JP2013194088A - Rubber composition for tire, production method of the same, and pneumatic tire - Google Patents
Rubber composition for tire, production method of the same, and pneumatic tire Download PDFInfo
- Publication number
- JP2013194088A JP2013194088A JP2012060382A JP2012060382A JP2013194088A JP 2013194088 A JP2013194088 A JP 2013194088A JP 2012060382 A JP2012060382 A JP 2012060382A JP 2012060382 A JP2012060382 A JP 2012060382A JP 2013194088 A JP2013194088 A JP 2013194088A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- rubber composition
- tire
- microfibrillated plant
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 91
- 239000005060 rubber Substances 0.000 title claims abstract description 91
- 239000000203 mixture Substances 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 70
- 229920013724 bio-based polymer Polymers 0.000 claims abstract description 14
- 210000001724 microfibril Anatomy 0.000 claims abstract description 8
- 241000196324 Embryophyta Species 0.000 claims description 56
- 229920000642 polymer Polymers 0.000 claims description 29
- 244000043261 Hevea brasiliensis Species 0.000 claims description 14
- 229920003052 natural elastomer Polymers 0.000 claims description 14
- 229920001194 natural rubber Polymers 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 11
- 229920003051 synthetic elastomer Polymers 0.000 claims description 10
- 239000005061 synthetic rubber Substances 0.000 claims description 10
- 239000000178 monomer Substances 0.000 claims description 9
- 229920002678 cellulose Polymers 0.000 claims description 7
- 239000001913 cellulose Substances 0.000 claims description 7
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 7
- 239000004626 polylactic acid Substances 0.000 claims description 7
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- 229920003232 aliphatic polyester Polymers 0.000 claims description 4
- 239000004645 polyester resin Substances 0.000 claims description 4
- 244000005700 microbiome Species 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 27
- 239000003208 petroleum Substances 0.000 abstract description 17
- 239000000446 fuel Substances 0.000 abstract description 13
- 235000013311 vegetables Nutrition 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 13
- 238000009472 formulation Methods 0.000 description 12
- 239000004594 Masterbatch (MB) Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 8
- -1 recycled pulp Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004636 vulcanized rubber Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229920006173 natural rubber latex Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 238000004073 vulcanization Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229920005549 butyl rubber Polymers 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229920003049 isoprene rubber Polymers 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920002961 polybutylene succinate Polymers 0.000 description 3
- 239000004631 polybutylene succinate Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229920003244 diene elastomer Polymers 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002749 Bacterial cellulose Polymers 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 102220482161 Endothelial differentiation-related factor 1_T65D_mutation Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000005016 bacterial cellulose Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- JRYKZUSRJQZKOY-UHFFFAOYSA-M dizinc octadecanoate oxygen(2-) Chemical compound C(CCCCCCCCCCCCCCCCC)(=O)[O-].[Zn+2].[O-2].[Zn+2] JRYKZUSRJQZKOY-UHFFFAOYSA-M 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 101710108497 p-hydroxybenzoate hydroxylase Proteins 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 238000010059 sulfur vulcanization Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
本発明は、タイヤ用ゴム組成物、その製造方法、及び該ゴム組成物を用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for tires, a method for producing the same, and a pneumatic tire using the rubber composition.
ゴム組成物に充填剤としてセルロース繊維等のミクロフィブリル化植物繊維を配合することにより、ゴム組成物の物理的特性を向上できることが従来から知られている。しかしながら、ミクロフィブリル化植物繊維はゴム成分との相溶性が悪いため、ゴム組成物に配合した場合、破断伸びが低下したり、ゴム成分との界面におけるエネルギーロスによって低燃費性が低下する傾向がある。従って、これらの特性を改善しなければ、各種用途、特に過酷な条件下で長期間使用されるタイヤへの適用は困難である。 It has been conventionally known that physical properties of a rubber composition can be improved by blending a microfibrillated plant fiber such as cellulose fiber as a filler with the rubber composition. However, since the microfibrillated plant fiber has poor compatibility with the rubber component, when blended in a rubber composition, the elongation at break tends to decrease or the fuel efficiency tends to decrease due to energy loss at the interface with the rubber component. is there. Therefore, unless these characteristics are improved, it is difficult to apply to various uses, particularly tires that are used for a long time under harsh conditions.
特許文献1では、セルロース繊維の表面を化学的に処理して疎水基を導入することにより、ゴム成分との相溶性を向上させる手法が提案されている。また、近年では、アミノ基を有するシランカップリング剤でパルプを化学処理することにより、ゴム成分との相溶性を向上させる手法が提案されている。しかしこれらの手法はいずれも化学反応プロセスを必要とすることから、より簡便な手法が求められている。 Patent Document 1 proposes a technique for improving the compatibility with a rubber component by chemically treating the surface of cellulose fibers to introduce a hydrophobic group. In recent years, a method has been proposed in which the pulp is chemically treated with a silane coupling agent having an amino group to improve the compatibility with the rubber component. However, since these methods all require a chemical reaction process, a simpler method is required.
本発明は、前記課題を解決し、石油資源の使用を極力抑えながら、簡便な手法でミクロフィブリル化植物繊維とゴム成分との相溶性を向上させ、破壊特性、操縦安定性及び低燃費性をバランス良く改善できるタイヤ用ゴム組成物、その製造方法、及び該ゴム組成物を用いて作製した空気入りタイヤを提供することを目的とする。 The present invention solves the above problems and improves the compatibility between the microfibrillated plant fiber and the rubber component by a simple method while suppressing the use of petroleum resources as much as possible, and has improved fracture characteristics, handling stability and fuel efficiency. It aims at providing the rubber composition for tires which can be improved with good balance, its manufacturing method, and the pneumatic tire produced using this rubber composition.
