WO2010100989A1 - 電動機の制御装置 - Google Patents
電動機の制御装置 Download PDFInfo
- Publication number
- WO2010100989A1 WO2010100989A1 PCT/JP2010/051430 JP2010051430W WO2010100989A1 WO 2010100989 A1 WO2010100989 A1 WO 2010100989A1 JP 2010051430 W JP2010051430 W JP 2010051430W WO 2010100989 A1 WO2010100989 A1 WO 2010100989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- output
- electrical angle
- rectangular wave
- electric motor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present invention relates to a control device for an electric motor having a rotor having a permanent magnet and a stator that rotates a rotor by generating a rotating magnetic field by an applied voltage.
- FIG. 18 is a block diagram showing a motor control device as a related technique of the present invention.
- 18 includes a resolver 101, a current sensor 103, a bandpass filter (BPF) 105, a three-phase-dq converter 107, a current command calculator 109, and a d-axis current controller.
- 111 q-axis current control unit 113, r ⁇ conversion unit 115, inverter (INV) 117, angular velocity calculation unit 119, DC voltage command generation unit 121, DCDC converter 123, output voltage detection unit 125, And an inverter control method determination unit 127.
- Electric power is supplied from the battery 15 to the electric motor 10 shown in FIG. 18 via the control device.
- the electric motor 10 is, for example, a three-phase brushless DC motor including a rotor having a permanent magnet and a stator that generates a rotating magnetic field by a three-phase applied voltage to rotate the rotor.
- the resolver 101 detects the mechanical angle of the rotor of the electric motor 10 and outputs an electrical angle ⁇ m corresponding to the detected mechanical angle.
- the electrical angle ⁇ m output from the resolver 101 is sent to the three-phase-dq converter 107 and the angular velocity calculator 119.
- the current sensor 103 detects each phase current of the three-phase current supplied from the inverter 117 and supplied to the stator of the electric motor 10.
- the BPF 105 removes unnecessary components of each current detection signal indicating the three-phase alternating currents Iu, Iv, Iw detected by the current sensor 103.
- the three-phase-dq conversion unit 107 performs three-phase-dq conversion based on the current detection signal from which unnecessary components have been removed by the BPF 105 and the electrical angle ⁇ m of the rotor detected by the resolver 101, and performs d-axis current Detection value Id_s and q-axis current detection value Iq_s are calculated.
- the current command calculator 109 is a current (hereinafter referred to as “d-axis current”) that flows through a d-axis side stator (hereinafter referred to as “d-axis stator”) based on a torque command value T input from the outside.
- the d-axis current command value Id * is input to the d-axis current control unit 111.
- the q-axis current command value Iq * is input to the q-axis current control unit 113.
- the d axis is a field axis
- the q axis is a torque axis.
- the d-axis current control unit 111 has a command value Vd for the voltage across the terminals of the d-axis stator (hereinafter referred to as “d-axis voltage”) so that the deviation ⁇ Id between the command value Id * of the d-axis current and the detected value Id_s decreases. Determine **.
- the q-axis current control unit 113 controls the command value Vq of the inter-terminal voltage of the q-axis stator (hereinafter referred to as “q-axis voltage”) so that the deviation ⁇ Iq between the q-axis current command value Iq * and the detected value Iq_s decreases. Determine **.
- the d-axis voltage command value Vd ** and the q-axis voltage command value Vq ** are input to the r ⁇ conversion unit 115 and the inverter control method determination unit 127.
- the r ⁇ converter 115 converts the command value Vd ** of the d-axis voltage and the command value Vq ** of the q-axis voltage into components of the voltage level V1 and the angle ⁇ .
- the inverter 117 converts the DC voltage from the battery 15 via the DCDC converter 123 into a three-phase (U, V, W) AC voltage based on the voltage level V1 and the angle ⁇ component input from the r ⁇ converter 115. Convert.
- the inverter 117 is a rectangular wave inverter, and performs either PWM (Pulse Width Modulation) control or one-pulse (1PLS) control according to the switching flag input from the inverter control method determination unit 127. Note that the PWM control can control the output voltage of the inverter 117 with higher accuracy as the switching frequency is higher. On the other hand, 1PLS control has a small switching loss because the switching frequency is low.
- the angular velocity calculation unit 119 calculates the angular velocity ⁇ of the rotor of the electric motor 10 by differentiating the electric angle ⁇ m output from the resolver 101 with respect to time.
- the angular velocity ⁇ calculated by the angular velocity calculation unit 119 is input to the DC voltage command generation unit 121.
- the DC voltage command generation unit 121 refers to a table in which the angular velocity ⁇ and the output voltage command Vcu * correspond, and outputs a constant DC voltage corresponding to the angular velocity ⁇ input from the angular velocity calculation unit 119.
- An output voltage command Vcu * is generated.
- the output voltage command Vcu * is input to the DCDC converter 123.
- the DCDC converter 123 boosts or lowers the direct current output voltage of the battery 15 while maintaining the direct current.
- the output voltage detector 125 detects the output voltage Vdc of the DCDC converter 123.
- the inverter control method determination unit 127 includes the output voltage Vdc of the DCDC converter 123, the command value Vd ** of the d-axis voltage output from the d-axis current control unit 111, and the q-axis output from the q-axis current control unit 113. Based on the voltage command value Vq **, the switching flag to be input to the inverter 117 is determined.
- FIG. 19 is a block diagram showing the internal configuration of the inverter control method determination unit 127 and the relationship with the components related thereto.
- the inverter control method determination unit 127 includes a maximum voltage circle calculation unit 201, an output voltage circle calculation unit 203, and a switching flag output unit 205.
- Maximum voltage circle calculation unit 201 derives a value (Vdc / ⁇ 6) Vp_target obtained by dividing output voltage Vdc of DCDC converter 123 by ⁇ 6. This value Vp_target is the maximum value of the phase voltage that can be applied to the electric motor 10, that is, the phase voltage value that is applied to the electric motor 10 with the duty ratio in the inverter 117 being 100%.
- the output voltage circle calculation unit 203 derives the calculation result of ⁇ (Vd ** 2 + Vq ** 2 ) as a combined vector voltage Vp.
- the switching flag output unit 205 outputs a switching flag indicating PWM control when the difference ⁇ Vp is greater than 0 ( ⁇ Vp> 0), and outputs a flag indicating 1PLS control when the difference ⁇ Vp is 0 or less ( ⁇ Vp ⁇ 0). To do.
- the DCDC converter 123 is controlled to output a constant DC voltage corresponding to the angular velocity ⁇ of the rotor of the electric motor 10.
- the DCDC converter 123 is controlled so as to output a high voltage when the motor 10 rotates at a high speed in order to expand the output range of the motor 10, and the inverter 117 performs PWM control or 1PLS control on the torque of the motor 10. Is controlled by
- the commutation timing of the motor 10 to which each phase voltage is applied from the inverter 117 is only 6 times in one electrical angle cycle. For this reason, the inverter 117 during the 1PLS control can change the output only 6 times in one electrical angle cycle.
- the inverter 117 needs to balance the applied voltage to the motor 10, the induced voltage generated in the motor 10, and the impedance of the motor 10 while suppressing the occurrence of overshoot of each phase current supplied to the motor 10. . For this reason, the responsiveness of the torque output from the electric motor 10 when the inverter 117 performs 1PLS control is low. As a result, loss due to response delay occurs.
- An object of the present invention is to provide a motor control device capable of reducing loss due to a response delay of the motor.
- an electric motor control apparatus includes a rotor having a permanent magnet (for example, the rotor 11 in the embodiment), and an applied voltage.
- a control device for an electric motor for example, the electric motor 10 in the embodiment
- a stator for example, the stator 13 in the embodiment
- Output of a rectangular wave inverter (for example, the inverter 117 in the embodiment) that applies a rectangular wave voltage to the stator of the motor to drive the motor, and a DC power supply (for example, the battery 15 in the embodiment)
- a voltage converter (for example, the DCDC converter 123 in the embodiment) that boosts or lowers the voltage and applies the voltage to the rectangular wave inverter, and an electrical angle adjustment that acquires the electrical angle of the rotor of the motor.
- Output voltage command generation unit (for example, output voltage command generation unit 151, 171, 181 in the embodiment) that generates a command for instructing the voltage conversion unit, the voltage conversion unit, In accordance with the command generated by the output voltage command generation unit, the output voltage of the DC power supply is stepped up or down to a voltage indicated by the command and applied to the rectangular wave inverter.
- the rectangular wave inverter applies a plurality of rectangular wave voltages to the stator, and the pulsation indicated by the command generated by the output voltage command generator
- the electrical angle synchronization voltage changes at an electrical angle at which any one of the absolute values of the rectangular wave voltages of the plurality of phases changes and the amplitude of the electrical angle synchronization voltage changes with a predetermined change amount of the electrical angle as one cycle. It is characterized by a waveform that maximizes the voltage.
- the average value of the electric angle synchronization voltage is calculated based on the torque required for the motor and the required output power derived based on the angular velocity of the rotor, It is a value obtained according to the difference between the actual output powers derived based on the output voltage and output current of the voltage converter.
- a rotor having a permanent magnet for example, the rotor 11 in the embodiment
- a rotating magnetic field are generated by an applied voltage to rotate the rotor.
- a control device for a motor for example, the motor 10 in the embodiment
- having a stator for example, the stator 13 in the embodiment
- applying a rectangular wave voltage to the stator of the motor
- the rectangular wave inverter that drives the electric motor for example, the inverter 117 in the embodiment
- the output voltage of the DC power source for example, the capacitor 15 in the embodiment
- the voltage converter to be applied (for example, the DCDC converter 123 in the embodiment) and the electric angle synchronization voltage whose amplitude pulsates in synchronization with the change of the rectangular wave voltage applied to the stator are output.
- An output voltage command generation unit (for example, an output voltage command generation unit 161 in the embodiment) that generates a command for instructing the voltage conversion unit to perform the operation, and the voltage conversion unit includes the output voltage command.
- the output voltage of the DC power supply is stepped up or down to a voltage indicated by the command and applied to the rectangular wave inverter.
- the rectangular wave inverter applies a plurality of rectangular wave voltages to the stator, and the pulsation indicated by the command generated by the output voltage command generation unit
- the pattern is characterized in that the maximum value of the electrical angle synchronization voltage corresponds to an electrical angle at which any two phase voltages of the plurality of phases of rectangular wave voltages have the same value.
- the rectangular wave inverter applies a plurality of phases of rectangular wave voltage to the stator, and the pulsation indicated by the command generated by the output voltage command generation unit
- the pattern is characterized in that the maximum value of the electrical angle synchronization voltage corresponds to an electrical angle at which any one of the plurality of rectangular wave voltages has a phase voltage of 0.
- the motor control device includes an angular velocity acquisition unit (for example, an angular velocity calculation unit 119 in the embodiment) that acquires an angular velocity of the rotor of the electric motor, and the electric angle synchronization
- the average value of the voltage is the required output power derived based on the torque obtained for the motor and the angular velocity of the rotor, and the actual output power derived based on the output voltage and output current of the voltage converter. It is a value obtained according to the difference.
- the voltage converter boosts the output voltage of the DC power supply and applies it to the rectangular wave inverter (for example, an embodiment).
- DCDC converter 223 wherein the output voltage command generation unit outputs the electrical angle synchronization voltage when the minimum value of the electrical angle synchronization voltage is larger than the output voltage of the DC power supply.
- the command for instructing the voltage conversion unit to output a constant voltage is output.
- the voltage conversion unit boosts the output voltage of the DC power source to a voltage indicated by the command in accordance with the command output from the output voltage command generation unit, and applies the boosted voltage to the rectangular wave inverter. It is characterized in.
- the loss due to the response delay of the motor can be reduced even when the rectangular wave inverter is in the 1PLS control.
- the voltage converter outputs an electric machine angle synchronization voltage whose amplitude pulsates in synchronization with a change in the electric angle of the rotor of the electric motor, so that the torque ripple of the electric motor due to the change in the electric angle is reduced and the torque is reduced. Loss due to low responsiveness is reduced. Furthermore, since torque ripple is reduced, noise and vibration of the electric motor 10 are reduced.
- the output voltage command generation unit includes the electric angle acquisition unit. It is possible to generate an electrical angle synchronization voltage command that is not affected by an error.
- the block diagram which shows the control apparatus of the electric motor of 1st Embodiment The block diagram which shows a part of control apparatus of the electric motor of 1st Embodiment, and each circuit of a DCDC converter and the inverter 117
- the block diagram which shows the control apparatus of the electric motor of 2nd Embodiment The block diagram which shows each internal structure of the output voltage command production
- the block diagram which shows the control apparatus of the electric motor of 3rd Embodiment The block diagram which shows the control apparatus of the electric motor of 4th Embodiment
- the block diagram which shows the control apparatus of the electric motor of 5th Embodiment The block diagram which shows a part of control apparatus of the electric motor of 5th Embodiment, and each circuit of a DCDC converter and the inverter 117
- a block diagram showing the internal configuration of the output voltage command generation unit 191 and the inverter control method determination unit 127 As a part of the motor control apparatus of the fifth embodiment, a block diagram showing the internal configuration of the output voltage command generation unit 191 and the inverter control method determination unit 127, and the relationship with the components related thereto.
- the block diagram which shows the control apparatus of the electric motor as related technology of this invention The block diagram which shows the relationship between the internal structure of the inverter control system determination part 127 shown in FIG
- FIG. 1 is a block diagram illustrating a motor control apparatus according to the first embodiment.
- the motor control device of the first embodiment is similar to the motor control device shown in FIG. 18, and includes a resolver 101, a current sensor 103, a bandpass filter (BPF) 105, Three-phase-dq converter 107, current command calculator 109, d-axis current controller 111, q-axis current controller 113, r ⁇ converter 115, inverter (INV) 117, angular velocity calculator 119, DCDC converter 123, output voltage detection unit 125, and inverter control system determination unit 127, DC voltage command generation unit 121 instead of output voltage command generation unit 151, and further, output current detection unit 153.
- the same reference numerals are assigned to components common to FIG. 18.
- FIG. 2 is a block diagram showing a part of the motor control device of the first embodiment and each circuit of the DCDC converter and the inverter 117.
- the DCDC converter 123 used in this embodiment is a step-up / down converter.
- the output current detector 153 shown in FIG. 1 and 2 detect the output current Idc of the DCDC converter 123.
- the output voltage command generation unit 151 of the present embodiment outputs a command Vcu *** for instructing the DCDC converter 123 to output a voltage whose level changes in synchronization with the phase of the electrical angle ⁇ m of the rotor of the electric motor 10. Generate.
- the output voltage command generation unit 151 includes an externally input torque command value T, an angular velocity ⁇ calculated by the angular velocity calculation unit 119, and an electrical angle output from the resolver 101.
- ⁇ m, the output voltage Vdc of the DCDC converter 123 detected by the output voltage detector 125, and the output current Idc of the DCDC converter 123 detected by the output current detector 153 are input.
- FIG. 3 shows each internal configuration of the output voltage command generation unit 151 and the inverter control method determination unit 127 as a part of the motor control device of the first embodiment, and the relationship with the components related to these. It is a block diagram. In FIG. 3, the same reference numerals are assigned to components common to FIG. 19. As illustrated in FIG. 3, the output voltage command generation unit 151 includes a target DC voltage command generation unit 301 and an electrical angle synchronization voltage command generation unit 303.
- FIG. 4 is a block diagram illustrating an internal configuration of the target DC voltage command generation unit 301 of the first embodiment.
- the target DC voltage command generator 301 multiplies the coefficient K, the torque command value T, and the angular velocity ⁇ to derive the required output power P0.
- the target DC voltage command generation unit 301 multiplies the output current Idc of the DCDC converter 123 by the output voltage Vdc to derive the actual output power P1.
- the target DC voltage command Vcu ** is input to the electrical angle synchronous voltage command generation unit 303.
- the electrical angle synchronization voltage command generation unit 303 pulsates in synchronization with the change in the electrical angle ⁇ m of the rotor of the electric motor 10, and the average value is a target DC voltage command input from the electrical angle synchronization voltage command generation unit 303.
- An electrical angle synchronization voltage command Vcu *** that instructs the DCDC converter 123 to output an electrical angle synchronization voltage that becomes Vcu ** is generated.
- the electrical angle synchronization voltage command Vcu *** is input to the DCDC converter 123.
- FIG. 5 is a graph showing the output voltage of the DCDC converter 123 according to the electrical angle synchronization voltage command Vcu ***, the target DC voltage indicated by the target DC voltage command Vcu **, and the three-phase AC voltage applied to the motor 10. .
- the pulsation pattern shown in FIG. 5 is a waveform in which one cycle is an electrical angle of 60 degrees and a sine wave is full-wave rectified. Therefore, the pulsation pattern is represented by a calculation formula of
- the DCDC converter 123 outputs a voltage that pulsates in synchronization with the electric angle ⁇ m of the rotor of the electric motor 10 in accordance with the electric angle synchronization voltage command Vcu ***. To do. Since the response of the torque output from the electric motor 10 is low when the inverter 117 is controlled at 1 PLS, the inverter 117 cannot cope with the torque ripple caused by the change in the electrical angle ⁇ m of the rotor of the electric motor 10. However, in the present embodiment, the output voltage of the DCDC converter 123 pulsates in synchronization with the electrical angle ⁇ m in the pulsation pattern shown in FIG.
- the phase current output from the inverter 117 is composed only of the fundamental wave, the total value of the three-phase current is 0 regardless of the electrical angle ⁇ m, as shown in FIG. Therefore, even if the electrical angle ⁇ m changes, the torque of the electric motor 10 does not change.
- the phase current output from the inverter 117 which is a rectangular wave inverter, includes harmonics.
- the inverter 117 outputs a three-phase current that accounts for 20% of the sixth harmonic in addition to the fundamental wave.
- the total value of the three-phase current on which the sixth harmonic is superimposed is not constant.
- the voltage input from the DCDC converter 123 to the inverter 117 pulsates in synchronization with the electrical angle ⁇ m as in this embodiment. Therefore, if the change in the total value of the three-phase current on which the sixth harmonic is superimposed is offset by the pulsation of the output current of the DCDC converter 123, the total value of the three-phase current output from the inverter 117 becomes constant. As a result, the harmonics of the phase current are suppressed, and the operation efficiency is improved even when the inverter 117 is in the 1PLS control.
- FIG. 10 is a block diagram illustrating a motor control device according to the second embodiment.
- the motor control device of the second embodiment includes a phase voltage detection unit 163 and a phase voltage in addition to the components included in the motor control device of the first embodiment shown in FIG. 1.
- a cross point detector 165 is provided.
- the same reference numerals are given to the same components as those in FIG. 1.
- the phase voltage detection unit 163 detects three-phase AC voltages Vu, Vv, Vw applied to the stator 13 of the electric motor 10.
- the three-phase AC voltages Vu, Vv, Vw detected by the phase voltage detector 163 are input to the phase voltage cross point detector 165.
- the phase voltage cross point detection unit 165 detects the timing at which any two phase voltages of the three-phase AC voltages Vu, Vv, and Vw have the same value.
- the phase voltage cross point detector 165 inputs the signal Scr1 to the output voltage command generator 161.
- the output voltage command generation unit 161 of the present embodiment receives the signal Scr1 from the phase voltage cross point detection unit 165 instead of the electrical angle ⁇ m of the rotor 11.
- FIG. 11 shows the internal configurations of the output voltage command generation unit 161 and the inverter control method determination unit 127 as a part of the motor control device of the second embodiment, and the relationship with the components related thereto. It is a block diagram. In FIG. 11, the same reference numerals are given to the components common to FIG. 3.
- the electrical angle synchronization voltage command generation unit 403 included in the output voltage command generation unit 161 of the present embodiment has an amplitude pulsating in synchronization with the signal Scr1 from the phase voltage cross point detection unit 165, and an average value thereof is an electrical angle synchronization voltage.
- An electrical angle synchronization voltage command Vcu *** is generated that instructs the DCDC converter 123 to output an electrical angle synchronization voltage that becomes the target DC voltage command Vcu ** input from the command generation unit 403.
- the maximum value of the electrical angle synchronization voltage corresponds to the timing when the signal Scr1 is input from the phase voltage cross point detector 165.
- phase voltage zero point detection for detecting the timing when any one of the three-phase AC voltages Vu, Vv, Vw becomes 0 is detected. A part may be provided.
- the phase voltage zero point detection unit detects this timing, the phase voltage zero point detection unit inputs the signal Scr2 to the output voltage command generation unit 161.
- the electrical angle synchronization voltage command generation unit 403 included in the output voltage command generation unit 161 pulsates in synchronization with the signal Scr2 from the phase voltage zero point detection unit, and the average value is derived from the electrical angle synchronization voltage command generation unit 403.
- An electrical angle synchronization voltage command Vcu *** is generated to instruct the DCDC converter 123 to output an electrical angle synchronization voltage that becomes the input target DC voltage command Vcu **.
- the minimum value of the electrical angle synchronization voltage corresponds to the timing when the signal Scr2 is input from the phase voltage zero point detector.
- FIG. 12 is a block diagram illustrating a motor control apparatus according to the third embodiment.
- the motor control device of the third embodiment includes a phase estimation unit 173 instead of the resolver 101 included in the motor control device of the first embodiment illustrated in FIG. 1.
- the same reference numerals are assigned to the same components as those in FIG. 1.
- the phase estimation unit 173 estimates the electrical angle of the rotor of the electric motor 10 from the three-phase alternating currents Iu, Iv, Iw detected by the current sensor 103.
- the electrical angle ⁇ s estimated by the phase estimation unit 173 is sent to the three-phase-dq conversion unit 107, the angular velocity calculation unit 119, and the output voltage command generation unit 171.
- the electrical angle ⁇ s estimated by the phase estimation unit 173 is input to the output voltage command generation unit 171 of the present embodiment instead of the electrical angle ⁇ m of the rotor 11 detected by the resolver 101.
- the output voltage command generation unit 171 of the present embodiment handles the electrical angle ⁇ s in the same manner as the electrical angle ⁇ m of the first embodiment.
- FIG. 13 is a block diagram illustrating a motor control apparatus according to the fourth embodiment.
- the angle ⁇ output by the r ⁇ conversion unit 115 is input as the electrical angle of the rotor of the motor 10 input to the output voltage command generation unit 181. Is done.
- the same reference numerals are given to the same components as those in FIG. 1.
- the output voltage command generation unit 181 of this embodiment handles the angle ⁇ in the same way as the electrical angle ⁇ m of the first embodiment.
- FIG. 14 is a block diagram illustrating a motor control apparatus according to a fifth embodiment.
- FIG. 15 is a block diagram showing a part of the motor control device of the fifth embodiment and each circuit of the DCDC converter and the inverter 117.
- the motor control device of the fifth embodiment includes the output voltage of the battery 15 (hereinafter referred to as “the control device of the motor of the first embodiment shown in FIG. A battery voltage detector 193 for detecting Vb).
- the battery voltage Vb detected by the battery voltage detection unit 193 is input to the output voltage command generation unit 191.
- the DCDC converter 223 used in the present embodiment is a boost converter. That is, the DCDC converter 223 only boosts the direct current output voltage of the battery 15 while keeping the direct current.
- the internal configuration of the output voltage command generation unit 191 of the present embodiment is different from the output voltage command generation unit 151 of the first embodiment.
- the inverter control method determination unit 127 generates the output voltage command generation unit 191 with the combined vector voltage Vp described in the first embodiment and the value Vp_target derived by the maximum voltage circle calculation unit 201.
- the difference ⁇ Vp of the vector voltage Vp is input. 14 and 15, the same reference numerals are given to the same components as those in FIGS. 1 and 2.
- FIG. 16 shows the internal configurations of the output voltage command generation unit 191 and the inverter control method determination unit 127 as a part of the motor control device of the fifth embodiment, and the relationship with the components related to these. It is a block diagram. In FIG. 16, the same reference numerals are given to the components common to FIG. 3. As illustrated in FIG. 16, the output voltage command generation unit 191 of the present embodiment includes a target DC voltage command generation unit 501, an electrical angle synchronization voltage command generation unit 303, and a determination unit 505.
- FIG. 17 is a block diagram illustrating an internal configuration of the target DC voltage command generation unit 501 of the fifth embodiment.
- the target DC voltage command Vcu ** 1 is generated.
- the target DC voltage command generation unit 501 generates the target DC voltage command Vcu ** 2 by multiplying the combined vector voltage Vp input from the inverter control method determination unit 127 and the voltage utilization factor ⁇ ( ⁇ 6).
- the target DC voltage command generation unit 501 outputs a target DC voltage command Vcu ** corresponding to the difference ⁇ Vp input from the inverter control method determination unit 127. That is, the target DC voltage command generation unit 501 outputs the target DC voltage command Vcu ** 1 when ⁇ Vp> 0, and outputs the target DC voltage command Vcu ** 2 when ⁇ Vp ⁇ 0.
- the target DC voltage command Vcu ** output from the target DC voltage command generation unit 501 is input to the electrical angle synchronization voltage command generation unit 303 and the determination unit 505.
- the electrical angle synchronization voltage command Vcu *** generated by the electrical angle synchronization voltage command generation unit 303 is input to the determination unit 505.
- the determination unit 505 determines the minimum value (Vcu *** min) of the electrical angle synchronization voltage command Vcu *** whose amplitude pulsates in synchronization with the change in the electrical angle ⁇ m of the rotor of the electric motor 10, and the battery voltage Vb of the battery 15.
- the target DC voltage command Vcu ** or the electrical angle synchronization voltage command Vcu *** is output in accordance with the comparison result.
- the determination unit 505 outputs the target DC voltage command Vcu ** when Vcu *** min ⁇ Vb, and outputs the electrical angle synchronization voltage command Vcu *** when Vcu *** min> Vb. .
- the target DC voltage command Vcu ** or the electrical angle synchronization voltage command Vcu *** output from the determination unit 505 is input to the DCDC converter 223.
- the step-up DCDC converter 223 operates according to the target DC voltage command Vcu ** or the electrical angle synchronization voltage command Vcu ***.
- Vcu *** min is greater than Vb (Vcu *** min> Vb)
- the DCDC converter 223 only needs to perform voltage boosting, and therefore can respond to the electrical angle synchronization voltage command Vcu ***.
- Vcu *** min is equal to or lower than Vb (Vcu *** min ⁇ Vb)
- the DCDC converter 223 cannot respond to the electrical angle synchronization voltage command Vcu ***. Therefore, when Vcu *** min is equal to or lower than Vb, DCDC converter 223 operates in accordance with target DC voltage command Vcu **, and outputs a voltage whose amplitude is not larger than battery voltage Vb.
- the second to fourth embodiments may be applied to the control device for the electric motor 10 of the present embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
図1は、第1の実施形態の電動機の制御装置を示すブロック図である。図1に示すように、第1の実施形態の電動機の制御装置は、図18に示した電動機の制御装置と同様に、レゾルバ101と、電流センサ103と、バンドパスフィルタ(BPF)105と、3相-dq変換部107と、電流指令算出部109と、d軸電流制御部111と、q軸電流制御部113と、rθ変換部115と、インバータ(INV)117と、角速度算出部119と、DCDCコンバータ123と、出力電圧検出部125と、インバータ制御方式決定部127とを備え、直流電圧指令生成部121の代わりに出力電圧指令生成部151を備え、さらに、出力電流検出部153を備える。なお、図1において、図18と共通する構成要素には同じ参照符号が付されている。
図10は、第2の実施形態の電動機の制御装置を示すブロック図である。図10に示すように、第2の実施形態の電動機の制御装置は、図1に示した第1の実施形態の電動機の制御装置が備える構成要素に加えて、相電圧検出部163及び相電圧クロスポイント検出部165を備える。なお、図10において、図1と共通する構成要素には同じ参照符号が付されている。
図12は、第3の実施形態の電動機の制御装置を示すブロック図である。図12に示すように、第3の実施形態の電動機の制御装置は、図1に示した第1の実施形態の電動機の制御装置が備えるレゾルバ101の代わりに、位相推定部173を備える。なお、図12において、図1と共通する構成要素には同じ参照符号が付されている。
図13は、第4の実施形態の電動機の制御装置を示すブロック図である。図13に示すように、第4の実施形態の電動機の制御装置では、出力電圧指令生成部181に入力される電動機10の回転子の電気角度として、rθ変換部115が出力する角度θが入力される。なお、図13において、図1と共通する構成要素には同じ参照符号が付されている。本実施形態の出力電圧指令生成部181は、角度θを第1の実施形態の電気角度θmと同様に扱う。
図14は、第5の実施形態の電動機の制御装置を示すブロック図である。また、図15は、第5の実施形態の電動機の制御装置の一部と、DCDCコンバータ及びインバータ117の各回路とを示すブロック図である。図14に示すように、第5の実施形態の電動機の制御装置は、図1に示した第1の実施形態の電動機の制御装置が備える構成要素に加えて、蓄電器15の出力電圧(以下「バッテリ電圧」という)Vbを検出するバッテリ電圧検出部193を備える。なお、バッテリ電圧検出部193で検出されたバッテリ電圧Vbは、出力電圧指令生成部191に入力される。また、図15に示すように、本実施形態で用いられるDCDCコンバータ223は、昇圧コンバータである。すなわち、DCDCコンバータ223は、蓄電器15の直流出力電圧を直流のまま昇圧のみ行う。
11 回転子
13 固定子
15 蓄電器
101 レゾルバ
103 電流センサ
105 バンドパスフィルタ(BPF)
107 3相-dq変換部
109 電流指令算出部
111 d軸電流制御部
113 q軸電流制御部
115 rθ変換部
117 インバータ(INV)
119 角速度算出部
123,223 DCDCコンバータ
125 出力電圧検出部
127 インバータ制御方式決定部
151,161,171,181,191 出力電圧指令生成部
153 出力電流検出部
201 最大電圧円算出部
203 出力電圧円算出部
205 切替フラグ出力部
301,501 目標直流電圧指令生成部
303,403 電気角度同期電圧指令生成部
163 相電圧検出部
165 相電圧クロスポイント検出部
173 位相推定部
193 バッテリ電圧検出部
505 判断部
Claims (8)
- 永久磁石を有する回転子と、印加電圧によって回転磁界を発生して前記回転子を回転させる固定子と、を有する電動機の制御装置であって、
前記電動機の前記固定子に矩形波電圧を印加して前記電動機を駆動する矩形波インバータと、
直流電源の出力電圧を昇圧又は降圧して前記矩形波インバータに印加する電圧変換部と、
前記電動機の前記回転子の電気角度を取得する電気角度取得部と、
前記電気角度取得部が取得した前記回転子の電気角度の変化に同期して振幅が脈動する電気角度同期電圧を出力するよう前記電圧変換部に指示するための指令を生成する出力電圧指令生成部と、を備え、
前記電圧変換部は、前記出力電圧指令生成部が生成した前記指令に応じて、前記直流電源の出力電圧を当該指令が示す電圧に昇圧又は降圧して、前記矩形波インバータに印加することを特徴とする電動機の制御装置。 - 請求項1に記載の電動機の制御装置であって、
前記矩形波インバータは、複数相の矩形波電圧を前記固定子に印加し、
前記出力電圧指令生成部が生成する前記指令が示す脈動パターンは、前記電気角度の所定変化量を一周期として前記電気角度同期電圧の振幅が変化し、前記複数相の矩形波電圧の絶対値のいずれか1つが最大となる電気角度で前記電気角度同期電圧が最大となる波形であることを特徴とする電動機の制御装置。 - 請求項1又は2に記載の電動機の制御装置であって、
前記電気角度同期電圧の平均値は、前記電動機に求められたトルク及び前記回転子の角速度に基づいて導出された要求出力電力と、前記電圧変換部の出力電圧及び出力電流に基づいて導出された実際出力電力の差分に応じて得られた値であることを特徴とする電動機の制御装置。 - 永久磁石を有する回転子と、印加電圧によって回転磁界を発生して前記回転子を回転させる固定子と、を有する電動機の制御装置であって、
前記電動機の前記固定子に矩形波電圧を印加して前記電動機を駆動する矩形波インバータと、
直流電源の出力電圧を昇圧又は降圧して前記矩形波インバータに印加する電圧変換部と、
前記固定子に印加される前記矩形波電圧の変化に同期して振幅が脈動する電気角度同期電圧を出力するよう前記電圧変換部に指示するための指令を生成する出力電圧指令生成部と、を備え、
前記電圧変換部は、前記出力電圧指令生成部が生成した前記指令に応じて、前記直流電源の出力電圧を当該指令が示す電圧に昇圧又は降圧して、前記矩形波インバータに印加することを特徴とする電動機の制御装置。 - 請求項4に記載の電動機の制御装置であって、
前記矩形波インバータは、複数相の矩形波電圧を前記固定子に印加し、
前記出力電圧指令生成部が生成する前記指令が示す脈動パターンは、前記複数相の矩形波電圧の内のいずれか2つの相電圧が同一値となる電気角度に、前記電気角度同期電圧の最大値が対応する波形であることを特徴とする電動機の制御装置。 - 請求項4に記載の電動機の制御装置であって、
前記矩形波インバータは、複数相の矩形波電圧を前記固定子に印加し、
前記出力電圧指令生成部が生成する前記指令が示す脈動パターンは、前記複数相の矩形波電圧の内のいずれか1つの相電圧0となる電気角度に、前記電気角度同期電圧の最大値が対応する波形であることを特徴とする電動機の制御装置。 - 請求項4~6のいずれか一項に記載の電動機の制御装置であって、
前記電動機の前記回転子の角速度を取得する角速度取得部を備え、
前記電気角度同期電圧の平均値は、前記電動機に求められたトルク及び前記回転子の角速度に基づいて導出された要求出力電力と、前記電圧変換部の出力電圧及び出力電流に基づいて導出された実際出力電力の差分に応じて得られた値であることを特徴とする電動機の制御装置。 - 請求項1~7のいずれか一項に記載の電動機の制御装置であって、
前記電圧変換部は、前記直流電源の出力電圧を昇圧して前記矩形波インバータに印加する昇圧型電圧変換部であって、
前記出力電圧指令生成部は、前記電気角度同期電圧の最小値が前記直流電源の出力電圧より大きいとき、当該電気角度同期電圧を出力するよう前記電圧変換部に指示するための前記指令を出力し、前記電気角度同期電圧の最小値が前記直流電源の出力電圧以下のとき、一定電圧を出力するよう前記電圧変換部に指示するための指令を出力し、
前記電圧変換部は、前記出力電圧指令生成部が出力した指令に応じて、前記直流電源の出力電圧を当該指令が示す電圧に昇圧して、前記矩形波インバータに印加することを特徴とする電動機の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112010000965T DE112010000965T5 (de) | 2009-03-04 | 2010-02-02 | Steuervorrichtung für Elektromotor |
CN201080010095.5A CN102342018B (zh) | 2009-03-04 | 2010-02-02 | 电动机的控制装置 |
BRPI1009152A BRPI1009152A2 (pt) | 2009-03-04 | 2010-02-02 | aparelho de controle para motor elétrico |
US13/203,671 US8749184B2 (en) | 2009-03-04 | 2010-02-02 | Control apparatus for electric motor |
RU2011140153/07A RU2486658C1 (ru) | 2009-03-04 | 2010-02-02 | Устройство управления для электродвигателя |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009050255A JP5196269B2 (ja) | 2009-03-04 | 2009-03-04 | 電動機の制御装置 |
JP2009-050255 | 2009-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010100989A1 true WO2010100989A1 (ja) | 2010-09-10 |
Family
ID=42709552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051430 WO2010100989A1 (ja) | 2009-03-04 | 2010-02-02 | 電動機の制御装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8749184B2 (ja) |
JP (1) | JP5196269B2 (ja) |
CN (1) | CN102342018B (ja) |
BR (1) | BRPI1009152A2 (ja) |
DE (1) | DE112010000965T5 (ja) |
RU (1) | RU2486658C1 (ja) |
WO (1) | WO2010100989A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014203781A1 (de) * | 2014-02-28 | 2015-09-03 | Schmidhauser Ag | Frequenzumrichter |
WO2016121373A1 (ja) * | 2015-01-28 | 2016-08-04 | パナソニックIpマネジメント株式会社 | モータ制御装置、およびこのモータ制御装置におけるトルク定数の補正方法 |
TWI549418B (zh) * | 2015-03-31 | 2016-09-11 | 寧茂企業股份有限公司 | 交流馬達驅動系統及驅動方法 |
JP7099225B2 (ja) * | 2018-09-26 | 2022-07-12 | 株式会社アドヴィックス | モータ制御装置 |
DE102019134692B4 (de) * | 2019-12-17 | 2023-09-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren und elektrisch angetriebener Propeller oder Rotor mit Einrichtungen zur Minderung tonaler Schallabstrahlungen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051894A (ja) * | 2003-07-31 | 2005-02-24 | Toyota Motor Corp | 負荷駆動装置 |
JP2007181398A (ja) * | 2003-09-03 | 2007-07-12 | Toshiba Corp | 電気車制御装置 |
JP2007306658A (ja) * | 2006-05-09 | 2007-11-22 | Toyota Motor Corp | モータ駆動装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5503194A (en) | 1993-02-22 | 1994-08-25 | General Electric Company | Single phase electronically commutated motor system and method |
US6307759B1 (en) | 1997-10-31 | 2001-10-23 | Hitachi, Ltd. | Control device for electric power translating device |
RU2141719C1 (ru) | 1998-03-25 | 1999-11-20 | Мищенко Владислав Алексеевич | Способ векторного управления синхронным электродвигателем с постоянными магнитами на роторе и электропривод для осуществления этого способа |
JP4483009B2 (ja) | 2000-03-21 | 2010-06-16 | パナソニック株式会社 | モータ制御装置 |
GB0031425D0 (en) | 2000-12-22 | 2001-02-07 | Amoebics Ltd | Antibacterial treatments |
JP4710588B2 (ja) * | 2005-12-16 | 2011-06-29 | トヨタ自動車株式会社 | 昇圧コンバータの制御装置 |
JP4754417B2 (ja) * | 2006-06-26 | 2011-08-24 | 本田技研工業株式会社 | 永久磁石型回転電機の制御装置 |
JP4466882B2 (ja) * | 2007-08-03 | 2010-05-26 | 本田技研工業株式会社 | 電動機の制御装置 |
JP5172286B2 (ja) * | 2007-11-16 | 2013-03-27 | 日立オートモティブシステムズ株式会社 | モータ制御装置およびハイブリッド自動車用制御装置 |
-
2009
- 2009-03-04 JP JP2009050255A patent/JP5196269B2/ja not_active Expired - Fee Related
-
2010
- 2010-02-02 DE DE112010000965T patent/DE112010000965T5/de not_active Withdrawn
- 2010-02-02 WO PCT/JP2010/051430 patent/WO2010100989A1/ja active Application Filing
- 2010-02-02 BR BRPI1009152A patent/BRPI1009152A2/pt not_active IP Right Cessation
- 2010-02-02 CN CN201080010095.5A patent/CN102342018B/zh not_active Expired - Fee Related
- 2010-02-02 US US13/203,671 patent/US8749184B2/en active Active
- 2010-02-02 RU RU2011140153/07A patent/RU2486658C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051894A (ja) * | 2003-07-31 | 2005-02-24 | Toyota Motor Corp | 負荷駆動装置 |
JP2007181398A (ja) * | 2003-09-03 | 2007-07-12 | Toshiba Corp | 電気車制御装置 |
JP2007306658A (ja) * | 2006-05-09 | 2007-11-22 | Toyota Motor Corp | モータ駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
RU2011140153A (ru) | 2013-04-10 |
RU2486658C1 (ru) | 2013-06-27 |
JP2010206958A (ja) | 2010-09-16 |
CN102342018A (zh) | 2012-02-01 |
CN102342018B (zh) | 2014-08-27 |
US20120242262A1 (en) | 2012-09-27 |
US8749184B2 (en) | 2014-06-10 |
JP5196269B2 (ja) | 2013-05-15 |
DE112010000965T5 (de) | 2012-08-02 |
BRPI1009152A2 (pt) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5212491B2 (ja) | 電力変換装置 | |
AU2013204711B2 (en) | Systems and methods for controlling electric machines | |
JP5304937B2 (ja) | 電力変換装置 | |
JP4988329B2 (ja) | 永久磁石モータのビートレス制御装置 | |
US10008970B2 (en) | Control apparatus for AC motor | |
CN109874397B (zh) | 电力转换器的控制装置 | |
JP2019068731A (ja) | 電力変換装置 | |
CN109546913B (zh) | 一种电容小型化电机驱动装置 | |
JP2013106375A (ja) | モータ駆動装置 | |
JP5813934B2 (ja) | 電力変換装置 | |
JP5196269B2 (ja) | 電動機の制御装置 | |
JP2021083276A (ja) | モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム | |
JP2009183051A (ja) | 同期機の制御装置 | |
JP2004120853A (ja) | 動力出力装置 | |
JP2010068581A (ja) | 電動機駆動装置 | |
JP5078925B2 (ja) | 電動機の駆動装置並びに機器 | |
JP2012090460A (ja) | モータ制御装置 | |
JP2006180605A (ja) | 電動機の制御装置 | |
JP2011217575A (ja) | 電力変換装置 | |
JP5366634B2 (ja) | 電動機の制御装置 | |
JP2012080776A (ja) | 同期機の制御装置 | |
JP5317812B2 (ja) | 電動機の制御装置 | |
JP6729250B2 (ja) | 電力変換器の制御装置 | |
JP2005102385A (ja) | モーター制御装置 | |
JP2015154612A (ja) | 制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080010095.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10748586 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6264/CHENP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112010000965 Country of ref document: DE Ref document number: 1120100009651 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011140153 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13203671 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10748586 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1009152 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1009152 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110902 |