WO2011125532A1 - 酸化物成形体及びその製造方法 - Google Patents
酸化物成形体及びその製造方法 Download PDFInfo
- Publication number
- WO2011125532A1 WO2011125532A1 PCT/JP2011/057278 JP2011057278W WO2011125532A1 WO 2011125532 A1 WO2011125532 A1 WO 2011125532A1 JP 2011057278 W JP2011057278 W JP 2011057278W WO 2011125532 A1 WO2011125532 A1 WO 2011125532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- oxide
- molded body
- film
- organic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/02—Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/78—Coatings specially designed to be durable, e.g. scratch-resistant
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/113—Deposition methods from solutions or suspensions by sol-gel processes
Definitions
- the present invention relates to an oxide molded body and a method for producing the same.
- organic polymer materials represented by methacrylic resin (Polymethylmethacrylate, PMMA) called acrylic have various properties required by applications such as scratch resistance by controlling molecular weight and crosslink density. Improvement of wear resistance, wear resistance, ultraviolet light durability, weather resistance, gas permeability and dielectric properties. Since organic polymer materials can be thermally cured and photocured at a relatively low temperature, as disclosed in Patent Documents 1 to 3, such as three-dimensional modeling by a mold method and formation of a fine structure using a lithography process. Various processing is possible.
- inorganic materials such as glass have excellent weather resistance, heat resistance and surface hardness.
- organic-inorganic hybrid glassy materials of Patent Documents 4 and 5 as materials that have excellent light resistance compared to organic polymer materials and soften at a lower temperature than inorganic glasses.
- organic polymer materials are inferior in heat resistance and hardness compared to inorganic materials.
- the organic-inorganic hybrid glassy substance may not have sufficient hardness as compared with inorganic materials.
- inorganic materials have a higher molding temperature than organic polymer materials and organic-inorganic hybrid glassy substances, and fine processing is often difficult. Therefore, development of a material having both workability and durability in actual use is demanded.
- the present invention has been made in consideration of the above problems, and combines the advantages of both organic and inorganic materials, such as excellent processability of organic materials and excellent weather resistance, heat resistance and hardness of inorganic materials. It aims at providing a molded object and its manufacturing method.
- the inventor performed an oxidation treatment on a molded body containing an oxide portion and an organic cross-linked portion, and at least the surface layer of the molded body was converted to an inorganic glassy material.
- the present inventors have found that a molded article having both workability and excellent weather resistance, heat resistance and hardness possessed by an inorganic material can be obtained.
- an oxide molded body containing an oxide site and an organic crosslinking site, and at least the surface layer being an inorganic glassy material.
- a method for producing an oxide molded body containing an oxide portion and an organic cross-linking portion and having at least a surface layer of an inorganic glassy material comprising the following steps A to D: The manufacturing method of an oxide molded object including a process is provided. Step A: Precursor R 2 —MO having an organic group R 2 containing a polymerizable functional group and a MO—M ′ bond by an elementary reaction between the raw material R 2 —MY and M′—OH Obtaining M ′.
- R 2 is an organic group containing a polymerizable functional group
- Y is an alkoxy group having a hydrocarbon group having 1 to 20 carbon atoms, or a halogen group
- M and M ′ are independent of each other.
- Process B The process of apply
- Process C The process of photocuring and / or thermosetting a coating liquid.
- Step D A step of oxidizing at least the surface layer of the cured body after curing to make at least the surface layer of the cured body an inorganic glassy substance.
- FIG. 3 is a micrograph of an oxide molded body of Example 2.
- 4 is a micrograph of an oxide molded body of Example 3.
- the oxide molded body of the present invention is characterized in that it contains an oxide portion and an organic crosslinking portion, and at least the surface layer is an inorganic glassy material, and has excellent weather resistance, scratch resistance, wear resistance and heat resistance. Showing gender.
- the “oxide molded body” refers to a bulk shape, a plate shape, a film shape, a fiber shape, which includes an oxide portion and an organic crosslinking portion, and at least a surface layer is composed of an inorganic glassy material. Or an article containing an oxide site and an organic crosslinking site and having at least a surface layer or the whole of an inorganic glassy material, or an article having a surface layer of an inorganic glassy material in close contact with the substrate surface.
- the “oxide molded body” is also simply referred to as “molded body”.
- an inorganic glass-like article that is in close contact with the substrate surface is simply referred to as a “coating”.
- Examples of the oxide site include those composed of MO—M ′ bonds in which the elements M and M ′ are bonded via an oxygen atom.
- M and M ′ are each independently of each other aluminum, silicon, germanium, indium, tin, lead, phosphorus, boron, gallium, lithium, sodium, potassium, rubidium, cesium, Selected from the group consisting of beryllium, magnesium, calcium, strontium, barium, neodymium, praseodymium, erbium, cerium, titanium, zirconium, tantalum, zinc, tungsten, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and molybdenum It is preferable that it is at least one kind of element.
- M and M ′ are particularly preferably silicon, boron, titanium, zirconium and zinc. Further, from the viewpoint of controlling the physical properties of the inorganic glassy substance, M and M ′ may further contain an alkali metal or an alkaline earth metal. Further, in order to impart functions such as coloring and light absorption at a specific wavelength to the inorganic glassy substance, M and M ′ may further contain a rare earth element or a transition metal element.
- Examples of the organic crosslinking site include an organic site including a structure represented by the following formula [1], and include sites bonded to the elements M and M ′ at at least two ends of the organic site, respectively. .
- X is at least one selected from the group consisting of a hydrogen atom, —OH group, — (C ⁇ O) —R 1 group, — (C ⁇ O) —OR 1 group, and phenyl group.
- R 1 is a hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 or more.
- the treatment in which at least the surface layer of the molded body is an inorganic glassy material, the treatment can be performed in a short time.
- X is a hydrogen atom, —OH group, — (C ⁇ O) —R 1 group. Is preferred.
- Examples of inorganic glassy substances include substances formed from oxo bonds represented by MO-M ', MOOM, or M'-OM-M'.
- MOM ′, MOM, or M′—OM ′ M and M ′ are each independently of each other aluminum, silicon, germanium, indium, Tin, lead, phosphorus, boron, gallium, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, neodymium, praseodymium, erbium, cerium, titanium, zirconium, tantalum, zinc, tungsten, vanadium, It is preferably at least one element selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, and molybdenum.
- M and M ′ are particularly preferably silicon, boron, titanium, zirconium and zinc. Further, from the viewpoint of controlling the physical properties of the inorganic glassy substance, M and M ′ may further contain an alkali metal or an alkaline earth metal. By including an alkali metal or alkaline earth metal, for example, the softening temperature, glass transition temperature, thermal expansion coefficient, chemical durability, etc. of the inorganic glassy substance can be adjusted. Further, in order to impart functions such as coloring and light absorption at a specific wavelength to the inorganic glassy material, M and M ′ may further contain a rare earth element or a transition metal element. By including a rare earth element or a transition metal element, for example, functions such as fluorescence characteristics, laser transmission characteristics, and magnetism can be imparted to an inorganic glassy material.
- the thickness of the inorganic glassy material layer is preferably 50 nm to 10 ⁇ m from the surface of the oxide compact. If it is less than 50 nm, there is a tendency that sufficient hardness cannot be imparted to the surface of the molded article, which is not preferable. If it exceeds 10 ⁇ m, cracks are likely to occur in the inorganic glassy material layer, which is not preferable.
- the layer thickness of the inorganic glassy substance is more preferably 100 nm to 5 ⁇ m, and further preferably 200 nm to 1 ⁇ m.
- the oxide molded body of the present invention preferably has a fine structure.
- the microstructure may be formed on the surface of the molded body or may be formed inside the molded body.
- functions such as low reflectivity, water repellency, and oil repellency can be imparted to the oxide compact.
- the fine structure preferably has a size of 100 nm or more, and more preferably has a size of 100 nm to 200 ⁇ m.
- the in-plane dimension error of the fine structure is preferably 20 nm or less. More preferably, the in-plane dimensional error is 10 nm or less.
- the entire film may be an inorganic glassy substance. If it is said thickness, durability can be improved, without impairing the fine structure fixed to the film by fine processing.
- the form of the oxide molded body of the present invention is not particularly limited, a preferred example is a thin-film oxide molded body (composite oxide thin film) in which the oxide site is a complex oxide site.
- the composite oxide-based thin film exhibits particularly excellent weather resistance, scratch / abrasion resistance and light transmittance.
- the element M is composed of a MO—M ′ bond through an oxygen atom, and the element M is titanium, zirconium, aluminum, silicon, germanium. , At least one selected from the group consisting of indium, tin, tantalum, zinc, tungsten and lead, and the element M ′ is at least one group 13 element selected from the group consisting of boron, aluminum, gallium and indium Some are preferred. From the viewpoint of the transparency of the resulting thin film, it is particularly preferable that the thin film is composed of Si—O—B bonds using silicon as the element M and boron as the element M ′.
- the inorganic glassy material of the complex oxide thin film is composed of at least one of MOOM bond, MOOM bond, and M′-OM ′ bond, and element M is titanium. , Zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten and lead, and element M ′ is at least selected from the group consisting of boron, aluminum, gallium and indium. What is a 1 type 13 group element is preferable. From the viewpoint of transparency of the resulting thin film, it is particularly preferable that the thin film comprises at least one bond among Si—O—B bond, Si—O—Si bond, and B—O—B bond.
