WO2011108280A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2011108280A1 WO2011108280A1 PCT/JP2011/001280 JP2011001280W WO2011108280A1 WO 2011108280 A1 WO2011108280 A1 WO 2011108280A1 JP 2011001280 W JP2011001280 W JP 2011001280W WO 2011108280 A1 WO2011108280 A1 WO 2011108280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- semiconductor device
- manufacturing
- polyimide film
- gas
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 229920001721 polyimide Polymers 0.000 claims abstract description 43
- 238000001020 plasma etching Methods 0.000 claims abstract description 37
- 238000005530 etching Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 238000011049 filling Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 35
- 239000011737 fluorine Substances 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 7
- 238000000635 electron micrograph Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- -1 fluorine ions Chemical class 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/485—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a method for manufacturing a semiconductor device.
- the vertically stacked semiconductor device includes an electrode formed through the substrate, and is electrically connected via the electrode.
- an electrode formed through the substrate, and is electrically connected via the electrode.
- the hole shape is tapered, and a tape is attached to the substrate surface.
- a method is known in which a hole smaller than the opening diameter of the hole is formed in a portion corresponding to the hole, and the insulating film at the bottom of the hole is etched through the hole (see, for example, Patent Document 1).
- the present invention has been made in response to the above-described conventional circumstances, and can be miniaturized by making the hole shape vertical, and the number of processes can be reduced as compared with the conventional case, thereby improving productivity.
- An object of the present invention is to provide a method for manufacturing a semiconductor device.
- One aspect of the method for manufacturing a semiconductor device of the present invention includes a hole forming step of forming a hole in a substrate, a polyimide film forming step of forming a polyimide film in the hole, and the substrate on a side wall portion in the hole. Perform anisotropic etching without using a mask covering the polyimide film, and remove at least a part of the polyimide film at the bottom in the hole while leaving the polyimide film on the side wall in the hole.
- a plasma etching step for penetrating and a conductor metal filling step for filling the hole with a conductor metal are provided.
- a method for manufacturing a semiconductor device which can be miniaturized by making the hole shape vertical, can reduce the number of steps as compared with the prior art, and can improve productivity. be able to.
- the figure for demonstrating the process of one Embodiment of this invention The figure which shows the structure of the plasma etching apparatus used for one Embodiment of this invention.
- the electron micrograph of the semiconductor wafer of the Example of this invention The electron micrograph of the semiconductor wafer of the Example of this invention.
- FIG. 1 schematically shows an enlarged cross-sectional configuration of a main part of a semiconductor wafer W as a substrate to be processed, and shows the process of this embodiment.
- FIG. 2 schematically shows a schematic cross-sectional configuration of the plasma etching apparatus according to the present embodiment.
- the plasma etching apparatus has a processing chamber 1 which is airtight and electrically grounded.
- the processing chamber 1 has a cylindrical shape and is made of, for example, aluminum.
- a mounting table 2 that horizontally supports a semiconductor wafer W as a substrate to be processed is provided.
- the mounting table 2 is made of, for example, aluminum and has a function as a lower electrode.
- the mounting table 2 is supported by a conductor support 4 via an insulating plate 3.
- a focus ring 5 is provided on the outer periphery above the mounting table 2.
- a cylindrical inner wall member 3 a made of, for example, quartz is provided so as to surround the periphery of the mounting table 2 and the support table 4.
- the mounting table 2 is connected to a first RF power source 10a via a first matching unit 11a, and to a second RF power source 10b via a second matching unit 11b.
- the first RF power supply 10a is for generating plasma, and high-frequency power of a predetermined frequency (27 MHz or more, for example, 100 MHz) is supplied to the mounting table 2 from the first RF power supply 10a.
- the second RF power supply 10b is for ion attraction (bias), and the second RF power supply 10b has a predetermined frequency (13.56 MHz or less, for example, 13.5 MHz or lower) than that of the first RF power supply 10a. 56 MHz) is supplied to the mounting table 2.
