WO2011001734A1 - Csd塗布膜除去用液及びこれを用いたcsd塗布膜除去方法並びに強誘電体薄膜とその製造方法 - Google Patents
Csd塗布膜除去用液及びこれを用いたcsd塗布膜除去方法並びに強誘電体薄膜とその製造方法 Download PDFInfo
- Publication number
- WO2011001734A1 WO2011001734A1 PCT/JP2010/057059 JP2010057059W WO2011001734A1 WO 2011001734 A1 WO2011001734 A1 WO 2011001734A1 JP 2010057059 W JP2010057059 W JP 2010057059W WO 2011001734 A1 WO2011001734 A1 WO 2011001734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating film
- csd
- substrate
- thin film
- raw material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02082—Cleaning product to be cleaned
- H01L21/02087—Cleaning of wafer edges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02197—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
Definitions
- the present invention is used for removing the outer peripheral edge of a coating film of a raw material solution in a CSD method such as a sol-gel method in which a raw material solution is applied and baked to form a ferroelectric thin film such as a PZT film or an SBT film.
- the present invention relates to a CSD coating film removing solution, a method for removing the outer peripheral edge of the coating film using the same, a ferroelectric thin film, and a method for manufacturing the same.
- This application includes Japanese Patent Application No. 2009-156064 filed on June 30, 2009, Japanese Patent Application No. 2009-165140 filed on July 13, 2009, and Japanese Patent Application filed on January 27, 2010. Claims priority for 2010-16071, the contents of which are incorporated herein.
- Ferroelectric materials such as PZT (lead zirconate titanate) and SBT (bismuth strontium tantalate) have a perovskite crystal structure and are expected to be applied to devices such as capacitors and ferroelectric memories (FeRAM). Yes.
- a chemical solution deposition method called a CSD (Chemical Solution Deposition) method such as a sol-gel method, a MOD (Metal Organic Organic Decomposition) method, or a method using a combination thereof as a method for forming a thin film made of such a ferroelectric (Patent Document 1). , 2).
- a sol composed of a metal alkoxide is applied to a substrate to form a coating film, which is made into a gel-like coating film that loses fluidity by hydrolysis and polycondensation reaction, and this gel-like coating film is heated.
- an oxide film (ferroelectric thin film) is formed by baking.
- Technologies for forming a coating film of a raw material solution on a substrate include a dip coating method in which the substrate is immersed in the raw material solution, a roll coating method, and a spin coating method in which the raw material solution is supplied while rotating the substrate to form a film. Etc.
- the film tends to be thick at the outer peripheral end portion of the substrate, and the phenomenon of wrapping around the back surface of the substrate easily occurs.
- CSD method the solution is referred to as a raw material solution
- the film thickness is too thick, the film after heat treatment tends to crack, and the film peeled off by this crack becomes particles, This can cause a decrease in device yield. For this reason, a method of removing the coating film on the outer peripheral edge of the substrate before the heat treatment is taken.
- Patent Document 3 and Patent Document 4 show a method of removing a photoresist layer formed on a substrate surface by EBR, and a thinner composition is used as a rinsing liquid for the removal.
- the present invention has been made in view of such circumstances, and an object of the present invention is to prevent the generation of particles by removing the film at the outer peripheral edge of the substrate without causing cracks or local peeling in the CSD method. To do.
- the CSD coating film removing liquid of the present invention contains water and an organic solvent, and the organic solvent includes ⁇ -diketones, ⁇ -ketoesters, polyhydric alcohols, carboxylic acids, alkanolamines, ⁇ -hydroxycarboxyl.
- the mixing weight ratio of the organic solvent and the water is 50:50 to 0: 100, and heat treatment in the CSD method It is a liquid that removes the previous coating film.
- a solvent used in the raw material solution As a solvent for this raw material solution, methanol, ethanol, butanol or the like is used. However, if a solvent such as methanol, ethanol, or butanol is sprayed or dropped on the outer peripheral edge for removing the coating film on the outer peripheral edge of the substrate after applying the raw material solution, cracks or Local peeling is likely to occur.
- this gel-like coating film is removed by the removing liquid of the present invention
- water has a small osmotic force to the film, so that the film at the radially outward position is partially thick from the sprayed or dripped portion. Therefore, cracks and local peeling can be prevented.
- an organic solvent having hydrolyzability to stabilize the metal alkoxide of the raw material solution to water, the hydrolysis of the removed raw material solution is suppressed to prevent the formation of a precipitate. It is possible to prevent contamination of the work environment.
- the mixing weight ratio of the organic solvent and the water is preferably 50:50 to 5:95, and more preferably 30:70 to 10:90. Since the removal liquid touches the coating film of the raw material solution, an appropriate amount is sufficient to prevent purification of the precipitate by hydrolysis of the raw material solution without adding an organic solvent excessively, and water is the main component. By setting it as a composition, the film characteristics of the coating film are not changed.
- the ⁇ -diketone is acetylacetone
- the ⁇ -ketoester is methyl 3-oxobutanoate and / or ethyl 3-oxobutanoate
- the polyhydric alcohol is propylene glycol or diethylene glycol.
- the CSD coating film removing solution of the present invention comprises one or more mixed solvents A selected from propylene glycol, diethylene glycol, and triethylene glycol, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, It is good to remove the said coating film formed by apply
- the method for removing the coating film using such a CSD coating film removing liquid is to spray or drop the CSD coating film removing liquid on the outer peripheral edge of the substrate while rotating the substrate, thereby The coating film is removed.
- the method for producing a ferroelectric thin film according to the present invention includes a step of forming a coating film by applying a raw material solution containing an organometallic compound for forming a ferroelectric thin film to a substrate in the CSD method, and rotating the substrate.
- the liquid for removing the CSD coating film is sprayed or dropped on the outer peripheral edge of the substrate while removing the coating film on the outer peripheral edge of the substrate, and the coating film is subjected to a heat treatment to produce a ferroelectric. Forming a body thin film.
- the raw material solution may form a perovskite oxide thin film containing Pb.
- the raw material solution may form a layered perovskite oxide thin film containing Bi.
- the coating film is removed by the removal liquid containing water, it is possible to obtain a smooth surface without causing cracks or local peeling in the removed portion. Moreover, since the removal liquid containing an organic solvent is used, hydrolysis of the removed raw material solution can be suppressed to prevent the formation of a precipitate, and contamination of the work environment due to the precipitate can be prevented.