本発明者らが検討したところ、バイオベースポリマーを用いることで、石油資源の使用を極力抑えながら、簡便な手法でミクロフィブリル化植物繊維の表面処理を行うことができ、これにより、ミクロフィブリル化植物繊維とゴム成分との相溶性が改善され、前記課題を解決できることを見出した。
すなわち、本発明は、ゴム成分、ミクロフィブリル化植物繊維及びバイオベースポリマーを含むタイヤ用ゴム組成物に関する。
As a result of studies by the present inventors, by using a bio-based polymer, it is possible to perform surface treatment of microfibrillated plant fibers by a simple method while suppressing the use of petroleum resources as much as possible. It has been found that the compatibility between the plant fiber and the rubber component is improved and the above-mentioned problems can be solved.
That is, this invention relates to the rubber composition for tires containing a rubber component, a microfibrillated vegetable fiber, and a biobase polymer.
上記ゴム成分が、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含むことが好ましい。 The rubber component preferably contains at least one selected from the group consisting of natural rubber, modified natural rubber, synthetic rubber and modified synthetic rubber.
上記ミクロフィブリル化植物繊維がセルロースミクロフィブリルであることが好ましい。 It is preferable that the microfibrillated plant fiber is cellulose microfibril.
上記ミクロフィブリル化植物繊維の平均繊維径が10μm以下であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less.
上記ミクロフィブリル化植物繊維の含有量が、上記ゴム成分100質量部に対して1〜100質量部であることが好ましい。 The content of the microfibrillated plant fiber is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
上記バイオベースポリマーが、生物由来のモノマーを重合して得られたポリマー、又は微生物によって生産されたポリマーであることが好ましい。 The bio-based polymer is preferably a polymer obtained by polymerizing a monomer derived from a living organism or a polymer produced by a microorganism.
上記バイオベースポリマーが、脂肪族ポリエステル樹脂であることが好ましい。 The biobase polymer is preferably an aliphatic polyester resin.
上記バイオベースポリマーが、ポリ乳酸であることが好ましい。 The biobase polymer is preferably polylactic acid.
上記バイオベースポリマーの含有量が、上記ミクロフィブリル化植物繊維100質量部に対して0.05〜50質量部であることが好ましい。 It is preferable that content of the said biobase polymer is 0.05-50 mass parts with respect to 100 mass parts of said microfibrillated plant fibers.
本発明はまた、上記ミクロフィブリル化植物繊維及び上記バイオベースポリマーを混合する工程(I)と、該工程(I)で得られた混合物に上記ゴム成分を添加して更に混合する工程(II)とを含む上記ゴム組成物の製造方法に関する。 The present invention also includes a step (I) of mixing the microfibrillated plant fiber and the biobase polymer, and a step of adding the rubber component to the mixture obtained in the step (I) and further mixing (II). The manufacturing method of the said rubber composition containing these.
本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention also relates to a pneumatic tire produced using the rubber composition.
本発明によれば、ゴム成分、ミクロフィブリル化植物繊維及びバイオベースポリマーを含むタイヤ用ゴム組成物であり、バイオベースポリマーを添加するという簡便な手法でミクロフィブリル化植物繊維とゴム成分との相溶性を向上させることができるため、良好な低燃費性を維持しながら、剛性と破断伸びとを両立できる。これにより、破壊特性、操縦安定性及び低燃費性をバランス良く改善された空気入りタイヤを提供できる。また、ミクロフィブリル化植物繊維及びバイオベースポリマーは石油を原料としない材料であることから、石油資源の使用量を低減して、環境に配慮することができる。 According to the present invention, there is provided a rubber composition for a tire comprising a rubber component, a microfibrillated plant fiber, and a biobase polymer. The phase of the microfibrillated plant fiber and the rubber component can be obtained by a simple method of adding the biobase polymer. Since solubility can be improved, both rigidity and elongation at break can be achieved while maintaining good fuel efficiency. Thereby, it is possible to provide a pneumatic tire that is improved in a well-balanced manner with respect to breaking characteristics, steering stability, and low fuel consumption. In addition, since the microfibrillated plant fiber and the bio-based polymer are materials that do not use petroleum as a raw material, the amount of petroleum resources used can be reduced and the environment can be considered.
本発明のゴム組成物は、ゴム成分、ミクロフィブリル化植物繊維及びバイオベースポリマーを含む。ミクロフィブリル化植物繊維に対して親和性の高いバイオベースポリマーを添加することで、ゴム成分とミクロフィブリル化植物繊維との界面での接着性が改善され、該界面でのエネルギーロスが低下する。また、ミクロフィブリル化植物繊維同士が絡み合った接点がバイオベースポリマーによって補強され、破断強度が向上する。これらの作用により、エネルギーロスの増大を抑制しながら、剛性及び破断伸びを両立できる。従って、上記ゴム組成物をタイヤに用いることで、破壊特性、操縦安定性及び低燃費性がバランス良く改善された空気入りタイヤを提供できる。 The rubber composition of the present invention comprises a rubber component, a microfibrillated plant fiber and a biobase polymer. By adding a bio-based polymer having a high affinity for microfibrillated plant fibers, adhesion at the interface between the rubber component and the microfibrillated plant fibers is improved, and energy loss at the interface is reduced. In addition, the contact point where the microfibrillated plant fibers are entangled with each other is reinforced by the biobase polymer, and the breaking strength is improved. With these actions, both rigidity and elongation at break can be achieved while suppressing an increase in energy loss. Therefore, by using the rubber composition in a tire, it is possible to provide a pneumatic tire in which fracture characteristics, steering stability and fuel efficiency are improved in a well-balanced manner.
また、ミクロフィブリル化植物繊維及びバイオベースポリマーは、いずれも石油を原料としない材料(石油外資源)であるため、石油資源の使用量を低減することができる。 In addition, since the microfibrillated plant fiber and the bio-based polymer are both materials that do not use petroleum as a raw material (resources other than petroleum), the amount of petroleum resources used can be reduced.
本発明のゴム組成物の製造方法は、ゴム成分、ミクロフィブリル化植物繊維及びバイオベースポリマーを混合する方法であれば特に限定されないが、例えば、ミクロフィブリル化植物繊維及びバイオベースポリマーを混合する工程(I)と、該工程(I)で得られた混合物にゴム成分を添加して更に混合する工程(II)とを含む製造方法が好適である。 The method for producing the rubber composition of the present invention is not particularly limited as long as the rubber component, the microfibrillated plant fiber, and the biobase polymer are mixed. For example, the step of mixing the microfibrillated plant fiber and the biobase polymer. A production method including (I) and step (II) in which a rubber component is added to the mixture obtained in step (I) and further mixed is preferable.
(工程(I))
工程(I)では、ミクロフィブリル化植物繊維及びバイオベースポリマーを混合する。このように、予めミクロフィブリル化植物繊維及びバイオベースポリマーを混合することで、後述する工程(II)でゴム成分と工程(I)で得られた混合物とを混合した際、ゴム成分中にミクロフィブリル化植物繊維を充分に分散できる。ミクロフィブリル化植物繊維及びバイオベースポリマーを容易に混合できるという点から、工程(I)では、ミクロフィブリル化植物繊維及びバイオベースポリマーを水等の溶媒中で混合することが好ましい。
(Process (I))
In step (I), the microfibrillated plant fiber and the biobase polymer are mixed. Thus, by mixing the microfibrillated plant fiber and the biobase polymer in advance, when the rubber component and the mixture obtained in the step (I) are mixed in the step (II) to be described later, The fibrillated plant fiber can be sufficiently dispersed. In the step (I), it is preferable to mix the microfibrillated plant fiber and the biobase polymer in a solvent such as water because the microfibrillated plant fiber and the biobase polymer can be easily mixed.
工程(I)で使用するミクロフィブリル化植物繊維としては、良好な補強性が得られるという点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙、バクテリアセルロース、ホヤセルロース等の天然物に由来するものが挙げられる。 As the microfibrillated plant fiber used in the step (I), cellulose microfibril is preferable from the viewpoint that good reinforcing properties can be obtained. Examples of cellulose microfibrils include those derived from natural products such as wood, bamboo, hemp, jute, kenaf, crop residue, cloth, recycled pulp, waste paper, bacterial cellulose, and squirt cellulose.
ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記セルロースミクロフィブリルの原料を水酸化ナトリウム等の薬品で化学処理した後、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。この方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。 Although it does not specifically limit as a manufacturing method of a microfibrillated plant fiber, For example, after chemically processing the raw material of the said cellulose microfibril with chemicals, such as sodium hydroxide, a refiner, a twin screw kneader (double screw extruder), Examples of the method include mechanical grinding or beating using a twin-screw kneading extruder, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, a vibration mill, a sand grinder, and the like. In this method, since lignin is separated from the raw material by chemical treatment, microfibrillated plant fibers substantially free of lignin are obtained.
ミクロフィブリル化植物繊維の平均繊維径は、ゴム補強効果と破断伸びのバランスが良好であるという観点から、好ましくは10μm以下、より好ましくは5μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。ミクロフィブリル化植物繊維の平均繊維径の下限は特に限定されないが、工程(I)で水等の溶媒を用いた場合に、濾水性の悪化による作業性の悪化を抑制できる観点から、4nm以上であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 1 μm or less, particularly preferably 0.5 μm, from the viewpoint of a good balance between the rubber reinforcing effect and the elongation at break. It is as follows. The lower limit of the average fiber diameter of the microfibrillated plant fiber is not particularly limited, but when a solvent such as water is used in step (I), it is 4 nm or more from the viewpoint of suppressing deterioration of workability due to deterioration of drainage. Preferably there is.
ミクロフィブリル化植物繊維の平均繊維長は、好ましくは5mm以下、より好ましくは1mm以下であり、また、好ましくは1μm以上、より好ましくは50μm以上である。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。 The average fiber length of the microfibrillated plant fiber is preferably 5 mm or less, more preferably 1 mm or less, and preferably 1 μm or more, more preferably 50 μm or more. When the average fiber length is less than the lower limit or exceeds the upper limit, there is a tendency similar to the average fiber diameter described above.
ミクロフィブリル化植物繊維の平均繊維径及び平均繊維長は、走査型電子顕微鏡写真の画像解析、透過型顕微鏡写真の画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。 The average fiber diameter and average fiber length of microfibrillated plant fibers are image analysis of scanning electron micrographs, image analysis of transmission micrographs, analysis of X-ray scattering data, pore electrical resistance method (Coulter principle method), etc. Can be measured by.
工程(I)では、ミクロフィブリル化植物繊維の水分散液を使用することが好ましい。これにより、ミクロフィブリル化植物繊維とバイオベースポリマーとを短時間で均一に混合できる。ミクロフィブリル化植物繊維の水分散液中、ミクロフィブリル化植物繊維の含有量(固形分)は、好ましくは2〜40質量%、より好ましくは5〜30質量%である。 In step (I), an aqueous dispersion of microfibrillated plant fibers is preferably used. Thereby, the microfibrillated plant fiber and the bio-based polymer can be uniformly mixed in a short time. The content (solid content) of microfibrillated plant fibers in the aqueous dispersion of microfibrillated plant fibers is preferably 2 to 40% by mass, more preferably 5 to 30% by mass.
