより均一に生成され、サイクル特性を向上させることができる。初回充電の際の充電電位は、Li基準で0.5V以上とするのが好ましい。
 本発明の負極材用粉末は、低級酸化珪素粉末の表面に導電性炭素皮膜を有するのが好ましい。絶縁体である低級酸化珪素粉末に導電性炭素皮膜を形成することで、この低級酸化珪素粉末を負極材用粉末として用いたリチウムイオン二次電池の放電容量を改善することができる。
 本発明の負極材用粉末は、導電性炭素皮膜の占める割合を0.2~10質量%とするのが好ましい。炭素皮膜の占める割合が0.2質量%未満であると、炭素皮膜を有する低級酸化珪素粉末に導電性付与の効果が得られない。一方、炭素皮膜の占める割合が10質量%を超えると、充放電容量に炭素皮膜が寄与する割合が大きくなる。この場合、炭素皮膜の単位質量あたりの充放電容量は低級酸化珪素に比較して小さいことから、リチウムイオン二次電池の充放電容量が低下する。炭素皮膜の占める割合を0.2~2.5質量%とするのがより好ましい。
 本発明の負極材用粉末は、CuKα線を用いたX線回折装置で測定した場合に、2θ=10~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満たすこと、すなわちアモルファスであることが好ましい。前述のとおり、アモルファスな低級酸化珪素粉末をリチウムイオン二次電池の負極材に用いると、体積膨張を緩和する能力が高いLiシリケートが均一に生成し、サイクル特性を向上できるからである。
 本発明の負極材用粉末は、BET法で測定される比表面積が0.3~5m/gであるのが好ましい。負極材用粉末の比表面積が小さいと、初回充放電時の電極表面における不可逆容量成分の生成を抑制することができる。負極材として多用される平均粒径(D50)が1~15μmの粉末では、比表面積が5m/g以下であると、不可逆容量成分の生成量が十分に少なく、リチウムイオン二次電池の性能が良好である。しかし、比表面積が0.3m/gよりも小さい粉末の製造は、経済的な観点から工業化が困難である。BET法で測定される比表面積は0.5~3m/gであるのがより好ましい。
2.分析方法
2-1.初回充電の際の充電電位を求める方法
 本発明の負極材用粉末において、初回充電におけるLi基準の充電電位は、以下の手順により求めることができる。本手順では、前記図1に示すコイン形状のリチウムイオン二次電池を作製し、作製されたリチウムイオン二次電池を用いて低速充電による初回充電を行い、その際の容量と電圧とを測定し、得られる初回充電曲線から充電電位を求める。
(1)リチウムイオン二次電池用負極の作製
 負極材用粉末を80質量%、ケッチェンブラックを5質量%、PI(ポリイミド)を15質量%とした混合物に、n-メチルピロリドンを加えてスラリーを作製する。作製したスラリーを、活物質層の厚みが20~30μm、電極重量が0.9~1.3g/ccになるよう、厚さ35μmの銅箔に塗布する。スラリーが塗布された銅箔を80℃の雰囲気下で15分乾燥させた後、直径11mmの大きさに打ち抜き、さらに300℃の真空中で60分乾燥させて負極2とする。
(2)リチウムイオン二次電池の作製
 対極1cは直径13mmのリチウム箔とする。セパレーター3の電解質は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を1:1の体積比とした混合液に、LiPF(六フッ化リンリチウム)を1モル/リットルの割合となるように溶解させた溶液とする。セパレーター3には厚さ30μmのポリエチレン製多孔質フィルムを用いる。
(3)リチウムイオン二次電池の低速充電
 充電には、二次電池充放電試験装置(株式会社ナガノ製)を用いことができる。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまで、低級酸化珪素粉末の放電容量を1500mAh/gとした時に0.01Cとなる値(低級酸化珪素粉末1gあたり15mA/g)とし、定電流充電で行う。この際、容量と電圧の測定は2分ごとに行う。得られた低速充電による初回充電の際の容量と電圧(Li基準の電位)との関係をグラフ化する。
(4)初回充電曲線から充電電位を求める
 図6(a)および(b)は、低速充電による初回充電曲線から、本発明で規定する充電電位を求める方法を説明する図であり、図6(a)は本発明例1の場合、図6(b)は比較例1の場合の充電曲線をそれぞれ示す。図6(a)および(b)は、後述する実施例で低速充電により初回充電の際に測定された充電容量とLi基準の電位との関係を示し、図6(a)は本発明例1、図6(b)は比較例1による充電曲線である。
 初回充電曲線から充電電位を求める際は、図6(a)および(b)に示すように、充電容量が0mAh/gかつLi基準の電位が1.0Vである点を開始点とし、充電曲線においてLi基準の電位が0Vに達した点を終了点とし、開始点と終了点を直線(以下、「直線A」と称する)で結ぶ。次に、直線Aと平行、かつ充電曲線に接する直線(以下、「直線B」と称する)を引く。この際、直線Aと平行、かつ充電曲線に接する直線が複数存在する場合は、最も原点(0mAh/g,0V)との距離が小さい直線を直線Bとする。この直線Bと充電曲線との接点Cにおける電位を、充電電位とする。
2-2.導電性炭素皮膜の形成状態の評価方法
 本発明の負極材用粉末において、「低級酸化珪素粉末の表面に導電性炭素皮膜を有する」とは、AlKα線(1486.6eV)を用いたX線光電子分光分析装置(XPS)で、導電性炭素皮膜の形成処理を施した低級酸化珪素粉末の表面分析を行った場合に、SiとCとのモル比の値Si/Cが0.02以下であることをいう。XPSの測定条件は表2に示すとおりとする。「Si/Cが0.02以下」とは、低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態である。