- Sectional drawing (a) which shows the state which dripped the liquid for removal to an outer periphery edge part, rotating a board
- Embodiments of a CSD coating film removing solution, a CSD coating film removing method using the same, and a method for manufacturing a ferroelectric thin film will be described below with reference to the drawings.
- This method of manufacturing a ferroelectric thin film is suitable for manufacturing a perovskite oxide thin film containing Pb such as PZT and PLZT, and a layered perovskite oxide thin film containing Bi such as SBT and SBTN.
- the raw material solution of the CSD method is obtained by dissolving a raw metal compound in a solvent and adding a stabilizer or the like. Examples thereof include the following for PLZT and SBTN.
- the raw metal compounds of the PLZT raw material solution include organic acid salts such as acetates (lead acetate and lanthanum acetate) as lead compounds and lanthanum compounds, alkoxides such as diisopropoxylead, and tetraethoxy titanium as titanium compounds.
- Alkoxides such as tetraisopropoxytitanium, tetran-butoxytitanium, tetrai-butoxytitanium, tetrat-butoxytitanium, and dimethoxydiisopropoxytitanium are preferred, but organic acid salts or organometallic complexes can also be used.
- the zirconium compound is the same as the titanium compound. It may be a compounded metal compound containing two or more kinds of component metals. A small amount of a doping element may be contained.
- examples of the raw material metal compound of the raw material solution for SBTN include alkoxides such as Sr isopropoxide and Sr butoxide, carboxylates such as 2-ethylhexanoic acid Sr, and the like as Sr organometallic compounds.
- the Sr organometallic compound may be Sr diethylene glycolate or Sr triethylene glycolate. Therefore, in this case, by adding metal Sr to diethylene glycol or triethylene glycol as a solvent and reacting with heating, Sr diethylene glycol is used. Lat or Sr triethylene glycolate may be produced.
- Bi-ethylhexanoic acid Bi is used as the Bi organometallic compound
- Ta diethylene glycolate or Ta triethylene glycolate is used as the Ta organometallic compound
- Nb diethylene glycolate or Nb triethylene glycolate is used as the Nb organometallic compound.
- organic solvent any one of a single solvent selected from propylene glycol, diethylene glycol and triethylene glycol, or a mixed solvent of two or more may be used.
- the organic solvent and each organometallic compound are mixed at an appropriate ratio so as to obtain a desired metal component concentration. Moreover, heating and refluxing are performed for homogenization of the solution.
- the concentration is adjusted using another solvent (solvent B).
- the organic solvent B may be any one of a single solvent selected from methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol, or a mixed solvent of two or more.
- alcohols eg, ethanol, isopropyl alcohol, butanol
- ketones eg, acetone, methyl ethyl ketone
- ethers diethyl ether, tetrahydrofuran
- carboxylic acids eg, acetic acid, 2-ethylhexanoic acid
- hydrocarbons N-hexane, n-octane
- the total concentration of organometallic compounds in the solution is preferably about 0.1 to 20% by weight in terms of metal oxide.
- ⁇ -diketones for example, acetylacetone, heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, benzoylacetone, etc.
- ketone acids for example, acetoacetic acid, propionylacetic acid, benzoylacetic acid, etc.
- a molar ratio of about 0.2 to 3 times the metal may be blended in a molar ratio of about 0.2 to 3 times the metal.
- Substrate materials include silicon wafers (single crystal), metals such as platinum and nickel, ruthenium oxide, iridium oxide, strontium ruthenate (SrRuO 3 ), or lanthanum strontium cobaltate ((La x Sr 1-x ) CoO 3 And a substrate made of silicon, glass, alumina, quartz or the like having a coating such as a perovskite type conductive oxide.
- a spin coating method is generally used, but other application methods such as spray coating and dip coating are also applicable.
- the coating film removing liquid is applied from the upper nozzle 3 to the outer peripheral edge of the substrate 2 while rotating the substrate 2 on which the gel-like coating film 1 is formed after applying the raw material solution.
- the outer peripheral edge of the gel-like coating film 1 is removed as shown in FIG.
- the removal liquid W has a mixing ratio of the organic solvent and water of 50:50 to 0: 100, more preferably 50:50 to 5:95.
- the ratio of water is larger than 50:50, the organic solvent is prevented from penetrating from the outer peripheral edge of the film into the film, and the phenomenon occurs when the gel film swollen by the organic solvent penetration cracks after heat treatment. The effect that it can suppress is acquired.
- the mixing ratio of the organic solvent and water is 50:50 to 5:95.
- the ratio of water is smaller than 5:95, the metal alkoxide in the raw material solution hydrolyzes and precipitates when the residual liquid after applying the raw material solution to the substrate contacts the EBR composition W. Prevents and becomes a stable liquid mixture. As a result, particle contamination due to powder scattering or the like can be prevented and a high quality film can be obtained.
- a more preferable mixing ratio of the organic solvent and water in the removal liquid W is 30:70 to 10:90.
- the mixing ratio in this way, it is possible to stably improve the above-described two phenomena (that is, cracks resulting from penetration of organic solvents and particle contamination resulting from precipitation).
- the film properties of the coating film can be changed by using an appropriate amount sufficient to prevent purification of precipitates due to hydrolysis of the raw material solution without adding an organic solvent excessively, and by using a composition containing water as a main component. It is preferable not to let this occur.
- the organic solvent functions as a stabilizer that prevents precipitation due to decomposition of hydrolyzable compounds such as metal alkoxide in the raw material solution.
- the organic solvent a compound having one or more atoms that can be an electron-donating pair such as oxygen, nitrogen, and sulfur and capable of stabilizing the metal compound by coordinate bonding to the metal, that is, Any stabilizer can be used as long as it can be used as a stabilizer for metal alkoxides.
- ⁇ -diketones ⁇ -ketoesters, polyhydric alcohols, carboxylic acids, alkanolamines, ⁇ -hydroxycarboxylic acid, ⁇ -hydroxy
- acetylacetone is used as the ⁇ -diketone.
- ⁇ -ketoester methyl 3-oxobutanoate and / or ethyl 3-oxobutanoate are used.
- polyhydric alcohol one or more selected from propylene glycol, diethylene glycol, and triethylene glycol are used.
- carboxylic acids one or more selected from acetic acid, propionic acid and butyric acid are used.
- alkanolamines one or more selected from monoethanolamine, diethanolamine, and triethanolamine are used.
- ⁇ -hydroxycarboxylic acid one or more selected from lactic acid, mandelic acid, citric acid, tartaric acid and oxalic acid are used.
- acetol or acetoin is used as the ⁇ -hydroxycarbonyl derivative.
- 2-propanone hydrazone is used as the hydrazone derivative.
- the rotation speed of the substrate 2 in the EBR process is, for example, 1000 to 3000 rpm.
- the position of the injection or dripping of the removal liquid W corresponding to the position of removal object.
- the removal liquid W is sprayed or dropped at a position 5 mm inward in the radial direction from the outer peripheral edge of the substrate 2, and the outside of the jetting or dropping position. Remove the film in the 5 mm range.
- What is necessary is just to set suitably as the amount of spraying or dripping from the thickness etc.
- the nozzle 3 may be moved outward in the radial direction as necessary while rotating the substrate 2 so that the gel-like coating film 1 at the outer peripheral end portion flows easily. .
- the heat treatment process further includes a drying process, a calcination process, and a crystallization annealing process.
- the gel-like coating film 1 after the outer peripheral end portion is removed is dried to remove the solvent.
- this drying temperature varies depending on the type of solvent, it is usually about 80 to 200 ° C., preferably 100 to 180 ° C.
- the coating film drying step is not necessarily required.
- the substrate 2 after drying the gel-like coating film 1 is heated, and the organometallic compound is completely hydrolyzed or pyrolyzed to be converted into a metal oxide, which is an oxidation made of a metal oxide.
- a material film is formed.
- This heating is generally performed in an atmosphere containing water vapor in the sol-gel method that requires hydrolysis, for example, air or a water-containing atmosphere (for example, nitrogen atmosphere containing water vapor), and in the MOD method in which pyrolysis is performed, oxygen-containing. Performed in an atmosphere.
- the heating temperature varies depending on the type of metal oxide, but is usually in the range of 150 to 550 ° C., preferably 300 to 450 ° C.
- the heating time is selected so that hydrolysis and thermal decomposition proceed completely, but it is usually about 1 minute to 1 hour.
- the raw material solution coating process it is often difficult to obtain a film thickness required for the perovskite oxide thin film by a single application, so if necessary, from the raw material solution coating process to the calcining process.
- the raw material solution is repeatedly applied, and each time the application is performed, the gel-like coating film 1 is removed from the outer peripheral end portion, and a metal oxide film having a desired film thickness is obtained.
- crystal annealing process Even if the oxide film thus obtained is amorphous or crystalline, the crystallinity is insufficient, so the polarizability is low and it cannot be used as a ferroelectric thin film. Therefore, finally, as a crystallization annealing step, baking is performed at a temperature equal to or higher than the crystallization temperature of the metal oxide to form a crystalline metal oxide thin film having a perovskite crystal structure.
- the firing for crystallization is not performed once at the end, but may be performed after the above calcination for each applied coating film, but it is necessary to repeat the firing at a high temperature many times. Therefore, it is economically advantageous to carry out the process collectively at the end.
- the firing temperature for this crystallization is usually a relatively low temperature of 500 to 800 ° C., for example, 550 to 700 ° C. Therefore, a substrate having heat resistance enough to withstand this firing temperature is used as the substrate.
- the firing (annealing) time for crystallization is usually about 1 minute to 1 hour, and the firing atmosphere is not particularly limited, but is usually air or oxygen.
- the perovskite oxide thin film formed in this way is uniformly formed on the substrate, and there is no crack or local peeling at the outer peripheral edge portion. Therefore, a ferroelectric thin film free from particle adhesion can be obtained. Can do.
- the SiO 2 of the substrate is exposed at the outer peripheral end with respect to the Pt layer on the surface of the substrate, such as a lead-based perovskite oxide such as PZT, it is applied on the SiO 2. Cracks are likely to occur in PZT.
- the coating film removal method in the above production method is effective as a method for removing a film in a range in which the SiO 2 crack is likely to occur. In this case, water may be sprayed or dropped slightly inward from the inner peripheral edge of the SiO 2 range.
- the raw material solution for the Pb-containing perovskite oxide thin film the following composition was used.
- Lead acetate trihydrate as the lead material
- lanthanum acetate hemihydrate as the lanthanum material
- zirconium n-butoxide as the zirconium material
- titanium tetraisopropoxide as the titanium material
- the total of solvent A, Zr and Ti Two times the number of moles of acetylacetone was mixed as a stabilizer and refluxed at 150 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, it is distilled at 150 ° C.
- Table 1 shows the PLZT composition, solvent A, and solvent B.
- the raw material solution for the Bi-containing layered perovskite oxide (SBTN)
- the following composition was used.
- Bismuth 2-ethylhexanoate as the bismuth raw material
- strontium 2-ethylhexanoate as the strontium raw material
- tantalum pentaethoxide as the tantalum raw material
- niobium pentaethoxide as the niobium raw material
- the total number of moles of solvent A, Ta and Nb 2.5 times the amount of 2-ethylhexanoic acid was mixed as a stabilizer and refluxed at 150 ° C. for 1 hour in a nitrogen atmosphere. Thereafter, it is distilled at 150 ° C.
- Table 2 shows the SBTN composition, solvent A, and solvent B.
- Pb-containing perovskite oxide thin films Pb-containing perovskite oxide thin films
- SBTN Bi-containing layered perovskite oxide
- a SiO 2 film is formed to a thickness of 500 nm on the surface of a Si substrate having a diameter of 4 inches by thermal oxidation, and a Pt film is formed thereon by a sputtering method except for a region from the outer peripheral end to 3 mm in the radial direction.
- a Pt (200 nm) / SiO 2 (500 nm) / Si substrate was used.
- Example 1 Next, as Example 1, 10 wt% raw material solutions 1-1 to 1-6 were spin-coated on the same Pt / SiO 2 / Si substrate in the same manner as in the preliminary experiment, and then the Pb-containing film and In order to avoid a reaction during baking of SiO 2 , a gel-like coating film is sprayed by spraying the removing liquids 1 to 62 to the position 5 mm radially inward from the outer peripheral edge of the substrate while rotating the substrate at 2500 rpm with a spin coater. EBR treatment was performed to dissolve the. As shown in Tables 5 and 6, the removal liquids 1 to 62 contain an organic solvent and water at a predetermined weight ratio.
- the removing liquids 1 to 50 include one organic solvent X and water, and the removing liquids 51 to 61 are an organic solvent mixed with two organic solvents X and Y at a predetermined weight ratio, water, and water. Is included.
- the removing liquid 62 is water and does not contain an organic solvent.
- This substrate was placed on a hot plate and heated in the same manner as in the preliminary experiment to obtain a lead-containing oxide film in a state where the outer peripheral edge was removed by etching. This operation was repeated, and the raw material solution was applied a total of 6 times while performing EBR treatment each time, followed by baking at 700 ° C. for 5 minutes with RTA to obtain a Pb-containing perovskite oxide thin film.
- the obtained sample no cracks or film peeling occurred at the end of the Pb-containing film in any of the removal liquids 1 to 62.
- the CBR solution coating film scatters around the substrate together with the removing liquid by this EBR treatment. However, when the removing liquids 1 to 61 containing an organic solvent are used, they are cloudy and adhere to the gel. There was no.
- EBR treatment is performed with each of the removal solutions 1 to 62 in the same manner as described above, hot plate treatment and RTA treatment are performed, and a Pb-containing perovskite type is obtained. An oxide thin film was obtained.
- the samples obtained using any of the removal solutions 1 to 62 have no cracks or film peeling at the end of the Pb-containing film, and prevent cracks even when the film thickness during EBR is large. It was found that there is an effect.
- Comparative Example 1 a Pb-containing perovskite type oxidation was performed in the same manner as in Example 1 except that n-butanol was used as the removing solution instead of the removing solutions 1 to 62 shown in Table 5 or Table 6. A thin film was obtained. Cracks and film peeling occurred at the end of the Pb-containing film of the obtained sample.
- Bi-containing layered perovskite oxide thin film (Example 2) As Example 2, the Bi-containing layered perovskite-type oxide thin film was prepared in the same manner as in the case of the Pb-containing perovskite-type oxide thin film (Example 1). Is spin-coated on a 4-inch Pt / SiO 2 / Si substrate, and then the substrate is rotated from the outer peripheral edge of the substrate while rotating the substrate at 2500 rpm with a spin coater in order to avoid a crack due to thickening at the outer peripheral edge of the substrate.
- Each of the removal liquids 1 to 62 shown in Table 5 and Table 6 was sprayed to a position 5 mm radially inward to dissolve the gel-like coating film, and EBR treatment was performed.
- This substrate was heated on a hot plate in the same manner as in the case of the Pb-containing perovskite oxide thin film to obtain a Bi-containing oxide thin film in which the outer peripheral edge was etched.
- This operation was repeated in the same manner as in the case of the Pb-containing perovskite oxide thin film, and the raw material solution was applied a total of 6 times, and after each EBR treatment, baked at 800 ° C. for 5 minutes by RTA, and the Bi-containing layer A perovskite oxide thin film was obtained.
- EBR treatment is similarly performed with each of the removal solutions 1 to 62, hot plate treatment and RTA treatment are performed, and a Bi-containing layered perovskite type oxidation is performed.
- a thin film was obtained.
- the samples obtained using any of the removal liquids 1 to 62 have no cracks or film peeling at the end of the Bi-containing film, and prevent cracks even if the film thickness during EBR is large. It was found that there is an effect.
- Comparative Example 2 a Bi-containing layered perovskite oxide thin film was prepared in the same manner as in Example 2 except that n-butanol was used as the EBR solvent instead of each of the removal solutions shown in Table 5 or Table 6. Obtained. Cracks and film peeling occurred at the end of the Bi-containing film of the obtained sample.
- each sample of Comparative Example 1 and Comparative Example 2 had a width of 1000 to 1500 ⁇ m at the outer peripheral edge of the ferroelectric thin film. As a result, irregularities of about several hundred nm were confirmed, but each sample of Example 1 and Example 2 had a very smooth surface with only a minute step of 100 nm or less being observed.
- FIG. 2 shows a surface micrograph (a) of the thin film of Example 1 and a measurement result (b) using a surface shape measuring instrument.
- FIG. 3 the surface micrograph (a) of the thin film of the comparative example 1 and the measurement result (b) by a surface shape measuring device are shown.
- Comparative Example 1 unevenness due to cracks or the like is conspicuous in the vicinity of the interface of the film (the region indicated by two broken lines in FIG. 3). It is a very smooth surface state.
- this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
- the PLZT film and the SBTN film have been mainly described.
- the present invention can also be applied to the case of forming other ferroelectric thin films formed by the CSD method.
- the CSD coating film is removed by the removing solution containing water, the surface of the ferroelectric thin film can be smoothed without causing cracks or local peeling in the removed portion.
