[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010039009A2 - 유기발광소자 및 이의 제조방법 - Google Patents

유기발광소자 및 이의 제조방법 Download PDF

Info

Publication number
WO2010039009A2
WO2010039009A2 PCT/KR2009/005660 KR2009005660W WO2010039009A2 WO 2010039009 A2 WO2010039009 A2 WO 2010039009A2 KR 2009005660 W KR2009005660 W KR 2009005660W WO 2010039009 A2 WO2010039009 A2 WO 2010039009A2
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electron transport
layer
group
organic light
Prior art date
Application number
PCT/KR2009/005660
Other languages
English (en)
French (fr)
Other versions
WO2010039009A3 (ko
Inventor
이정형
손세환
강민수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US13/121,983 priority Critical patent/US9587172B2/en
Priority to CN200980139154.6A priority patent/CN102172103B/zh
Priority to EP09818019.3A priority patent/EP2352363B1/en
Priority to JP2011530005A priority patent/JP2012504847A/ja
Publication of WO2010039009A2 publication Critical patent/WO2010039009A2/ko
Publication of WO2010039009A3 publication Critical patent/WO2010039009A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic light emitting device and a method for manufacturing the same, and more particularly, to an organic light emitting device and a method for manufacturing the same, which can use a transparent electrode formed of a high work function material such as a transparent metal oxide as a cathode.
  • An organic light emitting diode is usually composed of two electrodes (anode and cathode) and one or more layers of organic material positioned between these electrodes.
  • OLED organic light emitting diode
  • the organic light emitting device generates visible light, and may use the same to manufacture an information display device or an illumination device.
  • the light emitted from the organic material layer is emitted toward the substrate, and the bottom emission is called the top emission method.
  • the light is emitted in the opposite direction to the substrate. do.
  • the light emitted from both the substrate direction and the opposite direction of the substrate is called a side-side emission method.
  • an electrode positioned opposite to the substrate without contacting the substrate should be transparent in the visible light region.
  • a conductive oxide film such as indium zinc-oxide (IZO) or indium tin-oxide (ITO) is used as the transparent electrode.
  • the conductive oxide film as described above has a very high work function, which makes it difficult to inject electrons from the cathode to the organic material layer when forming a cathode, thereby greatly increasing the operating voltage of the organic light emitting device and important device characteristics such as luminous efficiency. Degrades.
  • a top-emitting or double-sided light emitting organic light emitting device in a structure in which a substrate, a cathode, an organic material layer, and a transparent anode are sequentially stacked, so-called inverted.
  • a method capable of forming not only an anode as an upper electrode but a cathode in contact with a substrate may be formed of a transparent material such as a conductive oxide film.
  • an object of the present invention is to provide an organic light emitting device capable of using a transparent electrode formed of a high work function material, such as a transparent metal oxide, as an anode as well as a cathode in an organic light emitting device having a reverse structure, and a method of manufacturing the same.
  • the present invention a substrate; A transparent cathode located on the substrate; anode; And an organic material layer positioned between the transparent cathode and the anode, wherein the organic material layer includes a light emitting layer and an n-type doped electron transport layer, and the n-type doped electron transport layer includes an electron transport material and It provides an organic light emitting device comprising an n-type dopant and positioned between the transparent cathode and the light emitting layer.
  • the present invention forming a transparent cathode on a substrate; Forming an organic material layer on the transparent cathode; And forming an anode on the organic layer, wherein the forming of the organic layer comprises n-type doped comprising an electron transport material and an n-type dopant on the transparent cathode. It provides a method of manufacturing an organic light emitting device comprising the step of forming an electron transport layer and forming a light emitting layer.
  • the present invention provides a lighting device comprising the organic light emitting device.
  • the cathode of the organic light emitting device having a reverse structure can be formed of a transparent electrode formed of a high work function material such as a transparent metal oxide. Therefore, the present invention can provide an organic light emitting device capable of emitting light on both sides. Double-sided organic light emitting diodes are useful for lighting applications.
  • FIG. 1 and 2 illustrate a laminated structure of an organic light emitting device according to the present invention.
  • Figure 4 shows the current efficiency according to the current density of the organic light emitting device of Examples 1 to 3.
  • FIG. 7 is a graph showing the difference in electron injection efficiency between the forward structure and the reverse structure.
  • An organic light emitting device a substrate; A transparent cathode located on the substrate; anode; And an organic material layer positioned between the transparent cathode and the anode, wherein the organic material layer includes a light emitting layer and an n-type doped electron transport layer, and the n-type doped electron transport layer includes an electron transport material and It includes an n-type dopant and is located between the cathode and the light emitting layer.
  • the present invention is an organic light emitting device having an inverted structure provided with a cathode on a substrate, characterized in that the cathode is transparent.
  • a sputtering method is generally used. In this case, sputtering damage cannot be handled by an electron transport layer, resulting in device defects caused by damage to an organic layer.
  • the cathode may be formed as a transparent electrode, but the above problem may be solved by forming the cathode having an inverse structure including the cathode as the lower electrode.
  • the present invention is characterized by including an n-type doped electron transport layer to overcome the work function difference between the organic material layer and the transparent cathode. Accordingly, in the present invention, even when the transparent cathode is formed on the substrate using a transparent material such as a metal oxide having a very high work function, the device may be driven, whereby the organic light emitting device having an inverted structure is provided on the substrate. Can be provided.
  • the device can be driven not only when the electron transport layer is n-type doped but also when it is not doped n-type.
  • the cathode is formed of a transparent material, if the electron transport layer is formed of only the electron transport material, the device cannot be driven due to the energy difference as described above, and the device must be formed only by forming the electron transport layer with the n-type doped electron transport layer. This is possible. Therefore, in the case where the cathode is formed of a transparent material and in the case of an opaque material, the n-type doping of the electron transport layer has no technical significance at all.
  • the cathode in the case where the cathode is formed of an opaque material, whether or not to apply an n-type doping technique to the electron transport layer has a meaning of simply increasing the concentration of the carrier.
  • the cathode in the case where the cathode is formed of a transparent material, whether or not the technique of n-type doping of the electron transport layer is applied has an absolute technical significance in determining whether the device can be driven. That is, according to the present invention, only the case where the electron transport layer is n-type doped, the cathode of the organic light emitting device having the reverse structure may be transparently formed.
  • the inventors have found that the amount of electron transport increases by 2 to 3 times due to the change in the band alignment caused by the surface dipole in the reverse structure than in the normal structure. 7 shows a graph comparing electron injection characteristics between the forward structure and the reverse structure.
  • the anode is also preferably transparent.
  • the transparent electrode means that the transmittance of light generated from the light emitting layer of the organic light emitting device is 50% or more, preferably 80% or more, more preferably 85% or more, and more preferably 90% or more. .
  • the transparent cathode and the anode may each be formed of an electrode material having a work function of 2.7 eV or more. It is advantageous in process that the work function of the electrode material is 2.7 eV or more.
  • the work function is more preferably 4.5 eV or more in terms of transparency.
  • the transparent cathode and the anode may be formed of at least one transparent metal oxide selected from indium zinc oxide (IZO) and zinc oxide (ZnO), respectively.
  • the organic light emitting device according to the present invention may be a back-emitting type because the cathode is transparent, and may be a double-sided emission type when the anode as well as the cathode is transparent.
  • the n-type doped electron transport layer comprises: an electron transport material; And n-type dopants.
  • the n-type dopant may include one or more selected from metal halides, metal oxides, organic metals, alkali metals, alkaline earth metals, alkali metal compounds and alkaline earth metal compounds.
  • n-type dopant for example, NaF, CSF, MgF 2 , CaF 2 , MgO, CaO, BaO, SrO, Li 2 O, Na 2 O, K 2 O, Cs 2 O, Cs 2 Co 3 , Mg , Ca, Li, Na, K, Cs.
  • LiF and KF may also be used as n-type dopants.
  • the cathode when the n-type dopant is doped into the above-described electron transporting material in forming the electron transporting layer in the organic material layer, the cathode is formed of a transparent material having a high work function without affecting the electron injection and transporting properties.
  • the light emitting device characteristics can be greatly improved.
  • the organic light emitting diode can operate efficiently without separately forming an electron injection layer that has been previously considered necessary for efficient operation of the organic light emitting diode.
  • the aforementioned n-type dopant when the aforementioned n-type dopant is doped in the above-mentioned electron transport material, it is also advantageous in the life of the device.
  • the electron transport material is a material capable of transferring the electrons injected from the cathode to the light emitting layer, and is a material having high mobility with respect to the electrons.
  • the electron transporting material may be a compound including at least one functional group selected from imidazole group, oxazole group, thiazole group, quinoline and phenanthrosine group.
  • the compound having a functional group selected from the imidazole group, the oxazole group and the thiazole group include compounds of the compound of formula 1 or 2 below:
  • R 1 to R 4 may be the same or different from each other, and each independently a hydrogen atom; Halogen atom, amino group, nitrile group, nitro group, C 1 ⁇ C 30 alkyl group, C 2 ⁇ C 30 alkenyl group, C 1 ⁇ C 30 alkoxy group, C 3 ⁇ C 30 cycloalkyl group, C 3 ⁇ C A C 1 -C 30 alkyl group substituted or unsubstituted with one or more groups selected from the group consisting of 30 heterocycloalkyl groups, C 5 -C 30 aryl groups and C 2 -C 30 heteroaryl groups; Halogen atom, amino group, nitrile group, nitro group, C 1 ⁇ C 30 alkyl group, C 2 ⁇ C 30 alkenyl group, C 1 ⁇ C 30 alkoxy group, C 3 ⁇ C 30 cycloalkyl group, C 3 ⁇ C A C 3 -C 30 cycloalkyl group substituted or unsubstitute
  • X is O, S, NR b or a C 1 -C 7 divalent hydrocarbon group
  • A, D and R b each represent a hydrogen atom, a nitrile group (-CN), a nitro group (-NO 2 ), an alkyl of C 1 -C 24 , an aromatic ring of C 5 -C 20 or a substituted hetero atom
  • Alkylene comprising an alkylene or hetero atom capable of forming a fused ring with an aromatic ring, a halogen, or an adjacent ring
  • a and D may be joined to form an aromatic or heteroaromatic ring
  • B is a substituted or unsubstituted alkylene or arylene that connects a plurality of hetero rings to be conjugated or unconjugated as n is 2 or more, and when n is 1, substituted or unsubstituted alkyl or aryl; n is an integer from 1 to 8.
  • Examples of the compound represented by Chemical Formula 1 as the compound employed as the organic material layer include a compound known from Korean Patent Publication No. 2003-0067773, and examples of the compound represented by Chemical Formula 2 include compounds described in US Pat. No. 5,645,948 and WO05. / 097756. The above documents are all incorporated herein by reference.
  • the compound of Formula 1 also includes a compound of Formula 3:
  • R 5 to R 7 are the same as or different from each other, and are each independently a hydrogen atom, an aliphatic hydrocarbon of C 1 -C 20 , an aromatic ring, an aromatic hetero ring, or an aliphatic or aromatic condensed ring;
  • Ar is a direct bond, an aromatic ring or an aromatic hetero ring;
  • X is O, S or NR a ;
  • R a is a hydrogen atom, an aliphatic hydrocarbon of C 1 -C 7 , an aromatic ring or an aromatic hetero ring; Except where R 5 and R 6 are hydrogen at the same time.
  • the compound of Formula 2 also includes a compound of Formula 4:
  • Z is O, S or NR b ;
  • R 8 and R b may form a fused ring with a hydrogen atom, a C 1 -C 24 alkyl, a C 5 -C 20 aromatic ring or a substituted aromatic ring containing a hetero atom, a halogen, or a benzazole ring Alkylene or alkylene containing hetero atoms;
  • B is an alkylene, arylene, substituted alkylene, or substituted arylene that connects a plurality of benzazoles to be conjugated or non-conjugated as a connecting unit when n is 2 or more, and when n is 1, substituted or unsubstituted Alkyl or aryl;
  • n is an integer from 1 to 8.
  • Preferred compounds having imidazole groups include compounds of the following structure:
  • examples of the compound having a quinoline group include compounds represented by the following Chemical Formulas 5 to 11.
  • n is an integer from 0 to 9
  • m is an integer of 2 or more
  • R 9 is an alkyl group such as hydrogen, a methyl group, an ethyl group, a cycloalkyl group such as cyclohexyl, norbornyl, an aralkyl group such as benzyl group, an alkenyl group such as vinyl group, allyl group, cyclopentadienyl group, cyclohexenyl group, etc.
  • Alkoxy groups such as cycloalkenyl groups and methoxy groups
  • Alkylthio groups in which the oxygen atom of the ether bond of an alkoxy group is substituted by the sulfur atom
  • Aryl ether groups such as the phenoxy group, and aryl in which the oxygen atom of the ether bond of the arylether group is substituted by the sulfur atom
  • Heterocyclic groups such as aryl groups, such as a thioether group, a phenyl group, a naphthyl group, and a biphenyl group, a furyl group, a thienyl group, an oxazolyl group, a pyridyl group, a quinolyl group, and a carbazolyl group, a halogen, a cyano group, an aldehyde group, and a carbonyl group , Silyl groups such as carboxyl group, ester group, carbamoyl group, amino group,
  • Y is a divalent or higher group of the groups of R 9 .
  • examples of the compound having a phenanthroline group include compounds represented by the following Chemical Formulas 12 to 22, but are not limited thereto.
  • n + p is 8 or less
  • R ⁇ 10> and R ⁇ 11> are hydrogen, methyl, alkyl groups, such as an ethyl group, cycloalkyl groups, such as cyclohexyl and norbornyl, aralkyl groups, such as benzyl, alkenyl groups, such as a vinyl group and an allyl group, and cyclo Alkyl groups, such as cycloalkenyl groups, such as a pentadienyl group and a cyclohexenyl group, and a methoxy group, Alkylthio group, such as the arylether group, and the arylether group in which the oxygen atom of the ether bond of the alkoxy group was substituted by the sulfur atom, etc.
  • Heterocyclic groups such as the aryl group which the oxygen atom of a bond substituted by the sulfur atom, the aryl group, such as a phenyl group, a naphthyl group, and a biphenyl group, a furyl group, a thienyl group, an oxazolyl group, a pyridyl group, a quinolyl group, and a carbazolyl group , Silyl group such as halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group and trimethylsilyl group, siloxanyl group which is a group having silicon through ether bond And a ring structure that is formed of a group;
  • R 10 is a direct bond or a divalent or more group of the aforementioned groups, and R 11 is the same as when m is 1,
  • the substituents may be unsubstituted or substituted, and when n or p is 2 or more, the substituents may be the same or different from each other.
  • R 1a to R 8a and R 1b to R 10b each represent a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted qui Nolyl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, bicyclic or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted alkoxy having 1 to 50 carbon atoms Group, substituted or unsubstituted aryloxy group having 5-50 nuclear atoms, substituted or unsubstituted arylthio group having 5-50 nuclear atoms, substituted or unsubstituted alkoxycarbonyl group having 1-50 carbon atoms, substituted or
  • Aryl Benzene group substituted or unsubstituted pyridinylene group, substituted or unsubstituted quinolinyl group, or substituted or unsubstituted fluorenylene group.
  • the compounds of Chemical Formulas 16 to 19 are described in Japanese Patent Application Laid-Open No. 2007-39405, all of which are incorporated herein by reference.
  • d 1 , d 3 to d 10 and g 1 are each hydrogen or an aromatic or aliphatic hydrocarbon group, m and n are integers of 0 to 2, and p is an integer of 0 to 3.
  • m and n are integers of 0 to 2
  • p is an integer of 0 to 3.
  • Compounds of Formulas 20 and 21 are described in US Patent Publication 2007/0122656, which is incorporated herein by reference in its entirety.
  • R 1c to R 6c each represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group or a halogen atom, and Ar 1c and Ar 2c is each selected from the following structural formula.
  • R 17 to R 23 in the above structural formulas each represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group or a halogen atom.
  • the compound of formula 22 is described in Japanese Patent Laid-Open No. 2004-107263, which is incorporated by reference in its entirety.
  • the aforementioned n-type dopant is doped when the electron transport layer is formed using the electron transport material.
  • the n-type dopant is preferably included in 0.5 to 50% by weight, more preferably 1 to 20% by weight, more preferably 3 to 15% by weight based on the total weight of the n-type doped electron transport layer material. More preferably, it is 5-12 weight%.
  • the content of the n-type dopant is 50% by weight or less is advantageous in terms of transparency. If it is less than 0.5% by weight, it is difficult to expect a technical effect by n-type doping.
  • the n-type dopant may have a concentration gradient in the thickness direction of the n-type doped electron transport layer.
  • the n-type dopant may be present in an amount of 1 to 50% by weight within 50% of the thickness of the n-type doped electron transport layer on the transparent cathode side.
  • the electron transport layer comprising the electron transport material and the n-type dopant may be formed by a method known in the art.
  • a deposition method or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing or thermal transfer can be used.
  • the organic light emitting device according to the present invention can be manufactured according to a conventional manufacturing method and material, except that the electron transport layer is formed on the transparent cathode side using the electron transport material and the n-type dopant described above, It may have a structure known in the art.
  • the organic light emitting device is a metal oxide or a metal oxide or alloy thereof having a conductivity on a substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation It can be prepared by depositing a cathode to form a cathode, an organic material layer formed thereon, and then forming an anode thereon.
  • PVD physical vapor deposition
  • the organic material layer may include only the emission layer and the n-type doped electron transport layer, but may further include one or more additional organic material layers such as a hole injection layer, a hole transport layer, an electron injection layer, a charge blocking layer, and the like, if necessary. .
  • the present invention is not limited thereto, and some layers may be omitted or added.
  • the organic light emitting diode may be manufactured by simply forming an organic light emitting diode and not only by separately forming an electron injection layer, but also having excellent performance. Therefore, the organic light emitting device according to the present invention may not include an electron injection layer. That is, the electron transport layer including the electron transport material and the n-type dopant may be in contact with the cathode electrode. However, the case of including the electron injection layer is not excluded from the scope of the present invention. Therefore, an electron injection layer may be provided between the electron transport layer including the electron transport material and the n-type dopant and the transparent cathode.
  • the organic material layer may further include another electron transport layer positioned between the n-type doped electron transport layer and the emission layer.
  • the electron transport layer further provided between the n-doped electron transport layer and the light emitting layer may be formed of a material different from the electron transport material of the n-doped electron transport layer, but the electron transport material of the n-doped electron transport layer. It may be formed of the same material as.
  • the uppermost organic material layer closest to the anode which is the upper electrode among the organic material layers includes a compound represented by the following formula (23).
  • R 1d to R 6d each represent hydrogen, a halogen atom, nitrile (-CN), nitro (-NO 2 ), sulfonyl (-SO 2 R), sulfoxide (-SOR), and sulfonamide ( -SO 2 NR), sulfonate (-SO 3 R), trifluoromethyl (-CF 3 ), ester (-COOR), amide (-CONHR or -CONRR '), substituted or unsubstituted straight or branched chain C 1 -C 12 alkoxy, substituted or unsubstituted straight or branched chain C 1 -C 12 alkyl, substituted or unsubstituted aromatic or non-aromatic hetero ring, substituted or unsubstituted aryl, substituted or unsubstituted Mono- or di-arylamine, and substituted or unsubstituted aralkylamine, wherein R and R 'are each substituted or unsubstituted
  • the compound of Formula 23 is an electronic device, characterized in that selected from the compounds of formula 23-1 to 23-6.
  • the hole injection layer including the material of Chemical Formula 23 is formed as the organic material layer closest to the anode as the upper electrode, an organic light emitting device having an inverted structure in which the upper electrode is the anode can be easily provided.
  • the organic layer may be formed using a variety of polymer materials as well as a smaller number of layers by a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing or thermal transfer. It can be prepared by.
  • the light emitting material for forming the light emitting layer is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • a hole transporting material for forming the hole transporting layer a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the hole injection material for forming the hole injection layer is a material capable of well injected holes from the anode at a low voltage, the highest occupied molecular orbital (HOMO) of the hole injection material is the work function of the positive electrode material and the surrounding organic material layer It is preferred to be between HOMO.
  • Specific examples of hole injection materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene, quinacridone-based organics, perylene-based organics, Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the manufacturing method of the organic light emitting device forming a transparent cathode on the substrate; Forming an organic material layer on the transparent cathode; And forming an anode on the organic layer, wherein the forming of the organic layer comprises n-type doped comprising an electron transport material and an n-type dopant on the transparent cathode.
  • Forming an electron transport layer and forming a light emitting layer is characterized in that it comprises.
  • the material and the forming method of each layer are the same as described above, and thus a detailed description thereof will be omitted.
  • the present invention also provides a lighting device comprising the organic light emitting device.
  • the organic light emitting device according to the present invention can be easily formed as a double-sided light emitting structure, and is useful as a lighting device because of excellent device efficiency.
  • FIG. 1 is a view showing an inverse structure organic light emitting device according to a first embodiment of the present invention.
  • the reverse structure organic light emitting diode includes a transparent cathode formed of ITO or IZO, and an n-doped electron transport layer n as a first electron transport layer on a substrate.
  • -doped ETL second electron transport layer
  • EML light emitting layer
  • HTL hole transport layer
  • HIL hole injection layer
  • FIG. 2 illustrates an organic light emitting diode according to a second exemplary embodiment of the present invention.
  • the reverse structure organic light emitting diode includes a transparent cathode, an n-doped ETL, and an N-type doped electron transport layer formed of ITO or IZO on a substrate.
  • the light emitting layer EML, the hole transport layer HTL, the hole injection layer HIL, and a transparent anode formed of ITO or IZO are sequentially stacked.
  • a 1000 ⁇ thick transparent IZO cathode was formed on the substrate by a sputtering method, and the n-type doped electron transport layer was formed to a thickness of 50 ⁇ by doping Ca at 10% to the electron transport material of Formula A as a first electron transport layer thereon. It was. Subsequently, a second electron transport layer was formed on the first electron transport layer by using an electron transporting material of Formula (A) having a thickness of 150 kV.
  • Alq 3 (aluminum tris (8-hydroxyquinoline)) having the following chemical formula was vacuum-deposited to form a light emitting layer having a thickness of 300 GPa, and NPB of the following formula was vacuum-deposited thereon to form a hole transport layer having a 400 GPa thickness.
  • HAT material was thermally vacuum deposited to form a hole injection layer having a thickness of 500 kPa.
  • An IZO layer was formed thereon to a thickness of 1750 mm 3.
  • a transparent IZO anode of 1750 ⁇ thickness was formed on the hole injection layer by sputtering.
  • the deposition rate of the organic material was maintained and maintained at 0.4 ⁇ 1.0 ⁇ / sec, and the vacuum degree during deposition was maintained at 2 ⁇ 10 ⁇ 7 ⁇ 2 ⁇ 10 ⁇ 8 torr.
  • the driving voltage is 3.7 V and the luminance is 14.7 cd / A at a current density of 5 mA / cm 2 , and the leakage current shown in FIG. 5.
  • the characteristics were also stable, showing the unique device characteristics of the organic light emitting device.
  • a 1000 ⁇ transparent IZO cathode was formed on the substrate by a sputtering method, and the electron transporting material of Formula A was doped with Ca at 10% to form an n-type doped electron transport layer with a thickness of 200 ⁇ .
  • Alq 3 (aluminum tris (8-hydroxyquinoline)) of the chemical formula of Example 1 was vacuum deposited to form a light emitting layer having a thickness of 300 Pa.
  • NPB of the chemical formula of Example 1 was vacuum deposited to deposit holes of 400 mm thick.
  • a transport layer was formed.
  • the HAT material of Example 1 was thermally vacuum deposited to form a hole injection layer having a thickness of 500 kPa.
  • An IZO layer was formed thereon to a thickness of 1750 mm 3.
  • a transparent IZO anode having a thickness of 1750 ⁇ was formed on the hole injection layer by sputtering.
  • the deposition rate of the organic material was maintained and maintained at 0.4 ⁇ 1.0 ⁇ / sec, and the vacuum degree during deposition was maintained at 2 ⁇ 10 ⁇ 7 ⁇ 2 ⁇ 10 ⁇ 8 torr.
  • the driving voltage is 3.6V and the luminance is 10.8 cd / A at the current density of 5 mA / cm 2 , and the leakage current shown in FIG.
  • the characteristics were also stable, showing the unique device characteristics of the organic light emitting device.
  • a 1000 micron-thick transparent IZO cathode was formed on the substrate by a sputtering method, and 200 n layers of an n-type electron transport layer was formed by doping 10% of Mg on the electron transporting material of Formula A thereon. The same procedure as in Example 2 was followed.
  • a 1000 ⁇ thick transparent IZO cathode was formed on the substrate by a sputtering method, and the same as in Example 2 except that an electron transport layer having a thickness of 200 kHz was formed thereon without doping Ca in the electron transporting material of Formula A.
  • Example 3 showed the current density and the light emission characteristics according to the bias voltage.
  • the electron transport layer which was not doped with n-type, was almost impossible to inject electrons from IZO, which is a high work function. 6 is a current-voltage characteristic according to the presence or absence of n-type doping of the electron transport material on the IZO electrode. As shown in FIG. 6, when n-type doping is not performed in the electron transport layer, the electron injection ability may be deteriorated very much.
  • a device was fabricated in the same manner as in Example 1 except that the organic light emitting device was formed in a regular structure. However, this device did not operate by sputtering damage when forming the upper electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Led Devices (AREA)

Abstract

본 발명은, 기판; 투명 음극; 양극; 및 상기 투명 음극과 상기 양극 사이에 위치하는 유기물층을 포함하는 유기발광소자에 있어서, 상기 유기물층은 발광층 및 n-형 도핑된 전자수송층을 포함하고, 상기 n-형 도핑된 전자수송층은 전자 수송 재료 및 n-형 도펀트를 포함하고 상기 음극과 발광층 사이에 위치하는 것을 특징으로 하는 유기발광소자 및 이의 제조방법을 제공한다.

Description

유기발광소자 및 이의 제조방법
본 발명은, 유기발광소자 및 이의 제조방법에 관한 것으로서, 보다 구체적으로, 투명금속산화물과 같은 고일함수 재료로 형성된 투명 전극을 음극으로 사용할 수 있는 유기발광소자 및 이의 제조방법에 관한 것이다. 본 출원은 2008년 10월 1일에 한국특허청에 제출된 한국 특허 출원 제10-2008-0096732호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
유기 발광 소자(OLED)는 통상 두 개의 전극(양극 및 음극) 및 이들 전극 사이에 위치하는 한 층 이상의 유기물층으로 구성된다. 이와 같은 구조의 유기 발광 소자에 있어서, 두 개의 전극 사이에 전압을 인가하면, 양극으로부터는 정공이, 음극으로부터는 전자가 각각 유기물층으로 유입되고, 이들이 재결합하여 여기자를 형성하며, 이 여기자가 다시 기저 상태로 떨어지면서 에너지 차이에 해당하는 광자를 방출하게 된다. 이와 같은 원리에 의하여 유기 발광 소자는 가시 광선을 발생하며, 이를 이용하여 정보 표시 소자 또는 조명 소자를 제조할 수 있다.
유기 발광 소자에 있어서, 유기물층에서 생성된 빛이 기판 방향으로 나오도록 하는 것을 후면 발광(bottom emission) 방식이라 하고, 이와 반대로 빛이 기판의 반대 방향으로 나오도록 하는 것을 전면 발광(top emission) 방식이라 한다. 기판 방향과 기판의 반대 방향 모두에서 빛이 나오도록 하는 것을 양면 발광(both-side emission) 방식이라 한다.
전면 발광 또는 양면 발광 유기 발광 소자에서는 기판과 접하지 않고 기판과 반대쪽에 위치하는 전극이 가시광선 영역에서 투명하여야 한다. 유기 발광 소자에서는 투명 전극으로서 IZO(indium zinc-oxide) 또는 ITO(indium tin-oxide)와 같은 전도성 산화막이 사용된다. 그런데, 상기와 같은 전도성 산화막은 일함수가 매우 높기 때문에, 이것으로 음극을 형성하는 경우 음극으로부터 유기물층으로의 전자 주입이 어려워져 유기 발광 소자의 작동 전압이 크게 증가하고 발광 효율 등의 중요한 소자 특성이 저하된다. 따라서, 전면 발광 또는 양면 발광 유기 발광 소자를 기판, 음극, 유기물층 및 투명 양극이 순차적으로 적층된 구조, 이른바 역구조(inverted)로 제조할 필요가 있다.
양면 발광형 유기발광소자를 제작하는 경우에는, 유기 발광 소자를 역구조로 제조하더라도 , 기판에 접하는 음극의 재료로서 투명 재료인 일함수가 높은 전도성 산화막을 사용하기 어렵다는 문제가 있다. 이에, 역구조의 유기발광소자에 있어서, 상부 전극인 양극 뿐만 아니라 기판에 접하는 음극을 전도성 산화막(Conducting Oxide)과 같은 투명 재료로 형성할 수 있는 방법이 요구된다.
따라서, 본 발명의 목적은, 역구조의 유기발광소자에 있어서, 양극 뿐만 아니라 음극으로서, 투명금속산화물과 같은 고일함수 재료로 형성된 투명 전극을 사용할 수 있는 유기발광소자 및 이의 제조방법을 제공하는 것이다.
본 발명은, 기판; 상기 기판 상에 위치한 투명 음극; 양극; 및 상기 투명 음극과 상기 양극 사이에 위치하는 유기물층을 포함하는 유기발광소자에 있어서, 상기 유기물층은 발광층 및 n-형 도핑된 전자수송층을 포함하고, 상기 n-형 도핑된 전자수송층은 전자 수송 재료 및 n-형 도펀트를 포함하고 상기 투명 음극과 발광층 사이에 위치하는 것을 특징으로 하는 유기발광소자를 제공한다.
본 발명은, 기판 상에 투명 음극을 형성하는 단계; 상기 투명 음극 상에 유기물층을 형성하는 단계; 및 상기 유기물층 상에 양극을 형성하는 단계를 포함하는 유기발광소자의 제조방법에 있어서, 상기 유기물층을 형성하는 단계는 상기 투명 음극 상에 전자 수송 재료 및 n-형 도펀트를 포함하는 n-형 도핑된 전자수송층을 형성하는 단계 및 발광층을 형성하는 단계를 포함하는 것을 특징으로 하는 유기발광소자의 제조방법을 제공한다.
또한, 본 발명은 상기 유기발광소자를 포함하는 조명기기를 제공한다.
본 발명에 따르면, 역구조의 유기발광소자의 음극을 투명금속산화물과 같은 고일함수 재료로 형성된 투명 전극으로 형성할 수 있다. 따라서, 본 발명에서는 양면으로 발광할 수 있는 유기발광소자를 제공할 수 있다. 양면 발광 유기발광소자는 조명 용도에 유용하다.
도 1 및 도 2는 본 발명에 따른 유기발광소자의 적층구조를 도시한 도면이다.
도 3은 실시예 1~3의 유기발광소자의 DC 바이어스 전압에 따른 전류 밀도를 나타낸 것이다.
도 4는 실시예 1~3의 유기발광소자의 전류 밀도에 따른 전류 효율을 나타낸 것이다.
도 5는 실시예 1~3의 유기발광소자의 바이어스 전압에 따른 전류 밀도를 나타낸 것이다.
도 6은 실시예 3 및 비교예 1에 따른 유기발광소자 각각에 대한 바이어스 전압에 따른 전류 밀도를 나타낸 것이다.
도 7은 정구조와 역구조에서 전자 주입 효율의 차이를 나타낸 그래프이다.
본 발명에 따른 유기발광소자는, 기판; 상기 기판 상에 위치한 투명 음극; 양극; 및 상기 투명 음극과 상기 양극 사이에 위치하는 유기물층을 포함하는 유기발광소자에 있어서, 상기 유기물층은 발광층 및 n-형 도핑된 전자수송층을 포함하고, 상기 n-형 도핑된 전자수송층은 전자 수송 재료 및 n-형 도펀트를 포함하고 상기 음극과 발광층 사이에 위치하는 것을 특징으로 한다.
본 발명은 기판 위에 음극이 구비되는 역구조의 유기발광소자에 있어서, 상기 음극이 투명한 것을 특징으로 한다.
정구조의 유기발광소자에서 음극을 투명 전극으로 형성하는 경우에는 일반적으로 스퍼터링 방법이 이용되고, 이 경우 스퍼터링 데미지를 전자수송층이 감당하지 못하여 유기물층 손상에 의한 소자 불량이 발생한다. 그러나, 본 발명에서는 음극을 투명 전극으로 형성하되, 음극을 하부 전극으로 포함하는 역구조로 형성함으로써 상기와 같은 문제를 해결할 수 있다.
또한, 본 발명자들은 음극을 투명 재료로 형성하는 경우 투명 음극의 일함수가 매우 높기 때문에 전자 수송 재료와의 에너지 차이에 의하여 소자 구동이 불가능하다는 사실을 밝혀내었다. 따라서, 본 발명에서는 유기물층과 투명음극 사이의 일함수 차이를 극복할 수 있도록 n-형 도핑된 전자수송층을 구비하는 것을 특징으로 한다. 이에 의하여, 본 발명에서는 일함수가 매우 높은금속산화물과 같은 투명 재료로 기판 상에 투명 음극을 형성하는 경우에도 소자가 구동될 수 있으며, 이에 의하여 기판 위에 투명 음극이 구비되는 역구조의 유기발광소자를 제공할 수 있다.
음극을 불투명 재료로 형성하는 경우, 전자수송층이 n-형 도핑된 경우 뿐만 아니라 n-형으로 도핑되지 않은 경우에도 소자의 구동은 가능하다. 그러나, 음극을 투명 재료로 형성하는 경우에는, 전자 수송 재료만으로 전자수송층을 형성하면 전술한 바와 같이 에너지 차이에 의하여 소자 구동이 불가능하고, 전자수송층을 n-형 도핑된 전자수송층으로 형성하여야만 소자 구동이 가능하다. 따라서, 음극이 투명 재료로 형성된 경우와 불투명 재료로 형성된 경우에 있어서, 전자수송층의 n-형 도핑 여부는 그 기술적 의의가 전혀 상이하다. 구체적으로, 음극을 불투명 재료로 형성하는 경우에는 전자수송층을 n-형 도핑하는 기술의 적용 여부가 단순히 캐리어의 농도를 높이는 정도의 의의를 갖는다. 그러나, 음극을 투명 재료로 형성하는 경우에, 전자수송층을 n-형 도핑하는 기술의 적용 여부는 소자 구동의 가능 여부를 결정하는 절대적인 기술적 의의가 있는 것이다. 즉, 본 발명에 따라 전자수송층이 n-형 도핑된 경우에 한하여 역구조의 유기발광소자의 음극을 투명하게 형성할 수 있다.
또한, 본 발명자들은 정구조에서보다 역구조에서 표면쌍극자(surface dipole)에 의한 밴드 정렬(band alignment) 변화에 의해 전자수송량이 2~3배정도 증가한다는 사실을 밝혀내었다. 도 7에 정구조와 역구조에서의 전자 주입 특성을 비교한 그래프를 나타내었다.
본 발명에 따른 유기발광소자에서는 양극도 역시 투명한 것이 바람직하다.
본 발명에 있어서, 전극이 투명하다는 것은 상기 유기발광소자의 발광층으로부터 발생된 빛의 투과도가 50% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 85% 이상, 더욱 바람직하게는 90% 이상인 것이다.
상기 투명 음극 및 상기 양극은, 각각 일함수가 2.7eV 이상인 전극재료로 형성될 수 있다. 전극재료의 일함수가 2.7 eV 이상인 것이 공정상 유리하다. 상기 일함수는 4.5 eV 이상인 것이 투명성 면에서 더욱 바람직하다.
상기 투명 음극 및 상기 양극은, 각각 인듐아연산화물(IZO: Indium Zinc Oxide) 및 아연 산화물 (ZnO) 중 선택된 1종 이상의 투명금속산화물로 형성될 수 있다. 본 발명에 따른 유기발광소자는 음극이 투명하므로 후면 발광형일 수 있고, 음극 뿐만 아니라 양극이 투명한 경우 양면 발광형일 수 있다.
여기서, 상기 n-형 도핑된 전자수송층은, 전자 수송 재료; 및 n-형 도펀트를 포함한다. 상기 n-형 도펀트는 금속 할로겐화물, 금속 산화물, 유기 금속, 알칼리금속, 알칼리토금속, 알칼리금속 화합물 및 알칼리토금속 화합물 중에서 선택된 1종 이상을 포함할 수 있다.
상기 n-형 도펀트로는, 예컨대, NaF, CSF, MgF2, CaF2, MgO, CaO, BaO, SrO, Li2O, Na2O, K2O, Cs2O, Cs2Co3, Mg, Ca, Li, Na, K, Cs를 들 수 있다. 또한, LiF, KF를 n-형 도펀트로 사용할 수도 있다.
본 발명에서는 유기물층 중 전자 수송 역할을 하는 층의 형성시 전술한 전자 수송 재료에 n-형 도펀트를 도핑함으로써 전자 주입 및 수송 특성에 영향을 미치지 않고, 음극을 일함수가 높은 투명 재료로 형성하면서도 유기발광소자 특성을 크게 향상시킬 수 있다. 이에 의하여 종래에 유기발광소자의 효율적인 작동을 위하여 반드시 필요한 것으로 생각되어 왔던 전자주입층을 별도로 형성하지 않아도 유기발광소자가 효율적으로 작동할 수 있다. 또한, 전술한 전자 수송 재료에 상기와 같은 n-형 도펀트를 도핑하는 경우 소자의 수명에 있어서도 이롭다.
본 발명에 있어서, 상기 전자 수송 재료는 음극으로부터 주입된 전자를 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이다.
상기 전자 수송 재료는 이미다졸기, 옥사졸기, 티아졸기, 퀴놀린 및 페난쓰롤린기 중에서 선택된 1종 이상의 작용기를 포함하는 화합물일 수 있다.
상기 이미다졸기, 옥사졸기 및 티아졸기로부터 선택되는 작용기를 갖는 화합물의 구체적인 예로는 하기 화학식 1 또는 2의 화합물의 화합물이 있다:
(화학식 1)
Figure PCTKR2009005660-appb-I000001
상기 화학식 1에 있어서, R1 내지 R4는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 수소원자; 할로겐 원자, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C1~C30의 알킬기; 할로겐 원자, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C3~C30의 시클로알킬기; 할로겐 원자, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C5~C30의 아릴기; 또는 할로겐 원자, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C2~C30의 헤테로아릴기이고, 서로 인접하는 기와 지방족, 방향족, 지방족헤테로 또는 방향족헤테로의 축합 고리를 형성하거나 스피로 결합을 이룰 수 있고; Ar1은 수소원자, 치환 또는 비치환의 방향족 고리 또는 치환 또는 비치환의 방향족 헤테로 고리이며; X는 O, S 또는 NRa이고; Ra는 수소, C1-C7의 지방족 탄화수소, 방향족 고리 또는 방향족 헤테로 고리이고,
(화학식 2)
Figure PCTKR2009005660-appb-I000002
상기 화학식 2에 있어서, X는 O, S, NRb 또는 C1-C7의 2가 탄화수소기이고; A, D 및 Rb는 각각 수소원자, 니트릴기(-CN), 니트로기(-NO2), C1-C24의 알킬, C5-C20의 방향족 고리 또는 헤테로 원자를 포함하는 치환된 방향족 고리, 할로겐, 또는 인접 고리와 융합 고리를 형성할 수 있는 알킬렌 또는 헤테로 원자를 포함하는 알킬렌이며; A와 D는 연결되어 방향족 또는 헤테로 방향족고리를 형성할 수 있고; B는 n이 2 이상인 경우 연결 유니트로서 다수의 헤테로 고리를 공액 또는 비공액되도록 연결하는 치환 또는 비치환된 알킬렌 또는 아릴렌이며, n이 1인 경우 치환 또는 비치환된 알킬 또는 아릴이고; n은 1 내지 8의 정수이다.
상기 유기물층으로서 채용되는 화합물로서 상기 화학식 1의 화합물의 예로는 한국 특허 공개 제2003-0067773호에 공지되어 있는 화합물을 포함하며, 상기 화학식 2의 화합물의 예로는 미국 특허 제5,645,948호에 기재된 화합물과 WO05/097756호에 기재된 화합물을 포함한다. 상기 문헌들은 그 내용 전부가 본 명세서에 포함된다.
구체적으로, 상기 화학식 1의 화합물에는 하기 화학식 3의 화합물도 포함된다:
(화학식 3)
Figure PCTKR2009005660-appb-I000003
상기 화학식 3에 있어서, R5 내지 R7은 서로 같거나 상이하고, 각각 독립적으로 수소원자, C1-C20의 지방족 탄화수소, 방향족 고리, 방향족 헤테로 고리 또는 지방족 또는 방향족 축합고리이며; Ar은 직접 결합, 방향족 고리 또는 방향족 헤테로 고리이며; X는 O, S 또는 NRa이며; Ra는 수소원자, C1-C7의 지방족 탄화수소, 방향족 고리 또는 방향족 헤테로 고리이고; 단 R5 및 R6이 동시에 수소인 경우는 제외된다.
또한, 상기 화학식 2의 화합물에는 하기 화학식 4의 화합물도 포함된다:
(화학식 4)
Figure PCTKR2009005660-appb-I000004
상기 화학식 4에 있어서, Z는 O, S 또는 NRb이며; R8 및 Rb는 수소원자, C1-C24의 알킬, C5-C20의 방향족 고리 또는 헤테로 원자를 포함하는 치환된 방향족 고리, 할로겐, 또는 벤자졸 고리와 융합 고리를 형성할 수 있는 알킬렌 또는 헤테로 원자를 포함하는 알킬렌이고; B는 n이 2 이상인 경우 연결 유니트로서 다수의 벤자졸들을 공액 또는 비공액되도록 연결하는 알킬렌, 아릴렌, 치환된 알킬렌, 또는 치환된 아릴렌이며, n이 1인 경우 치환 또는 비치환된 알킬 또는 아릴이고; n은 1 내지 8의 정수이다.
바람직한 화합물로서 이미다졸기를 갖는 화합물로는 하기 구조의 화합물들이 있다:
Figure PCTKR2009005660-appb-I000005
본 발명에 있어서, 상기 퀴놀린기를 갖는 화합물의 예로는 하기 화학식 5 내지 11의 화합물이 있다.
(화학식 5)
Figure PCTKR2009005660-appb-I000006
(화학식 6)
Figure PCTKR2009005660-appb-I000007
(화학식 7)
Figure PCTKR2009005660-appb-I000008
(화학식 8)
Figure PCTKR2009005660-appb-I000009
(화학식 9)
Figure PCTKR2009005660-appb-I000010
(화학식 10)
Figure PCTKR2009005660-appb-I000011
(화학식 11)
Figure PCTKR2009005660-appb-I000012
상기 화학식 5 내지 11에 있어서,
n은 0 내지 9의 정수이고, m은 2 이상의 정수이며,
R9는 수소, 메틸기, 에틸기 등의 알킬기, 시클로헥실, 노르보르닐 등의 시클로알킬기, 벤질기 등의 아랄킬기, 비닐기, 알릴기 등의 알케닐기, 시클로펜타디에닐기, 시클로헥세닐기 등의 시클로알케닐기, 메톡시기 등의 알콕시기, 알콕시기의 에테르 결합의 산소 원자가 황 원자로 치환된 알킬티오기, 페녹시기 등의 아릴에테르기, 아릴에테르기의 에테르 결합의 산소 원자가 황 원자로 치환된 아릴티오에테르기, 페닐기, 나프틸기, 비페닐기 등의 아릴기, 푸릴기, 티에닐기, 옥사졸릴기, 피리딜기, 퀴놀릴기, 카르바졸릴기 등의 복소환기, 할로겐, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 에스테르기, 카르바모일기, 아미노기, 니트로기, 트리메틸실릴기 등의 실릴기, 에테르 결합을 통해 규소를 갖는 기인 실록사닐기, 인접 치환기와의 사이의 환 구조로부터 선택되며; 상기 치환기들은 비치환 또는 치환될 수 있고, n이 2 이상인 경우 치환기들은 서로 동일하거나 상이할 수 있고,
Y는 상기 R9의 기들의 2가 이상의 기이다.
상기 화학식 5 내지 11의 화합물은 한국 공개특허 2007-0118711에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
본 발명에 있어서, 상기 페난쓰롤린기를 갖는 화합물의 예로는 하기 화학식 12 내지 22의 화합물들이 있으나, 이들 예로만 한정되는 것은 아니다.
(화학식 12)
Figure PCTKR2009005660-appb-I000013
(화학식 13)
Figure PCTKR2009005660-appb-I000014
(화학식 14)
Figure PCTKR2009005660-appb-I000015
(화학식 15)
Figure PCTKR2009005660-appb-I000016
상기 화학식 12 내지 15에 있어서,
m은 1 이상의 정수이고, n 및 p는 정수이며, n+p는 8 이하이고,
m이 1인 경우, R10 및 R11은 수소, 메틸기, 에틸기 등의 알킬기, 시클로헥실, 노르보르닐 등의 시클로알킬기, 벤질기 등의 아랄킬기, 비닐기, 알릴기 등의 알케닐기, 시클로펜타디에닐기, 시클로헥세닐기 등의 시클로알케닐기, 메톡시기 등의 알콕시기, 알콕시기의 에테르 결합의 산소 원자가 황 원자로 치환된 알킬티오기, 페녹시기 등의 아릴에테르기, 아릴에테르기의 에테르 결합의 산소 원자가 황 원자로 치환된 아릴티오에테르기, 페닐기, 나프틸기, 비페닐기 등의 아릴기, 푸릴기, 티에닐기, 옥사졸릴기, 피리딜기, 퀴놀릴기, 카르바졸릴기 등의 복소환기, 할로겐, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 에스테르기, 카르바모일기, 아미노기, 니트로기, 트리메틸실릴기 등의 실릴기, 에테르 결합을 통해 규소를 갖는 기인 실록사닐기, 인접 치환기와의 사이의 환 구조로부터 선택되며;
m이 2 이상인 경우, R10은 직접 결합 또는 전술한 기들의 2가 이상의 기이고, R11은 m이 1인 경우와 같으며,
상기 치환기들은 비치환 또는 치환될 수 있고, n 또는 p가 2 이상인 경우 치환기들은 서로 동일하거나 상이할 수 있다.
상기 화학식 12 내지 15의 화합물은 한국 공개특허 2007-0052764 및 2007-0118711에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
(화학식 16)
Figure PCTKR2009005660-appb-I000017
(화학식 17)
Figure PCTKR2009005660-appb-I000018
(화학식 18)
Figure PCTKR2009005660-appb-I000019
(화학식 19)
Figure PCTKR2009005660-appb-I000020
상기 화학식 16 내지 19에 있어서, R1a 내지 R8a 및 R1b 내지 R10b는 각각 수소 원자, 치환 또는 비치환의 핵원자수 5-60의 아릴기, 치환 또는 비치환의 피리딜기, 치환 또는 비치환의 퀴놀릴기, 치환 또는 비치환의 탄소수 1-50의 알킬기, 이환 또는 비치환의 탄소수 3-50의 시클로알킬기, 치환 또는 비치환의 핵원자수 6-50의 아랄킬기, 치환 또는 비치환의 탄소수 1-50의 알콕시기, 치환 또는 비치환의 핵원자수 5-50의 아릴옥시기, 치환 또는 비치환의 핵원자수 5-50의 아릴티오기, 치환 또는 비치환의 탄소수 1-50의 알콕시카르보닐기, 치환 또는 비치환의 핵원자수 5-50의 아릴기로 치환된 아미노기, 할로겐원자, 시아노기, 니트로기, 히드록실기 또는 카르복실기이고, 이들은 서로 결합하여 방향족 고리를 형성할 수 있으며, L은 치환 또는 비치환의 탄소수 6-60의 아릴렌기, 치환 또는 비치환의 피리디닐렌기, 치환 또는 비치환의 퀴놀리닐렌기 또는 치환 또는 비치환의 플루오레닐렌기이다. 상기 화학식 16 내지 19의 화합물은 일본 특허공개 2007-39405호에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
(화학식 20)
Figure PCTKR2009005660-appb-I000021
(화학식 21)
Figure PCTKR2009005660-appb-I000022
상기 화학식 20 및 21에 있어서, d1, d3 내지 d10 및 g1은 각각 수소 또는 방향족 또는 지방족 탄화수소기이고, m 및 n은 0 내지 2의 정수이고, p는 0 내지 3의 정수이다. 상기 화학식 20 및 21의 화합물은 미국 특허 공개 2007/0122656에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
(화학식 22)
Figure PCTKR2009005660-appb-I000023
상기 화학식 22에 있어서, R1c 내지 R6c은 각각 수소원자, 치환 또는 비치환의 알킬기, 치환 또는 비치환의 아랄킬기, 치환 또는 비치환의 아릴기, 치환 또는 비치환의 복소환기 또는 할로겐 원자이고, Ar1c 및 Ar2c는 각각 하기 구조식에서 선택된다.
Figure PCTKR2009005660-appb-I000024
Figure PCTKR2009005660-appb-I000025
Figure PCTKR2009005660-appb-I000026
Figure PCTKR2009005660-appb-I000027
상기 구조식에서 R17 내지 R23은 각각 수소원자, 치환 또는 비치환의 알킬기, 치환 또는 비치환의 아랄킬기, 치환 또는 비치환의 아릴기, 치환 또는 비치환의 복소환기 또는 할로겐 원자이다. 상기 화학식 22의 화합물은 일본 특허 공개2004-107263에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
본 발명에 있어서, 전술한 전자 수송 재료를 이용한 전자수송층의 형성 시 전술한 n-형 도펀트를 도핑하는 것을 특징으로 한다.
상기 n-형 도펀트는 n-형 도핑된 전자수송층 재료의 총 중량을 기준으로 0.5 내지 50 중량%로 포함되는 것이 바람직하고, 1 내지 20중량%인 것이 더욱 바람직하며, 3 내지 15중량%인 것이 더욱 바람직하고, 5 내지 12중량%인 것이 바람직하다. 상기 n-형 도펀트의 함량은 50 중량%이하인 것이 투명성면에서 유리하다. 0.5 중량% 미만인 경우에는 n-형 도핑에 의한 기술적 효과를 기대하기 어렵다.
여기서, 상기 n-형 도펀트는 상기 n-형 도핑된 전자수송층의 두께 방향으로 농도 구배를 가질 수도 있다. 이 경우 상기 투명 음극 측의 상기 n-형 도핑된 전자수송층의 두께 50% 이내에서 상기 n-형 도펀트가 1~50 중량%로 존재하는 것이 바람직할 수 있다.
상기 전자 수송 재료와 상기 n-형 도펀트를 포함하는 전자수송층은 당기술분야에 알려져 있는 방법에 의하여 형성될 수 있다. 예컨대 증착법이나, 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등을 이용할 수 있다.
본 발명에 따른 유기발광소자는 전술한 전자 수송 재료 및 n-형 도펀트를 사용하여 투명 음극 측에 전자수송층을 형성하는 것을 제외하고는, 통상의 제조 방법 및 재료에 따라 제조될 수 있으며, 당기술분야에 알려져 있는 구조를 가질 수 있다.
예컨대, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 음극을 형성하고, 그 위에 유기물층을 형성한 후, 그 위에 양극을 형성하여 제조될 수 있다.
상기 유기물층은 상기 발광층 및 상기 n-형 도핑된 전자수송층만을 포함할 수도 있으나, 필요에 따라 정공주입층, 정공수송층, 전자주입층, 전하저지층 등과 같은 추가의 유기물층을 1층 이상 포함할 수도 있다.
그러나, 이에 한정되지 않고 일부층이 생략되거나 첨가될 수 있다. 다만, 본 발명에서는 종래기술과 달리 전자주입층을 별도로 형성하지 않음으로써 유기발광소자 제작 공정을 단순히 함과 동시에 성능이 우수한 유기발광소자를 제조할 수 있다. 따라서, 본 발명에 따른 유기발광소자는 전자주입층을 포함하지 않을 수 있다. 즉, 상기 전자 수송 물질과 n-형 도펀트를 포함하는 전자수송층과 음극 전극이 접할 수 있다. 그러나, 전자주입층을 포함하는 경우를 본 발명의 범위에서 제외하는 것은 아니다. 따라서, 상기 전자 수송 물질과 n-형 도펀트를 포함하는 전자수송층과 투명 음극 사이에 전자주입층이 구비될 수 있다.
상기 유기물층은, 상기 n-형 도핑된 전자수송층과 상기 발광층 사이에 위치하는 또 다른 전자수송층을 추가로 포함할 수 있다.
여기서, 상기 n-형 도핑된 전자수송층과 발광층 사이에 추가로 구비되는 전자수송층은 n-도핑된 전자수송층의 전자수송재료와 상이한 물질로 형성될 수도 있으나, n-도핑된 전자수송층의 전자수송재료와 동일한 물질로 형성될 수도 있다.
본 발명에 있어서, 상기 유기물층 중 상부전극인 양극과 가장 인접한 최상측의 유기물층은 하기 화학식 23으로 표시되는 화합물을 포함하는 것이 바람직하다.
[화학식 23]
Figure PCTKR2009005660-appb-I000028
상기 화학식 23에 있어서, R1d 내지 R6d은 각각 수소, 할로겐 원자, 니트릴(-CN), 니트로(-NO2), 술포닐(-SO2R), 술폭사이드(-SOR), 술폰아미드(-SO2NR), 술포네이트(-SO3R), 트리플루오로메틸(-CF3), 에스테르(-COOR), 아미드(-CONHR 또는 -CONRR'), 치환 또는 비치환된 직쇄 또는 분지쇄의 C1-C12 알콕시, 치환 또는 비치환된 직쇄 또는 분지쇄 C1-C12의 알킬, 치환 또는 비치환된 방향족 또는 비방향족의 헤테로 고리, 치환 또는 비치환된 아릴, 치환 또는 비치환된 모노- 또는 디-아릴아민, 및 치환 또는 비치환된 아랄킬아민으로 구성된 군에서 선택되며, 상기 R 및 R'는 각각 치환 또는 비치환된 C1-C60의 알킬, 치환 또는 비치환된 아릴 및 치환 또는 비치환된 5-7원 헤테로 고리로 이루어진 군에서 선택된다.
상기 화학식 23의 화합물은 하기 화학식 23-1 내지 23-6의 화합물로부터 선택되는 것을 특징으로 하는 전자소자.
[화학식 23-1]
Figure PCTKR2009005660-appb-I000029
[화학식 23-2]
Figure PCTKR2009005660-appb-I000030
[화학식 23-3]
Figure PCTKR2009005660-appb-I000031
[화학식 23-4]
Figure PCTKR2009005660-appb-I000032
[화학식 23-5]
Figure PCTKR2009005660-appb-I000033
[화학식 23-6]
Figure PCTKR2009005660-appb-I000034
특히, 상부전극인 양극과 가장 인접하는 유기물층으로서 상기 화학식 23의 물질을 포함하는 정공주입층을 형성함에 따라, 상부전극이 양극인 역구조의 유기발광소자를 용이하게 제공할 수 있다.
상기 유기물층은 증착법 뿐만 아니라, 다양한 고분자 소재를 사용하여 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 발광층을 형성하기 위한 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층을 형성하기 위한 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층을 형성하기 위한 상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
한편, 본 발명에 따른 유기발광소자의 제조방법은, 기판 상에 투명 음극을 형성하는 단계; 상기 투명 음극 상에 유기물층을 형성하는 단계; 및 상기 유기물층 상에 양극을 형성하는 단계를 포함하는 유기발광소자의 제조방법에 있어서, 상기 유기물층을 형성하는 단계는 상기 투명 음극 상에 전자 수송 재료 및 n-형 도펀트를 포함하는 n-형 도핑된 전자수송층을 형성하는 단계 및 발광층을 형성하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 따른 유기발광소자의 제조방법에 있어서, 각 층의 재료와 형성 방법은 전술한 바와 동일하므로, 이에 대한 구체적인 설명을 생략하기로 한다.
본 발명은 또한 상기 유기발광소자를 포함하는 조명기기를 제공한다. 본 발명에 따른 유기발광소자는 용이하게 양면 발광 구조로 형성될 수 있을 뿐만 아니라, 소자 효율도 우수하기 때문에 조명기기로서 유용하다.
이하에서는 도 1 및 도 2를 참조하여 본 발명에 따른 역구조 유기발광소자에 대해 구체적으로 설명하기로 한다.
도 1은, 본 발명의 제1 실시상태에 따른 역구조 유기발광소자를 도시한 도면이다.
도 1에 도시된 바와 같이, 제1 실시상태에 따른 역구조 유기발광소자는, 기판 상에, ITO 또는 IZO로 형성된 투명 음극(Cathode), 제1 전자수송층으로서 n-형 도핑된 전자수송층(n-doped ETL), 제2 전자수송층(ETL), 발광층(EML), 정공수송층(HTL), 정공주입층(HIL) 및 ITO 또는 IZO로 형성된 투명 양극(Anode)이 순차적으로 적층된 구조를 갖는다.
도 2는 본 발명의 제2 실시상태에 따른 유기발광소자를 도시한 도면이다.
도 2에 도시된 바와 같이, 제2 실시상태에 따른 역구조 유기발광소자는, 기판 상에, ITO 또는 IZO로 형성된 투명 음극(Cathode), n-형 도핑된 전자수송층(n-doped ETL), 발광층(EML), 정공수송층(HTL), 정공주입층(HIL) 및 ITO 또는 IZO로 형성된 투명 양극(Anode)이 순차적으로 적층된 구조를 갖는다.
이하에서는, 실시예를 통해 본 발명에 대해 더욱 구체적으로 설명하기로 한다. 그러나, 이하의 실시예는 본 발명의 내용을 이해하기 위한 것이며, 본 발명의 범위를 한정하기 위한 것은 아니다.
실시예 1
기판 상에 스퍼터링방법으로 1000Å 두께의 투명 IZO 음극을 형성하고, 그 위에 제1 전자수송층으로서 하기 화학식 A의 전자 수송 재료에 Ca를 10%로 도핑하여 n-형 도핑된 전자수송층을 50Å 두께로 형성하였다. 이어서, 상기 제1 전자수송층 상에 150Å 두께로 하기 화학식 A의 전자 수송 재료를 이용하여 제2 전자수송층을 형성하였다.
그리고, 하기 화학식의 Alq3(알루미늄 트리스(8-히드록시퀴놀린))를 진공 증착하여 300Å 두께의 발광층을 형성하고, 그 위에 하기 화학식의 NPB를 진공 증착하여 400Å 두께의 정공수송층을 형성하였다. 이어서, 그 위에 하기 HAT 물질을 열 진공 증착하여 500 Å의 두께의 정공주입층을 형성하였다. 그 위에 IZO층을 1750 Å 두께로 형성하였다. 그리고 상기 정공주입층 상에 스퍼터링방법으로 1750Å 두께의 투명 IZO 양극을 형성하였다.
[화학식 A]
Figure PCTKR2009005660-appb-I000035
[Alq3]
Figure PCTKR2009005660-appb-I000036
[NPB]
Figure PCTKR2009005660-appb-I000037
[HAT]
Figure PCTKR2009005660-appb-I000038
상기의 과정에서 유기물의 증착속도는 0.4~1.0 Å/sec를 유지하였고, 유지하였으며, 증착시 진공도는 2 x 10-7~ 2 x 10-8 torr를 유지하였다.
실시예 1에서 제조된 유기발광소자에 전류밀도 0.2mA/cm2 간격으로 순차적으로 전압을 인가하여 각 전압과 휘도 누설전류를 측정하였으며 그 결과를 각각 도 3, 도 4 및 도 5에 나타내었다. 도 3, 도 4 및 도 5는 유기발광소자의 전류-전압 특성 및 발광 특성을 나타낸 결과 그래프이다. 이와 같은 그래프에서 전자 수송 재료에 Ca 10%를 도핑하였을 때, 전자 주입과 이동이 되지 않으면 정상적인 정류특성 및 발광특성을 보이지 않거나 높은 전압 및 발광 특성 저하의 결과가 나타난다. 그러나 실시예 1에서 제조된 유기발광소자에서는, 도 3 및 도 4 에서 보듯이, 전류밀도 5mA/cm2 에서 구동전압이 3.7V이며 휘도는 14.7cd/A를 나타내었으며, 도 5에서 나타내는 누설 전류 특성도 안정적이어서 유기발광소자 고유의 소자 특성을 나타내었다.
실시예 2
기판 상에 스퍼터링방법으로 1000Å 두께의 투명 IZO 음극을 형성하고, 그 위에 화학식 A의 전자 수송 재료에 Ca를 10%로 도핑하여 전자수송층으로서 n-형 도핑된 전자수송층을 200Å 두께로 형성하였다. 그리고, 실시예 1의 화학식의 Alq3(알루미늄 트리스(8-히드록시퀴놀린))를 진공 증착하여 300Å 두께의 발광층을 형성하고, 그 위에 실시예 1의 화학식의 NPB를 진공 증착하여 400Å 두께의 정공수송층을 형성하였다. 이어서, 그 위에 실시예 1의 HAT 물질을 열 진공 증착하여 500 Å의 두께의 정공주입층을 형성하였다. 그 위에 IZO층을 1750 Å 두께로 형성하였다. 그리고 정공주입층 상에 스퍼터링방법으로 1750Å 두께의 투명 IZO 양극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4~1.0 Å/sec를 유지하였고, 유지하였으며, 증착시 진공도는 2 x 10-7~ 2 x 10-8 torr를 유지하였다.
실시예 2에서 제조된 유기발광소자에 전류밀도 0.2mA/cm2 간격으로 순차적으로 전압을 인가하여 각 전압과 휘도 누설전류를 측정하였으며 그 결과를 각각 도 3, 도 4 및 도 5에 나타내었다. 도 3, 도 4 및 도 5는 유기발광소자의 전류-전압 특성 및 발광 특성을 나타낸 결과 그래프이다. 이와 같은 그래프에서 전자 수송 재료에 Ca 10%를 도핑하였을 때, 전자 주입과 이동이 되지 않으면 정상적인 정류특성 및 발광특성을 보이지 않거나 높은 전압 및 발광 특성 저하의 결과가 나타난다. 그러나 실시예 2에서 제조되 유기발광소자에서는, 도 3 및 도 4 에서 보듯이, 전류밀도 5mA/cm2 에서 구동전압이 3.6V이며 휘도는 10.8cd/A를 나타내었으며, 도 5에서 나타내는 누설 전류 특성도 안정적이어서 유기발광소자 고유의 소자 특성을 나타내었다.
실시예 3
기판 상에 스퍼터링방법으로 1000Å 두께의 투명 IZO 음극을 형성하고, 그 위에 화학식 A의 전자 수송 재료에 Mg를 10% 도핑하여 n-형 전자수송층 200Å 층을 형성하였다. 이외에는 실시예 2과 동일하게 하였다.
실시예 3에서 제조된 유기발광소자에 전류밀도 0.2mA/cm2 간격으로 순차적으로 전압을 인가하여 각 전압과 휘도 누설전류를 측정하였으며 그 결과를 각각 도 3, 도 4 및 도 5에 나타내었다.
비교예 1
기판 상에 스퍼터링방법으로 1000Å 두께의 투명 IZO 음극을 형성하고, 그 위에 화학식 A의 전자 수송 재료에 Ca를 도핑하지 않고 200Å 두께의 전자수송층을 형성한 것을 제외하고는 실시예 2와 동일하게 하였다.
도 6에서 볼 수 있는 바와 같이, 실시예 3은 바이어스 전압에 따른 전류 밀도와 발광 특성을 나타내었다. 하지만, 비교예의 경우는 n 형으로 도핑되지 않은 전자수송층은 고일함수인 IZO로부터 전자주입이 거의 불가능하여 발광특성을 보이지 않았다. 도 6은, IZO 전극 상에 전자수송재료의 n-형 도핑 유무에 따른 전류-전압 특성이다. 도 6에 나타난 바와 같이, 전자수송층에 n-형 도핑이 이루어지지 않을 경우 전자주입 능력이 매우 저하됨을 볼 수 있다.
비교예 2
유기발광소자를 정구조로 형성한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시하여 소자를 제작하였다. 그러나, 이 소자는 상부전극 형성시 스퍼터링 데미지에 의해 동작하지 않았다.

Claims (17)

  1. 기판; 상기 기판 상에 위치한 투명 음극; 양극; 및 상기 투명 음극과 상기 양극 사이에 위치하는 유기물층을 포함하는 유기발광소자에 있어서, 상기 유기물층은 발광층 및 n-형 도핑된 전자수송층을 포함하고, 상기 n-형 도핑된 전자수송층은 전자 수송 재료 및 n-형 도펀트를 포함하고 상기 투명 음극과 발광층 사이에 위치하는 것을 특징으로 하는 유기발광소자.
  2. 청구항 1에 있어서, 상기 투명 음극 또는 상기 양극은 일함수가 2.7eV 이상인 전극재료로 형성된 것을 특징으로 하는 유기발광소자.
  3. 청구항 1에 있어서, 상기 투명 음극은, 인듐주석산화물(ITO:Indium Tin Oxide), 인듐아연산화물 (IZO: Indium Zinc Oxide) 및 아연 산화물 (ZnO) 중에서 선택된 1종 이상의 투명금속산화물로 형성된 것을 특징으로 하는 유기발광소자.
  4. 청구항 1에 있어서, 상기 양극은 투명한 것을 특징으로 하는 유기발광소자.
  5. 청구항 4에 있어서, 상기 양극은, 인듐주석산화물(ITO:Indium Tin Oxide), 인듐아연산화물 (IZO: Indium Zinc Oxide) 및 아연 산화물 (ZnO) 중에서 선택된 1종 이상의 투명금속산화물로 형성된 투명 양극인 것을 특징으로 하는 유기발광소자.
  6. 청구항 1에 있어서, 상기 n-형 도핑된 전자수송층의 전자 수송 재료는 이미다졸기, 옥사졸기, 티아졸기, 퀴놀린 및 페난쓰롤린기 중에서 선택된 1종 이상의 작용기를 포함하는 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  7. 청구항 1에 있어서, 상기 n-형 도핑된 전자수송층의 n-형 도펀트는 금속 할로겐화물, 금속 산화물, 유기 금속, 알칼리금속, 알칼리토금속, 알칼리금속 화합물 및 알칼리토금속 화합물 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 유기발광소자.
  8. 청구항 7에 있어서, 상기 n-형 도펀트는 NaF, CSF, MgF2, CaF2, MgO, CaO, BaO, SrO, Li2O, Na2O, K2O, Cs2O, Cs2Co3, Mg, Ca, Li, Na, K, Cs, LiF 및 KF 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 유기발광소자.
  9. 청구항 1에 있어서, 상기 n-형 도펀트의 함량은 상기 n-형 도핑된 전자수송층 재료의 총 중량을 기준으로 0.5 중량% 내지 50 중량%인 것을 특징으로 하는 유기발광소자.
  10. 청구항 1에 있어서, 상기 n-형 도펀트(dopant)가 상기 n-형 도핑된 전자수송층의 두께에 따라 농도 구배를 갖는 것을 특징으로 하는 유기발광소자.
  11. 청구항 1에 있어서, 상기 유기물층은, 상기 n-형 도핑된 전자수송층과 상기 발광층 사이에 위치하는 또 하나의 전자수송층을 추가로 포함하는 것을 특징으로 하는 유기발광소자.
  12. 청구항 11에 있어서, 상기 n-형 도핑된 전자수송층과 상기 발광층 사이에 위치하는 상기 또 하나의 전자수송층은, 상기 n-형 도핑된 전자수송층의 전자 수송 재료와 동일한 재료로 형성된 것을 특징으로 하는 유기발광소자.
  13. 청구항 1에 있어서, 상기 n-형 도핑된 전자수송층은 상기 투명 음극과 접하는 것인 유기발광소자.
  14. 청구항 1에 있어서, 상기 유기물층은, 정공수송층 및 정공주입층 중 적어도 1층 이상을 더 포함하는 것을 특징으로 하는 유기발광소자.
  15. 청구항 1에 있어서, 상기 유기물층은 유기물층들 중 상기 양극과 가장 인접한 최상측에 위치하고 하기 화학식 23의 화합물을 포함하는 유기물층을 포함하는 것을 특징으로 하는 유기발광소자.
    [화학식 23]
    Figure PCTKR2009005660-appb-I000039
    상기 화학식 23에 있어서, R1d 내지 R6d은 각각 수소, 할로겐 원자, 니트릴(-CN), 니트로(-NO2), 술포닐(-SO2R), 술폭사이드(-SOR), 술폰아미드(-SO2NR), 술포네이트(-SO3R), 트리플루오로메틸(-CF3), 에스테르(-COOR), 아미드(-CONHR 또는 -CONRR'), 치환 또는 비치환된 직쇄 또는 분지쇄의 C1-C12 알콕시, 치환 또는 비치환된 직쇄 또는 분지쇄 C1-C12의 알킬, 치환 또는 비치환된 방향족 또는 비방향족의 헤테로 고리, 치환 또는 비치환된 아릴, 치환 또는 비치환된 모노- 또는 디-아릴아민, 및 치환 또는 비치환된 아랄킬아민으로 구성된 군에서 선택되며, 상기 R 및 R'는 각각 치환 또는 비치환된 C1-C60의 알킬, 치환 또는 비치환된 아릴 및 치환 또는 비치환된 5-7원 헤테로 고리로 이루어진 군에서 선택된다.
  16. 기판 상에 투명 음극을 형성하는 단계; 상기 투명 음극 상에 유기물층을 형성하는 단계; 및 상기 유기물층 상에 양극을 형성하는 단계를 포함하는 유기발광소자의 제조방법에 있어서, 상기 유기물층을 형성하는 단계는 상기 투명 음극 상에 전자 수송 재료 및 n-형 도펀트를 포함하는 n-형 도핑된 전자수송층을 형성하는 단계; 및 발광층을 형성하는 단계를 포함하는 것을 특징으로 하는 유기발광소자의 제조방법.
  17. 청구항 1 내지 15 중 어느 하나의 항에 따른 유기발광소자를 포함하는 조명기기.
PCT/KR2009/005660 2008-10-01 2009-10-01 유기발광소자 및 이의 제조방법 WO2010039009A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/121,983 US9587172B2 (en) 2008-10-01 2009-10-01 Organic light-emitting diode and method of manufacturing the same
CN200980139154.6A CN102172103B (zh) 2008-10-01 2009-10-01 有机发光二极管及其制备方法
EP09818019.3A EP2352363B1 (en) 2008-10-01 2009-10-01 Organic light-emitting diode and method of manufacturing the same
JP2011530005A JP2012504847A (ja) 2008-10-01 2009-10-01 有機発光素子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0096732 2008-10-01
KR20080096732 2008-10-01

Publications (2)

Publication Number Publication Date
WO2010039009A2 true WO2010039009A2 (ko) 2010-04-08
WO2010039009A3 WO2010039009A3 (ko) 2010-08-05

Family

ID=42074036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005660 WO2010039009A2 (ko) 2008-10-01 2009-10-01 유기발광소자 및 이의 제조방법

Country Status (6)

Country Link
US (1) US9587172B2 (ko)
EP (1) EP2352363B1 (ko)
JP (2) JP2012504847A (ko)
KR (1) KR101069520B1 (ko)
CN (1) CN102172103B (ko)
WO (1) WO2010039009A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683604A (zh) * 2011-03-07 2012-09-19 精工爱普生株式会社 发光元件、发光装置、显示装置和电子设备
CN102856498A (zh) * 2011-06-28 2013-01-02 海洋王照明科技股份有限公司 并联式聚合物太阳能电池及其制备方法
CN103201869A (zh) * 2010-09-06 2013-07-10 株式会社Lg化学 有机电子器件用衬底和包括该衬底的有机电子器件
CN111129320A (zh) * 2018-10-31 2020-05-08 Tcl集团股份有限公司 一种量子点发光二极管

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023035B4 (de) * 2008-05-09 2016-01-07 Novaled Ag Lichtemittierendes organisches Bauelement und Verfahren zum Herstellen
US8242489B2 (en) * 2009-12-17 2012-08-14 Global Oled Technology, Llc. OLED with high efficiency blue light-emitting layer
WO2011162105A1 (en) * 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display, and electronic device
US9349964B2 (en) * 2010-12-24 2016-05-24 Lg Chem, Ltd. Organic light emitting diode and manufacturing method thereof
JP5974249B2 (ja) * 2011-09-08 2016-08-23 株式会社Joled 発光装置およびその製造方法
CN103782200A (zh) * 2011-09-09 2014-05-07 欧司朗股份有限公司 改进的占用传感器装置
CN103022359B (zh) * 2011-09-21 2016-02-10 海洋王照明科技股份有限公司 太阳能电池器件及其制备方法
KR20130050713A (ko) * 2011-11-08 2013-05-16 삼성디스플레이 주식회사 유기 발광 소자, 이의 제조 방법 및 이를 포함하는 평판 표시 장치
CN103378299A (zh) * 2012-04-28 2013-10-30 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
WO2013176521A1 (ko) * 2012-05-25 2013-11-28 주식회사 엘지화학 유기발광소자 및 이의 제조방법
EP2752904B1 (en) * 2012-05-31 2020-07-01 LG Display Co., Ltd. Organic light emitting diode
EP2752907B1 (en) 2012-05-31 2019-07-17 LG Display Co., Ltd. Organic light emitting diode
CN103855310A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 有机电致发光装置及其制备方法
KR101923175B1 (ko) 2013-01-04 2018-11-29 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
KR101437271B1 (ko) * 2013-02-26 2014-09-02 경희대학교 산학협력단 세슘카보네이트가 블랜딩된 산화아연 전자주입·수송층이 구비된 양자점 발광 다이오드 및 그의 제조방법
CN105103325B (zh) * 2013-02-28 2019-04-05 日本放送协会 有机电致发光元件
WO2014168440A1 (ko) * 2013-04-10 2014-10-16 포항공과대학교 산학협력단 역구조 유기 발광 다이오드 및 이의 제조방법
CN104124392A (zh) * 2013-04-24 2014-10-29 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104183792A (zh) * 2013-05-23 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
JP6222712B2 (ja) 2013-07-10 2017-11-01 株式会社Joled 有機el素子、および有機el表示パネル
KR102084170B1 (ko) * 2013-07-25 2020-03-04 삼성디스플레이 주식회사 유기발광소자, 이를 포함하는 유기 발광 표시장치 및 그 제조방법
CN103928639B (zh) * 2014-04-18 2016-08-24 上海和辉光电有限公司 一种逆构造oled的制备方法
US10038034B2 (en) 2014-06-20 2018-07-31 Joled Inc. Organic light-emitting device and display apparatus
JP2016141647A (ja) * 2015-02-02 2016-08-08 日本放送協会 化合物、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池
CN105355798A (zh) * 2015-11-25 2016-02-24 京东方科技集团股份有限公司 有机电致发光器件及其制作方法、显示装置
KR101999709B1 (ko) * 2016-03-21 2019-07-12 주식회사 엘지화학 유기 발광 소자
US10221153B2 (en) 2017-05-03 2019-03-05 Saint Louis University Dibenzothiophene compounds
CN107275502B (zh) * 2017-06-29 2019-11-12 上海天马有机发光显示技术有限公司 有机发光显示面板和显示装置
KR102540847B1 (ko) * 2018-03-14 2023-06-05 삼성전자주식회사 전계 발광 소자 및 이를 포함하는 표시 장치
CN109004008B (zh) 2018-08-01 2020-04-07 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其显示装置
KR102578841B1 (ko) 2018-08-31 2023-09-14 엘지디스플레이 주식회사 발광 소자 및 이를 적용한 투명 표시 장치
US12120901B2 (en) * 2018-10-30 2024-10-15 Sharp Kabushiki Kaisha Light-emitting element for efficiently emitting light in different colors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
KR20030067773A (ko) 2002-01-18 2003-08-19 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
JP2004107263A (ja) 2002-09-19 2004-04-08 Canon Inc フェナントロリン化合物及びそれを用いた有機発光素子
WO2005097756A1 (ja) 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2007039405A (ja) 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20070052764A (ko) 2004-08-23 2007-05-22 도레이 가부시끼가이샤 발광 소자용 재료 및 발광 소자
US20070122656A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
KR20070118711A (ko) 2000-11-24 2007-12-17 도레이 가부시끼가이샤 발광 소자 재료 및 이를 이용한 발광 소자

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357694A (ja) 1991-06-03 1992-12-10 Denki Kagaku Kogyo Kk 有機薄膜el素子
EP0966050A3 (de) * 1998-06-18 2004-11-17 Osram Opto Semiconductors GmbH & Co. OHG Organische Leuchtdiode
JP4505067B2 (ja) * 1998-12-16 2010-07-14 淳二 城戸 有機エレクトロルミネッセント素子
JP2000196140A (ja) * 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2000340364A (ja) 1999-05-25 2000-12-08 Tdk Corp 有機el素子
KR100377321B1 (ko) 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
CN100397678C (zh) 2000-12-26 2008-06-25 Lg化学株式会社 包含具有p-型半导体特性的有机化合物的电子器件
JP4076769B2 (ja) 2000-12-28 2008-04-16 株式会社半導体エネルギー研究所 発光装置及び電気器具
SG148030A1 (en) * 2000-12-28 2008-12-31 Semiconductor Energy Lab Luminescent device
JP2002212170A (ja) * 2001-01-17 2002-07-31 Mitsubishi Chemicals Corp トリアジン系トリスチリル化合物及びトリアジン系トリアルデヒド化合物
TW582121B (en) * 2001-02-08 2004-04-01 Semiconductor Energy Lab Light emitting device
KR100474891B1 (ko) 2001-12-20 2005-03-08 엘지전자 주식회사 유기 el 디스플레이 소자
US6872472B2 (en) * 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
DE10215210B4 (de) * 2002-03-28 2006-07-13 Novaled Gmbh Transparentes, thermisch stabiles lichtemittierendes Bauelement mit organischen Schichten
JP4466064B2 (ja) * 2003-02-17 2010-05-26 セイコーエプソン株式会社 電気光学装置の製造方法
WO2004074399A1 (ja) * 2003-02-20 2004-09-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR20050029426A (ko) * 2003-09-22 2005-03-28 삼성에스디아이 주식회사 칼라필터층 또는 색변환층을 갖는 풀칼라 유기전계발광소자
US7030554B2 (en) 2004-02-06 2006-04-18 Eastman Kodak Company Full-color organic display having improved blue emission
DE102004022004B4 (de) * 2004-05-03 2007-07-05 Novaled Ag Schichtanordnung für eine organische lichtemittierende Diode
JP2006019022A (ja) 2004-06-30 2006-01-19 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス装置およびその製造方法
EP1794255B1 (en) * 2004-08-19 2016-11-16 LG Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
JP4264496B2 (ja) * 2004-08-31 2009-05-20 Okiセミコンダクタ株式会社 標準電波受信装置及びタイムコード復号方法
KR101217659B1 (ko) 2004-09-03 2013-01-02 스탠리 일렉트릭 컴퍼니, 리미티드 El소자
FR2878652A1 (fr) 2004-11-29 2006-06-02 Thomson Licensing Sa Diode organique electroluminescente a couches dopees
TWI253878B (en) * 2005-03-09 2006-04-21 Au Optronics Corp Organic electroluminescent element and display device including the same
US7629741B2 (en) * 2005-05-06 2009-12-08 Eastman Kodak Company OLED electron-injecting layer
US20060269782A1 (en) 2005-05-25 2006-11-30 Eastman Kodak Company OLED electron-transporting layer
KR100672535B1 (ko) * 2005-07-25 2007-01-24 엘지전자 주식회사 유기 el 소자 및 그 제조방법
US7635858B2 (en) * 2005-08-10 2009-12-22 Au Optronics Corporation Organic light-emitting device with improved layer conductivity distribution
US7719182B2 (en) * 2005-09-22 2010-05-18 Global Oled Technology Llc OLED device having improved light output
US20070090756A1 (en) * 2005-10-11 2007-04-26 Fujifilm Corporation Organic electroluminescent element
KR100890862B1 (ko) * 2005-11-07 2009-03-27 주식회사 엘지화학 유기 발광 소자 및 이의 제조 방법
JP4887741B2 (ja) 2005-11-07 2012-02-29 三菱化学株式会社 アルカリ金属原子及びフラーレン類を含有する層を有する有機電界発光素子及びその製造方法
EP1956008B1 (en) * 2005-11-30 2012-03-28 Mitsubishi Chemical Corporation Organic compound, charge-transporting material, composition for charge-transporting material and organic electroluminescent device
JP5268249B2 (ja) * 2005-12-14 2013-08-21 キヤノン株式会社 有機発光素子の製造方法
WO2007086505A1 (ja) * 2006-01-27 2007-08-02 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2007294901A (ja) 2006-03-31 2007-11-08 Canon Inc 有機発光素子
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2008034367A (ja) 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd 表示装置
JP2008016278A (ja) * 2006-07-05 2008-01-24 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子および表示装置
TW200812129A (en) 2006-08-18 2008-03-01 Chunghwa Picture Tubes Ltd Organic light emitting structure
JP5018138B2 (ja) * 2007-03-02 2012-09-05 Jnc株式会社 発光材料およびこれを用いた有機電界発光素子
JP2008252063A (ja) * 2007-03-07 2008-10-16 Toray Ind Inc 発光素子材料および発光素子
US20090091242A1 (en) * 2007-10-05 2009-04-09 Liang-Sheng Liao Hole-injecting layer in oleds
US7719180B2 (en) 2007-10-16 2010-05-18 Global Oled Technology Llc Inverted OLED device with improved efficiency
US20090110956A1 (en) 2007-10-26 2009-04-30 Begley William J Oled device with electron transport material combination
KR100923197B1 (ko) 2007-12-04 2009-10-22 단국대학교 산학협력단 양면 발광 백색유기발광다이오드 및 그의 제조 방법
EP2299786B1 (en) 2008-05-16 2014-03-26 LG Chem, Ltd. Stacked organic light-emitting diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
KR20070118711A (ko) 2000-11-24 2007-12-17 도레이 가부시끼가이샤 발광 소자 재료 및 이를 이용한 발광 소자
KR20030067773A (ko) 2002-01-18 2003-08-19 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
JP2004107263A (ja) 2002-09-19 2004-04-08 Canon Inc フェナントロリン化合物及びそれを用いた有機発光素子
WO2005097756A1 (ja) 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
KR20070052764A (ko) 2004-08-23 2007-05-22 도레이 가부시끼가이샤 발광 소자용 재료 및 발광 소자
JP2007039405A (ja) 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20070122656A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing an anthracene derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352363A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201869A (zh) * 2010-09-06 2013-07-10 株式会社Lg化学 有机电子器件用衬底和包括该衬底的有机电子器件
JP2013539182A (ja) * 2010-09-06 2013-10-17 エルジー・ケム・リミテッド 有機電子素子用基板及びこれを含む有機電子素子
US9257675B2 (en) 2010-09-06 2016-02-09 Lg Chem, Ltd. Substrate for an organic electronic device and an organic electronic device comprising the same
CN102683604A (zh) * 2011-03-07 2012-09-19 精工爱普生株式会社 发光元件、发光装置、显示装置和电子设备
CN102856498A (zh) * 2011-06-28 2013-01-02 海洋王照明科技股份有限公司 并联式聚合物太阳能电池及其制备方法
CN111129320A (zh) * 2018-10-31 2020-05-08 Tcl集团股份有限公司 一种量子点发光二极管
CN111129320B (zh) * 2018-10-31 2021-05-18 Tcl科技集团股份有限公司 一种量子点发光二极管

Also Published As

Publication number Publication date
KR20100037572A (ko) 2010-04-09
US20110180792A1 (en) 2011-07-28
EP2352363B1 (en) 2016-12-07
US9587172B2 (en) 2017-03-07
CN102172103B (zh) 2015-09-02
CN102172103A (zh) 2011-08-31
JP2012504847A (ja) 2012-02-23
KR101069520B1 (ko) 2011-09-30
WO2010039009A3 (ko) 2010-08-05
JP2015053493A (ja) 2015-03-19
EP2352363A2 (en) 2011-08-03
EP2352363A4 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2010039009A2 (ko) 유기발광소자 및 이의 제조방법
WO2013154342A1 (ko) 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자, 이를 포함하는 조명 기구와 디스플레이 장치
WO2009139607A2 (ko) 적층형 유기발광소자
WO2013180503A1 (ko) 유기발광소자
KR101025370B1 (ko) 유기발광소자 및 이의 제조방법
WO2010076986A2 (ko) 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2010056070A2 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
WO2013180539A1 (ko) 유기전계발광소자
WO2013036044A2 (ko) 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
WO2009091231A2 (ko) 유기발광소자 및 이의 제조 방법
WO2011081286A2 (ko) 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2013129836A1 (ko) 유기 발광 소자
WO2016089131A1 (ko) 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법
WO2010107249A2 (ko) 유기발광소자 및 이의 제조방법
WO2019045252A1 (ko) 유기 전계 발광 소자
WO2013176521A1 (ko) 유기발광소자 및 이의 제조방법
KR20090072447A (ko) 유기 발광 소자
WO2013180540A1 (ko) 유기전계발광소자
US8274212B2 (en) Organic light emitting device including first hole injection layer and second hole injection layer
WO2009093873A2 (ko) 유기 발광 소자 및 이의 제작 방법
WO2018084681A1 (ko) 코팅 조성물, 이를 이용한 유기 전계 발광 소자의 제조방법 및 이에 의하여 제조된 유기 전계 발광 소자
WO2015041461A1 (ko) 유기 발광 소자
WO2010074439A2 (ko) 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2013180542A1 (ko) 적층형 유기전계발광소자
WO2014196677A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139154.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818019

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011530005

Country of ref document: JP

Ref document number: 13121983

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009818019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009818019

Country of ref document: EP