Figure JPOXMLDOC01-appb-T000002
2-3.炭素皮膜率の測定方法
 炭素皮膜率は、負極材用粉末の質量と、炭素濃度分析装置(Leco社製、CS400)を用いて酸素気流燃焼-赤外線吸収法によってCOガスを分析することで定量評価した炭素量の結果から算出する。ルツボはセラミックルツボを、助燃剤は銅を用い、分析時間は40秒とする。
2-4.負極材用粉末の比表面積の測定方法
 負極材用粉末の比表面積は、以下のBET法によって測定することができる。試料0.5gをガラスセルに入れて、200℃で約5時間、減圧乾燥する。そして、この試料について測定した液体窒素温度(-196℃)における窒素ガス吸着等温線から比表面積を算出する。測定条件は表3に示すとおりとする。
Figure JPOXMLDOC01-appb-T000003
2-5.O含有率の測定方法
 負極材用粉末中のO含有率は、酸素濃度分析装置(Leco社製、TC436)を用いて、試料10mgを不活性ガス融解・赤外線吸収法によって分析することで定量評価した試料中のO含有量から算出する。
2-6.Si含有率の測定方法
 負極材用粉末中のSi含有率は、試料に硝酸およびフッ酸を加えて試料を溶解させ、得られた溶液をICP発光分光分析装置(株式会社島津製作所製)で分析することによって定量評価下試料中のSi含有量から算出する。この方法では、Si、SiOおよびSiOが溶解され、これらを構成するSiを検出できる。
2-7.SiOのxの算出方法
 SiOのxは、負極材用粉末中のO含有率とSi含有率のモル比(O/Si)であり、上記測定方法で測定したO含有率およびSi含有率を用いて算出する。
3.低級酸化珪素粉末の製造方法
 図7は、低級酸化珪素の製造装置の構成例を示す模式図である。この装置は、真空室5を備え、真空室5は側壁の下部が二重壁構造の石英管5aで、上壁が窓板5bで構成される。また、真空室5は、側壁の上部に室内の雰囲気を排出する排気口5dと、上壁に窓部5cとを有する。真空室5内には、原料7が充填される炭素製ルツボ6と、供給される酸化珪素(SiO)ガスを蒸着させる基板9とが配置される。基板9は、内部を冷却水が流通する構造であり、基板9に冷却水を給排する配管10を有する。
 真空室5の外には、ルツボ6を囲繞するように加熱源である高周波コイル8が配置され、高周波コイル8はルツボ6内に充填された原料を高周波誘導加熱する。また、真空室5の外には、ルツボ内で加熱された原料の温度を測定する放射温度計12と、基板9に蒸着した析出酸化珪素の蒸着面11bの温度を測定する放射温度計13が配置される。加熱された原料を測定する放射温度計12は、ルツボ6の真上に配置され、真空室5の上壁の窓部5cから測定を行う。析出酸化珪素の蒸着面11bを測定する放射温度計13は、真空室を構成する石英管5aに設けられた図示しない窓部から測定を行う。
 同図に示す製造装置を用いて低級酸化珪素粉末を製造する場合、原料として珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料7を用いる。この混合造粒原料7をルツボ6に充填し、真空中で高周波コイル8によって1100~1400℃に加熱して酸化珪素(SiO)ガスを生成(昇華)させる。昇華により発生した酸化珪素ガスは上昇し(同図のハッチングを施した矢印参照)、冷却された基板9上に蒸着し、析出酸化珪素(SiO)11として析出する。
 前述のとおり、析出酸化珪素を得る際、析出酸化珪素11が900~1000℃を超えると、珪素と二酸化珪素とに不均化するおそれがある。このため、放射温度計13により測定される析出酸化珪素の蒸着面11bの温度に応じ、基板9に供給される冷却水量を調整し、放射温度計13により測定される析出酸化珪素の蒸着面11bの温度を950℃以下に制御するとともに、析出酸化珪素の膜厚を8μm以下とする。
 放射温度計13により測定される析出酸化珪素の蒸着面温度を950℃以下に制御することにより、基板の析出酸化珪素の大部分は900℃以下となることから、析出酸化珪素が不均化するのを抑制できる。析出酸化珪素の蒸着面温度は900℃以下に制御するのが好ましい。
 析出酸化珪素の膜厚を8μm以下と薄膜にするのは、析出酸化珪素が厚膜となると、酸化珪素は断熱性が高い(熱伝導性が低い)ことから、析出酸化珪素の蒸着面温度を950℃以下に制御するのが困難となり、析出酸化珪素が不均化するおそれがあるからである。析出酸化珪素の膜厚は、ルツボへの原料充填量を調整することにより、制御することができる。
 析出を終了させた後、基板9から析出酸化珪素11を取り外し、ボールミル等を使用して粉砕することにより、本発明のアモルファスな低級酸化珪素粉末が得られる。
4.導電性炭素皮膜の形成方法
 低級酸化珪素粉末の表面への導電性炭素皮膜の形成は、CVD等により行う。具体的には、装置としてロータリーキルンを用い、ガスとして炭化水素ガスまたは有機物含有ガスと、不活性ガスとの混合ガスを用いて行う。
 導電性炭素皮膜の形成処理温度は600℃~900℃とする。また、処理時間は20~120分とし、形成する導電性炭素皮膜の厚さに応じて設定する。この処理時間は、低級酸化珪素粉末の表面と炭素皮膜との界面近傍にSiCを形成しない範囲である。絶縁体である低級酸化珪素粉末に導電性炭素皮膜を形成することで、この低級酸化珪素粉末を負極材用粉末として用いたリチウムイオン二次電池の放電容量を改善することができる。
5.導電性炭素皮膜を形成した低級酸化珪素粉末の熱処理方法
 導電性炭素皮膜を形成した低級酸化珪素粉末は、600℃~750℃の真空下で、1時間以下の熱処理を施す。熱処理を施す際の真空引きは油拡散ポンプで行い、内圧はピラニー真空計で測りながら、1Pa以下に保つ。これにより、導電性炭素皮膜中に残存するタール成分を除去し、電気伝導度を向上させる。熱処理温度が上記範囲である場合には、酸化珪素と炭素皮膜との界面近傍におけるSiCの生成が抑制される。
6.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
 負極2、すなわち本発明のリチウムイオン二次電池負極を構成する作用極2cに用いる負極材は、本発明のリチウムイオン二次電池負極材用粉末を用いて構成する。具体的には、活物質である本発明のリチウムイオン二次電池負極材用粉末とその他の活物質と導電助材とバインダーとで構成することができる。負極材中の構成材料のうち、バインダーを除いた構成材料の合計に対する本発明のリチウムイオン二次電池負極材用粉末の割合は20質量%以上とする。本発明のリチウムイオン二次電池負極材用粉末以外の活物質は必ずしも添加しなくてもよい。導電助材としては、例えばアセチレンブラックやカーボンブラック、ケッチェンブラックを使用することができ、バインダーとしては例えばポリアクリル酸(PAA)やポリフッ化ビニリデン、PI(ポリイミド)を使用することができる。
 本発明のリチウムイオン二次電池は、上述の本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いたため、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得る。
 また、本発明の負極材用粉末およびこれを用いた負極は、キャパシタにも適用することができる。
 本発明の効果を確認するため、リチウムイオン二次電池を用いた以下の試験を行い、その結果を評価した。
[試験条件]
 前記図7に示す低級酸化珪素の製造装置を用い、前記「3.低級酸化珪素粉末の製造方法」で説明した手順により低級酸化珪素粉末を得た。析出酸化珪素を得る際、放射温度計13により測定される析出酸化珪素の蒸着面11bの温度に応じ、基板に供給される冷却水量を調整し、放射温度計13により測定される析出酸化珪素の蒸着面11bを所定の温度に制御した。また、析出酸化珪素の膜厚は、ルツボへの原料充填量を調整することにより、8μm以下に制御した。
 さらに、放射温度計12により測定される加熱された原料の温度に応じ、高周波コイル8の出力を調整し、加熱される原料の温度を1200℃に制御した。高周波コイル8は、積水化学工業株式会社製、MU-1700Dを用い、加熱された原料および析出した低級酸化珪素の蒸着面の温度を測定する放射温度計は、株式会社チノー製、IR-SAI10Nを用いた。
 基板9から析出酸化珪素を回収する際、作業を容易にするため、基板9の酸化珪素ガスが供給される部分にアルミニウム箔を巻き付け、アルミニウム箔の表面に析出させて析出酸化珪素を得た。得られた析出酸化珪素はアルミニウム箔ごと取り外し、塩酸処理によりアルミニウム箔を溶解させて除去した。アルミニウム箔を除去した析出酸化珪素を、アルミナ製ボールミルを使用して24時間粉砕して平均粒子径(D50)が4.8μmである粉末とした。アルミナ製ボールミルは、ボール直径が20mmであって、ポットがアルミナ製であるのものを用い、回転数を60rpmにして破砕した。
 一部の試験では、前記「4.導電性炭素皮膜の形成方法」および「5.導電性炭素皮膜を形成した低級酸化珪素粉末の熱処理方法」の手順により、低級酸化珪素粉末の表面に導電性炭素皮膜を形成した後、導電性炭素皮膜を形成した低級酸化珪素粉末に熱処理を施した。導電性炭素皮膜を形成する際、装置としてロータリーキルン、ガスとしてCとArとの混合ガスを使用し、20分間に亘って所定の処理温度を保持して行った。導電性炭素皮膜を形成した低級酸化珪素粉末の熱処理は、700℃のArガス雰囲気下で、1時間の条件で行った。導電性炭素皮膜が形成された低級酸化珪素粉末の炭素皮膜率は、いずれも2.5質量%であった。
 得られた低級酸化珪素粉末をCuKα線を用いたX線回折装置で測定し、得られた回折チャートから回折角(2θ)=28.4±0.3°に現れるSi(111)の最強線ピークの有無を調査した。また、低級酸化珪素(SiO)の粉末は、いずれの試験でもBET法で測定した比表面積が0.3~3m/g、かつx=1を満たしていた。
 この低級酸化珪素粉末を用い、前記「2-1.低速充電による初回充電の際の充電電位を求める方法」で説明した手順により、前記図1に示すコイン形状のリチウムイオン二次電池を作製し、作製したリチウムイオン二次電池を用いて低速充電により初回充電する際に容量と電圧とを測定し、得られた初回充電曲線から充電電位を求めた。
 また、作製したコイン形状のリチウムイオン電池を用いて20サイクルの充放電試験を行い、初回および20サイクル目の放電容量を測定し、サイクル特性を調査した。充放電試験は、二次電池充放電試験装置(株式会社ナガノ製)を用いた。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまで、低級酸化珪素粉末の放電容量を1500mAh/gとした時に0.1Cとなる値(低級酸化珪素粉末1gあたり150mA/g)とし、定電流充電を行った。放電は、リチウムイオン二次電池の両極間の電圧が1.0Vに達するまでは0.1Cの定電流放電を行った。
 表4に、試験区分、析出酸化珪素の蒸着面を制御した温度(℃)、導電性炭素皮膜を形成する際の処理温度(℃)、X線回折(XRD)におけるSiピークの有無、低速充電により初回充電した際のLi基準の充電電位(V)、ならびに充放電試験における初回放電容量(mAh/g)、20サイクル目の放電容量(mAh/g)およびサイクル特性(%)を示す。ここで、表4に示すサイクル特性(%)は、20サイクル目の放電容量の初回放電容量に対する維持率である。
Figure JPOXMLDOC01-appb-T000004
[試験結果]
 表4に示す結果より、比較例1および2では、析出酸化珪素を不均化させるために蒸着面を1100および1000℃に制御し、破砕された低級酸化珪素粉末はX線回折においてSiのピークを有し、すなわち低級酸化珪素粉末が不均化した。比較例1および2により得られたリチウムイオン二次電池では、低速充電により初回充電した際に前記図5に示すようにLiシリケートの生成による電位プラトーは観察されず、Li基準の充電電位が0.08および0.18Vとなった。また、サイクル特性は68.2および69.4%となった。
 一方、本発明例3では、析出酸化珪素が不均化するのを抑制するために析出酸化珪素の蒸着面を900℃に制御したが、破砕された低級酸化珪素粉末はX線回折においてSiのピークを有し、低級酸化珪素粉末の一部が不均化した。本発明例3により得られたリチウムイオン二次電池は、初回充電した際のLi基準の充電電位が0.47V、サイクル特性が81.3%となった。
 また、本発明例1および2では、析出酸化珪素が不均化するのを抑制するために析出酸化珪素の蒸着面を700および550℃に制御し、破砕された低級酸化珪素粉末はX線回折においてSiのピークを有さず、すなわち析出酸化珪素が不均化するのを抑制できた。本発明例1および2により得られたリチウムイオン二次電池は、初回充電した際に前記図5に示すようにLiシリケートの生成による電位プラトーが観察され、Li基準の充電電位が0.52および0.59Vであった。また、サイクル特性は82.4および83.4%となった。
 これらから、初回充電した際のLi基準の充電電位と、サイクル特性とが相関関係を有し、初回充電した際のLi基準の充電電位を0.45V以上とすれば、初回充電の際に体積膨張を緩和する能力が高いLiシリケートが均一に生成されることにより、サイクル特性が向上できることが確認できた。
 また、比較例1および2では、初回放電容量が1440および1463mAh/gとなったのに対し、本発明例1~3では、初回放電容量は1485~1522mAh/gとなり、優れた値であった。以上より、本発明の負極材用粉末により、放電容量が大きく、かつサイクル特性が良好なリチウムイオン二次電池を作製できることが明らかになった。
 本発明例4および比較例3では、本発明例1の不均化が抑制された低級酸化珪素粉末の表面に導電性炭素皮膜を形成した。比較例3では、炭素皮膜を形成する際の処理温度を1000℃とし、炭素皮膜が形成された低級酸化珪素粉末は、X線回折においてSiのピークを有し、低級酸化珪素粉末の一部が不均化した。比較例3では、得られたリチウムイオン二次電池は、初回充電した際のLi基準の充電電位が0.33V、サイクル特性が68.6%となった。
 一方、本発明例4では、炭素皮膜を形成する際の処理温度を700℃とし、炭素皮膜が形成された低級酸化珪素粉末は、X線回折においてSiのピークを有さなかった。すなわち、本発明例4では、低級酸化珪素粉末が不均化するのを抑制でき、その低級酸化珪素粉末を用いたリチウムイオン二次電池は、初回充電した際のLi基準の充電電位が0.60Vとなり、サイクル特性は82.0%となった。
 さらに、初回放電容量は、低級酸化珪素粉末の表面に炭素皮膜を形成しなかった本発明例1~3では1485~1522mAh/gであるのに対し、炭素皮膜を形成した本発明例4では1776mAh/gと優れた値であった。このことから、本発明の負極材用粉末は、その表面に導電性炭素皮膜を有することにより、放電容量を大きくできることが明らかになった。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池およびキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。したがって、本発明は、二次電池およびキャパシタの分野において有用な技術である。
 1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、
 2:負極、 2a:作用極ケース、 2b:作用極集電体、
 2c:作用極、 3:セパレーター、 4:ガスケット、
 5:真空室、 5a:石英管、 5b:窓板、 5c:窓部、
 5d:排気口、 6:ルツボ、 7:混合造粒原料、
 8:高周波コイル、 9:基板、 10:冷却水配管、
 11:析出酸化珪素、 11a:基板との界面、 11b:蒸着面、
 12:放射温度計(原料測定用)、 13:放射温度計(蒸着面測定用)

Claims (7)

  1.  低級酸化珪素粉末からなるリチウムイオン二次電池負極材用粉末であって、
     負極材に用いたリチウムイオン二次電池において、初回充電の際にLi基準で0.45~1.0Vに充電電位を有することを特徴とするリチウムイオン二次電池負極材用粉末。
  2.  前記低級酸化珪素粉末の表面に導電性炭素皮膜を有することを特徴とする請求項1に記載のリチウムイオン二次電池負極材用粉末。
  3.  前記導電性炭素皮膜の占める割合が0.2~10質量%であることを特徴とする請求項2に記載のリチウムイオン二次電池負極材用粉末。
  4.  CuKα線を用いたX線回折装置で測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満たすことを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末。
  5.  BET法で測定される比表面積が0.3~5m/gであることを特徴とする請求項1~4のいずれかに記載のリチウムイオン二次電池負極材用粉末。
  6.  請求項1~5のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極またはキャパシタ負極。
  7.  請求項6に記載のリチウムイオン二次電池負極またはキャパシタ負極を用いたリチウムイオン二次電池またはキャパシタ。
PCT/JP2011/005648 2010-10-15 2011-10-07 リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ WO2012049826A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11832271.8A EP2618407A1 (en) 2010-10-15 2011-10-07 Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
US13/877,691 US20130224600A1 (en) 2010-10-15 2011-10-07 Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery and negative electrode for capacitor, and lithium ion secondary battery and capacitor
KR1020137011612A KR101531451B1 (ko) 2010-10-15 2011-10-07 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
JP2012538566A JP5600354B2 (ja) 2010-10-15 2011-10-07 リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
CN201180049094.6A CN103168380B (zh) 2010-10-15 2011-10-07 锂离子二次电池负极材料用粉末、锂离子二次电池负极和电容器负极、以及锂离子二次电池和电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010232503 2010-10-15
JP2010-232503 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012049826A1 true WO2012049826A1 (ja) 2012-04-19

Family

ID=45938067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005648 WO2012049826A1 (ja) 2010-10-15 2011-10-07 リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ

Country Status (6)

Country Link
US (1) US20130224600A1 (ja)
EP (1) EP2618407A1 (ja)
JP (1) JP5600354B2 (ja)
KR (1) KR101531451B1 (ja)
CN (1) CN103168380B (ja)
WO (1) WO2012049826A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300365A1 (en) * 2011-08-30 2014-10-09 Hilti Aktiengesellschaft Diagnosis method and diagnosis apparatus for determining a current capacity of a battery cell in a handheld machine tool
CN104737337A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
WO2016098306A1 (ja) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法
WO2018008260A1 (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
JP2019012646A (ja) * 2017-06-30 2019-01-24 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509358B1 (ko) * 2010-06-14 2015-04-07 오사카 티타늄 테크놀로지스 캄파니 리미티드 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 커패시터 음극, 및, 리튬 이온 이차 전지 및 커패시터
KR101495451B1 (ko) 2010-07-20 2015-02-24 오사카 티타늄 테크놀로지스 캄파니 리미티드 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
WO2013183490A1 (ja) * 2012-06-06 2013-12-12 日本電気株式会社 電解液、これに含まれるエステル化合物の製造方法及びリチウム二次電池
KR101939976B1 (ko) * 2014-04-16 2019-01-18 쇼와 덴코 가부시키가이샤 리튬 이온 전지용 부극재 및 그 용도
JP6389159B2 (ja) * 2015-10-08 2018-09-12 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
US10374225B2 (en) * 2016-04-28 2019-08-06 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
