WO2011071156A1 - 複合材料 - Google Patents
複合材料 Download PDFInfo
- Publication number
- WO2011071156A1 WO2011071156A1 PCT/JP2010/072260 JP2010072260W WO2011071156A1 WO 2011071156 A1 WO2011071156 A1 WO 2011071156A1 JP 2010072260 W JP2010072260 W JP 2010072260W WO 2011071156 A1 WO2011071156 A1 WO 2011071156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine cellulose
- cellulose fiber
- composite material
- dispersion
- composite
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 299
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 409
- 229920005989 resin Polymers 0.000 claims abstract description 63
- 239000011347 resin Substances 0.000 claims abstract description 63
- 239000002861 polymer material Substances 0.000 claims abstract description 60
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 59
- 229920000642 polymer Polymers 0.000 claims abstract description 48
- 239000004094 surface-active agent Substances 0.000 claims abstract description 47
- 239000004626 polylactic acid Substances 0.000 claims abstract description 34
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 31
- 239000002028 Biomass Substances 0.000 claims abstract description 26
- 239000003208 petroleum Substances 0.000 claims abstract description 17
- 239000006185 dispersion Substances 0.000 claims description 176
- 239000003960 organic solvent Substances 0.000 claims description 46
- 239000000843 powder Substances 0.000 claims description 43
- 238000004519 manufacturing process Methods 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 41
- 238000004898 kneading Methods 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 18
- 239000008240 homogeneous mixture Substances 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 8
- 238000005507 spraying Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 description 97
- 239000000835 fiber Substances 0.000 description 80
- 230000000052 comparative effect Effects 0.000 description 73
- 229920002678 cellulose Polymers 0.000 description 72
- 239000001913 cellulose Substances 0.000 description 72
- 235000010980 cellulose Nutrition 0.000 description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 68
- 239000000523 sample Substances 0.000 description 59
- 239000007787 solid Substances 0.000 description 51
- 239000002121 nanofiber Substances 0.000 description 39
- 239000000463 material Substances 0.000 description 32
- -1 phosphate ester Chemical class 0.000 description 31
- 238000002834 transmittance Methods 0.000 description 31
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 238000007254 oxidation reaction Methods 0.000 description 30
- 239000002904 solvent Substances 0.000 description 27
- 229920005601 base polymer Polymers 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 23
- 239000002002 slurry Substances 0.000 description 20
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 20
- 239000002612 dispersion medium Substances 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 238000005266 casting Methods 0.000 description 15
- 239000012530 fluid Substances 0.000 description 15
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 210000001724 microfibril Anatomy 0.000 description 13
- 239000000725 suspension Substances 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 150000004676 glycans Chemical class 0.000 description 12
- 229920001282 polysaccharide Polymers 0.000 description 12
- 239000005017 polysaccharide Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 239000000376 reactant Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 239000007800 oxidant agent Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 10
- 239000007795 chemical reaction product Substances 0.000 description 10
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000007731 hot pressing Methods 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- 229920005992 thermoplastic resin Polymers 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 8
- 239000004902 Softening Agent Substances 0.000 description 8
- 239000000123 paper Substances 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 239000011147 inorganic material Substances 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 229920000742 Cotton Polymers 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229920001131 Pulp (paper) Polymers 0.000 description 6
- 239000003093 cationic surfactant Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000003484 crystal nucleating agent Substances 0.000 description 6
- 150000005690 diesters Chemical class 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000002798 polar solvent Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 239000011122 softwood Substances 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- 239000001384 succinic acid Substances 0.000 description 5
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 5
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 4
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 4
- 229920001659 Renewable Polyethylene Polymers 0.000 description 4
- 239000005708 Sodium hypochlorite Substances 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000002655 kraft paper Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000008108 microcrystalline cellulose Substances 0.000 description 4
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 4
- 229940016286 microcrystalline cellulose Drugs 0.000 description 4
- 238000010137 moulding (plastic) Methods 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 4
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 238000007602 hot air drying Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- ALDZNWBBPCZXGH-UHFFFAOYSA-N 12-hydroxyoctadecanamide Chemical compound CCCCCCC(O)CCCCCCCCCCC(N)=O ALDZNWBBPCZXGH-UHFFFAOYSA-N 0.000 description 2
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 125000005210 alkyl ammonium group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 2
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010097 foam moulding Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000113 methacrylic resin Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GPECWDAWQNNPNX-UHFFFAOYSA-N (1-$l^{1}-oxidanyl-2,2,6,6-tetramethylpiperidin-4-yl) dihydrogen phosphate Chemical compound CC1(C)CC(OP(O)(O)=O)CC(C)(C)N1[O] GPECWDAWQNNPNX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000011165 3D composite Substances 0.000 description 1
- UXBLSWOMIHTQPH-UHFFFAOYSA-N 4-acetamido-TEMPO Chemical compound CC(=O)NC1CC(C)(C)N([O])C(C)(C)C1 UXBLSWOMIHTQPH-UHFFFAOYSA-N 0.000 description 1
- CYQGCJQJIOARKD-UHFFFAOYSA-N 4-carboxy-TEMPO Chemical compound CC1(C)CC(C(O)=O)CC(C)(C)N1[O] CYQGCJQJIOARKD-UHFFFAOYSA-N 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920002749 Bacterial cellulose Polymers 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000005016 bacterial cellulose Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000001473 dynamic force microscopy Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical class C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 1
- MJCJUDJQDGGKOX-UHFFFAOYSA-N n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCCCCCCCCCCCC MJCJUDJQDGGKOX-UHFFFAOYSA-N 0.000 description 1
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- CRWJEUDFKNYSBX-UHFFFAOYSA-N sodium;hypobromite Chemical compound [Na+].Br[O-] CRWJEUDFKNYSBX-UHFFFAOYSA-N 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- SWZDQOUHBYYPJD-UHFFFAOYSA-N tridodecylamine Chemical compound CCCCCCCCCCCCN(CCCCCCCCCCCC)CCCCCCCCCCCC SWZDQOUHBYYPJD-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
- C08B15/04—Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/045—Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
- C08L1/04—Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/02—Lignocellulosic material, e.g. wood, straw or bagasse
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/18—Spheres
Definitions
- the present invention relates to a fine cellulose fiber-containing material including fine cellulose fibers having nano-sized fiber diameters, and more specifically to a composite material containing fine cellulose fibers and having high mechanical properties.
- Patent Documents 1 and 2 disclose that an oxidation treatment is performed with an oxidizing agent in the presence of an N-oxyl compound such as 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (hereinafter also referred to as TEMPO).
- TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl
- Patent Document 3 describes a composition comprising a thermoplastic polymer matrix and a cellulose filler composed of microfibril cellulose having a diameter of about 2 to 30 nm.
- Patent Document 4 describes a disintegratable or biodegradable polymer composition containing a biodegradable plastic and squirt cellulose fibers.
- the squirt cellulose fiber is obtained by cutting the shell of the squirt with a cutter or the like to a size of about 5 to 20 mm, pulverizing with a device such as a mixer, and microfibrillating with a beater or the like. And a fine fiber having a diameter of 0.1 ⁇ m or less.
- Patent Document 5 includes a cellulose microfibril having a solid content of 65 to 100% by weight and an additive (0 to 35% by weight) (thermosetting resin, thermoplastic resin, starch, etc.) and according to a predetermined measurement method. A high-strength material with a bending strength in a specific range is described.
- Patent Document 6 a gas barrier composite molded article, in which a base material is provided with a layer made of a gas barrier material containing cellulose fibers having an average fiber diameter of 200 nm or less and a carboxyl group content of 0.1 to 2 mmol / g.
- This cellulose fiber is obtained by oxidizing natural cellulose fibers such as wood pulp under a TEMPO catalyst, and defibrating the resulting oxide dispersion with a mixer or the like. It is a fine cellulose fiber having a finer fiber diameter than the called fiber.
- the gas barrier composite molded article described in Patent Document 6 has high gas barrier properties against various gases such as oxygen, water vapor, carbon dioxide, and nitrogen due to the specificity of the fine cellulose fibers.
- Non-Patent Documents 1 to 3 needle-like fine cellulose fibers called cellulose nanowhiskers are dispersed in an organic solvent such as toluene, cyclohexane, chloroform, etc. to obtain a dispersion, and this dispersion is used. And obtaining composite materials of polylactic acid and cellulose nanowhiskers.
- Cellulose nanowhiskers are obtained by hydrolyzing the amorphous part of the raw material cellulose with sulfuric acid and then sonicating, and stably dispersed in water by sulfate groups introduced into the cellulose constituent units by the hydrolysis. In organic solvents such as alcohol and non-aqueous solvents, they usually aggregate without stable dispersion. On the other hand, a plastic material such as polylactic acid and a cellulose nanofiber such as cellulose nanowhisker can be combined to obtain a composite material that fully utilizes the characteristics of cellulose nanofiber. It is necessary to stably disperse cellulose nanofibers.
- an anionic surfactant such as a phenyl group-containing phosphate ester is allowed to act on cellulose nanowhiskers to modify (hydrophobize) cellulose nanowhiskers.
- an anionic surfactant such as a phenyl group-containing phosphate ester is allowed to act on cellulose nanowhiskers to modify (hydrophobize) cellulose nanowhiskers.
- it enables stable dispersion of cellulose nanowhiskers in an organic solvent.
- Patent Document 6 proposes a gas barrier material containing cellulose fibers having an average fiber diameter of 200 nm or less and a carboxyl group content of 0.1 to 2 mmol / g.
- This cellulose fiber is obtained by oxidizing natural cellulose fibers such as wood pulp under a TEMPO catalyst and defibrating the resulting oxide dispersion with a mixer or the like.
- the fine cellulose fiber has a finer fiber diameter than the conventional cellulose fiber called nanofiber.
- the fine cellulose fiber described in Patent Document 6 is considered to be a material that can meet such a demand
- the fine cellulose fiber which is inherently highly hydrophilic, has a dispersion stability in organic solvents and resins having different polarities. Therefore, it was difficult to apply to composites with plastic materials.
- the present invention relates to providing a composite material having a practically sufficient mechanical strength and less burden on the environment.
- the present inventors have various methods for stably dispersing fine cellulose fibers (cellulose fibers having an average fiber diameter of 200 nm or less and a carboxyl group content of 0.1 to 2 mmol / g) described in Patent Document 6 in an organic solvent. As a result of investigation, it was found that the dispersion stability of the fine cellulose fibers in an organic solvent is improved by chemically adsorbing a specific surfactant to the fine cellulose fibers (Knowledge 2).
- the present invention (first invention) is based on the above knowledge 1 and comprises a group consisting of fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g, a polymer derived from biomass and a polymer derived from petroleum. And a composite material mixed with a moldable polymer material.
- This invention is a manufacturing method of the said composite material, Comprising: After mixing the said powdery fine cellulose fiber and the said polymeric material, and obtaining a uniform mixture, this uniform mixture is made into arbitrary shapes.
- the present invention relates to a method for manufacturing a composite material, which includes a step of forming a composite material.
- the present invention (second invention) is based on the above knowledge 2, and comprises a fine cellulose fiber composite comprising a surfactant adsorbed on fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g.
- the present invention relates to a composite material mixed with a moldable resin.
- the present invention (second invention) is a method for producing the composite material, wherein the fine cellulose fiber composite is dispersed in an organic solvent, or the powdered fine cellulose fiber composite and the resin.
- the present invention relates to a method for producing a composite material, which comprises a step of obtaining a uniform mixture by molding and forming the uniform mixture into an arbitrary shape.
- the composite material of the present invention has sufficient mechanical strength for practical use and has a low environmental load.
- the fine cellulose fiber composite (material containing fine cellulose fibers) of the present invention (second invention) is excellent in dispersion stability in organic solvents and resins, suitable for composite with plastic materials, and high mechanical strength. It is possible to provide an environmental load-reducing composite material that combines transparency with transparency.
- the fine cellulose fiber dispersion liquid of the present invention (second invention) configured to contain the fine cellulose fiber composite also has the same effect.
- the composite material of the present invention contains two essential components: (1) a fine cellulose fiber having a carboxyl group content of 0.1 to 3 mmol / g and (2) a moldable polymer material. is doing. Each component will be described in detail below.
- the fine cellulose fibers used in the present invention preferably have an average fiber diameter of 200 nm or less, more preferably 100 nm or less, and still more preferably 1 to 50 nm.
- the average fiber diameter is measured by the following measuring method.
- the fine cellulose fiber used in the present invention has an average fiber diameter of 200 nm or less, and further has a carboxyl group content (carboxyl group content of cellulose constituting the fine cellulose fiber) of 0.1 to 3 mmol. / G, particularly 0.1 to 2 mmol / g, particularly 0.4 to 2 mmol / g, and preferably 0.6 to 1.8 mmol / g.
- carboxyl group content carboxyl group content of cellulose constituting the fine cellulose fiber
- cellulose fibers having a carboxyl group content outside such a range may be unintentionally contained as impurities.
- the carboxyl group content is an important factor in stably obtaining cellulose fibers having a minute fiber diameter of an average fiber diameter of 200 nm or less. That is, in the process of biosynthesis of natural cellulose, normally, nanofibers called microfibrils are first formed, and these are multi-bundleed to construct a higher-order solid structure. Fine cellulose fibers used in the present invention As will be described later, this is obtained by using this in principle, in order to weaken the hydrogen bond between the surfaces, which is the driving force of the strong cohesive force between microfibrils in the naturally-derived cellulose solid raw material. , Part of which is obtained by oxidation and conversion to a carboxyl group.
- carboxyl groups carboxyl groups (carboxyl group content) present in cellulose
- the smaller the fiber diameter the more stable it can exist, and in water, an electrical repulsive force is generated.
- the tendency of microfibrils to break apart without maintaining agglomeration is increased, and the dispersion stability of nanofibers is further increased.
- the carboxyl group content is less than 0.1 mmol / g, it is difficult to obtain fine cellulose fibers having a fine fiber diameter of 200 nm or less, and dispersion stability in a polar solvent such as water may be reduced. There is.
- the carboxyl group content is measured by the following measurement method.
- ⁇ Measurement method of carboxyl group content Take a cellulose fiber with a dry mass of 0.5 g in a 100 ml beaker, add ion-exchanged water to make a total of 55 ml, add 5 ml of 0.01 M sodium chloride aqueous solution to prepare a dispersion, and until the cellulose fibers are sufficiently dispersed The dispersion is stirred. 0.1M hydrochloric acid is added to this dispersion to adjust the pH to 2.5-3, and 0.05M sodium hydroxide aqueous solution is waited using an automatic titrator (AUT-50, manufactured by Toa DKK Corporation).
- AUT-50 automatic titrator
- the fine cellulose fibers used in the present invention have an average aspect ratio (fiber length / fiber diameter) of preferably 10 to 1000, more preferably 10 to 500, and particularly preferably 100 to 350. Fibers having an average aspect ratio in such a range have the characteristics that they are excellent in dispersibility in composite materials, have high mechanical strength, and are particularly difficult to brittle fracture.
- the average aspect ratio is measured by the following measurement method.
- the average aspect ratio is calculated from the viscosity of a dispersion prepared by adding water to cellulose fibers (cellulose fiber mass concentration 0.005 to 0.04 mass%). The viscosity of the dispersion is measured at 20 ° C. using a rheometer (MCR, DG42 (double cylinder), manufactured by PHYSICA). From the relationship between the mass concentration of the cellulose fibers in the dispersion and the specific viscosity of the dispersion with respect to water, the aspect ratio of the cellulose fibers is calculated by the following formula (1) to obtain the average aspect ratio. The following formula (1) is obtained from The Theory of Polymer Dynamics, M .; DOI and D.D. F.
- ⁇ SP is the specific viscosity
- ⁇ is the circumference ratio
- ln is the natural logarithm
- P is the aspect ratio (L / b)
- ⁇ 0.8
- ⁇ S is the density of the dispersion medium ( kg / m 3 )
- ⁇ 0 represents the density of cellulose crystals (kg / m 3 )
- the fine cellulose fiber used in the present invention may have a sodium salt type carboxyl group (COONa) or an acid type carboxyl group (COOH).
- the content of the fine cellulose fiber in the composite material of the present invention can be appropriately set from the viewpoint of the balance between mechanical strength and transparency.
- the content of fine cellulose fibers is large.
- the content of fine cellulose fibers in the composite material is preferably 0.01 to 60% by mass, more preferably 0.05 to 10% by mass, and particularly preferably the total mass of the composite material. 0.1 to 5% by mass.
- the appropriate content of fine cellulose fibers varies depending on the type of polymer material used in combination.
- the polymer material is polylactic acid (PLA)
- PLA polylactic acid
- the higher the content of fine cellulose fibers specifically, the higher the mechanical strength when the content of fine cellulose fibers is 0.1% by mass or more.
- the content of fine cellulose fibers is preferably 0.01 to 60% by mass from the viewpoint of bending resistance.
- the fine cellulose fiber used in the present invention can be produced, for example, by the following method. That is, the fine cellulose fiber used in the present invention can be obtained by a production method including an oxidation reaction step in which a natural cellulose fiber is oxidized to obtain a reactant fiber and a refinement step in which the reactant fiber is refined. Each step will be described in detail below.
- a slurry in which natural cellulose fibers are dispersed in water is prepared.
- the slurry is obtained by adding about 10 to 1000 times (mass basis) water to the natural cellulose fiber (absolute dry basis) as a raw material, and processing with a mixer or the like.
- natural cellulose fibers include wood pulp such as softwood pulp and hardwood pulp; cotton pulp such as cotton linter and cotton lint; non-wood pulp such as straw pulp and bagasse pulp; and bacterial cellulose. These 1 type can be used individually or in combination of 2 or more types.
- the natural cellulose fiber may be subjected to a treatment for increasing the surface area such as beating.
- N-oxyl compounds that can be used as an oxidation catalyst for cellulose include TEMPO, 4-acetamido-TEMPO, 4-carboxy-TEMPO, 4-phosphonooxy-TEMPO, and the like.
- a catalytic amount is sufficient for the addition of these N-oxyl compounds, and it is usually in a range of 0.1 to 10% by mass with respect to natural cellulose fiber (absolute dry basis) used as a raw material.
- an oxidizing agent for example, hypohalous acid or a salt thereof, hypohalous acid or a salt thereof, perhalogenic acid or a salt thereof, hydrogen peroxide, a perorganic acid, etc.
- An agent for example, an alkali metal bromide such as sodium bromide
- alkali metal hypohalites such as sodium hypochlorite and sodium hypobromite are particularly preferable.