- a removal liquid containing an organic solvent hydrolysis of the removed raw material solution can be suppressed to prevent the formation of precipitates, and contamination of the work environment due to the precipitates can be prevented.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Formation Of Insulating Films (AREA)
- Semiconductor Memories (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本願は、2009年6月30日に出願された特願2009-156064号、2009年7月13日に出願された特願2009-165140号、および2010年1月27日に出願された特願2010-16071号について優先権を主張し、その内容をここに援用する。
特許文献3及び特許文献4は、基板表面に形成したフォトレジスト層をEBRで除去する方法について示されており、その除去のためのリンス液としてシンナー組成物が用いられている。
除去用液は原料溶液の塗布膜に触れるものであるため、有機溶剤を過剰に加えることなく、原料溶液の加水分解による沈殿物の精製を防止し得るに足る適量とし、水を主成分とした組成物とすることにより、塗布膜の膜特性を変化させないようにする。
この強誘電体薄膜の製造方法は、PZT、PLZTなどのPbを含有するペロブスカイト型酸化物薄膜、SBT、SBTNなどのBiを含有する層状ペロブスカイト形酸化物薄膜を製造する場合に好適であり、有機金属化合物を含有する原料溶液を基板2に塗布してゲル状塗膜(塗布膜)1を形成する工程(原料溶液塗布工程)と、この基板2を回転させながら基板2の外周端部に有機溶剤を含んだ除去用液(塗布膜除去用液)を噴射又は滴下して、この外周端部におけるゲル状塗膜1を除去する工程(EBR工程)と、ゲル状塗膜1を加熱処理して強誘電体薄膜を形成する工程(加熱処理工程)とを有する。
CSD法の原料溶液は、原料金属化合物を溶媒により溶解し、安定化剤等を添加したものであり、例えば、PLZT用、SBTN用として以下のものがある。
この有機溶媒と各有機金属化合物を、所望の金属成分濃度となるように、適当な比率で混合する。また、溶液の均質化のために加熱還流することが行われる。
なお、溶液中の有機金属化合物の合計濃度は、金属酸化物換算量で0.1~20重量%程度とするのが好ましい。
基板2に原料溶液を塗布することにより、基板2の全面にゲル状塗膜1を形成する。
基板材料としては、シリコンウエハ(単結晶)、および白金、ニッケルなどの金属類、酸化ルテニウム、酸化イリジウム、ルテニウム酸ストロンチウム(SrRuO3)又はコバルト酸ランタンストロンチウム((LaxSr1-x)CoO3)などのペロブスカイト型導電性酸化物などの被膜を有した、シリコン、ガラス、アルミナ、石英などの基板が挙げられる。
原料溶液を基板2上に塗布する場合、スピンコート法が一般的であるが、噴霧塗布、浸漬塗布など他の塗布法も適用可能である。
図1(a)に示すように、原料溶液を塗布した後のゲル状塗膜1が形成された基板2を回転させながら、基板2の外周端部に上方のノズル3から塗布膜除去用液Wを噴射又は滴下することにより、図1(b)に示すようにゲル状塗膜1の外周端部を除去する。
また、このEBR工程においては、外周端部のゲル状塗膜1が流れ易いように、基板2を回転させながら、必要に応じて、ノズル3を半径方向外方に移動させるようにしてもよい。
加熱処理工程は、さらに乾燥工程、仮焼工程、結晶化アニール工程から構成される。
外周端部を除去した後のゲル状塗膜1を乾燥させ、溶媒を除去する。この乾燥温度は溶媒の種類によっても異なるが、通常は80~200℃程度であり、好ましくは100~180℃の範囲でよい。但し、原料溶液中の金属化合物を金属酸化物に転化させるための次工程の加熱の際の昇温中に、溶媒は除去されるので、塗膜の乾燥工程は必ずしも必要とされない。
その後、仮焼工程として、ゲル状塗膜1を乾燥させた後の基板2を加熱し、有機金属化合物を完全に加水分解又は熱分解させて金属酸化物に転化させ、金属酸化物からなる酸化物膜を形成する。この加熱は、一般に加水分解の必要なゾルゲル法では水蒸気を含んでいる雰囲気、例えば、空気又は含水蒸気雰囲気(例えば、水蒸気を含有する窒素雰囲気)中で行われ、熱分解させるMOD法では含酸素雰囲気中で行われる。加熱温度は、金属酸化物の種類によっても異なるが、通常は150~550℃の範囲であり、好ましくは、300~450℃である。加熱時間は、加水分解及び熱分解が完全に進行するように選択するが、通常は1分ないし1時間程度である。
このようして得られた酸化物膜は、非晶質であるか、結晶質であっても結晶性が不十分であるので、分極性が低く、強誘電体薄膜として利用できない。そのため、最後に結晶化アニール工程として、その金属酸化物の結晶化温度以上の温度で焼成して、ペロブスカイト型の結晶構造を持つ結晶質の金属酸化物薄膜とする。なお、結晶化のための焼成は、最後に一度で行うのではなく、各塗布した塗膜ごとに、上記の仮焼に続けて行ってもよいが、高温での焼成を何回も繰返す必要があるので、最後にまとめて行う方が経済的には有利である。
鉛原料として酢酸鉛3水和物、ランタン原料として酢酸ランタン1.5水和物、ジルコニウム原料としてジルコニウムn‐ブトキシド、チタン原料としてチタンテトライソプロポキシドを用い、溶媒Aと、ZrとTiの合計モル数の2倍量のアセチルアセトンを安定化剤として混合し、150℃で1時間、窒素雰囲気の中で還流した。その後150℃で減圧蒸留し、副生成物をはじめとした低沸点有機物を除去し、酸化物換算で10wt%となるように溶媒Bで希釈し、各種Pb含有ペロブスカイト型酸化物薄膜用CSD溶液を得た。表1にPLZT組成、溶媒A、溶媒Bを記す。
ビスマス原料として2‐エチルヘキサン酸ビスマス、ストロンチウム原料として2‐エチルヘキサン酸ストロンチウム、タンタル原料としてタンタルペンタエトキシド、ニオブ原料としてニオブペンタエトキシドを用い、溶媒Aと、TaとNbの合計モル数の2.5倍量の2‐エチルヘキサン酸を安定化剤として混合し、150℃で1時間、窒素雰囲気の中で還流した。その後150℃で減圧蒸留し、副生成物をはじめとした低沸点有機物を除去し、酸化物換算で10wt%となるように溶媒Bで希釈し、各種Bi含有層状ペロブスカイト型酸化物薄膜用CSD溶液を得た。表2にSBTN組成、溶媒A、溶媒Bを記す。
まず、予備実験として、表1の原料溶液1-1~1-6を用い、4インチPt/SiO2/Si基板上に2ml噴射し、スピン条件として500rpm×3sec回転した後、3000rpm×15sec回転して基板の全面にコーティングした。その後350℃に加熱したホットプレート上に基板を載せて5分間加熱し、有機物の熱分解を行い、鉛含有酸化物膜を得た。この操作を繰り返し、EBR工程を行わずに計6回塗布を行った後、急速熱処理装置RTA(Rapid Thermal Annealing)により700℃で5分焼成を行い、Pb含有ペロブスカイト型酸化物薄膜を得た。
この実験に使用した基板の最外周部はPtがコーティングされておらず、いずれもPLZT薄膜がSiO2と直接接触している部分は焼成後にクラックが発生した。
次に、実施例1として、同じPt/SiO2/Si基板上に、上記予備実験の方法と同様にして、10wt%原料溶液1-1~1-6をスピンコートした後、Pb含有膜とSiO2の焼成時の反応を避けるため、基板をスピンコーターで2500rpmで回転させながら、基板の外周端部から半径方向内側5mmの位置に除去用液1~62をそれぞれ噴射してゲル状塗膜を溶解するEBR処理を行った。除去用液1~62は、表5及び表6に示すように、有機溶剤と水とを所定の重量比で含んでいる。このうち、除去用液1~50は1種の有機溶剤Xと水とを含み、除去用液51~61は2種の有機溶剤X,Yを所定の重量比で混合した有機溶剤と水とを含んでいる。除去用液62は水であり、有機溶剤を含んでいない。
得られたサンプルは、除去用液1~62のいずれを用いたものもPb含有膜端部にはクラックや膜剥がれは全く発生していなかった。また、このEBR処理によって基板周囲にCSD溶液塗布膜が除去用液とともに飛散するが、有機溶剤を含む除去用液1~61を用いた場合には、これらがゲル状に白濁して付着することはなかった。
次に、比較例1として、表5又は表6の各除去用液1~62の代わりにn‐ブタノールを除去用液として使うこと以外は全て実施例1と同様にして、Pb含有ペロブスカイト型酸化物薄膜を得た。得られたサンプルのPb含有膜端部には、クラックや膜剥がれが発生した。
(実施例2)
実施例2として、Bi含有層状ペロブスカイト型酸化物薄膜の場合も、Pb含有ペロブスカイト型酸化物薄膜の場合(実施例1)と同様にして、表2の10wt%原料溶液2-1~2-6を4インチPt/SiO2/Si基板上にスピンコートした後、基板の外周端部での厚膜化によるクラックを避けるため、基板をスピンコーターで2500rpmで回転させながら、基板の外周端部から半径方向内側5mmの位置に表5及び表6に示す各除去用液1~62を噴射してゲル状塗膜を溶解し、EBR処理を行った。この基板をPb含有ペロブスカイト型酸化物薄膜の場合と同様にホットプレート上で加熱し、外周端部がエッチングされた状態のBi含有酸化物薄膜を得た。Pb含有ペロブスカイト型酸化物薄膜の場合と同様にこの操作を繰り返し、計6回原料溶液の塗布を行って、都度EBR処理を行った後、RTAにより800℃で5分焼成を行い、Bi含有層状ペロブスカイト型酸化物薄膜を得た。
得られたサンプルは、除去用液1~62のいずれを用いたものもBi含有膜端部にはクラック、膜剥がれは全く発生していなかった。また、有機溶剤を含む除去用液1~61を用いた場合には、基板周囲に飛散した原料溶液塗布膜がゲル状に白濁して付着することはなかった。
また、比較例2として、表5又は表6の各除去用液の代わりにn‐ブタノールをEBR用溶剤として使うこと以外は全て実施例2と同様にして、Bi含有層状ペロブスカイト型酸化物薄膜を得た。得られたサンプルのBi含有膜端部には、クラック、膜剥がれが発生した。
Instruments社製の触針式表面形状測定器Dektakを使用して表面の段差を確認したところ、比較例1及び比較例2の各サンプルとも、強誘電体薄膜の外周縁部に1000~1500μmの幅の範囲で数百nm程度の凹凸が確認されたが、実施例1及び実施例2の各サンプルは100nm以下の微細な段差が認められるだけで、極めて平滑な表面であった。
上記実施形態ではPLZT膜、SBTN膜を中心に説明したが、CSD法により成膜される他の強誘電体薄膜を形成する場合にも適用することができる。
2 基板
3 ノズル
W CSD塗布膜除去用液
Claims (10)
- CSD法における熱処理前の塗布膜を除去するための液体であって、
水と有機溶剤とを含み、
前記有機溶剤は、β‐ジケトン類、β‐ケトエステル類、多価アルコール類、カルボン酸類、アルカノールアミン類、α‐ヒドロキシカルボン酸、α‐ヒドロキシカルボニル誘導体、およびヒドラゾン誘導体から選ばれる1種あるいは2種以上であり、
前記有機溶剤と前記水との混合重量比が50:50~0:100であることを特徴とするCSD塗布膜除去用液。 - 前記有機溶剤と前記水との混合重量比が50:50~5:95であることを特徴とする請求項1記載のCSD塗布膜除去用液。
- 前記有機溶剤と前記水との混合重量比が30:70~10:90であることを特徴とする請求項2記載のCSD塗布膜除去用液。
- 前記β‐ジケトンがアセチルアセトンであり、前記β‐ケトエステルが3‐オキソブタン酸メチル及び/又は3‐オキソブタン酸エチルであり、前記多価アルコールがプロピレングリコール、ジエチレングリコール、トリエチレングリコールから選ばれる1種又は2種以上であり、前記カルボン酸類が酢酸、プロピオン酸、酪酸から選ばれる1種又は2種以上であり、前記アルカノールアミン類がモノエタノールアミン、ジエタノールアミン、トリエタノールアミンから選ばれる1種又は2種以上であり、前記α-ヒドロキシカルボン酸が乳酸、マンデル酸、クエン酸、酒石酸、シュウ酸から選ばれる1種又は2種以上であり、前記α-ヒドロキシカルボニル誘導体がアセトール、アセトイン、ヒドラゾン誘導体が2-プロパノンヒドラゾンであることを特徴とする請求項1に記載のCSD塗布膜除去用液。
- プロピレングリコール、ジエチレングリコール、トリエチレングリコールから選ばれる1種または2種以上の混合溶媒Aと、メタノール、エタノール、1‐プロパノール、2‐プロパノール、1‐ブタノール、から選ばれる1種または2種以上の混合溶媒Bとを溶媒として含有する原料溶液を塗布して形成された前記塗布膜を除去することを特徴とする請求項1に記載のCSD塗布膜除去用液。
- CSD法において、原料溶液を基板に塗布して形成された塗布膜を除去する方法であって、
前記基板を回転させながらこの基板の外周端部に請求項1に記載のCSD塗布膜除去用液を噴射又は滴下して、前記外周端部における前記塗布膜を除去することを特徴とするCSD塗布膜除去方法。 - CSD法において、強誘電体薄膜形成用の有機金属化合物を含有する原料溶液を基板に塗布して塗布膜を形成する工程と、
前記基板を回転させながらこの基板の外周端部に請求項1に記載のCSD塗布膜除去用液を噴射又は滴下して、前記基板の前記外周端部における前記塗布膜を除去する工程と、
前記塗布膜を加熱処理して強誘電体薄膜を形成する工程とを有することを特徴とする強誘電体薄膜の製造方法。 - 前記原料溶液が、Pbを含有するペロブスカイト型酸化物薄膜を形成することを特徴とする請求項7記載の強誘電体薄膜の製造方法。
- 前記原料溶液が、Biを含有する層状ペロブスカイト型酸化物薄膜を形成することを特徴とする請求項7記載の強誘電体薄膜の製造方法。
- 請求項7記載の強誘電体薄膜の製造方法により製造されたことを特徴とする強誘電体薄膜。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/380,288 US20120100330A1 (en) | 2009-06-30 | 2010-04-21 | Liquid and method for removing csd coated film, ferroelectric thin film and method for producing the same |
CN201080029671.0A CN102473625B (zh) | 2009-06-30 | 2010-04-21 | Csd涂布膜除去用液及使用其的csd涂布膜除去方法以及铁电体薄膜及其制造方法 |
EP10793905.0A EP2450946B1 (en) | 2009-06-30 | 2010-04-21 | Method for removing ferroelectric csd coating film |
US14/599,074 US20150129547A1 (en) | 2009-06-30 | 2015-01-16 | Liquid and method for removing csd coated film, ferroelectric thin film and method for producing the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-156064 | 2009-06-30 | ||
JP2009156064A JP5381410B2 (ja) | 2009-06-30 | 2009-06-30 | 強誘電体薄膜の製造方法 |
JP2009-165140 | 2009-07-13 | ||
JP2009165140 | 2009-07-13 | ||
JP2010-016071 | 2010-01-27 | ||
JP2010016071A JP5434631B2 (ja) | 2009-07-13 | 2010-01-27 | Csd塗布膜除去用組成物及びこれを用いたcsd塗布膜除去方法並びに強誘電体薄膜とその製造方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/380,288 A-371-Of-International US20120100330A1 (en) | 2009-06-30 | 2010-04-21 | Liquid and method for removing csd coated film, ferroelectric thin film and method for producing the same |