CN109417168B (zh) * 2016-10-19 2021-11-26 株式会社大阪钛技术 氧化硅系负极材料及其制造方法
JP7030185B2 (ja) * 2018-03-30 2022-03-04 株式会社大阪チタニウムテクノロジーズ 酸化珪素粉末の製造方法及び負極材
CN111326717B (zh) * 2018-12-13 2021-11-16 深圳先进技术研究院 铝负极材料、制备方法及二次电池
JP7238764B2 (ja) * 2019-12-25 2023-03-14 トヨタ自動車株式会社 リチウムイオン電池およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP3824047B2 (ja) 2000-02-04 2006-09-20 信越化学工業株式会社 非晶質酸化珪素粉末の製造方法
JP2007027084A (ja) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP3952180B2 (ja) 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2011076788A (ja) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP2011113863A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146350A (ja) * 2002-08-28 2004-05-20 Sii Micro Parts Ltd 非水電解質二次電池
US20050048369A1 (en) * 2003-08-28 2005-03-03 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery, production method thereof and non-aqueous electrolyte secondary battery
US20080135801A1 (en) * 2004-07-29 2008-06-12 Shingo Kizaki Silicon Monoxide Powder For Secondary Battery and Method For Producing the Same
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2006067891A1 (ja) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. 複合負極活物質およびその製造法ならびに非水電解質二次電池
US7776473B2 (en) * 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5196149B2 (ja) * 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5245559B2 (ja) * 2008-06-16 2013-07-24 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP4634515B2 (ja) * 2009-06-19 2011-02-16 株式会社大阪チタニウムテクノロジーズ 珪素酸化物およびリチウムイオン二次電池用負極材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP3824047B2 (ja) 2000-02-04 2006-09-20 信越化学工業株式会社 非晶質酸化珪素粉末の製造方法
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP3952180B2 (ja) 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2007027084A (ja) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2011076788A (ja) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP2011113863A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300365A1 (en) * 2011-08-30 2014-10-09 Hilti Aktiengesellschaft Diagnosis method and diagnosis apparatus for determining a current capacity of a battery cell in a handheld machine tool
US10693130B2 (en) 2012-10-26 2020-06-23 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2913871A1 (en) * 2012-10-26 2015-09-02 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2913871A4 (en) * 2012-10-26 2016-06-08 Hitachi Chemical Co Ltd NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, AND LITHIUM-ION SECONDARY BATTERY