- the amount of the oxidizing agent used is usually in the range of about 1 to 100% by mass relative to the natural cellulose fiber (absolute dry basis) used as a raw material.
- the amount of the co-oxidant used is usually in the range of about 1 to 30% by mass relative to the natural cellulose fiber (absolute dry basis) used as a raw material.
- the pH of the reaction solution (the slurry) is maintained in the range of 9 to 12 from the viewpoint of allowing the oxidation reaction to proceed efficiently.
- the temperature of the oxidation treatment (the temperature of the slurry) is arbitrary from 1 to 50 ° C., but the reaction is possible at room temperature, and no temperature control is required.
- the reaction time is preferably 1 to 240 minutes.
- a purification step is performed before the miniaturization step to remove impurities other than reactant fibers and water contained in the slurry, such as unreacted oxidant and various by-products.
- the reaction product fibers are usually not dispersed evenly to the nanofiber unit. Therefore, in the purification process, for example, a purification method in which water washing and filtration are repeated can be performed, and the purification apparatus used in that case is not particularly limited.
- the purified reaction product fiber thus obtained is usually sent to the next step (a micronization step) impregnated with an appropriate amount of water, but may be a dried fiber or powder if necessary. .
- the reaction product fibers that have undergone the purification step are dispersed in a solvent such as water, and the refinement process is performed.
- a solvent such as water
- miniaturization process the fine fiber which has an average fiber diameter and an average aspect ratio in the said range, respectively is obtained.
- the solvent as the dispersion medium is usually preferably water, but water-soluble organic solvents (alcohols, ethers, ketones, etc.) may be used in addition to water depending on the purpose. These mixtures can also be suitably used.
- the disperser used in the miniaturization process include a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short shaft extruder, a twin screw extruder, and an ultrasonic stirrer.
- a home juicer mixer or the like can be used.
- the solid content concentration of the reactant fiber in the refinement treatment is preferably 50% by mass or less. When the solid content concentration exceeds 50% by mass, it is not preferable because extremely high energy is required for dispersion.
- the suspension is adjusted to a solid content concentration (visually colorless and transparent or opaque liquid), or a dried powder (however, cellulose as necessary) It is also a powder form in which fibers are aggregated and does not mean cellulose particles).
- a suspension only water may be used as a dispersion medium, and a mixed solvent of water and other organic solvents (for example, alcohols such as ethanol), surfactants, acids, bases, etc. May be used.
- the hydroxyl group at the C6 position of the cellulose structural unit is selectively oxidized to a carboxyl group via an aldehyde group, and the carboxyl group content is 0.1 to
- This highly crystalline cellulose fiber has a cellulose I-type crystal structure.
- the fine cellulose fiber used in the present invention is a fiber obtained by surface-oxidizing a naturally-derived cellulose solid raw material having an I-type crystal structure.
- natural cellulose fibers have a high-order solid structure in which fine fibers called microfibrils produced in the process of biosynthesis are bundled to form a high-order solid structure.
- the fine cellulose fibers can be obtained by weakening the hydrogen bond) by introducing the aldehyde group or the carboxyl group by the oxidation treatment, and further through the refinement treatment. Then, by adjusting the conditions of the oxidation treatment, the carboxyl group content is increased or decreased within a predetermined range, the polarity is changed, or the electrostatic repulsion of the carboxyl group or the refinement treatment is performed on the cellulose fiber.
- the average fiber diameter, average fiber length, average aspect ratio, etc. can be controlled.
- the composite material of the present invention includes a moldable polymer material in addition to the fine cellulose fiber.
- the moldable polymer material is a polymer material obtained by subjecting the polymer material alone or a mixture of the polymer material and another material to a predetermined shape. It means the polymeric material when it can be retained.
- a resin derived from a fossil resource that can be used for ordinary plastic molding is included in the “moldable polymer material”.
- the moldable polymer material can be made into an object having a predetermined shape through necessary processing (processing for making the polymer material different from its original form).
- the composite material of the present invention can be formed into a thin object such as a film or a sheet or a three-dimensional container such as a box or a bottle, a housing for information appliances, a body of an automobile, etc. Can do.
- Examples of moldable polymer materials (hereinafter also simply referred to as polymer materials) used in the present invention include a) biomass-derived polymers and b) petroleum-derived polymers.
- Biomass-derived polymers are organic polymers obtained from living organisms, excluding fossil resources, and include those having biodegradability as with the fine cellulose fibers.
- Preferred examples of the biomass-derived polymer include thermoplastics such as polylactic acid (PLA), polyglycolic acid, poly (3-hydroxybutanoic acid), biopolyethylene, biopolypropylene, biopolyethylene terephthalate, and biopolycarbonate. Can be mentioned.
- polysaccharides can also be used as the biomass-derived polymer.
- the polysaccharide include pulp, such as wood pulp such as softwood pulp and hardwood pulp; non-wood pulp such as hemp, bamboo, straw and kenaf; cotton pulp such as cotton linter and cotton lint. It is done.
- polysaccharides other than pulp that can be used in the present invention include regenerated cellulose such as rayon, starch, chitin, chitosan, cellulose triacetate (TAC), carboxymethylcellulose (CMC), polysaccharides such as polyuronic acid, Examples thereof include polysaccharide derivatives. These polysaccharides are all non-thermoplastic.
- the petroleum-derived polymer (moldable polymer material) used in the present invention is an organic polymer obtained from fossil resources, such as polyolefin resin, polystyrene resin, nylon resin, methacrylic resin.
- Thermoplastic resins such as resins, acrylonitrile, butadiene, styrene resins, ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers, and ionomers; thermosetting resins such as epoxy resins, phenolic resins, urea resins, and polyimide resins Can be mentioned. These resins can be used singly or in combination of two or more.
- One or more of the modified resins can be used alone (without being used in combination with other resins) as a petroleum-derived polymer according to the present invention, or when used in combination with other petroleum-derived polymers. It can also be used as an adhesive resin.
- the content of the moldable polymer material in the composite material of the present invention is preferably 40 to 99.99 mass with respect to the total mass of the composite material from the viewpoint of imparting high mechanical strength and transparency to the composite material. %, More preferably 90 to 99.95% by mass, particularly preferably 95 to 99.9% by mass.
- the composite material of the present invention (first invention) is a mixture of the fine cellulose fibers described above and a moldable polymer material. That is, the composite material of the present invention is a material in which fine cellulose fibers and a polymer material are dispersed substantially uniformly throughout the composite material, and neither component is substantially unevenly distributed. It does not have a main layer or a polymer-based layer.
- the composite material of the present invention may contain other components other than these two components as necessary, for example, inorganic materials such as clay minerals, inorganic materials, and metal materials represented by glass and concrete.
- the composite material of the present invention may contain additives such as a softening agent and a crystal nucleating agent.
- the composite material of the present invention can be formed into an arbitrary shape, and is provided as a thin object such as a film or a sheet, a block shape such as a rectangular parallelepiped or a cube, or other three-dimensional shapes.
- a thin composite material is used, the thickness is not particularly limited, but is usually 0.05 to 50 mm.
- the composite material of the present invention (first invention) is produced by, for example, mixing the fine cellulose fiber and the polymer material to obtain a uniform mixture, and then molding the uniform mixture into an arbitrary shape. Can do.
- the fine cellulose fiber used as a raw material of the composite material of the present invention in consideration of the polymer material used together with the fine cellulose fiber, an apparatus used for kneading, etc., powder form (however, the fine cellulose fiber is aggregated) Powdery powder, which does not mean cellulose particles), suspension (visually colorless and transparent or opaque liquid), and the like.
- powder form which does not mean cellulose particles
- suspension visually colorless and transparent or opaque liquid
- the fine cellulose fiber in powder form is used for a composite material
- the fine cellulose fiber is uniformly dispersed in the composite material (the polymer material), so a relatively small amount (a content of 5% by mass or less) Use of cellulose fibers provides a practically sufficient mechanical strength.
- the fine cellulose fibers in powder form include, for example, a dried product obtained by directly drying an aqueous dispersion of fine cellulose fibers; a powder obtained by pulverizing the dried product; and an aqueous dispersion of fine cellulose fibers such as alcohol.
- the spray-drying method is a method in which an aqueous dispersion of the fine cellulose fibers is sprayed in the air and dried.
- an aqueous dispersion of the fine cellulose fibers can be used as it is, or a powder-like fine cellulose fiber dispersed in an arbitrary medium is used.
- the medium can be appropriately selected depending on the polymer material to be mixed and the mixing and molding methods described later. For example, when polylactic acid is used as a polymer material and a composite material is produced by the melt-kneading method described later, use of water or alcohol as the medium is not preferable because polylactic acid may be hydrolyzed.
- the medium is preferably an organic solvent, and examples thereof include methyl triglycol diester succinate.
- the medium is preferably water or alcohol from the viewpoint of dispersibility.
- the polymer material used in combination with the fine cellulose fiber in the present invention is a biomass-derived polymer (for example, polylactic acid) or petroleum-derived polymer, it is heated, for example.
- a method of adding fine cellulose fibers to a polymer material in a molten state and kneading them while the polymer material is maintained in a molten state to form a uniform mixture thus obtained hereinafter referred to as a melt-mixed material.
- the composite material of the present invention can be manufactured by a refining method.
- a kneading apparatus for example, a known apparatus such as a single-shaft kneading extruder, a twin-screw kneading extruder, or a pressure kneader can be used.
- a thermoplastic resin such as polylactic acid as the polymer material
- cellulose nanofiber powder after adding the powdered fine cellulose fibers (hereinafter also referred to as cellulose nanofiber powder) into the molten thermoplastic resin, The cellulose nanofiber powder is uniformly dispersed in the thermoplastic resin using a biaxial kneader to obtain resin pellets, and the resin pellets are heated and compressed to obtain a sheet-like composite material.
- a composite material having a block shape or other three-dimensional shape can be obtained by using a known plastic molding method, specifically, injection molding, casting, extrusion molding, blow molding, stretch molding, foam molding, or the like. it can.
- the casting method is a method in which a mixed fluid obtained by dispersing or dissolving the fine cellulose fibers and the polymer material in a solvent is cast on a substrate, and the solvent is removed to obtain a film.
- a mixed fluid obtained by dispersing or dissolving the fine cellulose fibers and the polymer material in a solvent is cast on a substrate, and the solvent is removed to obtain a film.
- the cellulose nanofiber powder is added to a polymer material dissolved in an organic solvent to obtain a mixed fluid, and a composite material film or sheet can be obtained from the mixed fluid by a casting method.
- the casting method can be widely applied to all the biomass-derived polymers and synthetic polymers described above regardless of the type of the polymer material.
- the casting method as a method for removing the solvent from the mixed fluid applied on the base material, for example, a liquid-permeable base material (for example, a porous material having a large number of liquid-permeable holes penetrating in the thickness direction).
- a method using a conductive substrate In this method, by applying the mixed fluid on the liquid-permeable substrate, the solvent in the mixed fluid is removed by permeating through the porous substrate, and the solid content (fine cellulose fiber and polymer material) is removed. Is scraped onto the porous substrate.
- Another solvent removal method includes a method in which the mixed fluid is cast-coated on a substrate and then the mixed fluid is dried by a drying method such as natural drying or hot air drying.
- the hot pressing performed on the film obtained after removing the solvent can be performed using a known apparatus such as a pressing type or a rotary type using a metal plate, for example.
- the fine cellulose fiber When the polymer material used in the present invention together with the fine cellulose fiber is a polysaccharide (for example, non-thermoplastic material such as pulp) which is a kind of polymer derived from biomass, the fine cellulose fiber
- the following method is effective as a method for obtaining a uniform mixture of the polymer and the polymer material. That is, a fine cellulose fiber is dispersed in a solvent such as water to obtain a slurry, a polymer material (polysaccharide) is added to the slurry, and if necessary, other components other than the fine cellulose fiber and the polymer material (For example, the inorganic material) is added and dispersed to obtain a uniform mixture.
- a polysaccharide for example, non-thermoplastic material such as pulp
- the fine cellulose fiber The following method is effective as a method for obtaining a uniform mixture of the polymer and the polymer material. That is, a fine cellulose fiber is dispersed in a solvent such as
- water is usually preferable, but water-soluble organic solvents (alcohols, ethers, ketones, etc.) may be used in addition to water depending on the purpose. A mixture of these solvents can also be suitably used. Further, the solid content concentration of the uniform mixture is preferably 30% by mass or less from the viewpoint of facilitating dispersion.
- the disperser used for the preparation of the dispersion include a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short screw extruder, a twin screw extruder, and an ultrasonic wave. A stirrer, a household juicer mixer, etc. can be used.
- the composite material of the present invention can also be produced by a wet papermaking method.
- the wet papermaking method is particularly effective when the polymer material used in the present invention together with the fine cellulose fiber is a polysaccharide (for example, non-thermoplastic material such as pulp) which is a kind of biomass-derived polymer. It is.
- a slurry in which fine cellulose fibers and a polymer material (polysaccharide) are uniformly mixed is obtained, and the slurry is flowed on a wet papermaking machine according to a conventional method to make it thin and flat.
- a wet sheet-like composite material (wet web) is formed.
- a sheet-like composite material is obtained by subjecting the wet web to a dehydration treatment as necessary and then a drying treatment.
- the dewatering / drying treatment of the wet web can be performed using, for example, a press part and a dryer part in a papermaking process in a normal wet papermaking method. Specifically, first, in the press part, the wet web is pressed with a felt (blanket) as necessary and compressed from above and below to squeeze out the water in the web, and then in the dryer part, a drying means is used. Then, the wet fiber web that has been dehydrated is dried. Thus, a sheet-like composite material is obtained.
- the drying means There is no particular limitation on the drying means, and a Yankee dryer or an air-through dryer can be used.
- the wet paper machine for example, a long paper machine, a twin wire paper machine, an on-top paper machine, a hybrid paper machine, a round paper machine and the like can be used.
- the wet papermaking method can be used not only for producing a sheet-like composite material but also for producing a desired three-dimensional composite material.
- the composite material of the present invention (first invention) can also be produced by an impregnation method. That is, the composite material of the present invention may be obtained by impregnating a fiber assembly mainly composed of the fine cellulose fibers with a liquid containing the polymer material.
- This fiber assembly is a sheet-like or desired three-dimensional fiber assembly that does not substantially contain the polymer material, and can be produced, for example, by a known wet papermaking method or pulp molding method. .
- the fiber assembly is immersed in a liquid containing the polymer material, and the liquid is infiltrated into the fiber assembly.
- the liquid containing the polymer material is obtained by dispersing or dissolving the polymer material in an appropriate solvent such as water. After immersing the fiber assembly in a liquid containing a polymer material, the fiber assembly is dried by a drying method such as natural drying or hot air drying to obtain a composite material having a desired shape.
- the composite material of the present invention (first invention) preferably has a sufficient mechanical strength for practical use. More specifically, the composite material of the present invention has a tensile modulus and a tensile yield strength of 1.1 times or more, preferably 1.3 times or more, more preferably 1.5 times, relative to the base polymer. It is more than double.
- the base polymer is the polymer material (polymer derived from biomass, polymer derived from petroleum) used in combination with the fine cellulose fiber in the present invention.
- the composite material obtained by the above-described method has a tensile elastic modulus and a tensile yield strength in the above ranges with respect to the base polymer, respectively, and has a practically sufficient mechanical strength.
- the tensile modulus and tensile yield strength are measured by the following methods, respectively.
- Method A Using a tensile and compression tester (RTA-500, manufactured by Orientec Co., Ltd.), the tensile modulus and tensile yield strength of the composite material were measured by a tensile test in accordance with JIS K7113. A sample punched out with a No.
- dumbbell was set at a fulcrum distance of 80 mm and measured at a crosshead speed of 10 mm / min.
- Method B Tensile modulus and tensile yield strength of the composite material were measured by a tensile test using a tensile compression tester (RTA-500 manufactured by Orientec Co., Ltd.). A sample cut into a strip shape having a length of 4 cm and a width of 1 cm with a cutter was set at a fulcrum distance of 20 mm and measured at a crosshead speed of 10 mm / min.
- first invention it is possible to provide a highly transparent composite material.
- a high amount of mechanical strength can be expressed with a relatively small amount (the content of 5% by mass or less) of the fine cellulose fiber.
- a composite material having practically sufficient mechanical strength can be obtained without substantially impairing high transparency.
- pulp when used as the polymer material, a composite material having higher mechanical strength and transparency can be obtained as the content of the fine cellulose fiber is larger.
- the high transparency specifically refers to a case where the total light transmittance is 50% or more (preferably 70% or more). The total light transmittance is measured by the following method.
- the fine cellulose fiber dispersion of the present invention (second invention) (hereinafter also referred to as cellulose fiber dispersion) is used as the fine cellulose fiber composite of the present invention (hereinafter referred to as cellulose) which is a component of the fine cellulose fiber dispersion. (Also referred to as a fiber composite).
- the fine cellulose fiber dispersion of the present invention contains three essential components as 1) fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g, 2) a surfactant, and 3) an organic solvent. ing.
- the surfactant is not dispersed in the dispersion together with the fine cellulose fibers, but is adsorbed on the fine cellulose fibers. That is, the fine cellulose fiber dispersion of the present invention contains the fine cellulose fiber composite of the present invention in which a surfactant is adsorbed on the fine cellulose fiber, and an organic solvent. Dispersed in an organic solvent.
- the surfactant is adsorbed on the fine cellulose fiber by physical adsorption or chemical adsorption by van der Waals force, particularly on the carboxyl group at the C6 position of the cellulose constituent unit in the fine cellulose fiber. Further, surfactants such as alkylamines are chemisorbed. The amount of the surfactant adsorbed on the fine cellulose fibers can be measured by a known analysis method such as elemental analysis or infrared spectroscopy.
- the fine cellulose fiber composite of the present invention is obtained as an intermediate in the production method of the fine cellulose fiber dispersion of the present invention. More specifically, the surfactant is added to the aqueous dispersion of fine cellulose fibers. Can be obtained. After the addition of the surfactant, the solvent (water) is removed from the aqueous dispersion, whereby a dry powdery fine cellulose fiber composite can be obtained.
- the components 1) to 3) of the fine cellulose fiber dispersion of the present invention will be sequentially described in detail.
- the fine cellulose fiber used in the second invention is the same as the fine cellulose fiber used in the first invention described above, and can be produced by the method described above (manufacturing method including an oxidation reaction step and a refinement step).
- the refinement step may be performed after the purification step, and as described later, the method for producing a fine cellulose fiber dispersion of the present invention (second invention) (second invention).
- the manufacturing method it may be carried out after passing through a surfactant addition step performed after the oxidation reaction step.
- the reactant fiber (fine cellulose fiber) after the oxidation reaction step may have a sodium salt type carboxyl group (COONa) as in the case of the fine cellulose fiber used in the first invention. It may have a group (COOH).
- the fine cellulose fiber dispersion of the present invention contains an organic solvent as a main dispersion medium, and contains a surfactant for the purpose of stably dispersing the fine cellulose fibers in the dispersion medium.
- the surfactant is not dispersed in the dispersion together with the fine cellulose fibers, but is adsorbed on the fine cellulose fibers.
- the surfactant is preferably at least one selected from the group consisting of cationic surfactants, anionic surfactants, nonionic surfactants and amphoteric surfactants, and is particularly adsorbable to fine cellulose fibers. High cationic surfactants are preferred.
- Examples of the cationic surfactant used in the present invention include primary to tertiary amine compounds and quaternary ammonium compounds. The primary to tertiary amine compounds are preferably cationized in an acidic environment.
- a cationic surfactant is particularly preferable, and a quaternary ammonium compound or a primary to tertiary amine compound is particularly preferable.
- the type of the surfactant can be appropriately selected according to the type of organic solvent that is one of the essential components of the fine cellulose fiber dispersion of the present invention.
- the quaternary ammonium compound (cationic surfactant) has a carbon number (C number) of 1 to 40, preferably 2 to 20, More preferably, 2 to 8 quaternary alkylammonium compounds are preferable, and the primary to tertiary amine compounds (cationic surfactants) are preferably primary to tertiary alkylamine compounds.
- Examples of the quaternary alkylammonium compounds having 1 to 40 carbon atoms include tetraethylammonium hydroxide (TEAH), tetraethylammonium chloride, tetrabutylammonium hydroxide (TBAH), tetrabutylammonium chloride, lauryltrimethylammonium chloride, and dilauryl.
- TEAH tetraethylammonium hydroxide
- TBAH tetrabutylammonium hydroxide
- lauryltrimethylammonium chloride and dilauryl.
- Examples include dimethyl chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride, alkylbenzyldimethylammonium chloride, and coconutamine.
- Examples of primary to tertiary alkylamine compounds include ethylamine, diethylamine, triethylamine, butylamine, dibutylamine, tributylamine, octylamine, dioctylamine, trioctylamine, dodecylamine, didodecylamine, tridodecylamine, stearylamine. , Distearylamine
- the organic solvent used in the present invention is preferably a polar solvent from the viewpoint of enhancing the dispersion stability of fine cellulose fibers.
- polar solvent used in the present invention examples include ethanol, isopropanol, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, tetrahydrofuran (THF), succinic acid methyltriglycol diester, Acetone, acetonitrile, acetic acid and the like can be mentioned, and one of these can be used alone or in combination of two or more.
- succinic acid methyl triglycol diester, ethanol, and DMF are particularly preferable.
- the content of the above-mentioned three components is the expression of the characteristics of the fine cellulose fiber and the dispersion stability of the fine cellulose fiber. It can be adjusted as appropriate in consideration of the balance with the property.
- the content of fine cellulose fibers in the fine cellulose fiber dispersion of the present invention is preferably 0.01 to 60% by mass, more preferably 0.1 to 10% by mass, and the surfactant content is preferably Is 0.001 to 50 mass%, more preferably 0.01 to 10 mass%, and the content of the organic solvent is preferably 10 to 99.99 mass%, more preferably 50 to 99 mass%.
- the fine cellulose fiber dispersion of the present invention may contain water as a dispersion medium in addition to the three components described above.
- the dispersion medium in the fine cellulose fiber dispersion is a mixture of an organic solvent and water. is there.
- the mass ratio of the organic solvent to water (organic solvent / water) is preferably 1 or more, particularly 1 to 1000, more preferably 4 to 1000.
- the content of water in the fine cellulose fiber dispersion of the present invention is preferably 0 to 50% by mass, more preferably 0 to 10% by mass.
- the fine cellulose fiber dispersion of the present invention may contain other components such as clay minerals, inorganic materials, metal materials, and the like as necessary in addition to the above-described three components and water.
- the content of these other components in the fine cellulose fiber dispersion of the present invention is preferably 0 to 50% by mass or less.
- the fine cellulose fiber dispersion of the present invention (second invention) can be produced, for example, by the following method. That is, in the method for producing a fine cellulose fiber dispersion of the present invention (first production method), a surfactant is added to an aqueous dispersion of fine cellulose fibers (fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g). After the addition, the aqueous dispersion is dehydrated and concentrated to obtain a solid containing the fine cellulose fiber, and the solid is dispersed in a solvent containing an organic solvent.
- first production method a surfactant is added to an aqueous dispersion of fine cellulose fibers (fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g). After the addition, the aqueous dispersion is dehydrated and concentrated to obtain a solid containing the fine cellulose fiber, and the solid is dispersed in a solvent containing an organic solvent.
- an aqueous dispersion in which fine cellulose fibers are dispersed in water is prepared.
- This aqueous dispersion is obtained by adding about 10 to 1000 times (mass basis) of water to the fine cellulose fibers (absolute dry basis) as a raw material, and processing with a disperser or the like. is there.
- the solid content concentration of the aqueous dispersion is preferably 50% by mass or less.
- Examples of the disperser used for the preparation of the dispersion include a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short screw extruder, a twin screw extruder, and an ultrasonic wave.
- a stirrer, a household juicer mixer, etc. can be used.
- a predetermined amount of a surfactant is added to the aqueous dispersion.
- the aqueous dispersion is preferably stirred by the disperser or the like.
- the surfactant added to the aqueous dispersion is chemically adsorbed on the surface of the fine cellulose fibers in the aqueous dispersion, whereby the fine cellulose fibers are hydrophobized (low hydrophilicity),
- the fine cellulose fiber composite (made by adsorbing a surfactant on fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g) is produced.
- the fine cellulose fiber composite produced When a surfactant is added to the aqueous dispersion, the fine cellulose fiber composite produced usually precipitates, which causes the initially transparent aqueous dispersion to become cloudy. Even if a fiber composite is produced, such precipitation and cloudiness may not occur.
- the aqueous dispersion to which the surfactant has been added is dehydrated and concentrated to obtain a fine cellulose fiber composite solid.
- the solid may be a dry powder that does not substantially contain water, or may contain a small amount of water.
- the water content of the solid is preferably 90% by mass or less.
- a method for dehydrating and concentrating the aqueous dispersion for example, filtration, centrifugation, dialysis, drying under reduced pressure, freeze drying, spray drying, heat drying and the like can be used.
- the fine cellulose fiber composite in the aqueous dispersion may be washed with water after the addition of the surfactant and before dehydration and concentration.
- the washing method for example, filtration, centrifugation, dialysis and the like can be used.
- the obtained fine cellulose fiber composite solid is dispersed in a solvent containing an organic solvent. More specifically, a predetermined amount of a solvent containing an organic solvent is added to a solid material as a raw material, and the resultant is processed with a disperser or the like.
- a solvent containing an organic solvent usually only an organic solvent is used, but a mixture of an organic solvent and water can be used as necessary. The mass ratio of the organic solvent to water is as described above.
- the fine cellulose fiber dispersion of the present invention can be produced, for example, by the following method. That is, the method for producing a fine cellulose fiber dispersion of the present invention (second production method) is the above-described method for producing fine cellulose fibers (fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g), that is, natural In a manufacturing method including an oxidation reaction step for oxidizing a cellulose fiber to obtain a reactant fiber, and a refinement step for refining the reactant fiber, before being obtained through the oxidation reaction step and processed in the refinement step After adding a surfactant to a suspension (aqueous dispersion) of the reaction product fiber (oxidized natural cellulose fiber), the suspension was dehydrated and concentrated, and the resulting solid (surfactant) The reaction product fibers adsorbed with the agent are dispersed in a predetermined amount of solvent (organic solvent or water) and refined, and the refined solid (fine cellulose fiber composite) is
- the dispersibility of the fine cellulose fiber composite in the fine cellulose fiber dispersion of the present invention can be evaluated by the transparency and viscosity of the dispersion. The higher the transparency of the fine cellulose fiber dispersion and the higher the viscosity of the fine cellulose fiber dispersion, the higher the dispersibility of the fine cellulose fibers in the dispersion, and the fine cellulose fiber composite in the dispersion It can be evaluated that it is stably dispersed.
- the transparency of the fine cellulose fiber dispersion can be evaluated by light transmittance. It can be evaluated that the larger the numerical value of the light transmittance, the higher the transparency of the dispersion and the more stable dispersion of the fine cellulose fibers.
- the light transmittance of the cellulose fiber dispersion of the present invention is preferably 5 to 99.9%, more preferably 30 to 99.9%, particularly preferably 50 to 99.5.
- the light transmittance of the fine cellulose fiber dispersion is measured at an optical path length of 1 cm and 660 nm using a UV / visible spectroscopic analyzer (U-3310, manufactured by Hitachi High-Technologies Corporation).
- the viscosity of the fine cellulose fiber dispersion of the present invention at a liquid temperature of 23 ° C. is preferably 1 to 10000 mP ⁇ s, more preferably 100 to 1000 mP ⁇ s.
- the viscosity of the fine cellulose fiber dispersion is measured at 23 ° C. and a rotation speed of 5 rpm using an E-type viscometer (VISCONIC, manufactured by TOKIMEC).
- the dispersibility of the fine cellulose fiber composite in the fine cellulose fiber dispersion can be carried out by adjusting the content of various components in the dispersion. For example, when the content of the fine cellulose fiber composite in the fine cellulose fiber dispersion increases, the transparency (light transmittance) of the dispersion decreases, the viscosity increases, and when the content decreases, the dispersion The transparency (light transmittance) increases and the viscosity decreases.
- the fine cellulose fiber dispersion of the present invention is suitable for compounding with a plastic material, and can be used as it is in the state of a dispersion, or the dispersion medium is removed from the dispersion by a drying treatment or the like, followed by drying.
- a powdered fine cellulose fiber composite can be obtained and used.
- the powder form is a powder form in which fine cellulose fiber composites are aggregated, and does not mean cellulose particles.
- the powdered fine cellulose fiber composite examples include a dried product obtained by drying the fine cellulose fiber dispersion as it is; a powder obtained by pulverizing the dried product by mechanical processing; What was pulverized by the method; What pulverized the said fine cellulose fiber dispersion by the well-known freeze-drying method, etc. are mentioned.
- the spray drying method is a method in which the fine cellulose fiber dispersion is sprayed in the air and dried.
- the powdery fine cellulose fiber composite is particularly useful as a filler for a polymer material (resin composite material) such as the composite material of the present invention described later.
- the composite material of the present invention is a mixture of a fine cellulose fiber composite (one obtained by adsorbing a surfactant on fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g) and a resin, It is a resin composite material. That is, the composite material of the present invention has a fine cellulose fiber composite and a resin dispersed substantially uniformly throughout the composite material, and neither component is substantially unevenly distributed. It does not have a body-based layer or a resin-based layer.
- the fine cellulose fiber composite used as the material of the composite material of the present invention may be in the form of a composite dispersion liquid (the fine cellulose fiber dispersion liquid) in which the fine cellulose fiber composite is dispersed in an organic solvent. It may be a form.
- the fine cellulose fiber composite is uniformly dispersed (nanodispersed) in the composite material (resin used together with the fine cellulose fiber composite in the composite material).
- a practically sufficient mechanical strength can be obtained by using a relatively small amount (a content of 10% by mass or less) of the fine cellulose fiber composite.
- the resin used together with the fine cellulose fiber composite in the composite material of the present invention is only required to be moldable.
- the moldable resin refers to a case where an object having a predetermined shape obtained by performing necessary processing on a resin alone or a mixture of resin and other materials can hold the predetermined shape for a certain time or more. , Meaning that resin.
- a resin derived from a fossil resource that can be used for normal plastic molding is included in the “moldable resin”.
- Moldable resin can be made into an object of a predetermined shape through necessary processing (treatment for making the resin into a form different from its original form), and specifically has thermoplasticity.
- the composite material of the present invention can be molded into a thin object such as a film or a sheet, a three-dimensional container such as a box or a bottle, a housing of an information appliance, a body of an automobile, or the like. .
- Examples of the resin used in the composite material of the present invention include a) a polymer derived from biomass and b) a polymer derived from petroleum.
- Biomass-derived polymers are organic polymers obtained from living organisms, excluding fossil resources, and include those having biodegradability as with the fine cellulose fibers.
- Preferred examples of the biomass-derived polymer include thermoplastics such as polylactic acid (PLA), polyglycolic acid, poly (3-hydroxybutanoic acid), biopolyethylene, biopolypropylene, biopolyethylene terephthalate, and biopolycarbonate. Can be mentioned.
- Petroleum-derived polymers are organic polymers obtained from fossil resources, for example, thermoplastic resins such as polystyrene resin, nylon resin, methacrylic resin, acrylonitrile, butadiene, styrene resin; epoxy resin, phenolic resin, Thermosetting resins such as urea resin and polyimide resin are listed. These resins can be used singly or in combination of two or more.
- the content of the fine cellulose fiber composite in the composite material of the present invention can be appropriately set from the viewpoint of the balance between mechanical strength and transparency. In general, from the viewpoint of improving the mechanical strength, it is preferable that the content of the fine cellulose fiber composite is large. However, if the content of the fine cellulose fiber composite is too high, transparency (fine cellulose fiber composite in the composite material) There is a risk that the transparency which the resin contained together with the body originally has is lowered. From this point of view, the content of the fine cellulose fiber composite in the composite material is preferably 0.01 to 60% by mass, more preferably 0.05 to 10% by mass, and particularly preferably the total mass of the composite material. The content is preferably 0.1 to 5% by mass.
- the content of the resin in the composite material of the present invention is preferably 40 to 99.99% by mass with respect to the total mass of the composite material from the viewpoint of imparting high mechanical strength and transparency to the composite material.
- the amount is preferably 90 to 99.95% by mass, particularly preferably 95 to 99.9% by mass.
- the composite material of the present invention may contain other components other than these two components (fine cellulose fiber composite and resin), for example, inorganic materials such as clay minerals, inorganic materials, and metal materials represented by glass and concrete. May be included. These inorganic materials can be used individually by 1 type or in combination of 2 or more types.
- the composite material of the present invention may contain additives such as a softening agent and a crystal nucleating agent.
- the composite material of the present invention can be formed into an arbitrary shape, and is provided as a thin object such as a film or a sheet, a block shape such as a rectangular parallelepiped or a cube, or other three-dimensional shapes.
- a thin composite material is used, the thickness is not particularly limited, but is usually 0.05 to 50 mm.
- the composite material of the present invention (second invention) can be produced by mixing a fine cellulose fiber composite and the resin to obtain a uniform mixture and molding the uniform mixture into an arbitrary shape. That is, the method for producing a composite material of the present invention is a composite dispersion in which a fine cellulose fiber composite is dispersed in an organic solvent or a powdered fine cellulose fiber composite and the resin to obtain a uniform mixture, Forming the uniform mixture into an arbitrary shape.
- the composite dispersion or powdered fine cellulose fiber composite is added to the heated and molten resin, and these are kneaded while the resin is maintained in a molten state, thus
- the composite material of the present invention can be produced by a method of forming the obtained uniform mixture (hereinafter also referred to as a melt kneading method).
- a kneading apparatus for example, a known apparatus such as a single-shaft kneading extruder, a twin-screw kneading extruder, or a pressure kneader can be used.
- thermoplastic resin such as polylactic acid
- the composite dispersion or the powdered fine cellulose fiber composite is added to the molten thermoplastic resin.
- the composite is uniformly dispersed in the thermoplastic resin using a twin-screw kneader to obtain resin pellets, and the resin pellets are heated and compressed to obtain a sheet-like composite material.
- a composite material having a block shape or other three-dimensional shape can be obtained by using a known plastic molding method, specifically, injection molding, casting, extrusion molding, blow molding, stretch molding, foam molding, or the like. it can.
- a casting method involves casting a mixed fluid obtained by dispersing or dissolving the fine cellulose fiber composite and the resin in a solvent onto a substrate, removing the solvent to obtain a film, and if necessary, the film
- a thin film composite material is obtained by subjecting to hot pressing.
- the composite dispersion or the powdered fine cellulose fiber composite is added to the resin dissolved in an organic solvent to obtain a mixed fluid, and a composite material film or A sheet-like material can be obtained.
- the casting method as a method for removing the solvent from the mixed fluid applied on the base material, for example, a liquid-permeable base material (for example, a porous material having a large number of liquid-permeable holes penetrating in the thickness direction).
- a method using a conductive substrate In this method, by applying the mixed fluid on the liquid-permeable substrate, the solvent in the mixed fluid is removed through the porous substrate, and the solid content (fine cellulose fiber composite and resin) is removed. Is scraped onto the porous substrate.
- Another solvent removal method includes a method in which the mixed fluid is cast-coated on a substrate and then the mixed fluid is dried by a drying method such as natural drying or hot air drying.
- the hot pressing performed on the film obtained after removing the solvent can be performed using a known apparatus such as a pressing type or a rotary type using a metal plate, for example.
- the composite material of the present invention (second invention) preferably has sufficient mechanical strength for practical use. More specifically, the composite material of the present invention has a tensile modulus and a tensile yield strength of 1.1 times or more, preferably 1.3 times or more, more preferably 1.5 times, both of the base polymer. That's it.
- the base polymer is the resin used in the present invention together with the fine cellulose fiber composite.
- the composite material obtained by the above-described method has a tensile elastic modulus and a tensile yield strength in the above ranges with respect to the base polymer, respectively, and has a practically sufficient mechanical strength. The tensile modulus and tensile strength are measured by the following methods, respectively.
- Method A Using a tensile compression tester (RTA-500, manufactured by Orientec Co., Ltd.), the tensile modulus and tensile yield strength of the composite material were measured by a tensile test in accordance with JIS K7113. A sample punched out with a No.
- dumbbell was set at a fulcrum distance of 80 mm and measured at a crosshead speed of 10 mm / min.
- Method B Tensile modulus and tensile yield strength of the composite material were measured by a tensile test in accordance with JIS K7113 using a tensile / compression tester (Tensilon UTC-100, manufactured by Oriental Corporation). A sample punched with No. 2 dumbbell was set at a fulcrum distance of 40 mm and measured at a crosshead speed of 50 mm / min.
- the present invention it is possible to provide a highly transparent composite material.
- high mechanical strength can be expressed with a relatively small amount (a content of 5% by mass or less) of a fine cellulose fiber composite.
- a composite material having practically sufficient mechanical strength can be obtained without substantially impairing transparency.
- the high transparency mentioned here means that when the composite material is formed into a sheet having a thickness of about 0.5 mm, the total light transmittance of the sheet-like composite material is 50% or more (preferably 80%). Or a haze value of 50% or less (preferably 30% or less).
- the total light transmittance and haze value of the composite material are measured by the following methods, respectively.
- a suspension of the fine cellulose fiber 1 was produced in the following manner.
- Method for producing fine cellulose fiber 1 Soft cellulose bleached kraft pulp (Fletcher Challenge Canada, CSF 650 ml) is used as the raw natural cellulose fiber, TEMPO (ALDRICH, Free radical, 98%) is used as the oxidation catalyst, and sodium hypochlorite (Japanese) Kobunyaku Kogyo Co., Ltd., Cl: 5%) was used, and sodium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a co-oxidant.
- ion-exchanged water 9900 g is added to 100 g of natural cellulose fibers and sufficiently stirred to obtain a slurry.
- TEMPO 1.25% by mass of pulp
- sodium bromide is 12.5% by mass of pulp
- hypochlorite 28.4% by weight of sodium acid to pulp was added in this order, and the pH of the slurry was maintained at 10.5 by adding 0.5M sodium hydroxide dropwise using a pH stud, and the temperature was 20 to 0.
- Oxidation reaction was performed at ° C. The dropping of sodium hydroxide was stopped after an oxidation time of 120 minutes to obtain reactant fibers (oxidized pulp). The reactant fiber was sufficiently washed with ion-exchanged water and dehydrated.
- the fine cellulose fiber 1 suspension is added to an ethanol solution to be aggregated, and then the aggregate is washed with acetone to obtain powdered (fine particulate) fine cellulose fibers (cellulose nanofiber powder 1). It was.
- the cellulose nanofiber powder 2 was obtained by making the suspension of the said fine cellulose fiber 1 into a fine particle form by the spray-drying method. That is, using a spray-dry (B-290, Nihon BUCHI Co., Ltd.), the cellulose nano-particles from the suspension under the conditions of a nozzle cap diameter of 1.5 mm, an inlet temperature of 200 ° C., an outlet temperature of 96 ° C., and a spray flow of 40 mm Fiber powder 2 was obtained.
- a 1M aqueous hydrochloric acid solution having an amount of 2 chemical equivalents (eq) with respect to the carboxyl groups of the fine cellulose fibers in the suspension is added to the suspension of the fine cellulose fibers 1 and stirred for 60 minutes. After agglomerating, the agglomerate was washed with acetone to obtain a cellulose nanofiber powder 3 in the form of powder (fine particles).
- the carboxyl group of the cellulose constituting the fine cellulose fiber 1 is converted from the sodium salt type to the acid type, and the cellulose nanofiber powder 3 obtained by such an operation has an acid type carboxyl group. (COOH).
- Example A1 Using the cellulose nanofiber powder 1, a sheet-like composite material was produced by the melt kneading method described above, and this was used as a sample of Example A1. Specifically, PLA (NW4032D, manufactured by Nature Works) is used as a moldable polymer material (biomass-derived polymer), and PLA 50 g, using a kneader (labor plast mill, manufactured by Toyo Seiki Co., Ltd.), As a softening agent, 5 g of succinic acid methyltriglycol diester ((MeEO3) 2SA, manufactured by Kao Corporation) was added in succession, and 0.1 g of cellulose nanofiber powder 1 was sequentially added, and kneaded at a rotation speed of 50 rpm and 180 ° C.
- PLA NW4032D, manufactured by Nature Works
- PLA 50 g using a kneader (labor plast mill, manufactured by Toyo Seiki Co., Ltd.)
- Example A2 In Example A1, a sheet-like composite material was produced in the same manner as in Example A1, except that the cellulose nanofiber powder 2 was used instead of the cellulose nanofiber powder 1, and this was used as a sample of Example A2. It was.
- Example A3 In Example A2, the amount of the cellulose nanofiber powder 2 used was changed to 1.0 g, and the content of fine cellulose fibers in the composite material was changed as shown in the table below. A sheet-like composite material was manufactured and used as a sample of Example A3.
- Example A4 In Example A3, 37.5 g of polyethylene, which is a petroleum-derived polymer, was used as the polymer material, and the amount of the cellulose nanofiber powder 2 was changed to 0.8 g, so that fine cellulose fibers in the composite material were used. A sheet-like composite material was produced in the same manner as in Example A3 except that the content of was changed as shown in the following table, and this was used as a sample of Example A4.
- the polyethylene used in Example A4 is a mixture of 30 g of the first polyethylene and 7.5 of the second polyethylene, and the first polyethylene is a product name “Novatech HD HB333RE” manufactured by Nippon Polyethylene Co., Ltd. Yes, the second polyethylene is the product name “ADMER SF730” manufactured by Mitsui Chemicals.
- Example A5 In Example A4, except that the amount of cellulose nanofiber powder 2 used was changed to 2.0 g and the content of fine cellulose fibers in the composite material was changed as shown in the following table, the same as Example A4 A sheet-like composite material was manufactured and used as a sample of Example A5.
- Example A6 In 300 g of a slurry in which 1.5 g of the fine cellulose fiber 1 is dispersed in water, as a polymer material (polymer derived from biomass), softwood bleached kraft pulp (Fletcher Challenge Canada, CSF 650 ml), which is a kind of polysaccharide. ) Is added and stirred for 10 minutes with a mixer (Vita-mix-Blender ABSOLUTE, manufactured by Osaka Chemikel Co., Ltd.) to obtain a homogeneous mixture. The homogeneous mixture is poured onto a tray and allowed to air dry (cast) Method) to produce a sheet-like (film-like) composite material, which was used as a sample of Example A6.
- a polymer material polymer derived from biomass
- softwood bleached kraft pulp Fletcher Challenge Canada, CSF 650 ml
- CSF 650 ml softwood bleached kraft pulp
- a pellet was prepared. Then, 3 g of this pellet and 27 g of polyethylene (product name “Novatech HD HB333RE”, manufactured by Nippon Polyethylene Co., Ltd.), which is another petroleum-derived polymer, were kneaded using a kneader in the same manner as in Example A1. Further, a sheet-like composite material was produced by pressing, and this was used as a sample of Example A7.
- Example A8 0.1 g of the cellulose nanofiber powder 3 is added to 10 g of methyl triglycol diester succinate ((MeEO3) A1010, synthesized with reference to Japanese Patent Application Laid-Open No. 2007-16092) as a softening agent, and the mixture is stirred and translucent. A dispersion was prepared.
- (MeEO3) A1010 synthesized with reference to Japanese Patent Application Laid-Open No. 2007-16092
- the the homogeneous mixture using a pressing machine (Rabopuresu, manufactured by Toyo Seiki (strain)), 180 ° C., a low pressure (5Kg / cm 2) 3 minutes, then 1 minute at high pressure (200 Kg / cm 2), after the hot pressing further 20 ° C., the low pressure (5Kg / cm 2) 3 minutes, 1 minute cooling press at high pressure (200Kg / cm 2), to obtain a sheet-like composite material having a thickness of about 0.4 mm.
- a pressing machine Raabopuresu, manufactured by Toyo Seiki (strain)
- Example A9 In Example A8, except that the amount of cellulose nanofiber powder 3 used was changed to 0.5 g and the content of fine cellulose fibers in the composite material was changed as shown in the table below, the same as Example A8 A sheet-like composite material was manufactured and used as a sample of Example A9.
- Example A10 In Example A8, except that the amount of cellulose nanofiber powder 3 used was changed to 1.0 g and the content of fine cellulose fibers in the composite material was changed as shown in the table below, the same as Example A8 A sheet-like composite material was manufactured and used as a sample of Example A10.
- Comparative Example A1 A sheet-like composite material was produced in the same manner as in Example A1, except that the cellulose nanofiber powder 1 was not added in Example A1, and this was used as a sample of Comparative Example A1.
- the sample of Comparative Example A1 does not contain the fine cellulose fiber and is a molded body mainly composed of the base polymer (PLA) in the composite materials of Examples A1 to A3.
- Example A2 In Example A2, except that microfibril cellulose (Cerish FD-200L, manufactured by Daicel Chemical Industries, Ltd., carboxyl group content 0.05 mmol / g) was used instead of cellulose nanofiber powder 2, Example A2 and Similarly, a sheet-like composite material was produced and used as a sample of Comparative Example A2.
- microfibril cellulose Ceish FD-200L, manufactured by Daicel Chemical Industries, Ltd., carboxyl group content 0.05 mmol / g
- Comparative Example A3 In Comparative Example A2, the amount of the microfibril cellulose was changed, and the content of microfibril cellulose in the composite material was changed as shown in the following table. This was manufactured and used as a sample of Comparative Example A3.
- Example A4 In Example A2, except that microcrystalline cellulose (KC Flock W-200G, manufactured by Nippon Paper Chemicals Co., Ltd., carboxyl group content 0.05 mmol / g) was used instead of the cellulose nanofiber powder 2. A sheet-like composite material was produced in the same manner as A2, and this was used as a sample of Comparative Example A4.
- microcrystalline cellulose KC Flock W-200G, manufactured by Nippon Paper Chemicals Co., Ltd., carboxyl group content 0.05 mmol / g
- Comparative Example A5 In Comparative Example A4, the amount of the microcrystalline cellulose used was changed, and the content of microcrystalline cellulose in the composite material was changed as shown in the following table. This was manufactured as a sample of Comparative Example A5.
- Comparative Example A6 A sheet-like composite material was produced in the same manner as in Example A4 except that the cellulose nanofiber powder 2 was not added in Example A4, and this was used as a sample of Comparative Example A6.
- the sample of Comparative Example A6 does not contain the fine cellulose fiber and is a molded body mainly composed of the base polymer (PE) in the composite materials of Examples A4 and A5.
- Example A7 In Example A6, except that microfibril cellulose (Cerish FD-200L, manufactured by Daicel Chemical Industries, Ltd., carboxyl group content 0.05 mmol / g) was used in place of the fine cellulose fiber 1, the same as Example A6 Thus, a sheet-like composite material was manufactured and used as a sample of Comparative Example A7.
- microfibril cellulose Ceish FD-200L, manufactured by Daicel Chemical Industries, Ltd., carboxyl group content 0.05 mmol / g
- Comparative Example A8 A sheet-like composite material was produced in the same manner as in Example A7 except that the cellulose nanofiber powder 2 was not added in Example A7, and this was used as a sample of Comparative Example A8.
- the sample of Comparative Example A8 does not contain the fine cellulose fiber and is a molded body mainly composed of the base polymer (PE and modified PE) in the composite material of Example A7.
- Comparative Example A9 A sheet-like composite material was produced in the same manner as in Example A8 except that the cellulose nanofiber powder 3 was not added in Example A8, and this was used as a sample of Comparative Example A9.
- the sample of Comparative Example A9 does not contain the fine cellulose fiber, and is a molded body mainly composed of the base polymer (PLA) in the composite materials of Examples A8 to A10.
- the composite materials of Examples A1 to A3, which use PLA, which is a polymer derived from biomass, as the base polymer all have the base elastic modulus and tensile yield strength (comparative example). It was 1.2 times or more with respect to A1), had practically sufficient mechanical strength, had a total light transmittance of 70% or more, and had high transparency. Further, the composite materials of Examples A8 to A10 are those using the fine cellulose fibers having an acid-type carboxyl group, and these also have a very small fine cellulose fiber content of 1% by mass or less, and the base polymer ( The tensile modulus and tensile yield strength were 1.2 times or more that of Comparative Example A9).
- Example A6 which was produced by a casting method using a pulp that is a polysaccharide as a base polymer, was replaced with the fine cellulose fiber in Example A6.
- the composite material of Comparative Example A7 using microfibril cellulose it had high tensile elastic modulus and tensile yield strength and high transparency with a total light transmittance of 70% or more.
- the tensile modulus and tensile yield strength are the base polymer (Comparative Example A6).
- the composite material of Example A7 is prepared in advance by preparing pellets obtained by melt-kneading a petroleum-derived modified resin and the fine cellulose fibers, adding the pellets to a base polymer (PE), performing melt-kneading to form a sheet.
- PE base polymer
- Example B1 The fine cellulose fiber dispersion (the composite dispersion) was produced by the following production method based on the second production method described above, and this was used as the sample of Example B1.
- softwood bleached kraft pulp made by Fletcher Challenge Canada, CSF 650 ml
- TEMPO made by ALDRICH, free radical, 98%)
- sodium hypochlorite is used as an oxidizing agent.
- the reactant fiber thus obtained was separately adjusted to a solid content concentration of 1% by mass with ion-exchanged water to obtain an aqueous dispersion, and 300 g of the aqueous dispersion was mixed with a mixer (Vita-Mix-Blender ABSOLUTE, Osaka).
- the fine cellulose fiber was obtained by refining for 10 minutes using Chemical Co., Ltd., and the average fiber diameter and carboxyl group content of the fine cellulose fiber were measured by the methods described above. The results are shown in Table 1 below.
- the average fiber diameter and carboxyl group content of the fine cellulose fibers thus obtained are substantially the same as the average fiber diameter and carboxyl group content of the fine cellulose fiber composite obtained through the following steps.
- Example B2 Example B1 except that the amount of the fine cellulose fiber composite was changed to 0.2 g in terms of solid content, and the content of the fine cellulose fiber composite in the fine cellulose fiber dispersion was changed as shown in Table 1 below. In the same manner, a fine cellulose fiber dispersion (solid concentration: 1% by mass) was produced, and this was used as the sample of Example B2.
- Example B3 Cellulose fiber dispersion (solid content) in the same manner as in Example B1, except that 6.0 g of 10% tetraethylammonium hydroxide (TEAH, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of TBAH as the surfactant. A concentration of 2% by mass) was produced and used as a sample of Example B3.
- TEAH tetraethylammonium hydroxide
- Example B4 Example B3 except that the amount of the fine cellulose fiber composite was changed to 0.2 g in terms of solid content, and the content of the fine cellulose fiber composite in the fine cellulose fiber dispersion was changed as shown in Table 1 below. Similarly, a fine cellulose fiber dispersion (solid content concentration 1 mass%) was produced, and this was used as a sample of Example B4.
- Example B5 Cellulose fiber dispersion (solid content concentration: 1 mass) in the same manner as in Example B2, except that 3.2 g of Cotamine D86P (manufactured by Kao Corporation, distearyldimethylammonium chloride) was used as the surfactant instead of TBAH. %) And this was used as the sample of Example B5.
- Cotamine D86P manufactured by Kao Corporation, distearyldimethylammonium chloride
- Example B6 The fine cellulose fiber dispersion (the composite dispersion) was produced by the following production method based on the first production method described above, and this was used as the sample of Example B6. That is, the reaction fiber (oxidized pulp) was adjusted to a solid content concentration of 1% by mass with ion-exchanged water to obtain an aqueous dispersion, and 300 g of the aqueous dispersion was mixed with a mixer (Vita-Mix-Blender ABSOLUTE, Osaka Chemical ( Manufactured by Co., Ltd.) for 120 minutes, and the fine cellulose fiber suspension thus obtained was diluted to 5% by mass with ion-exchanged water (Farmin 08D, manufactured by Kao Corporation, octylamine) 80 g of an aqueous solution (adjusted to pH 4.5 with hydrochloric acid) was added and stirred for 24 hours. Thereafter, the mixture was sufficiently washed with ion-exchanged water and ace
- Example B7 A fine cellulose fiber dispersion liquid as in Example B6 except that a mixed solvent of ethanol, DMF, and water (mixing ratio 30/60/10) was used as the dispersion medium instead of the mixed solvent of ethanol and water. (Solid content concentration 0.4% by mass) was produced and used as a sample of Example B7.
- Comparative Example B1 A fine cellulose fiber dispersion was produced in the same manner as in Example B1 except that the surfactant was not added, and this was used as a sample of Comparative Example B1.
- Comparative Example B2 A fine cellulose fiber dispersion was produced in the same manner as in Example B2 except that the surfactant was not added, and this was used as a sample of Comparative Example B2.
- Comparative Example B3 A cellulose fiber dispersion was produced in the same manner as in Comparative Example B1 except that the oxidation reaction step (the step of obtaining the reaction product fiber by oxidizing natural cellulose fibers) was not carried out, and this was used as the sample of Comparative Example B3. .
- the cellulose fibers in the cellulose fiber dispersion are fibers different from the fine cellulose fibers (cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g) (hereinafter, non-fine Also called cellulose fiber).
- Comparative Example B4 A fine cellulose fiber dispersion was produced in the same manner as in Example B6 except that the surfactant was not added, and this was used as a sample of Comparative Example B4.
- Examples B1 to B5 and Comparative Examples B1 to B3 are all cellulose fiber dispersions obtained by a production method based on the second production method described above. As is apparent from the results shown in Table 3, Examples B1 to B5 contain cellulose fiber composites in which a surfactant is adsorbed on fine cellulose fibers having a carboxyl group content of 0.1 to 3 mmol / g. As a result, it was a dispersion of a fine cellulose fiber composite exhibiting high light transmittance (transparency) and viscosity and having good dispersibility.
- Examples B2 and B4 using TBAH (C number 4) and TEAH (C number 2), which are quaternary ammonium compounds, are used as the surfactant. It had high transparency of 50% or more and showed high dispersibility.
- Comparative Examples B1 and B2 have no surfactant added, and Comparative Example B3 has a carboxyl group content of less than 0.1 mmol / g, and both have a light transmittance of 0% and are transparent. The dispersibility was also low. In Comparative Examples B1 to B3, the viscosity could not be measured because all the cellulose fibers formed flocs and were completely separated and non-dispersed.
- Examples B6 and B7 and Comparative Example B4 are all fine cellulose fiber dispersions obtained by a production method based on the first production method described above. As is clear from the results shown in Table 3, in particular, Example B6, in which the dispersion medium is a mixed solvent of ethanol and water, had high light transmittance and high transparency. On the other hand, in Comparative Example B4, since the surfactant is not added, the dispersibility of the fine cellulose fibers is poor, and the fine cellulose fibers aggregate in a dispersion medium (a mixed solvent of ethanol and water). The light transmittance and viscosity of Example B4 were both lower than Example B6.
- Example B8 Using the fine cellulose fiber dispersion of Example B1, a sheet-like composite material was produced by the melt kneading method described above, and this was used as the sample of Example B8. Specifically, PLA (NW4032D, manufactured by Nature Works) is used as the moldable resin, and PLA 50 g, fine cellulose fiber dispersion of Example B1 is used using a kneader (laboroplast mill, manufactured by Toyo Seiki Co., Ltd.). 5 g was sequentially added and kneaded at a rotation speed of 50 rpm and 180 ° C. for 10 minutes to obtain a uniform mixture.
- PLA NW4032D, manufactured by Nature Works
- PLA 50 g fine cellulose fiber dispersion of Example B1 is used using a kneader (laboroplast mill, manufactured by Toyo Seiki Co., Ltd.). 5 g was sequentially added and kneaded at a rotation speed of 50 rpm and 180 ° C. for 10 minutes
- Example B9 A sheet-like composite material was produced in the same manner as in Example B8 except that the fine cellulose fiber dispersion of Example B2 was used instead of the fine cellulose fiber dispersion of Example B1, and this was used as a sample of Example B9. It was.
- Example B10 A sheet-like composite material was produced in the same manner as in Example B8 except that the fine cellulose fiber dispersion of Example B4 was used instead of the fine cellulose fiber dispersion of Example B1, and this was used as a sample of Example B10. It was.
- Example B11 A sheet-like composite material was produced in the same manner as in Example B8 except that the fine cellulose fiber dispersion of Example B5 was used instead of the fine cellulose fiber dispersion of Example B1, and this was used as a sample of Example B11. It was.
- Comparative Example B5 instead of using the fine cellulose fiber dispersion of Example B1, a sheet-like composite was prepared in the same manner as in Example B8, except that the same amount of trimethyl glycol diester succinate (dispersion medium) as the fine cellulose fiber dispersion was used. A material was manufactured and used as a sample for Comparative Example B5. The sample of Comparative Example B5 does not contain a fine cellulose fiber composite, but is a molded body made of only the base polymer (PLA) in the composite materials of Examples B8 to B11.
- PPA base polymer
- Example B12 Using the fine cellulose fiber dispersion of Example B1, a sheet-like composite material was produced by the melt kneading method described above, and this was used as the sample of Example B12. Specifically, PLA (NW4032D, manufactured by Nature Works) is used as the moldable resin, and PLA 50 g, fine cellulose fiber dispersion of Example B1 is used using a kneader (laboroplast mill, manufactured by Toyo Seiki Co., Ltd.).
- PLA NW4032D, manufactured by Nature Works
- PLA 50 g fine cellulose fiber dispersion of Example B1 is used using a kneader (laboroplast mill, manufactured by Toyo Seiki Co., Ltd.).
- Example B13 A fine cellulose fiber dispersion (solid content concentration 3% by mass) was produced in the same manner as in Example B1, except that the amount of the fine cellulose fiber composite used was changed to 0.6 g in terms of solid content.
- a sheet-like composite material was produced in the same manner as in Example B12 except that this fine cellulose fiber dispersion was used instead of the fine cellulose fiber dispersion in Example B1, and this was used as a sample of Example B13.
- Example B14 A fine cellulose fiber dispersion (solid content concentration 5 mass%) was produced in the same manner as in Example B1, except that the amount of the fine cellulose fiber composite used was changed to 1.0 g in terms of solid content.
- a sheet-like composite material was produced in the same manner as in Example B12 except that this fine cellulose fiber dispersion was used instead of the fine cellulose fiber dispersion of Example B1, and this was used as a sample of Example B14. .
- Example B15 The fine cellulose fiber dispersion (the composite dispersion) was produced by the following production method based on the first production method described above.
- softwood bleached kraft pulp made by Fletcher Challenge Canada, CSF 650 ml
- TEMPO made by ALDRICH, free radical, 98%)
- sodium hypochlorite is used as an oxidizing agent.
- the reaction product fiber thus obtained was adjusted to a solid concentration of 1% by mass with ion-exchanged water to obtain an aqueous dispersion, and 300 g of the aqueous dispersion was mixed with a mixer (Vita-Mix-Blender ABSOLUTE, Osaka Chemical Co., Ltd.).
- the fine cellulose fibers were obtained by refining for 120 minutes, and the average fiber diameter and carboxyl group content of the fine cellulose fibers were measured by the methods described above.
- the average fiber diameter of the fine cellulose fibers was 3.1 nm, the average aspect ratio was 240, and the carboxyl group content was 1.2 mmol / g.
- Example B15 Using the fine cellulose fiber dispersion, a sheet-like composite material was produced by the melt kneading method described above, and this was used as a sample of Example B15. Specifically, PLA (NW4032D, manufactured by Nature Works) is used as the moldable resin, and PLA 50 g, fine cellulose fiber dispersion of Example B1 is used using a kneader (laboroplast mill, manufactured by Toyo Seiki Co., Ltd.).
- PLA NW4032D, manufactured by Nature Works
- PLA 50 g fine cellulose fiber dispersion of Example B1 is used using a kneader (laboroplast mill, manufactured by Toyo Seiki Co., Ltd.).
- Example B16 0.4 g of a fine cellulose fiber composite obtained in the same manner as in Example B15 in terms of solid content, methyltriglycol diester succinate ((MeEO3) A1010 as a softening agent (dispersion medium), JP2007- 20 g) is mixed and stirred for 3 minutes with an ultrasonic stirrer (UP200H, manufactured by Hielscher). In this way, a fine cellulose fiber dispersion (solid content concentration 2 mass%) containing the fine cellulose fiber composite and the organic solvent was produced. Using this fine cellulose fiber dispersion, a sheet-like composite material was produced in the same manner as in Example B15, and this was used as a sample of Example B16.
- methyltriglycol diester succinate ((MeEO3) A1010 as a softening agent (dispersion medium)
- UP200H ultrasonic stirrer
- Example B17 10 g of cellulose nanofiber powder 3 in 10 g of methyltriglycol diester succinate ((MeEO3) A1010, synthesized with reference to JP 2007-16092 A) as a softening agent and 10% tetrabutyl as a surfactant 0.3 g of ammonium hydroxide (TBAH, manufactured by Wako Pure Chemical Industries, Ltd.) was added and mixed by stirring to prepare a translucent dispersion.
- (MeEO3) A101010 methyltriglycol diester succinate
- TBAH ammonium hydroxide
- Comparative Example B6 instead of using the fine cellulose fiber dispersion, a sheet-like composite material was produced in the same manner as in Example B12 except that the same amount of trimethyl glycol diester succinate (dispersion medium) as the fine cellulose fiber dispersion was used. This was used as a sample of Comparative Example B6.
- the sample of Comparative Example B6 does not contain a fine cellulose fiber composite, but is a molded body made of only the base polymer (PLA) in the composite materials of Examples B12 to B17.
- Example B6 the composite materials of Examples B12 to B17 are practically used with a tensile modulus and tensile yield strength of 1.1 times or more that of the base polymer (Comparative Example B6).
- it had sufficient mechanical strength had a total light transmittance of 80% or more (and a haze value of 50% or less), and had high transparency.
- Example B15 the content of fine cellulose fibers is 0.1% by mass, and the tensile modulus of elasticity is small although the transparency (total light transmittance, haze value) has hardly changed from Comparative Example B6.
- the mechanical strength was 1.5 times as high as that of Comparative Example B6.
- Example B15 uses a fine cellulose fiber dispersion produced in accordance with the first production method described above (a surfactant is added to the reaction system after the refinement step), whereas Examples B12 to B14 are used. Uses a fine cellulose fiber dispersion produced in accordance with the second production method described above (a surfactant is added to the reaction system before the refinement step). From this difference in production method, it is considered that in Example B15, the dispersibility of the fine cellulose fiber composite in the resin was improved, and high mechanical strength was obtained even though the fine cellulose fiber content was low.
- the composite material of Example B17 contains a fine cellulose fiber composite in which the fine cellulose fibers having acid-type carboxyl groups are treated with a surfactant to adsorb the surfactant. However, the tensile elastic modulus and tensile yield strength were 1.2 times or more with respect to the base polymer (Comparative Example B6) with an extremely small content of fine cellulose fibers of 1% by mass or less.
- the composite material of the present invention (first and second inventions) is used for various daily use packaging films (pouches, pillows), sheets (blister packs), molded members (bottles, caps, spoons, toothbrush handles, etc.) It can be used for deployment, and can be suitably used for applications in which mechanical strength is particularly important (for example, automobiles, information appliances, etc.).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paper (AREA)
Abstract
Description
固形分濃度で0.0001質量%のセルロース繊維に水を加えて分散液を調製し、該分散液を、マイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe (NCH)を使用)を用いて、該観察試料中のセルロース繊維の繊維高さを測定する。そして、セルロース繊維が確認できる顕微鏡画像において、セルロース繊維を5本以上抽出し、それらの繊維高さから平均繊維径を算出する。一般に高等植物から調製されるセルロースナノファイバーの最小単位は6本×6本の分子鎖がほぼ正方形の形でパッキングされていることから、AFMによる画像で分析できる高さを繊維の幅と見なすことができる。
乾燥質量0.5gのセルロース繊維を100mlビーカーにとり、イオン交換水を加えて全体で55mlとし、そこに0.01M塩化ナトリウム水溶液5mlを加えて分散液を調製し、セルロース繊維が十分に分散するまで該分散液を攪拌する。この分散液に0.1M塩酸を加えてpHを2.5~3に調整し、自動滴定装置(AUT-50、東亜ディーケーケー(株)製)を用い、0.05M水酸化ナトリウム水溶液を待ち時間60秒の条件で該分散液に滴下し、1分ごとの電導度及びpHの値を測定し、pH11程度になるまで測定を続け、電導度曲線を得る。この電導度曲線から、水酸化ナトリウム滴定量を求め、次式により、セルロース繊維のカルボキシル基含有量を算出する。
カルボキシル基含有量(mmol/g)=水酸化ナトリウム滴定量×水酸化ナトリウム水溶液濃度(0.05M)/セルロース繊維の質量(0.5g)
平均アスペクト比は、セルロース繊維に水を加えて調製した分散液(セルロース繊維の質量濃度0.005~0.04質量%)の粘度から算出する。分散液の粘度は、レオメーター(MCR、DG42(二重円筒)、PHYSICA社製)を用いて20℃で測定する。分散液のセルロース繊維の質量濃度と分散液の水に対する比粘度との関係から、下記式(1)によりセルロース繊維のアスペクト比を逆算し、これを平均アスペクト比とする。下記式(1)は、The Theory of Polymer Dynamics,M.DOI and D.F.EDWARDS,CLARENDON PRESS・OXFORD,1986,P312に記載の剛直棒状分子の粘度式(8.138)と、Lb2×ρ=M/NAの関係〔式中、Lは繊維長、bは繊維幅(セルロース繊維断面は正方形とする)、ρはセルロース繊維の濃度(kg/m3)、Mは分子量、NAはアボガドロ数を表す〕から導出される。尚、粘度式(8.138)において、剛直棒状分子=セルロース繊維とした。また、下記式(1)中、ηSPは比粘度、πは円周率、lnは自然対数、Pはアスペクト比(L/b)、γ=0.8、ρSは分散媒の密度(kg/m3)、ρ0はセルロース結晶の密度(kg/m3)、Cはセルロースの質量濃度(C=ρ/ρS)を表す。
下記A法又はB法によって測定する。尚、後述する実施例及び比較例のサンプル(複合材料)の引張弾性率及び引張降伏強度の測定において、実施例A1~A5、A7~A10及び比較例A1~A6、A8、A9については下記A法を利用し、実施例A6及び比較例A7については下記B法を利用した。
A法:引張圧縮試験機((株)オリエンテック社製 RTA-500)を用いて、JIS K7113に準拠して、複合材料の引張弾性率及び引張降伏強度をそれぞれ引張試験によって測定した。3号ダンベルで打ち抜いたサンプルを支点間距離80mmでセットし、クロスヘッド速度10mm/minで測定した。
B法:引張圧縮試験機((株)オリエンテック社製 RTA-500)を用いて、複合材料の引張弾性率及び引張降伏強度をそれぞれ引張試験によって測定した。カッターで長さ4cm、幅1cmの短冊状に切り出したサンプルを支点間距離20mmでセットし、クロスヘッド速度10mm/minで測定した。
ヘイズメーターNDH5000(日本電色工業株式会社 製)を用いて、JIS K7361-1に準拠して、複合材料の全光線透過率を測定した。
下記A法又はB法によって測定する。尚、後述する実施例及び比較例のサンプル(複合材料)の引張弾性率及び引張降伏強度の測定において、実施例B1~B11及び比較例B1~B5については下記A法を利用し、実施例B12~B17及び比較例B6については下記B法を利用した。
A法:引張圧縮試験機((株)オリエンテック社製 RTA-500)を用いて、JIS K7113に準拠して、複合材料の引張弾性率及び引張降伏強度をそれぞれ引張試験によって測定した。3号ダンベルで打ち抜いたサンプルを支点間距離80mmでセットし、クロスヘッド速度10mm/minで測定した。
B法:引張圧縮試験機(Orientic Corporation社製 テンシロンUTC-100)を用いて、JIS K7113に準拠して、複合材料の引張弾性率及び引張降伏強度をそれぞれ引張試験によって測定した。2号ダンベルで打ち抜いたサンプルを支点間距離40mmでセットし、クロスヘッド速度50mm/minで測定した。
全光線透過率は、JIS K7361-1に準拠して測定し、ヘイズ値は、JIS K7105に準拠して測定する。これらの測定には市販のヘイズメーターを用いる。尚、後述する実施例及び比較例のサンプル(複合材料)に関し、実施例B1~B11及び比較例B1~B5については、ヘイズメーターとしてNDH5000(日本電色工業株式会社製)を用い、実施例B12~B17及び比較例B6については、ヘイズメーターとしてHM-150(村上色彩技術社製)を用いた。
原料となる天然セルロース繊維として針葉樹晒しクラフトパルプ(フレッチャー チャレンジ カナダ製、CSF650ml)を用い、酸化触媒としてTEMPO(ALDRICH製、Free radical、98%製)を用い、酸化剤として次亜塩素酸ナトリウム(和光純薬工業(株)、Cl:5%製)を用い、共酸化剤として臭化ナトリウム(和光純薬工業(株)製)を用いた。天然セルロース繊維100gにイオン交換水9900gを加えて十分に攪拌してスラリーを得、該スラリーに、TEMPOを対パルプ1.25質量%、臭化ナトリウムを対パルプ12.5質量%、次亜塩素酸ナトリウムを対パルプ28.4質量%、それぞれこの順で添加し、更にpHスタッドを用い、0.5Mの水酸化ナトリウムの滴下にてスラリーのpHを10.5に保持し、温度20~0℃で酸化反応を行った。120分間の酸化時間で水酸化ナトリウムの滴下を停止し、反応物繊維(酸化パルプ)を得た。該反応物繊維をイオン交換水にて十分に洗浄し、脱水処理を行った。次いで、該反応物繊維10g(固形分換算)とイオン交換水990gとをミキサー(大阪ケミケル(株)製、Vita-mix-Blender ABSOLUTE)にて120分間攪拌する(即ち微細化処理時間120分間)。こうして、平均繊維径3.1nm、カルボキシル基含有量1.3mmol/gの微細セルロース繊維1の懸濁液(固形分濃度1.0質量%)を得た。
前記セルロースナノファイバー粉末1を用いて、前述した溶融混練法によりシート状の複合材料を製造し、これを実施例A1のサンプルとした。具体的には、成形可能な高分子材料(バイオマス由来の高分子)としてPLA(NW4032D、Nature works製)を用い、混練機(ラボプラストミル、東洋精機(株)製)を用いて、PLA50g、軟質化剤として、コハク酸メチルトリグリコールジエステル((MeEO3)2SA、花王(株)製)を5g、0.1gのセルロースナノファイバー粉末1を順次添加し、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(ラボプレス、東洋精機(株)製)を用いて、180℃、低圧(5Kg/cm2)3分、その後、高圧(200Kg/cm2)で1分、熱プレス後、さらに20℃、低圧(5Kg/cm2)3分、高圧(200Kg/cm2)で1分冷却プレスし、厚さ約0.5mmのシート状の複合材料を得た。
実施例A1において、前記セルロースナノファイバー粉末1に代えて、前記セルロースナノファイバー粉末2を用いた以外は、実施例A1と同様にしてシート状の複合材料を製造し、これを実施例A2のサンプルとした。
実施例A2において、前記セルロースナノファイバー粉末2の使用量を1.0gに変更して、複合材料における微細セルロース繊維の含有量を下記表のように変更した以外は、実施例A2と同様にしてシート状の複合材料を製造し、これを実施例A3のサンプルとした。
実施例A3において、前記高分子材料として、石油由来の高分子であるポリエチレン37.5gを用い、且つ前記セルロースナノファイバー粉末2の使用量を0.8gに変更して、複合材料における微細セルロース繊維の含有量を下記表のように変更した以外は、実施例A3と同様にしてシート状の複合材料を製造し、これを実施例A4のサンプルとした。実施例A4で用いた前記ポリエチレンは、第1のポリエチレン30gと第2のポリエチレン7.5との混合物であり、第1のポリエチレンは、日本ポリエチレン(株)製の製品名「ノバテックHD HB333RE」であり、第2のポリエチレンは、三井化学(株)製の製品名「ADMER SF730」である。
実施例A4において、前記セルロースナノファイバー粉末2の使用量を2.0gに変更して、複合材料における微細セルロース繊維の含有量を下記表のように変更した以外は、実施例A4と同様にしてシート状の複合材料を製造し、これを実施例A5のサンプルとした。
1.5gの前記微細セルロース繊維1を水に分散させたスラリー300g中に、前記高分子材料(バイオマス由来の高分子)として、多糖類の一種である針葉樹晒しクラフトパルプ(フレッチャー チャレンジ カナダ製、CSF650ml)を3g添加し、ミキサー(大阪ケミケル(株) 製、Vita-mix-Blender ABSOLUTE)にて10分間攪拌して均一混合物を得、該均一混合物をトレー上に注いで、自然乾燥すること(キャスト法)によりシート状(膜状)の複合材料を製造し、これを実施例A6のサンプルとした。
石油由来の高分子(変性樹脂)である変性ポリエチレン(製品名「DH0200」、日本ポリエチレン(株)製)と前記セルロースナノファイバー粉末2とを、前者/後者=90/10の割合で溶融混練しペレットを作製した。そして、このペレット3gと、別の石油由来の高分子であるポリエチレン(製品名「ノバテックHD HB333RE」、日本ポリエチレン(株)製)27gとを、実施例A1と同様に混練機を用いて混練し更にプレスしてシート状の複合材料を製造し、これを実施例A7のサンプルとした。
軟質化剤としてのコハク酸メチルトリグリコールジエステル((MeEO3)A1010、特開2007-16092号公報を参考に合成)10gに前記セルロースナノファイバー粉末3を0.1g添加し、攪拌混合して半透明分散液を調製した。そして、混練機(ラボプラストミル、東洋精機(株)製)を用いて、バイオマス由来の高分子としてPLA(NW4032D、Nature works製)50g、結晶核剤〔スリパックスH(エチレンビス12-ヒドロキシステアリン酸アミド)、日本化成(株)製〕0.15g、前記半透明分散液5gを順次添加し、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(ラボプレス、東洋精機(株)製)を用いて、180℃、低圧(5Kg/cm2)3分、その後、高圧(200Kg/cm2)で1分、熱プレス後、さらに20℃、低圧(5Kg/cm2)3分、高圧(200Kg/cm2)で1分冷却プレスし、厚さ約0.4mmのシート状の複合材料を得た。
実施例A8において、前記セルロースナノファイバー粉末3の使用量を0.5gに変更して、複合材料における微細セルロース繊維の含有量を下記表のように変更した以外は、実施例A8と同様にしてシート状の複合材料を製造し、これを実施例A9のサンプルとした。
実施例A8において、前記セルロースナノファイバー粉末3の使用量を1.0gに変更して、複合材料における微細セルロース繊維の含有量を下記表のように変更した以外は、実施例A8と同様にしてシート状の複合材料を製造し、これを実施例A10のサンプルとした。
実施例A1において、前記セルロースナノファイバー粉末1を未添加とした以外は、実施例A1と同様にしてシート状の複合材料を製造し、これを比較例A1のサンプルとした。比較例A1のサンプルは、前記微細セルロース繊維を含んでおらず、実施例A1~A3の複合材料におけるベースポリマー(PLA)を主体とする成形体である。
実施例A2において、前記セルロースナノファイバー粉末2に代えてミクロフィブリルセルロース(セリッシュFD-200L、ダイセル化学(株)製、カルボキシル基含有量0.05mmol/g)を用いた以外は、実施例A2と同様にしてシート状の複合材料を製造し、これを比較例A2のサンプルとした。
比較例A2において、前記ミクロフィブリルセルロースの使用量を変更して、複合材料におけるミクロフィブリルセルロースの含有量を下記表のように変更した以外は、比較例A2と同様にしてシート状の複合材料を製造し、これを比較例A3のサンプルとした。
実施例A2において、前記セルロースナノファイバー粉末2に代えて微結晶セルロース(KCフロックW-200G、日本製紙ケミカル(株)製、カルボキシル基含有量0.05mmol/g)を用いた以外は、実施例A2と同様にしてシート状の複合材料を製造し、これを比較例A4のサンプルとした。
比較例A4において、前記微結晶セルロースの使用量を変更して、複合材料における微結晶セルロースの含有量を下記表のように変更した以外は、比較例A4と同様にしてシート状の複合材料を製造し、これを比較例A5のサンプルとした。
実施例A4において、前記セルロースナノファイバー粉末2を未添加とした以外は、実施例A4と同様にしてシート状の複合材料を製造し、これを比較例A6のサンプルとした。比較例A6のサンプルは、前記微細セルロース繊維を含んでおらず、実施例A4及びA5の複合材料におけるベースポリマー(PE)を主体とする成形体である。
実施例A6において、前記微細セルロース繊維1に代えてミクロフィブリルセルロース(セリッシュFD-200L、ダイセル化学(株)製、カルボキシル基含有量0.05mmol/g)を用いた以外は、実施例A6と同様にしてシート状の複合材料を製造し、これを比較例A7のサンプルとした。
実施例A7において、前記セルロースナノファイバー粉末2を未添加とした以外は、実施例A7と同様にしてシート状の複合材料を製造し、これを比較例A8のサンプルとした。比較例A8のサンプルは、前記微細セルロース繊維を含んでおらず、実施例A7の複合材料におけるベースポリマー(PE及び変性PE)を主体とする成形体である。
実施例A8において、前記セルロースナノファイバー粉末3を未添加とした以外は、実施例A8と同様にしてシート状の複合材料を製造し、これを比較例A9のサンプルとした。比較例A9のサンプルは、前記微細セルロース繊維を含んでおらず、実施例A8~A10の複合材料におけるベースポリマー(PLA)を主体とする成形体である。
実施例及び比較例のサンプル(複合材料)について、引張弾性率、引張降伏強度、全光線透過率をそれぞれ前記測定方法により測定すると共に、無荷重下における厚みを測定した。これらの結果を下記表1及び2に示す。
前述した第2製造方法に準拠した次の製造方法により、前記微細セルロース繊維分散液(前記複合体分散液)を製造し、これを実施例B1のサンプルとした。即ち、原料となる天然セルロース繊維として針葉樹晒しクラフトパルプ(フレッチャー チャレンジ カナダ 製、CSF650ml)を用い、酸化触媒としてTEMPO(ALDRICH製、Free radical、98%製)を用い、酸化剤として次亜塩素酸ナトリウム(和光純薬工業(株)、Cl:5%製)を用い、共酸化剤として臭化ナトリウム(和光純薬工業(株)製)を用いた。天然セルロース繊維100gにイオン交換水9900gを加えて十分に攪拌してスラリーを得、該スラリーに、TEMPOを対パルプ1.25質量%、臭化ナトリウムを対パルプ14.2質量%、次亜塩素酸ナトリウムを対パルプ28.4質量%、それぞれこの順で添加し、更にpHスタッドを用い、0.5Mの水酸化ナトリウムの滴下にてスラリーのpHを10.5に保持し、温度20℃で酸化反応を行った。120分間の酸化時間で水酸化ナトリウムの滴下を停止し、イオン交換水にて十分に洗浄し、脱水処理を行い、反応物繊維(酸化パルプ)を得た。
微細セルロース繊維複合体の使用量を固形分換算で0.2gに変更して、微細セルロース繊維分散液における微細セルロース繊維複合体の含有量を下記表1のように変更した以外は実施例B1と同様にして微細セルロース繊維分散液(固形分濃度1質量%)を製造し、これを実施例B2のサンプルとした。
界面活性剤として、TBAHに代えて、10%テトラエチルアンモニウムヒドロキシド(TEAH、和光純薬工業(株)製)6.0gを用いた以外は実施例B1と同様にしてセルロース繊維分散液(固形分濃度2質量%)を製造し、これを実施例B3のサンプルとした。
微細セルロース繊維複合体の使用量を固形分換算で0.2gに変更して、微細セルロース繊維分散液における微細セルロース繊維複合体の含有量を下記表1のように変更した以外は実施例B3と同様にして微細セルロース繊維分散液(固形分濃度1質量%)を製造し、これを実施例B4のサンプルとした。
界面活性剤として、TBAHに代えて、コータミンD86P(花王(株)製、ジステアリルジメチルアンモニウムクロライド)3.2gを用いた以外は実施例B2と同様にしてセルロース繊維分散液(固形分濃度1質量%)を製造し、これを実施例B5のサンプルとした。
前述した第1製造方法に準拠した次の製造方法により、前記微細セルロース繊維分散液(前記複合体分散液)を製造し、これを実施例B6のサンプルとした。即ち、前記反応物繊維(酸化パルプ)をイオン交換水にて固形分濃度1質量%に調整して水分散液を得、該水分散液300gをミキサー(Vita-Mix-Blender ABSOLUTE、大阪ケミカル(株)製)にて120分間微細化処理し、そうして得られた微細セルロース繊維懸濁液に、イオン交換水にて5質量%に希釈したファーミン08D(花王(株)製、オクチルアミン)水溶液(塩酸にてpH4.5に調整)を80g添加して、24時間攪拌した。その後、該混合液を遠心分離によってイオン交換水及びアセトンで十分に洗浄して、微細セルロース繊維複合体を得た。
分散媒として、エタノールと水との混合溶媒に代えて、エタノールとDMFと水との混合溶媒(混合比30/60/10)を用いた以外は実施例B6と同様にして微細セルロース繊維分散液(固形分濃度0.4質量%)を製造し、これを実施例B7のサンプルとした。
界面活性剤を未添加とした以外は実施例B1と同様にして微細セルロース繊維分散液を製造し、これを比較例B1のサンプルとした。
界面活性剤を未添加とした以外は実施例B2と同様にして微細セルロース繊維分散液を製造し、これを比較例B2のサンプルとした。
前記酸化反応工程(天然セルロース繊維を酸化して反応物繊維を得る工程)を実施しなかった以外は比較例B1と同様にしてセルロース繊維分散液を製造し、これを比較例B3のサンプルとした。酸化反応工程を実施しないことにより、セルロース繊維分散液中のセルロース繊維は、前記微細セルロース繊維(カルボキシル基含有量0.1~3mmol/gのセルロース繊維)とは異なる繊維である(以下、非微細セルロース繊維ともいう)。
界面活性剤を未添加とした以外は実施例B6と同様にして微細セルロース繊維分散液を製造し、これを比較例B4のサンプルとした。
実施例及び比較例のサンプル(セルロース繊維分散液)について、光線透過率及び粘度をそれぞれ前記測定方法により測定した。これらの結果を下記表3に示す。
実施例B1の微細セルロース繊維分散液を用いて、前述した溶融混練法によりシート状の複合材料を製造し、これを実施例B8のサンプルとした。具体的には、成形可能な樹脂としてPLA(NW4032D、Nature works製)を用い、混練機(ラボプラストミル、東洋精機(株)製)を用いて、PLA50g、実施例B1の微細セルロース繊維分散液5gを順次添加し、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(ラボプレス、東洋精機(株)製)を用いて、180℃、低圧(5Kg/cm2)3分、その後、高圧(200Kg/cm2)で1分、熱プレス後、さらに20℃、低圧(5Kg/cm2)3分、高圧(200Kg/cm2)で1分冷却プレスし、厚さ約0.5mmのシート状の複合材料を製造し、これを実施例B8のサンプルとした。
実施例B1の微細セルロース繊維分散液に代えて、実施例B2の微細セルロース繊維分散液を用いた以外は実施例B8と同様にしてシート状の複合材料を製造し、これを実施例B9のサンプルとした。
実施例B1の微細セルロース繊維分散液に代えて、実施例B4の微細セルロース繊維分散液を用いた以外は実施例B8と同様にしてシート状の複合材料を製造し、これを実施例B10のサンプルとした。
実施例B1の微細セルロース繊維分散液に代えて、実施例B5の微細セルロース繊維分散液を用いた以外は実施例B8と同様にしてシート状の複合材料を製造し、これを実施例B11のサンプルとした。
実施例B1の微細セルロース繊維分散液を用いない代わりに、該微細セルロース繊維分散液と同量のコハク酸トリメチルグリコールジエステル(分散媒)を用いた以外は実施例B8と同様にしてシート状の複合材料を製造し、これを比較例B5のサンプルとした。比較例B5のサンプルは、微細セルロース繊維複合体を含んでおらず、実施例B8~B11の複合材料におけるベースポリマー(PLA)のみからなる成形体である。
実施例及び比較例のサンプル(複合材料)について、引張弾性率、引張降伏強度、全光線透過率をそれぞれ前記測定方法により測定すると共に、無荷重下における厚みを測定した。これらの結果を下記表4に示す。
実施例B1の微細セルロース繊維分散液を用いて、前述した溶融混練法によりシート状の複合材料を製造し、これを実施例B12のサンプルとした。具体的には、成形可能な樹脂としてPLA(NW4032D、Nature works製)を用い、混練機(ラボプラストミル、東洋精機(株)製)を用いて、PLA50g、実施例B1の微細セルロース繊維分散液5g、結晶核剤〔スリパックスH(エチレンビス12-ヒドロキシステアリン酸アミド)、日本化成(株)製〕0.15gを順次添加し、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(ラボプレス、東洋精機(株)製)を用いて、180℃、低圧(5Kg/cm2)3分、その後、高圧(200Kg/cm2)で1分、熱プレス後、さらに80℃、低圧(5Kg/cm2)3分、高圧(200Kg/cm2)で1分冷却プレスし、厚さ約0.5mmのシート状の複合材料を製造し、これを実施例B12のサンプルとした。
微細セルロース繊維複合体の使用量を固形分換算で0.6gに変更した以外は実施例B1と同様にして微細セルロース繊維分散液(固形分濃度3質量%)を製造した。この微細セルロース繊維分散液を、実施例B1の微細セルロース繊維分散液に代えて用いたこと以外は実施例B12と同様にしてシート状の複合材料を製造し、これを実施例B13のサンプルとした。
微細セルロース繊維複合体の使用量を固形分換算で1.0gに変更した以外は実施例B1と同様にして微細セルロース繊維分散液(固形分濃度5質量%)を製造した。この微細セルロース繊維分散液を、実施例B1の微細セルロース繊維分散液に代えて用いたこと以外は実施例B12と同様にしてシート状の複合材料を製造し、これを実施例B14のサンプルとした。
前述した第1製造方法に準拠した次の製造方法により、前記微細セルロース繊維分散液(前記複合体分散液)を製造した。即ち、原料となる天然セルロース繊維として針葉樹晒しクラフトパルプ(フレッチャー チャレンジ カナダ 製、CSF650ml)を用い、酸化触媒としてTEMPO(ALDRICH製、Free radical、98%製)を用い、酸化剤として次亜塩素酸ナトリウム(和光純薬工業(株)、Cl:5%製)を用い、共酸化剤として臭化ナトリウム(和光純薬工業(株)製)を用いた。天然セルロース繊維100gにイオン交換水9900gを加えて十分に攪拌してスラリーを得、該スラリーに、TEMPOを対パルプ1.25質量%、臭化ナトリウムを対パルプ14.2質量%、次亜塩素酸ナトリウムを対パルプ28.4質量%、それぞれこの順で添加し、更にpHスタッドを用い、0.5Mの水酸化ナトリウムの滴下にてスラリーのpHを10.5に保持し、温度20℃で酸化反応を行った。120分間の酸化時間で水酸化ナトリウムの滴下を停止し、イオン交換水にて十分に洗浄し、脱水処理を行い、反応物繊維(酸化パルプ)を得た。
実施例B15と同様にして得られた微細セルロース繊維複合体を固形分換算で0.4gと、軟質化剤(分散媒)としてのコハク酸メチルトリグリコールジエステル((MeEO3)A1010、特開2007-16092号公報を参考に合成)20gとを混合して、超音波攪拌機(UP200H,hielscher社製)にて3分間攪拌する。こうして、微細セルロース繊維複合体及び有機溶媒を含む、微細セルロース繊維分散液(固形分濃度2質量%)を製造した。この微細セルロース繊維分散液を用いて、実施例B15と同様にしてシート状の複合材料を製造し、これを実施例B16のサンプルとした。
軟質化剤としてのコハク酸メチルトリグリコールジエステル((MeEO3)A1010、特開2007-16092号公報を参考に合成)10gに前記セルロースナノファイバー粉末3を0.1g、界面活性剤として10%テトラブチルアンモニウムヒドロキシド(TBAH、和光純薬工業(株)製)を0.3g添加して、攪拌混合して半透明分散液を調製した。そして、混練機(ラボプラストミル、東洋精機(株)製)を用いて、バイオマス由来の高分子としてPLA(NW4032D、Nature works製)50g、結晶核剤〔スリパックスH(エチレンビス12-ヒドロキシステアリン酸アミド)、日本化成(株)製〕0.15g、前記半透明分散液5gを順次添加し、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(ラボプレス、東洋精機(株)製)を用いて、180℃、低圧(5Kg/cm2)3分、その後、高圧(200Kg/cm2)で1分、熱プレス後、さらに20℃、低圧(5Kg/cm2)3分、高圧(200Kg/cm2)で1分冷却プレスし、厚さ約0.4mmのシート状の複合材料を製造し、これを実施例B17のサンプルとした。
微細セルロース繊維分散液を用いない代わりに、該微細セルロース繊維分散液と同量のコハク酸トリメチルグリコールジエステル(分散媒)を用いた以外は実施例B12と同様にしてシート状の複合材料を製造し、これを比較例B6のサンプルとした。比較例B6のサンプルは、微細セルロース繊維複合体を含んでおらず、実施例B12~B17の複合材料におけるベースポリマー(PLA)のみからなる成形体である。
実施例及び比較例のサンプル(複合材料)について、引張弾性率、引張降伏強度、全光線透過率、ヘイズ値をそれぞれ前記測定方法により測定した。これらの結果を下記表5に示す。
Claims (9)
- カルボキシル基含有量0.1~3mmol/gの微細セルロース繊維と、バイオマス由来の高分子及び石油由来の高分子からなる群から選択される、成形可能な高分子材料とが混合された複合材料。
- 前記バイオマス由来の高分子が、ポリ乳酸又はパルプである請求項1記載の複合材料。
- 前記微細セルロース繊維の含有量が0.01~60質量%である請求項1又は2記載の複合材料。
- 請求項1記載の複合材料の製造方法であって、粉末状の前記微細セルロース繊維と前記高分子材料とを混合して均一混合物を得た後、該均一混合物を任意の形状に成形する工程を有する、複合材料の製造方法。
- 粉末状の前記微細セルロース繊維は、前記微細セルロース繊維の水分散液を気中で噴霧し乾燥させて得られたものである、請求項4記載の複合材料の製造方法。
- 前記均一混合物は、溶融状態の前記高分子材料に粉末状の前記微細セルロース繊維を添加し、該高分子材料が溶融状態を維持しているうちにこれらを混錬して得られたものである、請求項4又は5記載の複合材料の製造方法。
- カルボキシル基含有量0.1~3mmol/gの微細セルロース繊維に界面活性剤が吸着してなる微細セルロース繊維複合体と、成形可能な樹脂とが混合された複合材料。
- 前記樹脂がバイオマス由来の高分子である請求項7記載の複合材料。
- 請求項7記載の複合材料の製造方法であって、前記微細セルロース繊維複合体が有機溶媒中に分散した複合体分散液又は粉末状の前記微細セルロース繊維複合体と前記樹脂とを混合して均一混合物を得、該均一混合物を任意の形状に成形する工程を有する、複合材料の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/514,883 US9243128B2 (en) | 2009-12-11 | 2010-12-10 | Composite material |
EP16180517.1A EP3121232B1 (en) | 2009-12-11 | 2010-12-10 | Cellulose composite microfibres |
EP10836075.1A EP2511346B1 (en) | 2009-12-11 | 2010-12-10 | Composite material |
CN201080056140.0A CN102652154B (zh) | 2009-12-11 | 2010-12-10 | 复合材料 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-282226 | 2009-12-11 | ||
JP2009-282227 | 2009-12-11 | ||
JP2009282227 | 2009-12-11 | ||
JP2009282226 | 2009-12-11 | ||
JP2010-262071 | 2010-11-25 | ||
JP2010262071A JP2011140632A (ja) | 2009-12-11 | 2010-11-25 | 複合材料 |
JP2010-269128 | 2010-12-02 | ||
JP2010269128A JP5944098B2 (ja) | 2009-12-11 | 2010-12-02 | 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011071156A1 true WO2011071156A1 (ja) | 2011-06-16 |
Family
ID=46693828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072260 WO2011071156A1 (ja) | 2009-12-11 | 2010-12-10 | 複合材料 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9243128B2 (ja) |
EP (2) | EP2511346B1 (ja) |
CN (1) | CN102652154B (ja) |
WO (1) | WO2011071156A1 (ja) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099770A1 (ja) | 2011-12-28 | 2013-07-04 | 花王株式会社 | ポリエステル樹脂組成物 |
JP2013133363A (ja) * | 2011-12-26 | 2013-07-08 | Marugo Rubber Ind Co Ltd | 重合体組成物の製造方法及び重合体組成物用添加剤の製造方法 |
JP2013248824A (ja) * | 2012-06-01 | 2013-12-12 | Olympus Corp | 成形体およびその製造方法 |
WO2014061485A1 (ja) * | 2012-10-16 | 2014-04-24 | 日本製紙株式会社 | セルロースナノファイバー |
JP2014096335A (ja) * | 2012-11-12 | 2014-05-22 | Hokuetsu Kishu Paper Co Ltd | 電池用セパレータの製造方法及び電池用セパレータ |
US20140336309A1 (en) * | 2011-12-28 | 2014-11-13 | Toyobo Co., Ltd. | Resin composition |
CN104204053A (zh) * | 2012-03-30 | 2014-12-10 | 凸版印刷株式会社 | 发泡体用树脂组合物和发泡体以及壁纸 |
JP2015101694A (ja) * | 2013-11-27 | 2015-06-04 | 凸版印刷株式会社 | セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法 |
TWI491497B (zh) * | 2012-11-12 | 2015-07-11 | Lg Hausys Ltd | 汽車內飾材料用熱塑性樹脂組合物及汽車內飾材料用成型品 |
JP2015196693A (ja) * | 2014-03-31 | 2015-11-09 | 凸版印刷株式会社 | 微細セルロース繊維分散液、及びその製造方法、セルロース積層体 |
WO2015195340A2 (en) | 2014-06-03 | 2015-12-23 | Blake Teipel | Cellulose nanocrystal polymer composite |
JP2016065116A (ja) * | 2014-09-24 | 2016-04-28 | 第一工業製薬株式会社 | セルロースナノファイバー水分散体組成物、それを用いた食品および化粧料。 |
JP5950012B1 (ja) * | 2015-09-17 | 2016-07-13 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物の製造方法 |
WO2016152491A1 (ja) * | 2015-03-26 | 2016-09-29 | 花王株式会社 | 粘性水系組成物 |
JP2017007116A (ja) * | 2015-06-17 | 2017-01-12 | 花王株式会社 | 三次元造形用の光硬化性組成物 |
EP3015600A4 (en) * | 2013-07-26 | 2017-03-01 | Chan-Oh Park | Biodegradable composition using cellulose and preparation method therefor, and waterproof agent and molded product using composition |
JP2017057284A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有組成物 |
WO2017047631A1 (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 組成物、微細繊維状セルロース含有物及び微細繊維状セルロース含有物の製造方法 |
JP6153680B1 (ja) * | 2016-03-18 | 2017-06-28 | スターライト工業株式会社 | 3dプリンタ用造形材料、その製造方法、および三次元造形物 |
JP6153679B1 (ja) * | 2016-02-18 | 2017-06-28 | スターライト工業株式会社 | セルロースナノファイバー分散体、およびセルロースナノファイバー分散体の製造方法 |
JP2017128664A (ja) * | 2016-01-20 | 2017-07-27 | 日本製紙株式会社 | ポリウレタン樹脂組成物、及びその製造方法 |
WO2017141779A1 (ja) * | 2016-02-18 | 2017-08-24 | スターライト工業株式会社 | ナノファイバー分散体、ナノファイバー分散体の製造方法、この分散体から得られる粉末状ナノファイバー、当該粉末状ナノファイバーを含む樹脂組成物、当該樹脂組成物を用いた3dプリンタ用造形材料 |
JP6189559B1 (ja) * | 2016-05-19 | 2017-08-30 | スターライト工業株式会社 | 組成物製造用粉末状セルロースナノファイバー、組成物製造用粉末状セルロースナノファイバーの製造方法、ならびに組成物 |
JP2017171881A (ja) * | 2016-03-18 | 2017-09-28 | スターライト工業株式会社 | 樹脂組成物 |
JP2018104703A (ja) * | 2016-12-27 | 2018-07-05 | 花王株式会社 | 樹脂組成物 |
JP2018166437A (ja) * | 2017-03-29 | 2018-11-01 | 日本製紙株式会社 | 反芻動物用飼料シートの製造方法 |
JP2018188673A (ja) * | 2018-09-05 | 2018-11-29 | 凸版印刷株式会社 | セルロースナノファイバー分散体を用いた膜および分散体の製造方法 |
CN109435650A (zh) * | 2018-11-21 | 2019-03-08 | 宁波精乐汽车部件有限公司 | 一种汽车前门窗框 |
JP2019089870A (ja) * | 2017-11-10 | 2019-06-13 | 国立研究開発法人産業技術総合研究所 | セルロースナノファイバー乾燥紛体の製造方法 |
JP2019119868A (ja) * | 2017-12-27 | 2019-07-22 | 花王株式会社 | 微細セルロース繊維複合体分散液 |
JP2019130920A (ja) * | 2019-05-07 | 2019-08-08 | 花王株式会社 | 三次元造形用の光硬化性組成物 |
JP2020015923A (ja) * | 2019-10-16 | 2020-01-30 | 凸版印刷株式会社 | セルロースナノファイバー分散体、ならびに製造方法及びセルロースナノファイバー |
WO2020045533A1 (ja) * | 2018-08-30 | 2020-03-05 | 王子ホールディングス株式会社 | 繊維状セルロース含有組成物、液状組成物及び成形体 |
WO2020050349A1 (ja) * | 2018-09-06 | 2020-03-12 | 王子ホールディングス株式会社 | 固形状体及び繊維状セルロース含有組成物 |
JP2020132752A (ja) * | 2019-02-19 | 2020-08-31 | Psジャパン株式会社 | スチレン系樹脂組成物および成形品 |
WO2020202712A1 (ja) * | 2019-04-05 | 2020-10-08 | テクノUmg株式会社 | 熱可塑性樹脂組成物 |
JPWO2019163797A1 (ja) * | 2018-02-23 | 2021-03-04 | 王子ホールディングス株式会社 | 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体 |
JP2021188038A (ja) * | 2020-05-28 | 2021-12-13 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | 生分解性ポリエステル樹脂組成物、不織布およびフィルム、並びにその製造方法 |
US11566118B2 (en) | 2016-02-18 | 2023-01-31 | Starlite Co., Ltd. | Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI126978B (fi) * | 2011-06-15 | 2017-09-15 | Upm Kymmene Corp | Menetelmä nanofibrilliselluloosamateriaalin valmistamiseksi sekä nanofibrilliselluloosamateriaali |
EP2759576A4 (en) * | 2011-09-22 | 2015-02-25 | Toppan Printing Co Ltd | CARBON PARTICLE DISPERSION AND PROCESS FOR PRODUCING THE SAME |
US8691893B2 (en) * | 2011-10-07 | 2014-04-08 | Masdar Institute Of Science And Technology | Biodegradable composite materials |
TWI495771B (zh) * | 2012-12-04 | 2015-08-11 | Tai Yuen Textile Co Ltd | 用於複合材料之生質材料的處理方法 |
CA2892749C (en) * | 2012-12-04 | 2021-05-18 | Henkel Ag & Co. Kgaa | Adhesive system for preparing lignocellulosic composites |
KR101361629B1 (ko) * | 2012-12-10 | 2014-02-13 | 한국생산기술연구원 | 카복시메틸 셀룰로오스 습식 부직포의 제조방법 및 그로부터 제조된 카복시메틸 셀룰로오스 습식 부직포의 용도 |
FI126847B (en) | 2012-12-13 | 2017-06-15 | Upm Kymmene Corp | Process for catalytic oxidation of cellulose and process for producing a cellulose product |
CN103319768A (zh) * | 2013-05-10 | 2013-09-25 | 赵静 | 一种聚乙烯纳米复合材料 |
CN103421214A (zh) * | 2013-07-04 | 2013-12-04 | 南京林业大学 | 一种通过c6位氧化制备农作物秸秆增强淀粉塑料的方法 |
FI127002B (en) | 2013-07-29 | 2017-09-15 | Upm Kymmene Corp | Process for catalytic oxidation of cellulose and process for manufacturing cellulose product |
US9649826B2 (en) | 2013-08-15 | 2017-05-16 | Henkel Ag & Co. Kgaa | Adhesive system for preparing lignocellulosic composites |
FI127246B (en) * | 2013-09-02 | 2018-02-15 | Upm Kymmene Corp | Process for the catalytic oxidation of cellulose and process for the manufacture of a cellulose product |
JP5823600B2 (ja) * | 2013-12-26 | 2015-11-25 | 花王株式会社 | 微細セルロース繊維複合体 |
JP5823599B2 (ja) | 2013-12-26 | 2015-11-25 | 花王株式会社 | 微細セルロース繊維複合体 |
CN104231402A (zh) * | 2014-09-26 | 2014-12-24 | 国家纳米科学中心 | 一种纳米纤维素/超高分子量聚乙烯耐磨复合材料、制备方法及其用途 |
JP6786484B2 (ja) * | 2014-10-30 | 2020-11-18 | セルテック アーベー | Cnf多孔性固体材料 |
WO2016068787A1 (en) | 2014-10-30 | 2016-05-06 | Cellutech Ab | Cnf cellular solid material with anionic surfactants |
WO2016135385A1 (en) * | 2015-02-27 | 2016-09-01 | Teknologian Tutkimuskeskus Vtt Oy | Process for producing shaped articles based on cellulose |
US10087580B2 (en) | 2015-05-01 | 2018-10-02 | Fpinnovations | Dry mixed re-dispersible cellulose filament/carrier product and the method of making the same |
EP3348581B1 (en) | 2015-09-07 | 2024-10-23 | Kao Corporation | Modified cellulose fibers |
US10988549B2 (en) * | 2015-12-25 | 2021-04-27 | Nippon Paper Industries Co., Ltd. | Method for producing cellulose nanofiber dry solid |
JP6896997B2 (ja) * | 2016-02-02 | 2021-06-30 | 富士フイルムビジネスイノベーション株式会社 | 樹脂組成物、樹脂成形体、及び樹脂組成物の製造方法 |
JP6819048B2 (ja) * | 2016-02-12 | 2021-01-27 | 凸版印刷株式会社 | 樹脂組成物、ならびに樹脂成形体及びその製造方法 |
EP3439875A4 (en) * | 2016-04-04 | 2019-12-11 | FPInnovations Inc. | COMPOUNDS WITH CELLULOSIC FILAMENTS AND FILLERS AND METHOD FOR THE PRODUCTION THEREOF |
JP6747091B2 (ja) * | 2016-06-23 | 2020-08-26 | 富士ゼロックス株式会社 | 多孔質フィルム、及びその製造方法 |
JP2018024967A (ja) * | 2016-08-09 | 2018-02-15 | 花王株式会社 | 微細セルロース繊維複合体 |
US10662327B2 (en) * | 2016-10-28 | 2020-05-26 | GranBio Intellectual Property Holdings, LLC | Nanocellulose nucleating agents for crystallization of polylactides and other polymers |
US11578142B2 (en) | 2016-12-21 | 2023-02-14 | Nippon Paper Industries Co., Ltd. | Acid type carboxylated cellulose nanofiber |
KR102070374B1 (ko) | 2016-12-28 | 2020-01-29 | 아사히 가세이 가부시키가이샤 | 셀룰로오스 함유 수지 조성물 및 셀룰로오스 제제 |
RU2755823C2 (ru) * | 2017-03-29 | 2021-09-21 | Селлутек Аб | Прозрачная древесина и способ ее получения |
JP6937160B2 (ja) | 2017-05-01 | 2021-09-22 | パナソニック株式会社 | 繊維複合樹脂成形部品 |
DE102017211562B4 (de) | 2017-07-06 | 2021-12-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Beschichtete Cellulosefaser, Verfahren zu deren Herstellung, faserverstärkter Verbundwerkstoff, Verfahren zu dessen Herstellung und dessen Verwendung |
US11331019B2 (en) | 2017-08-07 | 2022-05-17 | The Research Foundation For The State University Of New York | Nanoparticle sensor having a nanofibrous membrane scaffold |
CA3081568C (en) * | 2017-11-14 | 2022-08-09 | Risho Kogyo Co., Ltd. | Microfibrillated cellulose-containing composition, prepreg, molding, and method for producing prepreg |
CA3085779A1 (en) * | 2017-12-15 | 2019-06-20 | University Of Guelph | Biodegradable nanostructured composites |
WO2019135384A1 (ja) | 2018-01-05 | 2019-07-11 | 凸版印刷株式会社 | 複合粒子、複合粒子の製造方法、乾燥粉体、および成型用樹脂組成物 |
JP7264340B2 (ja) | 2018-03-16 | 2023-04-25 | パナソニックホールディングス株式会社 | 繊維複合樹脂組成物の製造方法 |
EP3786231A4 (en) | 2018-04-27 | 2021-06-09 | Toppan Printing Co., Ltd. | DELAYED RELEASE COMPOSITE PARTICLES, METHOD FOR MANUFACTURING DELAYED RELEASE COMPOSITE PARTICLES, DRY POWDER AND WALLPAPER |
JP7303015B2 (ja) * | 2018-06-07 | 2023-07-04 | 日本製紙株式会社 | 樹脂複合体の製造方法、及び変性セルロース繊維 |
JP2021085127A (ja) * | 2019-11-29 | 2021-06-03 | セイコーエプソン株式会社 | 繊維成形物の製造方法及び製造装置、並びに結合素材及びその製造方法 |
WO2022165406A1 (en) * | 2021-02-01 | 2022-08-04 | Felora Hemp Cat Litter | Hemp-based composite material |
CN117042733A (zh) | 2021-03-22 | 2023-11-10 | 宝洁公司 | 包括具有由纸浆基复合材料模塑的部件的施用装置的棉塞产品 |
CN114133716B (zh) * | 2021-11-26 | 2023-03-24 | 苏州博大永旺新材股份有限公司 | 一种纤维素纤维/聚乳酸全降解材料的制备方法 |
WO2024063176A1 (ko) * | 2022-09-21 | 2024-03-28 | 울산대학교 산학협력단 | Pla 기반의 복합플라스틱의 제조방법, 그로부터 제조된 복합플라스틱 및 이를 포함하는 필름 |
CN115960446A (zh) * | 2022-12-27 | 2023-04-14 | 浙江农林大学 | 一种精油/羧基化纳米纤维素/聚乳酸包装膜的制备方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103790A (en) | 1994-03-01 | 2000-08-15 | Elf Atochem S.A. | Cellulose microfibril-reinforced polymers and their applications |
JP2001336084A (ja) | 2000-03-23 | 2001-12-07 | Toppan Printing Co Ltd | 改質パルプ繊維を用いた紙および紙容器 |
JP3423094B2 (ja) | 1995-01-19 | 2003-07-07 | 三井化学株式会社 | 生分解性ポリマー組成物 |
US6824645B2 (en) | 1999-02-24 | 2004-11-30 | Sca Hygiene Products Gmbh | Oxidized cellulose-containing fibrous materials and products made therefrom |
US20050067730A1 (en) | 2001-12-26 | 2005-03-31 | Hiroyuki Yano | High strength material using cellulose micro-fibril |
JP2008001728A (ja) * | 2006-06-20 | 2008-01-10 | Asahi Kasei Corp | 微細セルロース繊維 |
WO2009069641A1 (ja) * | 2007-11-26 | 2009-06-04 | The University Of Tokyo | セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液 |
JP2009197122A (ja) * | 2008-02-21 | 2009-09-03 | Kao Corp | 樹脂組成物 |
JP2009263850A (ja) * | 2008-03-31 | 2009-11-12 | Nippon Paper Industries Co Ltd | 印刷用紙 |
EP2184299A1 (en) | 2007-08-07 | 2010-05-12 | Kao Corporation | Gas barrier material |
WO2010055839A1 (ja) * | 2008-11-13 | 2010-05-20 | 住友ベークライト株式会社 | 複合体組成物および複合体 |
JP2010242063A (ja) * | 2009-03-17 | 2010-10-28 | Kuraray Co Ltd | セルロースナノファイバー複合ポリビニルアルコール系重合体組成物 |
JP2010270315A (ja) * | 2009-04-24 | 2010-12-02 | Sumitomo Bakelite Co Ltd | 複合体組成物 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3634277A1 (de) * | 1986-10-08 | 1988-04-21 | Inst Zellstoff & Papier | Mittel zur verbesserung der bedruckbarkeit von papier und karton |
JPH07118539A (ja) | 1993-10-20 | 1995-05-09 | Denki Kagaku Kogyo Kk | アスファルト組成物 |
JP2000102730A (ja) | 1998-07-31 | 2000-04-11 | Sumitomo Chem Co Ltd | 固体触媒からの触媒成分の溶出抑制方法 |
US6379494B1 (en) * | 1999-03-19 | 2002-04-30 | Weyerhaeuser Company | Method of making carboxylated cellulose fibers and products of the method |
FR2794762B1 (fr) * | 1999-06-14 | 2002-06-21 | Centre Nat Rech Scient | Dispersion de microfibrilles et/ou de microcristaux, notamment de cellulose, dans un solvant organique |
JP2002053670A (ja) | 2000-08-04 | 2002-02-19 | Shigenori Kuga | ポリエチレングリコールでの表面修飾により分散安定化したセルロース微結晶粒子およびその製造法 |
TWI391427B (zh) * | 2005-02-01 | 2013-04-01 | Pioneer Corp | 纖維強化複合材料及其製造方法與用途,以及纖維素纖維集合體 |
JP4040641B2 (ja) | 2005-07-06 | 2008-01-30 | 花王株式会社 | エステル化合物の製造法 |
JP2009052016A (ja) | 2007-07-27 | 2009-03-12 | Fujifilm Corp | 組成物、成形体とその製造方法、およびフィルムとその製造方法 |
JP5108587B2 (ja) | 2007-12-11 | 2012-12-26 | 花王株式会社 | セルロース分散液の製造方法 |
JP5376808B2 (ja) | 2008-01-25 | 2013-12-25 | Dic株式会社 | 透明導電性フィルムの製造方法、透明導電性フィルム及びタッチパネル |
JP4927015B2 (ja) | 2008-03-31 | 2012-05-09 | 花王株式会社 | 繊維製品用張り付与剤組成物 |
JP2011047084A (ja) | 2009-08-28 | 2011-03-10 | Sumitomo Bakelite Co Ltd | 有機化繊維、樹脂組成物及びその製造方法 |
-
2010
- 2010-12-10 WO PCT/JP2010/072260 patent/WO2011071156A1/ja active Application Filing
- 2010-12-10 EP EP10836075.1A patent/EP2511346B1/en active Active
- 2010-12-10 EP EP16180517.1A patent/EP3121232B1/en active Active
- 2010-12-10 CN CN201080056140.0A patent/CN102652154B/zh active Active
- 2010-12-10 US US13/514,883 patent/US9243128B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103790A (en) | 1994-03-01 | 2000-08-15 | Elf Atochem S.A. | Cellulose microfibril-reinforced polymers and their applications |
JP3423094B2 (ja) | 1995-01-19 | 2003-07-07 | 三井化学株式会社 | 生分解性ポリマー組成物 |
US6824645B2 (en) | 1999-02-24 | 2004-11-30 | Sca Hygiene Products Gmbh | Oxidized cellulose-containing fibrous materials and products made therefrom |
JP2001336084A (ja) | 2000-03-23 | 2001-12-07 | Toppan Printing Co Ltd | 改質パルプ繊維を用いた紙および紙容器 |
US20050067730A1 (en) | 2001-12-26 | 2005-03-31 | Hiroyuki Yano | High strength material using cellulose micro-fibril |
JP2008001728A (ja) * | 2006-06-20 | 2008-01-10 | Asahi Kasei Corp | 微細セルロース繊維 |
EP2184299A1 (en) | 2007-08-07 | 2010-05-12 | Kao Corporation | Gas barrier material |
WO2009069641A1 (ja) * | 2007-11-26 | 2009-06-04 | The University Of Tokyo | セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液 |
JP2009197122A (ja) * | 2008-02-21 | 2009-09-03 | Kao Corp | 樹脂組成物 |
JP2009263850A (ja) * | 2008-03-31 | 2009-11-12 | Nippon Paper Industries Co Ltd | 印刷用紙 |
WO2010055839A1 (ja) * | 2008-11-13 | 2010-05-20 | 住友ベークライト株式会社 | 複合体組成物および複合体 |
JP2010242063A (ja) * | 2009-03-17 | 2010-10-28 | Kuraray Co Ltd | セルロースナノファイバー複合ポリビニルアルコール系重合体組成物 |
JP2010270315A (ja) * | 2009-04-24 | 2010-12-02 | Sumitomo Bakelite Co Ltd | 複合体組成物 |
Non-Patent Citations (5)
Title |
---|
C. BONINI, ET AL.,: "Langmuir", vol. 18, no. 08, 2002 |
L. HEUX, ET AL.,: "Langmuir", vol. 16, no. 21, 2000 |
L. PETERSSON, COMPOSITES SCIENCE AND TECHNOLOGY, 2007, pages 67 |
M. DOI; S.F. EDWARDS: "The Theory of Polymer Dynamics", 1986, CLARENDON PRESS, pages: 312 |
See also references of EP2511346A4 |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013133363A (ja) * | 2011-12-26 | 2013-07-08 | Marugo Rubber Ind Co Ltd | 重合体組成物の製造方法及び重合体組成物用添加剤の製造方法 |
US10093798B2 (en) | 2011-12-28 | 2018-10-09 | Kao Corporation | Polyester resin composition |
CN107043430A (zh) * | 2011-12-28 | 2017-08-15 | 花王株式会社 | 聚酯树脂组合物 |
WO2013099770A1 (ja) | 2011-12-28 | 2013-07-04 | 花王株式会社 | ポリエステル樹脂組成物 |
CN107043430B (zh) * | 2011-12-28 | 2019-12-10 | 花王株式会社 | 聚酯树脂组合物 |
EP2799491A4 (en) * | 2011-12-28 | 2015-08-19 | Kao Corp | POLYESTER RESIN COMPOSITION |
CN104024334A (zh) * | 2011-12-28 | 2014-09-03 | 花王株式会社 | 聚酯树脂组合物 |
US20140336309A1 (en) * | 2011-12-28 | 2014-11-13 | Toyobo Co., Ltd. | Resin composition |
CN104204053A (zh) * | 2012-03-30 | 2014-12-10 | 凸版印刷株式会社 | 发泡体用树脂组合物和发泡体以及壁纸 |
US9951193B2 (en) | 2012-03-30 | 2018-04-24 | Toppan Printing Co., Ltd. | Resin foam composition and foam, and wallpaper |
US11161953B2 (en) | 2012-03-30 | 2021-11-02 | Toppan Printing Co., Ltd. | Resin foam composition and foam, and wallpaper |
JP2013248824A (ja) * | 2012-06-01 | 2013-12-12 | Olympus Corp | 成形体およびその製造方法 |
JP5544053B1 (ja) * | 2012-10-16 | 2014-07-09 | 日本製紙株式会社 | セルロースナノファイバー |
WO2014061485A1 (ja) * | 2012-10-16 | 2014-04-24 | 日本製紙株式会社 | セルロースナノファイバー |
TWI491497B (zh) * | 2012-11-12 | 2015-07-11 | Lg Hausys Ltd | 汽車內飾材料用熱塑性樹脂組合物及汽車內飾材料用成型品 |
JP2014096335A (ja) * | 2012-11-12 | 2014-05-22 | Hokuetsu Kishu Paper Co Ltd | 電池用セパレータの製造方法及び電池用セパレータ |
US9670355B2 (en) | 2012-11-12 | 2017-06-06 | Lg Hausys, Ltd. | Thermoplastic resin composition for use as vehicle interior material, and formed product for use as vehicle interior material |
EP3015600A4 (en) * | 2013-07-26 | 2017-03-01 | Chan-Oh Park | Biodegradable composition using cellulose and preparation method therefor, and waterproof agent and molded product using composition |
JP2015101694A (ja) * | 2013-11-27 | 2015-06-04 | 凸版印刷株式会社 | セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法 |
JP2015196693A (ja) * | 2014-03-31 | 2015-11-09 | 凸版印刷株式会社 | 微細セルロース繊維分散液、及びその製造方法、セルロース積層体 |
EP3152026A4 (en) * | 2014-06-03 | 2017-08-30 | Blake Teipel | Cellulose nanocrystal polymer composite |
WO2015195340A2 (en) | 2014-06-03 | 2015-12-23 | Blake Teipel | Cellulose nanocrystal polymer composite |
JP2016065116A (ja) * | 2014-09-24 | 2016-04-28 | 第一工業製薬株式会社 | セルロースナノファイバー水分散体組成物、それを用いた食品および化粧料。 |
WO2016152491A1 (ja) * | 2015-03-26 | 2016-09-29 | 花王株式会社 | 粘性水系組成物 |
JP2016183329A (ja) * | 2015-03-26 | 2016-10-20 | 花王株式会社 | 粘性水系組成物 |
US10961425B2 (en) | 2015-03-26 | 2021-03-30 | Kao Corporation | Viscous water-based composition |
JP2017007116A (ja) * | 2015-06-17 | 2017-01-12 | 花王株式会社 | 三次元造形用の光硬化性組成物 |
JP2017057285A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物の製造方法 |
KR102078098B1 (ko) * | 2015-09-17 | 2020-02-17 | 오지 홀딩스 가부시키가이샤 | 조성물, 미세 섬유상 셀룰로오스 함유물 및 미세 섬유상 셀룰로오스 함유물의 제조 방법 |
KR20180050740A (ko) * | 2015-09-17 | 2018-05-15 | 오지 홀딩스 가부시키가이샤 | 조성물, 미세 섬유상 셀룰로오스 함유물 및 미세 섬유상 셀룰로오스 함유물의 제조 방법 |
WO2017047631A1 (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 組成物、微細繊維状セルロース含有物及び微細繊維状セルロース含有物の製造方法 |
JP5950012B1 (ja) * | 2015-09-17 | 2016-07-13 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有物の製造方法 |
JP2017057284A (ja) * | 2015-09-17 | 2017-03-23 | 王子ホールディングス株式会社 | 微細繊維状セルロース含有組成物 |
US10676869B2 (en) | 2015-09-17 | 2020-06-09 | Oji Holdings Corporation | Composition, material comprising ultrafine cellulose fibers, and method for producing material comprising ultrafine cellulose fibers |
JP2017128664A (ja) * | 2016-01-20 | 2017-07-27 | 日本製紙株式会社 | ポリウレタン樹脂組成物、及びその製造方法 |
US11566118B2 (en) | 2016-02-18 | 2023-01-31 | Starlite Co., Ltd. | Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition |
JP2017145391A (ja) * | 2016-02-18 | 2017-08-24 | スターライト工業株式会社 | セルロースナノファイバー分散体、およびセルロースナノファイバー分散体の製造方法 |
WO2017141779A1 (ja) * | 2016-02-18 | 2017-08-24 | スターライト工業株式会社 | ナノファイバー分散体、ナノファイバー分散体の製造方法、この分散体から得られる粉末状ナノファイバー、当該粉末状ナノファイバーを含む樹脂組成物、当該樹脂組成物を用いた3dプリンタ用造形材料 |
JP6153679B1 (ja) * | 2016-02-18 | 2017-06-28 | スターライト工業株式会社 | セルロースナノファイバー分散体、およびセルロースナノファイバー分散体の製造方法 |
JP2017170881A (ja) * | 2016-03-18 | 2017-09-28 | スターライト工業株式会社 | 3dプリンタ用造形材料、その製造方法、および三次元造形物 |
JP6153680B1 (ja) * | 2016-03-18 | 2017-06-28 | スターライト工業株式会社 | 3dプリンタ用造形材料、その製造方法、および三次元造形物 |
JP2017171881A (ja) * | 2016-03-18 | 2017-09-28 | スターライト工業株式会社 | 樹脂組成物 |
JP2017210596A (ja) * | 2016-05-19 | 2017-11-30 | スターライト工業株式会社 | 組成物製造用粉末状セルロースナノファイバー、組成物製造用粉末状セルロースナノファイバーの製造方法、ならびに組成物 |
JP6189559B1 (ja) * | 2016-05-19 | 2017-08-30 | スターライト工業株式会社 | 組成物製造用粉末状セルロースナノファイバー、組成物製造用粉末状セルロースナノファイバーの製造方法、ならびに組成物 |
WO2018123985A1 (ja) * | 2016-12-27 | 2018-07-05 | 花王株式会社 | 樹脂組成物 |
KR20190095491A (ko) * | 2016-12-27 | 2019-08-14 | 카오카부시키가이샤 | 수지 조성물 |
KR102248327B1 (ko) * | 2016-12-27 | 2021-05-04 | 카오카부시키가이샤 | 수지 조성물 |
JP2018104703A (ja) * | 2016-12-27 | 2018-07-05 | 花王株式会社 | 樹脂組成物 |
JP7223498B2 (ja) | 2016-12-27 | 2023-02-16 | 花王株式会社 | 樹脂組成物 |
JP2018166437A (ja) * | 2017-03-29 | 2018-11-01 | 日本製紙株式会社 | 反芻動物用飼料シートの製造方法 |
JP2019089870A (ja) * | 2017-11-10 | 2019-06-13 | 国立研究開発法人産業技術総合研究所 | セルロースナノファイバー乾燥紛体の製造方法 |
JP2019119868A (ja) * | 2017-12-27 | 2019-07-22 | 花王株式会社 | 微細セルロース繊維複合体分散液 |
JPWO2019163797A1 (ja) * | 2018-02-23 | 2021-03-04 | 王子ホールディングス株式会社 | 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体 |
JP7290147B2 (ja) | 2018-02-23 | 2023-06-13 | 王子ホールディングス株式会社 | 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体 |
JP7351305B2 (ja) | 2018-08-30 | 2023-09-27 | 王子ホールディングス株式会社 | 繊維状セルロース含有組成物、液状組成物及び成形体 |
JPWO2020045533A1 (ja) * | 2018-08-30 | 2021-08-12 | 王子ホールディングス株式会社 | 繊維状セルロース含有組成物、液状組成物及び成形体 |
WO2020045533A1 (ja) * | 2018-08-30 | 2020-03-05 | 王子ホールディングス株式会社 | 繊維状セルロース含有組成物、液状組成物及び成形体 |
JP2018188673A (ja) * | 2018-09-05 | 2018-11-29 | 凸版印刷株式会社 | セルロースナノファイバー分散体を用いた膜および分散体の製造方法 |
WO2020050349A1 (ja) * | 2018-09-06 | 2020-03-12 | 王子ホールディングス株式会社 | 固形状体及び繊維状セルロース含有組成物 |
JPWO2020050349A1 (ja) * | 2018-09-06 | 2021-08-30 | 王子ホールディングス株式会社 | 固形状体及び繊維状セルロース含有組成物 |
CN109435650A (zh) * | 2018-11-21 | 2019-03-08 | 宁波精乐汽车部件有限公司 | 一种汽车前门窗框 |
JP2020132752A (ja) * | 2019-02-19 | 2020-08-31 | Psジャパン株式会社 | スチレン系樹脂組成物および成形品 |
JP7338984B2 (ja) | 2019-02-19 | 2023-09-05 | Psジャパン株式会社 | スチレン系樹脂組成物および成形品 |
JP2020169307A (ja) * | 2019-04-05 | 2020-10-15 | テクノUmg株式会社 | 熱可塑性樹脂組成物 |
WO2020202712A1 (ja) * | 2019-04-05 | 2020-10-08 | テクノUmg株式会社 | 熱可塑性樹脂組成物 |
JP2019130920A (ja) * | 2019-05-07 | 2019-08-08 | 花王株式会社 | 三次元造形用の光硬化性組成物 |
JP7103327B2 (ja) | 2019-10-16 | 2022-07-20 | 凸版印刷株式会社 | セルロースナノファイバー分散体、ならびに製造方法及びセルロースナノファイバー |
JP2020015923A (ja) * | 2019-10-16 | 2020-01-30 | 凸版印刷株式会社 | セルロースナノファイバー分散体、ならびに製造方法及びセルロースナノファイバー |
JP2021188038A (ja) * | 2020-05-28 | 2021-12-13 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | 生分解性ポリエステル樹脂組成物、不織布およびフィルム、並びにその製造方法 |
JP7282124B2 (ja) | 2020-05-28 | 2023-05-26 | エコバンス カンパニー・リミテッド | 生分解性ポリエステル樹脂組成物、不織布およびフィルム、並びにその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9243128B2 (en) | 2016-01-26 |
EP3121232A1 (en) | 2017-01-25 |
EP2511346A1 (en) | 2012-10-17 |
US20120283363A1 (en) | 2012-11-08 |
CN102652154B (zh) | 2016-08-24 |
EP2511346A4 (en) | 2013-04-17 |
CN102652154A (zh) | 2012-08-29 |
EP2511346B1 (en) | 2016-09-07 |
EP3121232B1 (en) | 2022-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6453431B2 (ja) | 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料 | |
WO2011071156A1 (ja) | 複合材料 | |
JP2011140632A (ja) | 複合材料 | |
Yang et al. | Surface and interface engineering for nanocellulosic advanced materials | |
Ji et al. | Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid | |
El Achaby et al. | Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites | |
JP5940933B2 (ja) | 樹脂組成物 | |
Zeng et al. | Chitin whiskers: An overview | |
Miao et al. | Cellulose reinforced polymer composites and nanocomposites: a critical review | |
Fujisawa et al. | Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials | |
Lavoine et al. | Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review | |
JP4998981B2 (ja) | 微細セルロース繊維 | |
JP5843463B2 (ja) | 繊維状物 | |
Orasugh et al. | Nanofiber-reinforced biocomposites | |
WO2011065371A1 (ja) | 膜状体及びその製造方法並びに該膜状体の形成用水性分散液 | |
Zhang et al. | Separation cellulose nanocrystals from microcrystalline cellulose using hydrated deep eutectic solvent and high shear force | |
CA2829156A1 (en) | Process for preparing micro- and nanocrystalline cellulose | |
Samzadeh-Kermani et al. | Synthesis and characterization of new biodegradable chitosan/polyvinyl alcohol/cellulose nanocomposite | |
JP5665487B2 (ja) | 膜状体及びその製造方法 | |
Ofem et al. | Properties of chitin reinforces composites: a review | |
Paakkonen et al. | Sustainable high yield route to cellulose nanocrystals from bacterial cellulose | |
Indarti et al. | Polylactic Acid Bionanocomposites Filled with Nanocrystalline Cellulose from TEMPO-Oxidized Oil Palm Lignocellulosic Biomass. | |
Jose et al. | Adhesion and surface issues in biocomposites and bionanocomposites: a critical review | |
Zailuddin et al. | Effects of formic acid treatment on properties of oil palm empty fruit bunch (OPEFB)-Based all cellulose composite (ACC) films | |
JP2012097236A (ja) | ガスバリア性膜状体の形成用水性分散液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080056140.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10836075 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010836075 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010836075 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13514883 Country of ref document: US |