WO2011055440A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2011055440A1 WO2011055440A1 PCT/JP2009/068930 JP2009068930W WO2011055440A1 WO 2011055440 A1 WO2011055440 A1 WO 2011055440A1 JP 2009068930 W JP2009068930 W JP 2009068930W WO 2011055440 A1 WO2011055440 A1 WO 2011055440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical adjustment
- layer
- adjustment layer
- refractive index
- organic
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 230
- 239000010410 layer Substances 0.000 claims description 282
- 239000011241 protective layer Substances 0.000 claims description 57
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 150000002894 organic compounds Chemical class 0.000 claims description 13
- 230000010363 phase shift Effects 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000007789 sealing Methods 0.000 abstract description 16
- 238000005401 electroluminescence Methods 0.000 abstract 7
- 239000010408 film Substances 0.000 description 53
- 239000000463 material Substances 0.000 description 14
- 239000010409 thin film Substances 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
Definitions
- the present invention relates to a display device and aims to improve the luminous efficiency.
- the organic EL element is configured by laminating a first electrode disposed on the substrate side, an organic compound layer including a light emitting layer, and a second electrode. Improvement of luminous efficiency is mentioned as a subject of organic EL element. With respect to this problem, in Patent Document 1, high efficiency is achieved by laminating the organic capping layer on the top of the organic EL element.
- the organic EL element is easily corroded or oxidized by the reaction with moisture and oxygen in the air, it is necessary to seal it.
- this sealing mode a mode in which dry air is filled and a seal cap is used for sealing, and a mode in which the organic EL element is covered with a protective layer that is not permeable to moisture or oxygen.
- the organic EL element is covered with silicon nitride oxide (SiON) / organic material / silicon nitride oxide (SiON) as a protective layer.
- An object of the present invention is to provide a display device in which the light emission efficiency is improved in the case of adopting a form of sealing with a protective layer.
- the present invention has a plurality of organic EL elements sequentially having an organic compound layer having a first electrode, a light emitting layer, and a second electrode, and a protective layer covering the plurality of organic EL elements
- the organic EL element is a display device including an organic EL element emitting blue light, an organic EL element emitting green light, and an organic EL element emitting red light, and the second electrode and the protective layer Between the first optical adjustment layer in contact with the second electrode and the second optical adjustment layer in contact with the first optical adjustment layer, and the first optical adjustment layer and the second optical adjustment layer
- the optical adjustment layer has a refractive index different from each other, is disposed at a common film thickness across the plurality of organic EL elements, and each film thickness is from the light emitting layer of the blue organic EL element In the emitted light, at the interface between the second electrode and the first optical adjustment layer It is reflected by the interface at the side of the protective layer of the phase at the time of being irradiated, the phase at the time of being
- FIG. 1 (a) is a schematic cross-sectional view of a display device of the present invention.
- the display device includes, on a substrate 1, an organic EL element 11 that emits blue light, an organic EL element 12 that emits green light, and an organic EL element 13 that emits red light.
- Each organic EL element has a first electrode 2, an organic compound layer 3 having a light emitting layer, and a second electrode 4 in order.
- the protective layer 6 is arrange
- the partition 7 is arrange
- optical adjustment layer 5 is disposed between the second electrode 4 and the protective layer 6 stacked in the direction perpendicular to the substrate 1.
- the optical adjustment layer 5 is composed of a plurality of layers, and adjacent layers have different refractive indices. This configuration is found by comparison of the following sealing modes.
- the effect of the film thickness of the organic capping layer on the light emission efficiency is small. This is because the difference in refractive index between the organic capping layer and the protective layer is small, so the reflectance at the interface is small, and the optical interference effect in which blue light is reinforced within the organic capping layer can not be sufficiently obtained.
- the approximate refractive index of each material is about 1.8 for the organic capping layer (Alq 3 ), 1.0 for the dry air (air), and about 1.8 for the protective layer (SiN).
- the refractive index of the protective layer changes to about 1.6 to 2.1 depending on the material, film forming method, film forming conditions and film forming atmosphere, but the refractive index difference between the organic capping layer and the protective layer And the refractive index difference between
- an optical adjustment layer composed of a plurality of layers in which the refractive indexes of adjacent layers are different is used.
- a plurality of reflecting surfaces are formed in the optical adjustment layer, and the light emission efficiency is improved by utilizing the optical interference between the reflected light on the reflecting surface and the light emitted from the light emitting layer in the organic EL element. be able to.
- the difference in refractive index between adjacent layers is preferably 0.2 or more.
- the optical adjustment layer 5 and the protective layer 6 are disposed at a common film thickness across the plurality of organic EL elements (the organic EL element 11, the organic EL element 12, and the organic EL element 13). With this configuration, it is not necessary to perform patterning for each color emitted by the organic EL element, and the process is simplified.
- the film thickness of each layer constituting the optical adjustment layer 5 is set to increase the reflectance of blue (wavelength band of 400 nm to 500 nm). Specifically, light emitted in the light emitting layer of the organic EL element emitting blue light is reflected at the interface of each layer constituting the optical adjustment layer 5, the interface of the optical adjustment layer 5 and the second electrode 4, etc. By making the phase in the same phase, the total reflectance in the optical adjustment layer is increased. In addition, that two phases are the same means that two phase differences are ⁇ / 4 or less.
