[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011001850A1 - フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法 - Google Patents

フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法 Download PDF

Info

Publication number
WO2011001850A1
WO2011001850A1 PCT/JP2010/060578 JP2010060578W WO2011001850A1 WO 2011001850 A1 WO2011001850 A1 WO 2011001850A1 JP 2010060578 W JP2010060578 W JP 2010060578W WO 2011001850 A1 WO2011001850 A1 WO 2011001850A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
refractive index
glass body
core
hole
Prior art date
Application number
PCT/JP2010/060578
Other languages
English (en)
French (fr)
Inventor
竹永勝宏
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2011001850A1 publication Critical patent/WO2011001850A1/ja
Priority to US13/338,834 priority Critical patent/US8381548B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/0238Longitudinal structures having higher refractive index than background material, e.g. high index solid rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding

Definitions

  • the present invention relates to a manufacturing method of a base material for a photonic band gap fiber and a manufacturing method of a photonic band gap fiber.
  • a photonic bandgap fiber is known as one of optical fibers used for optical communication, fiber laser devices, and the like.
  • the photonic band gap fibers there is a photonic band gap fiber in which a plurality of high refractive index portions made of a material having a higher refractive index than the core are provided in a clad covering the core, It is used as a polarization maintaining optical fiber.
  • Patent Document 1 describes an example of such a photonic bandgap fiber.
  • the photonic bandgap fiber described in Patent Document 1 has a core to which a rare earth element is added and a clad covering the core, and a plurality of high refractive index portions in a triangular lattice shape in the clad.
  • the arranged periodic structure regions are formed so as to sandwich the core. In Patent Document 1, this periodic structure region limits the propagation of wavelengths that are not desired to be amplified among spontaneously emitted light emitted by rare earth elements.
  • Patent Document 2 describes a method for producing a photonic bandgap fiber.
  • a glass rod and a quartz tube made of quartz are prepared.
  • a glass rod serving as a core is disposed at the center of the through hole, and a two-layer glass rod is disposed around the core.
  • the quartz tube on which the core glass rod and the double-layer glass rod are arranged is heated in a vacuum, thereby filling the gap in the through hole of the quartz tube and producing a base material for the photonic band gap fiber.
  • the photonic bandgap fiber preform is drawn to form a photonic bandgap fiber.
  • Patent Document 2 a photonic band gap fiber in which a periodic structure region in which a plurality of high refractive index portions are arranged in a triangular lattice shape is sandwiched between cores is disclosed in Patent Document 2.
  • the manufacturing method using the described manufacturing method is as follows. That is, as shown in FIG. 27, in the manufacturing method described in Patent Document 2, first, a glass rod 10A serving as a core, a glass rod 22A having the same refractive index as that of quartz serving as a cladding, and a refractive index higher than that of quartz.
  • a high-refractive index portion 41A having a refractive index is provided with a two-layer glass rod 40A covered with an outer layer 42A having the same refractive index as quartz.
  • the glass rod 10A serving as the core is disposed at the center of the through hole, and the two-layer glass rod 40A is disposed so as to have a periodic structure on the left and right of the glass rod 10A serving as the core. To do. At this time, the two-layer glass rods 40A are arranged so as to sandwich the core. Furthermore, the glass rod 22A is disposed in another part in the through hole. Then, with the glass rod inserted into the quartz tube 20A in this manner, the quartz tube 20A is heated in vacuum, whereby a photonic band gap fiber preform is manufactured. Next, by drawing the base material for the photonic band gap fiber, a photonic band gap fiber as described in Patent Document 1 can be obtained.
  • the present invention provides a method for manufacturing a photonic bandgap fiber base material and a method for manufacturing a photonic bandgap fiber capable of manufacturing a photonic bandgap fiber capable of suppressing transmission loss of light.
  • the purpose is to provide.
  • the present inventor has diligently studied the cause of an increase in light transmission loss of a photonic bandgap fiber manufactured by the manufacturing method described in Patent Document 2.
  • the core of the photonic bandgap fiber manufactured by the manufacturing method described in Patent Document 2 may have scratches or impurities attached to the surface of the core, which may cause a light transmission loss. I found out that it was the cause of the increase.
  • the present inventors have further studied a method for producing a photonic bandgap fiber that can suppress the surface of the core from being scratched or adhering impurities, and have come to the present invention.
  • the photonic band gap fiber base material manufacturing method of the present invention includes a columnar core glass body that is a core, and a clad glass body that is a cladding and covers the outer periphery of the core glass body.
  • a forming step as a base material a drilling step of making a hole in the clad glass body along the longitudinal direction of the core glass body, and a columnar high refractive index portion having a refractive index higher than the refractive index of the clad glass body;
  • the core glass body and the clad glass body are continuously formed, so that the surface of the core glass body is damaged or impurities are attached. Can be suppressed.
  • a plurality of high refractive index portions are formed in the clad by the high refractive index portion of the double-layer glass rod, and the interface between the core and the clad is scratched.
  • a photonic bandgap fiber in which the presence of impurities is suppressed can be manufactured.
  • the shape of the peripheral edge of the hole in a cross section perpendicular to the length direction of the intermediate base material is a circle.
  • the hole can be easily formed by mechanical means, and the drilling process can be easily performed. Furthermore, since the shape of the periphery of a hole is circular, the arrangement
  • a base material for a photonic band gap fiber By using such a base material for a photonic band gap fiber, a plurality of high refractive index portions are arranged so as to overlap a single line extending in the radial direction through the center of the cross section, It is possible to easily manufacture a photonic bandgap fiber in which an array of a plurality of high refractive index portions is inclined so as not to overlap a line extending in the radial direction through the center in the cross section.
  • the shape of the peripheral edge of the hole in a cross section perpendicular to the length direction of the intermediate base material is preferably a regular hexagon.
  • the shape of the peripheral edge of the hole a regular hexagon
  • the shape of the peripheral edge of the hole in the cross section is not circular, the movement of the array of the plurality of double-layer glass rods with respect to the circumferential direction of the hole is suppressed. Therefore, the two-layer glass rod or the glass rod can be easily fixed to the hole.
  • the periphery of the hole in a cross section perpendicular to the length direction of the intermediate base material is an outer periphery in which two circles having the same diameter overlap each other. It is preferable that it is the shape which consists of.
  • a cross section is a shape in which a part of a circle having a diameter slightly smaller than the two circles is cut out in a straight line, and the clad It is preferable to insert a glass rod having the same refractive index as glass together with the two-layer glass rod.
  • a rare earth element may be added to the core glass body.
  • the method for producing a photonic bandgap fiber according to the present invention includes a columnar core glass body that is a core, and a clad glass body that is a cladding and covers the outer periphery of the core glass body.
  • a drawing step of drawing the click band gap fiber preform is characterized in that comprises a.
  • the core glass body and the clad glass body are continuously formed, so that the surface of the core glass body may be damaged or impurities may adhere. It is suppressed. Therefore, it is possible to manufacture a photonic bandgap fiber in which the presence of scratches and impurities at the interface between the core and the clad is suppressed.
  • the shape of the peripheral edge of the hole in a cross section perpendicular to the length direction of the intermediate base material is a circle.
  • the shape of the peripheral edge of the hole in the cross section perpendicular to the length direction of the intermediate base material is preferably a regular hexagon.
  • the peripheral edge of the hole in the cross section perpendicular to the length direction of the intermediate base material is formed of an outer periphery in which two circles having the same diameter overlap each other. It is preferable that
  • a cross section is a shape in which a part of a circle having a diameter slightly smaller than the two circles is cut out linearly, and is the same as the cladding glass. It is preferable to insert a glass rod having a refractive index of 2 with the two-layer glass rod.
  • a rare earth element may be added to the core glass body.
  • the heating step and the drawing step are performed simultaneously.
  • a photonic band gap fiber manufacturing method and a photonic band gap fiber manufacturing method capable of manufacturing a photonic band gap fiber capable of suppressing light transmission loss are provided.
  • FIG. 1 It is sectional drawing which shows the structure in a cross section perpendicular
  • FIG. 1 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of a photonic band gap fiber (PBGF) according to a first embodiment of the present invention.
  • PBGF photonic band gap fiber
  • the PBGF 1 includes a core 15 having a circular cross-sectional shape, a periodic structure region 26 in which a plurality of high refractive index portions 45 are formed, and a cladding 25 that covers the outer periphery of the core 15;
  • the resin cladding 55 covers the outer periphery of the resin 25 and the protective layer 56 covers the outer periphery of the resin cladding 55.
  • the plurality of high refractive index portions 45 are arranged in a line so that a part of the high refractive index portions 45 overlaps with one line L1 extending in the radial direction through the center of PBGF1. Further, the other high refractive index portions 45 are arranged in a triangular lattice shape so that the distances between the high refractive index portions 45 adjacent to each other are equal.
  • the periodic structure region 26 is formed. This periodic structure region 26 is formed on both sides of the core 15 in the radial direction of the PBGF 1.
  • the number of high refractive index portions 45 arranged so as to overlap the line L1 is larger than the number of other high refractive index portions 45 arranged in a line.
  • the refractive index of the portion other than the high refractive index portion 45 in the cladding 25 is set lower than the refractive index of the core 15, and the refractive index of the resin cladding 55 is other than the high refractive index portion 45 in the cladding 25. It is significantly lower than the refractive index of the part. Further, the refractive index of the high refractive index portion 45 is made higher than the refractive index of the portion other than the high refractive index portion 45 in the cladding 25. The refractive index of the high refractive index portion 45 is preferably higher than the refractive index of the core 15.
  • the refractive index of the high refractive index portion 45 by increasing the refractive index of the high refractive index portion 45, even if the number of the high refractive index portions 45 is small, the confinement of light to the core 15 in the wavelength band that transmits the core 15 becomes strong. 15 transmission loss can be reduced. In addition, by configuring the refractive index of the high refractive index portion 45 to be high, the number of high refractive index portions 45 can be reduced even if the same light is confined.
  • each component constituting the PBGF 1 is not particularly limited because it is appropriately selected depending on the application.
  • the core 15 has a diameter of 10 ⁇ m to 20 ⁇ m
  • the cladding 25 has an outer diameter. Is 100 ⁇ m to 400 ⁇ m
  • the outer diameter of the resin clad 55 is 120 ⁇ m to 440 ⁇ m
  • the outer diameter of the protective layer 56 is 250 ⁇ m to 550 ⁇ m.
  • the diameter of the high refractive index portion 45 is 2.0 ⁇ m to 8.5 ⁇ m
  • the distance between the centers of the adjacent high refractive index portions 45 is 4 ⁇ m to 10 ⁇ m.
  • the center-to-center distance between the high refractive index portion 45 closest to the core 15 and the core 15 is 4 ⁇ m to 20 ⁇ m.
  • Examples of the material constituting the core 15 include quartz to which a rare earth element is added, quartz to which a rare earth element and another element are co-added, and quartz to which one or more kinds of dopants that are not rare earth elements are added. Etc.
  • Examples of rare earth elements include ytterbium (Yb), erbium (Er), neodymium (Nd), and examples of dopants that are not rare earth elements include germanium oxide (GeO 2 ) and aluminum oxide (Al 2 O 3 ). It is done.
  • the quartz to which the dopant which lowers refractive indexes such as a quartz which does not add any dopant, and fluorine (F), is added is mentioned, for example.
  • examples of the material constituting the high refractive index portion 45 include quartz to which a dopant for increasing the refractive index such as GeO 2 is added.
  • ultraviolet curable resin such as a fluorinated acrylate whose refractive index is 1.38, is mentioned, for example.
  • ultraviolet curable resin such as an acrylate with a refractive index of 1.5, is mentioned.
  • the high refractive index portion 45 acts as a stress applying portion and can be used as a polarization maintaining optical fiber.
  • the PBGF1 has a wavelength region in which a photonic band gap is formed by the periodic structure region 26 and transmission is suppressed by the plurality of high refractive index portions 45 and a wavelength region in which the light is transmitted, and is used as a wavelength selection filter. Can do.
  • a rare earth element is added as a dopant for the core 15, it can be used as an optical fiber for amplification.
  • the light to be amplified is core 15 The light that is not desired to be amplified can be removed from the core 15 and can be used as an efficient optical fiber for amplification.
  • FIG. 2 is a diagram showing a process flowchart of the method for producing PBGF 1 shown in FIG.
  • the PBGF 1 is manufactured by continuously forming a columnar core glass body that becomes the core 15 and a clad glass body that becomes the cladding 25 and covers the outer periphery of the core glass body.
  • FIG. 3 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material 100 after the forming step s1 shown in FIG.
  • the intermediate base material 100 formed by the forming step s1 has a core glass body 10 that becomes the core 15 of PBGF1 in the center, and a clad glass body that covers the core glass body 10 and becomes the clad 25 of PBGF1. 20.
  • the forming step s1 is not particularly limited as long as it is a method of continuously forming the core glass body 10 to be the core 15 and the clad glass body 20 to be the clad 25 and coat the core glass body.
  • the MCVD method A method using a soot process such as a VAD method or an OVD method is preferable because a solution impregnation method can be used when rare earth is added.
  • the intermediate base material is formed using the MCVD method, first, the clad glass body 20 is formed, and then the core glass body 10 is formed continuously with the formation of the clad glass body.
  • the clad glass body is formed by introducing vaporized silicon chloride (SiCl 4 ) into a heated quartz glass tube with oxygen gas (O 2 gas) whose flow rate is controlled, and by heating the quartz glass tube with SiCl 4 To silicon oxide (quartz: SiO 2 ).
  • SiCl 4 vaporized silicon chloride
  • O 2 gas oxygen gas
  • the clad 25 of PBGF1 is made of quartz to which no dopant is added
  • the clad glass body 20 is formed without adding any dopant.
  • a gas containing the dopant together with vaporized SiCl 4 is introduced into the quartz tube.
  • the dopant is F
  • silicon tetrafluoride (SiF 4 ) vaporized together with vaporized SiCl 4 is introduced into the quartz tube. And it is set as a transparent glass body with the heat
  • the clad glass body 20 is obtained.
  • the core glass body 10 is formed.
  • the material serving as the dopant added to the core glass body 10 is vaporizable, such as GeO 2
  • a gas serving as the dopant vaporized together with the vaporized SiCl 4 is introduced by O 2 gas.
  • dopant in the case of GeO 2 introduces the GeCl 4 vaporized along with SiCl 4 vaporized in a quartz tube of cladding glass body 20 is formed.
  • SiCl 4 is changed to SiO 2 and GeCl 4 is changed to GeO 2 to form the core glass body 10 having a high refractive index.
  • dopants such as rare earth elements
  • transduced by the solution impregnation method for example. That is, after the formation of the clad glass body 20, a porous glass layer of quartz glass is deposited on the inner surface of the clad glass, and this porous glass layer is impregnated with a solution in which a chloride of a dopant such as a rare earth element is dissolved. Then, after draining and drying, the porous layer is made transparent to form the core glass body 10.
  • the intermediate base material 100 is obtained.
  • the core glass body 10 is formed, and the clad glass body 20 is formed continuously with the formation of the core glass body 10.
  • the dopant vaporized together with the vaporized SiCl 4 by the argon gas (Ar gas) whose flow rate is controlled.
  • Ar gas argon gas
  • SiCl 4 is changed to SiO 2 and soot composed of fine particles of SiO 2 and dopant is deposited on the outer peripheral surface of a mandrel (not shown).
  • the dopant is GeO 2
  • vaporized SiCl 4 and GeCl 4 are introduced into the flame of an oxyhydrogen burner.
  • SiCl 4 is changed to SiO 2
  • GeCl 4 is changed to GeO 2
  • soot composed of fine particles of SiO 2 or GeO 2 is deposited.
  • the mandrel is extracted, and the deposited soot is heated to form a transparent glass body, and the hole after the mandrel is extracted is filled.
  • the core glass body 10 is obtained.
  • the dopant material added to the core glass body 10 cannot be vaporized like some rare earth elements, the vaporized SiCl 4 is introduced into the flame of oxyhydrogen gas, and the soot of SiO 2 is made to be the mandrel. It is made to deposit on the outer peripheral surface of this to make a porous glass layer.
  • the porous glass layer is impregnated with a solution in which a chloride of a dopant such as a rare earth element is dissolved, and the mandrel is extracted. Then, after draining and drying, the porous layer is made transparent, and the hole of the mandrel is filled to make the core glass body 10.
  • the clad glass body 20 is formed.
  • the clad glass body is formed by introducing vaporized SiCl 4 into the flame of an oxyhydrogen burner using Ar gas whose flow rate is controlled to convert SiCl 4 to SiO 2 and first forming soot of SiO 2 glass.
  • the core glass body 10 is formed so as to cover the outer periphery. Then, it is set as the clad glass body 20 by making soot transparent. At this time, when the clad 25 of PBGF1 is made of quartz to which no dopant is added, the clad glass body 20 is formed without adding any dopant.
  • a gas containing the dopant together with vaporized SiCl 4 is introduced into the flame of the oxyhydrogen burner.
  • the dopant is F
  • vaporized SiF 4 together with vaporized SiCl 4 is introduced into the flame of an oxyhydrogen burner.
  • the intermediate base material 100 is obtained.
  • the core glass body 10 is formed, and the clad glass body 20 is formed continuously with the formation of the core glass body 10.
  • the material that becomes the dopant added to the core glass body 10 can be vaporized
  • the material that becomes the vaporized dopant together with the vaporized SiCl 4 by the Ar gas whose flow rate is controlled is used. It is introduced into the flame with an oxyhydrogen burner. Then, SiCl 4 is changed to SiO 2, and soot composed of fine particles of SiO 2 and dopant is deposited on the tip of a starting material (not shown).
  • the dopant is GeO 2
  • vaporized SiCl 4 and GeCl 4 are introduced into the flame of an oxyhydrogen burner.
  • SiCl 4 is changed to SiO 2
  • GeCl 4 is changed to GeO 2
  • soot composed of fine particles of SiO 2 or GeO 2 is deposited.
  • the deposited soot is heated to form a transparent glass body.
  • the core glass body 10 is obtained.
  • the dopant material added to the core glass body 10 cannot be vaporized like some rare earth elements
  • the vaporized SiCl 4 is introduced into the flame by oxyhydrogen gas, and the soot of SiO 2 is started.
  • a porous glass layer is deposited on the tip of the material.
  • the porous glass layer is impregnated with a solution in which a chloride of a dopant such as a rare earth element is dissolved, then drained and dried, and then the porous layer is made transparent to form the core glass body 10.
  • the clad glass body 20 is formed by the same method as the OVD method.
  • the dopant added to the core glass body 10 is vaporizable, you may perform the formation process s1 as follows. First, an oxyhydrogen burner for producing a core glass body and an oxyhydrogen burner for producing a clad glass body are prepared. And the material used as the dopant added to the vaporized core glass body 10 with vaporized SiCl 4 is introduce
  • a soot for forming the clad glass body 20 is simultaneously formed so as to cover the soot for forming the core glass body 10 while forming a soot for forming the core glass body 10 at the tip of the starting material (not shown). Thereafter, the soot is made transparent to obtain a core glass body 10 and a clad glass body 20. At this time, when the clad 25 of PBGF1 is made of quartz to which no dopant is added, the clad glass body 20 is formed without adding any dopant.
  • a gas containing the dopant together with vaporized SiCl 4 is introduced into the flame of an oxyhydrogen burner for producing a clad glass body.
  • the intermediate base material 100 is obtained.
  • the core glass body 10 and the clad glass body 20 are continuously formed, whereby the rod-shaped intermediate base material 100 in which the outer periphery of the core glass body 10 shown in FIG.
  • FIG. 4 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material 100 after the drilling step s2 shown in FIG.
  • a pair of holes 30 are formed in the cladding glass body 20 of the intermediate base material 100 shown in FIG. 3 along the length direction of the core glass body 10, and as shown in FIG. 110.
  • the hole 30 is formed such that the peripheral edge of the hole 30 has a circular shape in a cross section perpendicular to the length direction of the intermediate base material 110. That is, the inner wall by the hole 30 in the intermediate base material 110 is cylindrical.
  • the pair of holes 30 are formed at positions that are symmetric with respect to the center of the intermediate base material 100.
  • Such a set of holes 30 is formed by mechanical means such as a drill. At this time, the hole 30 prevents the core glass body 10 from being exposed in the hole 30.
  • the inner wall of the clad glass body 20 it is preferable to polish the inner wall of the clad glass body 20 to remove irregularities and the like on the inner wall from the viewpoint of suppressing the generation of bubbles and distortion in the PBGF1.
  • the two-layer glass rod 40 has a columnar high refractive index portion 41 having a refractive index higher than that of the clad glass body 20 and an outer layer covering the outer periphery of the high refractive index portion 41 and having the same refractive index as that of the clad glass body 20.
  • 42 is a glass rod.
  • the glass rod 22 is a glass rod having the same diameter as the double-layer glass rod 40
  • the glass rod 23 is a glass rod having a smaller diameter than the double-layer glass rod 40.
  • a plurality of two-layer glass rods 40 are arranged in a line so as to overlap with one line L1 extending in the radial direction through the center of the intermediate base material 110,
  • the other two-layer glass rods 40 are arranged in a triangular lattice so that the distances between the two-layer glass rods 40 adjacent to each other are equal.
  • the number of the two-layer glass rods 40 arranged so as to overlap with one line L1 extending in the radial direction through the center of the PBGF1 is the number of the other two-layer glass rods 40 arranged in a line. More than
  • the glass rods 22 and 23 are inserted into the remaining space where the double-layer glass rod 40 is inserted in the hole 30.
  • the order of insertion of the double-layer glass rod 40 and the glass rods 22 and 23 may be that the double-layer glass rod 40 and the glass rods 22 and 23 are inserted simultaneously, or the double-layer glass rod 40 and the glass rod 22. , 23 may be inserted first.
  • the intermediate base material 110 in a state where the plurality of double-layer glass rods 40 and the glass rods 22 and 23 shown in FIG. 5 are inserted into the pair of holes 30 is obtained.
  • FIG. 6 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the base material after the heating step shown in FIG.
  • the heating of the intermediate member 110 is performed in a vacuum state with the two-layer glass rod 40 and the glass rods 22 and 23 being inserted into the pair of holes 30.
  • the degree of vacuum at this time is preferably such that the pressure in the hole 30 is 0 Pa to 93 kPa, and the heating temperature is preferably 1800 ° C. to 2200 ° C.
  • the gap between the double-layer glass rod 40 and the glass rods 22 and 23 in the hole 30 is filled, and the outer layer 42 and the glass rods 22 and 23 of the double-layer glass rod 40 are part of the clad glass body 20.
  • FIG. 7 is a diagram showing a state of the drawing process shown in FIG.
  • the dummy glass rod 69 is connected to the PBGF base material 101 shown in FIG. 6 manufactured by the method for manufacturing the PBGF base material described above, and these are set up vertically. And installed in a heating furnace 61 such as an electric furnace.
  • the PBGF base material 101 is heated and melted in the heating furnace 61.
  • the base material for PBGF at this time is set to 1900 ° C. to 2200 ° C.
  • the glass drawn from the PBGF base material 101 is solidified when drawn to obtain PBGF in which the resin cladding 55 and the protective layer 56 in FIG. 1 are not formed.
  • the PBGF on which the resin clad 55 and the protective layer 56 are not formed is controlled by the cooling device 62 so as to have an appropriate temperature.
  • the PBGF on which the resin clad 55 and the protective layer 56 are not formed passes through the coating die 63 containing the ultraviolet curable resin that becomes the resin clad layer 55, and is further irradiated with ultraviolet rays by the ultraviolet irradiation device 64.
  • the resin clad 55 shown in FIG. 1 is formed.
  • the PBGF on which the resin clad 55 is formed passes through the coating die 65 containing the ultraviolet curable resin serving as the protective layer 56 and is further irradiated with ultraviolet rays by the ultraviolet irradiation device 66.
  • the protective layer 56 shown in FIG. 1 is formed, and the PBGF1 shown in FIG. 1 is obtained.
  • the PBGF 1 is wound around the bobbin 68 via the pulley 67.
  • the core glass body 10 and the clad glass body 20 are continuously formed in the manufacture of the PBGF base material 101, the surface of the core glass body 10 is scratched. Sticking and adhesion of impurities can be suppressed. Then, by drawing the PBGF base material 101 thus obtained, a plurality of high refractive index portions 45 are formed in the clad 25 by the high refractive index portions 41 of the double-layer glass rod 40, and the core 15 PBGF1 in which the presence of scratches or impurities at the interface between the clad 25 and the clad 25 is suppressed can be manufactured.
  • the position of the hole 30 formed in the clad glass body 20 can be freely adjusted, and the position of the high refractive index portion 41 in the PBGF 1 can be freely adjusted. can do.
  • the hole 30 in the cross section perpendicular to the length direction of the intermediate base material 110, the hole 30 can be easily formed by mechanical means by making the peripheral shape of the hole 30 circular, and the drilling step s2 is simplified. Can be done. Furthermore, since the shape of the periphery of the hole 30 is circular, the arrangement of the plurality of double-layer glass rods 40 can be freely rotated with respect to the circumferential direction of the hole 30. Therefore, in the insertion step s3, the orientation of the arrangement of the two-layer glass rods 40 can be freely adjusted.
  • a plurality of high refractive index portions 45 are arranged such that a plurality of high refractive index portions 45 are arranged so as to overlap one line L1 extending in the radial direction through the center in the cross section, or a plurality of high refractive indexes. It is possible to easily manufacture a PBGF whose arrangement in the portion 45 is inclined so as not to overlap with a line extending in the radial direction through the center in the cross section.
  • FIG. 8 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the PBGF according to the present embodiment
  • FIG. 9 is a cross section perpendicular to the length direction of the intermediate base material after the insertion step in the present embodiment
  • FIG. 10 is a cross-sectional view showing the structure in a cross section perpendicular to the length direction of the PBGF base material manufactured according to this embodiment.
  • the PBGF2 of the present embodiment has a cross section perpendicular to the length direction of the PBGF2 such that the arrangement of the plurality of high refractive index portions 45 passes through the center of the PBGF2 and extends in the radial direction of the PBGF2. It differs from PBGF1 of 1st Embodiment in the point set as the structure which does not overlap.
  • the arrangement of the high refractive index portions 41 in the periodic structure region 26 on one side and the high refractive index portion in the periodic structure region 26 on the other side are used.
  • the arrangement of 41 is line-symmetric.
  • the PBGF 2 having such a configuration is connected to the PBGF 2 on the side connected to the PBGF 2 on the side to be connected, regardless of which end of the PBGF 2 is connected.
  • the sequence can be matched.
  • the forming step s1 and the punching step s2 are performed in the same manner as the forming step s1 and the punching step s2 in the first embodiment, and the intermediate base material 110 shown in FIG. 4 is obtained.
  • the arrangement of the two-layer glass rods 40 does not overlap with a line that passes through the center of the intermediate base material 110 and extends in the radial direction of the intermediate base material 110.
  • the two-layer glass rod 40 is inserted into This is different from the insertion step s3 of the first embodiment.
  • an arrangement of the two-layer glass rods 40 inserted into one hole 30 with reference to a line passing through the center of the intermediate base material 110 perpendicular to a line passing through the centers of the two holes 30, an arrangement of the two-layer glass rods 40 inserted into one hole 30;
  • the plurality of double-layer glass rods 40 are inserted so that the arrangement of the double-layer glass rods 40 inserted into the other hole 30 is axisymmetric.
  • the intermediate base material 110 into which the two-layer glass rod 40 or the like is inserted is heated to obtain a PBGF base material 102 shown in FIG.
  • FIG. 11 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material after the drilling step in the present embodiment
  • FIG. 12 shows the length of the intermediate base material after the insertion step in the present embodiment. It is sectional drawing which shows the structure in a cross section perpendicular
  • the forming step s1 is performed in the same manner as the forming step s1 in the first embodiment, and the intermediate base material 100 shown in FIG.
  • a pair of regular hexagonal holes 31 are formed in the intermediate base material 100 shown in FIG. 3 along the length direction of the core glass body 10, and the intermediate base material 120 shown in FIG. To do.
  • each hole 31 has a line connecting a pair of apexes facing each other at the periphery of the hole 31 passing through the center of the intermediate base material 100 in the radial direction of the intermediate base material 100. It is formed so as to overlap with the extending line L1.
  • Each hole 31 is formed so as to be symmetrical with respect to the center of the intermediate base material 100.
  • a plurality of double-layer glass rods 40 are inserted into the holes 31 of the intermediate base material 120 in which a pair of holes 31 are formed.
  • a plurality of double-layer glass rods 40 are arranged in a row so as to overlap a line L1 extending in the radial direction through the center of the intermediate base material 110, and the other double-layer glass rods 40 are adjacent to each other. They are arranged in a triangular lattice so that the distances between the rods 40 are equal.
  • the glass rod 22 is inserted into the remaining space where the double-layer glass rod 40 is inserted in the hole 31.
  • the size of the hole 31 is such that the double-layer glass rod 40 and the glass rod 22 having the same diameter as the double-layer glass rod 40 are filled in the hole 31 in the closest packing. This is preset.
  • the order of insertion of the double-layer glass rod 40 and the glass rod 22 may be the simultaneous insertion of the double-layer glass rod 40 and the glass rod 22, or the double-layer glass rod 40.
  • One of the glass rod 22 and the glass rod 22 may be inserted first.
  • the intermediate base material 120 in which the two-layer glass rod 40 and the like are inserted is heated.
  • the gap between the two-layer glass rod 40 and the glass rod 22 in the hole 31 is filled, and the outer layer 42 and the glass rod 22 of the two-layer glass rod 40 are part of the clad glass body 20.
  • drawing step s5 is performed in the same manner as in the first embodiment to obtain PBGF1 shown in FIG.
  • the shape of the periphery of the hole 31 in the cross section of the intermediate base material 120 is changed to a regular hexagon in the drilling step s2, so that the same in the hole 31 in the insertion step s3.
  • the two-layer glass rod 40 and the glass rod 22 having a diameter of 1 mm can be packed in a close-packed manner.
  • the shape of the peripheral edge of the hole 31 in the cross section of the intermediate base material 120 is not circular, the arrangement of the plurality of double-layer glass rods 40 is suppressed from moving in the rotational direction with respect to the circumferential direction of the hole 31. Therefore, the two-layer glass rod 40 and the glass rod 22 can be easily fixed to the hole 31.
  • FIG. 13 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the PBGF according to the fourth embodiment of the present invention, and FIG. 14 shows the length of the intermediate base material after the drilling step in the present embodiment.
  • FIG. 15 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material after the insertion step in the present embodiment, and FIG. It is sectional drawing which shows the structure in a cross section perpendicular
  • the PBGF3 of the present embodiment has a high refractive index portion 45 arranged so as to overlap with one line L1 extending in the radial direction through the center of the PBGF3 in a cross section perpendicular to the length direction of the PBGF3. 1 is different from the PBGF1 of the first embodiment shown in FIG. 1 in that it is smaller than the number of other high refractive index portions 45 arranged in a line.
  • the PBGF 3 having such a configuration can increase the number of the high refractive index portions 45 close to the core, so that the birefringence can be increased.
  • the forming step s1 is performed in the same manner as the forming step s1 in the first embodiment, and the intermediate base material 100 shown in FIG.
  • a set of holes 33 is formed along the length direction of the core glass body 10.
  • the hole 33 has a shape composed of an outer periphery in which two circles having the same diameter overlap each other in the cross section of the intermediate base material 100 shown in FIG.
  • Such a hole 33 may be formed by opening two holes having a circular shape in the periphery in a cross section so that a part thereof overlaps.
  • the line L2 connecting the centers of two circular holes that partially overlap each other is perpendicular to the line L1 that passes through the center of the intermediate base material 100 and extends in the radial direction, and partly overlaps.
  • the distance from the center of each of the two circular holes to the line L1 is formed to be equal to each other. In this way, the intermediate
  • the double-layer glass rod 40 and the glass rods 22 and 23 are inserted into the pair of holes 33 in the intermediate base material 130.
  • the plurality of two-layer glass rods 40 are arranged in a row so as to overlap with one line L1 extending in the radial direction through the center of the intermediate base material 100.
  • the other two-layer glass rods 40 are arranged in a triangular lattice shape so that the distances between the two-layer glass rods 40 adjacent to each other are equal.
  • the two-layer glass rods 40 are inserted so that the number of the two-layer glass rods 40 arranged so as to overlap the line L1 is smaller than the number of the other two-layer glass rods 40 arranged in a line.
  • the glass rods 22 and 23 are inserted into the remaining space where the double-layer glass rod 40 is inserted in the hole 30.
  • the order of insertion of the two-layer glass rod 40 and the glass rods 22 and 23 may be that the two-layer glass rod 40 and the glass rods 22 and 23 are inserted simultaneously, or 2 Either the layer glass rod 40 or the glass rods 22 and 23 may be inserted first.
  • the intermediate base material 130 in which the two-layer glass rod 40 and the like are inserted is heated.
  • the gap between the two-layer glass rod 40 and the glass rods 22 and 23 in the hole 33 is filled, and the outer layer 42 of the two-layer glass rod 40 and the glass rods 22 and 23 are formed on the clad glass body 20. It is considered a part.
  • drawing step s5 is performed in the same manner as in the first embodiment to obtain PBGF3 shown in FIG.
  • the drilling step s2 in manufacturing the PBGF base material 103 it is only necessary to open two holes 33 having a circular peripheral edge shape so that they partially overlap. Therefore, the holes can be easily formed by mechanical means. Therefore, the drilling step s2 can be easily performed. Furthermore, since the shape of the peripheral edge of the hole in the cross section is not circular, it is possible to prevent the arrangement of the plurality of double-layer glass rods 40 from moving in the circumferential direction of the hole 33 after the insertion step s3. Therefore, the double-layer glass rod 40 and the glass rods 22 and 23 can be easily fixed to the hole 33.
  • FIG. 17 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material after the insertion step in the present embodiment.
  • the forming step s1 and the drilling step s2 are performed in the same manner as the forming step s1 and the drilling step s2 in the fourth embodiment, and the intermediate base material 130 shown in FIG.
  • a plurality of double-layer glass rods 40 are inserted into the holes 33 of the intermediate base material 130 in which a set of holes 33 is formed, in the same manner as in the fourth embodiment.
  • a glass rod 24 having the same refractive index as that of the clad glass body 20 is inserted into the remaining space in which the double-layer glass rod 40 is inserted in the hole 33.
  • the glass rod 24 has a cross-sectional shape in which a part of a circle having a slightly smaller diameter is cut out linearly from two circles that partially overlap the hole 33 in the cross-section of the intermediate base material 130. is doing.
  • the order of insertion of the two-layer glass rod 40 and the glass rod 24 may be that the two-layer glass rod 40 and the glass rod 24 may be inserted at the same time, or one of the two-layer glass rod 40 and the glass rod 24. May be inserted first.
  • the intermediate base material 130 in which the two-layer glass rod 40 and the like are inserted is heated.
  • the gap between the two-layer glass rod 40 and the glass rod 24 in the hole 33 is filled, and the outer layer 42 and the glass rod 24 of the two-layer glass rod 40 are part of the clad glass body 20. .
  • drawing step s5 is performed in the same manner as in the first embodiment to obtain PBGF3 shown in FIG.
  • the hole 33 in the cross section of the intermediate base material 130 is formed in the remaining space in which the double-layer glass rod 40 is inserted in the hole 33. Since the glass rod 24 having a shape in which a part of a circle having a slightly smaller diameter is cut out in a straight line is inserted from the two circles in which the constituent parts overlap, other than the part where the double-layer glass rod of the hole 33 is inserted It is possible to suppress a plurality of small gaps. Therefore, the PBGF base material 103 with high accuracy can be obtained.
  • FIG. 18 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the PBGF according to the sixth embodiment of the present invention
  • FIG. 19 shows the length of the intermediate base material after the drilling step in the present embodiment.
  • 20 is a cross-sectional view showing a structure in a cross section perpendicular to the direction, FIG.
  • FIG. 20 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material after the insertion step in the present embodiment, FIG. It is sectional drawing which shows the structure in a cross section perpendicular
  • the PBGF4 of the present embodiment is different from the PBGF4 in that three periodic structure regions 26 constituted by a plurality of high refractive index portions 41 are formed around the core 15. Different from PBGF1 in one embodiment.
  • a part of the high refractive index portion 45 overlaps the line L1 extending in the radial direction through the center of the PBGF4 in the cross section of the PBGF4.
  • the other high refractive index portions 45 are arranged in a triangular lattice shape so that the distances between the high refractive index portions 45 adjacent to each other are equal.
  • the lines L1 overlapping with the arrangement of the high refractive index portions 45 form an angle of 120 degrees.
  • the attenuation amount of the wavelength that is not transmitted can be increased by increasing the number of the periodic structure regions 26 to three. Further, since the number of the periodic structure regions 26 is increased to three, the thermal stress applied to the core 15 has a three-fold symmetry, so that the birefringence of the core 15 can be reduced.
  • the forming step s1 is performed in the same manner as the forming step s1 in the first embodiment, and the intermediate base material 100 shown in FIG.
  • the double-layer glass rods and the glass rods 22 and 23 are inserted into the respective holes 30 of the intermediate base material 140.
  • the two-layer glass rod 40 and the glass rods 22 and 23 may be inserted in the same manner as in the first embodiment. In this way, an intermediate base material 140 in which the two-layer glass rod 40 and the glass rods 22 and 23 shown in FIG. 20 are inserted into the three holes 30 is obtained.
  • the intermediate base material 140 into which the two-layer glass rod 40 and the like are inserted is heated to obtain the PBGF base material 104 shown in FIG.
  • FIG. 22 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the PBGF according to the seventh embodiment of the present invention
  • FIG. 24 is a cross-sectional view showing a structure in a cross section perpendicular to the length direction of the intermediate base material after the insertion step in the present embodiment
  • FIG. It is sectional drawing which shows the structure in a cross section perpendicular
  • the PBGF 5 of the present embodiment is different in that the four periodic structure regions 26 constituted by a plurality of high refractive index portions 41 are formed around the core 15 in the cross section of the PBGF 5. Different from PBGF1 in one embodiment.
  • a part of the high refractive index portion 45 overlaps the line L1 extending in the radial direction through the center of the PBGF5 in the cross section of the PBGF5.
  • the other high refractive index portions 45 are arranged in a triangular lattice shape so that the distances between the high refractive index portions 45 adjacent to each other are equal.
  • the lines L1 overlapping the array of the high refractive index portions 45 are perpendicular to each other.
  • the attenuation amount of the wavelength that is not transmitted can be further increased by increasing the number of the periodic structure regions 26 to four.
  • the thermal stress applied to the core 15 has four-fold symmetry, so that the birefringence of the core 15 can be reduced.
  • the forming step s1 is performed in the same manner as the forming step s1 in the first embodiment, and the intermediate base material 100 shown in FIG.
  • each hole 30 is formed such that a line connecting the centers of the holes 30 facing each other via the core glass body 10 overlaps a line passing through the center of the core glass body 10.
  • the two-layer glass rods and the glass rods 22 and 23 are inserted into the respective holes 30 of the intermediate base material 150.
  • the two-layer glass rod 40 and the glass rods 22 and 23 may be inserted in the same manner as in the first embodiment. In this way, an intermediate base material 150 in which the two-layer glass rod 40 and the glass rods 22 and 23 shown in FIG. 24 are inserted into the four holes 30 is obtained.
  • the intermediate base material 150 into which the two-layer glass rod 40 or the like is inserted is heated to obtain a PBGF base material 105 shown in FIG.
  • the outer periphery of the resin clad 55 is covered with the protective layer 56.
  • the protective layer 56 is not essential, and the protective layer 56 may be omitted.
  • the resin clad 55 and the protective layer 56 may be omitted.
  • the core 15 may have an elliptical shape in a cross section perpendicular to the longitudinal direction of the PBGF. Specifically, the direction connecting the two high refractive regions 26 and the major axis of the elliptical shape of the core overlap, and the direction perpendicular to the direction connecting the two high refractive regions 26 and the minor axis of the elliptical shape of the core overlap. Configured as follows.
  • Such PBGF can increase the birefringence of the core.
  • Such PBGF is formed as follows. For example, in the first embodiment, when the cross-sectional shape of the core 15 is elliptical, the glass rods 22 and 23 are inserted with a gap in the insertion step s3.
  • the heating step s4 stress is applied to the core glass body 10 so as to be pulled in the direction of the two holes 30 in order to fill this gap.
  • the core is formed so that the core glass body 10 extends in the direction of the two holes 30, and the cross-sectional shape of the core becomes an ellipse.
  • a PBGF having an elliptical cross-sectional shape of the core can be obtained by inserting a gap.
  • the position where a hole is made can be freely adjusted according to PBGF manufactured.
  • the heating step s4 and the drawing step s5 are performed separately, but the heating step s4 and the drawing step s5 may be performed simultaneously.
  • heating is performed while the inside of the hole 30 is evacuated with a jig (not shown). .
  • a jig not shown
  • the arrangement of the high refractive index portions 41 in one periodic structure region 26 and the high in the other periodic structure region 26 are used.
  • the arrangement of the refractive index portions 41 is axisymmetric.
  • the present invention is not limited to this, and the arrangement of the high refractive index portions 41 in one periodic structure region 26 and the arrangement of the high refractive index portions 41 in the other periodic structure region 26 are points with respect to the center of the PBGF. It may be symmetric.
  • Such PBGF is inserted into the array of the two-layer glass rods 40 inserted into one hole 30 and the other hole 30 with the center of the intermediate base material 110 as a reference in the insertion step of the second embodiment. It can be manufactured by inserting a plurality of double-layer glass rods 40 so that the arrangement of the double-layer glass rods 40 becomes point-symmetric.
  • the arrangement of the high refractive index portions 41 in the two periodic structure regions 26 may not be symmetrical to each other.
  • the intermediate base material 120 is configured such that each hole 31 connects a pair of apexes facing each other at the periphery of the hole 31 in the cross section of the intermediate base material 100. Is formed so as to overlap the line L1 that passes through the center of the intermediate base material 100 and extends in the radial direction of the intermediate base material 100.
  • the present invention is not limited to this.
  • a line perpendicular to a pair of sides facing each other at the periphery of each hole 31 passes through the center of the intermediate base material 100 and the intermediate base material 100. It may be formed so as to overlap with a line extending in the radial direction. Alternatively, each hole 31 may rotate in another direction.
  • the arrangement of a part of the high refractive index portions 45 in each periodic structure region 26 is a line extending in the radial direction through the center of the PBGFs 4 and 5 in the cross section of the PBGFs 4 and 5.
  • the high refractive index portions 45 in the respective periodic structure regions 26 may be arranged so as not to overlap with a line extending in the radial direction through the center of the PBGFs 4 and 5 in the cross section of the PBGFs 4 and 5.
  • the PBGFs 1 to 5 are configured so that the outer periphery of the clad 25 is covered with the resin clad 55, but it is not always necessary to be covered with the resin clad 55.
  • Example 1 A PBGF similar to that of the first embodiment was produced in the same manner as the manufacturing method of the first embodiment.
  • the intermediate base material was produced by the MCVD method.
  • the core had an elliptical cross section, and the two diameters in the orthogonal direction were 14.4 ⁇ m and 9.8 ⁇ m.
  • the outer shape of the cladding was 154 ⁇ m, the outer diameter of the resin cladding was 180 ⁇ m, and the outer diameter of the protective layer was 260 ⁇ m. Further, the diameter of the high refractive index portion was 4.7 ⁇ m, and the center-to-center distance (pitch) of the high refractive index portion was 7.5 ⁇ m.
  • the length of PBGF was 21 m.
  • the core is composed of quartz co-doped so that Yb is 9000 ppm by weight and Al is 6000 ppm by weight
  • the cladding is composed of quartz with no dopant added
  • the resin cladding has a refractive index.
  • the protective layer was made of acrylate having a refractive index of 1.5, and the high refractive index portion was made of quartz to which 18 mol% of Ge was added.
  • the relative refractive index difference of the high refractive index portion relative to the cladding was 2.8%, and the relative refractive index difference of the high refractive index portion relative to the cladding of the core was 0.15%.
  • DGD Different Group Delay
  • the filter characteristics were examined by making PBGF into loops having diameters of 300 mm, 100 mm, and 80 mm, respectively. The result is shown in FIG. It was found that the PBGF produced as shown in FIG. 26 functions as a wavelength selection filter having a threshold value near a wavelength of 1100 nm.
  • Example 2 a PBGF similar to that of the fourth embodiment was manufactured in the same manner as the manufacturing method in the fourth embodiment.
  • the intermediate base material was produced by the MCVD method.
  • the PBGF produced at this time was the same as Example 1 except that the high refractive index portion was arranged as shown in FIG.
  • the group birefringence of this PBGF was 2.5 ⁇ 10 ⁇ 4 . Therefore, it was found that the polarization maintenance is further increased.
  • Example 1 (Comparative Example 1) Next, the same PBGF as in Example 1 was produced. At this time, the production of PBGF was performed in the same manner as in Example 1 except that the intermediate base material shown in FIG. 27 was used.
  • the PBGF of Examples 1 and 2 had less transmission loss than the PBGF of Comparative Example 1, and that the PBGF produced by the PBGF manufacturing method of the present invention can suppress the light transmission loss. .
  • a photonic band gap fiber manufacturing method and a photonic band gap fiber manufacturing method capable of manufacturing a photonic band gap fiber capable of suppressing light transmission loss are provided.
  • Photonic band gap fiber PBGF
  • SYMBOLS 10 Core glass body 15 ... Core 20 ... Clad glass body 22, 23, 24 ... Glass rod 25 ... Cladding 26 ... Periodic structure area 30, 31, 33 ... Hole 40 ... Two-layer glass rod 41 ... High refractive index part 42 ... Outer layer 45 ... High refractive index part 55 ... Resin cladding 56 ... Protective layer 61 ... Heating furnace 62 ..Cooling device 63, 65 ... Coating die 64,66 ... UV irradiation device 67 ... Pulley 68 ... Bobbin 100,110,120,130,140,150 ...
  • PBGF Photonic band gap fiber

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

[課題] 光の伝送損失を抑制することができるフォトニックバンドギャップファイバの製造を可能とするフォトニックバンドギャップファイバ用母材を提供する。 [解決手段] フォトニックバンドギャップファイバ用母材の製造方法は、光ファイバのコアとなる柱状のコアガラス体10、及び、光ファイバのクラッドとなりコアガラス体を被覆するクラッドガラス体20を連続して形成し、中間母材110とする形成工程と、コアガラス体10の長手方向に沿ってクラッドガラス体20に孔30をあける孔あけ工程と、クラッドガラス体20の屈折率よりも屈折率が高い高屈折率部41が、クラッドガラス体と同じ屈折率の外側層42により被覆された複数の2層ガラスロッド40を孔30に挿入する挿入工程と、2層ガラスロッド40が孔30に挿入された中間母材110を加熱して、中間母材110と2層ガラスロッド40とを一体化する加熱工程とを備える。

Description

フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
 本発明は、フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法に関する。
 光通信やファイバレーザ装置等に用いる光ファイバの1つとして、フォトニックバンドギャップファイバが知られている。そして、フォトニックバンドギャップファイバの1つとして、コアを被覆するクラッド内にコアよりも屈折率の高い材料からなる高屈折率部が複数設けられているフォトニックバンドギャップファイバがあり、光フィルタや偏波保持光ファイバとして用いられている。
 下記特許文献1には、このようなフォトニックバンドギャップファイバの一例が記載されている。この特許文献1に記載のフォトニックバンドギャップファイバは、希土類元素が添加されたコアと、このコアを被覆するクラッドとを有し、このクラッド内において、複数の高屈折率部が三角格子状に配列されている周期構造領域が、コアを挟むようにして形成されているものである。特許文献1においては、この周期構造領域により、希土類元素が放出する自然放出光のうち、増幅させたくない波長の伝播が制限されるようにできるとしている。
 また、下記特許文献2には、フォトニックバンドギャップファイバの製造方法が記載されている。このフォトニックバンドギャップファイバの製造方法においては、まず、希土類元素が添加されたコアとなるガラスロッドと、石英よりも屈折率の高い高屈折率部が石英からなる外側層によって被覆される2層ガラスロッドと、石英からなる石英管とを準備する。次に、石英管の貫通孔内において、貫通孔の中心にコアとなるガラスロッドを配置すると共に、コアの周りに2層ガラスロッドを配置する。次に、コアとなるガラスロッド及び2層ガラスロッドが配置された石英管を真空中で加熱することで、石英管の貫通孔内の隙間を埋めて、フォトニックバンドギャップファイバ用母材を作製する。そして、このフォトニックバンドギャップファイバ用母材を線引きしてフォトニックバンドギャップファイバとするものである。
特許第4243327号公報 特開2008-226885号公報
 上記特許文献1に記載のように、複数の高屈折率部が三角格子状に配列されている周期構造領域が、コアを挟むように形成されているフォトニックバンドギャップファイバを、特許文献2に記載の製造方法を用いて製造する方法は、次のようになる。すなわち、図27に示すように上記特許文献2に記載の製造方法において、まず、コアとなるガラスロッド10Aと、クラッドとなる石英と同じ屈折率のガラスロッド22Aと、石英よりも屈折率の高い屈折率を有する高屈折率部41Aが、石英と同じ屈折率を有する外側層42Aで被覆された2層ガラスロッド40Aと、を準備する。そして、石英管20Aの貫通孔内において、コアとなるガラスロッド10Aを貫通孔の中心に配置し、さらに、2層ガラスロッド40Aをコアとなるガラスロッド10Aの左右において周期構造となるように配置する。このとき2層ガラスロッド40Aは、コアを挟むように配列する。さらに、貫通孔内の他の部分にガラスロッド22Aを配置する。そして、このようにガラスロッドが石英管20Aに挿入された状態で、石英管20Aを真空中で加熱することで、フォトニックバンドギャップファイバ用母材が製造される。次に、このフォトニックバンドギャップファイバ用母材を線引きすることにより、特許文献1に記載のようなフォトニックバンドギャップファイバが得ることができる。
 しかし、上記特許文献2に記載の製造方法により、特許文献1に記載のようなフォトニックバンドギャップファイバが製造されると、製造されたフォトニックバンドギャップファイバにおいては、光の伝送損失が大きい場合がある。
 そこで、本発明は、光の伝送損失を抑制することができるフォトニックバンドギャップファイバの製造を可能とするフォトニックバンドギャップファイバ用母材の製造方法、および、フォトニックバンドギャップファイバの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明者は、特許文献2に記載の製造方法により製造されるフォトニックバンドギャップファイバの光の伝送損失が大きくなる原因について鋭意研究をした。その結果、特許文献2に記載の製造方法により製造されるフォトニックバンドギャップファイバのコアは、コアの表面に傷がついていたり不純物が付着していたりする場合があることが、光の伝送損失が大きくなる原因であることを突き止めた。
 そこで、本発明者らは、コアの表面に傷がついたり、不純物が付着したりすることが抑制できるフォトニックバンドギャップファイバの製造方法について更に研究し本発明をするに至った。
 すなわち本発明のフォトニックバンドギャップファイバ用母材の製造方法は、コアとなる柱状のコアガラス体、及び、クラッドとなり前記コアガラス体の外周を被覆するクラッドガラス体を連続して形成し、中間母材とする形成工程と、前記コアガラス体の長手方向に沿ってクラッドガラス体に孔をあける孔あけ工程と、前記クラッドガラス体の屈折率よりも屈折率が高い柱状の高屈折率部と、前記クラッドガラス体と同じ屈折率を有し前記高屈折率部の外周を被覆する外側層とを有する、複数の2層ガラスロッドを前記孔に挿入する挿入工程と、前記2層ガラスロッドが前記孔に挿入された前記中間母材を加熱して、前記中間母材と前記2層ガラスロッドとを一体化する加熱工程と、を備えることを特徴とするものである。
 このようなフォトニックバンドギャップファイバ用母材の製造方法によれば、コアガラス体とクラッドガラス体とが連続して形成されるため、コアガラス体の表面に傷がつくことや、不純物が付着することを抑制することができる。そして、このようなフォトニックバンドギャップファイバ用母材を線引きすることで、2層ガラスロッドの高屈折率部によりクラッド内に複数の高屈折率部が形成され、コアとクラッドとの界面に傷や不純物が存在することが抑制されたフォトニックバンドギャップファイバを製造することができる。
 また、このようなフォトニックバンドギャップファイバ用母材の製造方法によれば、クラッドガラス体にあけられる孔の位置を自由に調整することができ、フォトニックバンドギャップファイバにおける高屈折率部の位置を自由に調整することができる。
 また、上記フォトニックバンドギャップファイバ用母材の製造方法において、前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は円形であることが好ましい。
 このように中間母材の断面において、孔の周縁の形状を円形にすることで、機械的手段により容易に孔を形成することができ、孔あけ工程を簡易に行うことができる。さらに、孔の周縁の形状が円形であるため、複数の2層ガラスロッドの配列を孔の周方向に対して自由に回転させることができる。従って、挿入工程において、2層ガラスロッドの配列の向きを、自由に調整することができる。このようなフォトニックバンドギャップファイバ用母材を用いることにより、複数の高屈折率部が、断面における中心を通り径方向に延びる1つの線と重なるように並べられたフォトニックバンドギャップファイバや、複数の高屈折率部の配列が、断面における中心を通り径方向に延びる線と重ならないように傾けられたフォトニックバンドギャップファイバを容易に製造することができる。
 あるいは、上記フォトニックバンドギャップファイバ用母材の製造方法において、前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は正六角形であることが好ましい。
 このように中間母材の断面において、孔の周縁の形状を正六角形にすることで、孔内に同一の直径を有するガラスロッドを最密充填することができる。さらに、断面における孔の周縁の形状が円形ではないため、複数の2層ガラスロッドの配列が孔の周方向に対して動くことが抑制される。従って、孔に対して容易に2層ガラスロッドやガラスロッドを固定することができる。
 あるいは、上記フォトニックバンドギャップファイバ用母材の製造方法において、前記中間母材の長さ方向に垂直な断面における前記孔の周縁は、同一の直径を有する2つの円の一部が重なった外周からなる形状であることが好ましい。
 このように構成することで、孔あけ工程において、断面における周縁の形状が円形である孔を、一部が重なるように2つ開ければよいため、機械的手段により容易に孔を形成することができる。従って、孔あけ工程を簡易に行うことができる。さらに、断面における孔の周縁の形状が円形ではないため、挿入工程後は、複数の2層ガラスロッドの配列が孔の周方向に対して動くことが抑制でき、孔に対して容易に2層ガラスロッドやガラスロッドを固定することができる。
 さらに、上記フォトニックバンドギャップファイバ用母材の製造方法において、前記挿入工程において、断面が前記2つの円より僅かに直径の小さな円の一部が直線状に切り取られた形状であり、前記クラッドガラスと同一の屈折率を有するガラスロッドを前記2層ガラスロッドと共に挿入することが好ましい。
 挿入工程をこのように構成することで、孔の2層ガラスロッドが挿入される部分以外に小さな複数の隙間があくことを抑制でき、精度の高いフォトニックバンドギャップファイバ用母材を製造することができる。
 また、上記フォトニックバンドギャップファイバ用母材の製造方法において、前記コアガラス体には希土類元素が添加されることであっても良い。
 また、本発明のフォトニックバンドギャップファイバの製造方法は、コアとなる柱状のコアガラス体、及び、クラッドとなり前記コアガラス体の外周を被覆するクラッドガラス体を連続して形成し、中間母材とする形成工程と、前記コアガラス体の長手方向に沿ってクラッドガラス体に孔をあける孔あけ工程と、前記クラッドガラス体の屈折率よりも屈折率が高い柱状の高屈折率部と、前記クラッドガラス体と同じ屈折率を有し前記高屈折率部の外周を被覆する外側層とを有する、複数の2層ガラスロッドを前記孔に挿入する挿入工程と、前記2層ガラスロッドが前記孔に挿入された前記中間母材を加熱して、前記中間母材と前記2層ガラスロッドとを一体化してフォトニックバンドギャップファイバ用母材とする加熱工程と、前記フォトニックバンドギャップファイバ用母材を線引きする線引工程と、を備えることを特徴とするものである。
 このようなフォトニックバンドギャップファイバの製造方法によれば、コアガラス体とクラッドガラス体とが連続して形成されるため、コアガラス体の表面に傷がつくことや、不純物が付着することが抑制される。従って、コアとクラッドとの界面に傷や不純物が存在することが抑制されたフォトニックバンドギャップファイバを製造することができる。
 また、上記フォトニックバンドギャップファイバの製造方法において、前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は円形であることが好ましい。
 あるいは、上記フォトニックバンドギャップファイバの製造方法において、前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は正六角形であることが好ましい。
 あるいは、上記フォトニックバンドギャップファイバの製造方法において、前記中間母材の長さ方向に垂直な断面における前記孔の周縁は、同一の直径を有する2つの円の一部が重なった外周からなる形状であることが好ましい。
 さらに、上記フォトニックバンドギャップファイバの製造方法において、前記挿入工程において、断面が前記2つの円より僅かに直径の小さな円の一部が直線状に切り取られた形状であり、前記クラッドガラスと同一の屈折率を有するガラスロッドを前記2層ガラスロッドと共に挿入することが好ましい。
 また、上記フォトニックバンドギャップファイバの製造方法において、前記コアガラス体には希土類元素が添加されることであっても良い。
 また、上記フォトニックバンドギャップファイバの製造方法において、前記加熱工程及び前記線引工程を同時に行うことが好ましい。
 このようにすることで、高屈折率部の熱応力によりフォトニックバンドギャップファイバ用母材が割れることを抑制することができる。
 本発明によれば、光の伝送損失を抑制することができるフォトニックバンドギャップファイバの製造を可能とするフォトニックバンドギャップファイバ用母材の製造方法、および、フォトニックバンドギャップファイバの製造方法が提供される。
本発明の第1実施形態に係るフォトニックバンドギャップファイバの長さ方向に垂直な断面における構造を示す断面図である。 図1に示すフォトニックバンドギャップファイバの製造方法の工程フローチャートを示す図である。 図2に示す形成工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 図2に示す孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 図2に示す挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 図2に示す加熱工程後のフォトニックバンドギャップファイバ用母材の長さ方向に垂直な断面における構造を示す断面図である。 図2に示す線引工程の様子を示す図である。 本発明の第2実施形態に係るフォトニックバンドギャップファイバの長さ方向に垂直な断面における構造を示す断面図である。 本発明の第2実施形態における挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す図である。 本発明の第2実施形態により製造されるフォトニックバンドギャップファイバ用母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第3実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第3実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第4実施形態に係るフォトニックバンドギャップファイバの長さ方向に垂直な断面における構造を示す断面図である。 本発明の第4実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第4実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第4実施形態おける加熱工程後の母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第5実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第6実施形態に係るフォトニックバンドギャップファイバの長さ方向に垂直な断面における構造を示す断面図である。 本発明の第6実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第6実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第6実施形態おける加熱工程後の母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第7実施形態に係るフォトニックバンドギャップファイバの長さ方向に垂直な断面における構造を示す断面図である。 本発明の第7実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第7実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。 本発明の第7実施形態おける加熱工程後のフォトニックバンドギャップファイバ用母材の長さ方向に垂直な断面における構造を示す断面図である。 実施例1によるフォトニックバンドギャップファイバの透過特性を示す図である。 従来技術を応用した場合のフォトニックバンドギャップファイバ用母材を製造する工程を示す断面図である。
 以下、本発明に係るフォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法の好適な実施形態について図面を参照しながら詳細に説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係るフォトニックバンドギャップファイバ(PBGF)の長さ方向に垂直な断面における構造を示す断面図である。
 図1に示すように、PBGF1は、断面形状が円形のコア15と、複数の高屈折率部45が形成される周期構造領域26を有すると共に、コア15の外周を被覆するクラッド25と、クラッド25の外周を被覆する樹脂クラッド55と、樹脂クラッド55の外周を被覆する保護層56とから構成される。
 複数の高屈折率部45は、PBGF1の断面において、一部の高屈折率部45が、PBGF1の中心を通り径方向に延びる1つの線L1と重なるように一列に配列されている。さらに、他の高屈折率部45が互いに隣り合う高屈折率部45間の距離が等しくなるように三角格子状に配列されている。こうして周期構造領域26が形成されている。この周期構造領域26は、PBGF1の径方向におけるコア15の両側に形成されている。なお、本実施形態において、線L1と重なるように配列された高屈折率部45の数は、一列に配列をなす他の高屈折率部45の数よりも多いものとされる。
 このようなPBGF1において、クラッド25における高屈折率部45以外の部分の屈折率は、コア15の屈折率よりも低くされ、樹脂クラッド55の屈折率は、クラッド25における高屈折率部45以外の部分の屈折率よりも大幅に低くされる。また、高屈折率部45の屈折率は、クラッド25における高屈折率部45以外の部分の屈折率よりも高くされる。また、高屈折率部45の屈折率はコア15の屈折率よりも高くされることが好ましい。なお、高屈折率部45の屈折率は、高くされることで、高屈折率部45の数が少なくても、コア15を透過する波長帯域でのコア15への光の閉じ込めが強くなり、コア15の伝送損失を小さくすることができる。また、高屈折率部45の屈折率を高く構成することにより、同じ光の閉じ込めであっても、高屈折率部45の数を減らすことができる。
 また、PBGF1を構成する各構成の大きさは、その用途により適切に選択されるため特に制限されるものではないが、例えば、コア15の直径は、10μm~20μmとされ、クラッド25の外径は、100μm~400μmとされ、樹脂クラッド55の外径は、120μm~440μmとされ、保護層56の外径は、250μm~550μmとされる。また、例えば、高屈折率部45の直径は、2.0μm~8.5μmとされ、互いに隣り合う高屈折率部45の中心間距離は、4μm~10μmとされる。さらに、例えば、コア15と最も近い高屈折率部45とコア15との中心間距離は、4μm~20μmとされる。
 また、コア15を構成する材料としては、例えば、希土類元素が添加される石英や、希土類元素と他の元素が共添加される石英や、希土類元素ではない1種類以上のドーパントが添加される石英等が挙げられる。希土類元素としては、イッテルビウム(Yb)、エルビウム(Er)、ネオジウム(Nd)等が挙げられ、希土類元素ではないドーパントとしては、酸化ゲルマニウム(GeO)や酸化アルミニウム(Al)等が挙げられる。また、クラッド25の高屈折率部45以外の部分を構成する材料としては、例えば、何らドーパントが添加されない石英や、フッ素(F)等の屈折率を下げるドーパントが添加される石英が挙げられる。さらに高屈折率部45を構成する材料としては、GeO等の屈折率を上げるドーパントが添加される石英等が挙げられる。また、樹脂クラッド55を構成する材料としては、例えば、屈折率が1.38のフッ素化アクリレート等の紫外線硬化樹脂が挙げられる。また、保護層56を構成する材料としては、屈折率が1.5のアクリレート等の紫外線硬化樹脂が挙げられる。
 このようなPBGF1は、コア15を挟むように、一組の周期構造領域26が形成されているため、高屈折率部45が応力付与部として作用し、偏波保持光ファイバとして用いることができる。また、PBGF1は、周期構造領域26により、フォトニックバンドギャップが形成され、複数の高屈折率部45により透過が抑制される波長領域と透過する波長領域とを有し、波長選択フィルタとして用いることができる。さらに、コア15のドーパントとして希土類元素が添加される場合には、増幅用光ファイバとして用いることができ、この場合、上記の波長選択フィルタとしての機能をも有するため、増幅させたい光をコア15に閉じ込めて選択的に伝播させると共に、増幅させたくない光をコア15から除去し、効率の良い増幅用光ファイバとして用いることができる。
 次に、図1に示すPBGF1の製造方法について説明する。
 図2は、図1に示すPBGF1の製造方法の工程フローチャートを示す図である。図2に示すように、PBGF1の製造方法は、コア15となる柱状のコアガラス体、及び、クラッド25となりコアガラス体の外周を被覆するクラッドガラス体を連続して形成し、中間母材とする形成工程s1と、コアガラス体の長手方向に沿ってクラッドガラス体に孔をあける孔あけ工程s2と、クラッドガラス体の屈折率よりも屈折率が高い柱状の高屈折率部と、クラッドガラス体と同じ屈折率を有し高屈折率部の外周を被覆する外側層とを有する、複数の2層ガラスロッドを孔に挿入する挿入工程s3と、2層ガラスロッドが孔に挿入された中間母材を加熱して、中間母材と2層ガラスロッドとを一体化してフォトニックバンドギャップファイバ用母材(PBGF用母材)とする加熱工程s4と、PBGF用母材を線引きする線引工程s5と、を備える。
 (形成工程s1)
 図3は、図2に示す形成工程s1後の中間母材100の長さ方向に垂直な断面における構造を示す断面図である。図3に示すように形成工程s1により形成される中間母材100は、中心にPBGF1のコア15となるコアガラス体10と、コアガラス体10を被覆し、PBGF1のクラッド25となるクラッドガラス体20とから構成される。
 形成工程s1は、コア15となるコアガラス体10と、クラッド25となりコアガラス体を被覆するクラッドガラス体20とを連続して形成する方法であれば、特に限定されないが、例えば、MCVD法、VAD法、OVD法等のスートプロセスを用いる方法が、希土類添加を行う場合に溶液含浸法を用いることができるため好ましい。
 MCVD法を用いて中間母材を形成する場合は、まずクラッドガラス体20から形成し、クラッドガラス体の形成に連続してコアガラス体10を形成する。
 クラッドガラス体の形成は、流量が制御された酸素ガス(Oガス)により、気化された塩化ケイ素(SiCl)を加熱された石英ガラス管に導入し、石英ガラス管内の熱により、SiClから酸化ケイ素(石英:SiO)とするものである。このとき、PBGF1のクラッド25が、何らドーパントが添加されない石英により構成される場合には、特にドーパントを加えずにクラッドガラス体20を形成する。また、PBGF1のクラッド25が、F等のドーパントが添加される石英により構成される場合には、気化されたSiClと共にドーパントを含有するガスを石英管内に導入する。例えば、ドーパントがFである場合には、気化されたSiClと共に気化された四フッ化ケイ素(SiF)を石英管内に導入する。そして、石英ガラス管内の熱により、透明なガラス体とする。こうしてクラッドガラス体20を得る。
 次に、コアガラス体10を形成する。コアガラス体10に添加されるドーパントとなる材料が、例えばGeO等のように気化可能である場合には、Oガスにより、気化されたSiClと共に気化されたドーパントとなるガスを導入する。例えば、ドーパントがGeOである場合には、気化されたSiClと共に気化されたGeClをクラッドガラス体20が形成された石英管内に導入する。こうしてSiClがSiOとされると共にGeClがGeOとされて、屈折率の高いコアガラス体10が形成される。また、コアガラス体に添加されるドーパントとなる材料が、一部の希土類元素の様に気化できない場合は、例えば、溶液含浸法により希土類元素等のドーパントを導入する。すなわち、クラッドガラス体20の形成後、石英ガラスの多孔質ガラス層をクラッドガラス内面に堆積させ、この多孔質ガラス層に希土類元素等のドーパントの塩化物が溶解した溶液を含浸させる。その後、液抜き、乾燥させた後、多孔質層を透明化させてコアガラス体10とする。
 こうして、中間母材100を得る。
 OVD法を用いて中間母材を形成する場合は、コアガラス体10を形成し、コアガラス体10の形成に連続して、クラッドガラス体20を形成する。
 コアガラス体10の形成は、コアガラス体10に添加されるドーパントとなる材料が気化可能な場合は、流量が制御されたアルゴンガス(Arガス)により、気化されたSiClと共に気化されたドーパントとなる材料を酸水素バーナの火炎内に導入する。そして、SiClがSiOとされ、図示しない心棒の外周面上にSiOとドーパントの微粒子からなるスートを堆積させる。例えばドーパントが、GeOである場合には、気化されたSiClとGeClとを酸水素バーナの火炎内に導入する。そして、SiClからSiOとされ、GeClからGeOとされ、SiOやGeOの微粒子からなるスートを堆積させる。その後、心棒を抜き取り、堆積したスートを加熱して、透明なガラス体とすると共に心棒を抜き取った後の孔を埋める。こうしてコアガラス体10とする。一方、コアガラス体10に添加されるドーパントとなる材料が、一部の希土類元素の様に気化できない場合は、気化されたSiClを酸水素ガスによる火炎内に導入し、SiO2のスートを心棒の外周面上に堆積させて、多孔質ガラス層とする。この多孔質ガラス層に希土類元素等のドーパントの塩化物が溶解した溶液を含浸させると共に心棒を抜き取る。その後、液抜き、乾燥させた後、多孔質層を透明化させ、心棒の孔を埋めてコアガラス体10とする。
 次に、クラッドガラス体20を形成する。クラッドガラス体の形成は、流量が制御されたArガスにより、気化されたSiClを酸水素バーナの火炎中に導入し、SiClからSiOとすると共に、SiOガラスのスートを先に形成したコアガラス体10の外周を被覆するように形成する。その後、スートを透明化することによりクラッドガラス体20とする。このとき、PBGF1のクラッド25が、何らドーパントが添加されない石英により構成される場合には、特にドーパントを加えずにクラッドガラス体20を形成する。また、PBGF1のクラッド25が、F等のドーパントが添加される石英により構成される場合には、気化されたSiClと共にドーパントを含有するガスを酸水素バーナの火炎内に導入する。例えば、ドーパントがFである場合には、気化されたSiClと共に気化されたSiFを酸水素バーナの火炎内に導入する。
 こうして、中間母材100を得る。
 VAD法を用いて中間母材を形成する場合は、コアガラス体10を形成し、コアガラス体10の形成に連続して、クラッドガラス体20を形成する。
 コアガラス体10の形成は、コアガラス体10に添加されるドーパントとなる材料が気化可能な場合は、流量が制御されたArガスにより、気化されたSiClと共に気化されたドーパントとなる材料を酸水素バーナによる火炎内に導入する。そして、SiClがSiOとされ、図示しない出発材の先端にSiOとドーパントの微粒子からなるスートを堆積させる。例えばドーパントが、GeOである場合には、気化されたSiClとGeClとを酸水素バーナの火炎内に導入する。そして、SiClからSiOとされ、GeClからGeOとされ、SiOやGeOの微粒子からなるスートを堆積させる。その後、堆積したスートを加熱して、透明なガラス体とする。こうしてコアガラス体10とする。一方、コアガラス体10に添加されるドーパントとなる材料が、一部の希土類元素の様に気化できない場合は、気化されたSiClを酸水素ガスによる火炎内に導入し、SiO2のスートを出発材の先端に堆積させて、多孔質ガラス層とする。この多孔質ガラス層に希土類元素等のドーパントの塩化物が溶解した溶液を含浸させ、その後、液抜き、乾燥させた後、多孔質層を透明化させてコアガラス体10とする。
 次に、OVD法と同様の方法によりクラッドガラス体20を形成する。
 なお、コアガラス体10に添加されるドーパントが気化可能な場合は、次のように形成工程s1を行っても良い。まず、コアガラス体作製用の酸水素バーナとクラッドガラス体作製用の酸水素バーナとを準備する。そして、気化されたSiClと共に気化されたコアガラス体10に添加されるドーパントとなる材料をコアガラス体作製用の酸水素バーナによる火炎内に導入する。そして、これと同時にと共に、気化されたSiClをクラッドガラス体作製用の酸水素バーナの火炎中に導入し、SiClからSiOとする。こうして、図示しない出発材の先端にコアガラス体10を形成するスートを形成しながら、コアガラス体10を形成するスートを被覆するようにクラッドガラス体20を形成するスートとを同時に形成する。その後、これらのスートを透明化して、コアガラス体10及びクラッドガラス体20とする。このとき、PBGF1のクラッド25が、何らドーパントが添加されない石英により構成される場合には、特にドーパントを加えずにクラッドガラス体20を形成する。また、PBGF1のクラッド25が、F等のドーパントが添加される石英により構成される場合には、気化されたSiClと共にドーパントを含有するガスをクラッドガラス体作製用の酸水素バーナの火炎内に導入する。
 こうして、中間母材100を得る。
 このようにコアガラス体10及びクラッドガラス体20を連続して形成することで、図3に示すコアガラス体10の外周がクラッドガラス体20により被覆されたロッド状の中間母材100が形成される。
 (孔あけ工程s2)
 形成工程s1により中間母材100が形成されると、孔あけ工程s2を行う。図4は、図2に示す孔あけ工程s2後の中間母材100の長さ方向に垂直な断面における構造を示す断面図である。
 孔あけ工程s2においては、図3に示す中間母材100のクラッドガラス体20に一組の孔30をコアガラス体10の長さ方向に沿って形成し、図4に示すように中間母材110とする。この孔30は、図4に示すように中間母材110の長さ方向に垂直な断面において、孔30の周縁の形状が円形となるように形成される。すなわち、中間母材110における孔30による内壁は、円筒状とされる。また、一組の孔30は、中間母材100の中心を基準として互いが対称となる位置に形成される。
 このような一組の孔30の形成は、例えばドリル等の機械的手段により形成する。このとき、孔30により、コアガラス体10が孔30内に露出しないようにする。
 なお、孔30を形成した後、クラッドガラス体20の内壁を研磨し、内壁の凹凸等を除去することが、PBGF1内に気泡や歪みが生じることを抑制する観点から好ましい。
 こうして、図4に示す、一組の孔30が形成された中間母材110を得る。
 (挿入工程s3)
 次に孔あけ工程s2により形成された一組の孔30内に複数の2層ガラスロッド40、及び、クラッドガラス体20と同一の屈折率を有するガラスロッド22、23を挿入する。この2層ガラスロッド40は、クラッドガラス体20よりも屈折率が高い柱状の高屈折率部41と、高屈折率部41の外周を被覆し、クラッドガラス体20と同じ屈折率を有する外側層42とを有するガラスロッドである。また、ガラスロッド22は、2層ガラスロッド40と同一の直径を有するガラスロッドであり、ガラスロッド23は2層ガラスロッド40より小さい直径を有するガラスロッドである。
 2層ガラスロッドの挿入においては、それぞれの孔30において、複数の2層ガラスロッド40が中間母材110の中心を通り径方向に延びる1つの線L1と重なるように一列に配列されると共に、他の2層ガラスロッド40が互いに隣り合う2層ガラスロッド40間の距離が等しくなるように三角格子状に配列される。なお、本実施形態において、PBGF1の中心を通り径方向に延びる1つの線L1と重なるように配列された2層ガラスロッド40の数は、一列に配列をなす他の2層ガラスロッド40の数よりも多いものとされる。
 また、ガラスロッド22、23は、孔30における2層ガラスロッド40の挿入された残りの空間に挿入される。
 なお、2層ガラスロッド40及びガラスロッド22、23の挿入の順番は、2層ガラスロッド40とガラスロッド22、23とを同時に挿入しても良く、或いは、2層ガラスロッド40及びガラスロッド22、23のどちらか一方を先に挿入しても良い。
 こうして、図5に示す複数の2層ガラスロッド40及びガラスロッド22、23が、一組の孔30に挿入された状態の中間母材110を得る。
 (加熱工程s4)
 次に、2層ガラスロッド40及びガラスロッド22、23が、一組の孔30に挿入された中間母材110を加熱して、一体化する。図6は、図2に示す加熱工程後の母材の長さ方向に垂直な断面における構造を示す断面図である。
 中間部材110の加熱は、2層ガラスロッド40及びガラスロッド22、23が、一組の孔30に挿入された状態で、真空状態にして加熱する。このときの真空度は、孔30内の気圧が0Pa~93kPaであることが好ましく、また、加熱の温度は1800℃~2200℃であることが好ましい。こうして、孔30の2層ガラスロッド40及びガラスロッド22、23の間の隙間が埋まり、2層ガラスロッド40の外側層42とガラスロッド22、23とが、クラッドガラス体20の一部とされる。
 こうして、図6に示すPBGF用母材101を得る。
 (線引工程s5)
 図7は、図2に示す線引工程の様子を示す図である。図7に示す様に、上記で説明したPBGF用母材の製造方法により製造された、図6に示すPBGF用母材101にダミーガラスロッド69を接続して、これらを垂直に立てた状態で、電気炉等の加熱炉61内に設置する。
 そして、加熱炉61でPBGF用母材101を加熱溶融する。このときのPBGF用母材は、1900℃~2200℃とされる。PBGF用母材101から線引されたガラスは、線引きされると固化して、図1における樹脂クラッド55及び保護層56が形成されていないPBGFが得られる。
 次に、樹脂クラッド55及び保護層56が形成されていないPBGFは、冷却装置62により適切な温度となるように制御される。そして樹脂クラッド55及び保護層56が形成されていないPBGFは、樹脂クラッド層55となる紫外線硬化性樹脂が入ったコーティングダイス63を通過し、更に紫外線照射装置64により紫外線が照射される。こうして、図1に示す樹脂クラッド55が形成される。
 次に、樹脂クラッド55が形成されたPBGFは、保護層56となる紫外線硬化性樹脂が入ったコーティングダイス65を通過し、更に紫外線照射装置66により紫外線が照射される。こうして、図1に示す保護層56が形成され、図1に示すPBGF1を得る。その後、PBGF1は、プーリー67を介して、ボビン68に巻取られる。
 本実施形態による、PBGF1の製造方法によれば、PBGF用母材101の製造において、コアガラス体10とクラッドガラス体20とが連続して形成されるため、コアガラス体10の表面に傷がつくことや、不純物が付着することを抑制することができる。そして、このようにして得られたPBGF用母材101を線引きすることで、2層ガラスロッド40の高屈折率部41により、クラッド25内に複数の高屈折率部45が形成され、コア15とクラッド25との界面に傷や不純物が存在することが抑制されたPBGF1を製造することができる。
 また、このようなPBGF用母材101の製造方法によれば、クラッドガラス体20にあけられる孔30の位置を自由に調整することができ、PBGF1における高屈折率部41の位置を自由に調整することができる。
 また、中間母材110の長さ方向に垂直な断面において、孔30の周縁の形状を円形にすることで、機械的手段により容易に孔30を形成することができ、孔あけ工程s2を簡易に行うことができる。さらに、孔30の周縁の形状が円形であるため、複数の2層ガラスロッド40の配列を孔30の周方向に対して自由に回転させることができる。従って、挿入工程s3において、2層ガラスロッド40の配列の向きを、自由に調整することができる。このようなPBGF用母材101を用いることにより、複数の高屈折率部45が、断面における中心を通り径方向に延びる1つの線L1と重なるように並べられたPBGFや、複数の高屈折率部45に配列が、断面における中心を通り径方向に延びる線と重ならないように傾けられたPBGFを容易に製造することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について図8~図10を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して重複する説明は省略する。図8は、本実施形態に係るPBGFの長さ方向に垂直な断面における構造を示す断面図であり、図9は、本実施形態における挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す図であり、図10は、本実施形態により製造されるPBGF用母材の長さ方向に垂直な断面における構造を示す断面図である。
 図8に示すように、本実施形態のPBGF2は、PBGF2の長さ方向に垂直な断面において、複数の高屈折率部45の配列が、PBGF2の中心を通り、PBGF2の径方向に延びる線と重ならない構成とされる点において、第1実施形態のPBGF1と異なる。また、本実施形態においては、PBGF2の中心を通る1つの線Lsを基準として、一方側の周期構造領域26における高屈折率部41の配列と、他方側の周期構造領域26における高屈折率部41の配列とが線対称とされている。このような構成のPBGF2は、複数のPBGF2同士を接続する場合、PBGF2のどちら側の端部を接続しても、接続する側のPBGF2と接続される側のPBGF2との高屈折率部41の配列を合わせることができる。
 このようなPBGF2の製造方法においては、形成工程s1及び孔あけ工程s2は、第1実施形態における形成工程s1及び孔あけ工程s2と同様に行い、図4に示す中間母材110を得る。
 次に、図9に示すように、本実施形態の挿入工程s3において、2層ガラスロッド40の配列が、中間母材110の中心を通り中間母材110の径方向に延びる線と重ならないように2層ガラスロッド40が挿入される。この点で第1実施形態の挿入工程s3と異なる。また、本実施形態においては、2つの孔30の中心を通る線に垂直で中間母材110の中心を通る線を基準として、一方の孔30に挿入される2層ガラスロッド40の配列と、他方の孔30に挿入される2層ガラスロッド40の配列とが線対称になるように、複数の2層ガラスロッド40は挿入される。
 次に、第1実施形態の加熱工程s4と同様にして、2層ガラスロッド40等が挿入された中間母材110を加熱し、図10に示すPBGF用母材102とする。
 その後、図7に示す第1実施形態と同様にして、線引工程s5を行い図8に示すPBGF2を得る。
 (第3実施形態)
 次に、本発明の第3実施形態について図11、図12を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して重複する説明は省略する。本実施形態は、図1に示す第1実施形態と同様のPBGF1を製造するための他の製造方法についての実施形態である。図11は、本実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図12は、本実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。
 本実施形態において、形成工程s1は、第1実施形態における形成工程s1と同様に行い、図3に示す中間母材100とする。次に、孔あけ工程s2において、図3に示す中間母材100に一組の正六角形の孔31をコアガラス体10の長さ方向に沿って形成し、図11に示す中間母材120とする。このとき、それぞれの孔31は、中間母材100の断面において、孔31の周縁における互いに向かい合う一組の頂点を結ぶ線が、中間母材100の中心を通り、中間母材100の径方向に延びる線L1と重なるように形成される。そして、それぞれの孔31は、中間母材100の中心を基準として互いに対称となるように形成される。
 次に、挿入工程s3において、図12に示すように、一組の孔31が形成された中間母材120の孔31内に複数の2層ガラスロッド40を挿入する。このとき、複数の2層ガラスロッド40が中間母材110の中心を通り径方向に延びる線L1と重なるように一列に配列されると共に、他の2層ガラスロッド40が互いに隣り合う2層ガラスロッド40間の距離が等しくなるように三角格子状に配列される。
 また、ガラスロッド22は、孔31における2層ガラスロッド40の挿入された残りの空間に挿入される。なお、本実施形態においては、2層ガラスロッド40と、2層ガラスロッド40の直径と同一の直径を有するガラスロッド22とが、孔31内に最密充填されるように、孔31の大きさは、あらかじめ設定される。
 なお、第1実施形態と同様に、2層ガラスロッド40及びガラスロッド22の挿入の順番は、2層ガラスロッド40とガラスロッド22とを同時に挿入しても良く、或いは、2層ガラスロッド40及びガラスロッド22のどちらか一方を先に挿入しても良い。
 次に第1実施形態の加熱工程s4と同様にして、2層ガラスロッド40等が挿入された中間母材120を加熱する。この加熱工程s4により、孔31の2層ガラスロッド40及びガラスロッド22の間の隙間が埋まり、2層ガラスロッド40の外側層42とガラスロッド22とが、クラッドガラス体20の一部とされる。
 こうして、第1実施形態と同様の図6に示すPBGF用母材101を得る。
 その後、第1実施形態と同様にして線引工程s5を行い、図1に示すPBGF1を得る。
 本実施形態による、PBGF1の製造方法によれば、孔あけ工程s2において、中間母材120の断面における孔31の周縁の形状を正六角形にすることで、挿入工程s3において、孔31内に同一の直径を有する2層ガラスロッド40及びガラスロッド22を最密充填することができる。さらに、中間母材120の断面における孔31の周縁の形状が円形ではないため、複数の2層ガラスロッド40の配列が孔31の周方向に対して回転方向に動くことが抑制される。従って、孔31に対して容易に2層ガラスロッド40やガラスロッド22を固定することができる。
 (第4実施形態)
 次に、本発明の第4実施形態について図13~図15を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して重複する説明は省略する。図13は、本発明の第4実施形態に係るPBGFの長さ方向に垂直な断面における構造を示す断面図であり、図14は、本実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図15は、本実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図16は、本実施形態おける加熱工程後の母材の長さ方向に垂直な断面における構造を示す断面図である。
 図13に示すように、本実施形態のPBGF3は、PBGF3の長さ方向に垂直な断面において、PBGF3の中心を通り径方向に延びる1つの線L1と重なるように配列された高屈折率部45の数が、一列に配列をなす他の高屈折率部45の数よりも少ない点において、図1に示す第1実施形態のPBGF1と異なる。このような構成のPBGF3は、コアに近接する高屈折率部45の数を増やすことができるため、複屈折を大きくすることができる。
 このようなPBGF3の製造方法においては、形成工程s1は、第1実施形態における形成工程s1と同様に行い、図3に示す中間母材100とする。
 次に、孔あけ工程s2において、一組の孔33をコアガラス体10の長さ方向に沿って形成する。この孔33は、図3に示す中間母材100の断面において、同一の直径を有する2つの円の一部が重なった外周からなる形状とする。このような、孔33は、断面における周縁の形状が円形である孔を、一部が重なるように2つ開ければよい。このとき、孔33は、一部が重なる2つの円形の孔の中心同士を結ぶ線L2が、中間母材100の中心を通り径方向に延びる線L1と垂直であり、かつ、一部が重なる2つの円形の孔のそれぞれの中心から線L1まで距離が、互いに等しくなるように形成する。こうして、図14に示す中間母材130を得る。
 次に、挿入工程s3において、中間母材130の一組の孔33に2層ガラスロッド40及びガラスロッド22、23を挿入する。2層ガラスロッド40の挿入においては、中間母材100の中心を通り径方向に延びる1つの線L1と重なるように、複数の2層ガラスロッド40が一列に配列される。さらに、他の2層ガラスロッド40が互いに隣り合う2層ガラスロッド40間の距離が等しくなるように三角格子状に配列される。このとき、線L1と重なるように配列された2層ガラスロッド40の数が、一列に配列をなす他の2層ガラスロッド40の数よりも少なくなるように、2層ガラスロッド40は挿入される。
 また、ガラスロッド22、23は、孔30における2層ガラスロッド40の挿入された残りの空間に挿入される。
 なお、第1実施形態と同様に、2層ガラスロッド40及びガラスロッド22、23の挿入の順番は、2層ガラスロッド40とガラスロッド22、23とを同時に挿入しても良く、或いは、2層ガラスロッド40及びガラスロッド22、23のどちらか一方を先に挿入しても良い。
 次に第1実施形態の加熱工程s4と同様にして、2層ガラスロッド40等が挿入された中間母材130を加熱する。この加熱工程s4により、孔33の2層ガラスロッド40及びガラスロッド22、23の間の隙間が埋まり、2層ガラスロッド40の外側層42とガラスロッド22、23とが、クラッドガラス体20の一部とされる。
 こうして、図16に示すPBGF用母材103を得る。
 その後、第1実施形態と同様にして線引工程s5を行い、図13に示すPBGF3を得る。
 本実施形態におけるPBGF3の製造方法によれば、PBGF用母材103の製造おける孔あけ工程s2において、断面における周縁の形状が円形である孔33を、一部が重なるように2つ開ければよいため、機械的手段により容易に孔を形成することができる。従って、孔あけ工程s2を簡易に行うことができる。さらに、断面における孔の周縁の形状が円形ではないため、挿入工程s3後は、複数の2層ガラスロッド40の配列が孔33の周方向に対して動くことが抑制される。従って、孔33に対して容易に2層ガラスロッド40やガラスロッド22、23を固定することができる。
 (第5実施形態)
 次に、本発明の第5実施形態について図17を参照して詳細に説明する。なお、第4実施形態と同一又は同等の構成要素については、同一の参照符号を付して重複する説明は省略する。本実施形態は、図13に示す第4実施形態と同様のPBGF3を製造するための、他の製造方法についての実施形態である。図17は、本実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図である。
 本実施形態において、形成工程s1、孔あけ工程s2は、第4実施形態における形成工程s1、孔あけ工程s2と同様に行い、図14に示す中間母材130とする。次に、挿入工程s3において、一組の孔33が形成された中間母材130の孔33内に第4実施形態と同様にして複数の2層ガラスロッド40を挿入する。また、孔33における2層ガラスロッド40の挿入された残りの空間には、クラッドガラス体20と同一の屈折率を有するガラスロッド24を挿入する。このガラスロッド24は、断面の形状が、中間母材130の断面において孔33を構成する一部が重なる2つ円より、僅かに直径の小さな円の一部が直線状に切り取られた形状をしている。
 なお、2層ガラスロッド40及びガラスロッド24の挿入の順番は、2層ガラスロッド40とガラスロッド24とを同時に挿入しても良く、或いは、2層ガラスロッド40及びガラスロッド24のどちらか一方を先に挿入しても良い。
 次に第4実施形態の加熱工程s4と同様にして、2層ガラスロッド40等が挿入された中間母材130を加熱する。この加熱工程により、孔33の2層ガラスロッド40及びガラスロッド24の間の隙間が埋まり、2層ガラスロッド40の外側層42とガラスロッド24とが、クラッドガラス体20の一部とされる。
 こうして、第4実施形態と同様の図16に示すPBGF用母材103を得る。
 その後、第1実施形態と同様にして線引工程s5を行い、図13に示すPBGF3を得る。
 本実施形態による、PBGF3の製造方法によれば、挿入工程s3において、孔33における2層ガラスロッド40の挿入された残りの空間に、断面の形状が、中間母材130の断面における孔33を構成する一部が重なる2つ円より、僅かに直径の小さな円の一部が直線状に切り取られた形状のガラスロッド24を挿入するため、孔33の2層ガラスロッドが挿入される部分以外に小さな複数の隙間があくことを抑制できる。従って、精度の高いPBGF用母材103とすることができる。
 (第6実施形態)
 次に、本発明の第6実施形態について図18~図21を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して重複する説明は省略する。図18は、本発明の第6実施形態に係るPBGFの長さ方向に垂直な断面における構造を示す断面図であり、図19は、本実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図20は、本実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図21は、本実施形態おける加熱工程後の母材の長さ方向に垂直な断面における構造を示す断面図である。
 図18に示すように、本実施形態のPBGF4は、PBGF4の断面において、複数の高屈折率部41により構成される周期構造領域26が、コア15の周囲に3つ形成される点において、第1実施形態のPBGF1と異なる。
 また、PBGF4においては、第1実施形態と同様に、それぞれの周期構造領域26において、一部の高屈折率部45が、PBGF4の断面におけるPBGF4の中心を通り径方向に延びる線L1と重なるように一列に配列される。さらに、他の高屈折率部45が互いに隣り合う高屈折率部45間の距離が等しくなるように三角格子状に配列されている。なお、互いに隣り合う周期構造領域26において、高屈折率部45の配列と重なる線L1は、互いに120度の角度をなしている。
 このような構成のPBGF4は、周期構造領域26が3つに増えることにより、PBGFをフィルタとして用いる場合に、透過させない波長の減衰量をより大きくすることができる。また、周期構造領域26が3つに増えることにより、コア15に加わる熱応力が3回対称性を有するため、コア15の複屈折を小さくすることができる。
 このようなPBGF4の製造方法においては、形成工程s1は、第1実施形態における形成工程s1と同様に行い、図3に示す中間母材100とする。
 次に、孔あけ工程s2において、コアガラス体10を取り囲むように、コアガラス体10の長さ方向に沿って、3つの孔30を形成する。こうして、図19に示す中間母材140とする。
 次に、挿入工程s3において、中間母材140のそれぞれの孔30に2層ガラスロッド及びガラスロッド22、23を挿入する。2層ガラスロッド40及びガラスロッド22、23の挿入は、第1実施形態と同様に行えばよい。こうして、図20に示す2層ガラスロッド40及びガラスロッド22、23が、3つの孔30に挿入された中間母材140を得る。
 次に、第1実施形態の加熱工程s4と同様にして、2層ガラスロッド40等が挿入された中間母材140を加熱し、図21に示すPBGF用母材104とする。
 その後、図7に示す第1実施形態と同様にして、線引工程s5を行い図18に示すPBGF4を得る。
 (第7実施形態)
 次に、本発明の第7実施形態について図22~図25を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して重複する説明は省略する。図22は、本発明の第7実施形態に係るPBGFの長さ方向に垂直な断面における構造を示す断面図であり、図23は、本実施形態おける孔あけ工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図24は、本実施形態おける挿入工程後の中間母材の長さ方向に垂直な断面における構造を示す断面図であり、図25は、本実施形態おける加熱工程後の母材の長さ方向に垂直な断面における構造を示す断面図である。
 図22に示すように、本実施形態のPBGF5は、PBGF5の断面において、複数の高屈折率部41により構成される周期構造領域26が、コア15の周囲に4つ形成される点において、第1実施形態のPBGF1と異なる。
 また、PBGF5においては、第1実施形態と同様に、それぞれの周期構造領域26において、一部の高屈折率部45が、PBGF5の断面におけるPBGF5の中心を通り径方向に延びる線L1と重なるように一列に配列される。さらに、他の高屈折率部45が互いに隣り合う高屈折率部45間の距離が等しくなるように三角格子状に配列されている。なお、互いに隣り合う周期構造領域26において、高屈折率部45の配列と重なる線L1は、互いに垂直となっている。
 このような構成のPBGF5は、周期構造領域26が4つに増えることにより、PBGFをフィルタとして用いる場合に、透過させない波長の減衰量をより大きくすることができる。また、周期構造領域26が4つに増えることにより、コア15に加わる熱応力が4回対称性を有するため、コア15の複屈折を小さくすることができる。
 このようなPBGF5の製造方法においては、形成工程s1は、第1実施形態における形成工程s1と同様に行い、図3に示す中間母材100とする。
 次に、孔あけ工程s2において、コアガラス体10を取り囲むように、コアガラス体10の長さ方向に沿って、4つの孔30を形成する。こうして、図23に示す中間母材150とする。このとき、コアガラス体10を介して互いに向かい合う孔30の中心同士を結ぶ線が、コアガラス体10の中心を通る線と重なるように、それぞれの孔30を形成する。
 次に、挿入工程s3において、中間母材150のそれぞれの孔30に2層ガラスロッド及びガラスロッド22、23を挿入する。2層ガラスロッド40及びガラスロッド22、23の挿入は、第1実施形態と同様に行えばよい。こうして、図24に示す2層ガラスロッド40及びガラスロッド22、23が、4つの孔30に挿入された中間母材150を得る。
 次に、第1実施形態の加熱工程s4と同様にして、2層ガラスロッド40等が挿入された中間母材150を加熱し、図25に示すPBGF用母材105とする。
 その後、図7に示す第1実施形態と同様にして、線引工程s5を行い図22に示すPBGF5を得る。
 以上、本発明について、第1~7実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、第1~第7実施形態において、樹脂クラッド55の外周は保護層56により被覆されるものとしたが、本発明において保護層56は必須ではなく、保護層56を備えない構成としても良い。また更に、樹脂クラッド55及び保護層56を備えない構成としても良い。
 また、第1~第5実施形態において、PBGFの長手方向に垂直な断面において、コア15の形状が楕円形である構成としても良い。具体的には、2つの高屈折領域26を結ぶ方向とコアの楕円形状の長軸とが重なり、2つの高屈折領域26を結ぶ方向と垂直な方向とコアの楕円形状の短軸とが重なるように構成される。このようなPBGFは、コアの複屈折を大きくすることができる。このようなPBGFは次のように形成される。例えば、第1実施形態において、コア15の断面形状が楕円形である場合には、挿入工程s3において、ガラスロッド22、23を挿入する際、隙間をあけて挿入する。このようにガラスロッド22、23を挿入することで、加熱工程s4において、この隙間を埋めるために、コアガラス体10に対して、2つの孔30の方向に引っ張られるような応力がかかる。こうして、コアガラス体10が2つの孔30の方向に伸びるようにしてコアが形成され、コアの断面形状が楕円になる。第2~第5実施形態においても、挿入工程s3において、ガラスロッド22、23を挿入する際、隙間をあけて挿入することで、コアの断面形状が楕円のPBGFを得ることができる。
 また、各実施形態において、孔をあける位置は、製造されるPBGFに応じて自由に調整することができる。
 また、第1実施形態において、加熱工程s4と線引工程s5は、個別に行われるものとしたが、加熱工程s4と線引行程s5とを同時に行っても良い。この場合、2層ガラスロッド40及びガラスロッド22、23が、一組の孔30に挿入された状態で、図示しない治具により、孔30内を真空状態にしながら、加熱して線引を行う。このようにすることで、高屈折率部41の熱応力によりPBGF用母材101が割れることを抑制することができる。
 また、第2実施形態において、PBGF2の断面において、PBGF2の中心を通る1つの線Lsを基準として、一方の周期構造領域26における高屈折率部41の配列と、他方の周期構造領域26における高屈折率部41の配列とが線対称とされた。しかし、本発明はこれに限らず、一方の周期構造領域26における高屈折率部41の配列と、他方の周期構造領域26における高屈折率部41の配列とが、PBGFの中心を基準として点対称とされても良い。このような、PBGFは、第2実施形態の挿入工程において、中間母材110の中心を基準として、一方の孔30に挿入される2層ガラスロッド40の配列と、他方の孔30に挿入される2層ガラスロッド40の配列とが点対称になるように、複数の2層ガラスロッド40を挿入することにより製造できる。或いは、第2実施形態において、PBGF2の断面において、2つの周期構造領域26における高屈折率部41の配列は、互いに対称とならないようにしても良い。
 また、例えば、第3実施形態において、図11に示すように中間母材120は、それぞれの孔31は、中間母材100の断面において、孔31の周縁における互いに向かい合う一組の頂点を結ぶ線が、中間母材100の中心を通り、中間母材100の径方向に延びる線L1と重なるように形成されるものとした。しかし本発明はこれに限らず、例えば、中間母材の断面において、それぞれの孔31の周縁における互いに向かい合う一組の辺に垂直な線が、中間母材100の中心を通り、中間母材100の径方向に延びる線と重なるように形成されるものとしても良い。あるいは、それぞれの孔31が他の方向に回転していても良い。
 また、第6実施形態及び第7実施形態において、それぞれの周期構造領域26における一部の高屈折率部45による配列が、PBGF4、5の断面におけるPBGF4、5の中心を通り径方向に延びる線L1と重なるように一列に配列されるものとしたが、本発明はこれに限らない。例えば、それぞれの周期構造領域26における高屈折率部45は、PBGF4、5の断面におけるPBGF4、5の中心を通り径方向に延びる線と重なる配列を有しないように配列されても良い。
 また、各実施形態において、PBGF1~5は、クラッド25の外周が樹脂クラッド55により被覆される構成としたが、必ずしも樹脂クラッド55により被覆される必要はない。
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものでは無い。
 (実施例1)
 第1実施形態と同様のPBGFを第1実施形態の製造方法と同様にして作製した。このとき中間母材は、MCVD法により作製した。そして、コアは断面の形状が楕円形となるようにして、互いに直交する方向における2つの直径が14.4μmと9.8μmとした。また、クラッドの外形は154μmとし、樹脂クラッドの外径は180μmとし、保護層の外径は260μmとした。さらに、高屈折率部の直径は4.7μmとし、高屈折率部の中心間距離(ピッチ)は7.5μmとした。また、PBGFの長さを21mとした。さらに、コアは、Ybが9000重量ppmであり、Alが6000重量ppmとなるように共添加された石英から構成し、クラッドは、ドーパントを添加しない石英から構成し、樹脂クラッドは、屈折率が1.38のフッ素化アクリレートにより構成し、保護層は屈折率が1.5のアクリレートにより構成し、高屈折率部は、Geが18mol%添加された石英により構成した。
 このPBGFは、クラッドに対する高屈折率部の比屈折率差が、2.8%であり、コアのクラッドに対する高屈折率部の比屈折率差が、0.15%であった。
 次に、このPBGFに波長1180nmの光を透過させて、伝送損失を調べた。このとき伝送損失は19dB/kmであった。
 また、波長1300nm付近におけるDGD(Differential Group Delay)の測定を行った。その結果、DGDが0.54ps/mであった。さらに群複屈折は、1.6×10-4であった。このことから、偏波保持ファイバとして十分に機能する複屈折を示すことが分かった。
 次に、PBGFを直径がそれぞれ300mm、100mm、80mmとなるループ状にして、フィルタ特性を調べた。その結果を図26に示す。図26に示すように作製したPBGFは、波長が1100nm付近で閾値を有する波長選択フィルタとして機能することが分かった。
 (実施例2)
 次に第4実施形態と同様のPBGFを第4実施形態における製造方法と同様にして作製した。このとき中間母材は、MCVD法により作製した。また、このとき作製したPBGFは、高屈折率部が図13に示す配列となっていること以外は、実施例1と同様にした。
 次に、実施例1と同様にして、波長1180nmの光を透過させて、伝送損失を調べた。このとき伝送損失は25dB/kmであった。
 また、このPBGFの群複屈折は、2.5×10-4であった。従って、偏波保持が更に高くなることが分かった。
 (比較例1)
 次に実施例1と同様のPBGFを作製した。このとき、PBGFの作製において、図27に示す中間母材を用いたこと以外は、実施例1と同様にした。
 次に作製したPBGFに波長1180nmの光を透過させて、伝送損失を調べた。このとき伝送損失は150dB/kmであった。
 以上より、実施例1、2のPBGFは、比較例1のPBGFよりも伝送損失が少なく、本発明におけるPBGFの製造方法によって作製したPBGFは、光の伝送損失を抑制することができることが分かった。
 本発明によれば、光の伝送損失を抑制することができるフォトニックバンドギャップファイバの製造を可能とするフォトニックバンドギャップファイバ用母材の製造方法、および、フォトニックバンドギャップファイバの製造方法が提供される。
 1、2、3、4、5・・・フォトニックバンドギャップファイバ(PBGF)
 10・・・コアガラス体
 15・・・コア
 20・・・クラッドガラス体
 22、23、24・・・ガラスロッド
 25・・・クラッド
 26・・・周期構造領域
 30、31、33・・・孔
 40・・・2層ガラスロッド
 41・・・高屈折率部
 42・・・外側層
 45・・・高屈折率部
 55・・・樹脂クラッド
 56・・・保護層
 61・・・加熱炉
 62・・・冷却装置
 63、65・・・コーティングダイス
 64、66・・・紫外線照射装置
 67・・・プーリー
 68・・・ボビン
 100、110、120、130、140、150・・・中間母材
 101、102、103、104、105・・・フォトニックバンドギャップファイバ用母材(PBGF用母材)
 s1・・・形成工程
 s2・・・孔あけ工程
 s3・・・挿入工程
 s4・・・加熱工程
 s5・・・線引工程

Claims (13)

  1.  コアとなる柱状のコアガラス体、及び、クラッドとなり前記コアガラス体の外周を被覆するクラッドガラス体を連続して形成し、中間母材とする形成工程と、
     前記コアガラス体の長手方向に沿ってクラッドガラス体に孔をあける孔あけ工程と、
     前記クラッドガラス体の屈折率よりも屈折率が高い柱状の高屈折率部と、前記クラッドガラス体と同じ屈折率を有し前記高屈折率部の外周を被覆する外側層とを有する、複数の2層ガラスロッドを前記孔に挿入する挿入工程と、
     前記2層ガラスロッドが前記孔に挿入された前記中間母材を加熱して、前記中間母材と前記2層ガラスロッドとを一体化する加熱工程と、
    を備えることを特徴とするフォトニックバンドギャップファイバ用母材の製造方法。
  2.  前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は円形である
    ことを特徴とする請求項1に記載のフォトニックバンドギャップファイバ用母材の製造方法。
  3.  前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は正六角形である
    ことを特徴とする請求項1に記載のフォトニックバンドギャップファイバ用母材の製造方法。
  4.  前記中間母材の長さ方向に垂直な断面における前記孔の周縁は、同一の直径を有する2つの円の一部が重なった外周からなる形状である
    ことを特徴とする請求項1に記載のフォトニックバンドギャップファイバ用母材の製造方法。
  5.  前記挿入工程において、断面が前記2つの円より僅かに直径の小さな円の一部が直線状に切り取られた形状であり、前記クラッドガラスと同一の屈折率を有するガラスロッドを前記2層ガラスロッドと共に挿入する
    ことを特徴とする請求項4に記載のフォトニックバンドギャップファイバ用母材の製造方法。
  6.  前記コアガラス体には希土類元素が添加される
    ことを特徴とする請求項1から5のいずれか1項に記載のフォトニックバンドギャップファイバ用母材の製造方法。
  7.  コアとなる柱状のコアガラス体、及び、クラッドとなり前記コアガラス体の外周を被覆するクラッドガラス体を連続して形成し、中間母材とする形成工程と、
     前記コアガラス体の長手方向に沿ってクラッドガラス体に孔をあける孔あけ工程と、
     前記クラッドガラス体の屈折率よりも屈折率が高い柱状の高屈折率部と、前記クラッドガラス体と同じ屈折率を有し前記高屈折率部の外周を被覆する外側層とを有する、複数の2層ガラスロッドを前記孔に挿入する挿入工程と、
     前記2層ガラスロッドが前記孔に挿入された前記中間母材を加熱して、前記中間母材と前記2層ガラスロッドとを一体化して、フォトニックバンドギャップファイバ用母材とする加熱工程と、
     前記フォトニックバンドギャップファイバ用母材を加熱して線引きする線引工程と、
    を備えることを特徴とするフォトニックバンドギャップファイバの製造方法。
  8.  前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は円形である
    ことを特徴とする請求項7に記載のフォトニックバンドギャップファイバの製造方法。
  9.  前記中間母材の長さ方向に垂直な断面における前記孔の周縁の形状は正六角形である
    ことを特徴とする請求項7に記載のフォトニックバンドギャップファイバの製造方法。
  10.  前記中間母材の長さ方向に垂直な断面における前記孔の周縁は、同一の直径を有する2つの円の一部が重なった外周からなる形状である
    ことを特徴とする請求項7に記載のフォトニックバンドギャップファイバの製造方法。
  11.  前記挿入工程において、断面が前記2つの円より僅かに直径の小さな円の一部が直線状に切り取られた形状であり、前記クラッドガラスと同一の屈折率を有するガラスロッドを前記2層ガラスロッドと共に挿入する
    ことを特徴とする請求項10に記載のフォトニックバンドギャップファイバの製造方法。
  12.  前記コアガラス体には希土類元素が添加される
    ことを特徴とする請求項7から11のいずれか1項に記載のフォトニックバンドギャップファイバの製造方法。
  13.  前記加熱工程及び前記線引工程を同時に行うことを特徴とする請求項7から12のいずれか1項に記載のフォトニックバンドギャップファイバの製造方法。
PCT/JP2010/060578 2009-06-29 2010-06-22 フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法 WO2011001850A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/338,834 US8381548B2 (en) 2009-06-29 2011-12-28 Method of manufacturing photonic band gap fiber base material and fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009154429A JP5457089B2 (ja) 2009-06-29 2009-06-29 フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
JP2009-154429 2009-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/338,834 Continuation US8381548B2 (en) 2009-06-29 2011-12-28 Method of manufacturing photonic band gap fiber base material and fiber

Publications (1)

Publication Number Publication Date
WO2011001850A1 true WO2011001850A1 (ja) 2011-01-06

Family

ID=43410927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060578 WO2011001850A1 (ja) 2009-06-29 2010-06-22 フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法

Country Status (3)

Country Link
US (1) US8381548B2 (ja)
JP (1) JP5457089B2 (ja)
WO (1) WO2011001850A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009060711A1 (de) 2009-03-13 2010-10-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einzelmodenpropagation in mikrostrukturierten Fasern
US10041747B2 (en) 2010-09-22 2018-08-07 Raytheon Company Heat exchanger with a glass body
GB2516088A (en) * 2013-07-11 2015-01-14 Fibercore Ltd Optical Fiber
US11462878B2 (en) * 2019-05-23 2022-10-04 Lawrence Livermore National Security, Llc All solid hybrid arrow fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029073A (ja) * 2001-07-11 2003-01-29 Fujikura Ltd 偏波保持光ファイバおよびその製造方法、偏波保持光ファイバ用母材
JP2008226885A (ja) * 2007-03-08 2008-09-25 Fujikura Ltd 希土類添加フォトニックバンドギャップファイバ及び光増幅器
JP4243327B2 (ja) * 2007-04-06 2009-03-25 株式会社フジクラ フォトニックバンドギャップファイバ及びファイバ増幅器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759816B2 (ja) * 2001-02-21 2011-08-31 住友電気工業株式会社 光ファイバの製造方法
US20080170830A1 (en) * 2007-01-16 2008-07-17 Fujikura Ltd Photonic band gap fiber and method of producing the same
US8755658B2 (en) * 2007-02-15 2014-06-17 Institut National D'optique Archimedean-lattice microstructured optical fiber
US8213077B2 (en) * 2008-04-22 2012-07-03 Imra America, Inc. Multi-clad optical fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029073A (ja) * 2001-07-11 2003-01-29 Fujikura Ltd 偏波保持光ファイバおよびその製造方法、偏波保持光ファイバ用母材
JP2008226885A (ja) * 2007-03-08 2008-09-25 Fujikura Ltd 希土類添加フォトニックバンドギャップファイバ及び光増幅器
JP4243327B2 (ja) * 2007-04-06 2009-03-25 株式会社フジクラ フォトニックバンドギャップファイバ及びファイバ増幅器

Also Published As

Publication number Publication date
JP2011006315A (ja) 2011-01-13
US20120151968A1 (en) 2012-06-21
JP5457089B2 (ja) 2014-04-02
US8381548B2 (en) 2013-02-26

Similar Documents

Publication Publication Date Title
EP1949153B1 (en) Microstructured optical fiber and its manufacturing method
JP4465527B2 (ja) 微細構造光ファイバ、プリフォーム及び微細構造光ファイバの製造方法
EP2038687B1 (en) Microstructured transmission optical fiber
US9352996B2 (en) Optical fiber article for handling higher power and method of fabricating or using
JP2010520497A (ja) フォトニック結晶ファイバおよびそれを製造する方法
US8464556B2 (en) Microstructured optical fibers and methods
JP2012078804A (ja) 光ファイバ、光ファイバプリフォームおよびその製造方法
JP6396821B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP5457089B2 (ja) フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
JP2007536580A5 (ja)
JP2009209039A (ja) フォトニックバンドギャップ光ファイバ
WO2018138736A2 (en) Optical fiber draw assembly and fabricated optical fiber thereof
WO2013031484A1 (ja) ファイバ
JP6010587B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP6681306B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
JP6216263B2 (ja) マルチコアファイバ用母材及びこれを用いたマルチコアファイバ、及び、マルチコアファイバ用母材の製造方法及びこれを用いたマルチコアファイバの製造方法
JP6517583B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
KR100660148B1 (ko) 공기홀을 갖는 광섬유용 모재의 제조 방법
JP6623146B2 (ja) マルチコアファイバ用母材の製造方法、及び、これを用いたマルチコアファイバの製造方法
KR100795217B1 (ko) 분산제어용 광섬유 제조방법
JP2005250024A (ja) フォトニッククリスタル光ファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794020

Country of ref document: EP

Kind code of ref document: A1