[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013145356A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2013145356A1
WO2013145356A1 PCT/JP2012/069176 JP2012069176W WO2013145356A1 WO 2013145356 A1 WO2013145356 A1 WO 2013145356A1 JP 2012069176 W JP2012069176 W JP 2012069176W WO 2013145356 A1 WO2013145356 A1 WO 2013145356A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
duct
exhaust gas
gas purification
unit
Prior art date
Application number
PCT/JP2012/069176
Other languages
English (en)
French (fr)
Inventor
和彦 北洞
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2012551008A priority Critical patent/JP5229600B1/ja
Priority to CN201280014173.8A priority patent/CN103429960B/zh
Publication of WO2013145356A1 publication Critical patent/WO2013145356A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means

Definitions

  • the present invention relates to an exhaust gas purification device, and more particularly, to a heat storage type exhaust gas purification device that performs a purification process by efficiently burning exhaust gas using a heat storage body.
  • An exhaust gas purifying device described in Patent Document 1 includes a plurality of heat storage chambers each having an air supply port to which an air supply valve is attached and an exhaust port to which an exhaust valve is attached, in which a heat storage body is disposed, and a heat storage chamber And a combustion chamber that is disposed above the heat storage chamber and communicates with a burner at the top.
  • this exhaust gas purification device by selectively opening and closing the air supply valve and the exhaust valve of each heat storage chamber, each heat storage chamber is switched to the air supply side heat storage chamber and the exhaust side heat storage chamber to perform exhaust gas purification processing. Yes.
  • the exhaust gas purifying apparatus described in Patent Document 1 is large in size and is not easy to install and assemble on site.
  • the burner is arranged at the upper part of the combustion chamber provided above the heat storage chamber, the installation position of the burner becomes a high place, and an electric meter provided for controlling ignition and extinguishing of the burner
  • the wiring work for the equipment was complicated.
  • An object of the present invention is to provide an exhaust gas purifying apparatus that is miniaturized to such a degree that it can be transported, that is greatly reduced in time for assembly and installation work on site, and that can minimize the construction period. It is in.
  • An exhaust gas purification apparatus for purifying exhaust gas containing a combustible component, A combustion chamber provided with a burner; First and second heat storage chambers having one side end connected to the side surface of the combustion chamber and spaced apart from each other; A heat storage body disposed inside each of the heat storage chambers; A first connection duct connected to the other end of the first heat storage chamber; A second connection duct connected to the other end of the second heat storage chamber; A supply duct for supplying untreated gas; An exhaust duct for discharging the treated gas; The first connection duct, the second connection duct, the supply duct, and the discharge duct are connected, the first connection duct communicates with the supply duct, and the second connection duct communicates with the exhaust duct.
  • a switching valve capable of selectively switching between a first state and a second state in which the second connection duct communicates with the supply duct and the first connection duct communicates with the exhaust duct;
  • a cooling fan for flowing gas into the space between the first and second heat storage chambers,
  • the heat storage chamber can be efficiently cooled, the heat insulating material can be thinned, and downsizing of the apparatus can be achieved.
  • the first and second heat storage chambers are arranged so as to be adjacent in the horizontal direction, On the upper surface of the heat storage combustion section composed of the combustion chamber and the first and second heat storage chambers, an upper surface cover disposed away from the upper surface is disposed, On both side surfaces facing the direction perpendicular to the line connecting the one side end and the other end side of the heat storage chamber of the heat storage combustion section, side covers disposed away from the both side surfaces are disposed,
  • the cooling fan is configured to flow gas between the upper surface of the heat storage combustion unit and the upper surface cover and between each side surface of the heat storage combustion unit and the side cover.
  • the heat storage chamber can be cooled more efficiently, so that the heat insulating material can be made thin and the apparatus can be downsized.
  • a first unit having a control panel at a position opposite to a side surface to which the first and second heat storage chambers of the combustion chamber are connected;
  • a second unit having an untreated gas fan for delivering the untreated gas is provided at a position opposite to the side surface connected to the combustion chamber of the first and second heat storage chambers.
  • the first unit is arranged to form a working space between the control panel and the combustion chamber, Below the control panel is provided a fuel supply unit for supplying fuel to the burner of the combustion chamber,
  • the cooling fan is configured to allow gas to flow into the working space.
  • the heat storage elements disposed in the respective heat storage chambers are disposed so as to be inclined so that the combustion chamber side is positioned upward in the respective heat storage chambers.
  • the inclination angle of the heat storage body is 1 to 30 degrees with respect to the horizontal plane.
  • the heat storage body is supported in an inclined state by a heat storage body support portion having an inclined surface at the top,
  • the heat storage body support portion is formed of an inorganic material having fire resistance.
  • One end is connected to the combustion chamber, the other end is connected to the supply duct, and has an on-off valve, and includes a bypass duct that directly connects the combustion chamber and the supply duct, The bypass duct is disposed below the heat storage combustion section.
  • the heat storage combustion section has a plate material of 3.0 mm to 10.0 mm and a reinforcing member that reinforces the plate material,
  • the reinforcing member is composed of one or more types of members selected from square steel pipe, H-shaped steel, I-shaped steel, groove-shaped steel, angle-shaped steel, light groove-shaped steel, lip groove-shaped steel and hat-shaped steel.
  • the first unit is supported by a first unit support member provided on an upper surface portion of the first unit and joined to the reinforcing member;
  • the first unit support member is of one or more types selected from square steel pipe, H-shaped steel, I-shaped steel, groove-shaped steel, angle-shaped steel, light-grooved steel, lip-grooved steel and hat-shaped steel.
  • the second unit is supported by a second unit support member provided on an upper surface portion of the second unit and joined to the reinforcing member,
  • the second unit support member is of one or more types selected from square steel pipes, H-shaped steels, I-shaped steels, channel-shaped steels, angle-shaped steels, light-grooved steels, lip-grooved steels, and hat-shaped steels. It is comprised by the member.
  • the heat storage body includes a plurality of ceramic members disposed adjacent to each other,
  • the ceramic member has a rectangular parallelepiped shape, and includes a plurality of parallel through holes extending from one end to the other end of the ceramic member,
  • the ceramic member is oriented such that the through hole extends from the combustion chamber toward the connection duct;
  • a cross section perpendicular to the through hole forming direction is a rectangle having a side length of 100 mm to 300 mm
  • a cross section of the through hole forming direction is a rectangle having a side length of 100 mm to 500 mm. It is said that.
  • the heat storage body is configured by laminating a plurality of layers of heat storage layers formed by arranging and arranging ceramic members two-dimensionally in a vertical direction,
  • the said thermal storage combustion part can use the thermal storage body selected from the multiple types of thermal storage body which consists of a thermal storage layer of a different step number.
  • a gas detector is provided in the working space.
  • a heat insulating material having a thickness of 50 to 225 mm is provided on the inner surface of the heat storage chamber.
  • the exhaust gas purification apparatus which can be miniaturized to the extent that it can be transported, and is greatly shortened in the time required for assembly and installation work on site can be minimized. .
  • FIG. 1 is a perspective view which shows the external appearance of the thermal storage type exhaust gas purification apparatus of preferable embodiment of this invention. It is a perspective view of the state which removed each cover member which covers the upper surface and side surface of the thermal storage type exhaust gas purification apparatus of FIG. It is a figure for demonstrating the structure of the thermal storage type exhaust gas purification apparatus of FIG. 1, (a) is the schematic from the front for showing an internal structure, (b) is a schematic perspective view for showing an internal structure, FIG. 3C is a cross-sectional view of the device along the line A1-A1 shown in FIG. (A) is a plane sectional view for showing the combustion chamber and the heat storage chamber of the heat storage type exhaust gas purification apparatus of FIG.
  • (b) is a case of one heat storage chamber and the case of the other heat storage chamber. It is the expanded plane sectional view which shows the space provided between. It is a figure for demonstrating the flow of the untreated gas and the air for cooling in the thermal storage type exhaust gas purification apparatus of FIG. It is a figure similar to FIG. 5 explaining the flow of untreated gas and cooling air. It is a figure for demonstrating the switching valve of the thermal storage type exhaust gas purification apparatus of FIG. 1, (a) is a fragmentary sectional view along the A2-A2 line of FIG. 4, (b) is a 1st communication state.
  • FIG. 1 It is sectional drawing which shows the flow of untreated gas of this, and processed gas, (c) is sectional drawing which shows the flow of untreated gas and processed gas in a 2nd communication state. It is a figure for demonstrating the flow of the cooling air in the thermal storage type exhaust gas purification apparatus of FIG. 1, (a) is a front view of a thermal storage type exhaust gas purification apparatus, (b) is A3 shown to Fig.8 (a).
  • FIGS. 7A to 7E are cross-sectional views taken along line A3
  • FIGS. 9C to 9E are diagrams illustrating an open / close state of a ventilation opening that adjusts the amount of air flowing in the heat storage type exhaust gas purification apparatus.
  • FIG. 10C is a sectional view taken along line A4-A4 of FIG. It is a figure for demonstrating the arrangement
  • positioning state of a thermal storage body (a) is a plane sectional view of the thermal storage body vicinity, (b) is a longitudinal cross-sectional view of the thermal storage body vicinity, (c) is FIG.
  • FIG. FIG. It is a front view explaining the bypass duct of the heat storage type exhaust gas purification apparatus of FIG.
  • the heat storage type exhaust gas purification device 1 is used for processing exhaust gas such as combustion of volatile organic compounds.
  • the regenerative exhaust gas purification apparatus 1 includes a combustion chamber 10 provided with a burner 8 therein, and one end (in FIG. 4) on the side surface of the combustion chamber 10. And a pair of heat storage chambers 11 and 12 which are connected to each other in the horizontal direction.
  • the respective heat storage chambers 11 and 12 are arranged in parallel in a state in which a space is formed therebetween while being separated from each other.
  • the combustion chamber 10 and the pair of heat storage chambers 11 and 12 constitute the heat storage combustion unit 9.
  • black arrows indicate gas flows when one heat storage chamber 12 is set as a supply-side heat storage chamber and the other heat storage chamber 11 is set as a discharge-side heat storage chamber.
  • the air flow is shown.
  • the heat storage type exhaust gas purification apparatus 1 of the present embodiment can switch each heat storage chamber between a supply side heat storage chamber and a supply side heat storage chamber, and the state shown in FIG. Conversely, when one heat storage chamber 12 is set on the discharge side and the other heat storage chamber 11 is set on the discharge side, the gas flows as shown in FIG.
  • heat storage bodies 13 and 14 are provided in each of the heat storage chambers 11 and 12. As shown in FIG. 10, the heat storage bodies 13 and 14 are provided between the one ends 11 b and 12 b of the heat storage chambers 11 and 12 and the other ends 11 c and 12 c.
  • the heat storage type exhaust gas purification apparatus 1 includes a first connection duct 15 connected to the other end 11c of one heat storage chamber 11, a second connection duct 16 connected to the other end 12c of the other heat storage chamber 12, and an untreated A supply duct 17 that supplies gas to the heat storage chamber and a discharge duct 18 that discharges the processed gas from the heat storage chamber are provided.