工程(I)で使用するバイオベースポリマーとしては、生物由来のモノマーを重合して得られたポリマー、又は微生物によって生産されたポリマーであれば特に限定されない。なお、生物由来のモノマーを重合して得られたポリマーには、石油資源由来のモノマー成分が含まれていてもよい。また、生物由来のモノマーには、生物から直接得られる乳酸、コハク酸等のモノマーだけではなく、生物から得られるエタノール、グリセリン等の生物由来物質を化学処理等することにより得られるモノマーも含まれる。また、生物由来のモノマーを重合する方法としては、特に限定されないが、触媒や酵素を用いる方法が挙げられる。なお、本明細書において、バイオベースポリマーには、ミクロフィブリル化植物繊維は含まれない。 The biobase polymer used in the step (I) is not particularly limited as long as it is a polymer obtained by polymerizing a biological monomer or a polymer produced by a microorganism. In addition, the polymer obtained by polymerizing the monomer derived from a living body may contain a monomer component derived from petroleum resources. Biological monomers include not only monomers such as lactic acid and succinic acid obtained directly from living organisms, but also monomers obtained by chemically treating biological substances such as ethanol and glycerin obtained from living organisms. . In addition, a method for polymerizing a biological monomer is not particularly limited, and examples thereof include a method using a catalyst or an enzyme. In the present specification, the bio-based polymer does not include microfibrillated plant fibers.
バイオベースポリマーの具体例としては、ポリヒドロキシアルカノエート(たとえばカネカ(株)製のカネカPHBH)、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネート/アジペート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2−オキセタノン)、ポリヒドロキシ酪酸等の脂肪族ポリエステル樹脂;ポリブチレンサクシネート/テレフタレート、ポリブチレンアジペート/テレフタレート、ポリテトラメチレンアジペート/テレフタレート等の脂肪族芳香族コポリエステル樹脂等が挙げられる。なかでも、本発明の効果が好適に得られ、大量に入手できることなどから、脂肪族ポリエステル樹脂が好ましく、ポリ乳酸がより好ましい。 Specific examples of the bio-based polymer include polyhydroxyalkanoate (for example, Kaneka PHBH manufactured by Kaneka Corporation), polycaprolactone, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polylactic acid, polymalic acid, Aliphatic polyester resins such as polyglycolic acid, polydioxanone, poly (2-oxetanone), polyhydroxybutyric acid; aliphatic aromatic copolyesters such as polybutylene succinate / terephthalate, polybutylene adipate / terephthalate, polytetramethylene adipate / terephthalate Examples thereof include resins. Of these, aliphatic polyester resins are preferred, and polylactic acid is more preferred because the effects of the present invention are suitably obtained and available in large quantities.
工程(I)では、本発明のゴム組成物において後述する含有量となるように各成分を配合することが好ましい。これにより、ゴム補強効果、破断伸び及びエネルギーロスのバランスが良好となる。 In the step (I), it is preferable to blend each component so as to have a content described later in the rubber composition of the present invention. Thereby, the balance of a rubber reinforcement effect, breaking elongation, and energy loss becomes favorable.
工程(I)において各成分を混合する方法としては特に限定されず、例えば、プロペラ式攪拌装置、ホモジナイザー、ロータリー攪拌装置、電磁攪拌装置、手動による攪拌等の一般的な方法を用いることができる。 The method of mixing each component in the step (I) is not particularly limited, and for example, a general method such as a propeller type stirring device, a homogenizer, a rotary stirring device, an electromagnetic stirring device, manual stirring, or the like can be used.
(工程II)
工程(II)では、工程(I)で得られた混合物にゴム成分を添加して更に混合する。この工程で、ミクロフィブリル化植物繊維とゴム成分とが複合化される。
(Step II)
In step (II), the rubber component is added to the mixture obtained in step (I) and further mixed. In this step, the microfibrillated plant fiber and the rubber component are combined.
工程(II)で使用するゴム成分は、天然ゴム(NR)、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含むことが好ましい。上記改質天然ゴムとしては、例えば、エポキシ化天然ゴム(ENR)、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。上記合成ゴムとしては、例えば、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリロニトリル−スチレン−ブタジエン共重合体ゴム、クロロプレンゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン等のジエン系ゴムが挙げられる。また、ジエン系ゴム以外の合成ゴムとしては、エチレン−プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。上記変性合成ゴムとしては、上記合成ゴムに官能基を付加したゴム等が挙げられる。これらのゴム成分は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比においても、各種用途に応じて適宜配合すればよい。なかでも、汎用性やコストの面で有利であること、及び、ミクロフィブリル化植物繊維と混合する際の作業性が良好であるという観点から、NR、BR、SBR、IR、IIR及びENRが好ましく、石油資源の使用量を低減し、環境に配慮することができるという観点から、石油外資源由来の材料であるNR及びENRがより好ましい。
また、ミクロフィブリル化植物繊維とゴム成分とを短時間で均一に混合できるという点から、上記ゴム成分は、ラテックスの状態で使用することが好ましい。ゴムラテックス中、ゴム成分の含有量(固形分)は、好ましくは30〜80質量%、より好ましくは40〜70質量%である。
The rubber component used in the step (II) preferably contains at least one selected from the group consisting of natural rubber (NR), modified natural rubber, synthetic rubber and modified synthetic rubber. Examples of the modified natural rubber include epoxidized natural rubber (ENR), hydrogenated natural rubber, and deproteinized natural rubber. Examples of the synthetic rubber include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), and acrylonitrile-styrene-butadiene copolymer. Examples thereof include diene rubbers such as polymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, and chlorosulfonated polyethylene. Examples of synthetic rubbers other than diene rubbers include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, and urethane rubber. Examples of the modified synthetic rubber include rubber obtained by adding a functional group to the synthetic rubber. These rubber components may be used alone or in combination of two or more. What is necessary is just to mix | blend suitably also in the blend ratio in the case of blending according to various uses. Among them, NR, BR, SBR, IR, IIR and ENR are preferable from the viewpoint of versatility and cost, and good workability when mixed with microfibrillated plant fibers. From the viewpoint that the amount of petroleum resources used can be reduced and the environment can be taken into consideration, NR and ENR, which are materials derived from resources other than petroleum, are more preferable.
Moreover, it is preferable to use the said rubber component in the state of a latex from the point that a microfibril plant fiber and a rubber component can be mixed uniformly in a short time. In rubber latex, content (solid content) of a rubber component becomes like this. Preferably it is 30-80 mass%, More preferably, it is 40-70 mass%.
工程(II)では、本発明のゴム組成物において後述する含有量となるように各成分を配合することが好ましい。これにより、ゴム補強効果、破断伸び及びエネルギーロスのバランスが良好となり、また、各種材料の歩留りや作業性も良好となる。 In the step (II), it is preferable to blend each component so as to have a content described later in the rubber composition of the present invention. Thereby, the balance of the rubber reinforcing effect, elongation at break and energy loss becomes good, and the yield and workability of various materials become good.
工程(II)において各成分を混合する方法としては特に限定されず、工程(I)と同様の方法を用いることができる。 The method of mixing each component in step (II) is not particularly limited, and the same method as in step (I) can be used.
工程(I)、(II)により、ミクロフィブリル化植物繊維がゴムマトリクス中に均一に分散したマスターバッチを調製できる。なお、工程(II)で得られた混合物がスラリー状態である場合は、上記混合物を公知の方法で凝固、乾燥した後、バンバリーミキサー等で混練りすることにより、マスターバッチを調製できる。 By the steps (I) and (II), a master batch in which microfibrillated plant fibers are uniformly dispersed in a rubber matrix can be prepared. In addition, when the mixture obtained by process (II) is a slurry state, after solidifying and drying the said mixture by a well-known method, a masterbatch can be prepared by knead | mixing with a Banbury mixer etc.
本発明のゴム組成物は、上記マスターバッチを用いて公知の方法で製造される。例えば、バンバリーミキサーやニーダー、オープンロール等で上記マスターバッチと他の成分を混練りし、その後加硫する方法等により製造できる。他の配合剤としては、例えば、補強剤(カーボンブラック、シリカ等)、シランカップリング剤、加硫剤、ステアリン酸、加硫促進剤、加硫促進助剤、オイル、硬化レジン、ワックス、老化防止剤等が挙げられる。 The rubber composition of this invention is manufactured by a well-known method using the said masterbatch. For example, it can be produced by a method in which the masterbatch and other components are kneaded with a Banbury mixer, a kneader, an open roll or the like and then vulcanized. Other compounding agents include, for example, reinforcing agents (carbon black, silica, etc.), silane coupling agents, vulcanizing agents, stearic acid, vulcanization accelerators, vulcanization acceleration aids, oils, cured resins, waxes, aging An inhibitor etc. are mentioned.
本発明のゴム組成物において、ミクロフィブリル化植物繊維の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、また、好ましくは100質量部以下、より好ましくは20質量部以下である。上記範囲内であれば、ミクロフィブリル化植物繊維が良好に分散され、破壊特性、操縦安定性及び低燃費性をバランス良く改善できる。 In the rubber composition of the present invention, the content of the microfibrillated plant fiber is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. Part or less, more preferably 20 parts by weight or less. If it is in the said range, microfibrillated plant fiber will be disperse | distributed favorably and it can improve in a well-balanced destruction characteristic, steering stability, and low fuel consumption.
本発明のゴム組成物において、バイオベースポリマーの含有量は、ミクロフィブリル化植物繊維100質量部に対して、好ましくは0.05質量部以上、より好ましくは1質量部以上であり、また、好ましくは50質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。上記範囲内であれば、ミクロフィブリル化植物繊維を良好に分散させ、破壊特性、操縦安定性及び低燃費性をバランス良く改善できる。 In the rubber composition of the present invention, the content of the bio-based polymer is preferably 0.05 parts by mass or more, more preferably 1 part by mass or more, and preferably 100 parts by mass of microfibrillated plant fibers. Is 50 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 10 parts by mass or less. If it is in the said range, a microfibrillated plant fiber can be disperse | distributed favorably and a destructive characteristic, steering stability, and low fuel consumption can be improved with good balance.
本発明のゴム組成物において、ゴム成分100質量%中のNRの含有量は、好ましくは60質量%以上、より好ましくは80質量%以上であり、100質量%であってもよい。上記範囲内であれば、ミクロフィブリル化植物繊維が良好に分散され、破壊特性、操縦安定性及び低燃費性をバランス良く改善できる。 In the rubber composition of the present invention, the content of NR in 100% by mass of the rubber component is preferably 60% by mass or more, more preferably 80% by mass or more, and may be 100% by mass. If it is in the said range, microfibrillated plant fiber will be disperse | distributed favorably and it can improve in a well-balanced destruction characteristic, steering stability, and low fuel consumption.
ゴム組成物100質量%中の石油外資源の含有量は、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは97質量%以上である。本発明によれば、上述の成分を併用しているため、石油外資源の含有量を高くした場合であっても、破壊特性、操縦安定性及び低燃費性がバランス良く得られる。
なお、石油外資源の含有量は、ゴム組成物を燃焼させた排気ガス中の二酸化炭素の炭素同位体14Cの存在量を計測し、石油外資源由来材料と石油資源由来材料の14Cの存在量の差異を比較する等の方法により判別可能である。
The content of non-petroleum resources in 100% by mass of the rubber composition is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 97% by mass or more. According to the present invention, since the above-described components are used in combination, even when the content of non-petroleum resources is increased, destruction characteristics, steering stability, and low fuel consumption can be obtained in a well-balanced manner.
The content of non-petroleum resources, the abundance of carbon isotope 14 C in carbon dioxide in the exhaust gas by burning rubber composition was measured, the 14 C of resources other than petroleum derived materials and petroleum-resource-derived material It can be discriminated by a method such as comparing the difference in the abundance.
本発明のゴム組成物は、タイヤ部材に使用することができ、なかでも、トレッド、サイドウォールに好適に使用できる。 The rubber composition of the present invention can be used for tire members, and in particular, can be suitably used for treads and sidewalls.
本発明の空気入りタイヤは、上記ゴム組成物を用いて公知の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成型することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 The pneumatic tire of the present invention is produced by a known method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire by heating, the tire can be manufactured by heating and pressing in a vulcanizer.
本発明の空気入りタイヤは、乗用車、トラック・バス等に好適に使用できる。 The pneumatic tire of the present invention can be suitably used for passenger cars, trucks, buses and the like.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
以下、実施例、比較例及び参考例で使用した各種薬品について、まとめて説明する。
天然ゴムラテックス:HYTEX HA(Golden Hope Plantations(ゴールデン・ホープ・プランテーションズ)社製の天然ゴムラテックス、固形分:60質量%、平均粒径:1μm)
ミクロフィブリル化植物繊維:ダイセル化学工業(株)製のセリッシュKY−100G(平均繊維長:0.5mm、平均繊維径:0.02μm、固形分:10質量%、セルロースミクロフィブリル)
ポリ乳酸:三井化学(株) 製のレイシア(バイオベースポリマー)
マスターバッチ1〜3:下記製造例で調製
老化防止剤:大内新興化学工業(株)製のノクラック6C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーDM
Hereinafter, various chemicals used in Examples, Comparative Examples and Reference Examples will be described together.
Natural rubber latex: HYTEX HA (natural rubber latex manufactured by Golden Hope Plantations, solid content: 60% by mass, average particle size: 1 μm)
Microfibrillated plant fiber: Selish KY-100G manufactured by Daicel Chemical Industries, Ltd. (average fiber length: 0.5 mm, average fiber diameter: 0.02 μm, solid content: 10% by mass, cellulose microfibril)
Polylactic acid: Lacia (Bio-based polymer) manufactured by Mitsui Chemicals, Inc.
Master batches 1 to 3: Prepared in the following production examples Anti-aging agent: Nocrack 6C manufactured by Ouchi Shinsei Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate zinc oxide: Zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd .: Ouchi Shinsei Chemical NOCELLER DM manufactured by Kogyo Co., Ltd.
<製造例1:マスターバッチ1の調製>
表1の配合に従い、高速ホモジナイザー(IKA社製のバッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて、24,000rpmの条件でミクロフィブリル化植物繊維及びポリ乳酸を水中で1時間撹拌分散させ、ついで天然ゴムラテックスを添加し、更に30分撹拌分散させた。得られた混合液を5質量%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
<Production Example 1: Preparation of Masterbatch 1>
According to the composition of Table 1, microfibrillated plant fibers and polylactic acid were stirred and dispersed in water at 24,000 rpm for 1 hour using a high-speed homogenizer (IKA's batch homogenizer T65D Ultra Turrax (Ultraturrax T25)). Then, natural rubber latex was added, and the mixture was further stirred and dispersed for 30 minutes. The obtained mixed solution was coagulated with a 5 mass% formic acid aqueous solution, washed with water, and dried in a heating oven at 40 ° C to obtain a master batch 1.
<製造例2:マスターバッチ2の調製>
ポリ乳酸を使用しない点以外はマスターバッチ1と同様の方法でマスターバッチ2を得た。
<Production Example 2: Preparation of Masterbatch 2>
Master batch 2 was obtained in the same manner as master batch 1 except that polylactic acid was not used.
<製造例3:マスターバッチ3の調製>
天然ゴムラテックスをそのまま5質量%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ3を得た。
<Production Example 3: Preparation of Masterbatch 3>
The natural rubber latex was coagulated as it was with a 5% by mass aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 3.
<加硫ゴム組成物の調製>
表2の配合に従い、135℃に加熟した250ccインターナルミキサーを用いて、88rpmの条件で加硫促進剤及び硫黄以外の薬品と各種マスターバッチとを3分間混練りした後、混練りしたゴムを排出して、60℃、24rpmの条件で6インチオープンロールにより加硫促進剤と硫黄を添加、5分間混練し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を150℃でプレス加熱することで、実施例1、比較例1、参考例1に対応する加硫ゴム組成物を得た。
<Preparation of vulcanized rubber composition>
Using a 250 cc internal mixer ripened to 135 ° C. in accordance with the composition of Table 2, the vulcanization accelerator and chemicals other than sulfur and various master batches were kneaded for 3 minutes under the condition of 88 rpm, and then kneaded rubber. The vulcanization accelerator and sulfur were added with a 6-inch open roll under the conditions of 60 ° C. and 24 rpm, and kneaded for 5 minutes to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-heated at 150 ° C. to obtain vulcanized rubber compositions corresponding to Example 1, Comparative Example 1, and Reference Example 1.
<実施例、比較例及び参考例>
上記の方法で作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表2に示す特性データ中の各指数については、参考例1を基準配合とし、下記記載の計算式で算出した。表2において、石油外資源の含有量とは、ゴム組成物100質量%中の石油外資源の含有量(質量%)である。
<Examples, comparative examples and reference examples>
The following evaluation was performed using the vulcanized rubber composition produced by the above method. Each index in the characteristic data shown in Table 2 was calculated by the following formula using Reference Example 1 as a reference composition. In Table 2, the content of non-petroleum resources is the content (mass%) of non-petroleum resources in 100% by mass of the rubber composition.
(引張試験)
JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に従い、100%引張応力、300%引張応力、引張強度、破断伸び、破壊エネルギーを測定した。下記の計算式、
100%引張応力指数=(各配合の100%引張応力)/(基準配合の100%引張応力)×100
300%引張応力指数=(各配合の300%引張応力)/(基準配合の300%引張応力)×100
引張強度指数=(各配合の破断応力)/(基準配合の破断応力)×100
破断伸び指数=(各配合の破断伸び)/(基準配合の破断伸び)×100
破壊エネルギー指数=(各配合の破壊エネルギー)/(基準配合の破壊エネルギー)×100
により100%引張応力指数、300%引張応力指数、引張強度指数、破断伸び指数、破壊エネルギー指数を算出した。指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、破壊特性に優れることを示す。
(Tensile test)
100% tensile stress, 300% tensile stress, tensile strength, elongation at break, and fracture energy were measured according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. The following formula:
100% tensile stress index = (100% tensile stress of each formulation) / (100% tensile stress of standard formulation) × 100
300% tensile stress index = (300% tensile stress of each formulation) / (300% tensile stress of standard formulation) × 100
Tensile strength index = (breaking stress of each compound) / (breaking stress of the standard compound) × 100
Breaking elongation index = (breaking elongation of each formulation) / (breaking elongation of the reference formulation) × 100
Fracture energy index = (Fracture energy of each formulation) / (Fracture energy of the reference formulation) × 100
Were used to calculate a 100% tensile stress index, a 300% tensile stress index, a tensile strength index, a breaking elongation index, and a breaking energy index. The larger the index, the better the vulcanized rubber composition is reinforced, and the higher the mechanical strength of the rubber, the better the fracture characteristics.
(操縦安定性指数及び転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE*(複素弾性率)及びtanδ(損失正接)を測定した。下記の計算式、
操縦安定性指数=(各配合のE*)/(基準配合のE*)×100
転がり抵抗指数=(各配合のtanδ)/(基準配合のtanδ)×100
により操縦安定性指数、転がり抵抗指数を算出した。操縦安定性指数が大きい程、空気入りタイヤとして用いた場合に良好な操縦安定性を与え、転がり抵抗指数が小さい程、空気入りタイヤとして用いた場合に良好な転がり抵抗特性(低燃費性)を与えることを示す。
(Maneuvering stability index and rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). The E * (complex elastic modulus) and tan δ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz. The following formula:
Steering stability index = (E * of each formulation) / (E * of reference formulation) × 100
Rolling resistance index = (tan δ of each formulation) / (tan δ of reference formulation) × 100
The steering stability index and rolling resistance index were calculated. The larger the steering stability index, the better the steering stability when used as a pneumatic tire, and the smaller the rolling resistance index, the better the rolling resistance characteristic (low fuel consumption) when used as a pneumatic tire. Indicates to give.
表2より、ミクロフィブリル化植物繊維を含有し、バイオベースポリマーを含有しない比較例1は、参考例1と比較して、引張応力等は改善したが、破断伸び、低燃費性が悪化した。一方、ミクロフィブリル化植物繊維及びバイオベースポリマーを含有する実施例1は、比較例1と比較して、低燃費性を維持しながら、破断伸びが改善した。また、その他の性能も比較例1より優れていた。 From Table 2, Comparative Example 1 containing microfibrillated plant fibers and no biobase polymer improved the tensile stress and the like compared to Reference Example 1, but deteriorated elongation at break and fuel efficiency. On the other hand, Example 1 containing a microfibrillated plant fiber and a bio-based polymer improved the elongation at break while maintaining low fuel consumption as compared with Comparative Example 1. Other performances were also superior to Comparative Example 1.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012060382A JP5933302B2 (en) | 2012-03-16 | 2012-03-16 | Rubber composition for tire, method for producing the same, and pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012060382A JP5933302B2 (en) | 2012-03-16 | 2012-03-16 | Rubber composition for tire, method for producing the same, and pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013194088A true JP2013194088A (en) | 2013-09-30 |
JP5933302B2 JP5933302B2 (en) | 2016-06-08 |
Family
ID=49393454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012060382A Active JP5933302B2 (en) | 2012-03-16 | 2012-03-16 | Rubber composition for tire, method for producing the same, and pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5933302B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015098539A (en) * | 2013-11-19 | 2015-05-28 | 住友ゴム工業株式会社 | Tire rubber composition and pneumatic tire |
JP2015168383A (en) * | 2014-03-10 | 2015-09-28 | 住友ゴム工業株式会社 | Pneumatic tire for winter and production method thereof |
WO2015178485A1 (en) * | 2014-05-22 | 2015-11-26 | 横浜ゴム株式会社 | Rubber composition for tire and studless tire |
JP2015221855A (en) * | 2014-05-22 | 2015-12-10 | 横浜ゴム株式会社 | Rubber composition for tire and studless tire |
JP2015221854A (en) * | 2014-05-22 | 2015-12-10 | 横浜ゴム株式会社 | Rubber composition for tire and studless tire |
KR20160077896A (en) * | 2014-12-24 | 2016-07-04 | 한국타이어 주식회사 | Rubber composition for tire and tire manufactured by using the same |
WO2018101266A1 (en) * | 2016-11-30 | 2018-06-07 | 住友ゴム工業株式会社 | Rubber composition for tire and tire |
JP2018184515A (en) * | 2017-04-25 | 2018-11-22 | 住友ゴム工業株式会社 | Rubber composition for tire, method for producing rubber composition for tire, and tire |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009084564A (en) * | 2007-09-10 | 2009-04-23 | Sumitomo Rubber Ind Ltd | Vulcanized rubber composition, pneumatic tire, and their production methods |
JP2009249449A (en) * | 2008-04-03 | 2009-10-29 | Bridgestone Corp | Rubber composition and its manufacturing method |
WO2011059386A1 (en) * | 2009-11-13 | 2011-05-19 | Swetree Technologies Ab | Process for producing granules |
WO2011096393A1 (en) * | 2010-02-02 | 2011-08-11 | 国立大学法人京都大学 | Rubber composition and manufacturing method for same |
WO2011096399A1 (en) * | 2010-02-02 | 2011-08-11 | 国立大学法人京都大学 | Rubber composition |
JP2011231204A (en) * | 2010-04-27 | 2011-11-17 | Kyoto Univ | Rubber composition and method for manufacturing rubber composition |
-
2012
- 2012-03-16 JP JP2012060382A patent/JP5933302B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009084564A (en) * | 2007-09-10 | 2009-04-23 | Sumitomo Rubber Ind Ltd | Vulcanized rubber composition, pneumatic tire, and their production methods |
JP2009249449A (en) * | 2008-04-03 | 2009-10-29 | Bridgestone Corp | Rubber composition and its manufacturing method |
WO2011059386A1 (en) * | 2009-11-13 | 2011-05-19 | Swetree Technologies Ab | Process for producing granules |
WO2011096393A1 (en) * | 2010-02-02 | 2011-08-11 | 国立大学法人京都大学 | Rubber composition and manufacturing method for same |
WO2011096399A1 (en) * | 2010-02-02 | 2011-08-11 | 国立大学法人京都大学 | Rubber composition |
JP2011231204A (en) * | 2010-04-27 | 2011-11-17 | Kyoto Univ | Rubber composition and method for manufacturing rubber composition |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015098539A (en) * | 2013-11-19 | 2015-05-28 | 住友ゴム工業株式会社 | Tire rubber composition and pneumatic tire |
JP2015168383A (en) * | 2014-03-10 | 2015-09-28 | 住友ゴム工業株式会社 | Pneumatic tire for winter and production method thereof |
US10570274B2 (en) | 2014-05-22 | 2020-02-25 | The Yokohama Rubber Co., Ltd. | Rubber composition for tire and studless tire |
DE112015002409B4 (en) | 2014-05-22 | 2019-07-11 | The Yokohama Rubber Co., Ltd. | A rubber composition for tires, vulcanized product and use of the vulcanized product in a studless tire |
JP2015221854A (en) * | 2014-05-22 | 2015-12-10 | 横浜ゴム株式会社 | Rubber composition for tire and studless tire |
WO2015178485A1 (en) * | 2014-05-22 | 2015-11-26 | 横浜ゴム株式会社 | Rubber composition for tire and studless tire |
JP2015221855A (en) * | 2014-05-22 | 2015-12-10 | 横浜ゴム株式会社 | Rubber composition for tire and studless tire |
CN106459507B (en) * | 2014-05-22 | 2018-05-01 | 横滨橡胶株式会社 | Rubber composition for tire and studless tire |
KR101667200B1 (en) | 2014-12-24 | 2016-10-18 | 한국타이어 주식회사 | Rubber composition for tire and tire manufactured by using the same |
KR20160077896A (en) * | 2014-12-24 | 2016-07-04 | 한국타이어 주식회사 | Rubber composition for tire and tire manufactured by using the same |
WO2018101266A1 (en) * | 2016-11-30 | 2018-06-07 | 住友ゴム工業株式会社 | Rubber composition for tire and tire |
JPWO2018101266A1 (en) * | 2016-11-30 | 2019-10-24 | 住友ゴム工業株式会社 | Rubber composition for tire and tire |
US11242448B2 (en) | 2016-11-30 | 2022-02-08 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire and tire |
JP7070399B2 (en) | 2016-11-30 | 2022-05-18 | 住友ゴム工業株式会社 | Rubber composition for tires and tires |
JP2018184515A (en) * | 2017-04-25 | 2018-11-22 | 住友ゴム工業株式会社 | Rubber composition for tire, method for producing rubber composition for tire, and tire |
US11225532B2 (en) | 2017-04-25 | 2022-01-18 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires, method for preparing rubber composition for tires, and tire |
JP7069564B2 (en) | 2017-04-25 | 2022-05-18 | 住友ゴム工業株式会社 | Rubber composition for tires, manufacturing method of rubber composition for tires and tires |
Also Published As
Publication number | Publication date |
---|---|
JP5933302B2 (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5933302B2 (en) | Rubber composition for tire, method for producing the same, and pneumatic tire | |
JP5616372B2 (en) | Rubber composition for tire, method for producing the same, and pneumatic tire | |
JP5846919B2 (en) | Rubber composition and method for producing the same | |
JP5595103B2 (en) | Rubber composition and method for producing rubber composition | |
JP6193581B2 (en) | Rubber composition for tire and pneumatic tire | |
JP5616369B2 (en) | Rubber composition for tire and pneumatic tire | |
JP2011231208A (en) | Rubber composition and method for manufacturing rubber composition | |
JP6650476B2 (en) | Rubber composition for tire | |
JP2015209536A (en) | Tire rubber composition and pneumatic tire | |
JP2011063651A (en) | Method for producing rubber/short fiber master batch | |
JP2013155304A (en) | Rubber composition for tire, method of producing the same, and pneumatic tire | |
JP7295520B2 (en) | Rubber composition for tires | |
JP5595104B2 (en) | Rubber composition and tire using the same | |
JP6353169B2 (en) | Rubber composition and pneumatic tire | |
JP2015010136A (en) | Rubber composition for tire, and pneumatic tire using the same | |
JP2015129236A (en) | Method for producing composite material | |
JP2017105868A (en) | Rubber composition for tire, manufacturing method of rubber composition for tire, and pneumatic tire | |
JP4137966B2 (en) | Rubber composition | |
JP2015129360A (en) | Bacterial cellulose fibrillating method | |
JP2007112846A (en) | Rubber composition for sidewall, method for producing the same and pneumatic tire using the rubber composition | |
JP7261420B2 (en) | Rubber composition for tire | |
JP6193577B2 (en) | Rubber composition for tire and pneumatic tire | |
JP6021877B2 (en) | Rubber composition and method for producing rubber composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160502 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5933302 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |