WO2011096399A1 - Rubber composition - Google Patents
Rubber composition Download PDFInfo
- Publication number
- WO2011096399A1 WO2011096399A1 PCT/JP2011/052044 JP2011052044W WO2011096399A1 WO 2011096399 A1 WO2011096399 A1 WO 2011096399A1 JP 2011052044 W JP2011052044 W JP 2011052044W WO 2011096399 A1 WO2011096399 A1 WO 2011096399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber
- weight
- rubber composition
- pulp
- lignin
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/14—Anti-skid inserts, e.g. vulcanised into the tread band
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/02—Lignocellulosic material, e.g. wood, straw or bagasse
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
Definitions
- the present invention relates to a rubber composition containing microfibrillated plant fibers.
- cellulose fibers as a filler to be blended in the rubber component
- cellulose fibers include microfibrillated cellulose.
- microfibrillated cellulose reduces bleaching and the binding strength between microfibril units, and fibrillates into microfibril units.
- wood pulp from which lignin has been chemically removed is used as a raw material, and microfibrillated cellulose produced from wood pulp from which lignin has been removed has hydrophilicity mainly derived from cellulose. Therefore, it is not compatible with the hydrophobic rubber component.
- An object of the present invention is to provide a rubber composition in which microfibrillated plant fibers are well dispersed in a rubber component.
- the present inventors mainly derived from cellulose by containing microfibrillated plant fibers containing a relatively large amount of lignin as a filler in the rubber composition. It has been found that hydrophilicity can be excluded and the rubber component that is hydrophobic is better and the dispersibility of the microfibrillated plant fiber can be improved.
- the present invention has been completed based on such knowledge.
- Item 1 A rubber composition containing (A) a rubber component and (B) microfibrillated plant fibers obtained by mechanically defibrating pulp containing 2 to 70% by weight of lignin with respect to the weight of cellulose.
- Item 2. The rubber composition according to Item 1, wherein the content of the microfibrillated plant fiber (B) is 1 to 50 parts by weight with respect to 100 parts by weight of the rubber component (A).
- Item 3. The rubber composition according to Item 1 or 2, wherein the mechanical fibrillation treatment is a grinding treatment.
- Item 4. The rubber composition according to any one of Items 1 to 3, wherein the microfibrillated plant fiber has a structure in which cellulose microfibrils and / or cellulose microfibril bundles are covered with hemicellulose and / or lignin.
- Item 5. The rubber composition according to any one of Items 1 to 4, which is used for tires.
- Item 6. A pneumatic tire using the rubber composition according to any one of Items 1 to 5.
- the rubber composition of the present invention comprises (A) a rubber component, and (B) a microfibrillated plant fiber obtained by mechanical defibrating pulp containing 2 to 70% by weight of lignin with respect to the weight of cellulose. contains.
- Examples of the rubber component (A) include diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR) ), Butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer Examples thereof include modified natural rubber such as polymer rubber, chlorosulfonated polyethylene, epoxidized natural rubber (ENR), hydrogenated natural rubber, and deproteinized natural rubber.
- NBR acrylonitrile-butadiene rubber
- modified natural rubber such as polymer rubber, chlorosulfonated polyethylene, epoxid
- the rubber component other than the diene rubber component examples include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, urethane rubber, and the like. These rubber components may be used alone or in combination of two or more. What is necessary is just to mix
- microfibrillated plant fiber (B) Since the microfibrillated plant fiber (B) does not completely remove lignin chemically, the matrix portion composed of lignin and hemicellulose that fills the space between the microfibrillated cellulose is broken to form microfibrils (microfibrillation). Presumed to be. Therefore, the microfibrillated plant fiber (B) obtained by mechanical fibrillation treatment is composed of cellulose, hemicellulose and protolignin (lignin in a state existing in the plant tissue) inherent in the plant material. It is presumed that this structure is retained.
- the microfibrillated plant fiber (B) has a structure in which hemicellulose and / or lignin coats part or all of the periphery of cellulose microfibrils and / or cellulose microfibril bundles, in particular, cellulose microfibrils and / or Alternatively, it is presumed that hemicellulose covers a cellulose microfibril bundle and further has a structure in which this is covered with lignin. However, it is presumed that there will also be a portion where hemicellulose and / or lignin is removed and the hemicellulose or cellulose fiber length is exposed on the surface.
- the average fiber diameter of the microfibrillated plant fiber (B) (hereinafter also referred to as average fiber diameter) is preferably 4 nm to 10 ⁇ m, more preferably 4 nm to 1 ⁇ m, and more preferably 4 nm to 200 nm. Is more preferable. Further, the microfibrillated plant fiber (B) has intricately intertwined fibers.
- the relationship between the lignin content and the cellulose content in the microfibrillated plant fiber (B) is that the lignin is 2 to 70% by weight, preferably 5 to 60% by weight, more preferably 10 to 50% by weight, based on the cellulose weight. is there.
- the content of lignin in the microfibrillated plant fiber (B) is preferably 1 to 40% by weight, more preferably 3 to 35% by weight, and still more preferably 5 to 35% by weight.
- the fibrillated plant fiber (B) does not remove the lignin in the pulp which is the raw material, the lignin content in the pulp and the lignin content in the microfibrillated plant fiber are almost the same.
- the relationship between the cellulose content and the lignin content in the pulp and the relationship between the cellulose content and the lignin content in the microfibrillated plant fiber are almost the same.
- this composition is different from the microfibrillated plant fiber (B) used in the present invention in that it is not microfibrillated and protolignin is not present. Is different.
- the pulp used when producing the microfibrillated plant fiber (B) is different from the pulp used in the production of the conventional microfibrillated cellulose, and it is necessary that the lignin is not completely removed.
- the lignin content in the pulp is 1 to 40% by weight, preferably 3 to 35% by weight, more preferably 5 to 35% by weight. Further, regarding the relationship between the lignin content and the cellulose content in the pulp, lignin is 2 to 70% by weight, preferably 5 to 65% by weight, more preferably 10 to 60% by weight, based on the weight of cellulose.
- a plant raw material for supplying pulp used in producing the microfibrillated plant fiber (B) a wide variety of plant raw materials for supplying pulp used in the production of conventional microfibrillated cellulose are used.
- wood, bamboo, hemp, jute, kenaf, crop waste, cloth, recycled pulp, and waste paper Preferred are wood, bamboo, hemp, jute, kenaf, and crop residue.
- Any method for pulping a plant material is not limited as long as the lignin in the plant material is not completely removed and the pulp content is about 2 to 70% by weight based on the cellulose content in the pulp. Applicable.
- a mechanical pulping method for mechanically pulping plant materials can be applied.
- the mechanical pulp (MP) obtained by the mechanical pulping method include groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP).
- chemical pulp obtained by pulverizing plant raw materials chemically or chemically and mechanically by chlorination, alkali treatment, oxygen oxidation treatment, sodium hypochlorite treatment, sulfite treatment, etc.
- KP sulfite pulp
- SP sulfite pulp
- SCP semi-chemical pulp
- CGP chemi-ground pulp
- CMP chemi-mechanical pulp
- the pulp may be subjected to chemical modification treatment commonly used in the pulp field as necessary, for example, esterification treatment, etherification treatment, acetalization treatment, pulp treated with an aromatic ring of lignin, etc.
- the applied pulp is illustrated.
- the esterification treatment, etherification treatment, and acetalization treatment mainly include esterification, etherification, and acetalization treatment of hydroxyl groups present in cellulose, hemicellulose, and lignin.
- the treatment of the lignin aromatic ring includes introducing a desired substituent into the lignin aromatic ring.
- Lignin-containing pulp is not mechanically ground by refiner, twin screw kneader (double screw extruder), twin screw kneader, high pressure homogenizer, medium stirring mill, stone mill, grinder, vibration mill, sand grinder, etc. It is defibrated or refined by beating to make microfibrillated plant fibers.
- a preferred temperature in the defibrating treatment is 0 to 99 ° C, more preferably 0 to 90 ° C. It is desirable that the pulp that is the raw material for the defibrating process has a shape (for example, a powder form) suitable for such a defibrating process.
- a preferred defibration method is grinding treatment, and it is preferable to use a stone mill type grinding machine or a twin-screw kneading extruder.
- the grinding may be performed until the fiber diameter reaches a desired size.
- the amount of the rubber component (A) is preferably in the range of 1 to 50 parts by weight, more preferably in the range of 2 to 35 parts by weight, and still more preferably in the range of 3 to 20 parts by weight.
- the rubber component (A) and the microfibrillated plant fiber (B) are blended and dispersed in water, and then the obtained dispersion is coagulated with an acid, washed with water, and then dried. It is manufactured as a master batch obtained by this.
- the solid content concentration of the rubber component (A) in the dispersion is preferably 0.5% by weight or more, preferably 1.0% by weight or more in the dispersion from the viewpoint that the yield of each material during solidification is good. Is more preferable, and 1.5% by weight or more is more preferable. Further, the rubber component (A) is preferably 30% by weight or less, more preferably 20% by weight or less, more preferably 10% by weight in the dispersion from the viewpoint of good mixing efficiency with the microfibrillated plant fiber (B). % Or less is more preferable.
- the solid content concentration of the microfibrillated plant fiber (B) in the dispersion is preferably 0.1% by weight or more in the dispersion from the viewpoint that the yield of each material during solidification is good. % By weight or more is more preferable, and 0.5% by weight or more is more preferable. Further, the microfibrillated plant fiber (B) is preferably 10% by weight or less, more preferably 5% by weight or less, more preferably 2% by weight in the dispersion from the viewpoint of good mixing efficiency with the rubber component (A). % Or less is more preferable.
- the acid for solidifying the solid content in the dispersion is not particularly limited, and examples thereof include formic acid, acetic acid, hydrochloric acid, and sulfuric acid.
- the rubber composition (masterbatch) obtained by the above method further comprises reinforcing fillers such as carbon black and silica; silane compounds such as silane coupling agents; process oils; waxes; anti-aging agents; sulfur and vulcanization.
- Vulcanizing agents such as accelerators; vulcanizing aids such as zinc oxide and stearic acid can be appropriately blended.
- the microfibrillated plant fiber (B) is well dispersed in the rubber component (A), the breaking characteristics and rigidity are improved. Therefore, it is suitably used for tires, and when used for tires, it is possible to improve steering stability without deteriorating low fuel consumption characteristics.
- the rubber composition of the present invention When using the rubber composition of the present invention for tires, the rubber composition containing the rubber component (A) and the microfibrillated plant fiber (B) prepared above with a Banbury mixer, kneader, open roll, etc., A rubber composition can be produced by kneading a desired additive and then vulcanizing.
- the present invention also relates to a pneumatic tire using the rubber composition.
- a pneumatic tire is manufactured by a normal method using the rubber composition of the present invention. That is, the rubber composition of the present invention is further mixed with a desired compounding agent and kneaded, and the resulting kneaded product is extruded in accordance with the shape of various members of the tire at an unvulcanized stage.
- An unvulcanized tire is formed by molding in the usual manner. A tire can be obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
- the rubber composition of the present invention contains microfibrillated plant fibers using wood pulp from which lignin has not been removed or from which part of lignin has been removed as a raw material, interfacial interaction between cellulose and rubber components And the dispersibility of the microfibrillated plant fiber in the rubber component is improved. Therefore, the breaking characteristics of the rubber composition are improved. When such a rubber composition is used for a tire, it is possible to improve steering stability by improving rigidity without reducing fuel efficiency.
- microfibrillated plant fiber 1 (solid content: 30% by weight) was prepared.
- microfibrillated plant fiber 2 (solid) was prepared in the same manner as the preparation of the microfibrillated plant fiber 1 except that unbleached kraft pulp derived from conifers (containing 5 to 7% by weight of lignin) was used as the wood pulp. A partial concentration: 30% by weight) was prepared.
- Microfibrillated plant fiber 1 (solid content: 30% by weight) was submerged in water using a high-speed homogenizer (batch homogenizer T65D Ultra Turrax (Ultraturrax T25) manufactured by IKA) at 14,000 rpm, 1 After stirring and dispersing for a time, natural rubber latex (HYTEX-HA manufactured by Golden Hope Plantations, solid content concentration: 60% by weight) was added, and the mixture was further stirred and dispersed at 24,000 rpm for 30 minutes. The obtained mixed solution was coagulated with a 5% by weight aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain master batches 1 to 3.
- a high-speed homogenizer batch homogenizer T65D Ultra Turrax (Ultraturrax T25) manufactured by IKA
- natural rubber latex (HYTEX-HA manufactured by Golden Hope Plantations, solid content concentration: 60% by weight) was added, and the mixture was further stirred and dispersed at 24,000
- Master batches 4 to 6 were prepared in the same manner as master batches 1 to 3, except that microfibrillated plant fiber 2 was used.
- Table 1 shows the content of microfibrillated plant fibers, natural rubber latex and water in the dispersion before coagulation and washing with water when preparing master batches 1 to 6.
- Anti-aging agent NOCRACK 6C (Ouchi Shinsei Chemical Co., Ltd.)
- Stearic acid Bead stearic acid Tsubaki (manufactured by NOF Corporation)
- Zinc oxide 2 types of zinc oxide (Mitsui Metal Mining Co., Ltd.)
- Sulfur Powdered sulfur (manufactured by Tsurumi Chemical Co., Ltd.)
- Vulcanization accelerator Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)
- a test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho).
- VES viscoelastic spectrometer
- E * (complex elastic modulus) and tan ⁇ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz.
- Steering stability index (E * for each formulation) ⁇ (E * for standard formulation) x 100
- Rolling resistance index (tan ⁇ of each formulation) ⁇ (tan ⁇ of standard formulation) ⁇ 100 The steering stability index and rolling resistance index were calculated.
- Table 3 shows the evaluation of each physical property of each vulcanized rubber composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Disclosed is a rubber composition which contains (A) a rubber component, and (B) microfibrillated plant fibres obtained by mechanically fibrillating a pulp which contains 2-70 wt% of lignin relative to the mass by weight of cellulose.
Description
本発明は、ミクロフィブリル化植物繊維を含有するゴム組成物に関する。
The present invention relates to a rubber composition containing microfibrillated plant fibers.
ゴム組成物において、ゴム成分中に配合される充填剤としてセルロース繊維を含有することにより、得られるゴムの物理的特性の向上させることは、従来から知られている(例えば、特許文献1参照)。そのような、セルロース繊維として、ミクロフィブリル化されたセルロースが挙げられるが、一般的にミクロフィブリル化セルロースは、漂白や、ミクロフィブリルユニットどうしの結合力を低下させて、ミクロフィブリルユニットへの解繊効率を高めるといった目的から、リグニンを化学的に除去した木材パルプを原料として用いられており、リグニンを除去した木材パルプから製造されたミクロフィブリル化セルロースは、主としてセルロースに由来する親水性を備えているため、疎水性であるゴム成分となじみが悪い。そのため、ミクロフィブリル化セルロースをそのままゴム成分に配合して繊維強化ゴムを製造しようとすると、繊維の分散性が悪くなり、得られるゴムの物理的特性の向上を抑制してしまうという問題点があった。このため、ゴム組成物の強度を向上させるために、繊維の親水性を低下させるための表面処理が必要となっていた。
In the rubber composition, it is conventionally known to improve the physical properties of the resulting rubber by containing cellulose fibers as a filler to be blended in the rubber component (see, for example, Patent Document 1). . Examples of such cellulose fibers include microfibrillated cellulose. Generally, microfibrillated cellulose reduces bleaching and the binding strength between microfibril units, and fibrillates into microfibril units. For the purpose of increasing efficiency, wood pulp from which lignin has been chemically removed is used as a raw material, and microfibrillated cellulose produced from wood pulp from which lignin has been removed has hydrophilicity mainly derived from cellulose. Therefore, it is not compatible with the hydrophobic rubber component. Therefore, if an attempt is made to produce a fiber-reinforced rubber by directly blending microfibrillated cellulose with a rubber component, the dispersibility of the fiber is deteriorated, and the improvement of physical properties of the resulting rubber is suppressed. It was. For this reason, in order to improve the intensity | strength of a rubber composition, the surface treatment for reducing the hydrophilic property of a fiber was needed.
しかしながら、繊維に対して表面処理を施す場合には、溶剤中で反応させる必要があり、多くのプロセスが必要となる。また、このような表面処理によりセルロース繊維とゴム成分との相溶性は改善されるが、セルロース繊維とゴム成分との界面での化学的な結合が生じないことから、十分な補強効果が得られないという点で問題があった。
However, when the surface treatment is performed on the fiber, it is necessary to react in a solvent, and many processes are required. In addition, the compatibility between the cellulose fiber and the rubber component is improved by such a surface treatment, but since a chemical bond at the interface between the cellulose fiber and the rubber component does not occur, a sufficient reinforcing effect is obtained. There was a problem in that there was no.
本発明は、ミクロフィブリル化植物繊維がゴム成分中において良好に分散しているゴム組成物を提供することを目的とする。
An object of the present invention is to provide a rubber composition in which microfibrillated plant fibers are well dispersed in a rubber component.
本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、リグニンを比較的多く含有するミクロフィブリル化植物繊維をゴム組成物における充填剤として含有することにより、主としてセルロースに由来する親水性を疎外でき、疎水性であるゴム成分となじみが良くなり、ミクロフィブリル化植物繊維の分散性を向上できることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors mainly derived from cellulose by containing microfibrillated plant fibers containing a relatively large amount of lignin as a filler in the rubber composition. It has been found that hydrophilicity can be excluded and the rubber component that is hydrophobic is better and the dispersibility of the microfibrillated plant fiber can be improved.
本発明は、斯かる知見に基づき完成されたものである。
The present invention has been completed based on such knowledge.
項1.(A)ゴム成分、及び(B)セルロース重量に対して、リグニンを2~70重量%含有するパルプを機械的に解繊処理することにより得られるミクロフィブリル化植物繊維を含有するゴム組成物。
Item 1. A rubber composition containing (A) a rubber component and (B) microfibrillated plant fibers obtained by mechanically defibrating pulp containing 2 to 70% by weight of lignin with respect to the weight of cellulose.
項2.ミクロフィブリル化植物繊維(B)の含有量が、ゴム成分(A)100重量部に対して、1~50重量部である項1に記載のゴム組成物。
Item 2. Item 2. The rubber composition according to Item 1, wherein the content of the microfibrillated plant fiber (B) is 1 to 50 parts by weight with respect to 100 parts by weight of the rubber component (A).
項3.機械的な解繊処理が磨砕処理である項1又は2に記載のゴム組成物。
Item 3. Item 3. The rubber composition according to Item 1 or 2, wherein the mechanical fibrillation treatment is a grinding treatment.
項4.ミクロフィブリル化植物繊維が、セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲をヘミセルロース及び/又はリグニンが被覆した構造を有する項1~3のいずれかに記載のゴム組成物。
Item 4. Item 4. The rubber composition according to any one of Items 1 to 3, wherein the microfibrillated plant fiber has a structure in which cellulose microfibrils and / or cellulose microfibril bundles are covered with hemicellulose and / or lignin.
項5.タイヤ用に用いられる項1~4のいずれかに記載のゴム組成物。
Item 5. Item 5. The rubber composition according to any one of Items 1 to 4, which is used for tires.
項6.項1~5のいずれかに記載のゴム組成物を用いた空気入りタイヤ。
Item 6. Item 6. A pneumatic tire using the rubber composition according to any one of Items 1 to 5.
以下、本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail.
本発明のゴム組成物は、(A)ゴム成分、及び(B)セルロース重量に対して、リグニンを2~70重量%含有するパルプを機械的な解繊処理により得られるミクロフィブリル化植物繊維を含有する。
The rubber composition of the present invention comprises (A) a rubber component, and (B) a microfibrillated plant fiber obtained by mechanical defibrating pulp containing 2 to 70% by weight of lignin with respect to the weight of cellulose. contains.
ゴム成分(A)としては、ジエン系ゴム成分のものが挙げられ、具体的には、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、エポキシ化天然ゴム(ENR)、水素化天然ゴム、脱タンパク天然ゴム等の改質天然ゴム等が挙げられる。また、ジエン系ゴム成分以外のゴム成分としては、エチレン-プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらのゴム成分は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比においても各種用途に応じて適宜配合されればよい。
Examples of the rubber component (A) include diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR) ), Butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer Examples thereof include modified natural rubber such as polymer rubber, chlorosulfonated polyethylene, epoxidized natural rubber (ENR), hydrogenated natural rubber, and deproteinized natural rubber. Examples of the rubber component other than the diene rubber component include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, urethane rubber, and the like. These rubber components may be used alone or in combination of two or more. What is necessary is just to mix | blend suitably also in the blend ratio in the case of blending according to various uses.
ミクロフィブリル化植物繊維(B)は、化学的にリグニンを完全には除去しないため、ミクロフィブリル化セルロースの間を埋めているリグニン及びヘミセルロースからなるマトリックス部分が壊れて微小繊維化(ミクロフィブリル化)していると推測される。したがって、機械的な解繊処理により得られるミクロフィブリル化植物繊維(B)は、植物原料が本来有しているセルロース、ヘミセルロース及びプロトリグニン(植物組織中に存在する状態でのリグニン)から構成される構造を保持していると推測される。具体的には、ミクロフィブリル化植物繊維(B)は、セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲の一部又は全部をヘミセルロース及び/又はリグニンが被覆した構造、特に、セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲をヘミセルロースが覆い、さらにこれをリグニンが覆った構造を有していると推測される。ただし、ヘミセルロース及び/又はリグニンが取れてヘミセルロース又はセルロース繊縦が表面に露出する部分も存在するであろうと推測される。
Since the microfibrillated plant fiber (B) does not completely remove lignin chemically, the matrix portion composed of lignin and hemicellulose that fills the space between the microfibrillated cellulose is broken to form microfibrils (microfibrillation). Presumed to be. Therefore, the microfibrillated plant fiber (B) obtained by mechanical fibrillation treatment is composed of cellulose, hemicellulose and protolignin (lignin in a state existing in the plant tissue) inherent in the plant material. It is presumed that this structure is retained. Specifically, the microfibrillated plant fiber (B) has a structure in which hemicellulose and / or lignin coats part or all of the periphery of cellulose microfibrils and / or cellulose microfibril bundles, in particular, cellulose microfibrils and / or Alternatively, it is presumed that hemicellulose covers a cellulose microfibril bundle and further has a structure in which this is covered with lignin. However, it is presumed that there will also be a portion where hemicellulose and / or lignin is removed and the hemicellulose or cellulose fiber length is exposed on the surface.
ミクロフィブリル化植物繊維(B)の繊維径の平均値(以下、平均繊維径ともいう)は、平均値が4nm~10μmであることが好ましく、4nm~1μmであることがより好ましく、4nm~200nmであることがより一層好ましい。また、ミクロフィブリル化植物繊維(B)は繊維が複雑に絡み合っている。ミクロフィブリル化植物繊維(B)におけるリグニン含有率とセルロース含有率の関係は、リグニンはセルロース重量に対し、2~70重量%、好ましくは5~60重量%、より好ましくは10~50重量%である。また、ミクロフィブリル化植物繊維(B)におけるリグニンの含有率は、好ましくは1~40重量%、より好ましくは3~35重量%、より一層好ましくは5~35重量%である。なお、ミクロフィブリル化植物繊維(B)は、原料であるパルプ中のリグニンを除去していないため、パルプにおけるリグニン含有率とミクロフィブリル化植物繊維におけるリグニン含有率とはほぼ同じとなる。これと同様に、パルプにおけるセルロース含有率とリグニン含有率の関係とミクロフィブリル化植物繊維におけるセルロース含有率とリグニン含有率の関係もほぼ同じである。
The average fiber diameter of the microfibrillated plant fiber (B) (hereinafter also referred to as average fiber diameter) is preferably 4 nm to 10 μm, more preferably 4 nm to 1 μm, and more preferably 4 nm to 200 nm. Is more preferable. Further, the microfibrillated plant fiber (B) has intricately intertwined fibers. The relationship between the lignin content and the cellulose content in the microfibrillated plant fiber (B) is that the lignin is 2 to 70% by weight, preferably 5 to 60% by weight, more preferably 10 to 50% by weight, based on the cellulose weight. is there. The content of lignin in the microfibrillated plant fiber (B) is preferably 1 to 40% by weight, more preferably 3 to 35% by weight, and still more preferably 5 to 35% by weight. In addition, since the fibrillated plant fiber (B) does not remove the lignin in the pulp which is the raw material, the lignin content in the pulp and the lignin content in the microfibrillated plant fiber are almost the same. Similarly, the relationship between the cellulose content and the lignin content in the pulp and the relationship between the cellulose content and the lignin content in the microfibrillated plant fiber are almost the same.
なお、特開2001-342353号公報には、木粉を脱脂処理(エタノール:ベンゼン=1:2溶液)した脱脂木粉に、フェノール誘導体のアセトン溶液を加えてフェノール誘導体を収着させ、リン酸処理して得られる組成物が記載されているが、この組成物は、ミクロフィブリル化されていない点、プロトリグニンが存在しない点で、本発明で用いられるミクロフィブリル化植物繊維(B)とは相違する。
In JP 2001-342353 A, a phenol derivative acetone solution is added to a defatted wood powder obtained by defatting wood powder (ethanol: benzene = 1: 2 solution) to sorb the phenol derivative, and phosphoric acid is added. Although the composition obtained by processing is described, this composition is different from the microfibrillated plant fiber (B) used in the present invention in that it is not microfibrillated and protolignin is not present. Is different.
ミクロフィブリル化植物繊維(B)を製造する際に用いられるパルプは、従来のミクロフィブリル化セルロースの製造に使用されていたパルプとは異なり、リグニンが完全に除去されていないことが必要である。パルプ中のリグニン含有率は、1~40重量%、好ましくは3~35重量%、より好ましくは5~35重量%である。また、パルプにおけるリグニン含有率とセルロース含有率の関係は、リグニンはセルロース重量に対し、2~70重量%、好ましくは5~65重量%、より好ましくは10~60重量%である。
The pulp used when producing the microfibrillated plant fiber (B) is different from the pulp used in the production of the conventional microfibrillated cellulose, and it is necessary that the lignin is not completely removed. The lignin content in the pulp is 1 to 40% by weight, preferably 3 to 35% by weight, more preferably 5 to 35% by weight. Further, regarding the relationship between the lignin content and the cellulose content in the pulp, lignin is 2 to 70% by weight, preferably 5 to 65% by weight, more preferably 10 to 60% by weight, based on the weight of cellulose.
ミクロフィブリル化植物繊維(B)を製造する際に用いられるパルプを供給するための植物原料としては、従来のミクロフィブリル化セルロースの製造に使用されていたパルプを供給するための植物原料を広く使用でき、例えば木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙が挙げられる。好ましくは、木材、竹、麻、ジュート、ケナフ、農作物残廃物である。
As a plant raw material for supplying pulp used in producing the microfibrillated plant fiber (B), a wide variety of plant raw materials for supplying pulp used in the production of conventional microfibrillated cellulose are used. For example, wood, bamboo, hemp, jute, kenaf, crop waste, cloth, recycled pulp, and waste paper. Preferred are wood, bamboo, hemp, jute, kenaf, and crop residue.
植物原料をパルプ化する方法は植物原料中のリグニンが完全には除去されず、パルプ中のセルロース含有重量に対しリグニン含有重量が2~70重量%程度となるパルプ化の方法であれば制限なく適用できる。例えば、植物原料を機械的にパルプ化するメカニカルパルプ化法等が適用できる。メカニカルパルプ化法により得られるメカニカルパルプ(MP)としては砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等を挙げることができる。
Any method for pulping a plant material is not limited as long as the lignin in the plant material is not completely removed and the pulp content is about 2 to 70% by weight based on the cellulose content in the pulp. Applicable. For example, a mechanical pulping method for mechanically pulping plant materials can be applied. Examples of the mechanical pulp (MP) obtained by the mechanical pulping method include groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP).
また、植物原料を塩素処理、アルカリ処理、酸素酸化処理、次亜塩素酸ナトリウム処理、亜硫酸塩処理等により化学的に或いは化学的及び機械的にパルプ化することにより得られるケミカルパルプ(CP)、(クラフトパルプ(KP)、亜硫酸パルプ(SP)等)、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)であっても、リグニンが完全に除去されず所定量含まれていれば、ミクロフィブリル化植物繊維(B)を製造する際に用いられるパルプとして利用可能である。また、パルプは、必要に応じてパルプ分野で慣用されている化学変性処理されていても良く、例えば、エステル化処理、エーテル化処理、アセタール化処理、リグニンの芳香環が処理されたパルプ等を施されたパルプが例示される。エステル化処理、エーテル化処理、アセタール化処理は、主として、セルロース、ヘミセルロース、リグニンに存在する水酸基をエステル化、エーテル化、アセタール化処理することを包含する。また、リグニンの芳香環の処理は、リグニンの芳香環に所望の置換基を導入することを包含する。
Moreover, chemical pulp (CP) obtained by pulverizing plant raw materials chemically or chemically and mechanically by chlorination, alkali treatment, oxygen oxidation treatment, sodium hypochlorite treatment, sulfite treatment, etc. (Kraft pulp (KP), sulfite pulp (SP), etc.), semi-chemical pulp (SCP), chemi-ground pulp (CGP), chemi-mechanical pulp (CMP) If it is, it can be used as a pulp used in producing the microfibrillated plant fiber (B). Further, the pulp may be subjected to chemical modification treatment commonly used in the pulp field as necessary, for example, esterification treatment, etherification treatment, acetalization treatment, pulp treated with an aromatic ring of lignin, etc. The applied pulp is illustrated. The esterification treatment, etherification treatment, and acetalization treatment mainly include esterification, etherification, and acetalization treatment of hydroxyl groups present in cellulose, hemicellulose, and lignin. Further, the treatment of the lignin aromatic ring includes introducing a desired substituent into the lignin aromatic ring.
リグニン含有パルプは、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解することによって解繊又は微細化され、ミクロフィブリル化植物繊維とされる。解繊処理における好ましい温度は0~99℃、より好ましくは0~90℃である。解繊処理の原料となるパルプは、このような解繊処理に適した形状(例えば粉末状等)であることが望ましい。また、解繊処理に先立って、パルプを蒸気で蒸す(例えば、圧力釜中、水分存在下で加熱する)と解繊エネルギーの低減の点で有利である。
Lignin-containing pulp is not mechanically ground by refiner, twin screw kneader (double screw extruder), twin screw kneader, high pressure homogenizer, medium stirring mill, stone mill, grinder, vibration mill, sand grinder, etc. It is defibrated or refined by beating to make microfibrillated plant fibers. A preferred temperature in the defibrating treatment is 0 to 99 ° C, more preferably 0 to 90 ° C. It is desirable that the pulp that is the raw material for the defibrating process has a shape (for example, a powder form) suitable for such a defibrating process. In addition, it is advantageous in terms of reducing the defibrating energy when the pulp is steamed with steam (for example, heated in a pressure cooker in the presence of moisture) prior to the defibrating treatment.
好ましい解繊方法は磨砕処理であり、石臼式磨砕機、二軸混練押出機を用いることが好ましい。磨砕は繊維径が所望の大きさになるまで行えばよい。
A preferred defibration method is grinding treatment, and it is preferable to use a stone mill type grinding machine or a twin-screw kneading extruder. The grinding may be performed until the fiber diameter reaches a desired size.
ミクロフィブリル化植物繊維(B)の含有量は、ゴム中でのミクロフィブリル化植物繊維(B)の分散性が悪化せずに補強性と破壊特性のバランスを良好に保つことができるという観点から、ゴム成分(A)100重量部に対して、1~50重量部の範囲内が好ましく、2~35重量部の範囲内がより好ましく、3~20重量部の範囲内がさらに好ましい。
From the viewpoint that the content of the microfibrillated plant fiber (B) can maintain a good balance between the reinforcing property and the fracture property without deteriorating the dispersibility of the microfibrillated plant fiber (B) in the rubber. The amount of the rubber component (A) is preferably in the range of 1 to 50 parts by weight, more preferably in the range of 2 to 35 parts by weight, and still more preferably in the range of 3 to 20 parts by weight.
本発明のゴム組成物は、水中にゴム成分(A)及びミクロフィブリル化植物繊維(B)を配合し、分散させた後、得られた分散液を酸で凝固させ、水洗した後、乾燥させることにより得られるマスターバッチとして製造される。
In the rubber composition of the present invention, the rubber component (A) and the microfibrillated plant fiber (B) are blended and dispersed in water, and then the obtained dispersion is coagulated with an acid, washed with water, and then dried. It is manufactured as a master batch obtained by this.
前記分散液中のゴム成分(A)の固形分濃度は、凝固時の各材料の歩留まりが良好であるという点から、分散液中、0.5重量%以上が好ましく、1.0重量%以上がより好ましく、1.5重量%以上がさらに好ましい。また、ゴム成分(A)は、ミクロフィブリル化植物繊維(B)との混合効率が良好であるという点から、分散液中、30重量%以下が好ましく、20重量%以下がより好ましく、10重量%以下がさらに好ましい。
The solid content concentration of the rubber component (A) in the dispersion is preferably 0.5% by weight or more, preferably 1.0% by weight or more in the dispersion from the viewpoint that the yield of each material during solidification is good. Is more preferable, and 1.5% by weight or more is more preferable. Further, the rubber component (A) is preferably 30% by weight or less, more preferably 20% by weight or less, more preferably 10% by weight in the dispersion from the viewpoint of good mixing efficiency with the microfibrillated plant fiber (B). % Or less is more preferable.
前記分散液中のミクロフィブリル化植物繊維(B)の固形分濃度は、凝固時の各材料の歩留まりが良好であるという点から、分散液中、0.1重量%以上が好ましく、0.3重量%以上がより好ましく、0.5重量%以上がさらに好ましい。また、ミクロフィブリル化植物繊維(B)は、ゴム成分(A)との混合効率が良好であるという点から、分散液中、10重量%以下が好ましく、5重量%以下がより好ましく、2重量%以下がさらに好ましい。
The solid content concentration of the microfibrillated plant fiber (B) in the dispersion is preferably 0.1% by weight or more in the dispersion from the viewpoint that the yield of each material during solidification is good. % By weight or more is more preferable, and 0.5% by weight or more is more preferable. Further, the microfibrillated plant fiber (B) is preferably 10% by weight or less, more preferably 5% by weight or less, more preferably 2% by weight in the dispersion from the viewpoint of good mixing efficiency with the rubber component (A). % Or less is more preferable.
分散液中の固形分を凝固させる際の酸は、特に限定しないが、例えばギ酸、酢酸、塩酸、硫酸等が挙げられる。
The acid for solidifying the solid content in the dispersion is not particularly limited, and examples thereof include formic acid, acetic acid, hydrochloric acid, and sulfuric acid.
前記の方法により得られるゴム組成物(マスターバッチ)は、さらに、カーボンブラック、シリカ等の補強用充填剤;シランカップリング剤等のシラン化合物;プロセスオイル;ワックス;老化防止剤;硫黄及び加硫促進剤等の加硫剤;酸化亜鉛、ステアリン酸等の加硫助剤等を適宜配合することができる。
The rubber composition (masterbatch) obtained by the above method further comprises reinforcing fillers such as carbon black and silica; silane compounds such as silane coupling agents; process oils; waxes; anti-aging agents; sulfur and vulcanization. Vulcanizing agents such as accelerators; vulcanizing aids such as zinc oxide and stearic acid can be appropriately blended.
本発明のゴム組成物は、ゴム成分(A)中にミクロフィブリル化植物繊維(B)が良好に分散されるため、破断特性及び剛性が向上する。そのため、タイヤ用として好適に用いられ、タイヤ用として用いた場合、低燃費特性を低下させずに、かつ操縦安定性を向上させることができる。
In the rubber composition of the present invention, since the microfibrillated plant fiber (B) is well dispersed in the rubber component (A), the breaking characteristics and rigidity are improved. Therefore, it is suitably used for tires, and when used for tires, it is possible to improve steering stability without deteriorating low fuel consumption characteristics.
本発明のゴム組成物をタイヤ用として用いる場合、バンバリーミキサーやニーダー、オープンロール等で前記で調製したゴム成分(A)及びミクロフィブリル化植物繊維(B)を含有するゴム組成物に、さらに、所望の添加剤を混練したのち、加硫することによりゴム組成物を製造することができる。
When using the rubber composition of the present invention for tires, the rubber composition containing the rubber component (A) and the microfibrillated plant fiber (B) prepared above with a Banbury mixer, kneader, open roll, etc., A rubber composition can be produced by kneading a desired additive and then vulcanizing.
また、本発明は、前記ゴム組成物を用いた空気入りタイヤにも関する。
The present invention also relates to a pneumatic tire using the rubber composition.
空気入りタイヤは、本発明のゴム組成物を用いて通常の方法で製造される。すなわち、本発明のゴム組成物にさらに、所望の配合剤を配合して混練し、得られる混練物を、未加硫の段階でタイヤの各種部材の形状にあわせて押出し加工し、タイヤ成形機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得ることができる。
A pneumatic tire is manufactured by a normal method using the rubber composition of the present invention. That is, the rubber composition of the present invention is further mixed with a desired compounding agent and kneaded, and the resulting kneaded product is extruded in accordance with the shape of various members of the tire at an unvulcanized stage. An unvulcanized tire is formed by molding in the usual manner. A tire can be obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
本発明のゴム組成物は、リグニンが除去されていない、又はリグニンの一部が除去された木材パルプを原料として用いたミクロフィブリル化植物繊維を含有するため、セルロースとゴム成分との界面相互作用が改善され、また、ミクロフィブリル化植物繊維のゴム成分への分散性が良好となる。そのため、ゴム組成物の破断特性が向上する。このようなゴム組成物をタイヤに用いた場合、低燃費性を低下させずに、剛性の向上により、操縦安定性を改善することが可能となる。
Since the rubber composition of the present invention contains microfibrillated plant fibers using wood pulp from which lignin has not been removed or from which part of lignin has been removed as a raw material, interfacial interaction between cellulose and rubber components And the dispersibility of the microfibrillated plant fiber in the rubber component is improved. Therefore, the breaking characteristics of the rubber composition are improved. When such a rubber composition is used for a tire, it is possible to improve steering stability by improving rigidity without reducing fuel efficiency.
[実施例]
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。 [Example]
The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following embodiment.
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。 [Example]
The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following embodiment.
<ミクロフィブリル化植物繊維1の調製>
針葉樹由来漂白クラフトパルプ(リグニン1重量%未満)を原料として用い、含水木材パルプを400rpm、0℃の操業条件の二軸混練押出機で処理することでミクロフィブリル化植物繊維1(固形分濃度:30重量%)を調製した。 <Preparation of microfibrillated plant fiber 1>
By using bleached kraft pulp derived from conifers (less than 1% by weight of lignin) as a raw material, microfibrillated plant fiber 1 (solid content: 30% by weight) was prepared.
針葉樹由来漂白クラフトパルプ(リグニン1重量%未満)を原料として用い、含水木材パルプを400rpm、0℃の操業条件の二軸混練押出機で処理することでミクロフィブリル化植物繊維1(固形分濃度:30重量%)を調製した。 <Preparation of microfibrillated plant fiber 1>
By using bleached kraft pulp derived from conifers (less than 1% by weight of lignin) as a raw material, microfibrillated plant fiber 1 (solid content: 30% by weight) was prepared.
<ミクロフィブリル化植物繊維2の調製>
木材パルプとして、針葉樹由来非漂白クラフトパルプ(リグニン5~7重量%含有)を原料として用いた以外は、ミクロフィブリル化植物繊維1の調製と同様の方法にて、ミクロフィブリル化植物繊維2(固形分濃度:30重量%)を調製した。 <Preparation of microfibrillated plant fiber 2>
The microfibrillated plant fiber 2 (solid) was prepared in the same manner as the preparation of the microfibrillated plant fiber 1 except that unbleached kraft pulp derived from conifers (containing 5 to 7% by weight of lignin) was used as the wood pulp. A partial concentration: 30% by weight) was prepared.
木材パルプとして、針葉樹由来非漂白クラフトパルプ(リグニン5~7重量%含有)を原料として用いた以外は、ミクロフィブリル化植物繊維1の調製と同様の方法にて、ミクロフィブリル化植物繊維2(固形分濃度:30重量%)を調製した。 <Preparation of microfibrillated plant fiber 2>
The microfibrillated plant fiber 2 (solid) was prepared in the same manner as the preparation of the microfibrillated plant fiber 1 except that unbleached kraft pulp derived from conifers (containing 5 to 7% by weight of lignin) was used as the wood pulp. A partial concentration: 30% by weight) was prepared.
マスターバッチ1~3の調製
ミクロフィブリル化植物繊維1(固形分濃度:30重量%)を水中で高速ホモジナイザー(IKA製のバッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて24,000rpm、1時間撹拌分散させ、ついで天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製のHYTEX-HA、固形分濃度:60重量%)を添加し、さらに24,000rpm、30分撹拌分散させた。得られた混合液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1~3を得た。 Preparation of master batches 1 to 3 Microfibrillated plant fiber 1 (solid content: 30% by weight) was submerged in water using a high-speed homogenizer (batch homogenizer T65D Ultra Turrax (Ultraturrax T25) manufactured by IKA) at 14,000 rpm, 1 After stirring and dispersing for a time, natural rubber latex (HYTEX-HA manufactured by Golden Hope Plantations, solid content concentration: 60% by weight) was added, and the mixture was further stirred and dispersed at 24,000 rpm for 30 minutes. The obtained mixed solution was coagulated with a 5% by weight aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain master batches 1 to 3.
ミクロフィブリル化植物繊維1(固形分濃度:30重量%)を水中で高速ホモジナイザー(IKA製のバッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて24,000rpm、1時間撹拌分散させ、ついで天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製のHYTEX-HA、固形分濃度:60重量%)を添加し、さらに24,000rpm、30分撹拌分散させた。得られた混合液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1~3を得た。 Preparation of master batches 1 to 3 Microfibrillated plant fiber 1 (solid content: 30% by weight) was submerged in water using a high-speed homogenizer (batch homogenizer T65D Ultra Turrax (Ultraturrax T25) manufactured by IKA) at 14,000 rpm, 1 After stirring and dispersing for a time, natural rubber latex (HYTEX-HA manufactured by Golden Hope Plantations, solid content concentration: 60% by weight) was added, and the mixture was further stirred and dispersed at 24,000 rpm for 30 minutes. The obtained mixed solution was coagulated with a 5% by weight aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain master batches 1 to 3.
マスターバッチ4~6の調製
ミクロフィブリル化植物繊維2を用いた以外はマスターバッチ1~3と同様の方法にてマスターバッチ4~6を調製した。 Preparation of master batches 4 to 6 Master batches 4 to 6 were prepared in the same manner as master batches 1 to 3, except that microfibrillated plant fiber 2 was used.
ミクロフィブリル化植物繊維2を用いた以外はマスターバッチ1~3と同様の方法にてマスターバッチ4~6を調製した。 Preparation of master batches 4 to 6 Master batches 4 to 6 were prepared in the same manner as master batches 1 to 3, except that microfibrillated plant fiber 2 was used.
マスターバッチ1~6を調製する際の凝固及び水洗前の分散液中におけるミクロフィブリル化植物繊維、天然ゴムラテックス及び水の含有割合を表1に示す。
Table 1 shows the content of microfibrillated plant fibers, natural rubber latex and water in the dispersion before coagulation and washing with water when preparing master batches 1 to 6.
マスターバッチ7の調製
固形分濃度60重量%の天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA)250gを5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ7を得た。 Preparation of Masterbatch 7 Natural rubber latex (HYTEX-HA, manufactured by Golden Hope Plantations Co., Ltd.) with a solid content of 60% by weight is coagulated with 5% by weight aqueous formic acid, washed with water, and dried in a heating oven at 40 ° C. Master batch 7 was obtained.
固形分濃度60重量%の天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA)250gを5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ7を得た。 Preparation of Masterbatch 7 Natural rubber latex (HYTEX-HA, manufactured by Golden Hope Plantations Co., Ltd.) with a solid content of 60% by weight is coagulated with 5% by weight aqueous formic acid, washed with water, and dried in a heating oven at 40 ° C. Master batch 7 was obtained.
<加硫ゴム組成物の調製>
各種マスターバッチと表2に示す配合剤を60℃、24rpmの条件で6インチオープンロールにより5分間混練した後、150℃でプレス加熱することで実施例1~3、比較例1~3及び参考例1に対応する加硫ゴム組成物を得た。 <Preparation of vulcanized rubber composition>
Various master batches and the ingredients shown in Table 2 were kneaded for 5 minutes with a 6-inch open roll at 60 ° C. and 24 rpm, and then press-heated at 150 ° C. for Examples 1 to 3, Comparative Examples 1 to 3 and Reference A vulcanized rubber composition corresponding to Example 1 was obtained.
各種マスターバッチと表2に示す配合剤を60℃、24rpmの条件で6インチオープンロールにより5分間混練した後、150℃でプレス加熱することで実施例1~3、比較例1~3及び参考例1に対応する加硫ゴム組成物を得た。 <Preparation of vulcanized rubber composition>
Various master batches and the ingredients shown in Table 2 were kneaded for 5 minutes with a 6-inch open roll at 60 ° C. and 24 rpm, and then press-heated at 150 ° C. for Examples 1 to 3, Comparative Examples 1 to 3 and Reference A vulcanized rubber composition corresponding to Example 1 was obtained.
表2中の各配合剤の詳細を以下に示す。
老化防止剤:ノクラック6C(大内新興化学工業(株)製)
ステアリン酸:ビーズステアリン酸つばき(日本油脂(株)製)
酸化亜鉛:酸化亜鉛2種(三井金属鉱業(株)製)
硫黄:粉末硫黄(鶴見化学工業(株)製)
加硫促進剤:ノクセラーDM(大内新興化学工業(株)製) Details of each compounding agent in Table 2 are shown below.
Anti-aging agent: NOCRACK 6C (Ouchi Shinsei Chemical Co., Ltd.)
Stearic acid: Bead stearic acid Tsubaki (manufactured by NOF Corporation)
Zinc oxide: 2 types of zinc oxide (Mitsui Metal Mining Co., Ltd.)
Sulfur: Powdered sulfur (manufactured by Tsurumi Chemical Co., Ltd.)
Vulcanization accelerator: Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)
老化防止剤:ノクラック6C(大内新興化学工業(株)製)
ステアリン酸:ビーズステアリン酸つばき(日本油脂(株)製)
酸化亜鉛:酸化亜鉛2種(三井金属鉱業(株)製)
硫黄:粉末硫黄(鶴見化学工業(株)製)
加硫促進剤:ノクセラーDM(大内新興化学工業(株)製) Details of each compounding agent in Table 2 are shown below.
Anti-aging agent: NOCRACK 6C (Ouchi Shinsei Chemical Co., Ltd.)
Stearic acid: Bead stearic acid Tsubaki (manufactured by NOF Corporation)
Zinc oxide: 2 types of zinc oxide (Mitsui Metal Mining Co., Ltd.)
Sulfur: Powdered sulfur (manufactured by Tsurumi Chemical Co., Ltd.)
Vulcanization accelerator: Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)
<実施例1~3、比較例1~3及び参考例1>
上記の方法で作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表3に示す特性データ中のゴム硬度指数、100%引張応力指数、引張強度指数、操縦安定性指数及び転がり抵抗指数については、参考例1を基準配合とし、下記記載の計算式で算出した。 <Examples 1 to 3, Comparative Examples 1 to 3 and Reference Example 1>
The following evaluation was performed using the vulcanized rubber composition produced by the above method. In addition, the rubber hardness index, 100% tensile stress index, tensile strength index, steering stability index, and rolling resistance index in the characteristic data shown in Table 3 are calculated using the following formula with Reference Example 1 as the standard composition. did.
上記の方法で作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表3に示す特性データ中のゴム硬度指数、100%引張応力指数、引張強度指数、操縦安定性指数及び転がり抵抗指数については、参考例1を基準配合とし、下記記載の計算式で算出した。 <Examples 1 to 3, Comparative Examples 1 to 3 and Reference Example 1>
The following evaluation was performed using the vulcanized rubber composition produced by the above method. In addition, the rubber hardness index, 100% tensile stress index, tensile strength index, steering stability index, and rolling resistance index in the characteristic data shown in Table 3 are calculated using the following formula with Reference Example 1 as the standard composition. did.
(硬度試験)
JIS K6253「加硫ゴムおよび熱可塑性ゴムの硬さ試験方法」に従い、タイプAデュロメーターにてゴム硬度を測定した。さらに、下記計算式、
(ゴム硬度指数)=(各配合のゴム硬度)÷(基準配合のゴム硬度)×100
により、ゴム硬度指数を算出した。ゴム硬度指数が大きいほどゴム硬度が高いことを示す。 (Hardness test)
The rubber hardness was measured with a type A durometer according to JIS K6253 “Method for testing hardness of vulcanized rubber and thermoplastic rubber”. Furthermore, the following formula:
(Rubber hardness index) = (Rubber hardness of each compound) ÷ (Rubber hardness of standard compound) × 100
Thus, the rubber hardness index was calculated. The larger the rubber hardness index, the higher the rubber hardness.
JIS K6253「加硫ゴムおよび熱可塑性ゴムの硬さ試験方法」に従い、タイプAデュロメーターにてゴム硬度を測定した。さらに、下記計算式、
(ゴム硬度指数)=(各配合のゴム硬度)÷(基準配合のゴム硬度)×100
により、ゴム硬度指数を算出した。ゴム硬度指数が大きいほどゴム硬度が高いことを示す。 (Hardness test)
The rubber hardness was measured with a type A durometer according to JIS K6253 “Method for testing hardness of vulcanized rubber and thermoplastic rubber”. Furthermore, the following formula:
(Rubber hardness index) = (Rubber hardness of each compound) ÷ (Rubber hardness of standard compound) × 100
Thus, the rubber hardness index was calculated. The larger the rubber hardness index, the higher the rubber hardness.
(引張試験)
JIS K6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に従い、100%引張応力及び引張強度を測定した。下記の計算式、
100%引張応力指数=(各配合の100%引張応力)÷(基準配合の100%引張応力)×100
引張強度指数=(各配合の破断応力)÷(基準配合の破断応力)×100
により100%引張応力指数、引張強度指数を算出した。指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、破壊特性に優れることを示す。 (Tensile test)
100% tensile stress and tensile strength were measured according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. The following formula:
100% tensile stress index = (100% tensile stress of each formulation) ÷ (100% tensile stress of standard formulation) x 100
Tensile strength index = (breaking stress of each compound) ÷ (breaking stress of standard compound) × 100
Were used to calculate a 100% tensile stress index and a tensile strength index. The larger the index, the better the vulcanized rubber composition is reinforced, and the higher the mechanical strength of the rubber, the better the fracture characteristics.
JIS K6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に従い、100%引張応力及び引張強度を測定した。下記の計算式、
100%引張応力指数=(各配合の100%引張応力)÷(基準配合の100%引張応力)×100
引張強度指数=(各配合の破断応力)÷(基準配合の破断応力)×100
により100%引張応力指数、引張強度指数を算出した。指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、破壊特性に優れることを示す。 (Tensile test)
100% tensile stress and tensile strength were measured according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. The following formula:
100% tensile stress index = (100% tensile stress of each formulation) ÷ (100% tensile stress of standard formulation) x 100
Tensile strength index = (breaking stress of each compound) ÷ (breaking stress of standard compound) × 100
Were used to calculate a 100% tensile stress index and a tensile strength index. The larger the index, the better the vulcanized rubber composition is reinforced, and the higher the mechanical strength of the rubber, the better the fracture characteristics.
(操縦安定性指数及び転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE*(複素弾性率)及びtanδ(損失正接)を測定した。下記の計算式、
操縦安定性指数=(各配合のE*)÷(基準配合のE*)×100
転がり抵抗指数=(各配合のtanδ)÷(基準配合のtanδ)×100
により操縦安定性指数、転がり抵抗指数を算出した。 (Maneuvering stability index and rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). E * (complex elastic modulus) and tan δ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz. The following formula:
Steering stability index = (E * for each formulation) ÷ (E * for standard formulation) x 100
Rolling resistance index = (tan δ of each formulation) ÷ (tan δ of standard formulation) × 100
The steering stability index and rolling resistance index were calculated.
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE*(複素弾性率)及びtanδ(損失正接)を測定した。下記の計算式、
操縦安定性指数=(各配合のE*)÷(基準配合のE*)×100
転がり抵抗指数=(各配合のtanδ)÷(基準配合のtanδ)×100
により操縦安定性指数、転がり抵抗指数を算出した。 (Maneuvering stability index and rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). E * (complex elastic modulus) and tan δ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz. The following formula:
Steering stability index = (E * for each formulation) ÷ (E * for standard formulation) x 100
Rolling resistance index = (tan δ of each formulation) ÷ (tan δ of standard formulation) × 100
The steering stability index and rolling resistance index were calculated.
操縦安定性指数が大きい程、空気入りタイヤとして用いた場合に良好な操縦安定性を与え、転がり抵抗指数が小さい程、空気入りタイヤとして用いた場合に良好な転がり抵抗特性を与えることを示す。
The larger the steering stability index, the better the steering stability when used as a pneumatic tire, and the smaller the rolling resistance index, the better the rolling resistance characteristics when used as a pneumatic tire.
各加硫ゴム組成物の前記各物性評価を表3に示す。
Table 3 shows the evaluation of each physical property of each vulcanized rubber composition.
Claims (6)
- (A)ゴム成分、及び
(B)セルロース重量に対して、リグニンを2~70重量%含有するパルプを機械的に解繊処理することにより得られるミクロフィブリル化植物繊維を含有する
ゴム組成物。 A rubber composition containing (A) a rubber component and (B) microfibrillated plant fiber obtained by mechanically defibrating a pulp containing 2 to 70% by weight of lignin with respect to the weight of cellulose. - ミクロフィブリル化植物繊維(B)の含有量が、ゴム成分(A)100重量部に対して、1~50重量部である請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the content of the microfibrillated plant fiber (B) is 1 to 50 parts by weight with respect to 100 parts by weight of the rubber component (A).
- 機械的な解繊処理が磨砕処理である請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the mechanical defibrating treatment is a grinding treatment.
- ミクロフィブリル化植物繊維が、セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲をヘミセルロース及び/又はリグニンが被覆した構造を有する請求項1~3のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the microfibrillated plant fiber has a structure in which hemicellulose and / or lignin is coated around cellulose microfibrils and / or cellulose microfibril bundles.
- タイヤ用に用いられる請求項1~4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, which is used for tires.
- 請求項1~5のいずれかに記載のゴム組成物を用いた空気入りタイヤ。 A pneumatic tire using the rubber composition according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011552786A JP5717656B2 (en) | 2010-02-02 | 2011-02-01 | Rubber composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010020896 | 2010-02-02 | ||
JP2010-020896 | 2010-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096399A1 true WO2011096399A1 (en) | 2011-08-11 |
Family
ID=44355396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052044 WO2011096399A1 (en) | 2010-02-02 | 2011-02-01 | Rubber composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5717656B2 (en) |
WO (1) | WO2011096399A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2620296A1 (en) * | 2012-01-30 | 2013-07-31 | Sumitomo Rubber Industries Limited | Rubber composition for tire, method of preparing the same, and pneumatic tire |
US20130197131A1 (en) * | 2012-01-30 | 2013-08-01 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire, method of producing the same, and pneumatic tire |
JP2013194088A (en) * | 2012-03-16 | 2013-09-30 | Sumitomo Rubber Ind Ltd | Rubber composition for tire, production method of the same, and pneumatic tire |
JP2014129509A (en) * | 2012-11-29 | 2014-07-10 | Nishikawa Rubber Co Ltd | Elastomer composition and method for producing the same |
JP2014227484A (en) * | 2013-05-23 | 2014-12-08 | 住友ゴム工業株式会社 | Master batch, production method, rubber composition and pneumatic tire |
US9012541B2 (en) | 2012-09-03 | 2015-04-21 | Sumitomo Rubber Industries, Ltd. | Rubber composition and pneumatic tire |
US9068060B2 (en) | 2013-01-10 | 2015-06-30 | Sumitomo Rubber Industries, Ltd. | Composite and method for producing the same, rubber composition, and pneumatic tire |
US9181355B2 (en) | 2010-06-10 | 2015-11-10 | Sumitomo Rubber Industries, Ltd. | Modified natural rubber, method for producing same, rubber composition, and pneumatic tire |
US9217075B2 (en) | 2012-01-24 | 2015-12-22 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire, and pneumatic tire |
US9410033B2 (en) | 2011-11-11 | 2016-08-09 | Sumitomo Rubber Industries, Ltd. | Rubber composition for undertread, and pneumatic tire |
US20170183483A1 (en) * | 2014-05-22 | 2017-06-29 | The Yokohama Rubber Co., Ltd. | Rubber Composition for Tire and Studless Tire |
WO2017169787A1 (en) * | 2016-03-31 | 2017-10-05 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
US10336890B2 (en) | 2014-03-17 | 2019-07-02 | Sumitomo Rubber Industries, Ltd. | Rubber composition for studless winter tires, and studless winter tire |
JP2019203108A (en) * | 2018-05-25 | 2019-11-28 | 旭化成株式会社 | Fine cellulose-containing resin composition |
JP7118167B2 (en) | 2019-10-28 | 2022-08-15 | バンドー化学株式会社 | Transmission belt and its manufacturing method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110869431B (en) | 2017-06-23 | 2022-05-13 | 联合株式会社 | Resin composition containing cellulose xanthate microfine fibers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11157303A (en) * | 1997-09-24 | 1999-06-15 | Goodyear Tire & Rubber Co:The | Tire tread for ice traction |
JP2005075856A (en) * | 2003-08-28 | 2005-03-24 | Sumitomo Rubber Ind Ltd | Rubber composition for tire |
JP2006206864A (en) * | 2004-12-27 | 2006-08-10 | Yokohama Rubber Co Ltd:The | Masterbatch of rubber/short fiber, manufacturing method for the same and pneumatic tire using the same |
JP2007177112A (en) * | 2005-12-28 | 2007-07-12 | Sumitomo Rubber Ind Ltd | Rubber composition for inner liner |
JP2009019200A (en) * | 2007-06-11 | 2009-01-29 | Kyoto Univ | Vegetable fiber turned into lignin-including microfibril and its manufacturing method |
JP2009191198A (en) * | 2008-02-15 | 2009-08-27 | Bridgestone Corp | Rubber composition and method for producing the same |
-
2011
- 2011-02-01 WO PCT/JP2011/052044 patent/WO2011096399A1/en active Application Filing
- 2011-02-01 JP JP2011552786A patent/JP5717656B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11157303A (en) * | 1997-09-24 | 1999-06-15 | Goodyear Tire & Rubber Co:The | Tire tread for ice traction |
JP2005075856A (en) * | 2003-08-28 | 2005-03-24 | Sumitomo Rubber Ind Ltd | Rubber composition for tire |
JP2006206864A (en) * | 2004-12-27 | 2006-08-10 | Yokohama Rubber Co Ltd:The | Masterbatch of rubber/short fiber, manufacturing method for the same and pneumatic tire using the same |
JP2007177112A (en) * | 2005-12-28 | 2007-07-12 | Sumitomo Rubber Ind Ltd | Rubber composition for inner liner |
JP2009019200A (en) * | 2007-06-11 | 2009-01-29 | Kyoto Univ | Vegetable fiber turned into lignin-including microfibril and its manufacturing method |
JP2009191198A (en) * | 2008-02-15 | 2009-08-27 | Bridgestone Corp | Rubber composition and method for producing the same |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9181355B2 (en) | 2010-06-10 | 2015-11-10 | Sumitomo Rubber Industries, Ltd. | Modified natural rubber, method for producing same, rubber composition, and pneumatic tire |
US9410033B2 (en) | 2011-11-11 | 2016-08-09 | Sumitomo Rubber Industries, Ltd. | Rubber composition for undertread, and pneumatic tire |
US9217075B2 (en) | 2012-01-24 | 2015-12-22 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire, and pneumatic tire |
US20130197131A1 (en) * | 2012-01-30 | 2013-08-01 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire, method of producing the same, and pneumatic tire |
JP2013155303A (en) * | 2012-01-30 | 2013-08-15 | Sumitomo Rubber Ind Ltd | Rubber composition for tire, method of preparing the same, and pneumatic tire |
EP2620296A1 (en) * | 2012-01-30 | 2013-07-31 | Sumitomo Rubber Industries Limited | Rubber composition for tire, method of preparing the same, and pneumatic tire |
JP2013194088A (en) * | 2012-03-16 | 2013-09-30 | Sumitomo Rubber Ind Ltd | Rubber composition for tire, production method of the same, and pneumatic tire |
US9012541B2 (en) | 2012-09-03 | 2015-04-21 | Sumitomo Rubber Industries, Ltd. | Rubber composition and pneumatic tire |
JP2014129509A (en) * | 2012-11-29 | 2014-07-10 | Nishikawa Rubber Co Ltd | Elastomer composition and method for producing the same |
US9068060B2 (en) | 2013-01-10 | 2015-06-30 | Sumitomo Rubber Industries, Ltd. | Composite and method for producing the same, rubber composition, and pneumatic tire |
JP2014227484A (en) * | 2013-05-23 | 2014-12-08 | 住友ゴム工業株式会社 | Master batch, production method, rubber composition and pneumatic tire |
US10336890B2 (en) | 2014-03-17 | 2019-07-02 | Sumitomo Rubber Industries, Ltd. | Rubber composition for studless winter tires, and studless winter tire |
US20170183483A1 (en) * | 2014-05-22 | 2017-06-29 | The Yokohama Rubber Co., Ltd. | Rubber Composition for Tire and Studless Tire |
US10570274B2 (en) * | 2014-05-22 | 2020-02-25 | The Yokohama Rubber Co., Ltd. | Rubber composition for tire and studless tire |
WO2017169787A1 (en) * | 2016-03-31 | 2017-10-05 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
JPWO2017169787A1 (en) * | 2016-03-31 | 2018-04-19 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
JP2019203108A (en) * | 2018-05-25 | 2019-11-28 | 旭化成株式会社 | Fine cellulose-containing resin composition |
JP7118167B2 (en) | 2019-10-28 | 2022-08-15 | バンドー化学株式会社 | Transmission belt and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011096399A1 (en) | 2013-06-10 |
JP5717656B2 (en) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5717656B2 (en) | Rubber composition | |
JP5676909B2 (en) | Rubber composition and method for producing rubber composition | |
JP5595103B2 (en) | Rubber composition and method for producing rubber composition | |
JP5846919B2 (en) | Rubber composition and method for producing the same | |
JP6382793B2 (en) | Method for producing rubber composition | |
JP6416749B2 (en) | Manufacturing method of rubber composition, rubber composition, vulcanized rubber and tire | |
JP5865063B2 (en) | Method for producing rubber composition | |
JP2012025949A (en) | Fine cellulose fiber dispersion, cellulose fiber composite, and its manufacturing method | |
JP5616372B2 (en) | Rubber composition for tire, method for producing the same, and pneumatic tire | |
JP6193581B2 (en) | Rubber composition for tire and pneumatic tire | |
JP6048365B2 (en) | Rubber modifier, rubber modifier dispersion, and rubber composition | |
JP2013177540A (en) | Rubber modifying material, rubber latex-dispersed solution and rubber composition | |
JP5595104B2 (en) | Rubber composition and tire using the same | |
JP2013194088A (en) | Rubber composition for tire, production method of the same, and pneumatic tire | |
EP2620295B1 (en) | Rubber composition for tire, method of producing the same, and pneumatic tire | |
JP2020063327A (en) | Production method of composite material and composite material | |
JP5966859B2 (en) | Method for producing fine cellulose fiber dispersion | |
JP6353169B2 (en) | Rubber composition and pneumatic tire | |
JP2015010136A (en) | Rubber composition for tire, and pneumatic tire using the same | |
JP6021877B2 (en) | Rubber composition and method for producing rubber composition | |
JP2014122289A (en) | Method for producing fine cellulose fiber dispersion | |
WO2023136130A1 (en) | Rubber composition and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739747 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011552786 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11739747 Country of ref document: EP Kind code of ref document: A1 |