  • the heat storage type exhaust gas purification apparatus 1 switches the heat storage chambers 11 and 12 between the supply side heat storage chamber and the supply side heat storage chamber 20. It has.
  • the switching valve 20 is a four-way valve, and includes a rotatable valve body 20a, a seal member 20b, and a driving means 20c.
  • the switching valve 20 switches the first and second communication states by rotationally driving the valve body 20a around the rotating shaft 20d.
  • the switching valve 20 includes four connection ports extending in four directions at an angular interval of approximately 90 degrees.
  • a first connection duct 15 connected to the other end 11 c of the heat storage chamber 11, a supply duct 17 for supplying untreated gas to the heat storage chamber, and a heat storage chamber 12
  • a second connection duct 16 connected to the other end 12c and a discharge duct 18 for discharging the treated gas from the heat storage chamber are connected.
  • the supply duct 17 is provided with a gas blower 19 for blowing exhaust gas that is an untreated gas.
  • the switching valve 20 selectively communicates a duct connected to one connection port with one of the ducts connected to two connection ports adjacent to the connection port by rotating the valve body 20a. It is configured to be able to.
  • the switching valve 20 can be switched between the first communication state shown in FIG. 7B and the second communication state shown in FIG. 7C.
  • the untreated gas is supplied to the heat storage combustion section 9 through the connection duct (15 or 16) on the side connected to the supply duct 17, it is connected to the connection duct (15 or 16) on the side connected to the supply duct 17.
  • the stored heat storage chamber becomes the supply-side heat storage chamber.
  • the treated gas Since the treated gas is discharged from the heat storage combustion section 9 through the connection duct (15 or 16) on the side connected to the discharge duct 18, it is connected to the connection duct (15 or 16) on the side connected to the discharge duct 18.
  • the stored heat storage chamber becomes the discharge side heat storage chamber.
  • the first connection duct 15 is connected to the discharge duct 18 and the second connection duct 16 is connected to the supply duct 17, so that the state shown in FIG.
  • the heat storage chamber 11 becomes the discharge side heat storage chamber, and the heat storage chamber 12 becomes the supply side heat storage chamber.
  • the first connection duct 15 is connected to the supply duct 17 and the second connection duct 16 is connected to the discharge duct 18, so that the operation shown in FIG.
  • the heat storage chamber 11 is a supply-side heat storage chamber
  • the heat storage chamber 12 is a discharge-side heat storage chamber.
  • the switching valve 20 has the first connection duct 15 connected to one of the supply duct 17 and the discharge duct 18, and the second connection duct 16 connected to the other of the supply duct 17 and the discharge duct 18,
  • the two connection ducts 16 are connected to one of the supply duct 17 and the discharge duct 18 and the second connection duct 15 is connected to the other of the supply duct 17 and the discharge duct 18 so as to be switchable.
  • the heat storage chambers 11 and 12 and the combustion chamber 10 are arranged side by side, so that compared to a conventional device in which the combustion chamber is disposed on the heat storage chamber.
  • the heat storage type exhaust gas purification device 1 is configured to switch the heat storage chambers 11 and 12 to the supply side heat storage chamber and the discharge side heat storage chamber with a single switching valve 20, so that downsizing of the device is realized.
  • the heat storage type exhaust gas purification apparatus 1 includes a cooling fan 21 as shown in FIGS. 2, 4 to 6 and 8.
  • the cooling fan 21 has cooling air in a space 22 formed between the surface (outer surface) of the housing 11 a of one heat storage chamber 11 and the surface (outer surface) of the housing 12 a of the other heat storage chamber 12. Shed.
  • the heat storage chambers 11 and 12 are arranged in parallel with one end connected to the side surface of the combustion chamber and spaced apart from each other.
  • a space 22 is formed between the twelve cases 11a and 12a.
  • the some reinforcement member 23 comprised, for example with the square steel pipe etc. is arrange
  • the cooling fan 21 cools a portion surrounded by the casings 11a and 12a and the reinforcing member 23 in the space 22 through the space 37 described later by discharging the gas in the heat storage type exhaust gas purification device 1 to the outside of the device. Allow air to pass through.
  • the cooling fan 21 is disposed on both sides in the X direction of the discharge port 84 connected to the discharge duct 18, as shown in FIGS.
  • the direction X is a direction in which the heat storage chambers 11 and 12 face each other (FIG. 9).
  • a leg portion 38 is provided below the heat storage combustion portion 9 so as to form a gap with the installation surface (the ground or the like).
  • the cooling fan 21 takes outside air into the regenerative exhaust gas purification device 1 from this gap, passes the regenerative exhaust gas purification device 1, and discharges it outside through the vent 24 b of the hood member 24.
  • a hood member 24 for preventing rain from entering the inside of the apparatus is provided on the upper side of the cooling fan 21.
  • the hood member 24 includes a roof-like hood portion 24a that prevents rain from entering the inside of the device, and air inside the device sucked by the cooling fan 21 is discharged from the vent holes 24b on both sides of the hood portion 24a to the outside of the device. Discharge.
  • the thickness of the heat insulating material 25 provided in the mutually opposing portions of the housings 11a and 12a. can be made thinner. Thereby, further miniaturization of the heat storage type exhaust gas purification device is realized.
  • the heat storage combustion unit 9 Since this cooling fan 21 causes cooling air to flow around the heat storage combustion unit 9 in addition to the space 22 between the casings 11a and 12a, the heat storage combustion unit 9 is cooled more efficiently, and the heat storage combustion unit It is also possible to reduce the thickness of the heat insulating material 26 provided on the inner surface of the housing 9.
  • the heat insulating material has fire resistance such as rock wool, glass wool, ceramic wool, ceramic board, calcium silicate board, calcium silicate wool, castable cement, and the like. Inorganic materials are used.
  • the upper surface 9 a of the heat storage combustion unit 9 constituted by the combustion chamber 10 and the heat storage chambers 11, 12, and one end side 11 b of the heat storage chambers 11, 12 among the side surfaces of the heat storage combustion unit 9, 12b and the pair of side surfaces 9b and 9c facing in a direction (direction X) orthogonal to the straight line connecting the other end sides 11c and 12c are an upper surface cover 31 and a pair of side surface covers 32 and 33 that cover the heat storage combustion unit 9. Is provided. Note that side surfaces 9b and 9c and side surfaces 9d and 9e described later extend in the vertical direction.
  • the side cover 32 is located on the front side (front side) of the apparatus when the apparatus is installed, and is provided with a door 32a for entering and exiting the first unit 41, a door 32b for entering and exiting the second unit 42, and the like. Yes.
  • the upper surface cover 31 is inclined downward from the front surface (side surface cover 32) side toward the rear surface (side surface cover 33) side, Guide rainwater to the rear side of the device.
  • Each of the first unit 41 and the second unit 42 is provided with side covers 28 and 29 that cover the side of the apparatus 1 together with the pair of side covers 32 and 33.
  • the side covers 28 and 29 are arranged facing the Y direction (FIG. 9).
  • Reinforcing members 34 are provided on the outer surfaces of the housings 11 a and 12 a of the heat storage chambers 11 and 12, and side covers 32 and 33 are attached to the outer ends of the reinforcing members 34. As a result, spaces 35 and 36 are formed between the casings 11 a and 12 a and the side covers 32 and 33.
  • the space 35 functions as a space for allowing the cooling air to pass through the portion surrounded by the casing 11a, the side cover 32, and the reinforcing member 34
  • the space 36 includes the casing 12a, the side cover 33, and A portion surrounded by the reinforcing member 34 functions as a space for allowing cooling air to pass therethrough.
  • the cooling air can pass through the space 34 a in the reinforcing member 34.
  • an upper surface cover 31 is attached to an attachment portion (not shown) attached to the upper surface 9 a of the heat storage combustion unit 9 so as to be separated from the upper surface 9 a of the heat storage combustion unit 9.
  • a space 37 is formed between the upper surface 9a of the heat storage combustion unit 9 and the upper surface cover 31, and the space 37 functions as a space for allowing cooling air to pass therethrough.
  • the cooling fan 21 sucks air so that the air passes through a space 37 formed between the upper surface of the heat storage combustion unit 9 and the upper surface cover 31.
  • the cooling fan 21 sucks air so that the air passes through spaces 35 and 36 formed between the pair of side surfaces of the heat storage combustion unit 9 and the side surface covers 32 and 33 facing the side surfaces.
  • the cooling function of the cooling fan 21 can be sufficiently exhibited.
  • the lower ends of the side covers 32 and 33 are also arranged at positions where a gap is formed between the side covers 32 and 33. Due to this gap, the outside air is smoothly introduced into the spaces 35 and 36 formed between the casings 11a and 12a and the side covers 32 and 33 by the suction of the cooling fan 21, thereby enabling efficient cooling. As a result, it is possible to reduce the thickness of the heat insulating material 26, and further miniaturization of the heat storage type exhaust gas purification device is realized.
  • the heat storage combustion unit 9 includes a pair of side surfaces 9d and 9e facing in a direction (Y direction) orthogonal to a direction (X direction) in which the side surfaces 9b and 9c are opposed. ing.
  • a first unit 41 having a control panel 43 is attached to the side surface 9d of the pair of side surfaces 9d and 9e on the combustion chamber 10 side.
  • the 2nd unit 42 which has the untreated gas fan which blows untreated gas is attached to the side surface 9e by the side of the thermal storage chambers 11 and 12 of a pair of side surface 9d, 9e.
  • the heat storage combustion section 9, the first and second connection ducts 15, 16 and the like are also referred to as a main unit (heat storage combustion unit) 40.
  • the first unit 41 is provided with a working space 44 between the control panel 43 and the combustion chamber 10.
  • a fuel supply unit 45 that supplies fuel to the burner 8 of the combustion chamber 10 is provided below the control panel 43.
  • the cooling fan 21 also ventilates the work space 44 by sucking the air in the work space 44.
  • a gas detector may be provided in the work space 44.
  • a ventilation port 46 with a flow rate adjusting function such as a shutter type is provided between the working space 44 of the first unit 41 and the space 37 of the main unit 40.
  • a ventilation port 46 with a flow rate adjusting function such as a shutter type is provided between the space 48 of the second unit 42 and the space 37 of the main unit 40.
  • the ventilation port 46 includes an opening plate 46a provided with an opening 46b, an adjustment plate 46c that adjusts the opening amount of the opening 46b by sliding in the lateral direction, and an operation unit 46d for sliding the adjustment plate 46c.
  • the adjustment plate 46c When the ventilation of the first unit 41 or the second unit 42 is unnecessary, the adjustment plate 46c is configured to be slidable to the fully closed state shown in FIG. When a large amount of ventilation is required, it can be slid to the fully open state shown in FIG. 8 (e), and when partial ventilation is required, it can be slid to the intermediate state shown in FIG. 8 (d). It is configured to be able to. As described above, the shutter-type air vent 46 can adjust the ventilation amount from the first and second units 41 and 42.
  • the opening control of the ventilation port 46 may be performed manually or automatically using a control signal or the like. Further, when a gas detector is provided in the work space 44, the adjustment plate 46c may be automatically slid to be fully opened when a gas leak or the like is detected.
  • the heat storage bodies 13 and 14 are arrange
  • the inclination angle is preferably 1 to 30 degrees with respect to the horizontal plane, and in this embodiment, it is set to 5 degrees, which is a more preferable angle.
  • the heat storage bodies 13 and 14 are supported by a heat storage body support portion 51 having an inclined surface 51a at the top.
  • the thermal storage support 51 is formed of an inorganic material having fire resistance such as castable cement.
  • a wedge-shaped grating member 52 is disposed below the heat storage body support member 51, and the heat storage body support member 51 and the heat storage bodies 13, 14 supported on the heat storage body support member 51 are disposed in an inclined state.
  • a heat insulating board material 53 is disposed below the heat storage body support 51.
  • the 1st and 2nd connection ducts 15 and 16 have the connection parts 15a and 16a in which the cross section was expanded so that the part connected with the thermal storage chambers 11 and 12 may become a hopper shape.
  • the grating member 52 is supported by a reinforcing member 54 such as a pipe laid over the hopper-like connecting portions 15a and 16a for reinforcement.
  • the heat storage bodies 13 and 14 By arranging the heat storage bodies 13 and 14 in an inclined state as described above, the heat storage bodies 13 and 14 move due to the weight of the heat storage bodies even when the untreated gas is passed through the heat storage bodies. Can be prevented.
  • this angle when this angle is 1 degree or less, there exists a possibility that the thermal storage bodies 13 and 14 may move with the ventilation pressure of untreated gas. In addition, when this angle is 30 degrees or more, the size of the entire apparatus becomes large due to factors such as an increase in the heat storage body support portion 51 that supports the inclined heat storage bodies 13 and 14, thereby reducing the size of the apparatus. There is a problem that hinders.
  • the heat storage bodies 13 and 14 are configured by stacking a plurality of heat storage layers in a vertical direction in a plurality of layers, in which a plurality of rectangular parallelepiped ceramic members are two-dimensionally arranged.
  • the ceramic member includes a plurality of parallel through holes extending from one end to the other end.
  • the ceramic member has a cross-section perpendicular to the through-hole formation direction having a rectangular shape with a side length of 100 mm to 300 mm, and a through-hole formation direction with a cross-section having a side length of 100 mm to 500 mm. Yes.
  • the ceramic member is disposed such that the through hole is parallel to the inclined surface 51a of the heat storage body support 51 and faces from one end side to the other end side of the heat storage chamber 10 (that is, extends from the combustion chamber toward the connection duct).
  • the heat storage combustion part 9 can use the heat storage body selected from the multiple types of heat storage body which consists of a heat storage layer of a different step number.
  • the heat storage type exhaust gas purification apparatus 1 includes a pre-duct 88 that is connected to the gas blower 19 and has a pre-filter 87 built therein.
  • the untreated gas X4 shown in FIGS. 5 and 6 passes through the first or second connection ducts 15 and 16 via the prefilter 87, the gas blower 19, the supply duct 17, and the switching valve 20, and the regenerative combustion section 9 (combustion). It is led to the chamber 10 and the heat storage chamber 11).
  • the pre-duct 88 is provided with a shut-off valve 86.
  • An external air intake valve 85 is connected to the preduct 88.
  • the outside air taken in from the outside air intake valve 85 is sent to the heat storage combustion unit 9 by the gas blower 19.
  • An untreated gas supply port 89 is provided at the front end of the pre-duct 88, and an untreated gas pipe from a facility or the like to be treated is connected thereto. Further, a discharge port 84 for the processed gas is provided at the tip of the discharge duct 18.
  • the heat storage type exhaust gas purification apparatus 1 includes a bypass duct 56 as shown in FIG.
  • the bypass duct 56 has an adjustment opening / closing valve 57 and directly connects the combustion chamber 10 and the supply duct 17.
  • the bypass duct 56 functions as a so-called cold bypass duct, and guides the untreated gas directly from the supply duct 17 to the combustion chamber 10 without passing through the heat storage chambers 11 and 12.
  • the untreated gas flowing in the bypass duct 56 is also blown by the gas blower 19, and the air volume is adjusted by the adjustment opening / closing valve 57.
  • the adjustment on-off valve 57 is adjusted based on the temperature detected by the temperature detector or the like of the heat storage combustion unit 9. Since the bypass duct 56 is provided on the lower side of the bottom surface of the heat storage combustion unit 9, it contributes to downsizing of the entire apparatus.
  • the bypass duct 56 is connected to an attachment member 58 for attaching a stirring plate 59 provided in the combustion chamber 10.
  • the attachment member 58 is made of a pipe-like member, and a plurality of conduction holes 58 a are provided inside the combustion chamber 10. The untreated gas led from the bypass duct 56 is led to the combustion chamber 10 through the conduction hole 58a.
  • the heat storage combustion section 9 has a plate material of 3.0 mm to 10.0 mm and a reinforcing member 34 provided to reinforce the plate material.
  • the casing of the combustion chamber 10 and the casings 11a and 12a of the heat storage chambers 11 and 12 are formed of, for example, an iron plate of 3.0 mm to 10.0 mm (material is not limited to this), The reinforcing member 34 is attached.
  • the reinforcing member 34 is, for example, a square steel pipe.
  • the reinforcing members 23 and 34 are not limited to the above, but can be selected from square steel pipes, H-shaped steels, I-shaped steels, channel-shaped steels, angle steels, light-grooved steels, lip-grooved steels, and hat-shaped steels.
  • One or a plurality of types of members are combined and formed. By selecting appropriate plate materials and reinforcing members, weight reduction and miniaturization are realized.
  • the first unit 41 is supported by a first unit support member 61 joined to the reinforcing member 34 of the main unit 40, as shown in FIG.
  • the first unit support member 61 is a member that is provided on the upper surface portion of the first unit 41, has the same strength as the reinforcing member 34, and is joined to the upper side of the reinforcing member 34.
  • the second unit 42 is supported by a second unit support member 62 that is joined to the reinforcing member 34 of the main unit 40.
  • the second unit support member 62 is a member that is provided on the upper surface portion of the second unit 42, has the same strength as the reinforcing member 34, and is joined to the upper side of the reinforcing member 34.
  • the first and second units 41 and 42 are configured so that they can be assembled to the first and second unit support members 61 and 62, respectively, by being horizontally moved by lift means or the like.
  • the first and second unit support members 61, 62 are one or more selected from square steel pipes, H-shaped steels, I-shaped steels, groove-shaped steels, angle-shaped steels, light groove-shaped steels, lip groove-shaped steels, and hat-shaped steel A plurality of types of members are formed in combination. By selecting an appropriate reinforcing member, weight reduction and size reduction are realized.
  • the first unit support member 61 that supports the first unit 41 and the second unit support member 62 that supports the second unit 42 are joined to the reinforcing member 34 of the heat storage combustion unit 9, thereby storing the regenerative exhaust gas.
  • the rigidity of the entire purification device 1 can be efficiently increased.
  • the regenerative exhaust gas purification device 1 of the present embodiment is not divided and transported as in the conventional regenerative exhaust gas purification device, but is reduced to a size that can be transported and transported in a finished product state. It is.
  • the strength member 34 is provided in the heat storage combustion section 9 having the heaviest weight among the main unit 40, the first unit 41, and the second unit 42, and the first and second unit support members 61, 62 are provided on the strength member 34. It is joined.
  • the first and second units 41 and 42 are supported by the first and second unit support members 61 and 62, respectively.
  • the heat storage combustion section 9 can use a heat storage body selected from a plurality of types of heat storage bodies composed of different numbers of heat storage layers.
  • the number K3 of heat storage layers stacked in the direction D3 (FIG. 14), for example, as shown in FIG.
  • a heat storage combustion section 9 ′ having a stage number K3 of 9 as shown in FIG. 14 (a) may be used.
  • K2 (the number K2 in the D2 direction provided in one heat storage chamber) is four (one dimension: 150 mm), and K1 is five. There is (one dimension: 300mm).
  • a plurality of heat storage combustion sections (for example, heat storage combustion sections 9 and 9 ') having different heat storage layer stages K3 are prepared as replacement units, and an appropriate heat storage combustion section is selected and used according to the use situation.
  • a heat storage type exhaust gas purifying apparatus having an appropriate processing capacity adapted to the processing air volume of the untreated gas.
  • the thickness of the material can be reduced from about 250 mm required in the conventional heat storage type exhaust gas purification device to 50 to 225 mm, and the heat storage type exhaust gas purification device can be reduced in size.
  • the heat storage combustion section 9 is provided with a housing, a heat insulating material, and a reinforcing member. Inside the 4.5 mm steel plate 71 as a housing, 50 mm rock wool 72, 50 mm ceramic fiber wool 73, 25 mm ceramic fiber board 74, 40 mm calcium silicate board 75 as heat insulating materials, 50 to 180 mm of castable cement 76 is provided.
  • Ceramic fiber wool 73 is provided with two 50 mm layers. Since the castable cement 76 constitutes the heat storage body support portion 51 as described above, the thin portion has a thickness of 50 mm and the thick portion has a thickness of 180 mm. This apparatus 1 can also suppress the thickness of the heat insulating material to 125 mm to 175 mm.
  • a reinforcing member 34 made of a square steel pipe 78 having a side of 100 mm and a square steel pipe 79 having a side of 75 mm is provided outside the steel plate 71.
  • the heat storage type exhaust gas purification apparatus 1 includes a touch panel 81 and a PLC 82 as shown in FIG.
  • the combustion blower 83, the gas blower 19, the outside air intake valve 85, the shutoff valve 86, the cold bypass adjusting on-off valve 57, and the switching valve which are connected to and controlled by the touch panel 81 and the PLC 82, are controlled.
  • thermocouples for example, thermocouples
  • ignition transformer 92 for example, a fuel cell 92
  • pressure gauge 93 for compressed air
  • combustion chamber Temperature detector 94 for example, a thermocouple
  • combustion air pressure gauge 95 for example, a control valve 96
  • flame detector 97 for example, a flame detector 97
  • X1 represents a compressed air supply source (0.3 to 0.7 MPa)
  • X2 represents a fuel gas supply source (LPG, LNG, butane, etc.) (5 ⁇ 30 kPa)
  • X3 represents an electricity (200 to 440 V) supply source
  • X4 represents an untreated gas supply source.
  • the switching valve 20 is controlled so that the heat storage chamber 12 becomes the supply side heat storage chamber and the heat storage chamber 11 becomes the discharge side heat storage chamber, as shown in FIG.
  • the exhaust gas (untreated gas) to be treated is sent to the heat storage chamber 12 through the supply duct 17 and the second connection duct 16 by the gas blower 19.
  • the untreated gas is heated by the heat storage body 14 when passing through the heat storage body 14 of the heat storage chamber 12, and the heat storage body 14 is cooled.
  • the exhaust gas heated by the heat accumulator 14 and reaching the combustion chamber 10 is combusted and decomposed in the combustion chamber 10.
  • the treated gas that is the gas after combustion passes through the heat storage body 13 of the heat storage chamber 11. At this time, the treated gas is cooled by the heat storage body 13 and the heat storage body 13 is heated. The cooled treated gas passes through the first connection duct 15 and reaches the discharge duct 18.
  • the switching valve 20 is switched from the state shown in FIG. 7B to the state shown in FIG. By this operation, as shown in FIG. 6, the gas flow direction is reversed, so that the heat storage chamber 12 becomes the discharge side heat storage chamber and the heat storage chamber 11 becomes the supply side heat storage chamber.
  • the exhaust gas to be treated is heated by the high-temperature heat accumulator 13 before being introduced into the combustion chamber 10.
  • the heated exhaust gas is processed in the combustion chamber 10, cooled by the heat storage body 14, and exhausted.
  • the switching valve 20 is switched from the state shown in FIG. 7C to FIG.
  • the heat storage chamber 12 is switched to the supply side heat storage chamber, and the heat storage chamber 11 is switched to the discharge side heat storage chamber.
  • the heat storage type exhaust gas purifying apparatus 1 of the present embodiment is downsized to the extent that it can be transported.
  • the maximum width can be set to 2500 to 3000 mm
  • the maximum height can be set to 2500 to 3180 mm
  • the maximum length can be set to 4000 to 9200 mm so as to comply with transportation restrictions by law.
  • This size is an example in the case of considering a transport vehicle in Japan, and is not limited to this. In other words, this dimension may be changed in countries with different transport restrictions. In this way, the size can be reduced to such a level that it can be transported, and the assembly and installation work at the site can be greatly reduced, thereby reducing the installation cost.
  • wiring in the apparatus can be performed before transportation, on-site wiring work can be minimized.
  • the construction period can be minimized, and the stop of the production line at the delivery destination can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

