WO2011104035A2 - Chemisch vorgespanntes glas - Google Patents
Chemisch vorgespanntes glas Download PDFInfo
- Publication number
- WO2011104035A2 WO2011104035A2 PCT/EP2011/000954 EP2011000954W WO2011104035A2 WO 2011104035 A2 WO2011104035 A2 WO 2011104035A2 EP 2011000954 W EP2011000954 W EP 2011000954W WO 2011104035 A2 WO2011104035 A2 WO 2011104035A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight percent
- glass
- compressive stress
- melt
- mpa
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/18—Compositions for glass with special properties for ion-sensitive glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31—Surface property or characteristic of web, sheet or block
- Y10T428/315—Surface modified glass [e.g., tempered, strengthened, etc.]
Definitions
- the invention relates generally tempered glasses, in particular the invention relates to the chemical
- Transformation temperature T G is a well-known method for increasing the strength of thin and very thin silicate or aluminosilicate glasses.
- Chemical tempering is preferably used for glass sheets with thicknesses less than 4mm thick. For special applications even thicker discs can be chemically prestressed.
- silicate or aluminosilicate glasses finds
- the exchange depth of the ions is dependent on the time in the salt bath and the temperature of the salt bath. Higher temperatures or longer times increase the exchange depth.
- the exchange depth is not the same with the
- CONFIRMATION COPY set different surface compressive stress zone. But typically enough
- tempered glasses such as aluminosilicate glass, or normal soda-lime glass usually have an a 2 0 content greater than 10 weight percent and are standard in potassium nitrate salt baths at temperatures greater than 420 ° C, preferably by 430 ° C and preload times longer biased as 12 hours.
- the surface pressure zone reaches a depth of 30 to 70 ⁇ .
- the value of the surface tension is between approx. 550 MPa for toughened soda-lime glass or approx. 750 MPa for aluminosilicate glass.
- variable adjustable penetration depths greater than 80 pm and high strength would be interesting, provided that acceptably short process times are feasible.
- magnetic storage media are suitable. With the glasses can Although deep prestressing zones and high strengths are achieved, but with long treatment periods of more than 12 hours in the molten salt and high temperatures of over 420 ° C.
- Treatment time a surface tension of 880 MPa but at a thickness of the compressive stress zone of only about 15 m. For a compression stress zone of 105 pm, 15 hours of treatment in the molten salt are required.
- No. 4,156,755 A describes Li 2 O-containing aluminosilicate glasses for ion exchange. With this glass, although thicknesses of the compressive stress zone greater than 80pm could be achieved in short times, but is the
- WO 2010 005 578 A1 describes the repeated chemical toughening of aluminosilicate glasses in order to set the maximum of the surface tension to a specific depth. Only by the repeated biasing (single or
- Example 13 at a depth of the compressive stress zone of 81 microns only 546 MPa.
- the process time to achieve such a bias is more than 23 hours.
- Glazing for vehicles a material ready, which by reducing the toughening time and the
- Glass article preferably in the form of a glass sheet is made of lithium aluminosilicate glass, wherein the glass in addition to the components Si0 2 and A1 2 0 3 , which
- Na 2 O contains 8.1 to 9.7 percent by weight as an ingredient
- the compressive stress zone reaches into the glass to a depth of at least 50, preferably at least 80 microns, and wherein in the compression stress zone
- Lithium ions are at least partially replaced by other alkali ions, and wherein
- Double ring method according to EN 1288-5 performed and
- the surface tension or the compressive stress in the compressive stress zone can be determined by stress optics.
- the glass samples are cut and the surfaces polished perpendicular to the viewing direction.
- Compensators the compressive stress in the surface can be determined.
- the thickness / depth of the compressive stress zone can also be determined by stress optics on the sections.
- a preferred composition range is:
- Prestressing zone with high compressive stress even at comparatively low temperatures of the molten salt is the following composition:
- the tempered glass then has two non-polished accordingly
- top side and bottom side are not mechanically polished.
- one surface has been created by fire polishing, the other has been created by flowing on a liquid tin bath.
- a float glass pane can thus be identified on the fire-polished surface on the one hand, and on the tin impurities on the opposite side.
- the glasses obtained may be preferred as cover glass for mobile devices,
- Screen touch panels can be used. Particularly preferred applications are bulletproof Glazing for ground vehicles, as well as front or
- the process times in the molten salt can possibly even to a maximum of 4 hours, even
- the invention also provides a method of making a chemically toughened glass article which provides a glass which in addition to Si0 2 and Al2O3
- the glass article is stored in an alkaline salt melt to alkali ions of the glass with larger
- a compressive stress of at least 600 MPa is established.
- Several of the references cited in the introduction indicate a certain amount of Li 2 O or Na 2 O for chemical tempering with alkali nitrates in order to achieve corresponding surface tensions and compressive stress zones.
- Pressure biasing zone with a depth greater than 80 ⁇ within 8 hours and less than 430 ° C. Die
- Bias and deep bias zone are achieved at high temperatures of greater than 450 ° C and Na 2 0 contents less than 3 percent by weight. At these temperatures, however, toxic nitrate vapors already form, which makes normal processing difficult. Further
- the ionic radius of the penetrating ion should not be clear differ from that of the ion to be replaced in order to ensure a rapid exchange.
- the ionic radius of the penetrating ion should not be significantly greater than the ionic radius of the glass substrate
- Ideal partners for exchange with sodium ions or potassium ions with high penetration rates are the Li-ion or the Na-ion.
- the Li-ion has one
- Li 2 0 preferably at least 4.6 percent by weight. More Li 2 0 leads to a faster exchange, however, to a high Li 2 0 content ensures that no high
- the Li 2 O content on the other hand should be at most 5.4 percent by weight. It has been found that with glasses having such lithium contents surface tensions greater than 600 MPa or even greater than 800 MPa at short
- the invention in order to achieve surface tensions of greater than 800 MPa, it is preferably provided according to the invention to include further alkali ions in the exchange with.
- the Na ion in the glass and the K ion in the molten salt are suitable for this purpose.
- the participation of Cs ions and Rb ions is also possible.
- the much larger ions from the molten salt lead to a significant increase in the Tension in the surface, and thus also to a
- the Li 2 0 content selected between 4.6% and 5.4% and the Na 2 0 between 8.1% and 9.7%. It has been shown that pressure stress zones of greater than 50 ⁇ m thickness and surface tensions greater than 600 MPa can be achieved in at most 8 hours of treatment in the molten salt, if the glasses according to the invention listed above are in a preferably pure state (at least 95%).
- NaN0 3 melt at temperatures of 370 ° C to 420 ° C are chemically to be preloaded once.
- Pretensioning times are between 2h and 8h. (please refer also in Table 2 below Glass 17 or 27).
- the glass substrate is preloaded with a pure (at least 95% purity) KNO 3 melt at temperatures of 380-400 ° C., this results
- compositions of the glasses used in the chemical tempering is therefore the selection of the respective melt and the process parameters such as temperature and
- the glass article is chemically prestaged successively in melts with different alkali cations.
- the first step preferably a lithium-sodium exchange, while in the subsequent steps preferably melts are used with larger alkali cations.
- the inventive method thus provides access to glasses with tailor-made properties.
- Alkali metals in the second step should be greater than that in the first melt.
- the alkali ions may again be smaller than in the second step.
- Potassium nitrate (KNO 3 ) should preferably be used here as the second step, but other alkali metal salts may also be used
- the temperatures used in this case are preferably between 380 ° C and 420 ° C for KN03.
- step 1 advantageously in a NaN0 3 melt rich
- KN0 3 or K 2 S0 3 2 hours or even less can be set in the invention.
- steps 3 and 4 can be held in total for less than one hour.
- the chemical bias of the glass article successively different in at least two alkali salt melts Composition, in particular different with respect to the alkali metal species contained is carried out, wherein the storage of the glass article in the melts a total of at most 8 hours, wherein the temperature in the molten salts during the bias voltage is less than 420 ° C and a compressive stress zone with a depth of more than 80 pm and a compressive stress of more than 800 MPa is achieved.
- the nitrate mixed melt contains at least two different alkali ions, for example Na and K or else Na and Rb. However, it may also contain three or four different alkali metals.
- Rb ions or Cs ions can be used during chemical toughening be used.
- the process according to the invention thus offers the possibility of also alkali cations whose radii are significantly larger than the radius of the lithium cation with short exchange times and comparatively low process temperatures effectively in the thus treated
- Glass article takes place in one or more melts, wherein in the melt or at least two alkali ion species are contained with different ionic radii.
- NaN0 3 melts are chemically tempered once at temperatures from 380 ° C to 390 ° C (see Table 2 Glass 19 or 25). The preload times for
- the alkali ions may again be smaller than in the second step.
- KN0 3 is used as a constituent of the melt in the second step, but other alkali metal salts can also be used.
- the temperatures used in this case are preferably between 380 ° C and 400 ° C at KN0 3 .
- the duration for the third and fourth steps is less than 0.5 hours in total.
- Alkali metal salt melt with at least 15% by weight
- the nitrate mixed melt contains at least two different alkali ion species, for
- Example Na and K or even Na and Rb may also contain 3 or 4 alkali metals.
- Preferred mixed melts are a mixture of NaNO 3 and KNO 3 .
- the temperatures used are included
- a glass which contains the exchanged alkali ion in the glass, Li or Na in sufficient quantity.
- the content of Li 2 0 is preferably between 4.9
- the glass bodies listed above can be chemically prestressed once in a pure (min. 95% purity grade) NaNO 3 at temperatures of 380 ° C to 385 ° C.
- the tempering time can even be reduced to two to three hours.
- Table 2 An example is given in Table 2 for glass 22.
- the glass substrate is preloaded with a pure (at least 95% purity) KNO 3 melt at temperatures of 380 ° C to 400 ° C, surface tensions of up to 1000 MPa, but only DoL (depths of the compressive stress zone) of 10 28 m.
- Composition is carried out in a second
- Molten salt is a salt containing alkali ions having a larger ionic radius than the alkali metal ions of the melt used in the first step, wherein the temperature of the melts during tempering is less than 400 ° C. The total time of storage of the
- Glass article in all salt melts is not more than 3 hours.
- the second step in a pure melt or mixed melt is a third step in a pure melt or mixed melt and optionally one fourth step in pure melt or mixed melt downstream.
- Alkali nitrate melts are preferably used, wherein the ionic radius of a species of the alkali ions used in the second step according to a further development of the invention is greater than that of the first melt.
- the alkali ions may again be smaller than in the second step.
- Preferred as the second step here can be a potassium salt, especially
- KN0 3 preferably KN0 3 can be used, but also others
- Alkali metal salts can be used alternatively or additionally.
- the temperatures used in this case are preferably between 380 ° C and 390 ° C at KN0 3 .
- mixed melts consist of various alkali metal salts, preferably
- Nitrate mixed melt contains at least two different alkali ions, for example Na and K or else Na and Rb. However, it may also contain 3 or 4 different alkali metals. A temperature of less than 400 ° C is generally sufficient to build up a compressive stress zone as mentioned above.
- Preferred mixed melts are a mixture of NaN0 3 and KN0 3 .
- the temperatures used in this case are preferably between 380 ° C and 390 ° C in such NaN0 3 -KN0 3 -Schmel ze.
- a time of not more than 3 hours is required to achieve a compressive stress zone of more than 800 MPa compressive stress and depth of compressive stress zone greater than 80 pm.
- An example of this method is shown in Table 4 for the glass 22
- Table 1 shows compositions for 16 glasses useful for the invention.
- the compositions are in
- the ion exchange conditions are given. Specifically, in these embodiments Potassium nitrate, sodium nitrate or potassium nitrate / sodium nitrate mixed melts. The proportions of KN0 3 and NaNC> 3 in the melt composition are each given in percent by weight. Furthermore, the respective temperatures of the molten salt are listed
- the pretension time was 8 hours in all cases.
- Glasses 1 to 4 were preloaded in pure sodium nitrate melts.
- the glasses 5 to 8 was a pure
- Table 2 shows the properties of glass articles according to the invention after single-stage chemical bias of different duration in a NaN0 3 -Schmel ze.
- Glass 27 has the lowest levels of Li 2 0 and Na 2 0. In this glass, a compressive stress of 600 MPa after 8 hours in the melt is still reached. Even with glass 17 with the highest levels of Li 2 0 and Na 2 0 is a
- the glasses with average contents of Li 2 0 and Na 2 0 can be biased even faster.
- a high initial stress of 650 MPa already exists achieved after 3 hours of storage in the molten salt.
- For all glasses with a single chemical bias in the NaNC> 3 melt at temperatures in the range of 370 ° C to 420 ° C accordingly each a compressive stress zone of more than 50 ⁇ thickness with a surface tension greater than 600 Pa in a maximum of 8 hours treatment in the
- Table 3 shows the mechanical properties of the glasses also listed in Table 2 after two-stage chemical bias.
- the glasses were preloaded in a first step in a NaNO 3 melt and in a subsequent second step in a KNO 3 melt. Accordingly, here was the chemical bias of the glassware in several melts, wherein in the melts at least two alkali ion species are contained with different ionic radii.
- the chemical bias of the glassware in several melts, wherein in the melts at least two alkali ion species are contained with different ionic radii.
- the chemical bias of the glassware in several melts, wherein in the melts at least two alkali ion species are contained with different ionic radii.
- the chemical bias of the glassware in several melts, wherein in the melts at least two alkali ion species are contained with different ionic radii.
- the chemical bias of the glassware in several melts, wherein in the melts at least two alkali ion species are contained
- a bias of about 700, in particular also over 800 MPa at a depth of the compressive stress zone) of more than 80 pm can be achieved.
- Table 4 lists embodiments of the invention in which a surface tension greater than 800 MPa and compression stress zones deeper than 80 ⁇ in less than 8
- the mixed melt contains salts of different alkali metals, and has a content of at least 20 weight percent NaN0 3 .
- the same glass compositions as in the embodiments according to Tables 2 and 3 were used.
- For the molten salt was a mixture of
- a compressive stress zone of more than 80 pm corresponding to the measured replacement depth and a compressive stress of more than 800 MPa could be achieved within a maximum of 8 hours tempering time and temperatures less than 400 ° C.
- longer treatment periods of 12 hours although slightly increase the compression stress zone, but the compressive stress even drops again.
- the glasses 19, 22 and 25 reach a preload of more than 800 MPa at depths of the compressive stress zone of more than 80 pm already after 4 hours of pretensioning time. With glass 22, these values are even reached after 3 hours storage in the melt.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012554252A JP5744068B2 (ja) | 2010-02-26 | 2011-02-28 | 化学強化ガラス |
CN201180011321.6A CN102906042B (zh) | 2010-02-26 | 2011-02-28 | 化学钢化的玻璃 |
US13/580,810 US20120321898A1 (en) | 2010-02-26 | 2011-02-28 | Chemically tempered glass |
KR1020127023584A KR101506378B1 (ko) | 2010-02-26 | 2011-02-28 | 화학적으로 템퍼링된 유리 |
US15/233,809 US10351471B2 (en) | 2010-02-26 | 2016-08-10 | Chemically tempered glass |
US16/426,502 US12017952B2 (en) | 2010-02-26 | 2019-05-30 | Chemically tempered glass |
US18/663,614 US20240317641A1 (en) | 2010-02-26 | 2024-05-14 | Chemically tempered glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010009584.2 | 2010-02-26 | ||
DE102010009584.2A DE102010009584B4 (de) | 2010-02-26 | 2010-02-26 | Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/580,810 A-371-Of-International US20120321898A1 (en) | 2010-02-26 | 2011-02-28 | Chemically tempered glass |
US15/233,809 Division US10351471B2 (en) | 2010-02-26 | 2016-08-10 | Chemically tempered glass |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011104035A2 true WO2011104035A2 (de) | 2011-09-01 |
WO2011104035A9 WO2011104035A9 (de) | 2011-11-10 |
WO2011104035A3 WO2011104035A3 (de) | 2012-01-05 |
Family
ID=44065881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/000954 WO2011104035A2 (de) | 2010-02-26 | 2011-02-28 | Chemisch vorgespanntes glas |
Country Status (6)
Country | Link |
---|---|
US (4) | US20120321898A1 (de) |
JP (1) | JP5744068B2 (de) |
KR (1) | KR101506378B1 (de) |
CN (1) | CN102906042B (de) |
DE (1) | DE102010009584B4 (de) |
WO (1) | WO2011104035A2 (de) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012027660A1 (en) * | 2010-08-26 | 2012-03-01 | Corning Incorporated | Two-step method for strengthening glass |
US20140023865A1 (en) * | 2012-07-17 | 2014-01-23 | Corning Incorporated | Ion exchangeable li-containing glass compositions for 3-d forming |
US20140178691A1 (en) * | 2012-10-05 | 2014-06-26 | Saxon Glass Technologies, Inc. | Strengthened glass and methods for making using differential chemistry |
WO2016191676A1 (en) * | 2015-05-28 | 2016-12-01 | Corning Incorporated | Strengthened glass with deep depth of compression |
US9908811B2 (en) | 2015-12-11 | 2018-03-06 | Corning Incorporated | Fusion formable glass-based articles including a metal oxide concentration gradient |
US10259746B2 (en) | 2014-10-08 | 2019-04-16 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
EP3792228A1 (de) * | 2012-02-29 | 2021-03-17 | Corning Incorporated | Durch druckspannungsprofile ohne fehlerfunktionen gewonnene ionenaustauschgläser |
US11021393B2 (en) | 2014-11-04 | 2021-06-01 | Corning Incorporated | Deep non-frangible stress profiles and methods of making |
US11084756B2 (en) | 2014-10-31 | 2021-08-10 | Corning Incorporated | Strengthened glass with ultra deep depth of compression |
US11174197B2 (en) | 2016-04-08 | 2021-11-16 | Corning Incorporated | Glass-based articles including a metal oxide concentration gradient |
US11220452B2 (en) | 2016-01-08 | 2022-01-11 | Corning Incorporated | Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance |
US11267228B2 (en) | 2015-07-21 | 2022-03-08 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
US11634359B2 (en) | 2014-02-24 | 2023-04-25 | Corning Incorporated | Strengthened glass with deep depth of compression |
US11878941B2 (en) | 2014-06-19 | 2024-01-23 | Corning Incorporated | Glasses having non-frangible stress profiles |
US11963320B2 (en) | 2016-04-08 | 2024-04-16 | Corning Incorporated | Glass-based articles including a stress profile comprising two regions |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8959953B2 (en) * | 2005-09-12 | 2015-02-24 | Saxon Glass Technologies, Inc. | Method for making strengthened glass |
CN102167507B (zh) * | 2010-02-26 | 2016-03-16 | 肖特玻璃科技(苏州)有限公司 | 用于3d紧密模压的薄锂铝硅玻璃 |
DE102014108058A1 (de) | 2014-06-06 | 2015-12-17 | Schott Ag | Optisches Element mit hoher Kratzbeständigkeit |
KR20130124754A (ko) * | 2012-05-07 | 2013-11-15 | 삼성전기주식회사 | 터치패널 및 그 제조방법 |
DE102012215864A1 (de) * | 2012-09-07 | 2014-03-13 | Schott Ag | Transparentes durchschusshemmendes Laminat |
DE102012019985B4 (de) | 2012-10-11 | 2020-11-05 | Zwiesel Kristallglas Ag | Verfahren zum Härten von Kristallglas |
US9796621B2 (en) | 2012-10-15 | 2017-10-24 | Saxon Glass Technologies, Inc. | Strengthened glass and methods for making using heat treatment |
WO2014113617A1 (en) | 2013-01-21 | 2014-07-24 | Innovative Finishes LLC | Refurbished component, electronic device including the same, and method of refurbishing a component of an electronic device |
US9366784B2 (en) | 2013-05-07 | 2016-06-14 | Corning Incorporated | Low-color scratch-resistant articles with a multilayer optical film |
US9684097B2 (en) | 2013-05-07 | 2017-06-20 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
US9703011B2 (en) | 2013-05-07 | 2017-07-11 | Corning Incorporated | Scratch-resistant articles with a gradient layer |
US9359261B2 (en) | 2013-05-07 | 2016-06-07 | Corning Incorporated | Low-color scratch-resistant articles with a multilayer optical film |
US9110230B2 (en) | 2013-05-07 | 2015-08-18 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
DE102013214426A1 (de) * | 2013-07-24 | 2015-01-29 | Schott Ag | Verbundelement und dessen Verwendung |
US11079309B2 (en) * | 2013-07-26 | 2021-08-03 | Corning Incorporated | Strengthened glass articles having improved survivability |
US10160688B2 (en) | 2013-09-13 | 2018-12-25 | Corning Incorporated | Fracture-resistant layered-substrates and articles including the same |
DE102013019003A1 (de) | 2013-11-13 | 2015-05-13 | Taiwan Glass Ind. Corp. | Alkali-Alumino-Silikatglas |
DE102014208023A1 (de) | 2014-04-29 | 2015-10-29 | Volkswagen Aktiengesellschaft | Verfahren zur Herstellung eines mindestens eine durch chemisches Vorspannen erzeugte Sollbruchstelle aufweisenden Glaselements |
US11267973B2 (en) | 2014-05-12 | 2022-03-08 | Corning Incorporated | Durable anti-reflective articles |
US9335444B2 (en) | 2014-05-12 | 2016-05-10 | Corning Incorporated | Durable and scratch-resistant anti-reflective articles |
JP2017527513A (ja) * | 2014-07-25 | 2017-09-21 | コーニング インコーポレイテッド | 圧縮深さが深い強化ガラス |
US9790593B2 (en) | 2014-08-01 | 2017-10-17 | Corning Incorporated | Scratch-resistant materials and articles including the same |
US9696498B2 (en) * | 2015-05-04 | 2017-07-04 | Huawei Technologies Co., Ltd. | Three-dimensional (3D) photonic chip-to-fiber interposer |
EP3310740B1 (de) | 2015-06-16 | 2020-08-05 | CeramTec-Etec GmbH | Transparente keramik als komponente für bruchfeste optiken |
US11613103B2 (en) | 2015-07-21 | 2023-03-28 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
KR102591067B1 (ko) | 2015-09-14 | 2023-10-18 | 코닝 인코포레이티드 | 높은 광 투과율 및 내-스크래치성 반사-방지 제품 |
DE102015115511A1 (de) | 2015-09-15 | 2017-03-16 | Schott Ag | Transparenter Schutzverbund |
CN108883975A (zh) * | 2016-01-13 | 2018-11-23 | 康宁股份有限公司 | 超薄、非易碎性玻璃及其制造方法 |
KR102027956B1 (ko) | 2016-01-21 | 2019-10-02 | 에이지씨 가부시키가이샤 | 화학 강화 유리 및 화학 강화용 유리 |
WO2017126605A1 (ja) | 2016-01-21 | 2017-07-27 | 旭硝子株式会社 | 化学強化ガラス及び化学強化ガラスの製造方法 |
WO2017161108A1 (en) * | 2016-03-18 | 2017-09-21 | Corning Incorporated | Methods for preparing strengthened lithium-based glass articles and lithium-based glass articles |
WO2017205605A1 (en) | 2016-05-27 | 2017-11-30 | Corning Incorporated | Fracture and scratch resistant glass articles |
US11059744B2 (en) * | 2016-06-14 | 2021-07-13 | Corning Incorporated | Glasses having improved drop performance |
JP7040456B2 (ja) * | 2016-10-18 | 2022-03-23 | Agc株式会社 | 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法 |
CN110167895B (zh) | 2016-11-07 | 2022-07-15 | 康宁股份有限公司 | 低粘度玻璃以及制造方法和系统 |
US11111173B2 (en) | 2016-11-07 | 2021-09-07 | Corning Incorporated | Lithium containing glasses |
CN110234616B (zh) * | 2017-02-07 | 2023-01-03 | Agc株式会社 | 化学强化玻璃 |
JP7477296B2 (ja) * | 2017-02-27 | 2024-05-01 | ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド | 化学強化後に低膨張を示すリチウム含有アルミノケイ酸ガラス |
KR101892941B1 (ko) * | 2017-09-28 | 2018-08-30 | (주)유티아이 | 광학 필터 및 그 제조방법 |
US10906834B2 (en) | 2017-11-29 | 2021-02-02 | Corning Incorporated | Ion-exchangeable mixed alkali aluminosilicate glasses |
US10633279B2 (en) | 2017-11-29 | 2020-04-28 | Corning Incorporated | Glasses with low excess modifier content |
JP2019123658A (ja) * | 2018-01-19 | 2019-07-25 | Agc株式会社 | 化学強化ガラスの製造方法および化学強化ガラス |
WO2019150654A1 (ja) | 2018-02-05 | 2019-08-08 | Agc株式会社 | 化学強化用ガラス |
WO2019191480A1 (en) | 2018-03-29 | 2019-10-03 | Corning Incorporated | Glasses having high fracture toughness |
KR102644011B1 (ko) | 2018-04-04 | 2024-03-07 | 에이지씨 가부시키가이샤 | 화학 강화용 유리 |
CN108585481A (zh) * | 2018-07-13 | 2018-09-28 | 科立视材料科技有限公司 | 一种可快速进行离子交换的含锂铝硅酸盐玻璃 |
EP3826974A1 (de) * | 2018-07-23 | 2021-06-02 | Corning Incorporated | Automobilinnenräume und deckglasteile mit verbesserter kopfformschlagleistung und verbesserter sichtbarkeit nach einem bruch |
WO2020037042A1 (en) | 2018-08-17 | 2020-02-20 | Corning Incorporated | Inorganic oxide articles with thin, durable anti-reflective structures |
KR102716148B1 (ko) * | 2018-08-30 | 2024-10-15 | 코닝 인코포레이티드 | 적층물용 연질의, 화학적-강화가능한 유리 |
DE102018124785A1 (de) | 2018-10-08 | 2020-04-09 | Schott Ag | Glas mit vorzugsweise erhöhter speicherbarer Zugspannung, chemisch vorgespannter Glasartikel mit vorzugsweise erhöhter speicherbarer Zugspannung, Verfahren zu dessen Herstellung sowie dessen Verwendung |
WO2020075708A1 (ja) | 2018-10-09 | 2020-04-16 | 日本電気硝子株式会社 | 強化ガラスおよび強化ガラスの製造方法 |
US20220002186A1 (en) * | 2018-11-30 | 2022-01-06 | Corning Incorporated | Glass articles exhibiting high compressive stress, automotive interior systems that include such glass articles and methods for making the same |
KR20210106515A (ko) * | 2018-12-25 | 2021-08-30 | 니폰 덴키 가라스 가부시키가이샤 | 강화 유리판 및 그 제조 방법 |
KR102642606B1 (ko) * | 2019-05-30 | 2024-03-05 | 삼성디스플레이 주식회사 | 윈도우 및 윈도우의 제조 방법 |
DE112020003081T5 (de) * | 2019-06-26 | 2022-03-10 | AGC Inc. | Verfahren zur herstellung eines chemisch gehärteten glases und chemisch gehärtetes glas |
CN118047533A (zh) | 2019-07-17 | 2024-05-17 | Agc株式会社 | 玻璃、化学强化玻璃和保护玻璃 |
DE102019121146A1 (de) | 2019-08-05 | 2021-02-11 | Schott Ag | Heißgeformter chemisch vorspannbarer Glasartikel mit geringem Kristallanteil, insbesondere scheibenförmiger chemisch vorspannbarer Glasartikel, sowie Verfahren und Vorrichtung zu seiner Herstellung |
DE102019121147A1 (de) | 2019-08-05 | 2021-02-11 | Schott Ag | Scheibenförmiger, chemisch vorgespannter Glasartikel und Verfahren zu dessen Herstellung |
DE102019121144A1 (de) * | 2019-08-05 | 2021-02-11 | Schott Ag | Scheibenförmiger Glasartikel, dessen Herstellung und Verwendung |
KR20220047297A (ko) * | 2019-08-05 | 2022-04-15 | 쇼오트 아게 | 시트형의 화학적으로 강화되거나 화학적으로 강화 가능한 유리 물품, 및 이의 제조 방법 |
CN110563337A (zh) * | 2019-09-09 | 2019-12-13 | 深圳精匠云创科技有限公司 | 一种锂铝硅酸盐纳米晶玻璃陶瓷的强化方法 |
CN110615610B (zh) * | 2019-10-10 | 2020-09-04 | 清远南玻节能新材料有限公司 | 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件 |
US11584681B2 (en) * | 2019-11-26 | 2023-02-21 | Corning Incorporated | Ion exchangeable alkali aluminosilicate glass compositions having improved mechanical durability |
CN111825331A (zh) * | 2020-06-30 | 2020-10-27 | 清远南玻节能新材料有限公司 | 铝硅酸盐玻璃及其制备方法和应用 |
WO2022009850A1 (ja) | 2020-07-10 | 2022-01-13 | Agc株式会社 | ガラスおよび化学強化ガラス |
WO2022066574A1 (en) * | 2020-09-25 | 2022-03-31 | Corning Incorporated | Stress profiles of glass-based articles having improved drop performance |
CN116490477A (zh) * | 2020-09-25 | 2023-07-25 | 康宁股份有限公司 | 具有改善的掉落性能的玻璃基制品的应力分布曲线 |
CN116420224A (zh) | 2020-11-08 | 2023-07-11 | 肖特股份有限公司 | 气密连接装置、外壳及其生产方法 |
WO2022097416A1 (ja) * | 2020-11-09 | 2022-05-12 | 日本電気硝子株式会社 | 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板 |
KR102585577B1 (ko) * | 2021-02-09 | 2023-10-06 | 공주대학교 산학협력단 | 화학강화용 유리 조성물과 이로부터 제조된 화학강화 유리 박판 및 이의 제조 방법 |
DE202021103861U1 (de) | 2021-07-20 | 2021-10-04 | Schott Ag | Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer Glasartikel |
CN114907016B (zh) * | 2022-06-24 | 2023-08-01 | 成都光明光电股份有限公司 | 微晶玻璃、微晶玻璃制品及其制造方法 |
EP4431475A1 (de) | 2023-03-17 | 2024-09-18 | SCHOTT Technical Glass Solutions GmbH | Chemisch verstärkte glasscheibe und verfahren zu ihrer herstellung |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4156755A (en) | 1978-04-19 | 1979-05-29 | Ppg Industries, Inc. | Lithium containing ion exchange strengthened glass |
DE19616633C1 (de) | 1996-04-26 | 1997-05-07 | Schott Glaswerke | Chemisch vorspannbare Aluminosilicatgläser und deren Verwendung |
DE19616679C1 (de) | 1996-04-26 | 1997-05-07 | Schott Glaswerke | Verfahren zur Herstellung chemisch vorgespannten Glases und Verwendung desselben |
EP0884289B1 (de) | 1997-06-10 | 2001-09-19 | Nippon Sheet Glass Co. Ltd. | Verbundglasscheibe für Fahrzeuge |
US20070060465A1 (en) | 2005-09-12 | 2007-03-15 | Saxon Glass Technologies, Inc. | Chemically strengthened lithium aluminosilicate glass having high strength effective to resist fracture upon flexing from impact of high velocity projectiles |
WO2010005578A1 (en) | 2008-07-11 | 2010-01-14 | Corning Incorporated | Glass with compressive surface for consumer applications |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3357876A (en) * | 1965-01-19 | 1967-12-12 | Pittsburgh Plate Glass Co | Method of strengthening a glass article by ion exchange |
NL135450C (de) * | 1964-01-31 | 1900-01-01 | ||
US3433611A (en) * | 1965-09-09 | 1969-03-18 | Ppg Industries Inc | Strengthening glass by multiple alkali ion exchange |
US3615320A (en) * | 1968-02-13 | 1971-10-26 | Ppg Industries Inc | Strengthened glass article and process for making |
JPS5417765B1 (de) * | 1971-04-26 | 1979-07-03 | ||
US4255199A (en) * | 1979-11-05 | 1981-03-10 | Corning Glass Works | Stable, chemically-strengthenable lithium aluminosilicate glasses |
JPH0676224B2 (ja) * | 1986-02-13 | 1994-09-28 | 旭硝子株式会社 | 強化ガラスの製造法 |
JP2837005B2 (ja) * | 1991-05-20 | 1998-12-14 | ホーヤ株式会社 | 化学強化用ガラス |
WO1994015377A1 (en) * | 1992-12-23 | 1994-07-07 | International Fuel Cells Corporation | Proton exchange membrane fuel cell device with water transfer separator plates |
US5534363A (en) * | 1994-03-22 | 1996-07-09 | Rockwell International Corporation | Hollow artery anode wick for passive variable pressure regenerative fuel cells |
US5503944A (en) * | 1995-06-30 | 1996-04-02 | International Fuel Cells Corp. | Water management system for solid polymer electrolyte fuel cell power plants |
JPH10241134A (ja) * | 1996-12-26 | 1998-09-11 | Hoya Corp | 情報記録媒体用ガラス基板及びこれを用いた磁気記録媒体 |
US6187441B1 (en) * | 1996-12-26 | 2001-02-13 | Hoya Corporation | Glass substrate for information recording medium and magnetic recording medium having the substrate |
JP3830066B2 (ja) | 1998-02-25 | 2006-10-04 | 古河スカイ株式会社 | 犠牲防食アルミニウム合金複合材 |
JPH11302032A (ja) * | 1998-04-17 | 1999-11-02 | Nippon Sheet Glass Co Ltd | ガラス組成物およびそれを用いた情報記録媒体用基板 |
ATE235105T1 (de) * | 1998-08-10 | 2003-04-15 | Siemens Ag | Vorrichtung und verfahren zur nutzung der abwärme einer luftgekühlten brennstoffzellenbatterie |
US6303245B1 (en) * | 1999-08-27 | 2001-10-16 | Plug Power Inc. | Fuel cell channeled distribution of hydration water |
JP2002174810A (ja) * | 2000-12-08 | 2002-06-21 | Hoya Corp | ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ |
JP4085652B2 (ja) * | 2001-08-21 | 2008-05-14 | 株式会社エクォス・リサーチ | 燃料電池 |
JP2004131314A (ja) | 2002-10-09 | 2004-04-30 | Asahi Glass Co Ltd | 透明導電膜付き化学強化ガラス基板、およびその製造方法 |
JP3861063B2 (ja) * | 2003-02-20 | 2006-12-20 | Hoya株式会社 | 磁気ディスク用ガラス基板の処理方法および製造方法、並びに磁気ディスク |
US7566673B2 (en) * | 2003-10-31 | 2009-07-28 | Konica Minolta Opto, Inc. | Glass substrate for an information recording medium and information recording medium employing it |
DE102004022629B9 (de) * | 2004-05-07 | 2008-09-04 | Schott Ag | Gefloatetes Lithium-Aluminosilikat-Flachglas mit hoher Temperaturbeständigkeit, das chemisch und thermisch vorspannbar ist und dessen Verwendung |
CN102086095B (zh) * | 2006-03-24 | 2012-11-28 | Hoya株式会社 | 磁盘用玻璃衬底的制造方法以及磁盘的制造方法 |
CN101454252A (zh) * | 2006-05-25 | 2009-06-10 | 日本电气硝子株式会社 | 强化玻璃及其制造方法 |
CN102718401B (zh) * | 2006-10-10 | 2015-04-01 | 日本电气硝子株式会社 | 钢化玻璃基板 |
US8349454B2 (en) * | 2007-06-07 | 2013-01-08 | Nippon Electric Glass Co., Ltd. | Strengthened glass substrate and process for producing the same |
JP5467490B2 (ja) * | 2007-08-03 | 2014-04-09 | 日本電気硝子株式会社 | 強化ガラス基板の製造方法及び強化ガラス基板 |
JP5743125B2 (ja) * | 2007-09-27 | 2015-07-01 | 日本電気硝子株式会社 | 強化ガラス及び強化ガラス基板 |
EP2321230A4 (de) * | 2008-07-29 | 2012-10-10 | Corning Inc | Zweistufiger ionenaustausch zur chemischen verstärkung von glas |
JP5699434B2 (ja) * | 2009-04-02 | 2015-04-08 | 旭硝子株式会社 | 情報記録媒体基板用ガラス、情報記録媒体用ガラス基板および磁気ディスク |
CN102167507B (zh) * | 2010-02-26 | 2016-03-16 | 肖特玻璃科技(苏州)有限公司 | 用于3d紧密模压的薄锂铝硅玻璃 |
US20120052271A1 (en) * | 2010-08-26 | 2012-03-01 | Sinue Gomez | Two-step method for strengthening glass |
-
2010
- 2010-02-26 DE DE102010009584.2A patent/DE102010009584B4/de active Active
-
2011
- 2011-02-28 US US13/580,810 patent/US20120321898A1/en not_active Abandoned
- 2011-02-28 CN CN201180011321.6A patent/CN102906042B/zh active Active
- 2011-02-28 JP JP2012554252A patent/JP5744068B2/ja active Active
- 2011-02-28 KR KR1020127023584A patent/KR101506378B1/ko active IP Right Grant
- 2011-02-28 WO PCT/EP2011/000954 patent/WO2011104035A2/de active Application Filing
-
2016
- 2016-08-10 US US15/233,809 patent/US10351471B2/en active Active
-
2019
- 2019-05-30 US US16/426,502 patent/US12017952B2/en active Active
-
2024
- 2024-05-14 US US18/663,614 patent/US20240317641A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4156755A (en) | 1978-04-19 | 1979-05-29 | Ppg Industries, Inc. | Lithium containing ion exchange strengthened glass |
DE19616633C1 (de) | 1996-04-26 | 1997-05-07 | Schott Glaswerke | Chemisch vorspannbare Aluminosilicatgläser und deren Verwendung |
DE19616679C1 (de) | 1996-04-26 | 1997-05-07 | Schott Glaswerke | Verfahren zur Herstellung chemisch vorgespannten Glases und Verwendung desselben |
EP0884289B1 (de) | 1997-06-10 | 2001-09-19 | Nippon Sheet Glass Co. Ltd. | Verbundglasscheibe für Fahrzeuge |
US20070060465A1 (en) | 2005-09-12 | 2007-03-15 | Saxon Glass Technologies, Inc. | Chemically strengthened lithium aluminosilicate glass having high strength effective to resist fracture upon flexing from impact of high velocity projectiles |
WO2010005578A1 (en) | 2008-07-11 | 2010-01-14 | Corning Incorporated | Glass with compressive surface for consumer applications |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11078106B2 (en) | 2010-08-26 | 2021-08-03 | Corning Incorporated | Two-step method for strengthening glass |
US10227253B2 (en) | 2010-08-26 | 2019-03-12 | Corning Incorporated | Two-step method for strengthening glass |
WO2012027660A1 (en) * | 2010-08-26 | 2012-03-01 | Corning Incorporated | Two-step method for strengthening glass |
EP3792228A1 (de) * | 2012-02-29 | 2021-03-17 | Corning Incorporated | Durch druckspannungsprofile ohne fehlerfunktionen gewonnene ionenaustauschgläser |
US11124444B2 (en) | 2012-07-17 | 2021-09-21 | Corning Incorporated | Ion exchangeable Li-containing glass compositions for 3-D forming |
US11814316B2 (en) | 2012-07-17 | 2023-11-14 | Corning Incorporated | Ion exchangeable Li-containing glass compositions for 3-D forming |
US9139469B2 (en) * | 2012-07-17 | 2015-09-22 | Corning Incorporated | Ion exchangeable Li-containing glass compositions for 3-D forming |
US20140023865A1 (en) * | 2012-07-17 | 2014-01-23 | Corning Incorporated | Ion exchangeable li-containing glass compositions for 3-d forming |
US10150691B2 (en) | 2012-07-17 | 2018-12-11 | Corning Incorporated | Ion exchangeable Li-containing glass compositions for 3-D forming |
US10183887B2 (en) | 2012-07-17 | 2019-01-22 | Corning Incorporated | Ion exchangeable Li-containing glass compositions for 3-D forming |
US20140178691A1 (en) * | 2012-10-05 | 2014-06-26 | Saxon Glass Technologies, Inc. | Strengthened glass and methods for making using differential chemistry |
US20140178690A1 (en) * | 2012-10-05 | 2014-06-26 | Saxon Glass Technologies, Inc. | Strengthened glass and methods for making using differential density |
US9302938B2 (en) * | 2012-10-05 | 2016-04-05 | Asahi Glass Company, Limited | Strengthened glass and methods for making using differential density |
US10252941B2 (en) * | 2012-10-05 | 2019-04-09 | Saxon Glass Technologies, Inc. | Method for making strengthened glass having reduced induced curvature using differential chemistry |
US11634359B2 (en) | 2014-02-24 | 2023-04-25 | Corning Incorporated | Strengthened glass with deep depth of compression |
US11878941B2 (en) | 2014-06-19 | 2024-01-23 | Corning Incorporated | Glasses having non-frangible stress profiles |
US10364182B2 (en) | 2014-10-08 | 2019-07-30 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US10266447B2 (en) | 2014-10-08 | 2019-04-23 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US11459270B2 (en) | 2014-10-08 | 2022-10-04 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US11220456B2 (en) | 2014-10-08 | 2022-01-11 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US10259746B2 (en) | 2014-10-08 | 2019-04-16 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US10294151B2 (en) | 2014-10-08 | 2019-05-21 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US11465937B2 (en) | 2014-10-08 | 2022-10-11 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US10730791B2 (en) | 2014-10-08 | 2020-08-04 | Corning Incorporated | Glasses and glass ceramics including a metal oxide concentration gradient |
US11746046B2 (en) | 2014-10-31 | 2023-09-05 | Corning Incorporated | Strengthened glass with ultra deep depth of compression |
US11084756B2 (en) | 2014-10-31 | 2021-08-10 | Corning Incorporated | Strengthened glass with ultra deep depth of compression |
US11021393B2 (en) | 2014-11-04 | 2021-06-01 | Corning Incorporated | Deep non-frangible stress profiles and methods of making |
US11377388B2 (en) | 2014-11-04 | 2022-07-05 | Corning Incorporated | Deep non-frangible stress profiles and methods of making |
WO2016191676A1 (en) * | 2015-05-28 | 2016-12-01 | Corning Incorporated | Strengthened glass with deep depth of compression |
US11267228B2 (en) | 2015-07-21 | 2022-03-08 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
US9908811B2 (en) | 2015-12-11 | 2018-03-06 | Corning Incorporated | Fusion formable glass-based articles including a metal oxide concentration gradient |
US11472734B2 (en) | 2015-12-11 | 2022-10-18 | Corning Incorporated | Fusion-formable glass-based articles including a metal oxide concentration gradient |
US11878936B2 (en) | 2015-12-11 | 2024-01-23 | Corning Incorporated | Fusion-formable glass-based articles including a metal oxide concentration gradient |
US10787387B2 (en) | 2015-12-11 | 2020-09-29 | Corning Incorporated | Fusion-formable glass-based articles including a metal oxide concentration gradient |
US11718554B2 (en) | 2016-01-08 | 2023-08-08 | Corning Incorporated | Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance |
US11220452B2 (en) | 2016-01-08 | 2022-01-11 | Corning Incorporated | Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance |
US11993539B2 (en) | 2016-01-08 | 2024-05-28 | Corning Incorporated | Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance |
US11279652B2 (en) | 2016-04-08 | 2022-03-22 | Corning Incorporated | Glass-based articles including a metal oxide concentration gradient |
US11691913B2 (en) | 2016-04-08 | 2023-07-04 | Corning Incorporated | Glass-based articles including a metal oxide concentration gradient |
US11174197B2 (en) | 2016-04-08 | 2021-11-16 | Corning Incorporated | Glass-based articles including a metal oxide concentration gradient |
US11963320B2 (en) | 2016-04-08 | 2024-04-16 | Corning Incorporated | Glass-based articles including a stress profile comprising two regions |
US12116311B2 (en) | 2016-04-08 | 2024-10-15 | Corning Incorporated | Glass-based articles including a metal oxide concentration gradient |
Also Published As
Publication number | Publication date |
---|---|
JP2013520388A (ja) | 2013-06-06 |
JP5744068B2 (ja) | 2015-07-01 |
KR20140027861A (ko) | 2014-03-07 |
US20190276355A1 (en) | 2019-09-12 |
WO2011104035A3 (de) | 2012-01-05 |
DE102010009584B4 (de) | 2015-01-08 |
WO2011104035A9 (de) | 2011-11-10 |
US10351471B2 (en) | 2019-07-16 |
US20160347655A1 (en) | 2016-12-01 |
US20120321898A1 (en) | 2012-12-20 |
DE102010009584A1 (de) | 2011-09-01 |
CN102906042B (zh) | 2015-06-10 |
KR101506378B1 (ko) | 2015-03-26 |
CN102906042A (zh) | 2013-01-30 |
US12017952B2 (en) | 2024-06-25 |
US20240317641A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010009584B4 (de) | Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben | |
DE102014119594B4 (de) | Borosilikatglas mit niedriger Sprödigkeit und hoher intrinsischer Festigkeit, seine Herstellung und seine Verwendung | |
DE2034393C3 (de) | Anwendung des Verfahrens zur Erhöhung der mechanischen Festigkeit eines Glases durch Austausch von Natriumionen gegen Kaliumionen auf ein Glas, das verkürzte Austauschzeiten ermöglicht | |
DE102013103573B4 (de) | Chemisch vorspannbares Glaselement mit hoher Kratztoleranz, und Verfahren zur Herstellung des Glaselementes | |
EP3558668B1 (de) | Verbundglasscheibe | |
DE112006002185B4 (de) | Glaszusammensetzung und Verfahren zum Herstellen einer Glaszusammensetzung | |
DE69801712T2 (de) | Verbundglasscheibe für Fahrzeuge | |
DE102004022629B9 (de) | Gefloatetes Lithium-Aluminosilikat-Flachglas mit hoher Temperaturbeständigkeit, das chemisch und thermisch vorspannbar ist und dessen Verwendung | |
DE102013114225B4 (de) | Chemisch vorspannbares Glas und daraus hergestelltes Glaselement | |
DE69532437T2 (de) | Kalknatron-siikatglaszusammensetzungen und deren anwendungen | |
EP3392216B1 (de) | Chemisch beständiges glas und dessen verwendung | |
DE102011009769A9 (de) | Hochfestes Alkali-Alumo-Silikatglas | |
DE102014116798A1 (de) | Chemisch vorspannbares oder vorgespanntes Glas und Verfahren zu dessen Herstellung | |
DE19643870C2 (de) | Verwendung eines Glaskörpers zur Erzeugung eines chemisch vorgespannten Glaskörpers | |
EP3636609A1 (de) | Glas mit vorzugsweise erhöhter speicherbarer zugspannung, chemisch vorgespannter glasartikel mit vorzugsweise erhöhter speicherbarer zugspannung, verfahrren zu dessen herstellung sowie dessen verwendung | |
DE102021132738A1 (de) | Glaskeramische Deckscheibe, Verfahren zu deren Herstellung sowie deren Verwendung und digitales Anzeigegerät umfassend eine solche Deckscheibe | |
DE102016109085A1 (de) | Verfahren zur Asymmetrisierung des Wasserstoffgehalts sowie zur Herstellung eines chemisch hoch vorspannbaren scheibenförmigen Glasartikels sowie verfahrensgemäß erhaltener Glasartikel | |
EP4194414B1 (de) | Deckscheibe mit anomalem spannungsprofil, verfahren zu deren herstellung sowie deren verwendung | |
DE10004596A1 (de) | Verstärkte Glaslinse mit einem Brechungsindex von 1,7 | |
DE2034381A1 (de) | Verfahren zur Verfestigung eines Glasartikels | |
DE1496624C (de) | Glasgegenstand mit einer durch Ionenaustausch von Alkalien gebildeten äußeren Druckspannungszone und Verfahren zu seiner Herstellung | |
DE102019121143A1 (de) | Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer Glasartikel und Verfahren zu dessen Herstellung | |
DE102006037684A1 (de) | Verfahren zur Erhöhung der mechanischen Festigkeit von Gläsern durch Lasermodifikation | |
DD122062B1 (de) | Maschinell bearbeitbare glimmerhaltige Glaskeramik mit abge stuften Eearbeitbarkeits- und Festigkeitseigenschaften | |
DD263746A1 (de) | Verfahren zur herstellung eines chemisch verfestigten, fluor- und tonerdehaltigen alkalisilikatglases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180011321.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11707342 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13580810 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012554252 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127023584 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11707342 Country of ref document: EP Kind code of ref document: A2 |