- Step A A step of obtaining a precursor R 2 —MOM ′ having an organic group R 2 containing a polymerizable functional group and a MOM ′ bond by an elementary reaction of the following formula [2].
- R 2 is an organic group containing a polymerizable functional group
- Y is an alkoxy group having a hydrocarbon group having 1 to 20 carbon atoms, or a halogen group
- M and M ′ are Independently of each other, aluminum, silicon, germanium, indium, tin, lead, phosphorus, boron, gallium, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, neodymium, praseodymium, erbium, It is at least one element selected from the group consisting of cerium, titanium, zirconium, tantalum, zinc, tungsten, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and molybdenum.
- Process B The process of apply
- Process C The process of photocuring and / or thermosetting a coating liquid.
- Step D A step of oxidizing at least the surface layer of the cured body after curing to make at least the surface layer of the cured body an inorganic glassy substance.
- R 2 -MY examples include alkoxides or halides of element M represented by the following formula [3].
- R 2 is an organic group containing a polymerizable functional group
- Y is an alkoxy group having a hydrocarbon group having 1 to 20 carbon atoms, or a halogen group
- M is aluminum, silicon, Germanium, indium, tin, lead, phosphorus, boron, gallium, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, neodymium, praseodymium, erbium, cerium, titanium, zirconium, tantalum, zinc, At least one element selected from the group consisting of tungsten, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and molybdenum, s is the valence of the element M, and m is
- Y in the general formula [3] is an alkoxy group
- M is a group consisting of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten, and lead. At least one selected.
- Y is an alkoxy group
- a by-product represented by YH in the reaction formula [2] The alcohol compound is preferable because it easily volatilizes and is easily removed from the system.
- the carbon number is more preferably 10 or less, and further preferably 4 or less.
- the hydrocarbon group may contain a halogen atom in addition to a carbon atom and a hydrogen atom, and may contain an unsaturated hydrocarbon group.
- Y is a halogen group
- examples of the halogen group include fluorine, chlorine, bromine, and iodine.
- titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten, lead chlorides are preferred.
- Examples of the substance used as M′—OH in the elementary reaction of reaction formula [2] of step A include a hydroxide of element M ′ represented by the following formula [4].
- M ′ is aluminum, silicon, germanium, indium, tin, lead, phosphorus, boron, gallium, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, neodymium, praseodymium.
- M ′ in the general formula [4] is at least one group 13 element selected from the group consisting of boron, aluminum, gallium, and indium.
- step A the elementary reaction of the reaction formula [2] is preferably performed in an anhydrous and solvent-free environment. Under these conditions, it is preferable to volatilize the alcohol compound and hydrogen halide compound by-produced by the elementary reaction and remove them out of the system so that the elementary reaction easily proceeds to the right side. Furthermore, a substance obtained by an elementary reaction under these conditions is preferable because it becomes an alternating copolymer in which M and M ′ are alternately bonded via oxygen atoms, and the molecular structure is easy to control. Therefore, the M alkoxide or halide and the M ′ hydroxide are preferably anhydrous.
- Step A is preferably performed at 10 to 300 ° C. while flowing with an inert gas in order to accelerate the reaction and remove by-products such as alcohol compounds and hydrogen halide compounds.
- the precursor is dried under reduced pressure. May be. Further, the removal may be promoted by drying under reduced pressure while heating.
- the reaction yield is preferably 10 to 90%.
- the reaction yield is the ratio of the total number of Y groups and OH groups consumed in the elementary reaction of Reaction Formula [2] to the total number of Y groups and OH groups before the reaction, as shown in the following formula.
- the reaction yield is less than 10%, the number of MOM ′ bonds formed by the elementary reaction of the reaction formula [2] becomes insufficient, and as a result, the strength of the obtained molded product is lowered. It is not preferable because the chemical durability is lowered.
- the reaction yield exceeds 90%, the number of MOM ′ bonds formed by the elementary reaction of reaction formula [2] becomes too large, and as a result, the precursor is dissolved in the organic solvent. This is not preferable because it becomes difficult or the viscosity of the coating solution becomes too high, which makes it difficult to perform molding or microfabrication.
- a more preferable reaction yield is 20 to 60%.
- the number of repetitions v of the network structure [—MO—M′—O—] v of the oxides of elements M and M ′ is preferably 1 to 50. If v is less than 1, it is not preferable because a precursor cannot be formed. On the other hand, if v is more than 50, the precursor is difficult to dissolve in an organic solvent or the viscosity of the coating solution becomes too high, which makes it difficult to perform molding or microfabrication. More preferred v is 1-10.
- the precursor obtained in the step A When the precursor obtained in the step A is a liquid, it may be used as it is as the coating liquid in the step B.
- an organic solvent may be added to the precursor to form a coating solution.
- the precursor obtained in Step A when the precursor obtained in Step A is a solid, the precursor can be dissolved in an organic solvent and used as a coating solution.
- the solid precursor becomes liquid by heating, it is not always necessary to dissolve it in an organic solvent, and a heated liquid may be used as it is as a coating solution.
- An organic solvent may be added to the precursor in order to adjust the viscosity of the liquid during heating.
- a liquid precursor or a liquid in which the precursor is dissolved in an organic solvent is referred to as “coating liquid”.
- the organic solvent is not limited as long as it can dissolve the precursor uniformly or can be mixed uniformly.
- examples of the organic solvent include methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol, 2-methyl-2-propanol (tert-butanol), iso-butanol, 1-butanol, Alcohols such as pentanol, 1-hexanol, 1-heptanol, 1-octanol and methoxymethanol, ethylene glycol, glycerin, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3 -Butanediol, diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether (2 ethoxyethanol), ethylene glycol monobutyl ether, propylene glycol monomethyl ether and And poly
- the amount added is preferably 99% by mass or less with respect to 100% by mass of the total amount of the coating solution.
- the organic solvent contained in the coating solution may be removed by a known drying method such as spin drying, Marangoni drying, heat drying, hot air drying, or vacuum drying during or after coating. Good.
- the coating liquid applied in step B is photocured and / or thermally cured in step C, and then formed into an oxide molded body by oxidizing at least the surface layer of the cured body in step D. It is good also as a laminated body by forming another layer on the surface of the surface layer oxidized.
- “molding” means that the cured product obtained after step C is, for example, in a bulk shape, a plate shape, a film shape, a fiber shape, or a film shape in close contact with the substrate surface.
- a desired shape for example, by holding the coating liquid in a mold corresponding to a desired shape, an injection mold, or the like, and performing step C, a desired shape of bulk, plate, or film can be obtained. it can.
- the fiber-like cured body can be obtained by performing the step C while drawing the fiber.
- step B if it can be formed into a desired shape by application of step B, the shape may be retained and step C may be performed to obtain a film-shaped cured body having a desired shape.
- step C After coating B, leveling of the coating film is performed, or a mold corresponding to the desired shape is pressed against the coating film to obtain a desired shape, and the process C is performed while maintaining the shape. A cured product may be obtained.
- the application method of the coating liquid in the step B is, for example, spin coating, dip coating, flow coating, roll coating, spray coating, screen printing, Known means such as flexographic printing can be employed.
- the base material for example, an inorganic material typified by glass, metal and ceramics, an organic polymer material typified by a resin such as polyethylene terephthalate, polycarbonate and acrylic, or a film formed from these composite materials or Sheet-like articles can be used.
- a molding method for example, known means such as injection molding, extrusion molding, press molding, molding, vacuum / pressure molding, blow molding, etc. can be adopted.
- known means such as a roll-to-roll method, extrusion molding, casting method, T-die method, inflation method, etc. can be adopted as the forming method.
- the sealing layer for example, it is applied in a frame such as a package with a dispenser or the like, and after the photocuring and / or heat curing described below, at least the surface layer of the cured body is oxidized to form the sealing layer. Can be produced.
- the coating solution applied / supplied to the substrate surface, in the mold, in the mold or in the package is photocured and / or heat cured in Step C.
- a polymerizable functional group of the precursor is formed into a crosslinked structure by a crosslinking reaction such as an addition reaction, an addition polymerization reaction, a ring-opening reaction and a ring-opening polymerization reaction, and cured, that is, the shape is fixed.
- the organic crosslinking site of the molded product obtained by polymerization is a site obtained by photopolymerization reaction and / or thermal polymerization reaction of the organic group R 2 containing a polymerizable functional group.
- the structure represented by the general formula [1] in the organic crosslinking site is vinyl group, allyl group, styryl group, acrylic group, methacryl group, acryloyl group, methacryloyl group, epoxy group, glycidyl group, glycidoxy group, glycyloxy group, oxetanyl.
- a structure in which a polymerizable functional group such as a group is formed by a crosslinking reaction such as an addition reaction, an addition polymerization reaction, a ring-opening reaction, and a ring-opening polymerization reaction is preferable.
- thermosetting From the viewpoint of heat resistance of the base material, other members, and mold materials such as a mold, it is preferable to appropriately select photocuring and thermosetting.
- photocuring it is preferable to include a photopolymerization initiator in the coating solution because the curing reaction can proceed efficiently. Moreover, you may heat with light irradiation and may accelerate
- thermosetting is preferably performed by heating at 60 to 150 ° C.
- thermal curing it is preferable to include a thermal polymerization initiator in the coating solution because the curing reaction can proceed efficiently.
- a fine structure having a dimension of 100 nm or more can be formed on the surface and / or inside of the coating liquid before curing.
- a method for forming a fine structure can be performed by a general fine processing process, and is not particularly limited. For example, in addition to a lithography / lift-off process and soft lithography, a self-organized structure forming method, laser processing, and general Examples include machining.
- Examples of the lithography / lift-off process include an electron beam lithography / lift-off method, a laser lithography / lift-off method, and a photolithography / lift-off method.
- soft lithography examples include microcontact printing, nanoimprinting, thermal cycle nanoimprinting, dip pen nanolithography, and nanotransfer printing.
- a nanoimprint method or a thermal cycle nanoimprint method in which a mold having an embossed shape on the surface is pressure-bonded to the precursor surface before curing to transfer the inverted embossed shape to the precursor surface is preferable.
- the coating liquid can be fixed in a shape including a fine structure by performing Step C during and / or after fine processing. Further, the fine processing may be performed after performing the process C for a predetermined time. Also in that case, the shape including a fine structure can be fixed by performing the process C at the time of fine processing and / or after fine processing.
- step D at least the surface layer of the cured body obtained in step C is oxidized to change at least the surface layer of the cured body into an inorganic glassy substance.
- the oxidation treatment include baking, oxygen plasma treatment, ozone exposure, and the like. Since oxygen plasma treatment and ozone exposure can be performed at a low temperature, a thin film formed over a substrate having low heat resistance can also be processed. Oxygen is not necessarily required for firing, but firing in the presence of oxygen is preferable because the compact is densified. Further, the firing may be performed by a one-step temperature raising process or a multi-step temperature raising process.
- the organic component in the cured product obtained in Step C is oxidized and disappears, so that at least the surface layer of the cured product is densified.
- This densified portion is an inorganic glassy material.
- a molded article having excellent durability and strength can be obtained.
- the organic component only on the surface of the cured body is oxidized and disappears, so the amount of shrinkage accompanying densification is extremely small. Therefore, when it has a fine structure, a molded body with improved surface durability can be obtained without impairing the structure.
- metal components such as alkali metals, alkaline earth metals, transition metals, and rare earth metals may be contained as salts, carbonates, nitrates, sulfates, and the like, oxides, and complexes.
- the molded body for example, Li 2 O, Na 2 O, K 2 O, MgO, CaO, BaO, PbO, Fe 2 O 3 , ZnO, Al 2 O 3 , Rb 2 O, Cs 2 O, GeO 2 , As 2 O 3 , Sb 2 O 5 , V 2 O 5 , Ga 2 O 3 , TeO 2 , SnO, CuO, Ta 2 O 3 , CeO 2 , Tl 2 O, PbF 2 , Bi 2 O 3 , P 2 O 5, by CdO and metal components such as CaF 2 is present, it is possible to adjust the composition of the inorganic glassy material resulting from the oxidation process.
- the coating liquid in the range not inhibiting the purpose of the present invention, for example, surfactant, crosslinking agent, antioxidant, ultraviolet absorber, infrared absorber, flame retardant, hydrolysis inhibitor, antifungal agent, Components such as pigments, dyes, pigments, rare earth compounds and phosphor materials may be contained.
- a coating solution was prepared, the coating solution was applied and cured, and the resulting cured body was subjected to an oxidation treatment to prepare a sample of a molded body.
- the details of the preparation of the coating liquid and the method for producing the molded body will be described later.
- the coating is made using Metricon Model 2010 Prism Coupler. The thickness of was measured. Moreover, about the bulk body, the sheet
- composition analysis in the thickness direction of the molded body was performed by glow discharge emission analysis on a molded body whose surface was not finely processed, that is, a sample having a smooth surface.
- the shape of the surface of the molded body was measured, and when the in-plane dimension change was 20 nm or less, it was accepted (denoted as “ ⁇ ” in the table), and those exceeding 20 nm were rejected (denoted as “x” in the table). did.
- the refractive index of the coating surface at a wavelength of 633 nm was measured using a Model 2010 Prism Coupler manufactured by Metricon in a coating sample whose surface was not finely processed, that is, a coating having a smooth surface. .
- Example 1 Preparation of Coating Solution
- boric anhydride [H 3 BO 3 ] (manufactured by Wako Pure Chemical Industries, Ltd.)
- 3-Methacryloxypropyltrimethoxysilane [CH 2 ⁇ C (CH 3 ) C (O) OC 3 H 6 Si (OCH 3 ) 3 ] (manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
- the raw material was reacted at 100 ° C.
- a solid precursor is dissolved in ethylene glycol monoethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.), and Irgacure 184 and 907 (manufactured by Ciba Specialty Chemicals Co., Ltd.) are mixed as a photopolymerization initiator,
- a coating solution of 56% by mass of ethylene glycol monoethyl ether and 5% by mass of a photopolymerization initiator (Irgacure 184 and 907 are 3% by mass and 2% by mass, respectively) is obtained with respect to the total amount of the coating solution of 100% by mass. It was.
- the film obtained as a result of evaluation of the molded body (film-like) was 4 ⁇ m in thickness and was colorless and transparent.
- a composition analysis in the thickness direction of the film by glow discharge emission analysis was conducted.
- silicon, boron, and oxygen were not distributed unevenly from the film surface to the depth near the surface of the quartz glass substrate. It was found that the entire film was composed of silicon, boron and oxygen. Moreover, it has confirmed that it was an amorphous structure from the thin film XRD measurement of the film. Therefore, the coating obtained in this example was an inorganic glassy material composed entirely of silicon, boron and oxygen. It was confirmed that the pencil hardness of the film was over 10H because no scar was left on the film even at 10H.
- Example 2 Using the same coating solution as in Example 1, coating was performed on the surface of a borosilicate glass substrate (dimensions: about 40 mm ⁇ 25 mm, thickness: 1 mm) by dip coating.
- a polydimethylsiloxane mold (hereinafter referred to as PDMS mold) in which a fine uneven pattern having a size of about 350 nm to about 100 ⁇ m is engraved on the surface of the film after being irradiated for 3 minutes using a 500 W high-pressure mercury lamp. And the PDMS mold was peeled off for several seconds, and then light-irradiated for 60 minutes using a 500 W high-pressure mercury lamp, whereby the coating film was photocured.
- corrugated pattern was engraved used what transferred the structure from the mold for quartz nanoimprint (NTT-AT MIN-PH series).
- NTT-AT MIN-PH series quartz nanoimprint
- Example 3 Using the same coating solution as in Example 1, coating was performed on the surface of a borosilicate glass substrate (dimensions: about 40 mm ⁇ 25 mm, thickness: 1 mm) by dip coating.
- the coated film is irradiated with light for 60 minutes by a two-beam interference method using a He—Cd laser (wavelength: 325 nm) so that the coated film is photocured, and a fine grating structure with a pitch of about 2 ⁇ m is formed on the film surface.
- the uncured portion was washed away with ethanol to obtain a fine grating structure on the film surface.
- the cured borosilicate glass substrate with a film was heated from room temperature to 550 ° C.
- a fine grating structure was formed on the surface of the obtained film as shown in FIG.
- the grating structure on the surface of the coating was measured with a scanning electron microscope (Hitachi field emission scanning electron microscope, model number: S-4800) and compared with the pitch size calculated from the incident angle and wavelength of interference light. The error was less than 10 nm, and it was confirmed that high-precision fine processing could be applied to the coating surface.
- a borosilicate glass substrate sample having a film with a fine uneven pattern formed on its surface was heated at 200 ° C. for 1 hour, and the appearance before and after heating was compared.
- the film was deformed, cracked or colored by heating.
- the shape of the surface of the molded body was measured using a scanning electron microscope (Hitachi field emission scanning electron microscope, model number: S-4800) before and after heating. The amount was less than 10 nm and showed excellent heat resistance. The results are shown in Table 1.
- Example 4 Preparation of Coating Solution Diphenylsilanediol [(C 6 H 5 ) 2 Si (OH) 2 ] (Shin-Etsu) as a raw material for obtaining a precursor having an organic group containing a polymerizable functional group and a MOM ′ bond Chemical Industry Co., Ltd.), titanium-O-allyloxypolyethyleneoxytriisopropoxide [CH 2 ⁇ CHCH 2 (OCH 2 CH 2 ) 10 —O—Ti (OCH (CH 3 ) 2 ) 3 ] (Gelest ) was used. The raw material was allowed to react at 80 ° C.
- the liquid precursor is dissolved in ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) and Irgacure 369 (manufactured by Ciba Specialty Chemicals Co., Ltd.) is further mixed as a photopolymerization initiator, and the total amount of the coating solution is 100 mass. %, A coating solution containing 40% by mass of ethanol and 5% by mass of the photopolymerization initiator was obtained.
- the film obtained as a result of evaluation of the molded body (film-like) was 4 ⁇ m in thickness and was colorless and transparent.