- the optical adjustment layer 5 As one reason for setting the optical adjustment layer 5 to increase the reflectance of light in the blue wavelength band, there is a current situation in which development as a light emitting material emitting blue light is less advanced than light emitting materials of other colors. Therefore, blue has a relatively low luminous efficiency with respect to red and green, for which development of phosphorescent materials is in progress. Furthermore, since the lifetime of the blue light emitting material is relatively short compared to that of other colors, the light extraction efficiency is improved by utilizing the optical interference by the optical adjustment layer, and the blue light current is reduced. It also leads to the improvement of the life of the light emitting material.
- FIG. 3 is a diagram showing wavelength dispersion of reflectance at an Ag thin film of 10 nm. As can be seen from this figure, the reflectance on the short wavelength side is smaller than that on the long wavelength side. Therefore, the interference effect of the organic EL element emitting blue light is reduced, and it is considered that the light extraction efficiency is relatively smaller than that of the other colors.
- the metal thin film with a film thickness of 5 nm or more and 20 nm or less is generally limited to an Ag thin film or a metal thin film containing Ag because the reflectance is lower toward the shorter wavelength side. Do not mean.
- the optical distance L between the reflective surface of the first electrode 2 and the reflective surface of the second electrode 4 is designed to satisfy the following equation 1.
- ⁇ is the maximum peak wavelength of the spectrum of light extracted from the organic EL element
- ⁇ is the amount of phase shift on the reflective surface of the first electrode 2 and the amount of phase shift on the reflective surface of the second electrode 4
- N is a natural number.
- the organic EL element satisfying the formula 1 ′ is referred to as an organic EL element having a resonator structure.
- the thickness of the organic layer in accordance with each emission spectrum.
- the optical distance L satisfy the range from the value satisfying Expression 1 to ⁇ ⁇ / 16.
- the substrate 1 is an insulating substrate on which switching elements (not shown) such as TFTs are formed, and is made of glass, plastic or the like.
- the first electrode 2 can use a metal layer formed of a single metal such as Al, Cr, or Ag, or an alloy thereof. Furthermore, a transparent oxide conductive layer such as a compound layer of indium oxide and tin oxide or a compound layer of indium oxide and zinc oxide can be stacked on the metal layer.
- a transparent oxide conductive layer such as a compound layer of indium oxide and tin oxide or a compound layer of indium oxide and zinc oxide can be stacked on the metal layer.
- the reflective surface of the first electrode 2 is an interface between the metal layer (first electrode 2) and the organic compound layer 3.
- the first electrode 2 is formed of two layers of a metal layer and a transparent oxide conductive layer
- the reflective surface of the first electrode 2 is an interface between the metal layer and the transparent oxide conductive layer.
- the film thickness of the first electrode 2 is preferably 50 nm or more and 200 nm or less.
- transparent means having a light transmittance of 50% or more in the visible light range (wavelength 400 nm to 780
- the organic compound layer 3 has at least a light emitting layer, and may optionally have a charge transport layer such as a hole transport layer or an electron transport layer, and further may have a hole blocking layer or the like. Good.
- a well-known material can be used for each layer, and well-known film-forming methods, such as vapor deposition and transfer, can be used for the film-forming method.
- the second electrode 4 is a transparent oxide conductive layer such as a compound layer of indium oxide and tin oxide, a compound layer of indium oxide and zinc oxide, a metal thin film made of a single metal such as Al, Cr, Ag, etc. or an alloy thereof. It can be used. In particular, a metal thin film containing Ag is preferable as the second electrode 4 because the absorptivity is low and the specific resistance is also low. When a metal thin film is used as the second electrode 4, the film thickness is preferably 5 nm or more and 20 nm or less.
- the reflective surface of the second electrode 4 is an interface between the metal layer (second electrode 4) and the organic compound layer 3.
- the reflective surface on the first electrode 2 is an interface between the transparent oxide conductive layer and the optical adjustment layer 5.
- the protective layer 6 may be made of known materials and film formation methods. As an example, a method of forming silicon nitride (SiN) with a CVD apparatus can be mentioned. Titanium oxide can also be used.
- the film thickness of the protective layer 6 is generally on the order of microns in order to obtain sealing performance, and is a film thickness in which the optical interference effect is not effective.
- the optical adjustment layer 5 is not particularly limited, and may be either an organic material or an inorganic material.
- SiO 2 , TiO 2 , LiF, MgF 2 , CF x , and the same material as one forming the organic compound layer 3 can be mentioned.
- a larger refractive index difference (a refractive index difference of 0.2 or more) between adjacent optical adjustment layers is preferable for performing optical adjustment because the reflectance is increased.
- the equation of the reflectance R at the interface when light is incident on the medium of refractive index n B from the medium of refractive index n A is expressed by equation 2.
- R (n A ⁇ n B ) 2 / (n A + n B ) 2 ⁇ Formula 2
- the optical adjustment layer preferably has a configuration in which a high refractive index layer (refractive index is greater than 1.7) and a low refractive index layer (refractive index is 1.7 or less) are alternately stacked.
- the refractive index of the layer in the optical adjustment layer in contact with the protective layer 6 is preferably larger than the refractive index of the protective layer 6, and the refractive index difference is preferably 0.5 or more.
- FIG. 1 (b) is a more detailed cross-sectional view of one organic EL element.
- This organic EL element has a first electrode 2, an organic compound layer 3 including a light emitting layer 31, and a second electrode 4 in order from the substrate 1.
- the optical adjustment layer 5 and the protective layer 6 are disposed on the second electrode 4.
- the optical adjustment layer 5 and the protective layer 6 are disposed at a common film thickness over the plurality of organic EL elements.
- the optical adjustment layer 5 includes a first optical adjustment layer 51 in contact with the second electrode 4 and a second optical adjustment layer 52 in contact with the first optical adjustment layer 51; A third optical adjustment layer in contact with the second optical adjustment layer 52 and the protective layer 6 is provided.
- the first optical adjustment layer 51, the second optical adjustment layer 52, and the third optical adjustment layer 53 are disposed across a plurality of organic EL elements with a common film thickness.
- the first optical adjustment layer 51 and the second optical adjustment layer 52 have different refractive indexes, and the second optical adjustment layer 52 and the third optical adjustment layer 53 have different refractive indexes. doing.
- the difference in refractive index between the first optical adjustment layer 51 and the second optical adjustment layer 52 is preferably 0.2 or more.
- the difference in refractive index between the second optical adjustment layer 52 and the third optical adjustment layer 53 is preferably 0.2 or more. Further, it is desirable that the refractive indexes of the first optical adjustment layer 51 and the third optical adjustment layer 53 be greater than 1.5, and the second optical adjustment layer 52 be 1.5 or less. With the above-described configuration of refractive index, each layer of the optical adjustment layer can form a reflection surface having a higher reflectance than the optical adjustment layer or between the optical adjustment layer and the protective layer. desirable.
- the optical adjustment layer 5 is preferable because it is easy to increase the reflectance if the low refractive index layer (refractive index is 1.5 or less) and the high refractive index layer (refractive index is 1.7 or more) are alternately laminated.
- the thicknesses d 2 and d 3 of the second optical adjustment layer 52 and the third optical adjustment layer 53 satisfy Equations 3 and 4, respectively, in consideration of the phase shift amount of reflection and transmission at the interface.
- ⁇ is the maximum peak wavelength of the spectrum of light extracted from the organic EL element emitting blue light
- n 2 and n 3 are the refractive index of the second optical adjustment layer at the maximum peak wavelength ⁇
- the third optical It is the refractive index of the adjustment layer.
- M 2 and m 3 are natural numbers.
- the maximum peak wavelength of the light extracted from the blue organic EL element depends on the light emitting material, but is about 430 nm to 480 nm.
- d 2 (2 m 2 ⁇ 1) ⁇ / 4 n 2 Equation 3
- d 3 (2 m 3 -1) ⁇ / 4 n 3 Equation 4
- the film thicknesses d 2 and d 3 of the optical adjustment layer 52 and the third optical adjustment layer 54 may be set to satisfy Formula 3 'and Formula 4', respectively.
- the film thicknesses d 2 and d 3 be in a range deviated by about ⁇ ⁇ / 16 from the values satisfying the expressions 3 and 4.
- the film thickness of the first optical adjustment layer 51 may be set to a film thickness that allows the reflection at the interface between the first optical adjustment layer 51 and the second optical adjustment layer 52 to function properly. More specifically, from the interface of the first optical adjustment layer 51 to the second optical adjustment layer 52 to the light emitting point in the light emitting layer 31
- the optical distance t 1 of should satisfy Equation 5.
- ⁇ 1 is a phase shift amount when light emitted from the organic EL element emitting blue light is reflected at the interface between the first optical adjustment layer 51 and the second optical adjustment layer 52
- m 1 is a natural number It is.
- the light emission point is the maximum point in the light emission distribution in the present invention.
- the optical distance t 1 should satisfy the equation 5 ′. . (4m 1 ⁇ 2 ⁇ 1 / ⁇ 1) ⁇ / 8 ⁇ t 1 ⁇ (4m 1 ⁇ 2 ⁇ 1 / ⁇ + 1) ⁇ / 8 equation 5 ′
- the film thickness d 1 of the first optical adjustment layer satisfies the following Expression 6.
- ⁇ is the maximum peak wavelength of the spectrum of light extracted from the organic EL element emitting blue light
- n 1 is the refractive index of the first optical adjustment layer 51 at the maximum peak wavelength ⁇ .
- the film thickness d 1 of the first optical adjustment layer 51 satisfies the equation 6 ′
- the film thickness d 1 should fall within a range of about ⁇ ⁇ / 16 from the value satisfying the equation 6.
- the film thickness d 1 of the first optical adjustment layer 51 and the thickness d 2 of the second optical adjustment layer 52 satisfies each formula 6 'and the formula 3' and the following can be said. That is, the phase when light generated in the light emitting layer of the blue organic EL element is reflected at the interface between the second electrode 4 and the first optical adjusting layer 51, and the first optical adjusting layer 51 and the second optical adjusting layer 51.
- the film thickness d 3 of the third optical adjustment layer 53 satisfies the formula 4 ′, the light generated in the light emitting layer of the blue organic EL element and directed to the protective layer side is reflected at each interface described above And the phase when reflected at the interface between the third optical adjustment layer 53 and the protective layer 6. For this reason, the luminous efficiency of the blue organic EL element is further improved.
- the phase shift amount ⁇ 1 is determined by the magnitude of the refractive index of the first optical adjustment layer 51 and the second optical adjustment layer 52. That is, when the first optical adjustment layer 51 has a larger refractive index than the second optical adjustment layer 52, the phase shift amount phi 1 is [pi, if the opposite, the phase shift amount phi 1 is zero It is.
- the film thickness of each layer of the optical adjustment layer satisfies the above equation
- the light is reflected at the interface of each layer, the interface between the optical adjustment layer and the second electrode, the interface between the optical adjustment layer and the protective layer, etc. Phase can be the same.
- the optical distance t 1 to the interface of the second optical adjustment layer 52 may be about 230 nm.
- the interface between the second electrode 4 and the first optical adjustment layer 51 from the light emitting point (here, the interface at the side of the first electrode 2 of the light emitting layer 31).
- the optical distance of the first optical adjustment layer 51 is preferably about 108 nm.
- the film thickness is about 60 nm in order to set the optical distance to about 108 nm. This film thickness is a film thickness which satisfies Expression 6 ′.
- the relationship between the film thickness of the first optical adjustment layer 51 and the light emission efficiency is shown in FIG. 4A, but the film thickness of the first optical adjustment layer 51 is 60 nm, and the maximum value of the light emission efficiency is 4.10 cd / It turns out that A comes out. This is 1.24 times the luminous efficiency in the case of one organic capping layer.
- Table 2 compares the efficiency of red, green and blue organic EL elements and the amount of current at the time of displaying white by causing each color to emit light as Comparative Example 1 in the case of one organic capping layer as compared with this embodiment. It is. In the present embodiment, the interference on the short wavelength side is stronger than that of Comparative Example 1, so the efficiency of the blue organic EL element is increased, and the total amount of current of the organic EL elements of each color when displaying white is small. Power consumption can be expected.
- FIG. 1C shows a cross-sectional view of one organic EL element of the display device used in the present embodiment.
- the configuration of the optical adjustment layer 5 is different from that of Embodiment 1, and the other configurations are the same.
- the optical adjustment layer 5 of the present embodiment the optical adjustment layer 5 includes the first optical adjustment layer 51 in contact with the second electrode 4 and the second optical adjustment layer 52 in contact with the first optical adjustment layer 51.
- the second optical adjustment layer 52 is in contact with the protective layer 6.
- the first optical adjustment layer 51 and the second optical adjustment layer 52 are disposed across a plurality of organic EL elements with a common film thickness, respectively.
- the first optical adjustment layer 51 and the second optical adjustment layer 52 have different refractive indexes.
- the difference in refractive index between the first optical adjustment layer 51 and the second optical adjustment layer 52 is preferably 0.2 or more. Further, it is desirable that the refractive index of the first optical adjustment layer 51 be 1.5 or less, and the second optical adjustment layer 52 be larger than 1.5. With these configurations, it is possible to configure a reflective surface having a larger reflectance, between the optical adjustment layer or between the optical adjustment layer and the protective layer.
- the film thicknesses of the first optical adjustment layer 51 and the second optical adjustment layer 52 may be selected so as to satisfy Formula 6 or Formula 6 ', Formula 3 or Formula 3', respectively. Then, the phase when light generated in the light emitting layer of the blue organic EL element and directed to the protective layer side is reflected at the interface between the second electrode 4 and the first optical adjustment layer 51, and the first optical adjustment The phases when reflected at the interface between the layer 51 and the second optical adjustment layer 52 will be aligned.
- the light that is generated in the light emitting layer of this phase and blue organic EL element and travels to the protective layer side is the interface between the second optical adjusting layer 52 and the protective layer 6 (the protective layer side of the second optical adjusting layer 52 And the phase when reflected at the As a result, as described in the first embodiment, the reflectance of the entire optical adjustment layer is improved, and the light emission efficiency of the organic EL element emitting blue light is improved.
- the film thickness of the first optical adjustment layer 51 is adjusted so as to increase the light emission efficiency
- MgF 2 and TiO 2 are used as materials of the first optical adjustment layer 51 and the second optical adjustment layer 52, respectively, and SiN is used for the protective layer 6.
- the refractive indices of the optical adjustment layer and the protective layer at a wavelength of 460 nm are shown in Table 3.
- the optical distance t 1 from the light emitting point to the interface between the first optical adjustment layer 51 and the second optical adjustment layer 52 that satisfies Expression 5 is about 115 nm, It may be about 345 nm.
- the optical distance from the light emitting point to the interface between the second electrode 4 and the first optical adjustment layer 51 is about 122 nm.
- the optical distance is preferably about -7 nm and about 223 nm. Since the refractive index of the first optical adjustment layer 51 in the present embodiment is 1.4, the film thickness is about ⁇ 5 nm and about 178 nm.
- the relationship between the film thickness of the first optical adjustment layer 51 and the light emission efficiency is shown in FIG. 4B, but the film thickness of the first optical adjustment layer 51 is about 170 nm and the maximum of the light emission efficiency is 4.05 cd. It turns out that / A comes out. Also in the present embodiment, the efficiency of the blue organic EL element is higher than that of Comparative Example 1, and the total amount of current of the organic EL elements of respective colors when displaying white is small, and low power consumption can be expected.
- the emission efficiency has a maximum value at 170 nm in FIG. It is considered to be the reason.
- the first optical adjustment layer 51 is thin at 30 nm or less, high luminous efficiency is obtained.
- the reason why the light emission efficiency is large at a thin portion where the first optical adjustment layer 51 is 30 nm or less is considered to be because the first optical adjustment layer 51 has a maximum value in the vicinity of ⁇ 5 nm.
- the film thickness is preferably 10 nm or more and 30 nm or less.
- the layer is not a uniform layer, and the film thickness may be uneven. That is, a difference occurs in the function of improving the luminous efficiency by the optical adjustment layer between elements of the same color.
- Table 4 shows the comparison of luminous efficiency of the organic EL element emitting blue light according to the present invention.
- Comparative Example 1 is the case where an organic capping layer was inserted between the protective layer and the organic EL element, and is the configuration shown in Table 5.
- Comparative Example 2 is the case where the protective layer is present immediately above the second electrode of the organic EL element, and is the configuration shown in Table 5. It is apparent that the blue luminous efficiency is increased by the present invention. The unit is [cd / A].
- the present invention is also effective in bottom emission.
- the glass substrate disposed on the light extraction side corresponds to the protective layer in the present invention.
- the protective layer is described as SiN, but a known protective layer material can be used without being limited to SiN.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
2L/λ+θ/2π=N ・・・式1
(4N-2θ/π-1)λ/8<L<(4N-2θ/π+1)λ/8・・・式1’
より好ましくは、光学距離Lが式1を満たす値から±λ/16の範囲を満たすことが好ましい。
R=(nA-nB)2/(nA+nB)2 ・・・式2
以下、実施形態1について、図1(b)を用いて説明する。図1(b)は、1つの有機EL素子のより詳細な断面図である。この有機EL素子は、第1の電極2と、発光層31を含む有機化合物層3と、第2の電極4とを基板1から順に有している。そして、第2の電極4の上には光学調整層5と保護層6が配置されている。光学調整層5と保護層6は、複数の有機EL素子にわたって、それぞれ共通の膜厚で配置されている。
d2=(2m2-1)λ/4n2 ・・・式3
d3=(2m3-1)λ/4n3 ・・・式4
(4m2-3)λ/(8n2)<d2<(4m2-1)λ/(8n2) ・・・式3’
(4m3-3)λ/(8n3)<d3<(4m3-1)λ/(8n3) ・・・式4’
より好ましくは、膜厚d2、d3が式3、式4を満たす値から±λ/16程度ずれた範囲内にあることが好ましい。
2t1/λ+φ1/2π=m1・・・式5
(4m1-2φ1/π-1)λ/8<t1<(4m1-2φ1/π+1)λ/8・・・式5’
2n1d1/λ+φ1/2π=m1・・・式6
(4m1-2φ1/π-1)λ/(8n1)<d1<(4m1-2φ1/π+1)λ/(8n1) ・・・式6’
より好ましくは、膜厚d1が式6を満たす値から±λ/16程度ずれた範囲に収まるのがよい。
図1(c)に、本実施形態に用いる表示装置の1つの有機EL素子についての断面図が示されている。実施形態1とは、光学調整層5の構成が異なっており、他の構成は同じである。本実施形態の光学調整層5は、光学調整層5は、第2の電極4に接する第1の光学調整層51と、第1の光学調整層51と接する第2の光学調整層52とで構成され、第2の光学調整層52は保護層6と接している。また、第1の光学調整層51と第2の光学調整層52は、それぞれ共通の膜厚で複数の有機EL素子に渡って配置されている。また、第1の光学調整層51と第2の光学調整層52とは互いに異なる屈折率を有している。また、第1の光学調整層51と第2の光学調整層52との屈折率差に関して0.2以上あると好適である。また、第1の光学調整層51の屈折率は1.5以下で、第2の光学調整層52は1.5より大きいことが望ましい。これらの構成によって、光学調整層間、あるいは光学調整層と保護層との間で、より大きい反射率を有する反射面を構成するようできる。
3 有機化合物層
4 第2の電極
6 保護層
51 第1の光学調整層
52 第2の光学調整層
Claims (13)
- 第1の電極と発光層を有する有機化合物層と第2の電極とを順に有する複数の有機EL素子と、前記複数の有機EL素子を覆う保護層と、を有し、前記複数の有機EL素子は、青色を発光する有機EL素子と、緑色を発光する有機EL素子と、赤色を発光する有機EL素子とを含む表示装置であって、
前記第2の電極と前記保護層との間に、前記第2の電極に接する第1の光学調整層と、前記第1の光学調整層と接する第2の光学調整層とを有し、
前記第1の光学調整層と前記第2の光学調整層は、互いに異なる屈折率を有し、前記複数の有機EL素子に渡ってそれぞれ共通の膜厚で配置され、かつ、それぞれの膜厚は、前記青色の有機EL素子の発光層から発する光において、前記第2の電極と前記第1の光学調整層の界面で反射される際の位相と、前記第1の光学調整層と前記第2の光学調整層の界面で反射される際の位相と、前記第2の光学調整層の前記保護層側の界面で反射される際の位相とが同じになる膜厚であることを特徴とする表示装置。 - 前記第1の光学調整層の膜厚d1は、前記青色を発光する有機EL素子から取り出される光のスペクトルの最大ピーク波長λ、前記最大ピーク波長λにおける前記第1の光学調整層の屈折率n1、前記青色を発光する有機EL素子から取り出される光が前記第1の光学調整層と前記第2の光学調整層との界面で反射される際の位相シフト量φ1、自然数m1に対して、
(4m1-2φ1/π-1)λ/(8n1)<d1<(4m1-2φ1/π+1)λ/(8n1)
を満たし、前記第2の光学調整層の膜厚d2は、前記最大ピーク波長λ、前記最大ピーク波長λにおける前記第2の光学調整層の屈折率n2、自然数m2に対して、
(4m2-1)λ/(8n2)<d2<(4m2+1)λ/(8n2)
を満たすことを特徴とする請求項1に記載の表示装置。 - 前記第2の電極は、膜厚5nm以上20nm以下の金属からなる電極であることを特徴とする請求項1又は2に記載の表示装置。
- 前記第2の電極は、Agを含むことを特徴とする請求項3に記載の表示装置。
- 前記第2の光学調整層は、前記保護層と接し、前記第2の光学調整層の屈折率は、前記保護層の屈折率よりも大きいことを特徴とする請求項1乃至4のいずれか1項に記載の表示装置。
- 前記第2の光学調整層の屈折率と前記保護層の屈折率の差は1.0以上であることを特徴とする請求項5に記載の表示装置。
- 前記第1の光学調整層の屈折率は1.5より大きく、前記第2の光学調整層の屈折率は1.5以下であることを特徴とする請求項1乃至6のいずれか1項に記載の表示装置。
- 前記第2の光学調整層と前記保護層とに接する第3の光学調整層を有し、前記第3の光学調整層は、前記第2の光学調整層とは屈折率が異なり、前記第3の光学調整層の膜厚d3は、前記最大ピーク波長λ、前記最大ピーク波長λにおける前記第3の光学調整層の屈折率n3、自然数m3に対して、
(4m3-1)λ/(8n3)<d3<(4m3+1)λ/(8n3)
を満たすことを特徴とする請求項1乃至7のいずれか1項に記載の表示装置。 - 前記第3の光学調整層の屈折率は、前記保護層よりも大きいことを特徴とする請求項8に記載の表示装置。
- 前記第3の光学調整層の屈折率と前記保護層の屈折率との差は1.0以上であることを特徴とする請求項9に記載の表示装置。
- 前記第1の光学調整層の屈折率は1.5以下であり、前記第2の光学調整層の屈折率は1.5より大きく、前記第3の光学調整層の屈折率は1.5以下であることを特徴とする請求項8乃至10のいずれか1項に記載の表示装置。
- 前記第1の光学調整層の屈折率と前記第2の光学調整層の屈折率の差は、0.2以上であることを特徴とする請求項1乃至11のいずれか1項に記載の表示装置。
- 前記第2の光学調整層の屈折率と前記第3の光学調整層の屈折率の差は、0.2以上であることを特徴とする請求項8乃至12のいずれか1項に記載の表示装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127013255A KR101405143B1 (ko) | 2009-11-05 | 2009-11-05 | 표시장치 |
CN200980162215.0A CN102598864B (zh) | 2009-11-05 | 2009-11-05 | 显示装置 |
PCT/JP2009/068930 WO2011055440A1 (ja) | 2009-11-05 | 2009-11-05 | 表示装置 |
JP2011539225A JPWO2011055440A1 (ja) | 2009-11-05 | 2009-11-05 | 表示装置 |
US12/914,671 US8482195B2 (en) | 2009-11-05 | 2010-10-28 | Display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/068930 WO2011055440A1 (ja) | 2009-11-05 | 2009-11-05 | 表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011055440A1 true WO2011055440A1 (ja) | 2011-05-12 |
Family
ID=43924652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068930 WO2011055440A1 (ja) | 2009-11-05 | 2009-11-05 | 表示装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8482195B2 (ja) |
JP (1) | JPWO2011055440A1 (ja) |
KR (1) | KR101405143B1 (ja) |
CN (1) | CN102598864B (ja) |
WO (1) | WO2011055440A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013157278A (ja) * | 2012-01-31 | 2013-08-15 | Canon Inc | 発光装置、画像形成装置及び撮像装置 |
JP2013179248A (ja) * | 2011-08-12 | 2013-09-09 | Canon Inc | 有機el素子、及びこれを用いた発光装置、画像形成装置、表示装置、撮像装置 |
JP2014207356A (ja) * | 2013-04-15 | 2014-10-30 | キヤノン株式会社 | 有機el素子、画像形成装置、表示装置及び撮像装置 |
US9806296B2 (en) | 2014-10-24 | 2017-10-31 | Samsung Display Co., Ltd. | Organic light emitting diode device |
JP2018073761A (ja) * | 2016-11-04 | 2018-05-10 | パイオニア株式会社 | 発光装置 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101574130B1 (ko) * | 2008-09-01 | 2015-12-04 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
JP5676949B2 (ja) * | 2010-07-21 | 2015-02-25 | キヤノン株式会社 | 有機el表示装置 |
JP2012054225A (ja) * | 2010-08-04 | 2012-03-15 | Canon Inc | 表示装置 |
DE102011084437A1 (de) * | 2011-10-13 | 2013-04-18 | Osram Opto Semiconductors Gmbh | Lichtemittierendes Bauelement und Verfahren zum Herstellen eines lichtemittierenden Bauelements |
JP2013118173A (ja) * | 2011-10-31 | 2013-06-13 | Canon Inc | 表示装置 |
DE102013110024B9 (de) | 2013-09-12 | 2023-11-09 | Pictiva Displays International Limited | Strahlungsemittierendes Bauelement mit organischem Schichtenstapel |
CN103915571A (zh) * | 2014-01-27 | 2014-07-09 | 上海天马有机发光显示技术有限公司 | 一种amoled显示面板及膜层制作方法、显示装置 |
CN104157793A (zh) * | 2014-08-19 | 2014-11-19 | 上海和辉光电有限公司 | Oled发光器件及其制备方法 |
KR101620092B1 (ko) * | 2014-11-06 | 2016-05-13 | 삼성디스플레이 주식회사 | 유기 발광 소자 및 그 제조방법 |
KR20160065318A (ko) * | 2014-11-28 | 2016-06-09 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 |
JP6533437B2 (ja) * | 2015-09-08 | 2019-06-19 | マクセルホールディングス株式会社 | 透明遮熱断熱部材及びその製造方法 |
JP6656720B2 (ja) * | 2016-01-07 | 2020-03-04 | 株式会社ジャパンディスプレイ | 電極の作製方法、および電極を備える表示装置の作製方法 |
GB201601055D0 (en) * | 2016-01-20 | 2016-03-02 | Cambridge Display Tech Ltd | Cathode layer stack for semi-transparent OPV devices |
CN107093371B (zh) * | 2016-02-18 | 2019-09-24 | 蓝思科技(长沙)有限公司 | 一种显示器件及其制备方法 |
CN107845731A (zh) * | 2016-09-19 | 2018-03-27 | 上海和辉光电有限公司 | 一种有机发光器件及其制造方法 |
JP6807726B2 (ja) * | 2016-12-16 | 2021-01-06 | 株式会社ジャパンディスプレイ | 有機el表示装置 |
US11985846B2 (en) | 2020-05-13 | 2024-05-14 | Samsung Display Co., Ltd. | Display device including stacked capping layers |
CN112952024A (zh) * | 2021-03-17 | 2021-06-11 | 京东方科技集团股份有限公司 | 有机电致发光器件及显示面板 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003151761A (ja) * | 2001-11-14 | 2003-05-23 | Osaka Industrial Promotion Organization | 有機el素子を含む発光素子およびそれを用いた光インターコネクション装置 |
JP2005158374A (ja) * | 2003-11-25 | 2005-06-16 | Toyota Industries Corp | 発光セル、当該セルを用いた発光デバイス、当該発光デバイス用の筐体、発光セルの製造方法、発光ユニット、当該ユニットを用いた発光デバイス、及び当該発光デバイス用の筐体 |
JP2006505092A (ja) * | 2001-11-06 | 2006-02-09 | ユニバーサル ディスプレイ コーポレイション | 多層ミラーとして機能する封止構造を有する有機発光デバイス構造体 |
JP2006114438A (ja) * | 2004-10-18 | 2006-04-27 | Dainippon Printing Co Ltd | 電子表示媒体用ガスバリア膜 |
JP2007012410A (ja) * | 2005-06-30 | 2007-01-18 | Kyocera Corp | 有機el素子及びそれを用いた有機elディスプレイ並びに有機elディスプレイの製造方法 |
JP2008210665A (ja) * | 2007-02-27 | 2008-09-11 | Canon Inc | 有機発光素子及びそれを用いた表示装置 |
JP2008243379A (ja) * | 2007-03-23 | 2008-10-09 | Sharp Corp | 有機エレクトロルミネセンス装置及びその製造方法 |
JP2009211877A (ja) * | 2008-03-03 | 2009-09-17 | Sony Corp | 表示装置および電子機器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660409B1 (en) | 1999-09-16 | 2003-12-09 | Panasonic Communications Co., Ltd | Electronic device and process for producing the same |
JP4040240B2 (ja) | 2000-07-10 | 2008-01-30 | パナソニック コミュニケーションズ株式会社 | 有機エレクトロルミネッセンス素子及びその製造方法 |
KR101074948B1 (ko) * | 2003-12-17 | 2011-10-18 | 가부시키가이샤 브리지스톤 | 반사 방지 필름, 전자파 실드성 광 투과창재, 가스 방전형발광 패널, 플랫 디스플레이 패널, 진열창재 및 태양 전지모듈 |
KR100631840B1 (ko) * | 2004-06-03 | 2006-10-09 | 삼성전기주식회사 | 플립칩용 질화물 반도체 발광소자 |
JP4693593B2 (ja) * | 2004-11-16 | 2011-06-01 | 京セラ株式会社 | 発光装置 |
CN100473243C (zh) * | 2004-11-16 | 2009-03-25 | 京瓷株式会社 | 发光装置 |
KR100700013B1 (ko) | 2004-11-26 | 2007-03-26 | 삼성에스디아이 주식회사 | 유기전계발광소자 및 그의 제조 방법 |
-
2009
- 2009-11-05 WO PCT/JP2009/068930 patent/WO2011055440A1/ja active Application Filing
- 2009-11-05 KR KR1020127013255A patent/KR101405143B1/ko active IP Right Grant
- 2009-11-05 JP JP2011539225A patent/JPWO2011055440A1/ja active Pending
- 2009-11-05 CN CN200980162215.0A patent/CN102598864B/zh active Active
-
2010
- 2010-10-28 US US12/914,671 patent/US8482195B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006505092A (ja) * | 2001-11-06 | 2006-02-09 | ユニバーサル ディスプレイ コーポレイション | 多層ミラーとして機能する封止構造を有する有機発光デバイス構造体 |
JP2003151761A (ja) * | 2001-11-14 | 2003-05-23 | Osaka Industrial Promotion Organization | 有機el素子を含む発光素子およびそれを用いた光インターコネクション装置 |
JP2005158374A (ja) * | 2003-11-25 | 2005-06-16 | Toyota Industries Corp | 発光セル、当該セルを用いた発光デバイス、当該発光デバイス用の筐体、発光セルの製造方法、発光ユニット、当該ユニットを用いた発光デバイス、及び当該発光デバイス用の筐体 |
JP2006114438A (ja) * | 2004-10-18 | 2006-04-27 | Dainippon Printing Co Ltd | 電子表示媒体用ガスバリア膜 |
JP2007012410A (ja) * | 2005-06-30 | 2007-01-18 | Kyocera Corp | 有機el素子及びそれを用いた有機elディスプレイ並びに有機elディスプレイの製造方法 |
JP2008210665A (ja) * | 2007-02-27 | 2008-09-11 | Canon Inc | 有機発光素子及びそれを用いた表示装置 |
JP2008243379A (ja) * | 2007-03-23 | 2008-10-09 | Sharp Corp | 有機エレクトロルミネセンス装置及びその製造方法 |
JP2009211877A (ja) * | 2008-03-03 | 2009-09-17 | Sony Corp | 表示装置および電子機器 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013179248A (ja) * | 2011-08-12 | 2013-09-09 | Canon Inc | 有機el素子、及びこれを用いた発光装置、画像形成装置、表示装置、撮像装置 |
JP2013157278A (ja) * | 2012-01-31 | 2013-08-15 | Canon Inc | 発光装置、画像形成装置及び撮像装置 |
JP2014207356A (ja) * | 2013-04-15 | 2014-10-30 | キヤノン株式会社 | 有機el素子、画像形成装置、表示装置及び撮像装置 |
US9818984B2 (en) | 2013-04-15 | 2017-11-14 | Canon Kabushiki Kaisha | Organic electroluminescence element, image-forming apparatus, display apparatus, and imaging apparatus |
US9806296B2 (en) | 2014-10-24 | 2017-10-31 | Samsung Display Co., Ltd. | Organic light emitting diode device |
JP2018073761A (ja) * | 2016-11-04 | 2018-05-10 | パイオニア株式会社 | 発光装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20120083496A (ko) | 2012-07-25 |
CN102598864B (zh) | 2015-11-25 |
US20110101855A1 (en) | 2011-05-05 |
KR101405143B1 (ko) | 2014-06-10 |
CN102598864A (zh) | 2012-07-18 |
US8482195B2 (en) | 2013-07-09 |
JPWO2011055440A1 (ja) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011055440A1 (ja) | 表示装置 | |
JP4693593B2 (ja) | 発光装置 | |
US8304796B2 (en) | Light-emitting apparatus | |
CN101351065B (zh) | 显示设备 | |
JP4402069B2 (ja) | 多色有機elディスプレイ | |
JP4730469B2 (ja) | 表示装置 | |
KR101344256B1 (ko) | 표시장치 | |
JP2008059791A (ja) | 有機el素子アレイ | |
JP5279240B2 (ja) | 多色表示装置 | |
JP2007234253A (ja) | 有機エレクトロルミネッセンス素子 | |
KR20120083497A (ko) | 유기 일렉트로루미네슨트 소자와 그것을 구비한 표시장치 | |
JP4655959B2 (ja) | 表示素子 | |
JP5562379B2 (ja) | 有機発光素子及びそれを利用した発光装置、表示装置 | |
JP2013051155A (ja) | 有機el素子 | |
JP6508875B2 (ja) | 有機el素子、表示装置、画像処理装置、照明装置及び画像形成装置 | |
JP4548404B2 (ja) | 表示装置 | |
CN100473243C (zh) | 发光装置 | |
WO2009064019A1 (en) | Light-emitting apparatus | |
KR20150076000A (ko) | 유기 발광 표시 장치 및 그 제조 방법 | |
JP2010015787A (ja) | 有機el表示装置 | |
WO2009064021A1 (en) | Display apparatus and method of producing same | |
JP2010040486A (ja) | 発光素子および発光装置 | |
JP3898163B2 (ja) | 有機発光表示装置 | |
JP2011141965A (ja) | 有機el素子および表示装置 | |
JP2004247106A (ja) | 有機el素子および有機el素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980162215.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09851092 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011539225 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127013255 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09851092 Country of ref document: EP Kind code of ref document: A1 |