 本発明は、運搬可能な程度に小型化され、且つ、現場での組立据付作業に様子する時間が大幅に短縮され、工事期間を最小限に抑えることができる排ガス浄化装置を提供することを目的とする。 本発明の排ガス浄化装置1は、バーナが設けられた燃焼室10と、一側端が前記燃焼室の側面に接続され互いに離間した状態で並列配置された第1および第2の蓄熱室11、12と、各蓄熱室の内部に配置された蓄熱体と、第1の蓄熱室11の他側端に接続された第1接続ダクト15と、第2の蓄熱室12の他側端に接続された第2接続ダクト16と、未処理ガスを供給する供給ダクト17と、処理済ガスを排出する排出ダクト18と、第1接続ダクトと第2接続ダクトと供給ダクトと排出ダクトとに接続され、第1接続ダクトを供給ダクトに連通させ且つ第2接続ダクトを排気ダクトに連通させた第1状態と、第2接続ダクトを供給ダクトに連通させ且つ第1接続ダクトを排気ダクトに連通させた第2状態とを選択的に切替可能な切換弁20と、第1および第2の蓄熱室の間の空間に気体を流す冷却用ファン21と、を備えていることを特徴とする。

Description

排ガス浄化装置
 本発明は、排ガス浄化装置に関し、詳細には、蓄熱体を用いて効率的に排ガスを燃焼させて浄化処理を行う蓄熱式排ガス浄化装置に関する。
 従来、ラミネート包装、接着テープ等に関する接着業界の施設、グラビア印刷、オフセット印刷に関する印刷業界の施設、塗装施設、化学工場、電子・セラミックス業界の施設、工場用洗浄施設等から発生する揮発性有機化合物(VOC:Volatile Organic Compounds)等の可燃性有害成分を含有する排ガスの浄化処理を行うために、例えば特許文献1に記載のような排ガス浄化装置が用いられている。
 特許文献1に記載されている排ガス浄化装置は、給気弁が取付けられた給気口および排気弁が取付けられた排気口を備え内部に蓄熱体が配置された複数の蓄熱室と、蓄熱室と連通状態で蓄熱室の上方に配置され上部にバーナを備えた燃焼室を備えている。
 この排ガス浄化装置では、各蓄熱室の給気弁、排気弁を選択的に開閉させることにより、各蓄熱室を給気側蓄熱室と排気側蓄熱室とに切り替えて排ガスの浄化処理を行っている。
特開2004-77017号公報
 特許文献1に記載された排ガス浄化装置は、大型であり、現場での据付、組立が容易ではなかった。
 また、バーナが、蓄熱室の上方に設けられた燃焼室の上部に配置されているため、バーナの設置位置が高所となり、バーナの着火や消火の制御を行うために設けられている電気計装の配線工事が煩雑であった。
 一方、排ガス浄化装置の導入する工場や施設では、工事期間中に設備の稼働停止を最小限に抑えたいという要望があるため、運搬可能な程度に小型化され、現場での組立据付作業に要する時間が大幅に短縮された排ガス浄化装置が望まれていた。
 本発明の目的は、運搬可能な程度に小型化され、且つ、現場での組立据付作業に様子する時間が大幅に短縮され、工事期間を最小限に抑えることができる排ガス浄化装置を提供することにある。
 本発明によれば、
 可燃性成分を含有する排ガスの浄化処理を行う排ガス浄化装置であって、
 バーナが設けられた燃焼室と、
 一側端が前記燃焼室の側面に接続され互いに離間した状態で並列配置された第1および第2の蓄熱室と、
 前記各蓄熱室の内部に配置された蓄熱体と、
 前記第1の蓄熱室の他側端に接続された第1接続ダクトと、
 前記第2の蓄熱室の他側端に接続された第2接続ダクトと、
 未処理ガスを供給する供給ダクトと、
 処理済ガスを排出する排出ダクトと、
 前記第1接続ダクトと前記第2接続ダクトと前記供給ダクトと前記排出ダクトとに接続され、前記第1接続ダクトを前記供給ダクトに連通させ且つ前記第2接続ダクトを排気ダクトに連通させた第1状態と、前記第2接続ダクトを前記供給ダクトに連通させ且つ前記第1接続ダクトを前記排気ダクトに連通させた第2状態とを選択的に切替可能な切換弁と、
 前記第1および第2の蓄熱室の間の空間に気体を流す冷却用ファンと、を備えている、
 ことを特徴とする排ガス浄化装置が提供される。
 このような構成によれば、蓄熱室を効率的に冷却することができるので、断熱材を薄くでき、装置の小型化が達成される。
 本発明の他の好ましい態様によれば、
 前記第1および第2の蓄熱室は、水平方向に隣接するように配置され、
 前記燃焼室と前記第1および第2の蓄熱室から構成される蓄熱燃焼部の上面には、該上面から離間して配置された上面カバーが配置され、
 前記蓄熱燃焼部の前記蓄熱室の前記一側端と他端側とを結ぶ線に直交する方向を向いた両側面には、該両側面から離間して配置された側面カバーが配置され、
 前記冷却用ファンが、前記蓄熱燃焼部の上面と前記上面カバーとの間、および前記蓄熱燃焼部の各側面と側面カバーとの間に気体を流すように構成されている。
 このような構成によれば、蓄熱室をより効率的に冷却することができるので、断熱材を薄くでき、装置の小型化が達成される。
 本発明の他の好ましい態様によれば、
 前記燃焼室の前記第1および第2の蓄熱室が接続されている側面とは反対側の位置に制御盤を有する第1ユニットが設けられ、
 前記第1および第2の蓄熱室の前記燃焼室と接続されている側面とは反対側の位置に前記未処理ガスを送出する未処理ガスファンを有する第2ユニットが設けられている。
 本発明の他の好ましい態様によれば、
 前記第1ユニットは、前記制御盤と前記燃焼室との間に作業用スペースを形成するように配置され、
 前記制御盤の下方には、前記燃焼室の前記バーナに燃料を供給する燃料供給部が設けられ、
 前記冷却用ファンによって、前記作業用スペース内に気体が流されように構成されている。
 本発明の他の好ましい態様によれば、
 前記各蓄熱室内に配置された蓄熱体は、前記各蓄熱室内で、前記燃焼室側が上方に位置するように傾斜して配置される。
 本発明の他の好ましい態様によれば、
 前記蓄熱体の傾斜角度は、水平面に対して1~30度である。
 本発明の他の好ましい態様によれば、
 前記蓄熱体は、上部に傾斜面を有する蓄熱体支持部により傾斜状態で支持され、
 該蓄熱体支持部は、耐火性を有する無機材料により形成されている。
 本発明の他の好ましい態様によれば、
 一端が前記燃焼室に他端が前記供給ダクトに接続され、開閉弁を有し、前記燃焼室と前記供給ダクトとを直接、連通させるバイパスダクトとを備え、
 前記バイパスダクトは、前記蓄熱燃焼部の下方に配置されている。
 本発明の他の好ましい態様によれば、
 前記蓄熱燃焼部は、3.0mm~10.0mmの板材と、該板材を補強する補強部材とを有し、
 前記補強部材は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択された一又は二以上の種類の部材によって構成され、
 前記第1ユニットは、該第1ユニットの上面部分に設けられ前記補強部材に接合された第1ユニット支持部材によって支持され、
 該第1ユニット支持部材は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択された一又は二以上の種類の部材によって構成され、
 前記第2ユニットは、該第2ユニットの上面部分に設けられ前記補強部材に接合された第2ユニット支持部材に支持され、
 前記第2ユニット支持部材は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択される一又は二以上の種類の部材によって構成されている。
 本発明の他の好ましい態様によれば、
 前記蓄熱体は、隣接して配置された複数のセラミック部材を備え、
 前記セラミック部材は直方体形状を有し、セラミック部材の一端から他端に延びる互いに平行な複数の貫通孔を備え、
 前記セラミック部材は、前記貫通孔が、前記燃焼室から前記接続ダクトに向かって延びるように配向され、
 前記セラミック部材は、前記貫通孔の形成方向に直交する断面が、一辺の長さが100mm~300mmの矩形とされ、前記貫通孔の形成方向の断面が、一辺の長さが100mm~500mmの矩形とされている。
 本発明の他の好ましい態様によれば、
 前記蓄熱体が、セラミック部材を二次元的に整列配置することによって構成された蓄熱層を上下方向に複数段に積層することによって構成され、
 前記蓄熱燃焼部は、異なる段数の蓄熱層からなる複数種類の蓄熱体から選択された蓄熱体を使用可能である。
 本発明の他の好ましい態様によれば、
 前記作業用スペースに、ガス検知器が設けられている。
 本発明の他の好ましい態様によれば、
 前記蓄熱室の内面に、厚さ50~225mmの断熱材が設けられている。
 本発明によれば、運搬可能な程度に小型化され、且つ、現場での組立据付作業に様子する時間が大幅に短縮され、工事期間を最小限に抑えることができる排ガス浄化装置が提供される。
本発明の好ましい実施形態の蓄熱式排ガス浄化装置の外観を示す斜視図である。 図1の蓄熱式排ガス浄化装置の上面及び側面を覆う各カバー部材を取外した状態の斜視図である。 図1の蓄熱式排ガス浄化装置の構成を説明するための図であり、(a)は内部構成を示すための正面からの概略図、(b)は内部構成を示すための概略斜視図、(c)は該装置の図3(a)に示すA1-A1線に沿った断面図である。 (a)は図1の蓄熱式排ガス浄化装置の燃焼室及び蓄熱室を示すための平断面図であり、(b)は一方の蓄熱室の筐体と、他方の蓄熱室の筐体との間に設けられた空間を示す拡大された平断面図である。 図1の蓄熱式排ガス浄化装置における未処理ガスおよび冷却用空気の流れを説明するための図である。 未処理ガスおよび冷却用空気の流れを説明する図5と同様の図である。 図1の蓄熱式排ガス浄化装置の切換弁を説明するための図であり、(a)は図4のA2-A2線に沿った部分断面図であり、(b)は第1の連通状態での未処理ガス及び処理済ガスの流れを示す断面図であり、(c)は、第2の連通状態における未処理ガス及び処理済ガスの流れを示す断面図である。 図1の蓄熱式排ガス浄化装置における冷却用空気の流れを説明するための図であり、(a)は蓄熱式排ガス浄化装置の正面図であり、(b)は図8(a)に示すA3-A3線に沿った断面図であり、(c)ないし(e)は蓄熱式排ガス浄化装置内を流れる空気量を調整する通風口の開閉状態を説明する図である。 図1の蓄熱式排ガス浄化装置の分解斜視図である。 冷却用の空間を説明するための図であり、(a)は側面カバーを外した状態の正面図であり、(b)は、その平断面図である。(c)は、図10(a)のA4-A4線に沿った断面図である。 蓄熱体の配置状態を説明するための図であり、(a)は蓄熱体近傍の平断面図であり、(b)は蓄熱体近傍の縦断面図であり、(c)は図3(b)の一部分の拡大図である。 図1の蓄熱式排ガス浄化装置のバイパスダクトを説明する正面図である。 第1ユニットと第2ユニットとメインユニットの関係を示す図面である。 異なる蓄熱体を使用可能であることを説明するための図であり、(a)は図1の蓄熱式排ガス浄化装置の変形例の斜視図であり、(b)は、図1の蓄熱式排ガス浄化装置を示す斜視図である。 図1の蓄熱式排ガス浄化装置の断熱材について説明するための図であり、(a)は蓄熱燃焼部の平断面図であり、(b)は図15(a)のPb部分の拡大図であり、(c)は図15(a)のPc部分の拡大図であり、(d)は図15(a)のPd部分の拡大図であり、(e)は、蓄熱燃焼部の縦断面図であり、(f)は図15(e)のPf部分の拡大図であり、(g)は、図15(e)のPg部分の拡大図であり、(h)は、図15(e)のPh部分の拡大図である。 図1の蓄熱式排ガス浄化装置の構成について説明するための図である。
 以下、図面を参照して、本発明の好ましい実施形態の蓄熱式排ガス浄化装置1を説明する。この蓄熱式排ガス浄化装置1は、揮発性有機化合物等の燃焼等の排ガスの処理に使用される。
 図1ないし図5に示されているように、本実施態様の蓄熱式排ガス浄化装置1は、内部にバーナ8が設けられた燃焼室10と、燃焼室10の側面に、一端(図4における左端)が連結され水平方向に隣接した一対の蓄熱室11、12とを備えている。各蓄熱室11、12は、互いに離間して間に空間を形成した状態で並列配置されている。また、燃焼室10と、一対の蓄熱室11、12とが、蓄熱燃焼部9を構成する。
 図5中、黒色で塗りつぶした矢印は、一方の蓄熱室12を供給側蓄熱室に、他方の蓄熱室11を排出側蓄熱室に設定した場合のガスの流れを示し、白抜き矢印は、冷却用空気の流れを示す。なお、後述するように、本実施態様の蓄熱式排ガス浄化装置1は、各蓄熱室を供給側蓄熱室および供給側蓄熱室の間で切替可能であり、図5に示されている状態とは逆に、一方の蓄熱室12を排出側に、他方の蓄熱室11を排出側に設定した場合には、図6に示すようなガスの流れとなる。
 各蓄熱室11、12内には、蓄熱体13、14が設けられている。蓄熱体13、14は、図10に示されているように、蓄熱室11、12の一端11b、12bと、他端11c、12cとの間に設けられている。
 蓄熱式排ガス浄化装置1は、一方の蓄熱室11の他端11cに接続された第1接続ダクト15と、他方の蓄熱室12の他端12cに接続された第2接続ダクト16と、未処理ガスを蓄熱室に供給する供給ダクト17と、処理済ガスを蓄熱室から排出する排出ダクト18とを備えている。
 また、蓄熱式排ガス浄化装置1は、図5ないし図7に示されているように、各蓄熱室11、12を、供給側蓄熱室および供給側蓄熱室との間で切替えるために切換弁20を備えている。
 切換弁20は、四方弁であり、回動可能な弁体20aと、シール部材20bと、駆動手段20cとを備えている。切換弁20は、回転軸20dを中心に弁体20aを回転駆動することで、第1および第2の連通状態を切り替える。
 図5に示されているように、切換弁20は、略90度の角度間隔で四方向に延びる4つの接続口を備えている。各接続口には、図5の時計回り方向に、蓄熱室11の他端11cに接続された第1接続ダクト15と、未処理ガスを蓄熱室に供給する供給ダクト17と、蓄熱室12の他端12cに接続された第2接続ダクト16と、処理済ガスを蓄熱室から排出する排出ダクト18とが接続されている。
 供給ダクト17には、未処理ガスである排ガスを送風するためのガス送風機19が設けられている。
 切換弁20は、弁体20aを回動させることで、ある1つの接続口に接続されたダクトを、この接続口に隣接する2つの接続口に接続されたダクトの一方と選択的に連通させることができるように構成されている。
 即ち、切換弁20は、図7(b)に示されている第1の連通状態と、図7(c)に示われている第2連通状態との間で切替可能とされている。
 未処理ガスは、供給ダクト17に接続された側の接続ダクト(15または16)を通して蓄熱燃焼部9に供給されるので、供給ダクト17に接続された側の接続ダクト(15または16)に接続された蓄熱室が供給側蓄熱室となる。
 処理済ガスは、排出ダクト18に接続された側の接続ダクト(15または16)を通して蓄熱燃焼部9から排出されるので、排出ダクト18に接続された側の接続ダクト(15または16)に接続された蓄熱室が排出側蓄熱室となる。
 図7(b)に示す第1の連通状態では、第1接続ダクト15が排出ダクト18に接続され、第2接続ダクト16が供給ダクト17に接続されることで、図5に示す状態、すなわち、蓄熱室11が排出側蓄熱室に、蓄熱室12が供給側蓄熱室になる。
 また、図7(c)に示す第2の連通状態では、第1接続ダクト15が供給ダクト17に接続され、第2接続ダクト16が排出ダクト18に接続されることで、図6に示す運転状態、すなわち、蓄熱室11が供給側蓄熱室で、蓄熱室12が排出側蓄熱室となる。
 このように、切換弁20は、第1接続ダクト15を供給ダクト17及び排出ダクト18の一方に接続し、第2接続ダクト16を供給ダクト17及び排出ダクト18の他方に接続した状態と、第2接続ダクト16を供給ダクト17及び排出ダクト18の一方に接続し、第2接続ダクト15を供給ダクト17及び排出ダクト18の他方に接続した状態とを切替可能に構成されている。
 上述したように、本実施態様の蓄熱式排ガス浄化装置1では、蓄熱室11、12、燃焼室10が横並びに配置されているので、蓄熱室の上に燃焼室を配置した従来の装置に比べて、高さ方向の寸法が小さくなる。
 また、蓄熱式排ガス浄化装置1は、単一の切換弁20で蓄熱室11、12を、供給側蓄熱室と排出側蓄熱室に切換えるように構成されているので、装置の小型化が実現される。
 蓄熱式排ガス浄化装置1は、図2、図4~図6及び図8に示されているように、冷却用ファン21を備えている。冷却用ファン21は、一方の蓄熱室11の筐体11aの表面(外面)と、他方の蓄熱室12の筐体12aの表面(外面)との間に形成された空間22に、冷却用空気を流す。
 図4(a)及び図4(b)に示されているように、蓄熱室11、12は、一側端が燃焼室の側面に接続され互いに離間した状態で並列配置され、蓄熱室11、12の筐体11a、12a間には空間22が形成されている。そして、この空間22内には、例えば角形鋼管等で構成された複数の補強部材23が配置されている。
 冷却用ファン21は、蓄熱式排ガス浄化装置1内の気体を装置外に排出することによって、後述する空間37を通して、空間22内の筐体11a、12aと補強部材23で囲まれた部分に冷却用空気を通過させる。
 冷却用ファン21は、図8及び図9に示されているように、排出ダクト18に接続された排出口84のX方向の両側に配置されている。尚、方向Xとは、蓄熱室11、12が互いに向かい合う方向である(図9)。
 蓄熱燃焼部9の下側には、据え付け面(地面等)と隙間を形成するように脚部38が設けられている。冷却ファン21は、この隙間から外気を蓄熱式排ガス浄化装置1内に取り入れ、蓄熱式排ガス浄化装置1を通過させて、フード部材24の通気口24bから外部に排出する。
 冷却用ファン21の上側には、雨が装置内部に入ることを防止するためのフード部材24が設けられている。フード部材24は、雨が装置内部に入ることを防止する屋根状のフード部24aを備え、冷却用ファン21によって吸入された装置内の空気をフード部24aの両側の通気口24bから装置外に排出する。
 冷却用ファン21によって、蓄熱室11、12の筐体11a、12aの間の空間22に冷却用空気が流されるので、筐体11a、12aの互いに対向する部分に設けられた断熱材25の厚みを薄くすることを可能となる。これにより、蓄熱式排ガス浄化装置の更なる小型化が実現される。
 この冷却用ファン21が、筐体11a、12aの間の空間22に加え、蓄熱燃焼部9の周囲に冷却用の空気を流すので、蓄熱燃焼部9がより効率的に冷却され、蓄熱燃焼部9の筐体内面に設けられている断熱材26の厚みを薄くすることも可能となる。
 なお、本実施形態の蓄熱式排ガス浄化装置1では、断熱材としては、例えば、ロックウール、グラスウール、セラミックウール、セラミックボード、ケイ酸カルシウムボード、ケイ酸カルシウムウール、キャスタブルセメントなどの耐火性を有する無機材料が使用されている。
 次に、蓄熱燃焼部9等の外方に設けられ、図1に示す蓄熱式排ガス浄化装置1の外側部分を構成するカバーについて説明する。
 図10に示されているように、燃焼室10及び蓄熱室11、12によって構成される蓄熱燃焼部9の上面9aと、蓄熱燃焼部9の側面のうち蓄熱室11、12の一端側11b、12b及び他端側11c、12cを結ぶ直線に直交する方向(方向X)に対向する一対の側面9b、9cとには、蓄熱燃焼部9をカバーする上面カバー31及び一対の側面カバー32、33が設けられている。なお、側面9b、9c及び後述の側面9d、9eは、鉛直方向に延びている。
 側面カバー32は、装置を据え付けたときの装置前面側(正面側)に位置し、第1ユニット41に出入りするためのドア32a、第2ユニット42に出入りするためのドア32b等が設けられている。
 また、上面カバー31は、図8(b)や図10(c)に示されているように前面(側面カバー32)側から後面(側面カバー33)側に向って下方に傾斜しており、雨水などを装置の後面側に導く。
 第1ユニット41及び第2ユニット42のそれぞれには、この一対の側面カバー32、33とともに装置1の側面をカバーする側面カバー28、29が設けられている。側面カバー28、29は、Y方向(図9)に対向して配置されている。
 蓄熱室11、12の筐体11a、12aの外面には補強部材34が設けられ、補強部材34の外端に側面カバー32、33が取り付けられている。この結果、筐体11a、12aと側面カバー32、33との間に、空間35、36が形成される。
 この結果、空間35が、筐体11a、側面カバー32及び補強部材34で囲まれた部分が冷却用の空気を通過させるための空間として機能し、空間36が、筐体12a、側面カバー33及び補強部材34で囲まれた部分が冷却用の空気を通過させるための空間として機能する。さらに、補強部材34内の空間34aにも冷却用空気が通過可能とされている。
 さらに、蓄熱燃焼部9の上面9aに取付けられた取付部(図示せず)に、上面カバー31が蓄熱燃焼部9の上面9aから離間するように取り付けられている。このような構成によって、蓄熱燃焼部9の上面9aと上面カバー31との間に、空間37が形成され、この空間37が、冷却用の空気を通過させるための空間として機能する。
 尚、図10中の斜線部(ハッチング部)は、空間22、35、36、37を示している。
 冷却用ファン21は、蓄熱燃焼部9の上面と上面カバー31との間に形成された空間37内を空気が通り抜けるよう空気を吸引する。
 また、冷却用ファン21は、蓄熱燃焼部9の一対の側面とこれに対向する側面カバー32、33との間に形成された空間35、36内を空気が通り抜けるよう空気を吸引する。
 脚部38によって蓄熱燃焼部9の下方に空間が形成されているので、冷却用ファン21の冷却機能を十分に発揮できる。
 また、側面カバー32、33の下端も、据え付け面との間に隙間を形成する位置に配置されている。この間隙によって、冷却用ファン21による吸引によって、筐体11a、12aと側面カバー32、33との間に形成された空間35、36に外気が円滑に導入され効率的な冷却が可能となる。この結果、断熱材26の厚みを薄くすることを可能となり、蓄熱式排ガス浄化装置の更なる小型化が実現される。
 図10(b)に示されているように、蓄熱燃焼部9は、側面9b、9cが対向する方向(X方向)と直交する方向(Y方向)に対向する一対の側面9d、9eを備えている。この一対の側面9d、9eの燃焼室10側の側面9dには、制御盤43を有する第1ユニット41が取付けられている。また、一対の側面9d、9eの蓄熱室11、12側の側面9eには、未処理ガスを送風する未処理ガスファンを有する第2ユニット42が取付けられている。
 尚、以下では、蓄熱燃焼部9、第1及び第2の接続ダクト15、16等を、メインユニット(蓄熱燃焼ユニット)40ともいう。
 図2、図3、図8~図10に示されているように、第1ユニット41には、制御盤43と燃焼室10との間に作業用スペース44が設けられている。制御盤43の下方には、燃焼室10のバーナ8に燃料を供給する燃料供給部45が設けられている。
 冷却用ファン21は、図8に示されているように、この作業用スペース44内の空気を吸引することによって、作業用スペース44の換気も行う。また、作業用スペース44には、ガス検知器を設けるようにしてもよい。
 第1ユニット41の作業用スペース44と、メインユニット40の空間37との間には、例えばシャッター式等の流量調整機能付きの通風口46が設けられている。また、同様に、第2ユニット42のスペース48と、メインユニット40の空間37との間には、通風口46が設けられている。
 通風口46は、開口46bが設けられた開口板46aと、横方向にスライドすることにより開口46bの開口量を調整する調整板46cと、調整板46cをスライドさせるための操作部46dとを有する。
 調整板46cは、第1ユニット41や第2ユニット42の換気が不要なときは、図8(c)に示す全閉状態までスライドさせることができるように構成されている。また、大量の換気が必要なときは、図8(e)に示す全開状態にスライドさせることができ、部分的な換気が必要なときは、図8(d)に示す中間状態にスライドさせることができるように構成されている。このようにシャッター式の通風口46は、第1及び第2ユニット41、42からの換気量を調整できる。
 尚、通風口46の開度制御は、手動でも、制御信号等による自動でもよい。さらに、作業用スペース44にガス検知器を設けた場合には、ガス漏れ等を検知したとき、調整板46cを自動的にスライドさせて全開とする構成としてもよい。
 次に、蓄熱室11、12内に設けられている蓄熱体13、14について図11に沿って説明する。
 蓄熱体13、14は、水平に対して燃焼室10に向かって上方に傾斜するように蓄熱室11、12内に配置されている。傾斜角度は、水平面に対して1~30度であるのが好ましく、本実施態様では、より好ましい角度である5度に設定されている。
 蓄熱体13、14は、上部に傾斜面51aを有する蓄熱体支持部51により支持されている。蓄熱体支持部51は、キャスタブルセメント等の耐火性を有する無機材料により形成されている。蓄熱体支持部材51の下方には、くさび形のグレーチング部材52が配置され、蓄熱体支持部材51および蓄熱体支持部材51上に支持された蓄熱体13、14を傾斜状態に配置している。
 蓄熱体支持部51の下方には、断熱ボード材53が配置されている。第1及び第2接続ダクト15、16は、蓄熱室11、12と接続されている部分がホッパー状となるように断面が拡大されている接続部15a、16aを有している。このホッパー状の接続部15a、16aに補強用に架け渡されたパイプ等の補強部材54にグレーチング部材52は、支持されている。
 蓄熱体13、14は、上述したように傾斜状態に配置されることにより、蓄熱体に未処理ガスを通したときにも、蓄熱体の自重により、蓄熱体13、14が動いてしまうことを防止できる。
 尚、この角度が1度以下である場合には、未処理ガスの通風圧力により蓄熱体13、14が動いてしまうおそれがある。
 また、この角度が30度以上である場合には、傾斜している蓄熱体13、14を支持する蓄熱体支持部51が大きくなる等の要因で装置全体の大きさが大きくなり、小型化の妨げになるといった問題がある。
 具体的に、蓄熱体13、14は、直方体状の複数のセラミック部材を二次元的に整列配置することによって構成された蓄熱層を上下方向に複数段に積層することによって構成されている。
 セラミック部材は、一端から他端に延びる互いに平行な複数の貫通孔を備えている。セラミック部材は、貫通孔の形成方向に直交する断面が、一辺の長さが100mm~300mmの矩形とされ、貫通孔の形成方向の断面が、一辺の長さが100mm~500mmの矩形とされている。
 セラミック部材は、貫通孔が、蓄熱体支持部51の傾斜面51aに平行で、且つ蓄熱室10の一端側から他端側に向く(即ち、燃焼室から接続ダクトに向かって延びる)ように配置されている。また、蓄熱燃焼部9は、異なる段数の蓄熱層からなる複数種類の蓄熱体から選択された蓄熱体を使用可能である。
 蓄熱式排ガス浄化装置1は、ガス送風機19に接続され、プレフィルタ87が内蔵されたプレダクト88を有する。図5及び図6に示す未処理ガスX4は、プレフィルタ87、ガス送風機19、供給ダクト17、切換弁20を介して第1又は第2接続ダクト15、16を通って蓄熱燃焼部9(燃焼室10、蓄熱室11)に導かれる。
 プレダクト88には、遮断用弁86が設けられている。また、プレダクト88には、外気取入用弁85が接続されている。外気取入用弁85から取り込まれた外気は、ガス送風機19によって蓄熱燃焼部9へ送られる。プレダクト88の先端には、未処理ガスの供給口89が設けられており、ここに処理すべき施設等からの未処理ガスの配管が接続されている。また、排出ダクト18の先端には、処理済ガスの排出口84が設けられている。
 また、蓄熱式排ガス浄化装置1は、図12に示さているように、バイパスダクト56を備えている。バイパスダクト56は、調整開閉弁57を有しているとともに、燃焼室10と供給ダクト17とを直接、連通させる。
 このバイパスダクト56は、所謂コールドバイパスダクトとして機能するものであり、未処理ガスを蓄熱室11、12を経由させることなく、供給ダクト17から直接、燃焼室10に導く。バイパスダクト56によって、燃焼室10の温度の急上昇等を抑制でき、温度上昇による各種部材の損傷が防止される。バイパスダクト56内を流れる未処理ガスもガス送風機19により送風され、調整開閉弁57により風量を調整される。調整開閉弁57は、蓄熱燃焼部9の温度検知器等により検知された温度に基づいて調整される。
 バイパスダクト56は、蓄熱燃焼部9の底面の下方側に設けられていることから、装置全体の小型化に寄与する。
 バイパスダクト56は、燃焼室10に設けられている攪拌板59を取り付けるための取付部材58に接続されている。取付部材58は、パイプ状の部材からなり、燃焼室10内部において、複数の導通孔58aが設けられている。バイパスダクト56から導かれた未処理ガスは、導通孔58aを介して燃焼室10に導かれる。
 蓄熱燃焼部9は、3.0mm~10.0mmの板材と、これを補強するために設けられている補強部材34とを有している。燃焼室10の筐体と、蓄熱室11、12の筐体11a、12aとは、例えば、3.0mm~10.0mmの鉄板(材質はこれに限られない)で形成され、鉄板表面には、補強部材34が取り付けられる。
 補強部材34は、例えば、角形鋼管である。尚、補強部材23、34は、上述に限られるものではなく、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択される一又は複数種類の部材が組み合わされて形成されている。適切な板材と補強部材とを選択することで、軽量化と小型化を実現している。
 第1ユニット41は、図13に示されているように、メインユニット40の補強部材34に接合される第1ユニット支持部材61に支持されている。第1ユニット支持部材61は、第1ユニット41の上面部分に設けられ、補強部材34と同等の強度を有する部材であり、補強部材34の上部側に接合されている。第2ユニット42は、メインユニット40の補強部材34に接合される第2ユニット支持部材62に支持されている。第2ユニット支持部材62は、第2ユニット42の上面部分に設けられ、補強部材34と同等の強度を有する部材であり、補強部材34の上部側に接合されている。
 第1及び第2ユニット41、42は、リフト手段等で水平移動させることで第1、第2ユニット支持部材61、62のそれぞれに組み付け可能なように構成されている。第1及び第2ユニット支持部材61、62は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択される一又は複数種類の部材が組み合わされて形成されている。適切な補強部材を選択することで、軽量化と小型化を実現している。
 すなわち、第1ユニット41を支持する第1ユニット支持部材61と、第2ユニット42を支持する第2ユニット支持部材62とを、蓄熱燃焼部9の補強部材34に接合することで、蓄熱式排ガス浄化装置1全体の剛性を効率的に高めることができる。
 本実施態様の蓄熱式排ガス浄化装置1は、従来の蓄熱式排ガス浄化装置のように分割して運搬するのではなく、運搬可能な程度に小型化して、完成品の状態で運搬可能とするものである。
 このため、メインユニット40、第1ユニット41及び第2ユニット42のうち最も重量が重い蓄熱燃焼部9に強度部材34を設け、この強度部材34に第1、第2ユニット支持部材61、62に接合している。そして、第1、第2ユニット支持部材61、62のそれぞれに、第1、第2ユニット41、42を支持させている。
 この結果、補強部材34に取り付けた吊り上げ用部材63を介して、この3つのユニットを吊り上げたときに、自重により、各構成部品に局部的な応力が発生して、不具合が発生することを防止できる。換言すると、3つのユニットからなる自重を効率的に強度部材(補強部材34、第1及び第2ユニット支持部材61、62)で受けることができるので、強度部材も最小限にすることができ、小型化、構成の簡素化を実現する。
 上述したように蓄熱燃焼部9は、異なる段数の蓄熱層からなる複数種類の蓄熱体から選択された蓄熱体を使用可能である。
 本実施態様の蓄熱式排ガス浄化装置1は、例えば図15(e)に示されているような、D3(図14)方向に積層される蓄熱層の段数K3が12であるが、これに限定されるものではなく、図14(a)に示すような、段数K3が9の蓄熱燃焼部9’を使用してもよい。
 図14(a)及び図14(b)において、K2(一方の蓄熱室に設けられているD2方向の個数K2)は4個であり(1個の寸法:150mm)、K1は、5個である(1個の寸法:300mm)。
 蓄熱層の段数K3が異なる複数の蓄熱燃焼部(例えば蓄熱燃焼部9、9’)を、交換ユニットして準備しておき、使用状況に応じて、適当な蓄熱燃焼部を選択して使用することで、未処理ガスの処理風量等に適合した適切な処理能力を有する蓄熱式排ガス浄化装置を提供することができる。
 図9(b)から図9(a)のように蓄熱体を変更したとき、燃焼室及び蓄熱室の筐体の大きさが変更になるのは当然であるが、「バーナ8」、「第1接続ダクト15」、「第2接続ダクト16」「ガス送風機19」等を変更するだけで、その他の部分は、共通の構成として変更する必要がない。よって、共通の構成を増加することで、短納期化及び低コスト化を実現できる。
 また、上述したような冷却用ファン21や空間22、35、36、37等による冷却機能により、蓄熱燃焼部9(燃焼室10、蓄熱室11、12)の筐体内面に設けられている断熱材の厚みを、従来の蓄熱式排ガス浄化装置で必要とされた250mm程度から、50~225mmに減少させることができ、蓄熱式排ガス浄化装置を小型にできる。
 断熱材の厚みを薄くできる点について説明するため、本実施形態の蓄熱式排ガス浄化装置1の断熱材の一例について、図15を用いて説明する。
 ここで、蓄熱燃焼部9は、図15(a)~図15(h)に示されているように、筐体、断熱材、補強部材が設けられている。筐体として4.5mmの鋼板71の内部には、断熱材として、50mmのロックウール72と、50mmのセラミックファイバーウール73と、25mmのセラミックファイバーボード74と、40mmのけい酸カルシウムボード75と、50mm~180mmのキャスタブルセメント76とが設けられている。
 セラミックファイバーウール73は、各層50mmが2層設けられている。キャスタブルセメント76は、上述のように、蓄熱体支持部51を構成しているので、その厚みが薄い部分が50mmであり、厚みが厚い部分が180mmである。この装置1も、断熱材の厚みを125mm~175mmに抑えることができる。尚、鋼板71の外側には、一辺100mmの角形鋼管78及び一辺75mmの角形鋼管79からなる補強部材34が設けられている。
 また、蓄熱式排ガス浄化装置1は、図16に示されているように、タッチパネル81と、PLC82とを備えている。また、このタッチパネル81やPLC82と接続され制御される、燃焼ブロワ83と、ガス送風機19と、外気取入用弁85と、遮断用弁86と、コールドバイパス用の調整開閉弁57と、切換弁20と、冷却や換気を行う冷却用ファン21と、出口及び入口温度検知用の温度検知器(例えば熱伝対)90、91と、点火トランス92と、圧縮空気用圧力計93と、燃焼室用の温度検知器(例えば熱伝対)94と、燃焼空気用圧力計95と、コントロール弁96と、火炎検出器97とを備える。
 尚、図5、図6及び図16中、X1は、圧縮空気の供給元(0.3~0.7MPa)を示し、X2は、燃料ガスの供給元(LPG、LNG、ブタン等)(5~30kPa)を示し、X3は、電気(200~440V)供給元を示し、X4は、未処理ガスの供給元を示す。
 次に、蓄熱燃焼式排ガス浄化装置1による排ガス浄化方法について説明する。
 まず、切換弁20を制御し、図5に示されているように、蓄熱室12が供給側蓄熱室に、蓄熱室11が排出側蓄熱室となる状態とする。図5及び図7(b)に示されているように、処理される排ガス(未処理ガス)を、ガス送風機19により、供給ダクト17及び第2接続ダクト16を通して、蓄熱室12に送る。
 未処理ガスは、蓄熱室12の蓄熱体14を通過する際に、この蓄熱体14によって加熱され、蓄熱体14は、冷却される。蓄熱体14で加熱され燃焼室10に到達した排ガスは、燃焼室内10で、燃焼し分解される。
 燃焼後のガスである処理済ガスは、蓄熱室11の蓄熱体13を通過する。このとき、処理済ガスは、蓄熱体13によって冷却され、蓄熱体13が、加熱される。冷却された処理済ガスは、第1接続ダクト15を通り排出ダクト18に至る。
 この状態で運転を継続すると、一方の蓄熱室12の蓄熱体14は温度が低下し、他方の蓄熱室11の蓄熱体13は温度が上昇する。一定時間経過後、切換弁20を図7(b)に示す状態から図7(c)に示す状態に切り換える。この動作により、図6に示されているように、ガスの流れ方向が反転し、蓄熱室12が排出側蓄熱室に、蓄熱室11が供給側蓄熱室となる。
 この結果、処理される排ガスは、燃焼室10に導入される前に、高温の蓄熱体13によって加熱される。加熱された排ガスは、燃焼室10で処理され、蓄熱体14によって冷却されて排気される。
 一定時間経過後、切換弁20を図7(c)に示す状態から図7(b)に切り換える。この動作により、蓄熱室12が供給側蓄熱室で、蓄熱室11が排出側蓄熱室に切り換えられる。以上の動作を、一定時間ごとに繰り返すことにより、運転を継続することで、排熱を利用した効率的な燃焼処理が実現される。
 本実施形態の蓄熱式排ガス浄化装置1は、運搬可能な程度まで小型されている。
 具体的に、法律等による運搬制限に適合するように、最大幅を2500~3000mm、最大高さを2500~3180mmとされ、最大長さを4000~9200mmとすることができる。
 このサイズは、日本国における搬送車両を考慮した場合の一例であり、これに限られるものではない。
 すなわち、運搬制限が異なる国においては、この寸法を変更すればよい。このように、運搬可能な程度に小型化し、現地での組立据付作業を大幅に低減でき、据付コストを低減できる。また、装置内の配線も運搬前に行うことができるので、現地での配線工事も最小限に抑えることができる。また、工事期間を最小限に抑えることも実現し、搬入先での生産ラインの停止を最小限に抑えることができる。

Claims (13)

  1.  可燃性成分を含有する排ガスの浄化処理を行う排ガス浄化装置であって、
     バーナが設けられた燃焼室と、
     一側端が前記燃焼室の側面に接続され互いに離間した状態で並列配置された第1および第2の蓄熱室と、
     前記各蓄熱室の内部に配置された蓄熱体と、
     前記第1の蓄熱室の他側端に接続された第1接続ダクトと、
     前記第2の蓄熱室の他側端に接続された第2接続ダクトと、
     未処理ガスを供給する供給ダクトと、
     処理済ガスを排出する排出ダクトと、
     前記第1接続ダクトと前記第2接続ダクトと前記供給ダクトと前記排出ダクトとに接続され、前記第1接続ダクトを前記供給ダクトに連通させ且つ前記第2接続ダクトを排気ダクトに連通させた第1状態と、前記第2接続ダクトを前記供給ダクトに連通させ且つ前記第1接続ダクトを前記排気ダクトに連通させた第2状態とを選択的に切替可能な切換弁と、
     前記第1および第2の蓄熱室の間の空間に気体を流す冷却用ファンと、を備えている、
     ことを特徴とする排ガス浄化装置。
  2.  前記第1および第2の蓄熱室は、水平方向に隣接するように配置され、
     前記燃焼室と前記第1および第2の蓄熱室から構成される蓄熱燃焼部の上面には、該上面から離間して配置された上面カバーが配置され、
     前記蓄熱燃焼部の前記蓄熱室の前記一側端と他端側とを結ぶ線に直交する方向を向いた両側面には、該両側面から離間して配置された側面カバーが配置され、
     前記冷却用ファンが、前記蓄熱燃焼部の上面と前記上面カバーとの間、および前記蓄熱燃焼部の各側面と側面カバーとの間に気体を流すように構成されている、
     請求項1記載の排ガス浄化装置。
  3.  前記燃焼室の前記第1および第2の蓄熱室が接続されている側面とは反対側の位置に制御盤を有する第1ユニットが設けられ、
     前記第1および第2の蓄熱室の前記燃焼室と接続されている側面とは反対側の位置に前記未処理ガスを送出する未処理ガスファンを有する第2ユニットが設けられている、
     請求項2に記載の排ガス浄化装置。
  4.  前記第1ユニットは、前記制御盤と前記燃焼室との間に作業用スペースを形成するように配置され、
     前記制御盤の下方には、前記燃焼室の前記バーナに燃料を供給する燃料供給部が設けられ、
     前記冷却用ファンによって、前記作業用スペース内に気体が流されように構成されている、
     請求項3に記載の排ガス浄化装置。
  5.  前記各蓄熱室内に配置された蓄熱体は、前記各蓄熱室内で、前記燃焼室側が上方に位置するように傾斜して配置される、
     請求項4に記載の排ガス浄化装置。
  6.  前記蓄熱体の傾斜角度は、水平面に対して1~30度である、
     請求項5に記載の排ガス浄化装置。
  7.  前記蓄熱体は、上部に傾斜面を有する蓄熱体支持部により傾斜状態で支持され、
     該蓄熱体支持部は、耐火性を有する無機材料により形成されている、
     請求項6に記載の排ガス浄化装置。
  8.  一端が前記燃焼室に他端が前記供給ダクトに接続され、開閉弁を有し、前記燃焼室と前記供給ダクトとを直接、連通させるバイパスダクトとを備え、
     前記バイパスダクトは、前記蓄熱燃焼部の下方に配置されている、
     請求項7に記載の排ガス浄化装置。
  9.  前記蓄熱燃焼部は、3.0mm~10.0mmの板材と、該板材を補強する補強部材とを有し、
     前記補強部材は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択された一又は二以上の種類の部材によって構成され、
     前記第1ユニットは、該第1ユニットの上面部分に設けられ前記補強部材に接合された第1ユニット支持部材によって支持され、
     該第1ユニット支持部材は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択された一又は二以上の種類の部材によって構成され、
     前記第2ユニットは、該第2ユニットの上面部分に設けられ前記補強部材に接合された第2ユニット支持部材に支持され、
     前記第2ユニット支持部材は、角形鋼管、H形鋼、I形鋼、溝形鋼、山形鋼、軽みぞ形鋼、リップみぞ形鋼及びハット形鋼から選択される一又は二以上の種類の部材によって構成されている、
     請求項8に記載の排ガス浄化装置。
  10.  前記蓄熱体は、隣接して配置された複数のセラミック部材を備え、
     前記セラミック部材は直方体形状を有し、セラミック部材の一端から他端に延びる互いに平行な複数の貫通孔を備え、
     前記セラミック部材は、前記貫通孔が、前記燃焼室から前記接続ダクトに向かって延びるように配向され、
     前記セラミック部材は、前記貫通孔の形成方向に直交する断面が、一辺の長さが100mm~300mmの矩形とされ、前記貫通孔の形成方向の断面が、一辺の長さが100mm~500mmの矩形とされ、
     請求項9に記載の排ガス浄化装置。
  11.  前記蓄熱体が、セラミック部材を二次元的に整列配置することによって構成された蓄熱層を上下方向に複数段に積層することによって構成され、
     前記蓄熱燃焼部は、異なる段数の蓄熱層からなる複数種類の蓄熱体から選択された蓄熱体を使用可能である、
     請求項10に記載の排ガス浄化装置。
  12.  前記作業用スペースに、ガス検知器が設けられている、
     請求項11に記載の排ガス浄化装置。
  13.  前記蓄熱室の内面に、厚さ50~225mmの断熱材が設けられている、
     請求項3又は請求項12記載の排ガス浄化装置。
PCT/JP2012/069176 2012-03-30 2012-07-27 排ガス浄化装置 WO2013145356A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012551008A JP5229600B1 (ja) 2012-03-30 2012-07-27 排ガス浄化装置
CN201280014173.8A CN103429960B (zh) 2012-03-30 2012-07-27 排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012078528 2012-03-30
JP2012-078528 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145356A1 true WO2013145356A1 (ja) 2013-10-03

Family

ID=49032280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069176 WO2013145356A1 (ja) 2012-03-30 2012-07-27 排ガス浄化装置

Country Status (3)

Country Link
CN (1) CN103429960B (ja)
TW (1) TWI551825B (ja)
WO (1) WO2013145356A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878587B2 (ja) * 2014-05-20 2016-03-08 中外炉工業株式会社 蓄熱式脱臭装置
CN109899809A (zh) * 2017-12-07 2019-06-18 张荣兴 处理VOCs废气的蓄热再生型氧化器
CN109893994A (zh) * 2017-12-07 2019-06-18 张荣兴 处理VOCs废气的蓄热再生型催化氧化器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303752A (ja) * 1996-05-16 1997-11-28 Mitsui Eng & Shipbuild Co Ltd 不燃物溶融処理装置
JP2002349727A (ja) * 2001-05-29 2002-12-04 Babcock Hitachi Kk 流路切換弁及び廃ガス処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375622A (en) * 1993-12-07 1994-12-27 Houston; Reagan Multiport valve including leakage control system, particularly for a thermal regenerative fume incinerator
US5888063A (en) * 1996-03-07 1999-03-30 Scott; Gregory J. Method and apparatus for quick purging a multiple bed regenerative fume incinerator
JP2006300399A (ja) * 2005-04-20 2006-11-02 Kondo Unyu-Kiko Co Ltd 回転式蓄熱燃焼型脱臭装置
CN200986198Y (zh) * 2006-12-14 2007-12-05 北京科技大学 多室蓄热式有机废气焚烧炉
TW200842287A (en) * 2007-04-24 2008-11-01 Jg Environmental Tech Co Ltd Apparatus and method for bake out of regenerative thermal oxidizer
WO2011036940A1 (ja) * 2009-09-22 2011-03-31 新東工業株式会社 蓄熱燃焼式排ガス浄化システムおよびその運転方法
JP5351748B2 (ja) * 2009-12-22 2013-11-27 株式会社大気社 蓄熱式ガス処理装置の清掃運転方法、及び、蓄熱式ガス処理装置
TWM382455U (en) * 2010-01-22 2010-06-11 C Sun Mfg Ltd Organic compounds treatment and energy-saving device and equipment with the same
CN201724234U (zh) * 2010-06-04 2011-01-26 杰智环境科技股份有限公司 节省空间的蓄热焚化炉
CN201748446U (zh) * 2010-08-19 2011-02-16 昆山巨闳机械科技有限公司 蓄热式氧化炉
CN201954569U (zh) * 2011-01-06 2011-08-31 嘉园环保股份有限公司 两室切换式废气焚烧处理装置
CN202132961U (zh) * 2011-07-01 2012-02-01 项敏 一种蓄热式高温焚化炉-rto设备的高温防腐炉栅

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303752A (ja) * 1996-05-16 1997-11-28 Mitsui Eng & Shipbuild Co Ltd 不燃物溶融処理装置
JP2002349727A (ja) * 2001-05-29 2002-12-04 Babcock Hitachi Kk 流路切換弁及び廃ガス処理装置

Also Published As

Publication number Publication date
CN103429960B (zh) 2016-01-06
CN103429960A (zh) 2013-12-04
TW201321676A (zh) 2013-06-01
TWI551825B (zh) 2016-10-01

Similar Documents

Publication Publication Date Title
US20110081277A1 (en) Regenerative thermal oxidiser
JP6194950B2 (ja) 蓄熱式排ガス浄化装置
WO2013145356A1 (ja) 排ガス浄化装置
KR101925663B1 (ko) 곡립 건조 설비
CN104081126B (zh) 蓄热式废气净化装置
US5240403A (en) Regenerative thermal oxidation apparatus and method
EP2808635A1 (en) Drying furnace unit and drying furnace
KR100823081B1 (ko) 축열식 소각장치
JP5229600B1 (ja) 排ガス浄化装置
JP5517755B2 (ja) クリーンルーム区画ユニット及びクリーンルーム区画方法
JP5498863B2 (ja) クリーンルーム施設及びそのゾーンニング方法
KR101291140B1 (ko) 선박 거주구 건조용 공기순환시스템
GB2212255A (en) Compact combustion apparatus including regenerative heat exchangers
JP5196286B1 (ja) 蓄熱式排ガス浄化装置
JP2006334823A (ja) 低温乾燥装置及びパネル体並びにパネル体の組立方法
JP2008116170A (ja) 熱交換換気装置
WO1993012382A1 (en) A combustion device
JPH0642775A (ja) 空調換気装置
KR101490997B1 (ko) 화장로 배가스 재순환 시스템
ITTO20070515A1 (it) Gruppo di ventilazione per inversione di flusso.
IT202000003224A1 (it) Apparecchiatura per la formazione di una barriera d’aria
JP2003004277A (ja) 熱交換換気装置
JP2005140417A (ja) 耐熱性気密壁構造、蓄熱式ガス処理装置、並びに、吸脱着式ガス処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012551008

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1301003904

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873108

Country of ref document: EP

Kind code of ref document: A1