- composition analysis in the thickness direction of the film was performed by glow discharge emission analysis, silicon, titanium, and oxygen were not evenly distributed from the film surface to the depth in the vicinity of the surface of the quartz glass substrate. It was found that the entire film was composed of silicon, titanium and oxygen. Moreover, it has confirmed that it was an amorphous structure from the thin film XRD measurement of the film. Therefore, the coating obtained in this example was an inorganic glassy material composed entirely of silicon, titanium and oxygen. It was confirmed that the pencil hardness of the film was over 10H because no scar was left on the film even at 10H.
- the quartz glass substrate sample with the coating formed on the surface was heated at 200 ° C. for 1 hour, and the appearance before and after the heating was compared.
- the coating did not change in appearance such as deformation, cracks or coloring, and was excellent. It showed heat resistance.
- Table 1 The results are shown in Table 1.
- Example 5 Using the same coating solution as in Example 4, coating was performed on the surface of a borosilicate glass substrate (dimensions: about 40 mm ⁇ 25 mm, thickness: 1 mm) by dip coating.
- a PDMS mold in which a fine uneven pattern of about 350 nm to about 100 ⁇ m size is engraved on the surface of the film after being irradiated for 3 minutes using a 500 W high-pressure mercury lamp on the coated film for several seconds. After peeling off the PDMS mold, the coating film was photocured by irradiating light for 60 minutes using a 500 W high pressure mercury lamp.
- corrugated pattern was engraved used what transferred the structure from the mold for quartz nanoimprint (NTT-AT MIN-PH series).
- the coated borosilicate glass substrate was baked in a baking furnace as in Example 4. It was confirmed that the obtained film was colorless and transparent and had a fine uneven pattern on the surface.
- the uneven pattern on the surface of the coating and the corresponding uneven pattern on the nanoimprint mold made of quartz were measured with a scanning electron microscope (Hitachi field emission scanning electron microscope, model number: S-4800), in-plane The dimensional error was less than 10 nm, and it was confirmed that high-precision fine processing could be performed on the coating surface.
- a borosilicate glass substrate sample having a film with a fine uneven pattern formed on its surface was heated at 200 ° C. for 1 hour, and the appearance before and after heating was compared. As a result, the film was deformed, cracked or colored by heating.
- a scanning electron microscope Hitachi field emission scanning electron microscope, model number: S-4800
- changes in in-plane dimensions were observed. The amount was less than 10 nm and showed excellent heat resistance. The results are shown in Table 1.
- Example 6 Using the same coating solution as in Example 4, coating was performed on the surface of a borosilicate glass substrate (dimensions: about 40 mm ⁇ 25 mm, thickness: 1 mm) by dip coating.
- the coated film is irradiated with light for 60 minutes by a two-beam interference method using a He—Cd laser (wavelength: 325 nm) so that the coated film is photocured, and a fine grating structure with a pitch of about 2 ⁇ m is formed on the film surface.
- the uncured portion was washed away with ethanol to obtain a fine grating structure on the film surface.
- the cured borosilicate glass substrate with a film was heated from room temperature to 550 ° C.
- the obtained coating film had a fine grating structure formed on the surface.
- the grating structure on the surface of the coating was measured with a scanning electron microscope (Hitachi Field Emission Scanning Electron Microscope, Model No .: S-4800) and compared with the pitch size calculated from the incident angle and wavelength of the interference light. The error of the period was less than 10 nm, and it was confirmed that highly accurate fine processing could be performed on the coating surface.
- a borosilicate glass substrate sample having a film with a fine uneven pattern formed on its surface was heated at 200 ° C.
- Example 7 Preparation of Coating Solution Boric anhydride [H 3 BO 3 ] (manufactured by Wako Pure Chemical Industries, Ltd.), 3 as a raw material for obtaining a precursor having an organic group containing a polymerizable functional group and a MOM ′ bond -Methacryloxypropyltrimethoxysilane [CH 2 ⁇ C (CH 3 ) C (O) OC 3 H 6 Si (OCH 3 ) 3 ] (manufactured by Shin-Etsu Chemical Co., Ltd.), titanium tetraisopropoxide [Ti (OCH ( CH 3 ) 2 ) 4 ] (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
- the solid precursor is dissolved in 2 ethoxyethanol (Wako Pure Chemical Industries, Ltd.) and Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.) is mixed as a photopolymerization initiator, and the total amount of coating solution A coating liquid containing 2% ethoxyethanol by 60% by mass and a photopolymerization initiator by 5% by mass with respect to 100% by mass was obtained.
- the film obtained as a result of evaluation of the molded body (film-like) was 4 ⁇ m in thickness and was colorless and transparent. Further, when composition analysis in the thickness direction of the film was performed by glow discharge emission analysis, silicon, boron, titanium, and oxygen were not unevenly distributed from the film surface to the depth near the quartz glass substrate surface in the film. It was found that the entire film was composed of silicon, boron, titanium and oxygen. Moreover, it has confirmed that it was an amorphous structure from the thin film XRD measurement of the film. Therefore, the coating obtained in this example was an inorganic glassy material composed entirely of silicon, boron, titanium and oxygen. It was confirmed that the pencil hardness of the film was more than 10H because no scar was left on the film even at 10H.
- the quartz glass substrate sample with the coating formed on the surface was heated at 200 ° C. for 1 hour, and the appearance before and after the heating was compared.
- the coating did not change in appearance such as deformation, cracks or coloring, and was excellent. It showed heat resistance.
- Table 1 The results are shown in Table 1.
- Example 8 Using the same coating solution as in Example 7, coating was performed on the surface of a borosilicate glass substrate (dimensions: about 40 mm ⁇ 25 mm, thickness: 1 mm) by a dip coating method.
- a PDMS mold in which a fine uneven pattern of about 350 nm to about 100 ⁇ m size is engraved on the surface of the film after being irradiated for 3 minutes using a 500 W high-pressure mercury lamp on the coated film for several seconds. After peeling off the PDMS mold, the coating film was photocured by irradiating light for 60 minutes using a 500 W high pressure mercury lamp.
- corrugated pattern was engraved used what transferred the structure from the mold for quartz nanoimprint (NTT-AT MIN-PH series).
- NTT-AT MIN-PH series quartz nanoimprint
- Example 9 Using the same coating solution as in Example 7, coating was performed on the surface of a borosilicate glass substrate (dimensions: about 40 mm ⁇ 25 mm, thickness: 1 mm) by a dip coating method.
- the coated film is irradiated with light for 60 minutes by a two-beam interference method using a He—Cd laser (wavelength: 325 nm) so that the coated film is photocured, and a fine grating structure with a pitch of about 2 ⁇ m is formed on the film surface.
- the uncured portion was washed away with ethanol to obtain a fine grating structure on the film surface.
- the cured borosilicate glass substrate with a film was heated from room temperature to 550 ° C.
- the obtained coating film had a fine grating structure formed on the surface.
- the grating structure on the surface of the coating was measured with a scanning electron microscope (Hitachi field emission scanning electron microscope, model number: S-4800) and compared with the pitch size calculated from the incident angle and wavelength of interference light. The error was less than 10 nm, and it was confirmed that high-precision fine processing could be applied to the coating surface.
- a borosilicate glass substrate sample having a film with a fine uneven pattern formed on its surface was heated at 200 ° C. for 1 hour, and the appearance before and after heating was compared.
- This material was molded in a PDMS mold shaped like a sheet to obtain a sheet-like molded body having a thickness of about 1 mm.
- the pencil hardness of the molded body was HB, and the surface hardness was lower than that of the molded body of this example.
- the sheet-like molded object was heated at 200 degreeC for 1 hour and the external appearance before and behind a heating was compared, it fuse
- This material was molded in a PDMS mold shaped like a sheet to obtain a sheet-like molded body having a thickness of about 1 mm.
- the molded product had a pencil hardness of 2H, and the surface hardness was lower than that of the molded product of the above example.
- the sheet-like molded object was heated at 200 degreeC for 1 hour and the external appearance before and behind a heating was compared, it fuse
- the results are shown in Table 1.
- the molded article of the present invention can be finely processed in the same manner as conventional organic polymer materials, and can obtain superior durability compared to conventional organic polymer materials. Therefore, the molded article of the present invention can be applied to various optical materials, electronic materials, and surface modifying materials. For example, low-k materials, low reflectance articles, water-repellent articles, optical waveguides, hard coats, insulating materials.
- sealing material for light emitting elements including light emitting diodes
- the sealing material can be applied to a surface modifying material, a holographic material, a highly durable film, a sheet material, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Abstract
Description
工程A:原料R2-M-YとM’-OHとの素反応により、重合性官能基を含む有機基R2とM-O-M’結合とを有する前駆体R2-M-O-M’を得る工程。
(但し、R2は重合性官能基を含む有機基であり、Yは、炭素数1~20の炭化水素基を有するアルコキシ基、または、ハロゲン基であり、M及びM’ は、それぞれ互いに独立して、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、鉛、リン、ホウ素、ガリウム、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ネオジム、プラセオジム、エルビウム、セリウム、チタン、ジルコニウム、タンタル、亜鉛、タングステン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び、モリブデンからなる群から選ばれる少なくとも1種の元素である。)
工程B:前駆体を含む塗布液を塗布する工程。
工程C:塗布液を光硬化及び/又は熱硬化させる工程。
工程D:硬化後の硬化体の少なくとも表層を酸化処理することにより、該硬化体の少なくとも表層を無機ガラス状物質とせしめる工程。
工程A:下式[2]の素反応により、重合性官能基を含む有機基R2とM-O-M’結合とを有する前駆体R2-M-O-M’を得る工程。
工程B:前駆体を含む塗布液を塗布する工程。
工程C:塗布液を光硬化及び/又は熱硬化させる工程。
工程D:硬化後の硬化体の少なくとも表層を酸化処理することにより、該硬化体の少なくとも表層を無機ガラス状物質とせしめる工程。
作製した成形体の評価方法は下記の通りである。
表面に微細加工を施していない被膜、すなわち、平滑な表面である被膜を基材上に作製したサンプルについては、Metricon製Model 2010 Prism Couplerを用いて、被膜の厚さを測定した。また、表面に微細加工を施していないバルク体やシートやフィルム状のサンプルについては、マイクロメーターやノギスにより、サンプルの厚さを測定した。
表面に微細加工を施していない成形体、すなわち、平滑な表面であるサンプルにおいて、グロー放電発光分析により、厚さ方向の組成分析を行った。
表面に微細加工を施していない成形体、すなわち、平滑な表面である成形体のサンプルにおいて、JIS K 5600「塗料一般試験方法」に準拠して、荷重1kgが付加された鉛筆で成形体表面を5回引っ掻き、該表面の破れが2回未満であった鉛筆を鉛筆硬度とした。
表面に微細加工を施した成形体については、走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定した。また、内部に微細加工を施した成形体については、光学的手法により内部の微細構造を評価した。
表面に微細加工を施していない成形体、すなわち、平滑な表面である成形体のサンプルを、200℃で1時間加熱し、加熱前後の外観を比較した。加熱によって変形やクラックや着色などの外観上の変化がないものを合格(表中で○と表記)とし、外観上変化があったものを不合格(表中で×と表記)とした。なお、表面に微細加工を施した成形体については、上記の外観変化の確認に加え、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて該成形体表面の形状を測定し、面内寸法の変化量が20nm以下であるものを合格(表中で○と表記)とし、20nm超であるものを不合格(表中で×と表記)とした。
表面に微細加工を施していない被膜、すなわち、平滑な表面である被膜のサンプルにおいて、Metricon製Model 2010 Prism Couplerを用いて、波長633nmにおける被膜表面の屈折率を測定した。
表面に微細加工を施していない被膜、すなわち、平滑な表面である被膜のサンプルにおいて、日立製U-3500形分光光度計を用いて、波長300~800nmにおける被膜を形成した基板の透過率を測定した。
塗布液の調製
重合性官能基を含む有機基及びM-O-M’結合を有する前駆体を得るための原料として、無水ホウ酸〔H3BO3〕(和光純薬工業株式会社製)、3-メタクリロキシプロピルトリメトキシシラン〔CH2=C(CH3)C(O)OC3H6Si(OCH3)3〕(信越化学工業株式会社製)を用いた。当該原料を窒素環境下で1:1のモル比(Y基の数:OH基の数=0.5:0.5)で撹拌しながら100℃で3時間反応させて固体状の前駆体を得た。反応式[2]の素反応は、反応容器に窒素ガスを導入し、副生成するメタノールとともに該窒素ガスを系外へ排出しながら行った。固体状の前駆体のNMRスペクトル測定から、反応式[2]の素反応で消費されたY基数とOH基数の総数を算出し、該反応収率を求めたところ、約45%であった。また、NMR測定から、SiとBの酸化物のネットワーク構造[-Si-O-B-O-]vの繰り返し数vは2~3であった。固体状の前駆体をエチレングリコールモノエチルエーテル(和光純薬工業株式会社製)に溶解させて、さらに光重合開始剤としてIrgacure 184及び907(チバ・スペシャルティ・ケミカルズ株式会社製)を混合して、塗布液の総量100質量%に対し、エチレングリコールモノエチルエーテルが56質量%、光重合開始剤が5質量%(Irgacure 184及び907は、それぞれ、3質量%及び2質量%)の塗布液を得た。
上記で得られた塗布液を用いて、スピンコート法により石英ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。その後、500Wの高圧水銀灯を用いて塗膜に30分間光照射することにより、該塗膜を光硬化させた。光硬化反応の完了は、塗布液及び光照射後の膜に対してATR法によって測定した赤外吸収スペクトルの1638cm-1付近のC=C結合に由来する吸収ピークを比較することにより確認した。硬化後の被膜付きの石英ガラス基板を焼成炉で5℃/分で室温から550℃まで昇温し、550℃において3時間焼成した。
得られた被膜は、厚さが4μmで、無色透明なものであった。また、グロー放電発光分析による被膜の厚さ方向の組成分析を行ったところ、該被膜において膜表面から石英ガラス基板表面近傍の深さまで、ケイ素、ホウ素及び酸素がそれぞれ偏在することなく一定の濃度で存在しており、膜全体がケイ素、ホウ素及び酸素から構成されていることが分かった。また、被膜の薄膜XRD測定から、アモルファス構造であることが確認できた。従って、本実施例で得られた被膜は、膜全体がケイ素、ホウ素及び酸素から構成される無機ガラス状物質であった。被膜の鉛筆硬度は、10Hでも膜に傷跡が残らなかったため、10H超であることが確認できた。また、石英ガラス基板の表面に被膜を形成したサンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、優れた耐熱性を示した。結果を表1に示す。また、被膜の屈折率は波長633nmにおいて1.53であった。さらに、図1の透過率スペクトルからわかるように、被膜を形成した基板は近紫外~可視光波長領域において高い透過率を示した。
実施例1と同様の塗布液を用いて、ディップコート法によりホウケイ酸ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。塗布後の塗膜に、500Wの高圧水銀灯を用いて3分間光照射した後の膜表面に、約350nm~約100μmサイズの微細な凹凸パターンが刻まれたポリジメチルシロキサン製モールド(以下、PDMSモールドと表記する)を数秒間圧着して、該PDMSモールドを剥離した後、500Wの高圧水銀灯を用いて60分間光照射することにより、該塗膜を光硬化させた。尚、微細な凹凸パターンが刻まれたPDMSモールドは、石英製ナノインプリント用モールド(NTT-AT MIN-PHシリーズ)から構造を転写したものを用いた。実施例1と同様に光硬化反応の完了を確認した後で、硬化後の被膜付きのホウケイ酸ガラス基板を、実施例1と同様に焼成炉で焼成した。得られた被膜は、無色透明なものであり、図2に示すように表面に微細な凹凸パターンがあることが確認できた。該被膜表面の凹凸パターンと、それに対応する石英製ナノインプリント用モールドの凹凸パターンをそれぞれ走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)で測定したところ、面内寸法誤差は10nm未満であり、高精度な微細加工を被膜表面に施せることが確認できた。さらに、表面に微細な凹凸パターンを有する被膜を形成したホウケイ酸ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、また、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定したところ、面内寸法の変化量は10nm未満であり、優れた耐熱性を示した。結果を表1に示す。
実施例1と同様の塗布液を用いて、ディップコート法によりホウケイ酸ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。塗布後の塗膜に、He-Cdレーザー(波長325nm)を用いた二光束干渉法により60分間光照射することによって、該塗膜を光硬化させ、膜表面に約2μmピッチの微細なグレーティング構造の形成を行った。その後、エタノールで未硬化部を洗い流すことにより、膜表面に微細なグレーティング構造を得た。硬化後の被膜付きのホウケイ酸ガラス基板を焼成炉で1℃/分で室温から550℃まで昇温し、550℃において3時間焼成した。得られた被膜は、顕微鏡観察により、図3に示すように表面に微細なグレーティング構造が形成されていることが確認できた。該被膜表面のグレーティング構造を走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)で測定し、干渉光の入射角度と波長から計算されるピッチサイズと比較したところ、周期の誤差は10nm未満であり、高精度な微細加工を被膜表面に施せることが確認できた。さらに、表面に微細な凹凸パターンを有する被膜を形成したホウケイ酸ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、また、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定したところ、面内寸法の変化量は10nm未満であり、優れた耐熱性を示した。結果を表1に示す。
塗布液の調製
重合性官能基を含む有機基及びM-O-M’結合を有する前駆体を得るための原料として、ジフェニルシランジオール〔(C6H5)2Si(OH)2〕(信越化学工業株式会社製)、チタン-O-アリロキシポリエチレンオキシトリイソプロポキシド〔CH2=CHCH2(OCH2CH2)10-O-Ti(OCH(CH3)2)3〕(Gelest社製)を用いた。当該原料を窒素環境下で1:0.2のモル比(Y基の数:OH基の数=3:0.8)で撹拌しながら80℃で16時間反応させて液体状の前駆体を得た。反応式[2]の素反応は、反応容器に窒素ガスを導入し、副生成するイソプロパノールとともに該窒素ガスを系外へ排出しながら行った。液体状の前駆体のNMRスペクトル測定から、反応式[2]の素反応で消費されたY基数とOH基数の総数を算出し、該反応収率を求めたところ、約57%であった。また、NMR測定から、SiとTiの酸化物のネットワーク構造[-Si-O-Ti-O-]vの繰り返し数vは2~3であった。液体状の前駆体をエタノール(和光純薬工業株式会社製)に溶解させて、さらに光重合開始剤としてIrgacure 369(チバ・スペシャルティ・ケミカルズ株式会社製)を混合して、塗布液の総量100質量%に対し、エタノールが40質量%、光重合開始剤が5質量%の塗布液を得た。
上記で得られた塗布液を用いて、スピンコート法により石英ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。その後、500Wの高圧水銀灯を用いて前記塗膜に30分間光照射することにより、該塗膜を光硬化させた。光硬化反応の完了は、塗布液及び光照射後の膜に対してATR法によって測定した赤外吸収スペクトルの1638cm-1付近のC=C結合に由来する吸収ピークを比較することにより確認した。硬化後の被膜付きの石英ガラス基板を焼成炉で5℃/分で室温から550℃まで昇温し、550℃において3時間焼成した。
得られた被膜は、厚さが4μmで、無色透明なものであった。また、グロー放電発光分析による被膜の厚さ方向の組成分析を行ったところ、該被膜において膜表面から石英ガラス基板表面近傍の深さまで、ケイ素、チタン及び酸素がそれぞれ偏在することなく一定の濃度で存在しており、膜全体がケイ素、チタン及び酸素から構成されていることが分かった。また、被膜の薄膜XRD測定から、アモルファス構造であることが確認できた。従って、本実施例で得られた被膜は、膜全体がケイ素、チタン及び酸素から構成される無機ガラス状物質であった。被膜の鉛筆硬度は、10Hでも膜に傷跡が残らなかったため、10H超であることが確認できた。また、表面に被膜を形成した石英ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、優れた耐熱性を示した。結果を表1に示す。
実施例4と同様の塗布液を用いて、ディップコート法によりホウケイ酸ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。塗布後の塗膜に、500Wの高圧水銀灯を用いて3分間光照射した後の膜表面に、約350nm~約100μmサイズの微細な凹凸パターンが刻まれたPDMSモールドを数秒間圧着して、該PDMSモールドを剥離した後、500Wの高圧水銀灯を用いて60分間光照射することにより、該塗膜を光硬化させた。尚、微細な凹凸パターンが刻まれたPDMSモールドは、石英製ナノインプリント用モールド(NTT-AT MIN-PHシリーズ)から構造を転写したものを用いた。実施例4と同様に光硬化反応の完了を確認した後で、硬化後の被膜付きのホウケイ酸ガラス基板を、実施例4と同様に焼成炉で焼成した。得られた被膜は、無色透明なものであり、表面に微細な凹凸パターンがあることが確認できた。該被膜表面の凹凸パターンと、それに対応する前記の石英製ナノインプリント用モールドの凹凸パターンをそれぞれ走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)で測定したところ、面内寸法誤差は10nm未満であり、高精度な微細加工を被膜表面に施せることが確認できた。さらに、表面に微細な凹凸パターンを有する被膜を形成したホウケイ酸ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、また、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定したところ、面内寸法の変化量は10nm未満であり、優れた耐熱性を示した。結果を表1に示す。
実施例4と同様の塗布液を用いて、ディップコート法によりホウケイ酸ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。塗布後の塗膜に、He-Cdレーザー(波長325nm)を用いた二光束干渉法により60分間光照射することによって、該塗膜を光硬化させ、膜表面に約2μmピッチの微細なグレーティング構造の形成を行った。その後、エタノールで未硬化部を洗い流すことにより、膜表面に微細なグレーティング構造を得た。硬化後の被膜付きのホウケイ酸ガラス基板を焼成炉で1℃/分で室温から550℃まで昇温し、550℃において3時間焼成した。得られた被膜は、顕微鏡観察により、表面に微細なグレーティング構造が形成されていることが確認できた。該被膜表面のグレーティング構造を走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)で測定し、前記の干渉光の入射角度と波長から計算されるピッチサイズと比較したところ、周期の誤差は10nm未満であり、高精度な微細加工を被膜表面に施せることが確認できた。さらに、表面に微細な凹凸パターンを有する被膜を形成したホウケイ酸ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、また、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定したところ、面内寸法の変化量は10nm未満であり、優れた耐熱性を示した。結果を表1に示す。
塗布液の調製
重合性官能基を含む有機基及びM-O-M’結合を有する前駆体を得るための原料として無水ホウ酸〔H3BO3〕(和光純薬工業株式会社製)、3-メタクリロキシプロピルトリメトキシシラン〔CH2=C(CH3)C(O)OC3H6Si(OCH3)3〕(信越化学工業株式会社製)、チタンテトライソプロポキシド〔Ti(OCH(CH3)2)4〕(和光純薬工業株式会社製)を用いた。無水ホウ酸、3-メタクリロキシプロピルトリメトキシシラン、チタンテトライソプロポキシドを窒素環境下で1:1:0.1のモル比(Y基の数すなわちメトキシ基とイソプロポキシ基の合計数:OH基の数=15:17)で撹拌しながら80℃で6時間反応させて固体状の前駆体を得た。反応式[2]の素反応は、反応容器に窒素ガスを導入し、副生成するメタノール、イソプロパノールとともに該窒素ガスを系外へ排出しながら行った。固体状の前駆体のNMRスペクトル測定から、反応式[2]の素反応で消費されたY基数とOH基数の総数を算出し、該反応収率を求めたところ、約50%であった。また、NMR測定から、SiとTiとBの酸化物のネットワーク構造[-M-O-M’-O-]v(本実施例において、MはSiおよびTi、M’はBである)の繰り返し数vは3~4であった。固体状の前駆体を2エトキシエタノール(和光純薬工業株式会社製)に溶解させて、さらに光重合開始剤としてIrgacure 184(チバ・スペシャルティ・ケミカルズ株式会社製)を混合して、塗布液の総量100質量%に対し、2エトキシエタノールが60質量%、光重合開始剤が5質量%の塗布液を得た。
上記で得られた塗布液を用いて、スピンコート法により石英ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。その後、500Wの高圧水銀灯を用いて前記塗膜に30分間光照射することにより、該塗膜を光硬化させた。光硬化反応の完了は、塗布液及び光照射後の膜に対してATR法によって測定した赤外吸収スペクトルの1638cm-1付近のC=C結合に由来する吸収ピークを比較することにより確認した。硬化後の被膜付きの石英ガラス基板を焼成炉で5℃/分で室温から550℃まで昇温し、550℃において3時間焼成した。
得られた被膜は、厚さが4μmで、無色透明なものであった。また、グロー放電発光分析による被膜の厚さ方向の組成分析を行ったところ、該被膜において膜表面から石英ガラス基板表面近傍の深さまで、ケイ素、ホウ素、チタン及び酸素がそれぞれ偏在することなく一定の濃度で存在しており、膜全体がケイ素、ホウ素、チタン及び酸素から構成されていることが分かった。また、被膜の薄膜XRD測定から、アモルファス構造であることが確認できた。従って、本実施例で得られた被膜は、膜全体がケイ素、ホウ素、チタン及び酸素から構成される無機ガラス状物質であった。前記被膜の鉛筆硬度は、10Hでも膜に傷跡が残らなかったため、10H超であることが確認できた。また、表面に被膜を形成した石英ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、優れた耐熱性を示した。結果を表1に示す。
実施例7と同様の塗布液を用いて、ディップコート法によりホウケイ酸ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。塗布後の塗膜に、500Wの高圧水銀灯を用いて3分間光照射した後の膜表面に、約350nm~約100μmサイズの微細な凹凸パターンが刻まれたPDMSモールドを数秒間圧着して、該PDMSモールドを剥離した後、500Wの高圧水銀灯を用いて60分間光照射することにより、該塗膜を光硬化させた。尚、微細な凹凸パターンが刻まれたPDMSモールドは、石英製ナノインプリント用モールド(NTT-AT MIN-PHシリーズ)から構造を転写したものを用いた。実施例7と同様に光硬化反応の完了を確認した後で、硬化後の被膜付きのホウケイ酸ガラス基板を、実施例7と同様に焼成炉で焼成した。得られた被膜は、無色透明なものであり、表面に微細な凹凸パターンがあることが確認できた。該被膜表面の凹凸パターンと、それに対応する前記の石英製ナノインプリント用モールドの凹凸パターンをそれぞれ走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)で測定したところ、面内寸法誤差は10nm未満であり、高精度な微細加工を被膜表面に施せることが確認できた。さらに、表面に微細な凹凸パターンを有する被膜を形成したホウケイ酸ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、また、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定したところ、面内寸法の変化量は10nm未満であり、優れた耐熱性を示した。結果を表1に示す。
実施例7と同様の塗布液を用いて、ディップコート法によりホウケイ酸ガラス基板(寸法:約40mm×25mm、厚さ:1mm)表面に塗布を行った。塗布後の塗膜に、He-Cdレーザー(波長325nm)を用いた二光束干渉法により60分間光照射することによって、該塗膜を光硬化させ、膜表面に約2μmピッチの微細なグレーティング構造の形成を行った。その後、エタノールで未硬化部を洗い流すことにより、膜表面に微細なグレーティング構造を得た。硬化後の被膜付きのホウケイ酸ガラス基板を焼成炉で1℃/分で室温から550℃まで昇温し、550℃において3時間焼成した。得られた被膜は、顕微鏡観察により、表面に微細なグレーティング構造が形成されていることが確認できた。該被膜表面のグレーティング構造を走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)で測定し、干渉光の入射角度と波長から計算されるピッチサイズと比較したところ、周期の誤差は10nm未満であり、高精度な微細加工を被膜表面に施せることが確認できた。さらに、表面に微細な凹凸パターンを有する被膜を形成したホウケイ酸ガラス基板サンプルを200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって被膜に変形やクラックや着色などの外観上の変化がなく、また、加熱前後で走査型電子顕微鏡(日立製電界放出形走査電子顕微鏡、型番:S-4800)を用いて、該成形体表面の形状を測定したところ、面内寸法の変化量は10nm未満であり、優れた耐熱性を示した。結果を表1に示す。
シート形状をかたどったPDMSモールド中で市販のPMMAを成形して、厚さ約1mmのシート状成形体を得た。該成形体の鉛筆硬度は2Hであり、本実施例の成形体に比べ表面硬度が低かった。また、前記シート状成形体を200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって黄色に着色した。結果を表1に示す。
実施例2と同様の約350nm~約100μmサイズの微細な凹凸パターンが刻まれたシート形状をかたどったPDMSモールド中で市販のPMMAを成形して、表面に微細構造を転写したシート状成形体を得た。前記シート状成形体を200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって黄色に着色し、さらに表面の微細構造が変形により維持されていなかった。すなわち、200℃の加熱に対して形状を保持できなかった。結果を表1に示す。