- a shower head 16 having a function as an upper electrode is provided above the mounting table 2 so as to face the mounting table 2 in parallel.
- the shower head 16 and the mounting table 2 have a pair of electrodes ( Upper electrode and lower electrode).
- An electrostatic chuck 6 for electrostatically adsorbing the semiconductor wafer W is provided on the upper surface of the mounting table 2.
- the electrostatic chuck 6 is configured by interposing an electrode 6a between insulators 6b, and a DC power source 12 is connected to the electrode 6a.
- a DC power source 12 is connected to the electrode 6a.
- a refrigerant flow path 4a is formed inside the support base 4, and a refrigerant inlet pipe 4b and a refrigerant outlet pipe 4c are connected to the refrigerant flow path 4a.
- the support 4 and the mounting table 2 can be controlled to a predetermined temperature by circulating an appropriate refrigerant, such as cooling water, in the refrigerant flow path 4a.
- a backside gas supply pipe 30 for supplying a cooling heat transfer gas (backside gas) such as helium gas is provided on the back side of the semiconductor wafer W so as to penetrate the mounting table 2 and the like.
- the backside gas supply pipe 30 is connected to a backside gas supply source (not shown).
- the above-described shower head 16 is provided on the top wall portion of the processing chamber 1.
- the shower head 16 includes a main body portion 16 a and an upper top plate 16 b that forms an electrode plate, and is supported on the upper portion of the processing chamber 1 via an insulating member 45.
- the main body portion 16a is made of a conductive material, for example, aluminum whose surface is anodized, and is configured so that the upper top plate 16b can be detachably supported at the lower portion thereof.
- a gas diffusion chamber 16c is provided inside the main body 16a, and a number of gas flow holes 16d are formed at the bottom of the main body 16a so as to be positioned below the gas diffusion chamber 16c. Further, the upper top plate 16b is provided with a gas introduction hole 16e so as to penetrate the upper top plate 16b in the thickness direction so as to overlap the above-described gas flow hole 16d. With such a configuration, the processing gas supplied to the gas diffusion chamber 16c is dispersed and supplied into the processing chamber 1 through the gas flow hole 16d and the gas introduction hole 16e. .
- the main body 16a and the like are provided with a pipe (not shown) for circulating the refrigerant so that the shower head 16 can be cooled to a desired temperature during the plasma etching process.
- a gas inlet 16f for introducing the processing gas into the gas diffusion chamber 16c is formed in the main body 16a.
- a gas supply pipe 15a is connected to the gas introduction port 16f, and a processing gas supply source 15 for supplying a processing gas for etching is connected to the other end of the gas supply pipe 15a.
- the gas supply pipe 15a is provided with a mass flow controller (MFC) 15b and an on-off valve V1 in order from the upstream side.
- MFC mass flow controller
- V1 on-off valve
- a variable DC power source 52 is electrically connected to the shower head 16 as the upper electrode through a low-pass filter (LPF) 51.
- the variable DC power supply 52 can be turned on / off by an on / off switch 53.
- the current / voltage of the variable DC power supply 52 and the on / off of the on / off switch 53 are controlled by a control unit 60 described later.
- the control unit 60 turns on as necessary.
- the off switch 53 is turned on, and a predetermined DC voltage is applied to the shower head 16 as the upper electrode.
- a cylindrical grounding conductor 1a is provided so as to extend upward from the side wall of the processing chamber 1 above the height position of the shower head 16.
- the cylindrical ground conductor 1a has a top wall at the top.
- An exhaust port 71 is formed at the bottom of the processing chamber 1, and an exhaust device 73 is connected to the exhaust port 71 via an exhaust pipe 72.
- the exhaust device 73 has a vacuum pump, and the inside of the processing chamber 1 can be depressurized to a predetermined degree of vacuum by operating the vacuum pump.
- a loading / unloading port 74 for the wafer W is provided on the side wall of the processing chamber 1, and a gate valve 75 for opening and closing the loading / unloading port 74 is provided at the loading / unloading port 74.
- Numerals 76 and 77 in the figure are depot shields that are detachable.
- the deposition shield 76 is provided along the inner wall surface of the processing chamber 1 and has a role of preventing the etching byproduct (depot) from adhering to the processing chamber 1.
- the deposition shield 76 is substantially the same as the semiconductor wafer W of the deposition shield 76.
- a conductive member (GND block) 79 connected to the ground in a DC manner is provided at the height position, thereby preventing abnormal discharge.
- the operation of the plasma etching apparatus having the above-described configuration is comprehensively controlled by the control unit 60.
- the control unit 60 includes a process controller 61 that includes a CPU and controls each unit of the plasma etching apparatus, a user interface 62, and a storage unit 63.
- the user interface 62 includes a keyboard for a command input by the process manager to manage the plasma etching apparatus, a display for visualizing and displaying the operating status of the plasma etching apparatus, and the like.
- the storage unit 63 stores a recipe in which a control program (software) for realizing various processes executed by the plasma etching apparatus under the control of the process controller 61 and processing condition data are stored. Then, if necessary, an arbitrary recipe is called from the storage unit 63 by an instruction from the user interface 62 and executed by the process controller 61, so that a desired process in the plasma etching apparatus is performed under the control of the process controller 61. Processing is performed.
- recipes such as control programs and processing condition data may be stored in a computer-readable computer storage medium (eg, hard disk, CD, flexible disk, semiconductor memory, etc.), or It is also possible to transmit the data from other devices as needed via a dedicated line and use it online.
- a procedure for plasma etching a polyimide film or the like in the bottom of the hole formed on the semiconductor wafer W, which will be described later, with the plasma etching apparatus configured as described above will be described.
- the gate valve 75 is opened, and the semiconductor wafer W is loaded into the processing chamber 1 from the loading / unloading port 74 via a load lock chamber (not shown) by a transfer robot (not shown) and mounted on the mounting table 2. Thereafter, the transfer robot is retracted out of the processing chamber 1 and the gate valve 75 is closed. Then, the inside of the processing chamber 1 is exhausted through the exhaust port 71 by the vacuum pump of the exhaust device 73.
- a predetermined processing gas (etching gas) is introduced into the processing chamber 1 from the processing gas supply source 15, and the processing chamber 1 is maintained at a predetermined pressure.
- high-frequency power having a frequency of, for example, 100 MHz is supplied from the first RF power supply 10a to the mounting table 2.
- high-frequency power (for bias) having a frequency of, for example, 13.56 MHz is supplied to the mounting table 2 for ion attraction.
- a predetermined DC voltage is applied from the DC power source 12 to the electrode 6a of the electrostatic chuck 6, and the semiconductor wafer W is attracted by the Coulomb force.
- an electric field is formed between the shower head 16 as the upper electrode and the mounting table 2 as the lower electrode by applying high-frequency power to the mounting table 2 as the lower electrode as described above.
- the Discharge occurs in the processing space where the semiconductor wafer W exists, and the polyimide film formed on the semiconductor wafer W is anisotropically etched by RIE by the plasma of the processing gas formed thereby.
- the semiconductor wafer W shown in FIG. 1 is obtained by forming a semiconductor circuit on a silicon semiconductor wafer W and then performing a thinning process by grinding from the back side. After the semiconductor wafer W is temporarily bonded to a tray or the like, the back side is turned upward, and a predetermined lithography process is performed. As shown in FIG. A hole 101 leading to the (electrode pad) 100 is formed.
- the side wall shape of the hole 101 is substantially vertical. As shown in the figure, the angle ⁇ formed by the imaginary line extending horizontally from the bottom surface in the longitudinal section and the side wall is in the range of 88 ° to 90 °. It is supposed to be a shape. Thus, in this embodiment, since the side wall has a substantially vertical shape, small-diameter holes can be arranged with high density, and high integration by miniaturization of the semiconductor device can be achieved.
- a polyimide film 102 as an insulating film is formed on the surface of the semiconductor wafer W including the bottom 101a and the side wall 101b of the hole 101.
- This polyimide film 102 can be formed, for example, by vapor deposition polymerization.
- a uniform polyimide film 102 can be formed on the semiconductor wafer W by causing a co-vapor deposition polymerization reaction on the semiconductor wafer W using PMDA and ODA as monomer raw materials. .
- PMDA and ODA as monomer raw materials.
- the polyimide film 102 formed on the side wall 101b of the hole 101 is left, and only the polyimide film 102 formed on the bottom 101a of the hole 101 is removed by plasma etching. If it is desired to leave an insulating film on the back surface (upper side surface of FIG. 1) of the semiconductor wafer W, for example, the polyimide film 102 in this portion is made thicker than the polyimide film 102 formed on the bottom 101a of the hole 101 or etched. Sometimes it can be left by masking.
- the above plasma etching can be performed by anisotropic etching using, for example, RIE (Reactive Ion Etching).
- This plasma etching can be performed, for example, by plasma etching under the following conditions using the plasma etching apparatus shown in FIG.
- an etching gas comprising a mixed gas of fluorine-containing gas, fluorine-containing gas, inert gas, and oxygen gas, and the flow rate of fluorine-containing gas is higher than the flow rate of oxygen gas.
- the gas containing fluorine the above-mentioned CF 4 gas can be preferably used, but other fluorocarbon gases may be used.
- the conductive metal 103 is embedded in the hole 101 by plating or the like to form an electrode penetrating the wafer W electrically connected to the wiring portion 100.
- FIG. 3 and 4 are electron micrographs showing the main part of the semiconductor wafer W of the example.
- FIG. 3 shows a state in which a polyimide film is formed on the semiconductor wafer W by vapor deposition polymerization as described above.
- the film thickness of the polyimide film at each part was measured, the film thickness of the upper surface in FIG. 3 was 845 nm, the film thickness of the side wall of the hole was 839 nm, and the film thickness of the bottom of the hole was 889 nm. Met.
- FIG. 4 shows a state where the polyimide film at the bottom of the hole is etched by the plasma etching apparatus shown in FIG. 2 under the above-described etching conditions.
- FIG. 4 (a) shows the whole hole
- FIG. FIG. 4C shows a state near the opening of the hole and FIG. 4C.
- the polyimide film at the bottom of the hole could be removed while leaving the polyimide film on the side wall of the hole.
- the hole 101 can be formed in a shape in which the side wall shape is substantially vertical, and a mask made of a photoresist layer is formed, or a tape is attached to the hole 101.
- the polyimide film 102 formed on the side wall 101b of the hole 101 is left by plasma etching by RIE, and the bottom 101a of the hole 101 is formed. Only the polyimide film 102 can be removed by etching. As a result, a three-dimensional mounting type semiconductor device can be manufactured with fewer steps than in the past, and productivity can be improved.
- the present invention is not limited to the above-described embodiment, and various modifications can be made.
- the plasma etching apparatus is not limited to a lower two-frequency application plasma etching apparatus that applies two types of high-frequency power to the lower electrode.
- a plasma etching apparatus or the like can also be used.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
エッチングガス:O2/Ar/CF4=20/200/100sccm
高周波電力(100MHz/13.56MHz):400W/600W
Claims (13)
- 基板にホールを形成するホール形成工程と、
前記ホール内にポリイミド膜を形成するポリイミド膜形成工程と、
前記基板を、前記ホール内の側壁部の前記ポリイミド膜を覆うマスクを使用せずに異方性エッチングして、前記ホール内の側壁部の前記ポリイミド膜を残したまま、前記ホール内の底部の前記ポリイミド膜の少なくとも一部を除去して貫通させるプラズマエッチング工程と、
前記ホール内に導体金属を充填する導体金属充填工程と
を具備したことを特徴とする半導体装置の製造方法。 - 請求項1記載の半導体装置の製造方法であって、
前記プラズマエッチング工程は、
前記基板を載置する載置台を兼ねた下部電極と、当該下部電極に対向するように配置された上部電極との間に高周波電力を印加するプラズマエッチング装置を用い、
フッ素を含むガスと不活性ガスと酸素ガスの混合ガスからなり前記フッ素を含むガスの流量が前記酸素ガスの流量より多いエッチングガスを使用し、
前記下部電極にイオン引き込み用のバイアスを印加した異方性エッチングにより行う
ことを特徴とする半導体装置の製造方法。 - 請求項2記載の半導体装置の製造方法であって、
前記フッ素を含むガスはCF4であり、不活性ガスはArである
ことを特徴とする半導体装置の製造方法。 - 請求項2又は3記載の半導体装置の製造方法であって、
前記下部電極に、第1高周波電力と、前記第1高周波電力より周波数の低いイオン引き込み用の第2高周波電力とを印加する
ことを特徴とする半導体装置の製造方法。 - 請求項1~4いずれか1項記載の半導体装置の製造方法であって、
前記ポリイミド膜は、蒸着重合によって形成する
ことを特徴とする半導体装置の製造方法。 - 請求項1~5いずれか1項記載の半導体装置の製造方法であって、
前記ホールの底部は、配線部である
ことを特徴とする半導体装置の製造方法。 - 請求項1記載の半導体装置の製造方法であって、
前記ホールの側壁は垂直である
ことを特徴とする半導体装置の製造方法。 - 基板にホールを形成するホール形成工程と、
前記ホール内にポリイミド膜を形成するポリイミド膜形成工程と、
前記基板を、前記ホール内の側壁部の前記ポリイミド膜を覆うマスクを使用せずに異方性エッチングして、前記ホール内の側壁部の前記ポリイミド膜を残したまま前記ホール内の底部の前記ポリイミド膜の少なくとも一部を除去して貫通させるプラズマエッチング工程と、
を具備したことを特徴とする半導体装置の製造方法。 - 請求項8記載の半導体装置の製造方法であって、
前記プラズマエッチング工程は、
前記基板を載置する載置台を兼ねた下部電極と、当該下部電極に対向するように配置された上部電極との間に高周波電力を印加するプラズマエッチング装置を用い、
フッ素を含むガスと不活性ガスと酸素ガスの混合ガスからなり前記フッ素を含むガスの流量が前記酸素ガスの流量より多いエッチングガスを使用し、
前記下部電極にイオン引き込み用のバイアスを印加した異方性エッチングにより行う
ことを特徴とする半導体装置の製造方法。 - 請求項9記載の半導体装置の製造方法であって、
前記フッ素を含むガスはCF4であり、不活性ガスはArである
ことを特徴とする半導体装置の製造方法。 - 請求項9又は10記載の半導体装置の製造方法であって、
前記下部電極に、第1高周波電力と、前記第1高周波電力より周波数の低いイオン引き込み用の第2高周波電力とを印加する
ことを特徴とする半導体装置の製造方法。 - 請求項8~11いずれか1項記載の半導体装置の製造方法であって、
前記ポリイミド膜は、蒸着重合によって形成する
ことを特徴とする半導体装置の製造方法。 - 請求項8記載の半導体装置の製造方法であって、
前記ホールの側壁は垂直である
ことを特徴とする半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127023268A KR101384589B1 (ko) | 2010-03-05 | 2011-03-04 | 반도체 장치의 제조 방법 |
US13/582,536 US8664117B2 (en) | 2010-03-05 | 2011-03-04 | Method for manufacturing semiconductor device using anisotropic etching |
CN201180012663.XA CN103155115B (zh) | 2010-03-05 | 2011-03-04 | 半导体装置的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-049833 | 2010-03-05 | ||
JP2010049833A JP5373669B2 (ja) | 2010-03-05 | 2010-03-05 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011108280A1 true WO2011108280A1 (ja) | 2011-09-09 |
Family
ID=44541949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/001280 WO2011108280A1 (ja) | 2010-03-05 | 2011-03-04 | 半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8664117B2 (ja) |
JP (1) | JP5373669B2 (ja) |
KR (1) | KR101384589B1 (ja) |
CN (1) | CN103155115B (ja) |
WO (1) | WO2011108280A1 (ja) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI529808B (zh) | 2010-06-10 | 2016-04-11 | Asm國際股份有限公司 | 使膜選擇性沈積於基板上的方法 |
US9112003B2 (en) | 2011-12-09 | 2015-08-18 | Asm International N.V. | Selective formation of metallic films on metallic surfaces |
JP5862459B2 (ja) * | 2012-05-28 | 2016-02-16 | 東京エレクトロン株式会社 | 成膜方法 |
JP5966618B2 (ja) * | 2012-05-28 | 2016-08-10 | 東京エレクトロン株式会社 | 成膜方法 |
TWI686499B (zh) | 2014-02-04 | 2020-03-01 | 荷蘭商Asm Ip控股公司 | 金屬、金屬氧化物與介電質的選擇性沉積 |
US10047435B2 (en) | 2014-04-16 | 2018-08-14 | Asm Ip Holding B.V. | Dual selective deposition |
CN105428306B (zh) * | 2014-09-04 | 2018-11-06 | 北京北方华创微电子装备有限公司 | 一种通孔底部阻挡层的刻蚀方法 |
CN104505366A (zh) * | 2014-10-21 | 2015-04-08 | 华天科技(昆山)电子有限公司 | 防止硅通深孔侧壁刻蚀的底部刻蚀方法 |
US9490145B2 (en) | 2015-02-23 | 2016-11-08 | Asm Ip Holding B.V. | Removal of surface passivation |
US10428421B2 (en) | 2015-08-03 | 2019-10-01 | Asm Ip Holding B.V. | Selective deposition on metal or metallic surfaces relative to dielectric surfaces |
US10566185B2 (en) | 2015-08-05 | 2020-02-18 | Asm Ip Holding B.V. | Selective deposition of aluminum and nitrogen containing material |
US10121699B2 (en) | 2015-08-05 | 2018-11-06 | Asm Ip Holding B.V. | Selective deposition of aluminum and nitrogen containing material |
US10343186B2 (en) | 2015-10-09 | 2019-07-09 | Asm Ip Holding B.V. | Vapor phase deposition of organic films |
US10695794B2 (en) | 2015-10-09 | 2020-06-30 | Asm Ip Holding B.V. | Vapor phase deposition of organic films |
US10814349B2 (en) | 2015-10-09 | 2020-10-27 | Asm Ip Holding B.V. | Vapor phase deposition of organic films |
US9981286B2 (en) | 2016-03-08 | 2018-05-29 | Asm Ip Holding B.V. | Selective formation of metal silicides |
US10204782B2 (en) | 2016-04-18 | 2019-02-12 | Imec Vzw | Combined anneal and selective deposition process |
WO2017184357A1 (en) | 2016-04-18 | 2017-10-26 | Asm Ip Holding B.V. | Method of forming a directed self-assembled layer on a substrate |
US11081342B2 (en) | 2016-05-05 | 2021-08-03 | Asm Ip Holding B.V. | Selective deposition using hydrophobic precursors |
US10373820B2 (en) | 2016-06-01 | 2019-08-06 | Asm Ip Holding B.V. | Deposition of organic films |
US10453701B2 (en) | 2016-06-01 | 2019-10-22 | Asm Ip Holding B.V. | Deposition of organic films |
US9803277B1 (en) | 2016-06-08 | 2017-10-31 | Asm Ip Holding B.V. | Reaction chamber passivation and selective deposition of metallic films |
US10014212B2 (en) | 2016-06-08 | 2018-07-03 | Asm Ip Holding B.V. | Selective deposition of metallic films |
US11430656B2 (en) | 2016-11-29 | 2022-08-30 | Asm Ip Holding B.V. | Deposition of oxide thin films |
US11094535B2 (en) | 2017-02-14 | 2021-08-17 | Asm Ip Holding B.V. | Selective passivation and selective deposition |
JP2018170363A (ja) | 2017-03-29 | 2018-11-01 | 東芝メモリ株式会社 | 半導体装置の製造方法及び半導体装置 |
US11501965B2 (en) | 2017-05-05 | 2022-11-15 | Asm Ip Holding B.V. | Plasma enhanced deposition processes for controlled formation of metal oxide thin films |
KR102684628B1 (ko) | 2017-05-16 | 2024-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 유전체 상에 옥사이드의 선택적 peald |
US10900120B2 (en) | 2017-07-14 | 2021-01-26 | Asm Ip Holding B.V. | Passivation against vapor deposition |
KR102487054B1 (ko) | 2017-11-28 | 2023-01-13 | 삼성전자주식회사 | 식각 방법 및 반도체 장치의 제조 방법 |
JP7146690B2 (ja) | 2018-05-02 | 2022-10-04 | エーエスエム アイピー ホールディング ビー.ブイ. | 堆積および除去を使用した選択的層形成 |
JP2020056104A (ja) | 2018-10-02 | 2020-04-09 | エーエスエム アイピー ホールディング ビー.ブイ. | 選択的パッシベーションおよび選択的堆積 |
US11965238B2 (en) | 2019-04-12 | 2024-04-23 | Asm Ip Holding B.V. | Selective deposition of metal oxides on metal surfaces |
US11139163B2 (en) | 2019-10-31 | 2021-10-05 | Asm Ip Holding B.V. | Selective deposition of SiOC thin films |
TW202140833A (zh) | 2020-03-30 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 相對於金屬表面在介電表面上之氧化矽的選擇性沉積 |
TW202204658A (zh) | 2020-03-30 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 在兩不同表面上同時選擇性沉積兩不同材料 |
TW202140832A (zh) | 2020-03-30 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽在金屬表面上之選擇性沉積 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10289952A (ja) * | 1997-04-16 | 1998-10-27 | Sony Corp | 半導体装置の製造方法 |
JPH1126438A (ja) * | 1997-07-08 | 1999-01-29 | Fujitsu Ltd | アッシング方法 |
JPH1131678A (ja) * | 1997-07-10 | 1999-02-02 | Sony Corp | 半導体装置の製造方法 |
JP2003533869A (ja) * | 2000-02-17 | 2003-11-11 | アプライド マテリアルズ インコーポレイテッド | キャビティをエッチングする方法 |
JP2008153275A (ja) * | 2006-12-14 | 2008-07-03 | Canon Inc | 半導体基板およびその製造方法 |
JP2009246183A (ja) * | 2008-03-31 | 2009-10-22 | Tokyo Electron Ltd | プラズマエッチング方法及びコンピュータ読み取り可能な記憶媒体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920004541B1 (ko) * | 1989-05-30 | 1992-06-08 | 현대전자산업 주식회사 | 반도체 소자에서 식각베리어층을 사용한 콘택홀 형성방법 |
WO2004064159A1 (ja) | 2003-01-15 | 2004-07-29 | Fujitsu Limited | 半導体装置及び三次元実装半導体装置、並びに半導体装置の製造方法 |
JP4652140B2 (ja) * | 2005-06-21 | 2011-03-16 | 東京エレクトロン株式会社 | プラズマエッチング方法、制御プログラム、コンピュータ記憶媒体 |
US8614151B2 (en) * | 2008-01-04 | 2013-12-24 | Micron Technology, Inc. | Method of etching a high aspect ratio contact |
-
2010
- 2010-03-05 JP JP2010049833A patent/JP5373669B2/ja not_active Expired - Fee Related
-
2011
- 2011-03-04 CN CN201180012663.XA patent/CN103155115B/zh not_active Expired - Fee Related
- 2011-03-04 WO PCT/JP2011/001280 patent/WO2011108280A1/ja active Application Filing
- 2011-03-04 US US13/582,536 patent/US8664117B2/en not_active Expired - Fee Related
- 2011-03-04 KR KR1020127023268A patent/KR101384589B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10289952A (ja) * | 1997-04-16 | 1998-10-27 | Sony Corp | 半導体装置の製造方法 |
JPH1126438A (ja) * | 1997-07-08 | 1999-01-29 | Fujitsu Ltd | アッシング方法 |
JPH1131678A (ja) * | 1997-07-10 | 1999-02-02 | Sony Corp | 半導体装置の製造方法 |
JP2003533869A (ja) * | 2000-02-17 | 2003-11-11 | アプライド マテリアルズ インコーポレイテッド | キャビティをエッチングする方法 |
JP2008153275A (ja) * | 2006-12-14 | 2008-07-03 | Canon Inc | 半導体基板およびその製造方法 |
JP2009246183A (ja) * | 2008-03-31 | 2009-10-22 | Tokyo Electron Ltd | プラズマエッチング方法及びコンピュータ読み取り可能な記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
JP5373669B2 (ja) | 2013-12-18 |
US8664117B2 (en) | 2014-03-04 |
CN103155115A (zh) | 2013-06-12 |
JP2011187583A (ja) | 2011-09-22 |
US20130052821A1 (en) | 2013-02-28 |
KR20120120405A (ko) | 2012-11-01 |
CN103155115B (zh) | 2016-04-13 |
KR101384589B1 (ko) | 2014-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5373669B2 (ja) | 半導体装置の製造方法 | |
JP6035117B2 (ja) | プラズマエッチング方法及びプラズマエッチング装置 | |
JP5102653B2 (ja) | プラズマエッチング方法、プラズマエッチング装置及びコンピュータ記憶媒体 | |
JP4912907B2 (ja) | プラズマエッチング方法及びプラズマエッチング装置 | |
JP6001529B2 (ja) | プラズマエッチング装置及びプラズマエッチング方法 | |
US8735299B2 (en) | Semiconductor device manufacturing method and computer-readable storage medium | |
JP5608384B2 (ja) | 半導体装置の製造方法及びプラズマエッチング装置 | |
JP5568340B2 (ja) | プラズマエッチング方法及びプラズマエッチング装置 | |
JP6017928B2 (ja) | プラズマエッチング方法及びプラズマエッチング装置 | |
JP2010205967A (ja) | プラズマエッチング方法、プラズマエッチング装置及びコンピュータ記憶媒体 | |
JP5934523B2 (ja) | 半導体装置の製造方法及びコンピュータ記録媒体 | |
JP2011035266A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
JP2007258426A (ja) | プラズマエッチング方法 | |
JP4652140B2 (ja) | プラズマエッチング方法、制御プログラム、コンピュータ記憶媒体 | |
KR101898079B1 (ko) | 플라즈마 처리 장치 | |
WO2013051282A1 (ja) | 半導体装置の製造方法 | |
JP2009158740A (ja) | プラズマエッチング方法、プラズマエッチング装置、制御プログラム及びコンピュータ記憶媒体 | |
JP2019012732A (ja) | プラズマエッチング方法及びプラズマエッチング装置 | |
JP5840973B2 (ja) | 半導体装置の製造方法及びコンピュータ記録媒体 | |
JP5804978B2 (ja) | プラズマエッチング方法及びコンピュータ記録媒体 | |
JP2009200080A (ja) | プラズマエッチング方法、プラズマエッチング装置、制御プログラム及びコンピュータ記憶媒体 | |
JP5047644B2 (ja) | プラズマエッチング方法、プラズマエッチング装置、制御プログラム及びコンピュータ記憶媒体 | |
US20070218698A1 (en) | Plasma etching method, plasma etching apparatus, and computer-readable storage medium | |
JP2007251044A (ja) | プラズマエッチング方法、プラズマエッチング装置及びコンピュータ記憶媒体 | |
JP2010238819A (ja) | プラズマ処理装置及びプラズマ処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180012663.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11750393 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127023268 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13582536 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11750393 Country of ref document: EP Kind code of ref document: A1 |