US14/599,074 Division US20150129547A1 (en) | 2009-06-30 | 2015-01-16 | Liquid and method for removing csd coated film, ferroelectric thin film and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001734A1 true WO2011001734A1 (ja) | 2011-01-06 |
Family
ID=44836611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057059 WO2011001734A1 (ja) | 2009-06-30 | 2010-04-21 | Csd塗布膜除去用液及びこれを用いたcsd塗布膜除去方法並びに強誘電体薄膜とその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20120100330A1 (ja) |
EP (1) | EP2450946B1 (ja) |
CN (1) | CN102473625B (ja) |
TW (1) | TWI467012B (ja) |
WO (1) | WO2011001734A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017098367A (ja) * | 2015-11-20 | 2017-06-01 | 東京エレクトロン株式会社 | 基板処理方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5754539B2 (ja) * | 2013-10-15 | 2015-07-29 | 三菱マテリアル株式会社 | LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法 |
US10354858B2 (en) * | 2013-12-31 | 2019-07-16 | Texas Instruments Incorporated | Process for forming PZT or PLZT thinfilms with low defectivity |
JP6618334B2 (ja) | 2015-06-03 | 2019-12-11 | 株式会社Screenホールディングス | 基板処理装置、膜形成ユニット、基板処理方法および膜形成方法 |
JP7019400B2 (ja) | 2017-12-15 | 2022-02-15 | キヤノン株式会社 | 膜及び液体吐出ヘッドの製造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04171820A (ja) * | 1990-11-05 | 1992-06-19 | Nec Kyushu Ltd | 塗布膜形成方法 |
JPH0817817A (ja) * | 1994-06-30 | 1996-01-19 | Sony Corp | Sog膜の成膜方法及びsogコータ |
JP2001072926A (ja) | 1999-06-28 | 2001-03-21 | Mitsubishi Materials Corp | ペロブスカイト型酸化物薄膜形成用原料溶液 |
JP2002029752A (ja) | 2000-07-04 | 2002-01-29 | Mitsubishi Materials Corp | 強誘電体薄膜形成用溶液の製造方法及び強誘電体薄膜形成用溶液 |
JP2002320901A (ja) * | 2001-04-25 | 2002-11-05 | Tokyo Electron Ltd | 基板処理方法及び基板処理装置 |
JP2005227770A (ja) | 2004-02-10 | 2005-08-25 | Samsung Electronics Co Ltd | シンナー組成物及びこれを用いたフォトレジストの除去方法 |
JP2007324393A (ja) | 2006-06-01 | 2007-12-13 | Tokyo Electron Ltd | 塗布膜形成装置および溶剤供給方法 |
JP2009156064A (ja) | 2007-12-25 | 2009-07-16 | Nissan Motor Co Ltd | 筒内直接燃料噴射式火花点火エンジンの燃圧制御装置 |
JP2009165140A (ja) | 2009-02-04 | 2009-07-23 | Atsushi Nishizawa | 動画店頭配布システム |
JP2010016071A (ja) | 2008-07-02 | 2010-01-21 | Murata Mfg Co Ltd | 積層セラミック電子部品 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6066581A (en) * | 1995-07-27 | 2000-05-23 | Nortel Networks Corporation | Sol-gel precursor and method for formation of ferroelectric materials for integrated circuits |
JP2950407B2 (ja) * | 1996-01-29 | 1999-09-20 | 東京応化工業株式会社 | 電子部品製造用基材の製造方法 |
JP2002256454A (ja) * | 2001-03-06 | 2002-09-11 | Toyoda Gosei Co Ltd | めっき製品の製造方法 |
US20030108751A1 (en) * | 2001-11-16 | 2003-06-12 | Yukitaka Hasegawa | Plated articles and methods for producing the plated articles |
SG169230A1 (en) * | 2002-08-02 | 2011-03-30 | Idemitsu Kousan Co Ltd | Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device |
KR100513724B1 (ko) * | 2002-12-24 | 2005-09-08 | 삼성전자주식회사 | 강유전성 박막 및 그 제조방법 |
US20050260118A1 (en) * | 2004-05-20 | 2005-11-24 | Yunfeng Lu | Mesoporous carbon films and methods of preparation thereof |
JP4217906B2 (ja) * | 2004-09-17 | 2009-02-04 | セイコーエプソン株式会社 | 前駆体溶液の製造方法 |
US7521170B2 (en) * | 2005-07-12 | 2009-04-21 | Az Electronic Materials Usa Corp. | Photoactive compounds |
JP4164701B2 (ja) * | 2006-05-31 | 2008-10-15 | セイコーエプソン株式会社 | 強誘電体キャパシタ、強誘電体キャパシタの製造方法、強誘電体メモリおよび強誘電体メモリの製造方法 |
US7704670B2 (en) * | 2006-06-22 | 2010-04-27 | Az Electronic Materials Usa Corp. | High silicon-content thin film thermosets |
JP2008039517A (ja) * | 2006-08-03 | 2008-02-21 | Denso Corp | 電流センサ |
US20090056094A1 (en) * | 2007-08-21 | 2009-03-05 | Yong Shi | Piezoelectric composite nanofibers, nanotubes, nanojunctions and nanotrees |