窒素雰囲気の反応装置中でオルトリン酸〔H3PO4〕を40℃に加熱して液体にした後に、ジメチルジクロロシラン〔(CH3)2SiCl2〕を加え、3時間加熱、撹拌した。その後100℃に加熱し、塩化スズ〔SnCl2〕を添加した。それぞれの混合比率は、モル比でH3PO4:(CH3)2SiCl2:SnCl2=2:2.5:0.5となるように調整した。さらに窒素雰囲気下250℃で1時間加熱し、軟化温度が123℃の熱可塑性の有機無機ハイブリッドガラス状物質を得た。この物質を、シート形状をかたどったPDMSモールド中で成形して、厚さ約1mmのシート状成形体を得た。該成形体の鉛筆硬度はHBであり、本実施例の成形体に比べ表面硬度が低かった。また、シート状成形体を200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって溶融し形状を保持できなかった。結果を表1に示す。
窒素雰囲気の反応装置中で亜リン酸〔H3PO3〕に、ジメチルジクロロシラン〔(CH3)2SiCl2〕を加え、室温で3時間撹拌した。その後、塩化スズ〔SnCl2〕を添加した。それぞれの混合比率は、モル比でH3PO3: (CH3)2SiCl2:SnCl2=1:0.5:0.5となるように調整した。さらに窒素雰囲気下160℃で3時間、200℃で3時間、加熱し、軟化温度が72℃の熱可塑性の有機無機ハイブリッドガラス状物質を得た。この物質を、シート形状をかたどったPDMSモールド中で成形して、厚さ約1mmのシート状成形体を得た。該成形体の鉛筆硬度は2Hであり、上記実施例の成形体に比べ表面硬度が低かった。また、シート状成形体を200℃で1時間加熱し、加熱前後の外観を比較したところ、加熱によって溶融し形状を保持できなかった。結果を表1に示す。
Claims (12)
- 酸化物部位と有機架橋部位とを含有し、少なくとも表層が無機ガラス状物質である、酸化物成形体。
- 前記酸化物部位は、元素M及びM’が酸素原子を介して結合したM-O-M’結合(但し、M及びM’は、それぞれ互いに独立して、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、鉛、リン、ホウ素、ガリウム、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ネオジム、プラセオジム、エルビウム、セリウム、チタン、ジルコニウム、タンタル、亜鉛、タングステン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び、モリブデンからなる群から選ばれる少なくとも1種の元素である。)からなることを特徴とする、請求項1に記載の酸化物成形体。
- 前記酸化物部位は、チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛からなる群から選ばれる少なくとも1種の元素Mと、ホウ素、アルミニウム、ガリウム、インジウムからなる群から選ばれる少なくとも1種の13族元素M’が酸素原子とを介したM-O-M’結合からなる複合酸化物部位であることを特徴とする、請求項2に記載の酸化物成形体。
- 前記有機架橋部位が、重合性官能基を含む有機基を光重合反応及び/又は熱重合反応させて得られた部位であることを特徴とする、請求項1乃至請求項4のいずれか1項に記載の酸化物成形体。
- 前記重合性官能基が、ビニル基、アリル基、スチリル基、アクリル基、メタクリル基、アクリロイル基、メタクリロイル基、エポキシ基、グリシジル基、グリシドキシ基、グリシロキシ基及びオキセタニル基から選ばれる少なくとも1つの基であることを特徴とする、請求項5に記載の酸化物成形体。
- 前記無機ガラス状物質が、M-O-M’、M-O-M、または、M’-O-M’で表される結合(但し、M及びM’は、それぞれ互いに独立して、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、鉛、リン、ホウ素、ガリウム、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ネオジム、プラセオジム、エルビウム、セリウム、チタン、ジルコニウム、タンタル、亜鉛、タングステン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び、モリブデンからなる群から選ばれる少なくとも1種の元素である。)から形成された物質であることを特徴とする、請求項1乃至請求項6のいずれかに記載の酸化物成形体。
- 前記無機ガラス状物質が、M-O-M’、M-O-M、または、M’-O-M’で表される結合(但し、Mはチタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛からなる群から選ばれる少なくとも1種の元素であり、M’はホウ素、アルミニウム、ガリウム及びインジウムからなる群から選ばれる少なくとも1種の13族元素である。)からなるものであることを特徴とする、請求項7に記載の酸化物成形体。
- 前記無機ガラス状物質の層の厚さが、前記酸化物成形体の表面から50nm~10μmであることを特徴とする、請求項1乃至請求項8のいずれか1項に記載の酸化物成形体。
- 100nm以上の寸法の微細構造を有することを特徴とする、請求項1乃至請求項9のいずれか1項に記載の酸化物成形体。
- 下記工程A乃至工程Dを含む、請求項1乃至請求項10のいずれか1項に記載の酸化物成形体の製造方法。
工程A:下式[2]の素反応により、重合性官能基を含む有機基R2とM-O-M’結合とを有する前駆体R2-M-O-M’を得る工程。
工程B:前駆体を含む塗布液を塗布する工程。
工程C:塗布液を光硬化及び/又は熱硬化させる工程。
工程D:硬化後の硬化体の少なくとも表層を酸化処理することにより、該硬化体の少なくとも表層を無機ガラス状物質とせしめる工程。 - 前記工程Cの前に、または工程Cの途中で、100nm以上の寸法の微細加工を施すことを特徴とする、請求項11に記載の酸化物成形体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127014777A KR101396081B1 (ko) | 2010-03-31 | 2011-03-25 | 산화물 성형체 및 그의 제조방법 |
US13/503,786 US20130011664A1 (en) | 2010-03-31 | 2011-03-25 | Molded Oxide Product and Process for Producing Same |
EP11765433.5A EP2543629A4 (en) | 2010-03-31 | 2011-03-25 | MOLDED OXIDE AND PROCESS FOR PRODUCING THE SAME |
CN201180017619.8A CN102834351B (zh) | 2010-03-31 | 2011-03-25 | 氧化物成型体及其制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010084523 | 2010-03-31 | ||
JP2010-084523 | 2010-03-31 | ||
JP2010-158297 | 2010-07-12 | ||
JP2010158297 | 2010-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125532A1 true WO2011125532A1 (ja) | 2011-10-13 |
Family
ID=44762486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057278 WO2011125532A1 (ja) | 2010-03-31 | 2011-03-25 | 酸化物成形体及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2543629A4 (ja) |
JP (1) | JP5799542B2 (ja) |
KR (1) | KR101396081B1 (ja) |
CN (1) | CN102834351B (ja) |
WO (1) | WO2011125532A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995245B1 (fr) * | 2012-09-10 | 2015-05-15 | Saint Gobain | Vitrage decoratif a couche reflechissante deposee sur un substrat texture |
JP6987491B2 (ja) * | 2015-09-30 | 2022-01-05 | Hoya株式会社 | 紫外光照射装置用光学素子、紫外光照射装置用光学ユニットおよび紫外光照射装置 |
CN105273564B (zh) * | 2015-11-24 | 2017-04-05 | 成都理工大学 | 一种防电磁环境污染涂料及其制备方法 |
DE102016215449A1 (de) * | 2016-08-18 | 2018-02-22 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung von Faserverbundbauteilen und Vorrichtung zur Bestimmung des Härtegrades eines gehärteten Harzes |
CN110002516B (zh) * | 2019-04-10 | 2021-09-17 | 宁波大学 | 一种稀土钕掺杂钨酸镍纳米材料及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183603A (ja) * | 1984-09-07 | 1986-04-28 | Agency Of Ind Science & Technol | 非晶質複合金属酸化物の製造方法 |
JPH01257123A (ja) * | 1988-04-06 | 1989-10-13 | Hisatoshi Asaoka | チタニウム、アルミニウム、ケイ素及びホウ素の各四面体酸化物の組合せによる組成物及びその製造方法 |
JPH0446963B2 (ja) | 1982-12-13 | 1992-07-31 | Tokuyama Soda Kk | |
JPH054839A (ja) * | 1991-06-20 | 1993-01-14 | Sumitomo Electric Ind Ltd | ゾルゲル法による薄膜の作製方法 |
JP2000194142A (ja) | 1998-12-25 | 2000-07-14 | Fujitsu Ltd | パタ―ン形成方法及び半導体装置の製造方法 |
JP2002270540A (ja) | 2001-03-14 | 2002-09-20 | Matsushita Electric Ind Co Ltd | パターン形成方法 |
JP2004071934A (ja) | 2002-08-08 | 2004-03-04 | Kanegafuchi Chem Ind Co Ltd | 微細パターンの製造方法および転写材料 |
JP2004266068A (ja) * | 2003-02-28 | 2004-09-24 | Ube Nitto Kasei Co Ltd | 多孔質シリカ系薄膜の製造方法 |
JP3910101B2 (ja) | 2002-04-24 | 2007-04-25 | セントラル硝子株式会社 | 有機−無機ハイブリッド低融点ガラスおよびその製造方法 |
WO2009041479A1 (ja) * | 2007-09-28 | 2009-04-02 | Riken | プロトン伝導膜およびプロトン伝導膜の製造方法 |