CN104737337A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
US11251421B2 (en) 2012-10-26 2022-02-15 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016098306A1 (ja) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法
JPWO2016098306A1 (ja) * 2014-12-15 2017-08-31 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法
WO2018008260A1 (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
JP2018006190A (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
US10873082B2 (en) 2016-07-04 2020-12-22 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
JP2019012646A (ja) * 2017-06-30 2019-01-24 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2021193672A (ja) * 2017-06-30 2021-12-23 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7279757B2 (ja) 2017-06-30 2023-05-23 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN103168380B (zh) 2016-04-20
JP5600354B2 (ja) 2014-10-01
KR101531451B1 (ko) 2015-06-24
EP2618407A1 (en) 2013-07-24
KR20130076886A (ko) 2013-07-08
US20130224600A1 (en) 2013-08-29
CN103168380A (zh) 2013-06-19
JPWO2012049826A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5600354B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
CN111342030B (zh) 一种多元复合高首效锂电池负极材料及其制备方法
KR101513820B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
JP5584299B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
EP2768051A1 (en) Silicon-based composite and method for manufacturing same
JP2016152077A (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
Ncube et al. The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5909552B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2011148569A1 (ja) リチウムイオン二次電池負極材用粉末およびその製造方法
JP5430761B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP6195936B2 (ja) リチウムイオン二次電池の負極用粉末
US20230166973A1 (en) Negative electrode material for a lithium ion battery
Yang et al. Preparation of silicon oxide coated KS-6 graphite composite anode materials by sol-gel method in lithium ion batteries
Wang et al. Enhanced Electrochemical Performances of Ni-rich Cathode Materials for Lithium Ion Batteries by Mixed Coating Layers
JP6496864B2 (ja) 非水電解質二次電池用負極材の製造方法
Dai et al. Surface Modified Copper Improves the Electrochemical Performance of LiNi0. 5Co0. 2Mn0. 3O2 Cathode Material
Layers The Electrochemical Society of Japan

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049094.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011832271

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137011612

Country of ref document: KR

Kind code of ref document: A