WO2010116981A1 - 酸化インジウム系透明導電膜及びその製造方法 - Google Patents
酸化インジウム系透明導電膜及びその製造方法 Download PDFInfo
- Publication number
- WO2010116981A1 WO2010116981A1 PCT/JP2010/056195 JP2010056195W WO2010116981A1 WO 2010116981 A1 WO2010116981 A1 WO 2010116981A1 JP 2010056195 W JP2010056195 W JP 2010056195W WO 2010116981 A1 WO2010116981 A1 WO 2010116981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indium
- transparent conductive
- mol
- molar ratio
- film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Definitions
- the present invention relates to a transparent conductive film that can be formed as an amorphous film, the amorphous film can be easily patterned by weak acid etching, can be crystallized more easily, and the crystallized film has low resistance and high transmittance.
- ITO film An indium oxide-tin oxide (In 2 O 3 —SnO 2 composite oxide, hereinafter referred to as “ITO”) film has high visible light transmittance and high electrical conductivity, so that it can be used as a transparent conductive film such as a liquid crystal display device or glass. However, it is difficult to obtain an amorphous film.
- ITO indium oxide-tin oxide
- an indium oxide-zinc oxide (IZO) transparent conductive film is known as an amorphous film.
- IZO indium oxide-zinc oxide
- the present invention can be formed as an amorphous film, and the amorphous film can be easily patterned by weak acid etching, can be crystallized more easily, and the crystallized film has low resistance and transmittance. It is an object of the present invention to provide an indium oxide-based transparent conductive film and a method for producing the same.
- the present invention adds a specific additive element and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less. It has been found that a film formed under conditions can raise the crystallization temperature to, for example, 100 ° C. or higher over a wide composition range, and an amorphous film can be obtained even under film formation conditions of, for example, about 100 ° C. And completed.
- the first aspect of the present invention is an oxidation containing indium oxide and tin as required, and at least one additive element selected from the group consisting of Sr, Li, La, Ca, Mg and Y.
- the film was formed as an amorphous film using a sputtering target having a sintered body and having a partial pressure of water of 1.0 ⁇ 10 ⁇ 4 Pa to 1.0 ⁇ 10 ⁇ 1 Pa. It is in the transparent conductive film characterized by these.
- the amorphous film can be easily patterned by weak acid etching, can be crystallized more easily, and the crystallized film has low resistance and high transmittance. Is.
- a second aspect of the present invention is the transparent conductive film according to the first aspect, wherein the amorphous film contains hydrogen.
- the film since the film is formed under the condition of a predetermined moisture pressure, it contains hydrogen.
- the transparent conductive film according to the first or second aspect wherein the amorphous conductive film is crystallized by annealing and then crystallized. is there.
- the additive element is strontium
- the film composition is a molar ratio y of tin to 1 mol of indium. Is in the range of less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) represented by the molar ratio x of strontium to 1 mol of indium. It is in the conductive film.
- an amorphous film is formed when the film is formed at a temperature lower than 100 ° C., and then the film can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is strontium
- the film composition is a molar ratio y of tin to 1 mol of indium. Is less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) represented by the molar ratio x of strontium to 1 mol of indium and ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ 3.7 ⁇ 10 ⁇ 2 ) or more.
- the film is amorphous when formed at a temperature lower than 100 ° C., and can be crystallized when annealed at 100 ° C. to 300 ° C. thereafter.
- the additive element is lithium
- the molar ratio y of tin to 1 mol of indium is indium 1
- the transparent conductive film is characterized by being in a range less than the value of ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.9 ⁇ 10 ⁇ 1 ) represented by a molar ratio x of lithium to mole. .
- an amorphous film is formed when the film is formed at a temperature lower than 100 ° C., and the film can be crystallized after annealing at 100 ° C. to 300 ° C.
- the additive element is lithium
- the film composition is a molar ratio y of tin to 1 mol of indium. Is less than the value of ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.9 ⁇ 10 ⁇ 1 ) expressed by the molar ratio x of lithium to 1 mol of indium and ( ⁇ 3.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.6 ⁇ 10 ⁇ 1 ) or more.
- an amorphous film is formed when the film is formed at a temperature lower than 100 ° C., and then the film can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is lanthanum
- the film composition is a molar ratio y of tin to 1 mol of indium. Is in a range of less than the value of ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ) represented by the molar ratio x of lanthanum to 1 mol of indium. It is in the conductive film.
- an amorphous film can be formed when the film is formed at a temperature lower than 100 ° C., and then the film can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is lanthanum
- the film composition is a molar ratio y of tin to 1 mol of indium. Is less than the value of ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ) expressed by the molar ratio x of lanthanum to 1 mol of indium and ( ⁇ 2.9 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.3 ⁇ 10 ⁇ 1 ) or more.
- the film when the film is formed at a temperature lower than 100 ° C., it becomes an amorphous film, and thereafter, it can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is calcium
- the molar ratio y of tin to 1 mol of indium is indium 1
- the transparent conductive film is characterized by being in a range of less than a value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) represented by a molar ratio of calcium to mole x. .
- an amorphous film is formed when the film is formed at a temperature lower than 100 ° C., and then the film can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is calcium
- the molar ratio y of tin to 1 mol of indium is indium 1 represented by a molar ratio x of calcium to moles (-4.1 ⁇ 10 -2 Ln (x ) -9.3 ⁇ 10 -2) less than the value and (-1.6 ⁇ 10 -2 Ln ( x)
- a transparent conductive film characterized by being in the range of ⁇ 3.7 ⁇ 10 ⁇ 2 ) or more.
- an amorphous film can be formed when the film is formed at a temperature lower than 100 ° C., and then the film can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is magnesium
- the molar ratio y of tin to 1 mole of indium is indium 1
- the transparent conductive film is characterized by being in a range less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) represented by a molar ratio x of magnesium to mol. .
- an amorphous film can be formed when the film is formed at a temperature lower than 100 ° C., and then the film can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is magnesium
- the molar ratio y of tin to 1 mol of indium is indium 1 Less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) expressed by the molar ratio x of magnesium to mol and ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln ( x)
- a transparent conductive film characterized by being in the range of ⁇ 3.7 ⁇ 10 ⁇ 2 ) or more.
- the film when the film is formed at a temperature lower than 100 ° C., it becomes an amorphous film, and thereafter, it can be crystallized when annealed at 100 ° C. to 300 ° C.
- the additive element is yttrium
- the film composition has a molar ratio y of tin to 1 mol of indium. Is in a range less than a value of ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 5.8 ⁇ 10 ⁇ 2 ) represented by a molar ratio x of yttrium to 1 mol of indium. It is in the conductive film.
- an amorphous film is formed when formed at a temperature lower than 100 ° C., and crystallization can be performed when annealed at 100 ° C. to 300 ° C. thereafter.
- the additive element is yttrium
- the film composition has a molar ratio y of tin to 1 mol of indium. Is less than the value of ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 5.8 ⁇ 10 ⁇ 2 ) expressed by the molar ratio x of yttrium to 1 mol of indium and ( ⁇ 2.2 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.5 ⁇ 10 ⁇ 1 ) or more.
- the film when the film is formed at a temperature lower than 100 ° C., it becomes an amorphous film, and thereafter, it can be crystallized when annealed at 100 ° C. to 300 ° C.
- the sixteenth aspect of the present invention contains indium oxide and tin as required, and Sr (strontium), Li (lithium), La (lanthanum), Ca (calcium), Mg (magnesium) and Y (yttrium).
- a sputtering target comprising an oxide sintered body containing an additive element is at least one selected from the group consisting of less than 100 ° C., the partial pressure of water 1.0 ⁇ 10 -4 Pa or more and 1.0
- an amorphous film is formed under a condition of ⁇ 10 ⁇ 1 Pa or less.
- the amorphous film can be easily patterned by weak acid etching, can be crystallized more easily, and the crystallized film has low resistance and high transmittance. Is.
- a seventeenth aspect of the present invention in the method for producing a transparent conductive film according to the sixteenth aspect, after forming an amorphous film, it is crystallized by annealing at 100 ° C. to 300 ° C. to obtain a transparent conductive film.
- a method for producing a transparent conductive film after forming an amorphous film, it is crystallized by annealing at 100 ° C. to 300 ° C. to obtain a transparent conductive film.
- an amorphous film can be formed at a temperature lower than 100 ° C., and then annealed at 100 ° C. to 300 ° C. for crystallization, thereby improving the environmental resistance.
- the additive element is strontium
- the molar ratio y of tin to 1 mol of indium is indium 1
- the additive element is strontium
- the molar ratio y of tin to 1 mol of indium is indium 1 Less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) expressed by the molar ratio x of strontium to mole and ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln ( x)
- a film having a film composition in the range of ⁇ 3.7 ⁇ 10 ⁇ 2 ) or higher is formed under conditions where the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or higher and 1.0 ⁇ 10 ⁇ 3 Pa or lower. It is in the manufacturing method of the transparent conductive film characterized by carrying out a film
- the additive element is lithium
- the molar ratio y of tin to 1 mole of indium is indium 1
- the additive element is lithium
- the molar ratio y of tin to 1 mol of indium is indium 1 Less than the value of ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.9 ⁇ 10 ⁇ 1 ) expressed by the molar ratio x of lithium to mol and ( ⁇ 3.5 ⁇ 10 ⁇ 2 Ln ( x)
- a film having a film composition in the range of ⁇ 1.6 ⁇ 10 ⁇ 1 ) or more is formed under a condition where the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less. It is in the manufacturing method of the transparent conductive film characterized by carrying out a film
- the additive element is lanthanum
- the molar ratio y of tin to 1 mol of indium is indium 1
- the additive element is lanthanum
- the molar ratio y of tin to 1 mol of indium is indium 1 It is less than the value of ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ) expressed by the molar ratio x of lanthanum to mol and ( ⁇ 2.9 ⁇ 10 ⁇ 2 Ln ( x)
- a film having a film composition in the range of ⁇ 1.3 ⁇ 10 ⁇ 1 ) or more is formed under conditions where the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less. It is in the manufacturing method of the transparent conductive film characterized by carrying out a film
- the additive element is calcium
- the molar ratio y of tin to 1 mol of indium is indium 1
- the additive element is calcium
- the molar ratio y of tin to 1 mol of indium is indium 1 Less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) expressed by the molar ratio x of calcium to mol and ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln ( x)
- a film having a film composition in the range of ⁇ 3.7 ⁇ 10 ⁇ 2 ) or higher is formed under conditions where the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or higher and 1.0 ⁇ 10 ⁇ 3 Pa or lower. It is in the manufacturing method of the transparent conductive film characterized by carrying out a film
- the additive element is magnesium
- the molar ratio y of tin to 1 mol of indium is indium 1 to deposit a film of the film composition in the range of less than the value of which is expressed as a molar ratio x of magnesium to molar (-4.1 ⁇ 10 -2 Ln (x ) -9.3 ⁇ 10 -2) It is in the manufacturing method of the transparent conductive film characterized.
- the additive element is magnesium
- the molar ratio y of tin to 1 mol of indium is indium 1 Less than the value of ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) expressed by the molar ratio x of magnesium to mol and ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln ( x)
- a film having a film composition in the range of ⁇ 3.7 ⁇ 10 ⁇ 2 ) or higher is formed under conditions where the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or higher and 1.0 ⁇ 10 ⁇ 3 Pa or lower. It is in the manufacturing method of the transparent conductive film characterized by carrying out a film
- the additive element is yttrium
- the molar ratio y of tin to 1 mol of indium is indium 1
- the additive element is yttrium
- the molar ratio y of tin to 1 mol of indium is indium 1 Less than the value of ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 5.8 ⁇ 10 ⁇ 2 ) expressed by the molar ratio x of yttrium to mol, and ( ⁇ 2.2 ⁇ 10 ⁇ 2 Ln ( x)
- a film having a film composition in the range of ⁇ 1.5 ⁇ 10 ⁇ 1 ) or more is formed under a condition where the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less. It is in the manufacturing method of the transparent conductive film characterized by carrying out a film
- a film is formed under the condition that tin and a specific additive element are added to indium oxide, and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less.
- the film thus obtained can be made relatively easily an amorphous film, can be easily patterned by weak acid etching after the film formation, can be crystallized more easily, and the crystallized film has low resistance and high transmittance. There exists an effect that a transparent conductive film can be manufactured.
- the sputtering target for transparent conductive film used for forming the indium oxide-based transparent conductive film of the present invention is mainly composed of indium oxide and contains tin, and Sr (strontium), Li (lithium), La (lanthanum). ), Ca (calcium), Mg (magnesium), and Y (yttrium), and is an oxide sintered body containing at least one specific additive element selected from the group consisting of Y (yttrium). Alternatively, it may be present as a complex oxide or as a solid solution, and is not particularly limited.
- the content of the additive element is such that the film formed at a film forming temperature of 100 ° C. or less under the condition that the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less is an amorphous film. What is necessary is just to select so that it may form into a film, although it changes with the kind of additive element, and film-forming conditions, it can select from the range of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium.
- the content of tin is selected from the range of 0.001 to 0.3 mol, preferably 0.005 to 0.3 mol, with respect to 1 mol of indium, and sputtering containing tin in such a range. It is desirable to form a film using a target. Within this range, the density and mobility of carrier electrons in the sputtering target can be appropriately controlled to keep the conductivity in a good range. Further, addition beyond this range is not preferable because the mobility of carrier electrons of the sputtering target is lowered and the conductivity is deteriorated.
- content of the additive element and tin in the transparent conductive film formed with the sputtering target having such a specific composition is the same content as the content in the used sputtering target.
- the entire amount of a single film may be dissolved and analyzed by ICP.
- FIB or the like an element analyzer (EDS, WDS, Auger analysis, etc.) attached to the SEM, TEM, etc. ) Can also be specified.
- Such a sputtering target has a resistance value that can be sputtered by DC magnetron sputtering, it can be sputtered by relatively inexpensive DC magnetron sputtering.
- a high-frequency magnetron sputtering apparatus may be used.
- the same composition is obtained.
- an amorphous indium oxide-based transparent conductive film having a relatively low crystallization temperature can be formed.
- hydrogen is taken into the amorphous film. That is, the formed amorphous film contains hydrogen.
- the amorphous film is formed at the predetermined moisture pressure described above or substantially 1.0 ⁇ without water. It can be confirmed whether or not the film is formed at less than 10 ⁇ 4 Pa.
- an atmospheric gas generally Ar, a gas containing oxygen as necessary, which is introduced into the film formation chamber during film formation, for example, It is only necessary to introduce water vapor through a mass flow controller or the like with a pressure of the order of 10 ⁇ 4 Pa, and when the ultimate vacuum is less than 10 ⁇ 4 Pa and a high vacuum, about 1/100 to 1/10 of the atmospheric gas.
- the pressure is Note that, under the condition that the ultimate degree of vacuum is about 10 ⁇ 4 to 10 ⁇ 3 Pa and the degree of vacuum is poor, the main component of the residual gas is water. That is, since the ultimate vacuum corresponds approximately to the partial pressure of water, a desired partial pressure of water can be obtained without particularly introducing water vapor.
- Such an indium oxide-based transparent conductive film according to the present invention contains a predetermined amount of an additive element, so that film formation is performed at room temperature or higher and a crystallization temperature, that is, a temperature condition lower than 100 ° C. or higher.
- the film is formed in an amorphous state.
- such an amorphous film has an advantage that it can be etched with a weakly acidic etchant.
- such an etching has an effect that a fine pattern can be formed without any residue.
- the etching is included in the patterning step and is for obtaining a predetermined pattern.
- the resistivity of the transparent conductive film obtained varies depending on the additive element and the tin content, but the resistivity is 1.0 ⁇ 10 ⁇ 4 to 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
- the crystallization temperature of the deposited film varies depending on the content of additive elements and tin contained, and increases as the content increases.
- the crystallization temperature is increased.
- Such a temperature region is used in a normal semiconductor manufacturing process, it can be crystallized in such a process. In this temperature range, those that crystallize at 100 ° C. to 300 ° C. are preferred, crystals that crystallize at 150 ° C. to 250 ° C. are more preferred, and those that crystallize at 200 ° C. to 250 ° C. are most preferred.
- annealing refers to heating at a desired temperature for a certain period of time in air, atmosphere, or vacuum.
- the fixed time is generally several minutes to several hours, but a short time is preferred industrially if the effect is the same.
- the transparent conductive film after being crystallized by annealing has improved transmittance on the short wavelength side, for example, the average transmittance at a wavelength of 400 to 500 nm is 85% or more. This also eliminates the problem that the film which is a problem in IZO is yellowish. In general, a higher transmittance on the short wavelength side is preferred.
- the crystallized transparent conductive film has improved etching resistance and cannot be etched with a weakly acidic etchant that can be etched with an amorphous film. This improves the corrosion resistance in the subsequent process and the environmental resistance of the device itself.
- the crystallization temperature after film formation can be set to a desired temperature, so that heat treatment at a temperature higher than the crystallization temperature is not applied after film formation.
- the amorphous state may be maintained, or after patterning after film formation, crystallization may be performed by heat treatment at a temperature equal to or higher than the crystallization temperature to change the etching resistance.
- the film can be formed as an amorphous film needs to be formed at a film formation temperature lower than the crystallization temperature in the composition of the film formed as described above, and the content of tin and additive elements is small. less becomes the crystallization temperature as the composition is low, tin and although the crystallization temperature as the composition containing a large amount of the additive element is high tends, 1.0 the partial pressure of water 1.0 ⁇ 10 -4 Pa or more ⁇
- the crystallization temperature of each composition is about 50 to 100 ° C. as compared with the case where the film is formed with a partial pressure of water of less than 1.0 ⁇ 10 ⁇ 4 Pa. Can be high.
- the crystallization temperature is less than 100 ° C., particularly near room temperature, and the film formation conditions for obtaining an amorphous film are In a fairly severe composition range, the crystallization temperature is increased to, for example, 100 ° C. or higher by setting the partial pressure of water to 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less.
- an amorphous film can be obtained even under film forming conditions of about 100 ° C.
- an amorphous film having a crystallization temperature of 100 ° C. or more is formed even in a film formation under a normal condition in which the content of the additive element is relatively high and the partial pressure of water is lower than 1.0 ⁇ 10 ⁇ 4 Pa.
- the crystallization temperature due to annealing slightly increases. Needless to say, an amorphous film can be formed.
- the partial pressure of water is lower than 1.0 ⁇ 10 ⁇ 4 Pa, the effect of increasing the crystallization temperature as described above is not remarkable, while the partial pressure of water is the upper limit (1.0 ⁇ 10 10 -1 Pa), the resulting film is amorphous, but the crystallization temperature rises, and since it does not crystallize even under 300 ° C. annealing conditions, the specific resistance is not reduced and the film is annealed. Even if it is crystallized, the specific resistance of the film does not decrease, and it becomes difficult to obtain a crystallized film of 5.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, which is not preferable.
- the amorphous film formed under such a moisture pressure condition contains hydrogen, and the presence of hydrogen can be confirmed by the test method described above.
- amorphous film when the film is formed under a normal condition where the partial pressure of water is lower than 1.0 ⁇ 10 ⁇ 4 Pa, in the composition range where an amorphous film having a crystallization temperature of 100 ° C. or higher cannot be formed, An amorphous film can be obtained by adjusting the pressure to 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less, but such a composition range depends on the kind of the additive element. Hereinafter, such a composition range will be described.
- the additive element is Sr
- an amorphous film is formed only when the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less, and thereafter 100 ° C. to 300 ° C. in the composition range of crystallization when annealed, the molar ratio of tin to indium mole y (mol) is represented by the molar ratio x of Sr relative to 1 mol of indium (-4.1 ⁇ 10 - 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ).
- the partial pressure of water is 1.0 It becomes an amorphous film under the condition of x10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less, and then crystallizes when annealed at 100 ° C. to 300 ° C., which is more preferable in consideration of the film forming process. .
- the additive element is Li
- an amorphous film is formed only when the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less, and then 100 ° C. to 300 ° C.
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of Li to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.9 ⁇ 10 ⁇ 1 ).
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Li to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x)
- the partial pressure of water is 1. It becomes an amorphous film under conditions of 0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less, and then crystallizes when annealed at 100 ° C. to 300 ° C. Become.
- the additive element is La
- an amorphous film is formed only when the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less.
- the composition range that crystallizes when annealed at 300 ° C. is expressed by the molar ratio y of tin to 1 mol of indium expressed as the molar ratio x of La to 1 mol of indium ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ).
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of La to 1 mol of indium ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ) and less than ⁇ 2.9 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.3 ⁇ 10 ⁇ 1 ), the partial pressure of water is 1.0. It becomes an amorphous film under the condition of x10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less, and then crystallizes when annealed at 100 ° C. to 300 ° C., which is more preferable in consideration of the film forming process. .
- the additional element of Ca for the first time become the amorphous film by a partial pressure below 1.0 ⁇ 10 -4 Pa or 1.0 ⁇ 10 -1 Pa under the conditions of water, then, 100 ° C. ⁇
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Ca to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ).
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Ca to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x)
- the partial pressure of water is 1.0. It becomes an amorphous film under the condition of x10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less, and then crystallizes when annealed at 100 ° C. to 300 ° C., which is more preferable in consideration of the film forming process. .
- the additional element of Mg for the first time become the amorphous film by a partial pressure below 1.0 ⁇ 10 -4 Pa or 1.0 ⁇ 10 -1 Pa under the conditions of water, then, 100 ° C. ⁇
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Mg to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ).
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Mg to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x)
- the partial pressure of water is 1.0. It becomes an amorphous film under the condition of x10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less, and then crystallizes when annealed at 100 ° C. to 300 ° C., which is more preferable in consideration of the film forming process. .
- an amorphous film is formed only when the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 1 Pa or less.
- the composition range that crystallizes when annealed at 300 ° C. is expressed by a molar ratio y of tin to 1 mol of indium and a molar ratio x of Y to 1 mol of indium ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 5.8 ⁇ 10 ⁇ 2 ).
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Y to 1 mol of indium ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x)
- the partial pressure of water is 1.0. It becomes an amorphous film under the condition of x10 ⁇ 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less, and then crystallizes when annealed at 100 ° C. to 300 ° C., which is more preferable in consideration of the film forming process. .
- the manufacturing method of the sputtering target used in the present invention will be described. However, this is merely an example, and the manufacturing method is not particularly limited.
- an oxide of a constituent element is generally used, but these simple substances, compounds, complex oxides, and the like may be used as a raw material.
- a simple substance or a compound it is made to go through a process of making it oxide in advance.
- the method of mixing and molding these raw material powders at a desired blending ratio is not particularly limited, and various conventionally known wet methods or dry methods can be used.
- Examples of the dry method include a cold press method and a hot press method.
- the mixed powder is filled in a mold to produce a molded body and fired.
- the hot press method the mixed powder is fired and sintered in a mold.
- a filtration molding method (see JP-A-11-286002) is preferably used.
- This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a molded body by draining water from a ceramic raw material slurry under reduced pressure, and a lower molding die having one or more drain holes And a water-permeable filter placed on the molding lower mold, and a molding mold clamped from the upper surface side through a sealing material for sealing the filter, the molding lower mold, Forming mold, sealing material, and filter are assembled so that they can be disassembled respectively.
- mixed powder, ion-exchanged water and organic Prepare a slurry consisting of additives, inject the slurry into a filtration mold, drain the water in the slurry only from the filter surface side, and produce a molded body. After drying degreasing, and firing.
- the firing temperature of the one formed by the cold press method or the wet method is preferably 1300 to 1650 ° C., more preferably 1500 to 1650 ° C., and the atmosphere is an air atmosphere, an oxygen atmosphere, a non-oxidizing atmosphere, a vacuum atmosphere, or the like. It is.
- the hot press method sintering is preferably performed at around 1200 ° C., and the atmosphere is a non-oxidizing atmosphere, a vacuum atmosphere, or the like.
- molding and a process is given to a predetermined dimension, and it is set as a target.
- aqueous PVA solution was added as a binder, mixed, dried, and cold pressed to obtain a molded body.
- This molded body was degreased at 600 ° C. for 10 hours in the air at a temperature increase of 60 ° C./h, and then fired at 1550 ° C. for 8 hours in an oxygen atmosphere to obtain a sintered body.
- the firing condition is that the temperature is raised from room temperature to 800 ° C. at 200 ° C./h, the temperature is raised from 800 ° C. to 1550 ° C. at 400 ° C./h, held for 8 hours, and then 1550 ° C. to room temperature is 100 ° C. It is a condition of cooling under the condition of / h. Thereafter, this sintered body was processed to obtain a target.
- In 2 O 3 powder and Li 2 CO 3 powder were prepared, mixed in a ball mill in a dry state, and calcined at 1000 ° C. for 3 hours in the air to obtain LiInO 2 powder.
- the same as Sr-ITO except that about 1.0 kg of LiInO 2 powder, In 2 O 3 powder and SnO 2 powder were prepared (the composition of each metal atom was as shown in Tables 3 and 4 below).
- a target was produced. However, the firing temperature is 1450 ° C.
- (Sputtering target production example 4) (Ca-ITO) Prepare In 2 O 3 powder with a purity of> 99.99%, SnO 2 powder, and CaCO 3 with a purity of> 99.5%.
- the In 2 O 3 powder and the CaCO 3 powder are mixed in a ball mill in a dry state. Calcination was performed at 1200 ° C. in the air for 3 hours to obtain CaIn 2 O 4 powder.
- Sr-ITO was used except that about 1.0 kg of CaIn 2 O 4 powder, In 2 O 3 powder and SnO 2 powder were prepared (the composition of each metal atom was as shown in Tables 7 and 8 below). Similarly, a target was produced.
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8 mm
- the optimal oxygen partial pressure for room temperature film formation and the oxygen partial pressure for film formation with the lowest resistivity after annealing at 250 ° C. were different for all samples.
- the transparent conductive film formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. was cut out to a size of 13 mm square, and these samples were 1 at 250 ° C. in the atmosphere.
- amorphous is a and crystal is c.
- the crystallization temperature of each composition was measured and shown in Table 13.
- the crystallization temperature is a temperature at which the film is crystallized after being deposited at room temperature, and those that do not become amorphous in the film formation at room temperature were set to less than 100 ° C.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and transmission spectra were measured for the annealed films. .
- Table 13 shows the average transmittance after annealing.
- each composition was formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C., cut into a size of 10 ⁇ 50 mm, and ITO-05N (oxalic acid, Kanto Chemical Co., Ltd.) as an etching solution.
- Etching rate ( ⁇ / sec) was measured at a temperature of 30 ° C. using an oxalic acid concentration (50 g / L). The results are shown in Table 13.
- FIGS. 1 and 2 the extent of less than a value of (4.1 ⁇ 10 -2 Ln (x ) -9.3 ⁇ 10 -2), as an amorphous film at a deposition temperature less than 100 ° C.
- Samples that can be formed and crystallized at 100 to 300 ° C. are indicated by ⁇ , and samples that cannot be formed as an amorphous film are indicated by ⁇ .
- samples that can be formed as an amorphous film at a film forming temperature of less than 100 ° C. and crystallized at 100 to 300 ° C. are indicated by ⁇ , and others are indicated by ⁇ .
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of Sr to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3).
- the range of the range not less than the value of ( ⁇ 10 ⁇ 2 ) and not more than the value of ( ⁇ 2.9 ⁇ 10 ⁇ 1 Ln (x) ⁇ 6.7 ⁇ 10 ⁇ 1 )
- the film can be formed as an amorphous film.
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of Sr to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln).
- the film is formed at a temperature of less than 100 ° C. and a water pressure of 1.0 ⁇ 10 ⁇ 2 Pa, it becomes an amorphous film, and then 100 Crystallization occurred when annealed at a temperature between 0 ° C and 300 ° C.
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of Sr to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ ).
- the molar ratio y (mol) of tin to 1 mol of indium is expressed by the molar ratio x of Sr to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ ).
- amorphous film can be formed at a temperature of less than 100 ° C. if the film is formed under conditions of 4 Pa or more and 1.0 ⁇ 10 ⁇ 3 Pa or less. After the film formation, the crystal is obtained by annealing at 100 ° C. to 300 ° C. It turned out that it becomes a film
- Li-containing composition transparent conductive film test example 1 Li-containing composition transparent conductive film test example 1
- the substrate temperature was room temperature (about 20 ° C.)
- the oxygen partial pressure was between 0 and 3.0 sccm. (Corresponding to 0 to 1.1 ⁇ 10 ⁇ 2 Pa) while obtaining a transparent conductive film of each composition.
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8 mm
- the optimal oxygen partial pressure for room temperature film formation and the oxygen partial pressure for film formation with the lowest resistivity after annealing at 250 ° C. were different for all samples.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and these samples were 250 ° C. in the atmosphere.
- Table 16 the crystal states after annealing at room temperature for 1 hour, after film formation at room temperature and after annealing at 250 ° C. are a for amorphous and c for crystal.
- the crystallization temperature of each composition was measured and shown in Table 16.
- the crystallization temperature is a temperature at which the film is crystallized after being deposited at room temperature, and those that do not become amorphous in the film formation at room temperature were set to less than 100 ° C.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and transmission spectra were measured for the annealed films. .
- Table 16 shows the average transmittance after annealing.
- each composition was formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C., cut into a size of 10 ⁇ 50 mm, and ITO-05N (oxalic acid, Kanto Chemical Co., Ltd.) as an etching solution.
- Etching rate ( ⁇ / sec) was measured at a temperature of 30 ° C. using an oxalic acid concentration (50 g / L). The results are shown in Table 16.
- Li-containing composition transparent conductive film test example 2 A transparent conductive film having each composition was obtained under the above-described conditions except that the target having the composition shown in Table 3 manufactured as described above was used and the water pressure was 8.0 ⁇ 10 ⁇ 4 Pa.
- Li-containing composition transparent conductive film reference example A transparent conductive film having each composition was obtained under the above-described conditions except that the target having the composition shown in Table 4 manufactured as described above was used and the water pressure was 5.0 ⁇ 10 ⁇ 6 Pa.
- Tables 16 to 18 are shown in FIGS. 4 to 6, respectively.
- samples that can be formed as an amorphous film at a film forming temperature of less than 100 ° C. and crystallized at 100 to 300 ° C. are indicated by ⁇ , and others are indicated by ⁇ .
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of Li to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.9).
- ⁇ 10 -1) is a value or more and (-2.5 ⁇ 10 -1 Ln (x ) -5.7 ⁇ 10 -1 values less range), as is apparent from FIG. 6, the water pressure Is 5.0 ⁇ 10 ⁇ 6 Pa, which is a range in which an amorphous film can be formed even in the absence of water.
- the molar ratio y (mol) of tin to 1 mol of indium is expressed by the molar ratio x of Li to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln).
- the film is formed at a temperature of less than 100 ° C. and a water pressure of 1.0 ⁇ 10 ⁇ 2 Pa, the film is all amorphous, and thereafter 100 Crystallization occurred when annealed at a temperature between 0 ° C and 300 ° C.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Li to 1 mol of indium ( ⁇ 3.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.6 In the range of less than ⁇ 10 ⁇ 1 ), when the water pressure was 8.0 ⁇ 10 ⁇ 4 Pa, the crystallization temperature was less than 100 ° C., and it was found difficult to form an amorphous film.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Li to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.9 ⁇ 10 ⁇ 1 ) And ( ⁇ 3.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.6 ⁇ 10 ⁇ 1 ) or more is particularly preferable, and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more. If the film is formed under the condition of 1.0 ⁇ 10 ⁇ 3 Pa or less, an amorphous film can be formed at a temperature of less than 100 ° C. After the film is formed, the film can be crystallized by annealing at 100 ° C. to 300 ° C. I found out that
- La-containing composition transparent conductive film test example 1 (La-containing composition transparent conductive film test example 1) Using the target having the composition shown in Table 5 manufactured as described above, this was mounted on a 4-inch DC magnetron sputtering apparatus, the substrate temperature was room temperature (about 20 ° C.), and the oxygen partial pressure was between 0 and 3.0 sccm. (Corresponding to 0 to 1.1 ⁇ 10 ⁇ 2 Pa) while obtaining a transparent conductive film of each composition.
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8 mm
- the optimal oxygen partial pressure for room temperature film formation and the oxygen partial pressure for film formation with the lowest resistivity after annealing at 250 ° C. were different for all samples.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and these samples were 250 ° C. in the atmosphere.
- Table 19 the crystal states after annealing at room temperature for 1 hour and after annealing at room temperature and after annealing at 250 ° C. are a for amorphous and c for crystal.
- the crystallization temperature of each composition was measured and shown in Table 19.
- the crystallization temperature is a temperature at which the film is crystallized after being deposited at room temperature, and those that do not become amorphous in the film formation at room temperature were set to less than 100 ° C.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and transmission spectra were measured for the annealed films. .
- Table 19 shows the average transmittance after annealing.
- each composition was formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C., cut into a size of 10 ⁇ 50 mm, and ITO-05N (oxalic acid, Kanto Chemical Co., Ltd.) as an etching solution.
- Etching rate ( ⁇ / sec) was measured at a temperature of 30 ° C. using an oxalic acid concentration (50 g / L). The results are shown in Table 19.
- an amorphous film is formed at a film formation temperature of less than 100 ° C. within a range of less than ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ).
- Samples that can be formed and crystallized at 100 to 300 ° C. are indicated by ⁇ , and samples that cannot be formed as an amorphous film are indicated by ⁇ .
- the samples that can be formed as an amorphous film at a film forming temperature of less than 100 ° C. and can be crystallized at 100 to 300 ° C. are indicated by ⁇ and the others are indicated by ⁇ .
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of La to 1 mol of indium ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2).
- the water pressure is within the range of not less than the value of ( ⁇ 10 ⁇ 1 ) and not more than the value of ( ⁇ 3.3 ⁇ 10 ⁇ 1 Ln (x) ⁇ 7.7 ⁇ 10 ⁇ 1 ).
- Is 5.0 ⁇ 10 ⁇ 6 Pa which is a range in which an amorphous film can be formed even in the absence of water.
- the additive element is La
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of La to 1 mol of indium ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln).
- the film when the film is formed at a temperature of less than 100 ° C. and a water pressure of 1.0 ⁇ 10 ⁇ 2 Pa, the film becomes an amorphous film. Crystallization occurred when annealed at a temperature between 0 ° C and 300 ° C.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of La to 1 mol of indium ( ⁇ 2.9 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.3
- the crystallization temperature was less than 100 ° C., and it was found difficult to form an amorphous film.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of La to 1 mol of indium ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ) And ⁇ 2.9 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.3 ⁇ 10 ⁇ 1 ) or more is particularly preferable, and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more and 1 If the film is formed under a condition of 0.0 ⁇ 10 ⁇ 3 Pa or less, an amorphous film can be formed at a temperature of less than 100 ° C. After the film formation, a film that can be crystallized by annealing at 100 ° C. to 300 ° C. I found out that
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8 mm
- the optimal oxygen partial pressure for room temperature film formation and the oxygen partial pressure for film formation with the lowest resistivity after annealing at 250 ° C. were different for all samples.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and these samples were 250 ° C. in the atmosphere.
- Table 22 the crystal states after annealing at room temperature for 1 hour and after annealing at room temperature and after annealing at 250 ° C. are a for amorphous and c for crystal.
- the crystallization temperature of each composition was measured and shown in Table 22.
- the crystallization temperature is a temperature at which crystallization is performed after film formation at room temperature, and the temperature at which film formation does not become amorphous by film formation at room temperature is set to less than 100 ° C.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and transmission spectra were measured for the annealed films. .
- Table 22 shows the average transmittance after annealing.
- each composition was formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C., cut into a size of 10 ⁇ 50 mm, and ITO-05N (oxalic acid, Kanto Chemical Co., Ltd.) as an etching solution.
- Etching rate ( ⁇ / sec) was measured at a temperature of 30 ° C. using an oxalic acid concentration (50 g / L). The results are shown in Table 22.
- an amorphous film is formed at a film formation temperature of less than 100 ° C. within a range of less than ( ⁇ 6.7 ⁇ 10 ⁇ 2 Ln (x) ⁇ 2.2 ⁇ 10 ⁇ 1 ).
- Samples that can be formed and crystallized at 100 to 300 ° C. are indicated by ⁇ , and samples that cannot be formed as an amorphous film are indicated by ⁇ .
- samples that can be formed as an amorphous film at a film forming temperature of less than 100 ° C. and crystallized at 100 to 300 ° C. are indicated by ⁇ , and others are indicated by ⁇ .
- the molar ratio y (mol) of tin to 1 mol of indium is expressed by the molar ratio x of Ca to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3).
- the water pressure is within the range of not less than the value of ⁇ 10 ⁇ 2 ) and not more than the value of ( ⁇ 2.5 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.7 ⁇ 10 ⁇ 1 ).
- Is 5.0 ⁇ 10 ⁇ 6 Pa which is a range in which an amorphous film can be formed even in the absence of water.
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Ca to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) In the range less than the value of ⁇ 9.3 ⁇ 10 ⁇ 2 ), when the film is formed at a temperature of less than 100 ° C. and a water pressure of 1.0 ⁇ 10 ⁇ 2 Pa, it becomes an amorphous film, and thereafter, the film is 100 ° C. to 300 ° C. When it was annealed at 0 ° C., it crystallized.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Ca to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ 3.7).
- the crystallization temperature was less than 100 ° C., and it was found difficult to form an amorphous film.
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Ca to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) And ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ 3.7 ⁇ 10 ⁇ 2 ) or more is particularly preferable, and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more. If the film is formed under the condition of 1.0 ⁇ 10 ⁇ 3 Pa or less, an amorphous film can be formed at a temperature of less than 100 ° C. After the film is formed, the film can be crystallized by annealing at 100 ° C. to 300 ° C. I found out that
- Mg-containing composition transparent conductive film test example 1 The targets having the composition shown in Table 9 manufactured as described above were used and mounted on a 4-inch DC magnetron sputtering apparatus, the substrate temperature was room temperature (about 20 ° C.), and the oxygen partial pressure was between 0 and 3.0 sccm. (Corresponding to 0 to 1.1 ⁇ 10 ⁇ 2 Pa) while obtaining a transparent conductive film of each composition.
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8 mm
- the optimal oxygen partial pressure for room temperature film formation and the oxygen partial pressure for film formation with the lowest resistivity after annealing at 250 ° C. were different for all samples.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and these samples were 250 ° C. in the atmosphere.
- the crystal state after annealing at room temperature for 1 hour and after film formation at room temperature and after annealing at 250 ° C. is a for amorphous and c for crystal.
- the crystallization temperature of each composition was measured and shown in Table 25.
- the crystallization temperature is the temperature at which crystallization occurs after film formation at 100 ° C., and the temperature that does not become amorphous after film formation at 100 ° C. is less than 100 ° C.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and transmission spectra were measured for the annealed films. .
- Table 25 shows the average transmittance after annealing.
- each composition was formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C., cut into a size of 10 ⁇ 50 mm, and ITO-05N (oxalic acid, Kanto Chemical Co., Ltd.) as an etching solution.
- Etching rate ( ⁇ / sec) was measured at a temperature of 30 ° C. using an oxalic acid concentration (50 g / L). The results are shown in Table 25.
- samples that can be formed as an amorphous film at a film forming temperature of less than 100 ° C. and crystallized at 100 to 300 ° C. are indicated by ⁇ , and others are indicated by ⁇ .
- the molar ratio y (mol) of tin to 1 mol of indium is expressed by the molar ratio x of Mg to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3).
- the water pressure is within the range of not less than the value of ( ⁇ 10 ⁇ 2 ) and not more than the value of ( ⁇ 2.5 ⁇ 10 ⁇ 1 Ln (x) ⁇ 5.7 ⁇ 10 ⁇ 1 ) Is 5.0 ⁇ 10 ⁇ 6 Pa, which is a range in which an amorphous film can be formed even in the absence of water.
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Mg to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) In the range less than the value of ⁇ 9.3 ⁇ 10 ⁇ 2 ), when the film is formed at a temperature of less than 100 ° C. and a water pressure of 1.0 ⁇ 10 ⁇ 2 Pa, it becomes an amorphous film, and thereafter, the film is 100 ° C. to 300 ° C. When it was annealed at 0 ° C., it crystallized.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Mg to 1 mol of indium ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ 3.7).
- the molar ratio x of Mg to 1 mol of indium ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ 3.7.
- the crystallization temperature was less than 100 ° C., and it was found difficult to form an amorphous film.
- the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of Mg to 1 mol of indium ( ⁇ 4.1 ⁇ 10 ⁇ 2 Ln (x) ⁇ 9.3 ⁇ 10 ⁇ 2 ) And ( ⁇ 1.6 ⁇ 10 ⁇ 2 Ln (x) ⁇ 3.7 ⁇ 10 ⁇ 2 ) or more is particularly preferable, and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more. If the film is formed under the condition of 1.0 ⁇ 10 ⁇ 3 Pa or less, an amorphous film can be formed at a temperature of less than 100 ° C. After the film is formed, the film can be crystallized by annealing at 100 ° C. to 300 ° C. I found out that
- Y-containing composition transparent conductive film test example 1 Using the targets having the composition shown in Table 11 manufactured as described above, these were mounted on a 4-inch DC magnetron sputtering apparatus, the substrate temperature was room temperature (about 20 ° C.), and the oxygen partial pressure was between 0 and 3.0 sccm. (Corresponding to 0 to 1.1 ⁇ 10 ⁇ 2 Pa) while obtaining a transparent conductive film of each composition.
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8 mm
- the optimal oxygen partial pressure for room temperature film formation and the oxygen partial pressure for film formation with the lowest resistivity after annealing at 250 ° C. were different for all samples.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and these samples were 250 ° C. in the atmosphere.
- the crystal states after annealing at room temperature for 1 hour, after film formation at room temperature and after annealing at 250 ° C. are a for amorphous and c for crystal, and these are shown in Table 28.
- the crystallization temperature of each composition was measured and shown in Table 28.
- the crystallization temperature is a temperature at which crystallization is performed after film formation at room temperature, and the temperature at which film formation does not become amorphous by film formation at room temperature is set to less than 100 ° C.
- transparent conductive films formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C. were cut into 13 mm square sizes, and transmission spectra were measured for the annealed films. .
- Table 28 shows the average transmittance after annealing.
- each composition was formed at the oxygen partial pressure at the time of film formation having the lowest resistivity after annealing at 250 ° C., cut into a size of 10 ⁇ 50 mm, and ITO-05N (oxalic acid, Kanto Chemical Co., Ltd.) as an etching solution.
- Etching rate ( ⁇ / sec) was measured at a temperature of 30 ° C. using an oxalic acid concentration (50 g / L). The results are shown in Table 28.
- Y-containing composition transparent conductive film test example 2 A transparent conductive film having each composition was obtained under the conditions described above except that the target having the composition shown in Table 11 manufactured as described above was used and the water pressure was 8.0 ⁇ 10 ⁇ 4 Pa.
- Y-containing composition transparent conductive film reference example A transparent conductive film having each composition was obtained under the above-described conditions except that the target having the composition shown in Table 12 manufactured as described above was used and the water pressure was 5.0 ⁇ 10 ⁇ 6 Pa.
- Table 28 to Table 30 are shown in FIGS. 16 to 18, respectively.
- samples that can be formed as an amorphous film at a film forming temperature of less than 100 ° C. and crystallized at 100 to 300 ° C. are indicated by ⁇ , and the others are indicated by ⁇ .
- the molar ratio y (mol) of tin to 1 mol of indium is represented by the molar ratio x of Y to 1 mol of indium ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 5.8).
- ⁇ 10 -2) is a value or more and (-1.0 ⁇ 10 -1 Ln (x ) -5.0 ⁇ 10 -2 and less than or equal to the range of), as is clear from FIG. 18, the water pressure Is 5.0 ⁇ 10 ⁇ 6 Pa, which is a range in which an amorphous film can be formed even in the absence of water.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Y to 1 mol of indium ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) In the range of less than ⁇ 5.8 ⁇ 10 ⁇ 2 ), when the film is formed at a water pressure of 1.0 ⁇ 10 ⁇ 2 Pa at a temperature of less than 100 ° C., the film becomes an amorphous film. When it was annealed at 0 ° C., it crystallized.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Y to 1 mol of indium ( ⁇ 2.2 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.5 In the range of less than ⁇ 10 ⁇ 1 ), when the water pressure was 8.0 ⁇ 10 ⁇ 4 Pa, the crystallization temperature was less than 100 ° C., and it was found difficult to form an amorphous film.
- the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of Y to 1 mol of indium ( ⁇ 2.5 ⁇ 10 ⁇ 2 Ln (x) ⁇ 5.8 ⁇ 10 ⁇ 2 ) And ( ⁇ 2.2 ⁇ 10 ⁇ 2 Ln (x) ⁇ 1.5 ⁇ 10 ⁇ 1 ) or more is particularly preferable, and the partial pressure of water is 1.0 ⁇ 10 ⁇ 4 Pa or more. If the film is formed under the condition of 1.0 ⁇ 10 ⁇ 3 Pa or less, an amorphous film can be formed at a temperature of less than 100 ° C. After the film is formed, the film can be crystallized by annealing at 100 ° C. to 300 ° C. I found out that
- TPD Test Example 1 A sputtering target of sample A8 was mounted on a 4-inch DC magnetron sputtering apparatus, the substrate temperature was room temperature (about 20 ° C.), the water pressure during film formation was 0 Pa (referred to as TPD Test Example 1), 8.0 ⁇ 10 ⁇ Transparent conductive films of TPD Test Examples 1 to 3 were obtained under the conditions of 4 Pa (referred to as TPD Test Example 2) and 1.0 ⁇ 10 ⁇ 2 Pa (referred to as TPD Test Example 3).
- the copper foil sample was also measured as a blank.
- Measurement condition Measurement atmosphere: 20% O 2 -80% He Gas flow rate: 50ccm Pretreatment: 120 ° C., 30 min keep (to remove water adhering to the sample) Measurement temperature: 120-600 ° C Temperature increase rate: 4 ° C / min
- H 2 O + ions are detected in the entire measurement temperature range of all the samples, these are considered to be due to the influence of moisture present in the apparatus and in the atmospheric gas. Since such a behavior is always detected even if any sample is measured, it is general to consider these as a baseline and correct the intensity. Accordingly, the baseline correction processing was performed in the same way for the measurement results. The result is shown in FIG.
- TPD Test Example 1 formed in an atmosphere substantially free of water overlaps with the H 2 O + ion peak of the copper foil sample that is almost blank. From this, it can be said that the sample of TPD Test Example 1 hardly contains hydrogen.
- TPD Test Examples 2 and 3 in which water was added by increasing the water pressure during film formation, the peak of H 2 O + ions was confirmed not only in the temperature range of 200 to 300 ° C. but also at 300 ° C. or higher. . In particular, in TPD Test Example 3 in which the amount of water added during film formation was large, it was confirmed that there was a large H 2 O + ion peak near 400 ° C.
- TPD Test Examples 2 and 3 hydrogen was taken into the film and contained by adding water with a hydrogen partial pressure within a predetermined range during film formation.
- the crystallization temperatures of TPD Test Examples 2 and 3 are 200 ° C. and 300 ° C., respectively, but the peak of H 2 O + ions of these samples is confirmed even at 300 ° C. or higher. It was found that water gas was desorbed even after crystallization.
- TPD temperature programmed desorption
- the transparent conductive film according to the present invention is actually mounted on a liquid crystal display device or a heat generation film for preventing condensation of glass, an infrared reflection film, etc., in order to confirm hydrogen present in those films, This is possible by taking out the substrate on which the film is formed and detecting the water gas generated during heating by the TPD method described above.
- hydrogen present in the film can be analyzed by TOF-SIMS and dynamic SIMS.
- the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
- Sputtering method DC magnetron sputtering
- Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.3 ⁇ 10 ⁇ 5 [Pa]
- Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
- Substrate temperature Room temperature Sputtering power: 130 W (Power density 1.6 W / cm 2 )
- Table 31 shows (H + ion count number) / (total ion count number), which is a TOF-SIMS analysis result of the deposited sample.
- H + ions were also detected in the sample of TOF Test Example 1 formed in an atmosphere where the water pressure during film formation was 5.0 ⁇ 10 ⁇ 5 and substantially no water was present. Can be determined as a background. That is, in recent research, it has been reported that H + ions were detected from an indium oxide film formed at a partial pressure lower than the water pressure of TOF Test Example 1 (Jpn. J. Appl. Phys., Vol. 46, No. 28, 2007, pp. L685-L687) From the above, it can be inferred that the detected hydrogen ions have incorporated a small amount of moisture adhering to the substrate during film formation into the film.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Non-Insulated Conductors (AREA)
- Physical Vapour Deposition (AREA)
Abstract
アモルファス膜として成膜でき、そのアモルファス膜は弱酸エッチングにより容易にパターニングでき、さらに容易に結晶化でき、またさらに結晶化した膜は低抵抗で且つ透過率が高い透明導電膜を提供する。 酸化インジウムと必要に応じて錫を含有すると共にSr、Li、La、Ca、Mg及びYからなる群から選択される少なくとも一種である添加元素を含有する酸化物焼結体を具備するスパッタリングターゲットを用い、水の分圧が1.0×10-4Pa以上1.0×10-1Pa以下の条件下でアモルファス膜として成膜されたものである。
Description
本発明は、アモルファス膜として成膜でき、そのアモルファス膜は弱酸エッチングにより容易にパターニングでき、さらに容易に結晶化でき、またさらに結晶化した膜は低抵抗で且つ透過率が高い透明導電膜に関する。
酸化インジウム-酸化錫(In2O3-SnO2の複合酸化物、以下、「ITO」という)膜は、可視光透過性が高く、かつ導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、赤外線反射膜等に幅広く用いられているが、アモルファスな膜とするのが困難であるという問題がある。
一方、アモルファスな膜となるものとして、酸化インジウム-酸化亜鉛(IZO)透明導電膜が知られているが、かかる膜はITO膜より透明性に劣り、黄色みがかるという問題がある。
そこで、本出願人は、透明導電膜としてITO膜に珪素を添加して所定の条件で成膜したアモルファスな透明導電膜を先に提案した(特許文献1参照)が、珪素を添加すると高抵抗化の傾向があるという問題があった。
本発明は、このような事情に鑑み、アモルファス膜として成膜でき、そのアモルファス膜は弱酸エッチングにより容易にパターニングでき、さらに容易に結晶化でき、またさらに結晶化した膜は低抵抗で且つ透過率が高い酸化インジウム系透明導電膜及びその製造方法を提供することを課題とする。
本発明は上述した課題を解決するために種々検討を重ねた結果、特定の添加元素を添加し且つ水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下で成膜した膜は、広い組成範囲で結晶化温度を、例えば、100℃以上と上昇させることができ、例えば、100℃程度の成膜条件でもアモルファスな膜を得ることができることを知見し、完成されたものである。
かかる本発明の第1の態様は、酸化インジウムと必要に応じて錫を含有すると共にSr、Li、La、Ca、Mg及びYからなる群から選択される少なくとも一種である添加元素を含有する酸化物焼結体を具備するスパッタリングターゲットを用い、水の分圧が1.0×10-4Pa以上1.0×10-1Pa以下の条件下でアモルファス膜として成膜されたものであることを特徴とする透明導電膜にある。
かかる第1の態様では、アモルファス膜として成膜されるので、そのアモルファス膜は弱酸エッチングにより容易にパターニングでき、さらに容易に結晶化でき、またさらに結晶化した膜は低抵抗で且つ透過率が高いものである。
本発明の第2の態様は、第1の態様に記載の透明導電膜において、前記アモルファスな膜が水素を含有することを特徴とする透明導電膜にある。
かかる第2の態様では、所定の水分圧の条件下で成膜されたものであるので、水素を含有するものとなる。
本発明の第3の態様は、第1又は2の態様に記載の透明導電膜において、アモルファス膜を成膜後、アニールすることにより結晶化されたものであることを特徴とする透明導電膜にある。
かかる第3の態様では、アモルファスな膜として成膜された後、アニールにより容易に結晶化でき、耐弱酸性を付与することができる。
本発明の第4の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がストロンチウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にあることを特徴とする透明導電膜にある。
かかる第4の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第5の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がストロンチウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にあることを特徴とする透明導電膜にある。
かかる第5の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第6の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がリチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲にあることを特徴とする透明導電膜にある。
かかる第6の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第7の態様では、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がリチウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満であり且つ(-3.5×10-2Ln(x)-1.6×10-1)以上の範囲にあることを特徴とする透明導電膜にある。
かかる第7の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第8の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がランタンであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲にあることを特徴とする透明導電膜にある。
かかる第8の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第9の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がランタンであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満であり且つ(-2.9×10-2Ln(x)-1.3×10-1)以上の範囲にあることを特徴とする透明導電膜にある。
かかる第9の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第10の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にあることを特徴とする透明導電膜にある。
かかる第10の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第11の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にあることを特徴とする透明導電膜にある。
かかる第11の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第12の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にあることを特徴とする透明導電膜にある。
かかる第12の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第13の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にあることを特徴とする透明導電膜にある。
かかる第13の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第14の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がイットリウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲にあることを特徴とする透明導電膜にある。
かかる第14の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第15の態様は、第1~3の何れかの態様に記載の透明導電膜において、前記添加元素がイットリウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満であり且つ(-2.2×10-2Ln(x)-1.5×10-1)以上の範囲にあることを特徴とする透明導電膜にある。
かかる第15の態様では、100℃未満で成膜した場合にアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化することができる。
本発明の第16の態様は、酸化インジウムと必要に応じて錫を含有すると共にSr(ストロンチウム)、Li(リチウム)、La(ランタン)、Ca(カルシウム)、Mg(マグネシウム)及びY(イットリウム)からなる群から選択される少なくとも一種である添加元素を含有する酸化物焼結体を具備するスパッタリングターゲットを用い、100℃未満、水の分圧が1.0×10-4Pa以上1.0×10-1Pa以下の条件下で、アモルファス膜を成膜することを特徴とする透明導電膜の製造方法にある。
かかる第16の態様では、アモルファス膜として成膜されるので、そのアモルファス膜は弱酸エッチングにより容易にパターニングでき、さらに容易に結晶化でき、またさらに結晶化した膜は低抵抗で且つ透過率が高いものである。
本発明の第17の態様は、第16の態様に記載の透明導電膜の製造方法において、アモルファス膜を成膜後、100℃~300℃でアニールすることにより結晶化して透明導電膜とすることを特徴とする透明導電膜の製造方法にある。
かかる第17の態様では、100℃未満で成膜してアモルファスな膜とし、その後、100℃~300℃でアニールして結晶化することができ、耐環境性を向上できる。
本発明の第18の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がストロンチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第19の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がストロンチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第20の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がリチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第21の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がリチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満であり且つ(-3.5×10-2Ln(x)-1.6×10-1)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第22の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がランタンであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第23の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がランタンであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満であり且つ(-2.9×10-2Ln(x)-1.3×10-1)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第24の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第25の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第26の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第27の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第28の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がイットリウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法にある。
本発明の第29の態様は、第16又は17の態様に記載の透明導電膜の製造方法において、前記添加元素がイットリウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満であり且つ(-2.2×10-2Ln(x)-1.5×10-1)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法にある。
本発明によれば、酸化インジウムに錫及び特定の添加元素を添加した組成とし、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下で成膜した膜は、比較的容易にアモルファス膜とすることができ、成膜後、弱酸エッチングにより容易にパターニングでき、さらに容易に結晶化でき、またさらに結晶化した膜は低抵抗で且つ透過率が高い透明導電膜を製造することができるという効果を奏する。
本発明の酸化インジウム系透明導電膜を形成するために用いる透明導電膜用スパッタリングターゲットは、酸化インジウムを主体とし、錫を含有するもので、且つSr(ストロンチウム)、Li(リチウム)、La(ランタン)、Ca(カルシウム)、Mg(マグネシウム)及びY(イットリウム)からなる群から選択される少なくとも一種の特定の添加元素を含有する酸化物焼結体であり、添加元素は、その酸化物のまま、あるいは複合酸化物として、あるいは固溶体として存在していればよく、特に限定されない。
添加元素の含有量は、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下で100℃以下の成膜温度で成膜した膜がアモルファス膜として成膜されるように選定すればよく、添加元素の種類や成膜条件で異なるが、インジウム1モルに対して0.00001モル以上0.10モル未満の範囲から選択することができる。
また、錫の含有量は、インジウム1モルに対して0.001~0.3モル、好ましくは、0.005~0.3モルの範囲から選択され、このような範囲で錫を含有するスパッタリングターゲットを用いて成膜されるのが望ましい。この範囲内であれば、スパッタリングターゲットのキャリヤ電子の密度並びに移動度を適切にコントロールして導電性を良好な範囲に保つことができる。また、この範囲を越えて添加すると、スパッタリングターゲットのキャリヤ電子の移動度を低下させると共に導電性を劣化させる方向に働くので好ましくない。
なお、このような特定組成を有するスパッタリングターゲットにより形成された透明導電膜中の添加元素や錫の含有量は、使用したスパッタリングターゲット中の含有量と同一の含有量となる。このような酸化インジウム系透明導電膜の組成分析は、単膜を全量溶解しICPで分析してもよい。また、膜自体が素子構成をなしている場合などは、必要に応じてFIB等により該当する部分の断面を切り出し、SEMやTEM等に付属している元素分析装置(EDSやWDS、オージェ分析など)を用いても特定することが可能である。
かかるスパッタリングターゲットは、DCマグネトロンスパッタリングでスパッタリング可能な程度の抵抗値を有しているので、比較的安価なDCマグネトロンスパッタリングでスパッタリング可能であるが、勿論、高周波マグネトロンスパッタリング装置を用いてもよい。
このような透明導電膜用スパッタリングターゲットを用い、水の分圧が1.0×10-4Pa以上1.0×10-1Pa以下の条件下で成膜したものとすることにより、同一組成で結晶化温度が比較的低いアモルファスの酸化インジウム系透明導電膜が形成できる。また、かかる水の分圧化で成膜した場合、アモルファス膜内に水素が取り込まれる。すなわち、成膜されたアモルファス膜は水素を含有するものとなり、水素を含有するか否かにより、上述した所定の水分圧化で成膜したか、又は実質的に水が存在しない1.0×10-4Pa未満で成膜したかを確認することができる。
ここで、水の分圧を上述した所定範囲とするためには、成膜チャンバに成膜時に導入する雰囲気ガス(一般的にはAr、必要に応じて酸素を含有したガスであり、例えば、10-4Pa台の圧力)と共に水蒸気をマスフローコントローラなどを介して導入すればよく、到達真空度が10-4Pa未満と高真空の場合には、雰囲気ガスの1/100~1/10程度の圧力とするのが好ましい。なお、到達真空度が10-4~10-3Pa程度と真空度が悪い条件下では、その残留ガスの主成分は、水である。つまり、その到達真空度がほぼ水の分圧に相当するので、水蒸気を特に導入することなく所望の水の分圧の状態を得ることができる。
このような本発明の酸化インジウム系透明導電膜は、添加元素が所定量含有されているので、成膜を室温以上で結晶化温度、すなわち、100℃以上の結晶化温度より低い温度条件で行うことにより、アモルファス状の状態で成膜されるというものである。また、このようなアモルファスな膜は、弱酸性のエッチャントでのエッチングを行うことができるという利点がある。また、このようなエッチングにより残渣がない状態で精細なパターンを形成することができるという効果を奏する。なお、本件明細書では、エッチングは、パターニング工程に含まれるもので、所定のパターンを得るためのものである。
また、得られる透明導電膜の抵抗率は添加元素や錫の含有量によっても異なるが、抵抗率が1.0×10-4~1.0×10-3Ω・cmである。
さらに、成膜した膜の結晶化温度は含有される添加元素や錫の含有量によって異なり、含有量が上昇するほど上昇するが、100℃~300℃の温度条件でアニールすることにより、結晶化させることができる。このような温度領域は通常の半導体製造プロセスで使用されているので、このようなプロセスの中で結晶化させることもできる。なお、この温度範囲の中で、100℃~300℃で結晶化するものが好ましく、150℃~250℃で結晶化するのがさらに好ましく、200℃~250℃で結晶化するものが最も好ましい。
ここで、アニールとは、大気中、雰囲気中、真空中などにおいて、所望の温度にて一定時間加熱することをさす。その一定時間とは、一般に数分から数時間程度であるが、工業的には効果が同じであれば短い時間が好まれる。
このようにアニールにより結晶化された後の透明導電膜は、短波長側の透過率が向上し、例えば、波長400~500nmの平均透過率が85%以上となる。また、これによって、IZOで問題となっているような膜が黄色みがかるという問題もない。なお、一般に短波長側の透過率は、高ければ高い方が好まれる。
一方、結晶化された透明導電膜は、エッチング耐性が向上し、アモルファスな膜ではエッチングが可能な弱酸性のエッチャントではエッチングできなくなる。これによって後工程での耐腐食性や、デバイス自体の耐環境性が向上する。
このように本発明では、添加元素の含有量を変化させることにより、成膜後の結晶化温度を所望の温度に設定できるので、成膜後、結晶化温度以上の温度の熱処理を受けないようにして、アモルファス状態を維持するようにしてもよいし、成膜後パターニングした後、結晶化する温度以上の温度で熱処理して結晶化し、耐エッチング特性を変化させるようにしてもよい。
ここで、アモルファスな膜として成膜できるかどうかは、上述したように成膜される膜の組成における結晶化温度より低い成膜温度で成膜する必要があり、錫や添加元素の含有量が少ない組成ほど結晶化温度が低くなり、錫や添加元素の含有量が多い組成ほど結晶化温度が高くなる傾向となるが、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下で成膜することにより、各組成の結晶化温度を水の分圧を1.0×10-4Pa未満で成膜したときと比較して50~100℃程度高くすることができる。
よって、特に、水の分圧を1.0×10-4Pa未満で成膜したときに、結晶化温度が100℃未満、特に室温近くになり、アモルファスな膜を得るための成膜条件がかなり厳しい組成範囲においては、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより、結晶化温度を、例えば、100℃以上と上昇させることができ、例えば、100℃程度の成膜条件でもアモルファスな膜を得ることができる。
勿論、添加元素の含有量が比較的高く、水の分圧が1.0×10-4Paよりも低い通常条件での成膜でも、結晶化温度が100℃以上のアモルファスな膜が成膜できる組成範囲においては、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下で成膜することにより、アニールによる結晶化温度が多少上昇するが、アモルファス膜が成膜できることはいうまでもない。
なお、水の分圧が1.0×10-4Paよりも低いと、上述したような結晶化温度を上昇させる効果が顕著ではなく、一方、水の分圧が上限(1.0×10-1Pa)よりも大きい場合には、得られる膜はアモルファスであるが、結晶化温度が上昇し、300℃のアニール条件でも結晶化しないため、比抵抗が低減せず、また、アニールして結晶化したとしても膜の比抵抗が低減せず、5.0×10-4Ω・cm以下の結晶化膜が得られがたくなり、好ましくはない。
このような水分圧の条件下で成膜されたアモルファス膜は、水素を含有するものであり、水素の存在は、上述する試験方法で確認することができる。
ここで、水の分圧が1.0×10-4Paよりも低い通常条件での成膜した場合、結晶化温度が100℃以上のアモルファス膜が成膜できない組成範囲においては、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより、アモルファス膜が得られるが、このような組成範囲は添加元素の種類によりことなる。以下、このような組成範囲について説明する。
添加元素がSrの場合、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより初めてアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化する組成範囲は、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するSrのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲となる。
また、このような範囲において、特に、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するSrのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ-1.6×10-2Ln(x)-3.7×10-2)以上の組成範囲では、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下でアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化し、成膜プロセスを考慮するとさらに好ましいものとなる。
添加元素がLiの場合、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより初めてアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化する組成範囲は、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するLiのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲となる。
また、このような範囲において、特に、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLiのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満であり且つ(-3.5×10-2Ln(x)-1.6×10-1)以上の組成範囲では、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下でアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化し、成膜プロセスを考慮するとさらに好ましいものとなる。
添加元素がLaの場合には、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより初めてアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化する組成範囲は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLaのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲である。
また、このような範囲において、特に、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLaのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満であり且つ-2.9×10-2Ln(x)-1.3×10-1)以上の組成範囲では、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下でアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化し、成膜プロセスを考慮するとさらに好ましいものとなる。
添加元素がCaの場合には、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより初めてアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化する組成範囲は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するCaのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲である。
また、このような範囲において、特に、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するCaのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲では、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下でアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化し、成膜プロセスを考慮するとさらに好ましいものとなる。
添加元素がMgの場合には、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより初めてアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化する組成範囲は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するMgのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲である。
また、このような範囲において、特に、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するMgのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲では、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下でアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化し、成膜プロセスを考慮するとさらに好ましいものとなる。
添加元素がYの場合には、水の分圧を1.0×10-4Pa以上1.0×10-1Pa以下の条件下とすることにより初めてアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化する組成範囲は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するYのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲である。
また、このような範囲において、特に、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するYのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満であり且つ(-2.2×10-2Ln(x)-1.5×10-1)以上の範囲では、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下でアモルファスな膜となり、その後、100℃~300℃でアニールした場合に結晶化し、成膜プロセスを考慮するとさらに好ましいものとなる。
次に、本発明で用いるスパッタリングターゲットの製造方法について説明するが、これは単に例示したものであり、製造方法は特に限定されるものではない。
まず、本発明のスパッタリングターゲットを構成する出発原料としては、一般的には構成元素の酸化物を用いるが、これらの単体、化合物、複合酸化物等を原料としてもよい。単体、化合物を使う場合はあらかじめ酸化物にするようなプロセスを通すようにする。
これらの原料粉を、所望の配合率で混合し、成形する方法は特に限定されず、従来から公知の各種湿式法又は乾式法を用いることができる。
乾式法としては、コールドプレス(Cold Press)法やホットプレス(Hot Press)法等を挙げることができる。コールドプレス法では、混合粉を成形型に充填して成形体を作製し、焼成させる。ホットプレス法では、混合粉を成形型内で焼成、焼結させる。
湿式法としては、例えば、濾過式成形法(特開平11-286002号公報参照)を用いるのが好ましい。この濾過式成形法は、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型であって、1個以上の水抜き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィルターと、このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、前記成形用下型、成形用型枠、シール材、およびフィルターが各々分解できるように組立てられており、該フィルター面側からのみスラリー中の水分を減圧排水する濾過式成形型を用い、混合粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂後、焼成する。
コールドプレス法や湿式法で成形したものの焼成温度は、1300~1650℃が好ましく、さらに好ましくは、1500~1650℃であり、その雰囲気は大気雰囲気、酸素雰囲気、非酸化性雰囲気、または真空雰囲気などである。一方、ホットプレス法の場合は、1200℃付近で焼結させることが好ましく、その雰囲気は、非酸化性雰囲気や真空雰囲気などである。なお、各方法において焼成した後には、所定寸法に成形・加工のための機械加工を施しターゲットとする。
以下、本発明を実施例に基づいて説明するが、これに限定されるものではない。
(スパッタリングターゲット製造例1)(Sr-ITO)
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.9%のSrCO3粉を用意し、まず、In2O3粉及び、SrCO3粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、SrIn2O4粉を得た。次いで上記、SrIn2O4粉、In2O3粉およびSnO2粉を全量約1.0kg用意し(各金属原子の組成は、下記表1、2に示すものとした)、これをボールミル混合した。その後バインダーとしてPVA水溶液を添加して混合、乾燥し、コールドプレスして成形体を得た。この成形体を、大気中600℃で10時間、60℃/hの昇温で脱脂し、次いで、酸素雰囲気下、1550℃で8時間焼成して焼結体を得た。焼成条件は具体的には、室温から800℃まで200℃/hで昇温し、800℃から1550℃まで400℃/hで昇温し、8時間保持した後、1550℃から室温まで100℃/hの条件で冷却という条件である。その後、この焼結体を加工しターゲットを得た。
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.9%のSrCO3粉を用意し、まず、In2O3粉及び、SrCO3粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、SrIn2O4粉を得た。次いで上記、SrIn2O4粉、In2O3粉およびSnO2粉を全量約1.0kg用意し(各金属原子の組成は、下記表1、2に示すものとした)、これをボールミル混合した。その後バインダーとしてPVA水溶液を添加して混合、乾燥し、コールドプレスして成形体を得た。この成形体を、大気中600℃で10時間、60℃/hの昇温で脱脂し、次いで、酸素雰囲気下、1550℃で8時間焼成して焼結体を得た。焼成条件は具体的には、室温から800℃まで200℃/hで昇温し、800℃から1550℃まで400℃/hで昇温し、8時間保持した後、1550℃から室温まで100℃/hの条件で冷却という条件である。その後、この焼結体を加工しターゲットを得た。
(スパッタリングターゲット製造例2)(Li-ITO)
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.9%のLi2CO3粉を用意した。
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.9%のLi2CO3粉を用意した。
まず、In2O3粉及びLi2CO3粉を用意し、乾燥状態でボールミル混合し、大気中1000℃で3時間仮焼し、LiInO2粉を得た。次いで、LiInO2粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表3、4に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。ただし、焼成温度は1450℃である。
(スパッタリングターゲット製造例3)(La-ITO)
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.99%のLa2(CO3)3・8H2O粉を用意し、まず、In2O3粉及びLa2(CO3)3・8H2O粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、LaInO3粉を得た。次いで、LaInO3粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表5、6に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.99%のLa2(CO3)3・8H2O粉を用意し、まず、In2O3粉及びLa2(CO3)3・8H2O粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、LaInO3粉を得た。次いで、LaInO3粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表5、6に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
(スパッタリングターゲット製造例4)(Ca-ITO)
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.5%のCaCO3を用意し、まず、In2O3粉及びCaCO3粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、CaIn2O4粉を得た。次いで、CaIn2O4粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表7、8に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.5%のCaCO3を用意し、まず、In2O3粉及びCaCO3粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、CaIn2O4粉を得た。次いで、CaIn2O4粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表7、8に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
(スパッタリングターゲット製造例5)(Mg-ITO)
純度>99.99%のIn2O3粉、SnO2粉、および炭酸水酸化マグネシウム粉(MgO含有量41.5wt%)を用意し、まず、In2O3粉及び炭酸水酸化マグネシウム粉を乾燥状態でボールミル混合し、大気中1400℃で3時間仮焼し、MgIn2O4粉を得た。次いで、MgIn2O4粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表9、10に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
純度>99.99%のIn2O3粉、SnO2粉、および炭酸水酸化マグネシウム粉(MgO含有量41.5wt%)を用意し、まず、In2O3粉及び炭酸水酸化マグネシウム粉を乾燥状態でボールミル混合し、大気中1400℃で3時間仮焼し、MgIn2O4粉を得た。次いで、MgIn2O4粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表9、10に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
(スパッタリングターゲット製造例6)(Y-ITO)
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.99%のY2(CO3)3・3H2O粉を用意し、まず、In2O3粉及びY2(CO3)3・3H2O粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、YInO3粉を得た。次いで、YInO3粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表11、12に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
純度>99.99%のIn2O3粉、SnO2粉、および純度>99.99%のY2(CO3)3・3H2O粉を用意し、まず、In2O3粉及びY2(CO3)3・3H2O粉を乾燥状態でボールミル混合し、大気中1200℃で3時間仮焼し、YInO3粉を得た。次いで、YInO3粉、In2O3粉およびSnO2粉を全量約1.0kg用意(各金属原子の組成は、下記表11、12に示すものとした)した以外はSr-ITOと同様にターゲットを作製した。
(Sr含有組成透明導電膜試験例1)
上述したとおり製造した表1に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
上述したとおり製造した表1に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで、全てのサンプルにおいて室温成膜の最適酸素分圧と、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧とが異なった。
下記表13には、最適酸素分圧の変化があったものを○、最適酸素分圧の変化がなかったものを×として示した。
各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、これらのサンプルを大気中にて250℃で1時間アニールし、室温成膜時と250℃アニール後の結晶状態について、アモルファスはa、結晶はcとし、これらを表13に示した。
また、各組成の結晶化温度を測定し、表13に示した。結晶化温度は室温で成膜した後、結晶化する温度であり、室温成膜でアモルファスとならないものは100℃未満とした。
さらに、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、アニール後のサンプルの抵抗率ρ(Ω・cm)を測定した。これらの結果を表13に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、アニール後の膜について透過スペクトルを測定した。アニール後の平均透過率を表13に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、それぞれ10×50mmの大きさに切り出し、エッチング液としてITO-05N(シュウ酸系、関東化学(株)製)(シュウ酸濃度50g/L)を用い、温度30℃で、エッチングレート(Å/sec)を測定した。結果を表13に示す。
(Sr含有組成透明導電膜試験例2)
上述したとおり製造した表1に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表1に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表14に示す。
(Sr含有組成透明導電膜参考例)
上述したとおり製造した表2に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表2に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表15に示す。
これら表13~表15の結果をそれぞれ図1~図3に示す。
ここで、図1及び図2において、(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲で、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、アモルファス膜として成膜できないものを△で示した。
また、図3においては、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、それ以外を▲で示した。
ここで、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するSrのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値以上であり且つ(-2.9×10-1Ln(x)-6.7×10-1)の値以下の範囲の範囲は、図3から明らかなように、水圧力が5.0×10-6Paと実質的に水が存在しない状態でもアモルファス膜として成膜できる範囲である。
この結果、添加元素がSrの場合、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するSrのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲では、100℃未満で、水圧力1.0×10-2Paで成膜した場合には全てアモルファスな膜となり、その後、100℃~300℃でアニールした場合に、結晶化するものであった。
また、この中で、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するSrのモル比xで表される(-1.6×10-2Ln(x)-3.7×10-2)未満の範囲では、水圧力を8.0×10-4Paとした場合、結晶化温度が100℃未満となり、アモルファス膜として成膜するのは困難であることがわかった。よって、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するSrのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲が特に好ましく、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜すれば、100℃未満の温度でアモルファス膜が成膜でき、成膜後は、100℃~300℃でアニールすることにより結晶化できる膜となることがわかった。
(Li含有組成透明導電膜試験例1)
上述したとおり製造した表3に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
上述したとおり製造した表3に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで、全てのサンプルにおいて室温成膜の最適酸素分圧と、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧とが異なった。
下記表16には、最適酸素分圧の変化があったものを○、最適酸素分圧の変化がなかったものを×として示した。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、これらのサンプルを大気中にて250℃で1時間アニールし、室温成膜時と250℃アニール後の結晶状態について、アモルファスはa、結晶はcとし、これらを表16に示した。
また、各組成の結晶化温度を測定し、表16に示した。結晶化温度は室温で成膜した後、結晶化する温度であり、室温成膜でアモルファスとならないものは100℃未満とした。
さらに、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、アニール後のサンプルの抵抗率ρ(Ω・cm)を測定した。これらの結果を表16に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、アニール後の膜について透過スペクトルを測定した。アニール後の平均透過率を表16に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、それぞれ10×50mmの大きさに切り出し、エッチング液としてITO-05N(シュウ酸系、関東化学(株)製)(シュウ酸濃度50g/L)を用い、温度30℃で、エッチングレート(Å/sec)を測定した。結果を表16に示す。
(Li含有組成透明導電膜試験例2)
上述したとおり製造した表3に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表3に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表17に示す。
(Li含有組成透明導電膜参考例)
上述したとおり製造した表4に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表4に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表18に示す。
これら表16~表18の結果をそれぞれ図4~図6に示す。
ここで、図4及び図5において、(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲で、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、アモルファス膜として成膜できないものを△で示した。
また、図6においては、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、それ以外を▲で示した。
ここで、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するLiのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値以上であり且つ(-2.5×10-1Ln(x)-5.7×10-1)の値以下の範囲は、図6から明らかなように、水圧力が5.0×10-6Paと実質的に水が存在しない状態でもアモルファス膜として成膜できる範囲である。
この結果、添加元素がLiの場合、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するLiのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲では、100℃未満で、水圧力1.0×10-2Paで成膜した場合には全てアモルファスな膜となり、その後、100℃~300℃でアニールした場合に、結晶化するものであった。
また、この中で、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLiのモル比xで表される(-3.5×10-2Ln(x)-1.6×10-1)未満の範囲では、水圧力を8.0×10-4Paとした場合、結晶化温度が100℃未満となり、アモルファス膜として成膜するのは困難であることがわかった。よって、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLiのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満であり且つ(-3.5×10-2Ln(x)-1.6×10-1)以上の範囲が特に好ましく、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜すれば、100℃未満の温度でアモルファス膜が成膜でき、成膜後は、100℃~300℃でアニールすることにより結晶化できる膜となることがわかった。
(La含有組成透明導電膜試験例1)
上述したとおり製造した表5に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
上述したとおり製造した表5に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで、全てのサンプルにおいて室温成膜の最適酸素分圧と、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧とが異なった。
下記表19には、最適酸素分圧の変化があったものを○、最適酸素分圧の変化がなかったものを×として示した。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、これらのサンプルを大気中にて250℃で1時間アニールし、室温成膜時と250℃アニール後の結晶状態について、アモルファスはa、結晶はcとし、これらを表19に示した。
また、各組成の結晶化温度を測定し、表19に示した。結晶化温度は室温で成膜した後、結晶化する温度であり、室温成膜でアモルファスとならないものは100℃未満とした。
さらに、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、アニール後のサンプルの抵抗率ρ(Ω・cm)を測定した。これらの結果を表19に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、アニール後の膜について透過スペクトルを測定した。アニール後の平均透過率を表19に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、それぞれ10×50mmの大きさに切り出し、エッチング液としてITO-05N(シュウ酸系、関東化学(株)製)(シュウ酸濃度50g/L)を用い、温度30℃で、エッチングレート(Å/sec)を測定した。結果を表19に示す。
(La含有組成透明導電膜試験例2)
上述したとおり製造した表5に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表5に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表20に示す。
(La含有組成透明導電膜参考例)
上述したとおり製造した表6に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表6に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表21に示す。
これら表19~表21の結果をそれぞれ図7~図9に示す。
ここで、図7及び図8において、(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲で、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、アモルファス膜として成膜できないものを△で示した。
また、図9においては、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、それ以外を▲で示した。
ここで、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するLaのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値以上であり且つ(-3.3×10-1Ln(x)-7.7×10-1)の値以下の範囲は、図9から明らかなように、水圧力が5.0×10-6Paと実質的に水が存在しない状態でもアモルファス膜として成膜できる範囲である。
この結果、添加元素がLaの場合、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するLaのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲では、100℃未満で、水圧力1.0×10-2Paで成膜した場合には全てアモルファスな膜となり、その後、100℃~300℃でアニールした場合に、結晶化するものであった。
また、この中で、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLaのモル比xで表される(-2.9×10-2Ln(x)-1.3×10-1)未満の範囲では、水圧力を8.0×10-4Paとした場合、結晶化温度が100℃未満となり、アモルファス膜として成膜するのは困難であることがわかった。よって、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するLaのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満であり且つ-2.9×10-2Ln(x)-1.3×10-1)以上の範囲が特に好ましく、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜すれば、100℃未満の温度でアモルファス膜が成膜でき、成膜後は、100℃~300℃でアニールすることにより結晶化できる膜となることがわかった。
(Ca含有組成透明導電膜試験例1)
上述したとおり製造した表7に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
上述したとおり製造した表7に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで、全てのサンプルにおいて室温成膜の最適酸素分圧と、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧とが異なった。
下記表22には、最適酸素分圧の変化があったものを○、最適酸素分圧の変化がなかったものを×として示した。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、これらのサンプルを大気中にて250℃で1時間アニールし、室温成膜時と250℃アニール後の結晶状態について、アモルファスはa、結晶はcとし、これらを表22示した。
また、各組成の結晶化温度を測定し、表22に示した。結晶化温度は室温で成膜した後、結晶化する温度であり、室温成膜でアモルファスとならないものは100℃未満とした。
さらに、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、アニール後のサンプルの抵抗率ρ(Ω・cm)を測定した。これらの結果を表22に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、アニール後の膜について透過スペクトルを測定した。アニール後の平均透過率を表22に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、それぞれ10×50mmの大きさに切り出し、エッチング液としてITO-05N(シュウ酸系、関東化学(株)製)(シュウ酸濃度50g/L)を用い、温度30℃で、エッチングレート(Å/sec)を測定した。結果を表22に示す。
(Ca含有組成透明導電膜試験例2)
上述したとおり製造した表7に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表7に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表23に示す。
(Ca含有組成透明導電膜参考例)
上述したとおり製造した表8に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表8に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表24に示す。
これら表22~表24の結果をそれぞれ図10~図12に示す。
ここで、図10及び図11において、(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲で、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、アモルファス膜として成膜できないものを△で示した。
また、図12においては、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、それ以外を▲で示した。
ここで、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するCaのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値以上であり且つ(-2.5×10-1Ln(x)-5.7×10-1)の値以下の範囲は、図12から明らかなように、水圧力が5.0×10-6Paと実質的に水が存在しない状態でもアモルファス膜として成膜できる範囲である。
この結果、添加元素がCaの場合、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するCaのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲では、100℃未満で、水圧力1.0×10-2Paで成膜した場合には全てアモルファスな膜となり、その後、100℃~300℃でアニールした場合に、結晶化するものであった。
また、この中で、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するCaのモル比xで表される(-1.6×10-2Ln(x)-3.7×10-2)未満の範囲では、水圧力を8.0×10-4Paとした場合、結晶化温度が100℃未満となり、アモルファス膜として成膜するのは困難であることがわかった。よって、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するCaのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲が特に好ましく、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜すれば、100℃未満の温度でアモルファス膜が成膜でき、成膜後は、100℃~300℃でアニールすることにより結晶化できる膜となることがわかった。
(Mg含有組成透明導電膜試験例1)
上述したとおり製造した表9に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
上述したとおり製造した表9に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで、全てのサンプルにおいて室温成膜の最適酸素分圧と、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧とが異なった。
下記表25には、最適酸素分圧の変化があったものを○、最適酸素分圧の変化がなかったものを×として示した。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、これらのサンプルを大気中にて250℃で1時間アニールし、室温成膜時と250℃アニール後の結晶状態について、アモルファスはa、結晶はcとし、これらを表25に示した。
また、各組成の結晶化温度を測定し、表25に示した。結晶化温度は100℃で成膜した後、結晶化する温度であり、100℃成膜でアモルファスとならないものは100℃未満とした。
さらに、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、アニール後のサンプルの抵抗率ρ(Ω・cm)を測定した。これらの結果を表25に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、アニール後の膜について透過スペクトルを測定した。アニール後の平均透過率を表25に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、それぞれ10×50mmの大きさに切り出し、エッチング液としてITO-05N(シュウ酸系、関東化学(株)製)(シュウ酸濃度50g/L)を用い、温度30℃で、エッチングレート(Å/sec)を測定した。結果を表25に示す。
(Mg含有組成透明導電膜試験例2)
上述したとおり製造した表9に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表9に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表26に示す。
(Mg含有組成透明導電膜参考例)
上述したとおり製造した表10に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表10に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表27に示す。
これら表25~表27の結果をそれぞれ図13~図15に示す。
ここで、図13及び図14において、(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲で、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、アモルファス膜として成膜できないものを△で示した。
また、図15においては、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、それ以外を▲で示した。
ここで、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するMgのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値以上であり且つ(-2.5×10-1Ln(x)-5.7×10-1)の値以下の範囲は、図15から明らかなように、水圧力が5.0×10-6Paと実質的に水が存在しない状態でもアモルファス膜として成膜できる範囲である。
この結果、添加元素がMgの場合、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するMgのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲では、100℃未満で、水圧力1.0×10-2Paで成膜した場合には全てアモルファスな膜となり、その後、100℃~300℃でアニールした場合に、結晶化するものであった。
また、この中で、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するMgのモル比xで表される(-1.6×10-2Ln(x)-3.7×10-2)未満の範囲では、水圧力を8.0×10-4Paとした場合、結晶化温度が100℃未満となり、アモルファス膜として成膜するのは困難であることがわかった。よって、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するMgのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲が特に好ましく、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜すれば、100℃未満の温度でアモルファス膜が成膜でき、成膜後は、100℃~300℃でアニールすることにより結晶化できる膜となることがわかった。
(Y含有組成透明導電膜試験例1)
上述したとおり製造した表11に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
上述したとおり製造した表11に示す組成のターゲットを用い、これを4インチのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度を室温(約20℃)、酸素分圧を0~3.0sccmの間で変化させながら(0~1.1×10-2Paに相当)、各組成の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力:0~1.1×10-2[Pa]
水圧力:1.0×10-2[Pa]
基板温度:室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで全てのサンプルにおいて室温成膜の最適酸素分圧と、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧とが異なった。
下記表28には、最適酸素分圧の変化があったものを○、最適酸素分圧の変化がなかったものを×として示した。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、これらのサンプルを大気中にて250℃で1時間アニールし、室温成膜時と250℃アニール後の結晶状態について、アモルファスはa、結晶はcとし、これらを表28に示した。
また、各組成の結晶化温度を測定し、表28に示した。結晶化温度は室温で成膜した後、結晶化する温度であり、室温成膜でアモルファスとならないものは100℃未満とした。
さらに、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、アニール後のサンプルの抵抗率ρ(Ω・cm)を測定した。これらの結果を表28に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜した透明導電膜を、それぞれ13mm角の大きさに切り出し、アニール後の膜について透過スペクトルを測定した。アニール後の平均透過率を表28に示す。
また、各組成について、250℃アニール後に最も抵抗率が低い成膜時の酸素分圧で成膜し、それぞれ10×50mmの大きさに切り出し、エッチング液としてITO-05N(シュウ酸系、関東化学(株)製)(シュウ酸濃度50g/L)を用い、温度30℃で、エッチングレート(Å/sec)を測定した。結果を表28に示す。
(Y含有組成透明導電膜試験例2)
上述したとおり製造した表11に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表11に示す組成のターゲットを用い、水圧力を8.0×10-4Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表29に示す。
(Y含有組成透明導電膜参考例)
上述したとおり製造した表12に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
上述したとおり製造した表12に示す組成のターゲットを用い、水圧力を5.0×10-6Paとした以外は、上述した条件で、各組成の透明導電膜を得た。
また、上述した通り、最適酸素分圧の変化の有無、結晶化温度、アニール後のサンプルの抵抗率ρ(Ω・cm)、アニール後の平均透過率、成膜後の透明導電膜のエッチングレート(Å/sec)をそれぞれ求め、表30に示す。
これら表28~表30の結果をそれぞれ図16~図18に示す。
ここで、図16及び図17において、(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲で、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、アモルファス膜として成膜できないものを△で示した。
また、図18においては、100℃未満の成膜温度でアモルファス膜として成膜でき、100~300℃で結晶化できるサンプルを●、それ以外を▲で示した。
ここで、インジウム1モルに対しての錫のモル比y(モル)が、インジウム1モルに対するYのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値以上であり且つ(-1.0×10-1Ln(x)-5.0×10-2)の値以下の範囲は、図18から明らかなように、水圧力が5.0×10-6Paと実質的に水が存在しない状態でもアモルファス膜として成膜できる範囲である。
この結果、添加元素がYの場合、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するYのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲では、100℃未満で、水圧力1.0×10-2Paで成膜した場合には全てアモルファスな膜となり、その後、100℃~300℃でアニールした場合に、結晶化するものであった。
また、この中で、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するYのモル比xで表される(-2.2×10-2Ln(x)-1.5×10-1)未満の範囲では、水圧力を8.0×10-4Paとした場合、結晶化温度が100℃未満となり、アモルファス膜として成膜するのは困難であることがわかった。よって、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するYのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満であり且つ(-2.2×10-2Ln(x)-1.5×10-1)以上の範囲が特に好ましく、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜すれば、100℃未満の温度でアモルファス膜が成膜でき、成膜後は、100℃~300℃でアニールすることにより結晶化できる膜となることがわかった。
(水素存在確認試験)
成膜されたアモルファス膜内に含有される水素は、アニールによる結晶化に伴い、膜内もしくは雰囲気中の酸素と結びつき、水ガスとして脱離するとの推測に基づき、昇温脱離法(TPD)で加熱時に発生する水ガスの検出を行うことにより、膜内に水素が含有されていることを確認した。
成膜されたアモルファス膜内に含有される水素は、アニールによる結晶化に伴い、膜内もしくは雰囲気中の酸素と結びつき、水ガスとして脱離するとの推測に基づき、昇温脱離法(TPD)で加熱時に発生する水ガスの検出を行うことにより、膜内に水素が含有されていることを確認した。
以下、Sr添加ITOであるA8を試験試料とした確認試験を示す。
4インチのDCマグネトロンスパッタ装置にサンプルA8のスパッタリングターゲットをそれぞれ装着し、基板温度を室温(約20℃)、成膜時の水分圧0Pa(TPD試験例1とする)、8.0×10-4Pa(TPD試験例2とする)及び1.0×10-2Pa(TPD試験例3とする)条件でTPD試験例1~3の透明導電膜を得た。
4インチのDCマグネトロンスパッタ装置にサンプルA8のスパッタリングターゲットをそれぞれ装着し、基板温度を室温(約20℃)、成膜時の水分圧0Pa(TPD試験例1とする)、8.0×10-4Pa(TPD試験例2とする)及び1.0×10-2Pa(TPD試験例3とする)条件でTPD試験例1~3の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1.8μmの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.0×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力 :0[Pa]
水圧力 :0、8.0×10-4、1.0×10-2[Pa]
基板温度 :室温
スパッタ電力 :130W (電力密度1.6W / cm2)
使用基板 :電解銅箔t = 15μm
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.0×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力 :0[Pa]
水圧力 :0、8.0×10-4、1.0×10-2[Pa]
基板温度 :室温
スパッタ電力 :130W (電力密度1.6W / cm2)
使用基板 :電解銅箔t = 15μm
ここで、各条件で成膜した試料の結晶状態を薄膜XRDで分析したところ、TPD試験例1では結晶化、TPD試験例2及び3ではアモルファスとなっていることが確認された。
各膜試料に存在する水素は、TPD(日本ベル製)により以下に示す測定条件で、加熱時に発生する水ガスを、四重極式質量分析装置(QMS)にて質量数(m/e)=18のフラグメントイオン(H2O+)の強度を比較することで確認した。なお、基板である銅箔内に含まれる水ガスの脱離挙動についても調べるため、ブランクとして銅箔試料の測定も行った。
[測定条件]
測定雰囲気 :20%O2-80%He
ガス流量 :50ccm
前処理 :120℃、30minキープ(試料に付着した水分を除去するため)
測定温度 :120~600℃
昇温速度 :4℃/min
測定雰囲気 :20%O2-80%He
ガス流量 :50ccm
前処理 :120℃、30minキープ(試料に付着した水分を除去するため)
測定温度 :120~600℃
昇温速度 :4℃/min
図19には各膜試料及びブランクである銅箔試料の前処理後120~600℃における質量数(m/e)=18のフラグメントイオン(H2O+)の強度変化を示す。全ての試料の全測定温度範囲でH2O+イオンが検出されているが、これらは装置内や雰囲気ガスに存在する水分の影響であると考えられる。このような挙動は、あらゆる試料を測定しても常に検出されることから、これらをベースラインとして考え、強度補正するのが一般的である。そこで本測定結果においても同様に、ベースライン補正処理を行った。その結果を図20に示す。
まず、ブランクである銅箔試料では、200~300℃において僅かであるがH2O+イオンのピークが認められた。これは銅箔試料に含有している水分が脱離したものであると考えられる。また実質的に水が存在しない雰囲気下で成膜したTPD試験例1は、ほぼブランクである銅箔試料のH2O+イオンのピークと重なっている。このことから、TPD試験例1の試料内にはほとんど水素は含有していないと言える。一方、成膜時の水分圧を上昇させて水を添加したTPD試験例2及び3では200~300℃の温度範囲にとどまらず、300℃以上においてもH2O+イオンのピークが確認された。特に成膜時の水の添加量が多いTPD試験例3では、400℃付近に大きなH2O+イオンのピークがあるのが確認された。
以上の結果により、TPD試験例2及び3から、成膜時に水素分圧を所定範囲として水を添加することで、膜内に水素が取り込まれ、水素が含有されることが分かった。また、TPD試験例2及び3の結晶化温度はそれぞれ200℃及び300℃であるが、これらの試料のH2O+イオンのピークは300℃以上でも確認されていることから、これらの試料は結晶化後も水ガスが脱離していることが分かった。
なお、最近の研究では、スパッタ法及び電子ビーム蒸着にて成膜されたITO膜内に含有する微量な水分について、昇温脱離法(TPD:Temperature Programmed Desorption)を用いて定量化を行っている報告例もある(J. Therm. Anal. Calori., 69 (2002) 1021-1029. )。従って、膜内水素の存在を確認するために、TPDを用いて、脱離する水ガスを検出する手法は非常に有用であると言える。なお、同種の方法である昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)も有用であると言える。
また、以上の測定結果は添加元素がSrの場合であるが、他の添加元素(Li、La、Ca、Mg、Y)は、酸素結合エネルギーが100~350kJ/molの範囲にある点で共通するので、他の添加元素(Li、La、Ca、Mg、Y)の場合も、成膜時の水分圧を制御することで、膜内に水分が取り込まれることによる水素量を変化させることができることは明らかであり、水分圧を所定範囲として成膜されたアモルファス膜には同様に水素が含有されていることが明らかである。
なお、本発明による透明導電膜が、実際に液晶表示装置やガラスの結露防止用発熱膜、赤外線反射膜等に搭載されている場合、それらの膜内に存在する水素を確認するためには、成膜されている基板を取り出し、上述したTPD法により、加熱時に発生する水ガスを検出することで可能である。
また、膜内に存在する水素の直接的な確認及び定量のためには、Koideらの報告例(Jpn. J. Appl. Phys., 46, No. 28(2007) L685-L687)にある水素前方散乱法(HFS)を用いると可能である。
さらに、TOF-SIMS及びダイナミックSIMSでも、膜内に存在する水素を分析可能である。
以下に参考例として、Ba添加ITO膜についてではあるが、TOF-SIMSによって膜内に含有された水素を確認した試験を示す。
(参考試験例)
4インチのDCマグネトロンスパッタ装置に、In1モルに対して、Sn0.05モル、Ba0.05モル含有するBa-ITOスパッタリングターゲットをそれぞれ装着し、基板温度を室温(約20℃)、水の分圧を5.0×10-5Pa(TOF試験例1とする)、5.0×10-3Pa(TOF試験例2とする)及び1.0×10-2Pa(TOF試験例3とする)、の3条件でTOF試験例1~3の透明導電膜を得た。
4インチのDCマグネトロンスパッタ装置に、In1モルに対して、Sn0.05モル、Ba0.05モル含有するBa-ITOスパッタリングターゲットをそれぞれ装着し、基板温度を室温(約20℃)、水の分圧を5.0×10-5Pa(TOF試験例1とする)、5.0×10-3Pa(TOF試験例2とする)及び1.0×10-2Pa(TOF試験例3とする)、の3条件でTOF試験例1~3の透明導電膜を得た。
スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
ターゲット寸法 :Φ=4in. t=6mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力 :0[Pa]
水圧力 :5.0×10-5、5.0×10-3、1.0×10-2[Pa]
基板温度 :室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
スパッタ方式 :DCマグネトロンスパッタ
排気装置 :ロータリーポンプ+クライオポンプ
到達真空度 :5.3×10-5[Pa]
Ar圧力 :4.0×10-1[Pa]
酸素圧力 :0[Pa]
水圧力 :5.0×10-5、5.0×10-3、1.0×10-2[Pa]
基板温度 :室温
スパッタ電力 :130W (電力密度1.6W/cm2)
使用基板 :コーニング#1737(液晶ディスプレイ用ガラス) t=0.8mm
ここで、各条件において成膜した試料の結晶状態を薄膜XRDで分析したところ、TOF試験例2、3ではアモルファス、TOF試験例1では結晶化していることが確認された。
また、各膜内の水素の存在については、飛行時間型二次イオン質量分析法(TOF-SIMS、ULVAC PHI社製 TRIFT IV)を用い、各試料について、以下に示す測定条件により、検出される(H+イオン数)/(全イオン数)を比較することで確認した。
[測定条件]
一次イオン: Au+
加速電圧: 30kV
スキャン条件: ラスタースキャン(200×200μm)
一次イオン: Au+
加速電圧: 30kV
スキャン条件: ラスタースキャン(200×200μm)
表31は、成膜した試料のTOF-SIMS分析結果である、(H+イオンのカウント数)/(全イオンのカウント数)を示す。
ここで、成膜時の水分圧が5.0×10-5と実質的に水が存在しない雰囲気下で成膜したTOF試験例1の試料においてもH+イオンが検出されているが、これはバックラウンドとして判断することができる。すなわち、最近の研究において、TOF試験例1の水分圧よりも低い分圧で成膜した酸化インジウム膜からH+イオンが検出されたことが報告されている(Jpn.J.Appl.Phys.,Vol.46,No.28,2007,pp.L685-L687)ことからすると、検出された水素イオンは成膜時に基板に付着した僅かな水分が膜内に取り込まれたものと推測できる。よって、実質的に水が存在しない雰囲気下である水分圧が5.0×10-5以下の雰囲気で成膜したサンプルの(H+イオン数)/(全イオン数)である7.75×10-4を基準値とし、これより増えた(H+イオン数)/(全イオン数)を膜に含有される水素イオンとすることができる。
よって、TOF試験例2及び3の(H+イオンのカウント数)/(全イオンのカウント数)を比較すると、成膜時の水分圧が大きくなるに従って大きくなっていることが分かる。従って、TOF試験例2および3のように、成膜時の水分圧をコントロールすることで、膜内に水分が取り込まれることによる水素量を変化をさせることができることが確認できた。なお、膜内に取り込まれた水素は、膜内の原子のダングリングボンド(未結合手)と水素終端されることで、膜の結晶化を阻害する効果を有すると推測される。
Claims (29)
- 酸化インジウムと必要に応じて錫を含有すると共にSr(ストロンチウム)、Li(リチウム)、La(ランタン)、Ca(カルシウム)、Mg(マグネシウム)及びY(イットリウム)からなる群から選択される少なくとも一種である添加元素を含有する酸化物焼結体を具備するスパッタリングターゲットを用い、水の分圧が1.0×10-4Pa以上1.0×10-1Pa以下の条件下でアモルファス膜として成膜されたものであることを特徴とする透明導電膜。
- 請求項1に記載の透明導電膜において、前記アモルファスな膜が水素を含有することを特徴とする透明導電膜。
- 請求項1又は2に記載の透明導電膜において、アモルファス膜を成膜後、アニールすることにより結晶化されたものであることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がストロンチウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がストロンチウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がリチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がリチウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満であり且つ(-3.5×10-2Ln(x)-1.6×10-1)以上の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がランタンであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がランタンであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満であり且つ(-2.9×10-2Ln(x)-1.3×10-1)以上の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がイットリウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲にあることを特徴とする透明導電膜。
- 請求項1~3の何れか1項に記載の透明導電膜において、前記添加元素がイットリウムであり、膜組成は、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満であり且つ(-2.2×10-2Ln(x)-1.5×10-1)以上の範囲にあることを特徴とする透明導電膜。
- 酸化インジウムと必要に応じて錫を含有すると共にSr(ストロンチウム)、Li(リチウム)、La(ランタン)、Ca(カルシウム)、Mg(マグネシウム)及びY(イットリウム)からなる群から選択される少なくとも一種である添加元素を含有する酸化物焼結体を具備するスパッタリングターゲットを用い、100℃未満、水の分圧が1.0×10-4Pa以上1.0×10-1Pa以下の条件下で、アモルファス膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16に記載の透明導電膜の製造方法において、アモルファス膜を成膜後、100℃~300℃でアニールすることにより結晶化して透明導電膜とすることを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がストロンチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がストロンチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するストロンチウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がリチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がリチウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するリチウムのモル比xで表される(-1.6×10-1Ln(x)-5.9×10-1)の値未満であり且つ(-3.5×10-2Ln(x)-1.6×10-1)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がランタンであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がランタンであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するランタンのモル比xで表される(-6.7×10-2Ln(x)-2.2×10-1)の値未満であり且つ(-2.9×10-2Ln(x)-1.3×10-1)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がカルシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するカルシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がマグネシウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するマグネシウムのモル比xで表される(-4.1×10-2Ln(x)-9.3×10-2)の値未満であり且つ(-1.6×10-2Ln(x)-3.7×10-2)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がイットリウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満の範囲にある膜組成の膜を成膜することを特徴とする透明導電膜の製造方法。
- 請求項16又は17に記載の透明導電膜の製造方法において、前記添加元素がイットリウムであり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するイットリウムのモル比xで表される(-2.5×10-2Ln(x)-5.8×10-2)の値未満であり且つ(-2.2×10-2Ln(x)-1.5×10-1)以上の範囲にある膜組成の膜を、水の分圧が1.0×10-4Pa以上1.0×10-3Pa以下の条件下で成膜することを特徴とする透明導電膜の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-094444 | 2009-04-08 | ||
JP2009094444 | 2009-04-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010116981A1 true WO2010116981A1 (ja) | 2010-10-14 |
Family
ID=42936264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056195 WO2010116981A1 (ja) | 2009-04-08 | 2010-04-06 | 酸化インジウム系透明導電膜及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010116981A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06290641A (ja) * | 1993-03-30 | 1994-10-18 | Asahi Glass Co Ltd | 非晶質透明導電膜 |
JPH09161542A (ja) * | 1995-12-07 | 1997-06-20 | Idemitsu Kosan Co Ltd | 透明導電積層体およびこれを用いたタッチパネル |
JP2003105532A (ja) * | 2001-06-26 | 2003-04-09 | Mitsui Mining & Smelting Co Ltd | 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法 |
JP2004149883A (ja) * | 2002-10-31 | 2004-05-27 | Mitsui Mining & Smelting Co Ltd | 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法 |
JP2007291521A (ja) * | 2006-03-31 | 2007-11-08 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲット及び酸化物焼結体の製造方法 |
-
2010
- 2010-04-06 WO PCT/JP2010/056195 patent/WO2010116981A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06290641A (ja) * | 1993-03-30 | 1994-10-18 | Asahi Glass Co Ltd | 非晶質透明導電膜 |
JPH09161542A (ja) * | 1995-12-07 | 1997-06-20 | Idemitsu Kosan Co Ltd | 透明導電積層体およびこれを用いたタッチパネル |
JP2003105532A (ja) * | 2001-06-26 | 2003-04-09 | Mitsui Mining & Smelting Co Ltd | 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法 |
JP2004149883A (ja) * | 2002-10-31 | 2004-05-27 | Mitsui Mining & Smelting Co Ltd | 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法 |
JP2007291521A (ja) * | 2006-03-31 | 2007-11-08 | Mitsui Mining & Smelting Co Ltd | スパッタリングターゲット及び酸化物焼結体の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2009044891A1 (ja) | 酸化インジウム系透明導電膜及びその製造方法 | |
US10000842B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
JP4043044B2 (ja) | 酸化インジウム系透明導電膜及びその製造方法 | |
US20110011731A1 (en) | Process for producing indium oxide-type transparent electroconductive film | |
KR100945196B1 (ko) | 스퍼터링 타깃 및 산화물 소결체의 제조 방법 | |
JPWO2009044896A1 (ja) | 酸化インジウム系透明導電膜の製造方法 | |
TW201536937A (zh) | 氧化物燒結體、濺鍍用靶、及使用其而獲得之氧化物半導體薄膜 | |
WO2010116981A1 (ja) | 酸化インジウム系透明導電膜及びその製造方法 | |
JPWO2009044898A1 (ja) | 酸化インジウム系透明導電膜及びその製造方法 | |
CN103774098A (zh) | 氧化亚锡织构薄膜及其制备方法 | |
CN103103479B (zh) | 一种硫氮共掺杂制备p型氧化锌薄膜的方法 | |
JPWO2009044897A1 (ja) | 酸化インジウム系透明導電膜及びその製造方法 | |
Im et al. | Structural and electrical properties of Al and B co-doped Zno thin films | |
CN102586746A (zh) | 一种铜铁矿型铜铝氧红外透明导电膜的制备方法 | |
WO2013140838A1 (ja) | In-Ga-Zn-O系酸化物焼結体とその製造方法およびスパッタリングターゲットと酸化物半導体膜 | |
JP2022007853A (ja) | 珪化バリウム系積層基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10761680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |