[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011036940A1 - 蓄熱燃焼式排ガス浄化システムおよびその運転方法 - Google Patents

蓄熱燃焼式排ガス浄化システムおよびその運転方法 Download PDF

Info

Publication number
WO2011036940A1
WO2011036940A1 PCT/JP2010/062504 JP2010062504W WO2011036940A1 WO 2011036940 A1 WO2011036940 A1 WO 2011036940A1 JP 2010062504 W JP2010062504 W JP 2010062504W WO 2011036940 A1 WO2011036940 A1 WO 2011036940A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat storage
damper
duct
gas purification
Prior art date
Application number
PCT/JP2010/062504
Other languages
English (en)
French (fr)
Inventor
智弘 鳥田
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2011532933A priority Critical patent/JP5344043B2/ja
Priority to CN201080041817.3A priority patent/CN102498345B/zh
Publication of WO2011036940A1 publication Critical patent/WO2011036940A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70601Temporary storage means, e.g. buffers for accumulating fumes or gases, between treatment stages

Definitions

  • the present invention relates to a regenerative thermal exhaust gas purification device (hereinafter abbreviated as RTO) and a regenerative thermal exhaust gas purification system comprising a suction duct device for reducing static pressure fluctuations corresponding to air flow fluctuations during operation, and It relates to the driving method. More specifically, the exhaust fan connected to the gas exhaust production facility and the regenerative combustion exhaust gas purification device RTO so as not to affect the production facility that is the source of exhaust gas when the static pressure fluctuation of the suction duct when switching the damper of the RTO is given.
  • RTO regenerative thermal exhaust gas purification device
  • the present invention relates to a regenerative combustion exhaust gas purification system including a suction duct device that can reduce the influence of pressure fluctuations and can be adapted to fluctuations in exhaust airflow of production facilities, and an operation method thereof.
  • the present invention also relates to a heat storage combustion exhaust gas purification system further including an exhaust gas supply / discharge device that prevents a decrease in pressure loss due to RTO, and an operation method thereof.
  • the present invention relates to a heat storage combustion exhaust gas purification system further comprising an exhaust gas supply / discharge device for reducing the thermal load of the RTO and preventing damage to the heat storage body.
  • VOC volatile organic compounds
  • a duct for introducing air may be disposed in the exhaust gas flow path from the production facility to the RTO.
  • a damper for blocking the introduction of exhaust gas and a damper for blocking open air for example, open air damper
  • An air release duct for reducing static pressure fluctuation that occurs when switching an RTO damper, an exhaust fan connected to a gas exhaust production facility, and a regenerative exhaust gas purification system Based on the static pressure data from the differential pressure transmitter of the suction duct connecting between the production facility and the RTO, installed between the air opening duct installed in the suction duct connecting the device RTO blower and the RTO blower. Adjust the air inflow from the open air duct installed in the suction duct by opening the control damper or operating the RTO blower operation inverter, and operate the RTO with an appropriate air flow even if the exhaust gas flow from the production facility changes. It is an object of the present invention to provide a heat storage combustion type exhaust gas purification system that can be used and an operation method thereof.
  • a regenerative combustion exhaust gas purification system and an operation method thereof provide an exhaust duct that connects an open air duct that reduces static pressure fluctuations that occur when switching an RTO damper to an exhaust gas production facility.
  • Installed in the suction duct that connects the blower and the RTO blower for the regenerative exhaust gas purification device RTO and is equipped with a differential pressure transmitter that controls the control damper or the blower inverter for suction to adjust the static pressure of the open air duct to a constant level.
  • the RTO is operated with a suction air flow appropriate for the air flow.
  • the present invention provides a differential pressure transmission for controlling a control damper or a suction blower inverter by installing an air release duct in a suction duct connecting a blower for exhaust connected to a gas emission production facility and a blower for an RTO exhaust gas purification apparatus RTO.
  • RTO exhaust gas purification apparatus
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment device showing an embodiment of an RTO and an exhaust gas supply / exhaust device according to the present invention. It is a block diagram (the 1) of the heat storage combustion type exhaust gas purification system by the conventional system provided with the open air damper. It is a block diagram (the 2) of the thermal storage combustion type exhaust gas purification system by the conventional system provided with the open air damper.
  • the control dampers 5 and 25 are fully opened to adjust the suction airflow as a whole, thereby minimizing the pressure loss of the suction duct.
  • the static pressure in the air opening ducts 2 and 22 of each line is measured by the differential pressure transmitters 3 and 23, and the static pressure value is -0.05 to ⁇ 0.00 kPa (setting) with respect to the change in the air volume of the exhaust gas. Automatically adjusted by the control dampers 5 and 25 so as to become (value). From the above, it is possible to mitigate the influence of the static pressure fluctuation caused by the RTO damper on the production equipment.
  • the inside of the suction duct is adjusted to a negative pressure. This can prevent emission of exhaust gas to the atmosphere.
  • the inside of the suction duct is controlled to a negative pressure, there is an introduction of outside air from the atmosphere opening part, so the exhaust gas concentration is reduced, but the effect is slight, and compared with the problem that the exhaust gas is released to the atmosphere, Some dilution is considered acceptable.
  • an air opening duct that is always open to the atmosphere on the secondary exhaust side of the exhaust fan 1. 2 is installed.
  • the frequency of the RTO blower 4 is automatically adjusted by the inverter 6 so that the static pressure value becomes ⁇ 0.05 to ⁇ 0.00 kPa (set value) with respect to the change in the air volume of the exhaust gas from the production facility A.
  • an exhaust gas supply / discharge device that communicates the suction duct device and the RTO and exhausts the treated exhaust gas from the RTO will be described.
  • RTO that has a plurality of heat storage chambers and burns exhaust gas containing flammable harmful components such as volatile organic compounds
  • An exhaust gas supply / discharge device having a plurality of poppet type dampers is provided at each of the outlets from the outlet, and the exhaust gas is supplied and discharged by opening and closing the poppet type dampers.
  • the poppet damper on the supply side and the poppet damper on the discharge side are in an “open” state at the same time, but instantaneously.
  • the pressure loss due to the RTO decreases and the amount of exhaust gas supplied to the RTO increases, and as a result, the regenerative combustion including ducts for supplying exhaust gas to the RTO and RTO, and exhaust gas exhausting from the RTO, etc. May cause a static pressure fluctuation in the exhaust gas purification system. This static pressure fluctuation can affect production equipment.
  • the exhaust gas recirculation means 33 is provided in the supply / discharge means 32.
  • the supply / discharge means 32 supplies and discharges the exhaust gas to / from the RTO by opening and closing a plurality of poppet type dampers 37, 38, 39, and 40 provided on the exhaust gas supply side and the discharge side of the RTO, respectively.
  • the exhaust gas recirculation means 33 is configured to detect the discharge side poppet damper 39 when the pressure loss due to RTO is reduced by opening at least two poppet dampers among the plurality of poppet dampers 37, 38, 39, 40 almost simultaneously. , 40, a part of the treated exhaust gas is sent to the suction side of the RTO blower 4 disposed on the RTO exhaust gas supply side.
  • the suction port of the RTO blower 4 is connected to the tip of the suction duct 34 communicating with the exhaust gas generators A1 and A2 (see FIG. 1) that generate exhaust gas.
  • One end of the untreated exhaust gas supply duct 36 is connected to the discharge port of the blower 4.
  • the other end of the untreated exhaust gas supply duct 36 is connected to an RTO exhaust gas supply port via two poppet dampers 37 and 38, respectively, and two poppet dampers are connected to the treated exhaust gas exhaust port of the RTO.
  • Exhaust ducts 42 are connected via 39 and 40 and the treated exhaust gas exhaust duct 41.
  • the suction duct 34 is equipped with a pressure transmitter 43, and the untreated exhaust gas supply duct 36 is fitted with an orifice flow meter 51 having a differential pressure transmitter 44, and the electric motor of the RTO blower 4.
  • the inverter 46 mounted on 45, the pressure transmitter 43 and the differential pressure transmitter 44 are electrically connected to each other via a controller 47.
  • a duct 49 provided with a flow rate adjusting damper 48 is connected in communication between the suction duct 34 and the treated exhaust gas exhaust duct 41, and the positioner 50 of the flow rate adjusting damper 48 is electrically connected to the controller 47. Connected.
  • untreated exhaust gas is guided to the suction duct 34, pressurized by the RTO blower 4 and sent to the untreated exhaust gas supply duct 36, and a plurality of poppet dampers 37 to 40 are interlocked.
  • the exhaust gas is supplied to and discharged from the RTO and a predetermined process is performed. Then, based on the pressure in the suction duct 34 measured by the pressure transmitter 43 and the differential pressure of the orifice flow meter 51 measured by the differential pressure transmitter 44, the opening degree of the flow rate adjustment damper 48 is adjusted via the controller 47.
  • Table 1 shows the processing air volume: 100 m 3 / min (at 0 ° C., 101.3 kPa), toluene concentration: 0,500, 1500, 3000, 5000 ppm (toluene spontaneous combustion start concentration: 500 ppm), apparatus inlet gas temperature: In the case of 20 degreeC, the result of having calculated the combustion chamber temperature and the RTO exit gas temperature is shown. According to Table 1, it can be seen that the higher the toluene concentration, the more combustion heat is generated and the combustion chamber temperature and the RTO outlet gas temperature increase.
  • the heat storage body When the heat storage body is exposed to an excessively high temperature, the heat load applied to the heat storage body increases as described above, and the heat storage body may be cracked or cracked.
  • FIG. 4 shows another embodiment of the RTO and the exhaust gas supply / exhaust device.
  • the RTO shown in FIG. 4 includes heat storage chambers 61 a, 62 a, and 63 a disposed therein and parallelly configured heat storage chambers 61, 62, and 63, and the upper portions of the heat storage chambers 61, 62, and 63 are common.
  • the combustion chamber 64 is connected in communication.
  • the downward direction of the thermal storage body 61a, 62a, 63a, each inlet (supply side) damper 65, 66, 67, and each outlet (discharge side) damper 68, 69, 70 are connected in communication, respectively.
  • each of the inlet dampers 65, 66, 67 is connected to the untreated exhaust gas supply duct 36
  • each of the outlet dampers 68, 69, 70 is connected to the treated exhaust gas exhaust duct 41.
  • a fresh air introduction damper 71 is connected to the upstream position of the inlet damper 65 in the untreated exhaust gas supply duct 36 and the upstream position of the inlet damper 65 in the untreated exhaust gas supply duct 36 and the combustion chamber. 64 is connected in communication via a cold bypass damper 72.
  • the connection position of the cold bypass damper 72 is between the connection position of the inlet damper 65 and the connection position of the fresh air introduction damper 71 in the untreated exhaust gas supply duct 36.
  • the connection position of the cold bypass damper 72 is not limited to this, and may be upstream of the connection position of the fresh air introduction damper 71.
  • the fresh air in the present invention refers to, for example, the atmosphere in the outdoors or in the factory, and includes the above-mentioned atmosphere through a coarse dust filter or the like.
  • the cold bypass damper refers to a damper for introducing exhaust gas directly into the combustion chamber without passing through the heat storage chamber.
  • any of the dampers shown in FIG. 4 may be a poppet type damper.
  • a burner 74 is installed as a combustion chamber temperature maintaining means used for maintaining the temperature of the combustion chamber 64.
  • the hot bypass damper refers to a damper for exhausting the treated exhaust gas that has been decomposed by combustion from the combustion chamber and discarding the excess heat amount without storing heat in the heat storage body.
  • the burner 74 keeps the temperature of the combustion chamber 64 at a temperature required for decomposition of the target component (a temperature 200 to 300 ° C. higher than the target component ignition point temperature), and the fresh air introduction damper 71, the core The cold bypass damper 72 and the hot bypass damper 73 are all closed.
  • the exhaust gas containing a component such as a volatile organic compound supplied from the untreated exhaust gas supply duct 36 is “inlet damper 65 is opened, outlet damper 69 is opened, other inlet dampers 66 and 67 and outlet dampers 68 and 70 are closed. ”Is introduced into the heat storage chamber 61 through the inlet damper 65, preheated when passing through the heat storage body 61 a, and burned and decomposed in the combustion chamber 64. The exhaust gas purified by the combustion decomposition is subjected to heat exchange when passing through the heat storage body 62 a of the heat storage chamber 62, and then exhausted from the treated exhaust gas exhaust duct 41 through the outlet damper 69.
  • the state is switched to a state of “opening inlet damper 66, opening outlet damper 70, closing other inlet dampers 65 and 67 and outlet dampers 68 and 69”.
  • the exhaust gas passes through the inlet damper 66 and the outlet damper 70 and is processed and exhausted in the same manner as described above.
  • the state is switched to the state of “opening inlet damper 67, opening outlet damper 68, closing other inlet dampers 65, 66 and outlet dampers 69, 70”.
  • the exhaust gas passes through the inlet damper 67 and the outlet damper 68 and is processed and exhausted in the same manner as described above.
  • the state is switched to the first "inlet damper 65 open, outlet damper 69 open, other inlet dampers 66 and 67 and outlet dampers 68 and 70 closed", and the above operation is repeated.
  • the temperature in the combustion chamber 64 is maintained at the holding temperature (200 to 300 ° C. from the target component ignition point temperature). Expected to be higher).
  • the burner 74 is first stopped during the operation of the apparatus. Then, the hot bypass damper 73 is opened, and a part of the purified exhaust gas is exhausted from the combustion chamber 64 to discard the surplus heat amount without accumulating heat in the heat accumulators 61a, 62a, 63a, and the fresh air-introducing damper 71 is disposed. Then, the component concentration in the supplied exhaust gas is diluted with fresh air so that the temperature in the combustion chamber 64 does not rise too much. Usually, the heat load applied to the heat storage elements 61a, 62a, and 63a is reduced in this way.
  • the burner 74 is stopped and the hot bypass damper 73 and the fresh air introduction damper 71 are opened to burn.
  • the temperature in the chamber 64 may exceed the heat resistance temperature of the heat storage bodies 61a, 62a, 63a.
  • the cold bypass damper 72 is opened, and a part of the exhaust gas is directly passed through the heat storage chambers 61, 62, 63.
  • the hot bypass damper 73 is opened, and a portion of the purified exhaust gas is exhausted from the combustion chamber 64 to discard excess heat.
  • the fresh air introduction damper 71 is closed in principle. This is because the exhaust gas treatment amount is not reduced. However, if priority should be given to further lowering the temperature in the combustion chamber 64, the fresh air introduction damper 71 may be opened to dilute the component concentration in the supplied exhaust gas with fresh air. . Further, the direct introduction of the exhaust gas into the combustion chamber 64 may not be a part of the exhaust gas but the total amount of the exhaust gas. In this case, all of the inlet dampers 65, 66, and 67 are closed.
  • a part of the exhaust gas purified from the combustion chamber 64 is exhausted by opening the hot bypass damper 73. Good.
  • the exit dampers 68, 69, 70 are all closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

 大気開放ダンパを閉めた場合RTOと生産設備は完全にダクトでつながりRTOの入口あるいは出口ダンパ切換え時の静圧変動がダクトを経由して生産設備に伝わるという問題がある。また、大気開放ダンパを無くし大気開放ダクトを設置することで大気バッファーとなり生産設備からの排ガス風量は生産都合で変化し大気開放ダクトからの排ガスの漏れ、大気空気を吸引する可能性があるという問題の解決策を提供する。ガス排出生産設備に繋がる排気用送風機と蓄熱燃焼式排ガス浄化装置RTO用送風機とをつなぐ吸引ダクト中に設置された大気開放ダクトと、RTO用送風機との間に設置されたコントロールダンパもしくは該RTO用送風機運転インバータとを結ぶ差圧伝送器を備える。

Description

蓄熱燃焼式排ガス浄化システムおよびその運転方法
 本発明は、蓄熱燃焼式排ガス浄化装置Regenerative Thermal Oxidizer(以下RTOと省略する)と、その稼動時の風量変動に対応する静圧変動緩和用の吸引ダクト装置とを備える蓄熱燃焼式排ガス浄化システムおよびその運転方法に関する。
 さらに詳しくは、RTOのダンパ切換え時の吸引ダクトの静圧変動の影響を排ガス発生元である生産設備に与えないように、ガス排出生産設備に繋がる排気用送風機と蓄熱燃焼式排ガス浄化装置RTO用送風機とをつなぐ吸引ダクト中に大気開放ダクトを設けることで大気バッファー、すなわち衝撃を吸収または和らげる緩衝器となり、大気開放部と吸引ダクト分岐部の一次側(生産設備)でのダンパ切換え時の静圧変動の影響を緩和し、且つ生産設備の排気風量変動に適応可能な吸引ダクト装置を備える蓄熱燃焼式排ガス浄化システムおよびその運転方法に関する。
 加えて、本発明は、RTOのガス供給側に設けた複数のポペット式ダンパあるいはガス排出側に設けた複数のポペット式ダンパのいずれかにおいて、少なくとも2個以上のポペット式ダンパがほぼ同時に開いても、RTOによる圧力損失の低下を防止する排ガス給排装置をさらに備えた蓄熱燃焼式排ガス浄化システムおよびその運転方法に関する。
 加えて、本発明は、RTOの熱負荷量を低減し、蓄熱体の損傷を防止するための排ガス給排装置をさらに備えた蓄熱燃焼式排ガス浄化システムに関する。
 排ガス発生元の生産設備から、揮発性有機化合物volatile organic compounds(以下VOCと省略する)等の有害物質を含む排ガスの排気を行う必要がある場合、排ガスをRTOにて加熱分解して無害化した後に大気に排出している。生産設備からRTOへの排ガスの流路に、たとえばRTO内での排ガス濃度を調整するために、大気を導入するダクトを配設することがある。かかる装置では、排ガスの導入を遮断するダンパと大気開放を遮断するダンパ、例えば大気開放ダンパ、を設置することも知られている(特開2002-61822号公報)。
 しかしながら、従来技術では、図5に示すように、大気開放ダンパ8を閉めた場合RTO(図中の符号は「B」であるが、以下、符号は省略する)と生産設備Aは完全にダクトでつながり、RTOの入口ダンパ9あるいは出口ダンパ(不図示)切換え時の静圧変動がダクトを経由して生産設備に伝わるという問題がある。また、図6に示すように、大気開放ダンパを無くし大気開放部ダクト2を設置することで大気バッファーとなり生産設備へダンパ切換え時の静圧変動の影響を緩和できる。この場合、生産設備からの排ガス風量は生産の都合で変化し大気開放ダクトからの排ガスの漏れや大気(空気)の吸引の可能性があるという問題がある。
 さらに、排ガスの漏れは大気へVOCを排出することになり問題がある。
 また、大気が吸引された場合、排ガスは希釈されRTOへ導入される。VOC濃度が高いほど可燃分が多くなるので燃料代が削減できる。よって排ガスを希釈しVOC濃度を下げる事は燃料代を増大させるという問題がある。
 そこで、本発明は、上記の問題に鑑みて成されたもので、RTOのダンパ切換え時に起こる静圧変動を緩和する大気開放ダクトを、ガス排出生産設備に繋がる排気用送風機と蓄熱燃焼式排ガス浄化装置RTO用送風機とをつなぐ吸引ダクト中に設置された大気開放ダクトとRTO用送風機との間に設置し、生産設備とRTOをつなぐ吸引ダクトの差圧伝送器からの静圧データに基づき、該吸引ダクトに設置された大気開放ダクトからの大気流入を、コントロールダンパの開度あるいはRTO用送風機運転インバータの運転により調整し、生産設備からの排ガス風量が変化しても適正な風量でRTOを運転できる蓄熱燃焼式排ガス浄化システムならびにその運転方法を提供することを目的とする。
 上記の課題を解決するために、本発明に係る蓄熱燃焼式排ガス浄化システムならびにその運転方法は、RTOのダンパ切換え時に起こる静圧変動を緩和する大気開放ダクトを、ガス排出生産設備に繋がる排気用送風機と蓄熱燃焼式排ガス浄化装置RTO用送風機とをつなぐ吸引ダクト中に設置し、コンロールダンパまたは吸引用送風機インバータを制御する差圧伝送器を備えることで大気開放ダクトの静圧を一定に調整することにより、RTOの入口あるいは出口ダンパによる静圧変動の生産設備への影響を緩和しつつ、大気への排ガスの放出もなく、大気からの希釈空気の吸引も少なく、変動する生産設備からの排気風量に対して適正な吸引風量でRTOを運転することを特徴とする。
 本発明は、ガス排出生産設備に繋がる排気用送風機と蓄熱燃焼式排ガス浄化装置RTO用送風機とをつなぐ吸引ダクト中に大気開放ダクトを設置し、コンロールダンパまたは吸引用送風機インバータを制御する差圧伝送器を備えるようにしたから、大気開放ダクトの静圧を一定に調整することにより、RTOの入口あるいは出口ダンパによる静圧変動の生産設備への影響を緩和しつつ、大気への排ガスの放出もなく、大気からの希釈空気の吸引も少なく、変動する生産設備からの排気風量に対して適正な吸引風量でRTOの運転を可能とする効果がある。
 この出願は、日本国で2009年9月22日に出願された特願2009-218251号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
本発明による蓄熱燃焼式排ガス浄化システムの吸引ラインが2ヶ所以上の場合のブロック図である。 本発明による蓄熱燃焼式排ガス浄化システムの吸引ラインが1ヶ所の場合のブロック図である。 本発明によるRTOと排ガス給排装置を示すブロック図である。 本発明によるRTOと排ガス給排装置の実施形態を示す排ガス処理装置の概要構成図である。 大気開放ダンパを備えた、従来の方式による蓄熱燃焼式排ガス浄化システムのブロック図(その1)である。 大気開放ダンパを備えた、従来の方式による蓄熱燃焼式排ガス浄化システムのブロック図(その2)である。
 以下、本発明の実施形態を添付図面に基づいて説明する。なお、同一あるいは類似の要素には、同一の符号を用い、重複した説明は省略する。本発明の一実施の形態にかかわるRTOとRTOへ生産設備から排ガスを供給する吸引ダクト装置との構成は、図1のように、2ヶ所以上から吸引する場合において、各生産設備A1、A2の排気用送風機1、21の2次排気側に常時大気開放の大気開放ダクト2、22を設置する。また大気開放ダクト2、22とRTO用送風機4の間に各々の装置からの排気ライン毎にコントロールダンパ5、25(開度調整可能ダンパ)を設置する。
 生産設備A1、A2からの最大排気風量時に、コントロールダンパ5、25を全開として全体としての吸引風量の調整を行う事によって、吸引ダクトの圧力損失を最小にする。また各ラインの大気開放ダクト2、22部の静圧を差圧伝送器3、23で測定し、排出ガスの風量変化に対してその静圧値が-0.05~±0.00kPa(設定値)になる様にコンロールダンパ5、25で自動調整する。
 以上より、RTOのダンパによる静圧変動の生産設備への影響を緩和できる。
 大気開放ダクト2、22からのもれ、吸引をなくすために、吸引ダクト内をマイナス圧に調整する。このことにより大気への排ガス放出を防止できる。吸引ダクト内をマイナス圧に制御すると大気開放部からの外気導入はあるので、排ガス濃度が低下することは生じるが、その影響はわずかであり、排ガスが大気に放出されるという問題に比較すると、多少の希釈は許容範囲内であると考えられる。
 また、本発明の別の実施の形態にかかわる構成では、図2のように、1ヶ所の生産設備Aから吸引する場合において、排気用送風機1の2次排気側に常時大気開放の大気開放ダクト2を設置する。
 生産設備Aからの排出ガスの風量変化に対してその静圧値が-0.05~±0.00kPa(設定値)になる様にインバータ6でRTO用送風機4の周波数を自動調整する。これにより、コントロールダンパ不要で図1で説明した実施の形態と同様の制御が可能となる。
 次に、吸引ダクト装置とRTOを連通し、RTOからの処理済排ガスを排気する排ガス給排装置について説明する。複数の蓄熱室を有し、揮発性有機化合物などの可燃性有害成分を含有する排ガスを燃焼処理するRTOにおいては、RTOの排ガスの供給側(RTOへの入口)とRTOからの排出側(RTOからの出口)にそれぞれ複数のポペット式ダンパをを有する排ガス給排装置を設けて、ポペット式ダンパを開閉することにより前記排ガスの給排を行うようにしている。
 しかし、このように構成された従来の排ガス給排装置においては、供給側のポペット式ダンパと、排出側のポペット式ダンパとが一瞬ではあるが同時に2個以上「開」の状態になり、これに伴ってRTOによる圧力損失が低下してRTOに供給される排ガスの量が増大し、結果として、RTO並びにRTOへの排ガスの供給用およびRTOからの排ガスの排出用のダクト等を含む蓄熱燃焼式排ガス浄化システムの静圧変動を生ずる可能性がある。この静圧変動は生産設備に影響を与えうる。
 そこで、図3に示すように、給排手段32に排ガス回帰手段33を設ける。給排手段32は、RTOの排ガス供給側および排出側にそれぞれ設けた複数のポペット式ダンパ37、38、39、40を連動させて開閉することによりRTOに対して前記排ガスの給排を行う。排ガス回帰手段33は、複数のポペット式ダンパ37、38、39、40のうち少なくとも2個以上のポペット式ダンパがほぼ同時に開くことによりRTOによる圧力損失が低下した時に、前記排出側ポペット式ダンパ39、40から排出された処理済排ガスの一部をRTOの排ガス供給側に配設したRTO用送風機4の吸引側に送り込む。
 そして、前記排ガスの給排手段32においては、排ガスが発生する排ガス発生装置A1、A2(図1参照)と連通する吸引ダクト34の先端にRTO用送風機4の吸引口が接続してあり、RTO用送風機4の放出口には、未処理排ガス供給ダクト36の一端が接続してある。未処理排ガス供給ダクト36の他端は2個のポペット式ダンパ37、38をそれぞれ介してRTOの排ガス供給口にそれぞれ接続してあり、RTOの処理済排ガス排出口には2個のポペット式ダンパ39、40および処理済排ガス排気ダクト41を介して排気ダクト42が接続してある。そして、前記吸引ダクト34には圧力伝送器43が、また前記未処理排ガス供給ダクト36には差圧伝送器44を備えたオリフィス流量計51がそれぞれ装着してあり、前記RTO用送風機4の電動機45に装着したインバータ46、前記圧力伝送器43および差圧伝送器44はコントローラ47を介して相互に電気的に接続してある。
 また、前記排ガス回帰手段33においては流量調整ダンパ48を付設したダクト49が吸引ダクト34と処理済排ガス排気ダクト41間に連通接続してあり、流量調整ダンパ48のポジショナ50は前記コントローラ47に電気的に接続してある。
 このように構成されたものは、未処理の排ガスを吸引ダクト34に誘導するとともにRTO用送風機4によって加圧して未処理排ガス供給ダクト36に送り込み、複数のポペット式ダンパ37~40を連動させて開閉することにより、RTOに対して排ガスの給排を行い所定の処理を行う。そして、圧力伝送器43によって測定した吸引ダクト34内の圧力および差圧伝送器44によって測定したオリフィス流量計51の差圧に基づき、コントローラ47を介して流量調整ダンパ48の開度を調整する。
 このようにして排ガスを処理している途中で、ポペット式ダンパ37~40のうち少なくとも2個以上のポペット式ダンパが同時に「開」の状態になり、これに伴ってRTOによる圧力損失が低下してRTOに供給される排ガス量が増大しようとした時、圧力伝送器43および差圧伝送器44による測定結果に基づき、流量調整ダンパ48がコントローラ47によって制御されて、ポペット式ダンパ39、40から排出された処理済の排ガスがダクト49および流量調整ダンパ48を介して吸引ダクト34に戻される。これにより、ポペット式ダンパの同時「開」によるRTOへの排ガスの供給量の増大を防止することができる。
 また、従来のRTOでは、排ガスは蓄熱室を通過した後、対象成分の分解に必要な温度(対象成分発火点温度より200~300℃高い温度)に保持されている燃焼室内で高温燃焼分解処理される。この際、排ガス中の対象成分濃度が高くなると、成分自身が燃料の役割を果たし、燃焼室又は蓄熱室で燃焼された結果、燃焼室内は前記保持温度以上の温度になる。このため、排ガスの予備加熱工程(装置入口から燃焼室)及び成分分解後の熱回収工程(燃焼室から装置出口)において蓄熱体にかかる熱負荷量が大きくなることが懸念される。
 一例として表1に、処理風量:100m3/min(0℃、101.3kPa時)、トルエン濃度:0,500,1500,3000,5000ppm(トルエンの自然燃焼開始濃度:500ppm)、装置入口ガス温度:20℃の場合において、燃焼室内温度及びRTO出口ガス温度を算出した結果を示す。表1によれば、トルエン濃度が高くなるほど燃焼熱がより多く発生し、燃焼室内温度及びRTO出口ガス温度が高くなることが分かる。
Figure JPOXMLDOC01-appb-T000001
 蓄熱体が過度な高温度に晒されると、上述したように蓄熱体にかかる熱負荷量が大きくなり、蓄熱体の割れやひび等が発生する可能性がある。
 RTOおよび排ガス給排装置の別の実施の形態を図4に示す。図4に示すRTOは、内部に蓄熱体61a、62a、63aが各々配設されると共に並列に構成された蓄熱室61、62、63を備え、蓄熱室61、62、63の上部は共通の燃焼室64に連通接続されている。そして、前記蓄熱室61、62、63における蓄熱体61a、62a、63aの下方と各入口(供給側)ダンパ65、66、67及び各出口(排出側)ダンパ68、69、70は各々連通接続されている。さらに前記各入口ダンパ65、66、67は未処理排ガス供給ダクト36と連通接続されており、前記各出口ダンパ68、69、70は処理済排ガス排気ダクト41と連通接続されている。
 また前記未処理排ガス供給ダクト36における前記入口ダンパ65の上流位置にはフレッシュエア-導入ダンパ71が連通接続されていると共に該未処理排ガス供給ダクト36における前記入口ダンパ65の上流位置と前記燃焼室64とはコ-ルドバイパスダンパ72を介して連通接続されている。なお図4では、前記コ-ルドバイパスダンパ72の接続位置は、前記未処理排ガス供給ダクト36における前記入口ダンパ65の接続位置とフレッシュエアア-導入ダンパ71の接続位置の間であるが、該コ-ルドバイパスダンパ72の接続位置はこれに限定されるものではなく、フレッシュエア-導入ダンパ71の接続位置より上流側であってもよい。
 ここで、本発明においてフレッシュエア-とは、例えば、屋外又は工場内の大気のことをいい、粗塵フィルタ等を通した前記大気も含まれる。
 また、本発明においてコ-ルドバイパスダンパとは、排ガスを蓄熱室を通さずに直接、燃焼室に導入するためのダンパのことをいう。なお、図4に示すいずれのダンパもポペット式ダンパであってもよい。
 さらに前記処理済排ガス排気ダクト41における前記出口ダンパ70の下流位置と前記燃焼室64とはホットバイパスダンパ73を介して連通接続されている。なお前記燃焼室64内には該燃焼室64の室内温度を保持するために用いる燃焼室内温度保持手段としてのバ-ナ74が設置されている。
 本発明においてホットバイパスダンパとは、燃焼分解された処理済排ガスを燃焼室内から排気して、蓄熱体に蓄熱することなく余剰熱量を廃棄するためのダンパのことをいう。
 このように構成された蓄熱燃焼式排ガス浄化システムの作動について説明する。まず、バ-ナ74により燃焼室64の室内温度を対象成分も分解に必要な温度(対象成分発火点温度より200~300℃高い温度)に保持すると共に、フレッシュエア-導入ダンパ71、コ-ルドバイパスダンパ72及びホットバイパスダンパ73を全て閉じた状態にしておく。
 この状態で未処理排ガス供給ダクト36から供給される揮発性有機化合物などの成分を含む排ガスは、「入口ダンパ65開、出口ダンパ69開、その他の入口ダンパ66、67及び出口ダンパ68、70閉」の状態で入口ダンパ65を通って蓄熱室61に導入され、蓄熱体61aを通過する際に予備加熱されて燃焼室64で燃焼分解される。そして、該燃焼分解により浄化した排ガスは、蓄熱室62の蓄熱体62aを通過する際に熱交換された後、出口ダンパ69を通って処理済排ガス排気ダクト41から排気される。
 次に、所定時間経過後、「入口ダンパ66開、出口ダンパ70開、その他の入口ダンパ65、67及び出口ダンパ68、69閉」の状態に切り替える。この状態で、前記排ガスは入口ダンパ66及び出口ダンパ70を通って、上記と同じように処理されて排気される。
 さらに、所定時間経過後、「入口ダンパ67開、出口ダンパ68開、その他の入口ダンパ65、66及び出口ダンパ69、70閉」の状態に切り替える。この状態で、前記排ガスは入口ダンパ67及び出口ダンパ68を通って、上記と同じように処理されて排気される。次に、所定時間経過後、最初の「入口ダンパ65開、出口ダンパ69開、その他の入口ダンパ66、67及び出口ダンパ68、70閉」の状態に切り替えられ、上記の作動が繰り返される。
 なお、上記の作動が繰り返される中で、前記排ガス中の成分濃度又は対象成分の温度上昇度が高い場合には、燃焼室64内の温度が保持温度(対象成分発火点温度より200~300℃高い温度)より高くなることが予想される。この場合、装置の稼動中において、まず前記バ-ナ74を停止する。そして、ホットバイパスダンパ73を開き、浄化した排ガスの一部を燃焼室64内から排気して蓄熱体61a、62a、63aに蓄熱することなく余剰熱量を廃棄すると共に、フレッシュエア-導入ダンパ71を開き、供給される排ガス中の成分濃度をフレッシュエア-で希釈して燃焼室64内の温度が上がりすぎないようにする。通常、このようにして蓄熱体61a、62a、63aにかかる熱負荷量を軽減する。
 しかしながら、前記排ガス中の成分濃度又は対象成分の温度上昇度が極めて高い場合、上述のように、前記バ-ナ74を停止し、ホットバイパスダンパ73及びフレッシュエア-導入ダンパ71を開いても燃焼室64内の温度が蓄熱体61a、62a、63aの耐熱温度を超えることがある。このような場合には、装置の稼動中において前記バ-ナ74が停止した状態で、コ-ルドバイパスダンパ72を開き、排ガスの一部を蓄熱室61、62、63を通さずに直接、燃焼室64に導入して燃焼分解させると共に、ホットバイパスダンパ73を開き、浄化した排ガスの一部を燃焼室64内から排気して余剰熱量を廃棄する。このようにして、排ガスの蓄熱室61、62、63での燃焼を少なくすると共に浄化した排ガスの蓄熱室61、62、63での熱交換を少なくすることにより、蓄熱体61a、62a、63aにかかる熱負荷量をさらに軽減する。
 なお、フレッシュエア-導入ダンパ71は原則的には閉じる。これは、排ガス処理量を低下させないためである。ただし、燃焼室64内の温度をさらに下げることを優先する必要がある場合は、フレッシュエア-導入ダンパ71を開き、供給される排ガス中の成分濃度をフレッシュエア-で希釈するようにしてもよい。また前記排ガスの燃焼室64への直接導入は、排ガスの一部ではなく、排ガス全量であってもよい。この場合、入口ダンパ65、66、67は全て閉じることになる。
 なお本発明の実施の形態では、ホットバイパスダンパ73の開きにより、燃焼室64内から浄化した排ガスの一部を排気するようにしたが、浄化した排ガスの一部ではなく、全量であってもよい。この場合、出口ダンパ68、69、70は全て閉じることになる。

Claims (7)

  1. ガスを排出する生産設備で生成された排ガスを浄化する蓄熱燃焼式排ガス浄化装置と、該蓄熱燃焼式排ガス浄化装置とガス排出生産設備とを連通するのに用いられる吸引ダクト装置とを備える蓄熱燃焼式排ガス浄化システムであって、
     ガス排出生産設備に繋がり、該ガス排出生産設備から排ガスを吸引する排気用送風機と:
     前記排気用送風機で吸引された排ガスを前記蓄熱燃焼式排ガス浄化装置に送る蓄熱燃焼式排ガス浄化装置用送風機と;
     前記排気用送風機と前記蓄熱燃焼式排ガス浄化装置用送風機とをつなぐ吸引ダクトと;
     前記吸引ダクト中に設置された大気開放ダクトと;
     前記大気開放ダクト中の静圧を測定し、前記吸引ダクト中に設置されたコントロールダンパもしくは前記蓄熱燃焼式排ガス浄化装置用送風機運転インバータを調整する信号を伝送する差圧伝送器とを備えた;
     蓄熱燃焼式排ガス浄化システム。
  2. 前記吸引ダクト装置と前記蓄熱燃焼式排ガス浄化装置とを連通し、前記蓄熱燃焼式排ガス浄化装置に対して複数のポペット式ダンパを連動させて開閉することにより前記排ガスの給排を行うようにした排ガス給排装置とをさらに備え;
     前記排ガスの供給側および排出側に設けた複数のポペット式ダンパのうち少なくとも2個以上のポペット式ダンパがほぼ同時に開くことにより、前記蓄熱燃焼式排ガス浄化装置による圧力損失が低下した時に、前記排出側のポペット式ダンパから排出された処理済排ガスの一部を前記蓄熱燃焼式排ガス浄化装置用送風機の吸引側に送り込む排ガス回帰手段を設けたことを特徴とする;
     請求項1の蓄熱燃焼式排ガス浄化システム。
  3. 前記蓄熱燃焼式排ガス浄化装置は、内部に蓄熱体を配設した複数の蓄熱室を並列に有し、各蓄熱室の上部を共通の燃焼室により連通接続し;
     前記蓄熱燃焼式排ガス浄化装置に前記吸引ダクト装置から前記排ガスを供給する未処理排ガス供給ダクトと、該未処理排ガス供給ダクトと前記蓄熱燃焼式排ガス浄化装置との間に配設された複数の入口ダンパと、前記蓄熱燃焼式排ガス浄化装置から処理した排ガスを排出する処理済排ガス排気ダクトと、該処理済排ガス排気ダクトと前記蓄熱燃焼式排ガス浄化装置との間に配設された複数の出口ダンパとをさらに備え;
     各蓄熱室における蓄熱体の下方と各入口ダンパ及び各出口ダンパを各々連通接続し、該各入口ダンパを未処理排ガス供給ダクトと連通接続すると共に該各出口ダンパを処理済排ガス排気ダクトと連通接続し、前記未処理排ガス供給ダクトにおける前記入口ダンパの上流位置にフレッシュエア-導入ダンパを連通接続すると共に、前記処理済排ガス排気ダクトにおける前記出口ダンパの下流位置と前記燃焼室とをホットバイパスダンパを介して連通接続したことを特徴とする;
     請求項1の蓄熱燃焼式排ガス浄化システム。
  4. 前記蓄熱燃焼式排ガス浄化装置は、内部に蓄熱体を配設した複数の蓄熱室を並列に有し、各蓄熱室の上部を共通の燃焼室により連通接続し;
     前記蓄熱燃焼式排ガス浄化装置に前記吸引ダクト装置から前記排ガスを供給する未処理排ガス供給ダクトと、該未処理排ガス供給ダクトと前記蓄熱燃焼式排ガス浄化装置との間に配設された複数の入口ダンパと、前記蓄熱燃焼式排ガス浄化装置から処理した排ガスを排出する処理済排ガス排気ダクトと、該処理済排ガス排気ダクトと前記蓄熱燃焼式排ガス浄化装置との間に配設された複数の出口ダンパとをさらに備え;
     各蓄熱室における蓄熱体の下方と各入口ダンパ及び各出口ダンパを各々連通接続し、該各入口ダンパを未処理排ガス供給ダクトと連通接続すると共に該各出口ダンパを処理済排ガス排気ダクトと連通接続し、前記未処理排ガス供給ダクトにおける前記入口ダンパの上流位置と前記燃焼室とをコ-ルドバイパスダンパを介して連通接続すると共に、前記処理済排ガス排気ダクトにおける前記出口ダンパの下流位置と前記燃焼室とをホットバイパスダンパを介して連通接続したことを特徴とする;
     請求項1の蓄熱燃焼式排ガス浄化システム。
  5. 前記蓄熱燃焼式排ガス浄化装置は、内部に蓄熱体を配設した複数の蓄熱室を並列に有し、各蓄熱室の上部を共通の燃焼室により連通接続し;
     前記蓄熱燃焼式排ガス浄化装置に前記吸引ダクト装置から前記排ガスを供給する未処理排ガス供給ダクトと、該未処理排ガス供給ダクトと前記蓄熱燃焼式排ガス浄化装置との間に配設された複数の入口ダンパと、前記蓄熱燃焼式排ガス浄化装置から処理した排ガスを排出する処理済排ガス排気ダクトと、該処理済排ガス排気ダクトと前記蓄熱燃焼式排ガス浄化装置との間に配設された複数の出口ダンパとをさらに備え;
     各蓄熱室における蓄熱体の下方と各入口ダンパ及び各出口ダンパを各々連通接続し、該各入口ダンパを未処理排ガス供給ダクトと連通接続すると共に該各出口ダンパを処理済排ガス排気ダクトと連通接続し、前記未処理排ガス供給ダクトにおける前記入口ダンパの上流位置にフレッシュエア-導入ダンパを連通接続すると共に、該未処理排ガス供給ダクトにおける前記入口ダンパの上流位置と前記燃焼室とをコ-ルドバイパスダンパを介して連通接続し、前記処理済排ガス排気ダクトにおける前記出口ダンパの下流位置と前記燃焼室とをホットバイパスダンパを介して連通接続したことを特徴とする;
     請求項1の蓄熱燃焼式排ガス浄化システム。
  6. ガス排出量が変動する生産設備からの排ガス風量に対して適正な風量を蓄熱燃焼式排ガス浄化装置に送るための蓄熱燃焼式排ガス浄化システムの運転方法であって、
     前記生産設備と前記蓄熱燃焼式排ガス浄化装置をつなぐ吸引ダクトに設置された大気開放ダクトの静圧に基づき、コントロールダンパの開度あるいは蓄熱燃焼式排ガス浄化装置用送風機運転インバータの運転を調整することにより、前記静圧を一定にする;
     蓄熱燃焼式排ガス浄化システムの運転方法。
  7. 前記蓄熱燃焼式排ガス浄化装置の排ガス供給側および排出側にそれぞれ設けた複数のポペット式ダンパのうち少なくとも2個以上のポペット式ダンパがほぼ同時に開くことにより前記蓄熱燃焼式排ガス浄化装置による圧力損失が低下した時に、前記排出側ポペット式ダンパから排出された処理済排ガスの一部を前記蓄熱燃焼式排ガス浄化装置の排ガス供給側に配設した蓄熱燃焼式排ガス浄化装置用送風機の吸引側に送り込むようにすることを特徴とする;
     請求項6の蓄熱燃焼式排ガス浄化システムの運転方法。
PCT/JP2010/062504 2009-09-22 2010-07-26 蓄熱燃焼式排ガス浄化システムおよびその運転方法 WO2011036940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011532933A JP5344043B2 (ja) 2009-09-22 2010-07-26 蓄熱燃焼式排ガス浄化システムおよびその運転方法
CN201080041817.3A CN102498345B (zh) 2009-09-22 2010-07-26 蓄热燃烧式废气净化系统及其运转方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009218251 2009-09-22
JP2009-218251 2009-09-22

Publications (1)

Publication Number Publication Date
WO2011036940A1 true WO2011036940A1 (ja) 2011-03-31

Family

ID=43795702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062504 WO2011036940A1 (ja) 2009-09-22 2010-07-26 蓄熱燃焼式排ガス浄化システムおよびその運転方法

Country Status (4)

Country Link
JP (1) JP5344043B2 (ja)
CN (1) CN102498345B (ja)
TW (1) TWI482932B (ja)
WO (1) WO2011036940A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013077079A1 (ja) * 2011-11-25 2015-04-27 新東工業株式会社 蓄熱式排ガス浄化装置
JP5946550B1 (ja) * 2015-02-10 2016-07-06 中外炉工業株式会社 蓄熱式ガス処理設備及び蓄熱式ガス処理設備の改良方法
CN106955568A (zh) * 2017-03-23 2017-07-18 苏州华光宝利印刷版材有限公司 一种ps版烘干生产线有机废气处理系统及处理工艺
JP2019027735A (ja) * 2017-08-02 2019-02-21 啓治 古川 排気装置の排気ガスを有害物除去装置へ送る通気配管
CN111895425A (zh) * 2020-08-01 2020-11-06 山东齐鲁增塑剂股份有限公司 Rto异味集中回收处理系统
CN112303652A (zh) * 2020-06-28 2021-02-02 东莞智源彩印有限公司 凹印车间废气减风处理系统及处理方法
CN115111594A (zh) * 2022-07-08 2022-09-27 浙江大学 一种蓄热式热力氧化炉智能调控系统及方法
CN115388414A (zh) * 2022-08-26 2022-11-25 上海环境保护有限公司 一种蓄热式焚烧炉补新风系统及其控制方法
EP4249803A1 (en) * 2022-03-24 2023-09-27 John Zink KEU GmbH Regenerative thermal oxidizer, system comprising a regenerative thermal oxidizer and method of operating a regenerative thermal oxidizer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145356A1 (ja) * 2012-03-30 2013-10-03 新東工業株式会社 排ガス浄化装置
WO2014034743A1 (ja) * 2012-08-29 2014-03-06 新東工業株式会社 排ガス浄化設備及びその運転制御方法
CN104487153B (zh) * 2012-08-29 2017-02-22 新东工业株式会社 废气净化设备及其运转控制方法
MX361604B (es) * 2013-03-25 2018-12-11 Sintokogio Ltd Aparato de purificación de gas de desecho del tipo almacenamiento de calor.
CN106731280A (zh) * 2017-03-09 2017-05-31 上海兰宝环保科技有限公司 适合多工况的节能型废气氧化处理系统
KR101785486B1 (ko) * 2017-08-10 2017-10-17 (주)케이에스지기술환경 실린더 구동식 축열연소 산화처리장치
CN108916895B (zh) * 2018-07-20 2020-01-10 江苏鸿捷环保设备有限公司 一种rto余热回收储蓄设备
CN109731880A (zh) * 2019-01-18 2019-05-10 力同环保机械(上海)有限公司 用于铝涂装生产线排风至rto的自动控制装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061822A (ja) * 2000-08-17 2002-02-28 Chugai Ro Co Ltd 蓄熱式排ガス処理装置による排ガス処理方法
JP2003287215A (ja) * 2002-03-28 2003-10-10 Chugai Ro Co Ltd 蓄熱式排ガス処理設備の操業方法
JP2004138358A (ja) * 2002-10-21 2004-05-13 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置に対する排ガス給排方法およびその装置
JP2009179935A (ja) * 2008-01-29 2009-08-13 Nikko Co Ltd アスファルト混合物製造装置
JP2009299947A (ja) * 2008-06-11 2009-12-24 Chugai Ro Co Ltd 蓄熱式ガス処理炉

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798109A (ja) * 1993-09-30 1995-04-11 Mitsumine Kogyo Kk 焼却炉及び燃焼ガス処理方法
TW442634B (en) * 2000-08-05 2001-06-23 Su Jia Ching Inlet air pressure stabilizing method for regenerative incinerator
CN1201848C (zh) * 2002-06-17 2005-05-18 中环环境工程顾问企业股份有限公司 含挥发性有机物质排气处理系统
JP2004077017A (ja) * 2002-08-19 2004-03-11 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置
JP2004150681A (ja) * 2002-10-30 2004-05-27 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置の運転制御方法およびその装置
US7017592B2 (en) * 2002-12-10 2006-03-28 Pro-Environmental Inc. Regenerative fume-incinerator with on-line burn-out and wash-down system
JP3861078B2 (ja) * 2003-06-30 2006-12-20 太陽誘電株式会社 溶剤成分含有排出ガス処理方法
CN101057103B (zh) * 2004-11-04 2011-03-30 诺韦利斯公司 清洁蓄热式燃烧器介质床的设备和方法
DE102005019147B4 (de) * 2005-04-25 2009-01-15 Siemens Ag Verfahren zur Optimierung des Verbrennungsprozesses für einen Schmelzofen bei der Glasherstellung
TW200843836A (en) * 2007-05-08 2008-11-16 Jg Environmental Tech Co Ltd Purification apparatus and method of high performance concentrator in coordination with pressing type absorption technique to treat organic waste gases
TWM334921U (en) * 2007-10-12 2008-06-21 han-zhong Li Heat accumulation and combustion disposal system for volatilizable organic gas
CN201265977Y (zh) * 2008-08-26 2009-07-01 广西诚基永信太阳能科技工程有限公司 带补气管路的空气源热泵机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061822A (ja) * 2000-08-17 2002-02-28 Chugai Ro Co Ltd 蓄熱式排ガス処理装置による排ガス処理方法
JP2003287215A (ja) * 2002-03-28 2003-10-10 Chugai Ro Co Ltd 蓄熱式排ガス処理設備の操業方法
JP2004138358A (ja) * 2002-10-21 2004-05-13 Sintokogio Ltd 蓄熱燃焼式排ガス浄化装置に対する排ガス給排方法およびその装置
JP2009179935A (ja) * 2008-01-29 2009-08-13 Nikko Co Ltd アスファルト混合物製造装置
JP2009299947A (ja) * 2008-06-11 2009-12-24 Chugai Ro Co Ltd 蓄熱式ガス処理炉

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013077079A1 (ja) * 2011-11-25 2015-04-27 新東工業株式会社 蓄熱式排ガス浄化装置
JP5946550B1 (ja) * 2015-02-10 2016-07-06 中外炉工業株式会社 蓄熱式ガス処理設備及び蓄熱式ガス処理設備の改良方法
CN106955568A (zh) * 2017-03-23 2017-07-18 苏州华光宝利印刷版材有限公司 一种ps版烘干生产线有机废气处理系统及处理工艺
JP2019027735A (ja) * 2017-08-02 2019-02-21 啓治 古川 排気装置の排気ガスを有害物除去装置へ送る通気配管
CN112303652A (zh) * 2020-06-28 2021-02-02 东莞智源彩印有限公司 凹印车间废气减风处理系统及处理方法
CN111895425A (zh) * 2020-08-01 2020-11-06 山东齐鲁增塑剂股份有限公司 Rto异味集中回收处理系统
EP4249803A1 (en) * 2022-03-24 2023-09-27 John Zink KEU GmbH Regenerative thermal oxidizer, system comprising a regenerative thermal oxidizer and method of operating a regenerative thermal oxidizer
WO2023180820A1 (en) * 2022-03-24 2023-09-28 John Zink KEU GmbH Regenerative thermal oxidizer, system comprising a regenerative thermal oxidizer and method of operating a regenerative thermal oxidizer
CN115111594A (zh) * 2022-07-08 2022-09-27 浙江大学 一种蓄热式热力氧化炉智能调控系统及方法
CN115111594B (zh) * 2022-07-08 2024-05-14 浙江大学 一种蓄热式热力氧化炉智能调控系统及方法
CN115388414A (zh) * 2022-08-26 2022-11-25 上海环境保护有限公司 一种蓄热式焚烧炉补新风系统及其控制方法

Also Published As

Publication number Publication date
JP5344043B2 (ja) 2013-11-20
CN102498345B (zh) 2014-06-11
TWI482932B (zh) 2015-05-01
TW201111709A (en) 2011-04-01
CN102498345A (zh) 2012-06-13
JPWO2011036940A1 (ja) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5344043B2 (ja) 蓄熱燃焼式排ガス浄化システムおよびその運転方法
CN104285101B (zh) 蓄热式废气净化装置
WO2012046580A1 (ja) 排ガス浄化装置及びその温度制御方法
CN101024145A (zh) 用气涡轮处理挥发性有机化合物的方法及其处理系统
WO2018207332A1 (ja) 燃焼排ガス浄化システムの運用方法
CN212481331U (zh) 节能型双转轮冷侧旁通过温控制系统
JP2009299947A (ja) 蓄熱式ガス処理炉
JP4463315B2 (ja) 揮発性有機化合物処理用コージェネレーションシステム
JP6251329B1 (ja) ごみ焼却装置
JP2004138358A (ja) 蓄熱燃焼式排ガス浄化装置に対する排ガス給排方法およびその装置
CN212481332U (zh) 节能型单转轮冷侧旁通过温控制系统
US20090078656A1 (en) Apparatus and methods for ambient air abatement of electronic device manufacturing effluent
KR20180070405A (ko) 연료전지 시스템
JP4757596B2 (ja) 蓄熱式バーナ装置とその運転方法
JP2004150681A (ja) 蓄熱燃焼式排ガス浄化装置の運転制御方法およびその装置
CN216481016U (zh) 一种rto无焰燃烧控制系统
JPWO2016157925A1 (ja) ボイラ装置
JPH0960853A (ja) ごみ焼却システム及びごみ焼却時の白煙防止方法
JP4463314B2 (ja) 揮発性有機化合物処理用コージェネレーションシステム
JPH08320103A (ja) 石炭焚ボイラの一次空気温度制御方法及び該方法に用いる装置
JP5888284B2 (ja) 排ガス処理装置および排ガス処理方法
JPH0749231Y2 (ja) ごみ焼却炉の排気設備
JP5874662B2 (ja) 排ガス処理装置および排ガス処理方法
US8591823B2 (en) Systems and methods for treating air streams exhausted from firing kilns
JP2006250430A (ja) バーナシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041817.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532933

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001243

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 10818617

Country of ref document: EP

Kind code of ref document: A1