-
2010
- 2010-04-21 WO PCT/JP2010/057059 patent/WO2011001734A1/ja active Application Filing
- 2010-04-21 CN CN201080029671.0A patent/CN102473625B/zh active Active
- 2010-04-21 US US13/380,288 patent/US20120100330A1/en not_active Abandoned
- 2010-04-21 EP EP10793905.0A patent/EP2450946B1/en active Active
- 2010-04-26 TW TW99113063A patent/TWI467012B/zh active
-
2015
- 2015-01-16 US US14/599,074 patent/US20150129547A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04171820A (ja) * | 1990-11-05 | 1992-06-19 | Nec Kyushu Ltd | 塗布膜形成方法 |
JPH0817817A (ja) * | 1994-06-30 | 1996-01-19 | Sony Corp | Sog膜の成膜方法及びsogコータ |
JP2001072926A (ja) | 1999-06-28 | 2001-03-21 | Mitsubishi Materials Corp | ペロブスカイト型酸化物薄膜形成用原料溶液 |
JP2002029752A (ja) | 2000-07-04 | 2002-01-29 | Mitsubishi Materials Corp | 強誘電体薄膜形成用溶液の製造方法及び強誘電体薄膜形成用溶液 |
JP2002320901A (ja) * | 2001-04-25 | 2002-11-05 | Tokyo Electron Ltd | 基板処理方法及び基板処理装置 |
JP2005227770A (ja) | 2004-02-10 | 2005-08-25 | Samsung Electronics Co Ltd | シンナー組成物及びこれを用いたフォトレジストの除去方法 |
JP2007324393A (ja) | 2006-06-01 | 2007-12-13 | Tokyo Electron Ltd | 塗布膜形成装置および溶剤供給方法 |
JP2009156064A (ja) | 2007-12-25 | 2009-07-16 | Nissan Motor Co Ltd | 筒内直接燃料噴射式火花点火エンジンの燃圧制御装置 |
JP2010016071A (ja) | 2008-07-02 | 2010-01-21 | Murata Mfg Co Ltd | 積層セラミック電子部品 |
JP2009165140A (ja) | 2009-02-04 | 2009-07-23 | Atsushi Nishizawa | 動画店頭配布システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2450946A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017098367A (ja) * | 2015-11-20 | 2017-06-01 | 東京エレクトロン株式会社 | 基板処理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150129547A1 (en) | 2015-05-14 |
CN102473625B (zh) | 2016-05-11 |
TW201100533A (en) | 2011-01-01 |
EP2450946A1 (en) | 2012-05-09 |
EP2450946A4 (en) | 2014-04-23 |
US20120100330A1 (en) | 2012-04-26 |
TWI467012B (zh) | 2015-01-01 |
CN102473625A (zh) | 2012-05-23 |
EP2450946B1 (en) | 2017-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5613910B2 (ja) | Pzt強誘電体薄膜の製造方法 | |
JP5828293B2 (ja) | Pzt強誘電体薄膜の製造方法 | |
WO2011001734A1 (ja) | Csd塗布膜除去用液及びこれを用いたcsd塗布膜除去方法並びに強誘電体薄膜とその製造方法 | |
JP4329287B2 (ja) | Plzt又はpzt強誘電体薄膜、その形成用組成物及び形成方法 | |
JP6887770B2 (ja) | Pzt強誘電体膜の形成方法 | |
EP2784802B1 (en) | Method of forming PNbZT ferroelectric thin film | |
JP2001261338A (ja) | Tiを含有する金属酸化物薄膜形成用原料溶液、Tiを含有する金属酸化物薄膜の形成方法及びTiを含有する金属酸化物薄膜 | |
EP2784137A1 (en) | PZT-based ferroelectric thin film-forming composition, method of preparing the same, and method of forming PZT-based ferroelectric thin film using the same | |
JP5434631B2 (ja) | Csd塗布膜除去用組成物及びこれを用いたcsd塗布膜除去方法並びに強誘電体薄膜とその製造方法 | |
JP2014154825A (ja) | LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法 | |
JP5381410B2 (ja) | 強誘電体薄膜の製造方法 | |
JP2002047011A (ja) | 緻密質ペロブスカイト型金属酸化物薄膜の形成方法及び緻密質ペロブスカイト型金属酸化物薄膜 | |
JP6665673B2 (ja) | 強誘電体薄膜の製造方法 | |
JP4042276B2 (ja) | Pb系ペロブスカイト型金属酸化物薄膜の形成方法 | |
JP4329289B2 (ja) | Sbt強誘電体薄膜、その形成用組成物及び形成方法 | |
JP4048650B2 (ja) | ペロブスカイト型酸化物薄膜形成用原料溶液 | |
JP4329288B2 (ja) | Blt又はbt強誘電体薄膜、その形成用組成物及び形成方法 | |
WO2015056587A1 (ja) | LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法 | |
JP2010235402A (ja) | 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜 | |
JP6365294B2 (ja) | LaNiO3薄膜の形成方法 | |
JPH1149600A (ja) | 層状ペロブスカイト膜の形成方法 | |
JP5644975B2 (ja) | Pzt強誘電体薄膜の製造方法 | |
JP2006272929A (ja) | 誘電体薄膜の形成方法及びそれを用いて製造された誘電体膜を備えた圧電体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080029671.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10793905 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13380288 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010793905 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010793905 Country of ref document: EP |