WO2011136061A1 - フレキシブル配線用積層体 - Google Patents
フレキシブル配線用積層体 Download PDFInfo
- Publication number
- WO2011136061A1 WO2011136061A1 PCT/JP2011/059485 JP2011059485W WO2011136061A1 WO 2011136061 A1 WO2011136061 A1 WO 2011136061A1 JP 2011059485 W JP2011059485 W JP 2011059485W WO 2011136061 A1 WO2011136061 A1 WO 2011136061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flexible wiring
- laminate
- copper foil
- copper
- plating
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0607—Wires
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the present invention relates to a laminate for flexible wiring, in which copper plating is applied to the entire surface or locally on a copper foil bonded to an insulating resin substrate, and in particular, it has high flexibility and fine patterning (high density) of wiring.
- the present invention relates to a laminate for flexible wiring that is possible.
- Printed circuit boards based on organic materials consist of hard copper-clad laminates (rigids) composed of glass epoxy and paper phenolic substrates, and flexible copper-clad laminates composed of polyimide or polyester substrates.
- a copper foil is mainly used as a conductive material for a printed wiring board. Copper foils are classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method.
- the flexible printed circuit board is formed by laminating a copper foil on a resin substrate and integrating them with an adhesive or heat and pressure.
- a rolled copper foil is mainly used as a copper foil that is a constituent member of the FPC.
- FPC is widely used in places where wiring to movable parts such as a printer head unit and a drive unit in a hard disk is required, and is bent several million times or more. With the recent miniaturization and high standardization of devices, the demand for this flexibility has become more sophisticated.
- the material of rolled copper foil used for FPC is mainly tough pitch copper (oxygen content of 100 to 500 ppm).
- This tough pitch copper foil is manufactured by hot rolling an ingot and then repeatedly cold rolling and annealing to a predetermined thickness. Then, in order to improve adhesiveness with a resin substrate, rough plating is given to the surface of copper foil. The copper foil after the rough plating is cut and then bonded to the resin substrate.
- a resin layer such as a polyimide resin may be formed on the copper foil.
- the means is not particularly limited, for example, polyamic acid varnish as a raw material (a mixture containing polyamic acid obtained by addition polymerization of aromatic diamines and aromatic dianhydrides in solution) Can be used.
- This polyamic acid varnish is applied onto the copper foil of the present invention and further dried to form a polyamic acid layer as a polyimide precursor layer.
- the obtained polyamic acid layer can be imidized by heating to 300 ° C. to 400 ° C. in an inert atmosphere such as nitrogen to form a polyimide resin layer.
- the thickness of the polyimide resin layer is not particularly limited, but is usually 10 to 50 ⁇ m. Moreover, you may mix
- the adhesive strength of the copper foil of this invention and a polyimide-type resin layer becomes a favorable thing.
- the flexibility of the copper foil is improved by performing recrystallization annealing. Therefore, the copper foil is used as a constituent member of the FPC in an annealed state, and this annealing is performed by heat treatment after rough plating and cutting, or by heating when the copper foil is bonded to the resin substrate. In this way, the reason for performing annealing in the middle of the manufacturing process without using the annealed copper foil from the beginning is that the copper foil is deformed during cutting and bonding with the resin substrate in the soft state after annealing, This is because the foil is wrinkled.
- the FPC In order to increase the flexibility of the FPC, it is effective to increase the flexibility of the copper foil as the material.
- the flexibility of the copper foil after annealing improves as the cubic texture develops.
- the degree of processing in the final rolling is increased, and the crystal grain size in the annealing immediately before the final rolling is reduced. It is effective to do.
- a conductor is formed on both sides of a single-sided flexible printed wiring board in which a conductor layer made of copper foil is formed on one surface of an insulating resin such as a polyimide or polyester substrate and an insulating resin made of polyimide or polyester.
- an insulating resin such as a polyimide or polyester substrate
- an insulating resin made of polyimide or polyester there is a double-sided flexible printed wiring board on which a layer is formed.
- the double-sided flexible printed wiring board is constituted by a copper foil layer with copper plating as a conductor layer.
- Patent Document 1 through holes are formed through a flexible substrate provided with metal layers on both sides of an insulating film, and the periphery of the through holes is etched to reduce the thickness to half that of metal foil ( Next, it is proposed to form a plating layer on the through-hole part and the thinned part of the metal foil, and to conduct the metal foil on the front and back, thereby improving the flexibility and flexibility. ing.
- the through-hole which penetrates is formed in the flexible substrate which provided the metal layer on both surfaces of the insulating film, and only one surface of the through-hole inner surface and the metal layer on both surfaces is plated,
- the other surface of the metal layer is not plated.
- the plating layer since a new plating layer is formed only on one side, the plating layer may be half of one side, and it is estimated that the flexibility or flexibility is improved as compared with the case where it is applied to both sides. .
- the problem in this case is that one side conducts in a large area when conducting from one side to the other side through the through-hole, whereas the other copper layer has the copper layer It is an extremely narrow area with only a partial cross-sectional area.
- the problem in this case is that one side conducts in a large area when conducting from one side to the other side through the through-hole, whereas the other copper layer has the copper layer It is an extremely narrow area with only a partial cross-sectional area.
- a smooth interface is not formed in the copper layer at the time of forming the through hole, there is a problem that conduction with the through hole and further conduction with the other surface cannot be performed.
- the present invention has been made in view of the above problems, and is a laminate for flexible wiring in which copper plating is entirely or locally applied on a copper foil bonded to an insulating resin substrate,
- an object of the present invention is to provide a flexible wiring laminate that has high flexibility and enables fine patterning (high density) of wiring.
- Ratio of area intensity of X-ray peak by X-ray diffraction from the surface of copper plating in a laminate for flexible wiring, in which copper plating is applied to the entire surface or locally on a copper foil bonded to an insulating resin substrate A [(200) / ⁇ (111) + (200) + (220) + (311) ⁇ ] ⁇ 100 is more than 90, 2.
- Laminate for flexible wiring 2. The laminate for flexible wiring as described in 1 above, wherein the copper plating has a thickness of 3 ⁇ m or more and 15 ⁇ m or less. 3.
- the copper foil is a rolled copper foil containing 0.01 to 0.04% by mass of Ag and 0.01 to 0.05% by mass of oxygen with the balance being Cu and inevitable impurities.
- the laminate for flexible wiring according to any one of 1 to 6 above is provided.
- a flexible wiring laminate in which copper plating is applied to the entire surface or locally on a copper foil bonded to an insulating resin substrate is particularly flexible and allows fine patterning (high density) of wiring. It has the outstanding effect that a certain laminated body for flexible wiring can be provided.
- it can be applied to any of the double-sided flexible printed wiring boards rather than the single-sided flexible wiring board, and has an effect that the flexibility (flexibility) can be improved.
- FIG. It is a figure which shows the evaluation result of each X-ray diffraction intensity of Example 1, the comparative example 1, and the comparative example 2.
- FIG. It is a figure explaining the outline
- the area intensity of the X-ray peak by X-ray diffraction on the surface of this copper plating is also affected by the copper layer. If the area intensity ratio of the X-ray peak on the final plating surface is within the above conditions, flexible wiring
- the high flexibility (flexibility) of the laminated body for use can be improved.
- a flexible wiring laminate having high flexibility (flexibility) can be obtained.
- a polyimide resin or a polyester resin substrate can be suitably used as the insulating resin substrate.
- the insulating resin substrate is not necessarily limited to the above, and other resins can be used as long as they have flexibility (flex resistance) and thermal adhesiveness with copper foil. .
- X-ray diffraction intensity measurement of the laminate for flexible wiring of the present invention to which copper plating is applied can be performed as follows.
- a copper foil and an insulating polyimide resin with an adhesive (CISV1215 manufactured by Nikkan Kogyo) are bonded together by hot pressing (180 ° C .: 60 minutes) to produce a copper-clad laminate.
- the copper foil surface (glossy surface) of the copper-clad laminate is subjected to surface cleaning (pickling), and then copper plating is performed. Thereby, the laminated body for flexible wiring which formed the copper foil with copper plating is produced.
- the cross-section is observed in a state where the copper plating is applied on the copper foil, the depth direction from the plating surface is set as the thickness, the arbitrary value of 10 points is measured, the maximum value is taken, and the point It is desirable to measure the X-ray diffraction intensity. However, if it is a part known as a thick part from the structure of the laminated body for flexible wiring, the part may be set to the maximum value.
- the laminated body for flexible wiring is a desirable form in which the thickness of the copper plating is 3 ⁇ m or more and 15 ⁇ m or less. Also in this case, since the thickness of the copper plating of the laminate for flexible wiring may fluctuate, this preferable condition is also a desirable condition that the thickest portion of the copper plating thickness is 3 ⁇ m or more and 15 ⁇ m or less.
- This invention provides the laminated body for flexible wiring of this preferable conditions.
- the thickness of the copper plating can be easily calculated by subtracting the thicknesses of the known resin film and copper foil from the total thickness (total thickness) of the flexible wiring laminate.
- the crystal grain size of the cross section of the copper plating portion is 20 ⁇ m or more.
- the crystal grain size has a spherical shape, an elliptical shape, a rectangular shape, and the like. In this case, the above numerical value means a long diameter.
- the present invention provides such a laminate for flexible wiring.
- the cross-sectional crystal grain size of the copper foil portion is desirably 30 ⁇ m or more.
- the crystal grain size has a spherical shape, an elliptical shape, a rectangular shape, and the like. In this case, the above numerical value means a long diameter.
- the present invention provides such a laminate for flexible wiring.
- the area intensity of the X-ray peak by the X-ray diffraction of the copper foil is more preferably set to 95 or more in the ratio A of the area intensity of the X-ray peak higher than the copper plating.
- the present invention further provides such a laminate for flexible wiring.
- the copper foil As the most preferable material for the copper foil, a rolled copper foil containing 0.01 to 0.04% by mass of Ag and 0.01 to 0.05% by mass of oxygen with the balance being Cu and inevitable impurities can be recommended. .
- This material is a copper foil characterized by excellent flexibility.
- a rolled copper foil containing 0.001 to 0.009 mass% of Sn and having the balance of Cu and inevitable impurities may be used as the highly flexible copper foil.
- the thickness of the copper foil is required to be 18 ⁇ m or less, more preferably 3 to 12 ⁇ m in order to be used as a high-density wiring, but the copper foil treatment of the present invention is not limited to such thickness. It can also be applied to ultra thin foils or thick copper foils. Further, as a roughening treatment and other surface treatments, a chrome-based metal, a zinc-based metal, and an organic rust preventive treatment can be performed as necessary. In addition, a coupling treatment such as silane can be performed. These are suitably selected according to the use of the copper foil of a printed wiring board, and this invention includes all these.
- Example 1 A polyimide resin with an adhesive having a thickness of 27.5 ⁇ m is used as the insulating resin substrate, and 0.02% by mass of Ag and 0.02% by mass of oxygen are contained as the copper foil, and the remainder is Cu and inevitable impurities.
- An 18 ⁇ m thick rolled copper foil was used.
- a rolled copper foil was placed on one side of the polyimide resin and joined by thermocompression at 180 ° C. for 60 minutes. Next, copper was formed to a thickness of 10 ⁇ m on the rolled copper foil adhered to one surface of the polyimide resin with a current density of 1 A / dm 2 under the above copper plating conditions.
- the thickness of the plating layer is calculated by subtracting the known resin film and copper foil thicknesses from the total thickness (total thickness) of the flexible wiring laminate. .
- bending evaluation was performed under the conditions of a bending radius of 2.0 mm, a stroke of 50 mm, and a bending speed of 30 times / minute.
- the bending radius was set to half the distance between the upper and lower boards, and the number of bendings was set to the number of times the movable part board reciprocated per minute.
- the electrical resistance of the circuit was measured at the same time, and the time when the rate of increase in electrical resistance reached 20% or more was regarded as the number of breaks. The result is shown in FIG. As a result, the number of bendings until the breakage exceeded 2500 times.
- Example 2 A polyimide resin with an adhesive having a thickness of 27.5 ⁇ m is used as the insulating resin substrate, and 0.02% by mass of Ag and 0.02% by mass of oxygen are contained as the copper foil, and the remainder is Cu and inevitable impurities.
- An 18 ⁇ m thick rolled copper foil was used.
- a rolled copper foil was placed on one side of the polyimide resin and joined by thermocompression at 180 ° C. for 60 minutes.
- copper was formed in a thickness of 10 ⁇ m on the rolled copper foil adhered to one surface of the polyimide resin at a current density of 4 A / dm 2 under the above copper plating conditions.
- the thickness of the plating layer is calculated by subtracting the known resin film and copper foil thicknesses from the total thickness (total thickness) of the flexible wiring laminate. .
- bending evaluation was performed under the conditions of a bending radius of 2.0 mm, a stroke of 50 mm, and a bending speed of 30 times / minute.
- the bending radius was set to half the distance between the upper and lower boards, and the number of bendings was set to the number of times the movable part board reciprocated per minute.
- the electrical resistance of the circuit was measured at the same time, and the time when the rate of increase in electrical resistance reached 20% or more was regarded as the number of breaks. The result is shown in FIG. As a result, the number of bendings until the breakage exceeded 2500 times.
- Comparative Example 1 As Comparative Example 1, as in Example 1, a 27.5 ⁇ m thick polyimide resin with an adhesive was used as an insulating resin substrate, and 0.02% by mass of Ag and 0.02% by mass of oxygen were used as a copper foil. An 18 ⁇ m thick rolled copper foil containing Cu and inevitable impurities was used. A rolled copper foil was placed on one side of the polyimide resin and joined by thermocompression at 180 ° C. for 60 minutes. Next, copper was formed in a thickness of 10 ⁇ m on the rolled copper foil adhered to one surface of the polyimide resin at a current density of 6 A / dm 2 under the above copper plating conditions. The thickness of the plating layer is calculated by subtracting the known resin film and copper foil thicknesses from the total thickness (total thickness) of the flexible wiring laminate. .
- Table 1 shows each peak intensity, total, and A value. As shown in Table 1, the peak area intensity of (200) of XRD reached 613, and reached 30% (A value) of the total 2053 of the other peak area intensity. This deviated from the conditions of the present invention.
- bending evaluation was performed under the conditions of a bending radius of 2.0 mm, a stroke of 50 mm, and a bending speed of 30 times / minute.
- the bending radius was set to half the distance between the upper and lower boards, and the number of bendings was set to the number of times the movable part board reciprocated per minute.
- the electrical resistance of the circuit was measured at the same time, and the time when the rate of increase in electrical resistance reached 20% or more was regarded as the number of breaks. The result is shown in FIG. As a result, the number of bendings until the breakage was about 1500 times.
- Comparative Example 2 As Comparative Example 2, as in Example 1, a 27.5 ⁇ m thick polyimide resin with an adhesive was used as an insulating resin substrate, and a 18 ⁇ m thick tough pitch rolled copper foil was used as a copper foil. A rolled copper foil was placed on one side of the polyimide resin and joined by thermocompression at 180 ° C. for 60 minutes. Next, copper was formed in a thickness of 10 ⁇ m on a rolled copper foil adhered to one surface of a polyimide resin under the same copper plating conditions as in Example 1 with a current density of 1 A / dm 2. In addition, the thickness of this plating layer deducts the thickness of the resin film and copper foil which are respectively known from the whole thickness (total thickness) of the laminated body for flexible wiring like Example 1. It is calculated by this.
- a circuit was formed through a resist film pressure bonding / exposure / etching / peeling procedure.
- a circuit of line / space 300 ⁇ m / 300 ⁇ m was used.
- the circuit board produced using this laminate for flexible wiring was subjected to a bending test using the same bending test apparatus as in Example 1.
- the circuit board sample on which the circuit was formed was attached to a slide bending test apparatus with the polyimide resin surface facing outward and the circuit surface facing inward.
- bending evaluation was performed under the conditions of a bending radius of 2.0 mm, a stroke of 50 mm, and a bending speed of 30 times / minute.
- the bending radius was set to half the distance between the upper and lower boards, and the number of bendings was set to the number of times the movable part board reciprocated per minute.
- the electrical resistance of the circuit was measured at the same time, and the time when the rate of increase in electrical resistance reached 20% or more was regarded as the number of breaks. The result is shown in (2) of FIG. As a result, the number of bendings until the breakage did not exceed 1000, and was slightly over 500.
- Comparative Example 3 As Comparative Example 3, as in Example 1, a 27.5 ⁇ m thick polyimide resin with an adhesive was used as the insulating resin substrate, and an 18 ⁇ m thick electrolytic copper foil was used as the copper foil. An electrolytic copper foil was placed on one side of the polyimide resin and bonded by thermocompression at 180 ° C. for 60 minutes. Next, copper was formed in a thickness of 10 ⁇ m on the electrolytic copper foil adhered to one side of the polyimide resin under the above-described copper plating conditions similar to Example 1 at a current density of 1 A / dm 2. In addition, the thickness of this plating layer deducts the thickness of the resin film and copper foil which are respectively known from the whole thickness (total thickness) of the laminated body for flexible wiring like Example 1. It is calculated by this.
- a circuit was formed through a resist film pressure bonding / exposure / etching / peeling procedure.
- a circuit of line / space 300 ⁇ m / 300 ⁇ m was used.
- the circuit board produced using this laminate for flexible wiring was subjected to a bending test using the same bending test apparatus as in Example 1.
- the circuit board sample on which the circuit was formed was attached to a slide bending test apparatus with the polyimide resin surface facing outward and the circuit surface facing inward.
- bending evaluation was performed under the conditions of a bending radius of 2.0 mm, a stroke of 50 mm, and a bending speed of 30 times / minute.
- the bending radius was set to half the distance between the upper and lower boards, and the number of bendings was set to the number of times the movable part board reciprocated per minute.
- the electrical resistance of the circuit was measured at the same time, and the time when the rate of increase in electrical resistance reached 20% or more was regarded as the number of breaks. The result is shown in (2) of FIG. As a result, the number of bends until breakage did not exceed 500, and the bendability was extremely poor.
- the present invention is a laminated body for flexible wiring in which copper plating is applied to the entire surface or locally on a copper foil bonded to an insulating resin substrate, and is particularly flexible and has a fine wiring pattern (high density). It is possible to provide a laminate for flexible wiring that can be provided. It is possible to provide a flexible wiring laminate that can be applied to either a case where copper plating is applied to the entire surface of a copper foil bonded to an insulating resin substrate or a case where it is locally applied to the periphery of a through hole. In addition, since it can be applied to any double-sided flexible printed wiring board rather than a single-sided flexible wiring board and has high flexibility and fine wiring (high density) of wiring, it is extremely useful as a laminate for flexible wiring.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
ポリイミド系樹脂層の厚みは特に限定されないが、通常10~50μmとする。また、ポリアミック酸ワニスには、必要に応じて従来公知の添加剤を配合してもよい。このようにして得られるフレキシブルプリント基板においては、本発明の銅箔とポリイミド系樹脂層との接着強度が良好なものとなる。
1.絶縁性樹脂基板に張り合わせた銅箔上に銅めっきが全面または局部的に施されているフレキシブル配線用積層体において、前記銅めっきの表面からのX線回折によるX線ピークの面積強度の比A=[(200)/{(111)+(200)+(220)+(311)}]×100が90を超えていることを特徴とするフレキシブル配線用積層体
2.前記銅めっきの厚みが3μm以上、15μm以下であることを特徴とする前記1に記載のフレキシブル配線用積層体
3.前記銅めっき部分の断面の結晶粒径が20μm以上であることを特徴とする前記1又は2に記載のフレキシブル配線用積層体
4.前記フレキシブル配線用積層体の銅箔部分の断面結晶粒径が30μm以上であることを特徴とする前記1-3のいずれか一項に記載のフレキシブル配線用積層体
5.フレキシブル配線用積層体の銅めっきを除去した後の銅箔のX線回折によるX線ピークの面積強度の比A=[(200)/{(111)+(200)+(220)+(311)}]×100が95以上であることを特徴とする前記1-4のいずれか一項に記載のフレキシブル配線用積層体
6.350°C30分焼鈍後のX線回折によるX線ピークの面積強度の比A=[(200)/{(111)+(200)+(220)+(311)}]×100が95以上である銅箔を用いることを特徴とする前記1-5のいずれか一項に記載のフレキシブル配線用積層体
7.前記銅箔が、Agを0.01~0.04質量%、酸素0.01~0.05質量%を含有し、残余がCu及び不可避的不純物である圧延銅箔であることを特徴とする前記1-6のいずれか一項に記載のフレキシブル配線用積層体、を提供する。
この場合、絶縁性樹脂基板に張り合わせた銅箔上に銅めっきを全面に施す場合、またはスルーホールの周縁に局部的に施す場合、のいずれにも適用できるフレキシブル配線用積層体を提供できる。
また、片面フレキシブル配線板よりも両面フレキシブルプリント配線板のいずれにも適用でき、屈曲性(可撓性)を向上させることが可能であるという効果を有する。
絶縁性樹脂基板としては、ポリイミド樹脂又はポリエステル樹脂基板を好適に使用することができる。なお、この絶縁性樹脂基板は上記に限定される必要はなく、可撓性(耐屈曲性)、銅箔との熱接着性を備えているならば、他の樹脂を用いることも可能である。
銅めっきを施した本発明のフレキシブル配線用積層体のX線回折強度測定は次のようにして行うことができる。
銅箔と接着剤付き絶縁性ポリイミド樹脂(ニッカン工業製CISV1215)を熱プレス(180°C:60分)により貼り合わせ、銅張り積層体を作製する。次に、この銅張り積層体の銅箔面(光沢面)を表面洗浄(酸洗)した後、銅めっきを行う。これによって、銅めっき付き銅箔を形成したフレキシブル配線用積層体を作製する。
銅として同定される各ピーク、(111)、(200)、(220)、(311)のピーク強度から、X線回折強度比A=[(200)/{(111)+(200)+(220)+(311)}]×100を導出する。
フレキシブル配線用積層体の銅めっきの厚みに対してX線回折強度が変化する場合がある。したがって、上記X線回折強度比A=[(200)/{(111)+(200)+(220)+(311)}]×100は、「銅めっきの最大厚み」に対して測定することが必要である。この場合、銅箔の上に銅めっきを施している状態で断面を観察し、めっき表面からの深さ方向を厚みとして、任意の点10点を測定にその最大値をとって、その地点のX線回折強度を測定するのが望ましい。
但し、フレキシブル配線用積層体の構造上から、厚い部分とわかっている部分であればその部分を最大値とすることで良い。
このように、フレキシブル配線用積層体としては厚い部分が、本発明の条件を満たしていれば、それ以下の銅めっき部分は、必然的に本発明の条件を満たすことができる。
銅めっきの厚さは、フレキシブル配線用積層体の全体の厚さ(合計の厚さ)から、既知である樹脂フィルムと銅箔の厚さを、それぞれ差し引くことにより容易に算出できる。
また、粗化処理およびその他の表面処理として、必要に応じてクロム系金属、亜鉛系金属、有機系の防錆処理を施すことができる。また、シラン等のカップリング処理を施すこともできる。
これらは、プリント配線基板の銅箔の用途に応じて適宜選択されるものであり、本発明はこれらを全て包含する。
めっき液
銅 18~25g/L
硫酸 150~200g/L
ロームアンドハース社製 カパーグリーム CLX-A,B 5~10mL/L
温度 25℃
空気攪拌あり
なお、本発明との対比のために、比較例を掲載した。
絶縁性樹脂基板として27.5μm厚の接着剤付きポリイミド樹脂を使用し、また銅箔としてAgを0.02質量%、酸素0.02質量%を含有し、残余がCu及び不可避的不純物である18μm厚の圧延銅箔を使用した。ポリイミド樹脂の片面に圧延銅箔を配置し、180°C、60分間の熱圧着により接合した。
次に、上記の銅めっき条件で、電流密度を1A/dm2にてポリイミド樹脂の片面に接着した圧延銅箔上に、銅を10μm厚に形成した。なお、このめっき層の厚さは、フレキシブル配線用積層体の全体の厚さ(合計の厚さ)から、既知である樹脂フィルムと銅箔の厚さを、それぞれ差し引くことにより算出したものである。
この結果を、図1の(1)に示す。また、各ピーク強度と合計及び前記A値を表1に示す。図1の(1)に示すように、1本のXRDの(200)ピークが明瞭であり、表1に示すように、XRDの(200)のピーク面積強度は36536に達し、他のピーク面積強度の合計37530の97%(A値)に達した。
このフレキシブル配線用積層体を用いて作製した回路板について、屈曲試験を実施した。この屈曲試験装置の模式図を図2に示す。図2に示すスライド屈曲試験装置を用いて、上記回路形成を行った回路板のサンプルにつき、ポリイミド樹脂表面を外側方向、回路表面を内側方向になるようにして、スライド屈曲試験装置に取り付けた。
絶縁性樹脂基板として27.5μm厚の接着剤付きポリイミド樹脂を使用し、また銅箔としてAgを0.02質量%、酸素0.02質量%を含有し、残余がCu及び不可避的不純物である18μm厚の圧延銅箔を使用した。ポリイミド樹脂の片面に圧延銅箔を配置し、180°C、60分間の熱圧着により接合した。
次に、上記の銅めっき条件で、電流密度を4A/dm2にてポリイミド樹脂の片面に接着した圧延銅箔上に、銅を10μm厚に形成した。なお、このめっき層の厚さは、フレキシブル配線用積層体の全体の厚さ(合計の厚さ)から、既知である樹脂フィルムと銅箔の厚さを、それぞれ差し引くことにより算出したものである。
各ピーク強度と合計及び前記A値を表1に示す。表1に示すように、XRDの(200)のピーク面積強度は47101に達し、他のピーク面積強度の合計47601の99%(A値)に達した。
このフレキシブル配線用積層体を用いて作製した回路板について、屈曲試験を実施した。この屈曲試験装置の模式図を図2に示す。図2に示すスライド屈曲試験装置を用いて、上記回路形成を行った回路板のサンプルにつき、ポリイミド樹脂表面を外側方向、回路表面を内側方向になるようにして、スライド屈曲試験装置に取り付けた。
比較例1として、実施例1と同様に、絶縁性樹脂基板として27.5μm厚の接着剤付きポリイミド樹脂を使用し、また銅箔としてAgを0.02質量%、酸素0.02質量%を含有し、残余がCu及び不可避的不純物である18μm厚の圧延銅箔を使用した。ポリイミド樹脂の片面に圧延銅箔を配置し、180°C、60分間の熱圧着により接合した。
次に、上記の銅めっき条件で、電流密度を6A/dm2にてポリイミド樹脂の片面に接着した圧延銅箔上に、銅を10μm厚に形成した。なお、このめっき層の厚さは、フレキシブル配線用積層体の全体の厚さ(合計の厚さ)から、既知である樹脂フィルムと銅箔の厚さを、それぞれ差し引くことにより算出したものである。
各ピーク強度と合計及び前記A値を表1に示す。表1に示すように、XRDの(200)のピーク面積強度は613に達し、他のピーク面積強度の合計2053の30%(A値)に達した。これは、本願発明の条件から逸脱していた。
このフレキシブル配線用積層体を用いて作製した回路板について、屈曲試験を実施した。この屈曲試験装置の模式図を図2に示す。図2に示すスライド屈曲試験装置を用いて、上記回路形成を行った回路板のサンプルにつき、ポリイミド樹脂表面を外側方向、回路表面を内側方向になるようにして、スライド屈曲試験装置に取り付けた。
比較例2として、実施例1と同様に、絶縁性樹脂基板として27.5μm厚の接着剤付きポリイミド樹脂を使用し、また銅箔として18μm厚のタフピッチ圧延銅箔を使用した。
ポリイミド樹脂の片面に圧延銅箔を配置し、180°C、60分間の熱圧着により接合した。次に、実施例1と同様の上記の銅めっき条件で、電流密度を1A/dm2にてポリイミド樹脂の片面に接着した圧延銅箔上に、銅を10μm厚に形成した。なお、このめっき層の厚さは、実施例1と同様に、フレキシブル配線用積層体の全体の厚さ(合計の厚さ)から、既知である樹脂フィルムと銅箔の厚さを、それぞれ差し引くことにより算出したものである。
この結果を、図1の(2)に示す。また、各ピーク強度と合計及び前記A値を表1に示す。図1の(2)に示すように、XRDの(200)ピーク以外にも他のピークが存在した。表1に示すように、XRDの(200)のピーク面積強度は2800で、他のピーク面積強度の合計3336の84%(A値)であった。これは、本願発明の条件から逸脱していた。
このフレキシブル配線用積層体を用いて作製した回路板について、実施例1と同様の屈曲試験装置を用いて屈曲試験を実施した。上記回路形成を行った回路板のサンプルにつき、ポリイミド樹脂表面を外側方向、回路表面を内側方向になるようにして、スライド屈曲試験装置に取り付けた。
比較例3として、実施例1と同様に、絶縁性樹脂基板として27.5μm厚の接着剤付きポリイミド樹脂を使用し、また銅箔として18μm厚の電解銅箔を使用した。ポリイミド樹脂の片面に電解銅箔を配置し、180°C、60分間の熱圧着により接合した。
次に、実施例1と同様の上記の銅めっき条件で、電流密度を1A/dm2にて、ポリイミド樹脂の片面に接着した電解銅箔上に、銅を10μm厚に形成した。なお、このめっき層の厚さは、実施例1と同様に、フレキシブル配線用積層体の全体の厚さ(合計の厚さ)から、既知である樹脂フィルムと銅箔の厚さを、それぞれ差し引くことにより算出したものである。
この結果を、図1の(3)に示す。また、各ピーク強度と合計及び前記A値を表1に示す。図1の(3)に示すように、XRDの(200)ピーク以外にも、多数の他のピークが存在した。表1に示すように、XRDの(200)のピーク面積強度は602で、他のピーク面積強度の合計2230の27%(A値)であった。これは、本願発明の条件から著しく逸脱していた。
このフレキシブル配線用積層体を用いて作製した回路板について、実施例1と同様の屈曲試験装置を用いて屈曲試験を実施した。上記回路形成を行った回路板のサンプルにつき、ポリイミド樹脂表面を外側方向、回路表面を内側方向になるようにして、スライド屈曲試験装置に取り付けた。
Claims (7)
- 絶縁性樹脂基板に張り合わせた銅箔上に銅めっきが全面または局部的に施されているフレキシブル配線用積層体において、前記銅めっきの表面のX線回折によるX線ピークの面積強度の比A=[(200)/{(111)+(200)+(220)+(311)}]×100が90を超えていることを特徴とするフレキシブル配線用積層体。
- 前記銅めっきの厚みが3μm以上、15μm以下であることを特徴とする請求項1に記載のフレキシブル配線用積層体。
- 前記銅めっき部分の断面の結晶粒径が20μm以上であることを特徴とする請求項1又は2に記載のフレキシブル配線用積層体。
- 前記フレキシブル配線用積層体の銅箔部分の断面結晶粒径が30μm以上であることを特徴とする請求項1-3のいずれか一項に記載のフレキシブル配線用積層体。
- フレキシブル配線用積層体の銅めっきを除去した後の銅箔のX線回折によるX線ピークの面積強度の比A=[(200)/{(111)+(200)+(220)+(311)}]×100が95以上であることを特徴とする請求項1-4のいずれか一項に記載のフレキシブル配線用積層体。
- 350°C30分焼鈍後のX線回折によるX線ピークの面積強度の比A=[(200)/{(111)+(200)+(220)+(311)}]×100が95以上である銅箔を用いることを特徴とする請求項1-5のいずれか一項に記載のフレキシブル配線用積層体。
- 前記銅箔が、Agを0.01~0.04質量%、酸素0.01~0.05質量%を含有し、残余がCu及び不可避的不純物である圧延銅箔であることを特徴とする請求項1-6のいずれか一項に記載のフレキシブル配線用積層体。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2012075008A SG184814A1 (en) | 2010-04-30 | 2011-04-18 | Laminate for flexible wiring |
US13/643,626 US20130071652A1 (en) | 2010-04-30 | 2011-04-18 | Laminate for flexible wiring |
CN201180009052.XA CN102753733B (zh) | 2010-04-30 | 2011-04-18 | 挠性布线板用层压体 |
KR1020127016240A KR101318051B1 (ko) | 2010-04-30 | 2011-04-18 | 플렉시블 배선판용 적층체 |
EP11774844A EP2565298A1 (en) | 2010-04-30 | 2011-04-18 | Laminate for flexible wiring |
JP2012512776A JP5514897B2 (ja) | 2010-04-30 | 2011-04-18 | フレキシブル配線用積層体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010105503 | 2010-04-30 | ||
JP2010-105503 | 2010-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011136061A1 true WO2011136061A1 (ja) | 2011-11-03 |
Family
ID=44861368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/059485 WO2011136061A1 (ja) | 2010-04-30 | 2011-04-18 | フレキシブル配線用積層体 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20130071652A1 (ja) |
EP (1) | EP2565298A1 (ja) |
JP (1) | JP5514897B2 (ja) |
KR (1) | KR101318051B1 (ja) |
CN (1) | CN102753733B (ja) |
MY (1) | MY160926A (ja) |
SG (1) | SG184814A1 (ja) |
TW (2) | TWI526553B (ja) |
WO (1) | WO2011136061A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014159608A (ja) * | 2013-02-19 | 2014-09-04 | Sumitomo Metal Mining Co Ltd | フレキシブル配線板の製造方法ならびにフレキシブル配線板 |
US10602620B2 (en) | 2016-02-09 | 2020-03-24 | Jx Nippon Mining & Metals Corporation | Laminate for printed wiring board, method of manufacturing printed wiring board, and method of manufacturing electronic device |
JP2023514919A (ja) * | 2021-01-20 | 2023-04-12 | トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド | 銅箔積層フィルム、それを含む電子素子、及び該銅箔積層フィルムの製造方法 |
JP7550599B2 (ja) | 2020-10-14 | 2024-09-13 | 日東電工株式会社 | 金属層、導電性フィルム、および、金属層の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI542739B (zh) * | 2014-03-21 | 2016-07-21 | 長春石油化學股份有限公司 | 電解銅箔 |
KR101721314B1 (ko) * | 2015-05-21 | 2017-03-29 | 제이엑스금속주식회사 | 압연 동박, 구리 피복 적층판, 그리고 플렉시블 프린트 기판 및 전자 기기 |
CN115279929A (zh) | 2020-03-06 | 2022-11-01 | 三菱综合材料株式会社 | 纯铜板、铜-陶瓷接合体、绝缘电路基板 |
TWI749818B (zh) * | 2020-10-22 | 2021-12-11 | 元智大學 | 金屬導線結構改質方法 |
TWI825562B (zh) * | 2021-01-20 | 2023-12-11 | 南韓商東麗先端素材股份有限公司 | 覆銅層壓膜、包括其的電子元件以及所述覆銅層壓膜的製造方法 |
KR102548431B1 (ko) * | 2021-09-03 | 2023-06-27 | 도레이첨단소재 주식회사 | 동박적층필름 및 이를 포함하는 전자소자 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08325781A (ja) * | 1995-03-31 | 1996-12-10 | Honda Motor Co Ltd | 機能性Cu皮膜 |
JP2003188535A (ja) | 2001-12-17 | 2003-07-04 | Nitto Denko Corp | 両面フレキシブル配線板およびその製造方法 |
JP2005097676A (ja) * | 2003-09-25 | 2005-04-14 | Toppan Printing Co Ltd | 銅めっき皮膜及びそれを用いたグラビア版並びにレンズ金型 |
JP2005251926A (ja) | 2004-03-03 | 2005-09-15 | Sumitomo Bakelite Co Ltd | 回路基板の製造方法および回路基板 |
JP2006179537A (ja) * | 2004-12-21 | 2006-07-06 | Nikko Kinzoku Kk | 高周波回路用粗化処理圧延銅箔及びその製造方法 |
JP2009132967A (ja) * | 2007-11-30 | 2009-06-18 | Meltex Inc | 銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤及びその酸性脱脂剤を用いて前処理した銅又は銅合金表面への電気銅めっき方法 |
WO2010110259A1 (ja) * | 2009-03-23 | 2010-09-30 | 日鉱金属株式会社 | 二層フレキシブル基板、及びその製造に用いる銅電解液 |
JP2011017036A (ja) * | 2009-07-07 | 2011-01-27 | Ebara-Udylite Co Ltd | 銅めっき方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3568312A (en) * | 1968-10-04 | 1971-03-09 | Hewlett Packard Co | Method of making printed circuit boards |
US4992144A (en) * | 1987-02-24 | 1991-02-12 | Polyonics Corporation | Thermally stable dual metal coated laminate products made from polyimide film |
JP2775647B2 (ja) * | 1989-11-17 | 1998-07-16 | 宇部興産株式会社 | メタライズドポリイミドフィルムの製法 |
US5112462A (en) * | 1990-09-13 | 1992-05-12 | Sheldahl Inc. | Method of making metal-film laminate resistant to delamination |
CN1198652A (zh) * | 1997-05-06 | 1998-11-11 | 华通电脑股份有限公司 | 喷沙形成盲孔的多层电路板制法 |
US6129982A (en) * | 1997-11-28 | 2000-10-10 | Ube Industries, Ltd. | Aromatic polyimide film having improved adhesion |
JP3856582B2 (ja) * | 1998-11-17 | 2006-12-13 | 日鉱金属株式会社 | フレキシブルプリント回路基板用圧延銅箔およびその製造方法 |
JP2005142387A (ja) * | 2003-11-07 | 2005-06-02 | Nippon Mektron Ltd | 可撓性回路基板 |
JP4756194B2 (ja) * | 2005-02-22 | 2011-08-24 | 新日鐵化学株式会社 | 銅張積層板の製造方法 |
JP4354930B2 (ja) * | 2005-04-28 | 2009-10-28 | 日鉱金属株式会社 | 銅張積層基板用低光沢圧延銅箔 |
JP2007182623A (ja) * | 2005-12-08 | 2007-07-19 | Mitsui Mining & Smelting Co Ltd | 金属薄体の製造方法 |
JP2009292090A (ja) * | 2008-06-06 | 2009-12-17 | Nippon Mining & Metals Co Ltd | 屈曲性に優れた二層フレキシブル銅貼積層板およびその製造方法 |
-
2011
- 2011-04-18 KR KR1020127016240A patent/KR101318051B1/ko active IP Right Grant
- 2011-04-18 SG SG2012075008A patent/SG184814A1/en unknown
- 2011-04-18 EP EP11774844A patent/EP2565298A1/en not_active Withdrawn
- 2011-04-18 WO PCT/JP2011/059485 patent/WO2011136061A1/ja active Application Filing
- 2011-04-18 MY MYPI2012004576A patent/MY160926A/en unknown
- 2011-04-18 CN CN201180009052.XA patent/CN102753733B/zh active Active
- 2011-04-18 JP JP2012512776A patent/JP5514897B2/ja active Active
- 2011-04-18 US US13/643,626 patent/US20130071652A1/en not_active Abandoned
- 2011-04-21 TW TW100113875A patent/TWI526553B/zh active
- 2011-04-21 TW TW105103467A patent/TWI600778B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08325781A (ja) * | 1995-03-31 | 1996-12-10 | Honda Motor Co Ltd | 機能性Cu皮膜 |
JP2003188535A (ja) | 2001-12-17 | 2003-07-04 | Nitto Denko Corp | 両面フレキシブル配線板およびその製造方法 |
JP2005097676A (ja) * | 2003-09-25 | 2005-04-14 | Toppan Printing Co Ltd | 銅めっき皮膜及びそれを用いたグラビア版並びにレンズ金型 |
JP2005251926A (ja) | 2004-03-03 | 2005-09-15 | Sumitomo Bakelite Co Ltd | 回路基板の製造方法および回路基板 |
JP2006179537A (ja) * | 2004-12-21 | 2006-07-06 | Nikko Kinzoku Kk | 高周波回路用粗化処理圧延銅箔及びその製造方法 |
JP2009132967A (ja) * | 2007-11-30 | 2009-06-18 | Meltex Inc | 銅又は銅合金表面への電気銅めっきの前処理に用いる酸性脱脂剤及びその酸性脱脂剤を用いて前処理した銅又は銅合金表面への電気銅めっき方法 |
WO2010110259A1 (ja) * | 2009-03-23 | 2010-09-30 | 日鉱金属株式会社 | 二層フレキシブル基板、及びその製造に用いる銅電解液 |
JP2011017036A (ja) * | 2009-07-07 | 2011-01-27 | Ebara-Udylite Co Ltd | 銅めっき方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014159608A (ja) * | 2013-02-19 | 2014-09-04 | Sumitomo Metal Mining Co Ltd | フレキシブル配線板の製造方法ならびにフレキシブル配線板 |
US10602620B2 (en) | 2016-02-09 | 2020-03-24 | Jx Nippon Mining & Metals Corporation | Laminate for printed wiring board, method of manufacturing printed wiring board, and method of manufacturing electronic device |
JP7550599B2 (ja) | 2020-10-14 | 2024-09-13 | 日東電工株式会社 | 金属層、導電性フィルム、および、金属層の製造方法 |
JP2023514919A (ja) * | 2021-01-20 | 2023-04-12 | トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド | 銅箔積層フィルム、それを含む電子素子、及び該銅箔積層フィルムの製造方法 |
JP7513717B2 (ja) | 2021-01-20 | 2024-07-09 | トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド | 銅箔積層フィルム、それを含む電子素子、及び該銅箔積層フィルムの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201211280A (en) | 2012-03-16 |
CN102753733B (zh) | 2015-11-25 |
EP2565298A1 (en) | 2013-03-06 |
KR101318051B1 (ko) | 2013-10-14 |
MY160926A (en) | 2017-03-31 |
TW201623641A (zh) | 2016-07-01 |
TWI600778B (zh) | 2017-10-01 |
SG184814A1 (en) | 2012-11-29 |
CN102753733A (zh) | 2012-10-24 |
JP5514897B2 (ja) | 2014-06-04 |
KR20120096032A (ko) | 2012-08-29 |
TWI526553B (zh) | 2016-03-21 |
JPWO2011136061A1 (ja) | 2013-07-18 |
US20130071652A1 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5514897B2 (ja) | フレキシブル配線用積層体 | |
KR101494936B1 (ko) | 금속박 적층 폴리이미드 수지 기판 | |
WO2013187420A1 (ja) | 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法 | |
WO2013108415A1 (ja) | 銅張積層板用表面処理銅箔及びそれを用いた銅張積層板 | |
JP2010157571A (ja) | フレキシブル配線基板用積層体 | |
JP4652020B2 (ja) | 銅張り積層板 | |
JP4804806B2 (ja) | 銅張積層板及びその製造方法 | |
JP4430020B2 (ja) | フレキシブルプリント配線板用銅箔、その製造方法及びフレキシブルプリント配線板 | |
KR101169829B1 (ko) | Cof 기판용 적층체 및 그 제조방법 및 이 cof 기판용 적층체를 이용해서 형성한 cof 필름 캐리어 테이프 | |
KR101721314B1 (ko) | 압연 동박, 구리 피복 적층판, 그리고 플렉시블 프린트 기판 및 전자 기기 | |
TWI806296B (zh) | 表面處理銅箔、覆銅積層板及印刷配線板 | |
KR101539839B1 (ko) | 구리박, 구리 피복 적층체, 플렉시블 배선판 및 입체 성형체 | |
TW201212741A (en) | Copper foil for printed wiring board, and layered body using the same | |
JP7027602B1 (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
JP2006175634A (ja) | 金属−ポリイミド基板 | |
JP5073801B2 (ja) | 銅張り積層板の製造方法 | |
TW201212753A (en) | Copper foil for printed circuit board with excellent etching property and laminate using the same | |
CN111526674A (zh) | 压延铜箔、覆铜层叠板、以及柔性印刷基板和电子设备 | |
JP2007042945A (ja) | 回路基板における液晶ポリマーの劣化抑制方法および回路基板 | |
WO2012070471A1 (ja) | フレキシブルプリント配線板用圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器 | |
JPH1051098A (ja) | 抵抗内蔵回路基板 | |
TW201212742A (en) | Copper foil for printed wiring board having excellent thermal discoloration resistance and etching properties, and laminate using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180009052.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11774844 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012512776 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127016240 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011774844 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201004773 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13643626 Country of ref document: US |