JP2009120874A (ja) * | 2007-11-12 | 2009-06-04 | Dainippon Printing Co Ltd | 金属酸化物膜の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2028682B (en) * | 1978-07-28 | 1982-08-18 | Res Inst For Special Inorganic | Method for producing corrosion-heat-and oxidation-resistant materials |
JPS5519508A (en) * | 1978-07-28 | 1980-02-12 | Tokushu Muki Zairyo Kenkyusho | Preparation of heattproof oxidationnresisting material |
JP2720435B2 (ja) * | 1987-07-08 | 1998-03-04 | 日本板硝子株式会社 | 溝つき基板 |
DE4130550A1 (de) * | 1991-09-13 | 1993-03-18 | Inst Neue Mat Gemein Gmbh | Optische elemente und verfahren zu deren herstellung |
JP3697561B2 (ja) * | 1995-02-14 | 2005-09-21 | 大日本インキ化学工業株式会社 | 有機高分子と金属酸化物との成分傾斜複合体及びその製造法 |
JP3502279B2 (ja) * | 1997-10-28 | 2004-03-02 | 三菱レイヨン株式会社 | 傾斜組成硬化被膜層が形成された被覆物品及びその製造方法 |
DE10001135A1 (de) * | 2000-01-13 | 2001-07-19 | Inst Neue Mat Gemein Gmbh | Verfahren zur Herstellung eines mikrostrukturierten Oberflächenreliefs durch Prägen thixotroper Schichten |
US6451420B1 (en) * | 2000-03-17 | 2002-09-17 | Nanofilm, Ltd. | Organic-inorganic hybrid polymer and method of making same |
JP2002275284A (ja) * | 2001-03-19 | 2002-09-25 | Akira Nakajima | 有機−無機複合傾斜膜、その製造方法およびその用途 |
JP2003054950A (ja) * | 2001-08-23 | 2003-02-26 | Ube Nitto Kasei Co Ltd | 金属酸化物系薄膜の製造方法および有機−無機複合傾斜材料の製造方法 |
SG149034A1 (en) * | 2003-12-18 | 2009-01-29 | Hybrid Plastics Inc | Polyhedral oligomeric silsesquioxanes and metallized polyhedral oligomeric silsesquioxanes as coatings, composites and additives |
EP1887025B1 (en) * | 2005-05-31 | 2014-12-31 | Nitto Boseki Co., Ltd. | Polymer made from organosilane compound and boron compound |
-
2011
- 2011-03-25 KR KR1020127014777A patent/KR101396081B1/ko not_active IP Right Cessation
- 2011-03-25 CN CN201180017619.8A patent/CN102834351B/zh not_active Expired - Fee Related
- 2011-03-25 EP EP11765433.5A patent/EP2543629A4/en not_active Withdrawn
- 2011-03-25 WO PCT/JP2011/057278 patent/WO2011125532A1/ja active Application Filing
- 2011-03-25 JP JP2011068333A patent/JP5799542B2/ja not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446963B2 (ja) | 1982-12-13 | 1992-07-31 | Tokuyama Soda Kk | |
JPS6183603A (ja) * | 1984-09-07 | 1986-04-28 | Agency Of Ind Science & Technol | 非晶質複合金属酸化物の製造方法 |
JPH01257123A (ja) * | 1988-04-06 | 1989-10-13 | Hisatoshi Asaoka | チタニウム、アルミニウム、ケイ素及びホウ素の各四面体酸化物の組合せによる組成物及びその製造方法 |
JPH054839A (ja) * | 1991-06-20 | 1993-01-14 | Sumitomo Electric Ind Ltd | ゾルゲル法による薄膜の作製方法 |
JP2000194142A (ja) | 1998-12-25 | 2000-07-14 | Fujitsu Ltd | パタ―ン形成方法及び半導体装置の製造方法 |
JP2002270540A (ja) | 2001-03-14 | 2002-09-20 | Matsushita Electric Ind Co Ltd | パターン形成方法 |
JP3910101B2 (ja) | 2002-04-24 | 2007-04-25 | セントラル硝子株式会社 | 有機−無機ハイブリッド低融点ガラスおよびその製造方法 |
JP2004071934A (ja) | 2002-08-08 | 2004-03-04 | Kanegafuchi Chem Ind Co Ltd | 微細パターンの製造方法および転写材料 |
JP2004266068A (ja) * | 2003-02-28 | 2004-09-24 | Ube Nitto Kasei Co Ltd | 多孔質シリカ系薄膜の製造方法 |
WO2009041479A1 (ja) * | 2007-09-28 | 2009-04-02 | Riken | プロトン伝導膜およびプロトン伝導膜の製造方法 |
JP2009120874A (ja) * | 2007-11-12 | 2009-06-04 | Dainippon Printing Co Ltd | 金属酸化物膜の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2543629A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP5799542B2 (ja) | 2015-10-28 |
KR101396081B1 (ko) | 2014-05-15 |
EP2543629A1 (en) | 2013-01-09 |
KR20120091329A (ko) | 2012-08-17 |
CN102834351A (zh) | 2012-12-19 |
JP2012036073A (ja) | 2012-02-23 |
CN102834351B (zh) | 2014-10-29 |
EP2543629A4 (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI402285B (zh) | 光學材料用硬化性組成物及光波導 | |
EP1389634B1 (en) | Surface-treating agent comprising inorganic/organic composite material | |
KR102460223B1 (ko) | 방현성 및 반사 방지성을 가지는 투명 기판과 그 제조 방법 | |
JP5062521B2 (ja) | レプリカモールドの製造方法およびレプリカモールド | |
CN102056993B (zh) | 与随后涂层和相应涂覆基材具有良好附着性的可光固化丙烯酸系涂料组合物 | |
JP5037584B2 (ja) | 樹脂組成物及び光学部材 | |
CN104114622B (zh) | 有机无机复合薄膜 | |
JP5799542B2 (ja) | 酸化物成形体及びその製造方法 | |
KR101286438B1 (ko) | 미세 요철 구조 전사용 무기 조성물 | |
US20210087429A1 (en) | Flexible and foldable abrasion resistant photopatternable siloxane hard coat | |
KR20180004213A (ko) | 광기능성 막 및 이의 제조방법 | |
JP2008208234A (ja) | 高屈折率ガラス用材料、該材料から得られた高屈折率ガラス、および高屈折率ガラスのパターニング方法 | |
KR20110029515A (ko) | 플라스틱 기판 코팅용 자외선 경화형 유기―무기 하이브리드 조성물 | |
JP2004155954A (ja) | 光硬化性組成物及びその製造方法、並びに硬化物 | |
WO2001051992A1 (fr) | Procede servant a fabriquer un article revetu par une couche portant des motifs et composition photosensible | |
EP3141533A1 (en) | Glass article | |
JP4390826B2 (ja) | 有機無機複合樹脂組成物及び光学部材 | |
JP4736387B2 (ja) | 耐擦傷性及び反射防止性を有する積層体 | |
JP2006016480A (ja) | 硬化性組成物及びその硬化被膜を有する透明基材 | |
US20130011664A1 (en) | Molded Oxide Product and Process for Producing Same | |
JP2009102652A (ja) | 有機無機複合樹脂組成物の製造方法及び有機無機複合樹脂組成物 | |
JP2007046008A (ja) | 活性エネルギー線硬化性低屈折率コーティング用組成物および成形品 | |
JP2008088249A (ja) | 樹脂組成物及びその製造方法 | |
JP5305707B2 (ja) | 樹脂組成物及び光学部材 | |
CN111263779B (zh) | 压印用光固化性组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180017619.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765433 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13503786 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127014777 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011765433 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011765433 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |