[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010038290A1 - ガスタービン装置 - Google Patents

ガスタービン装置 Download PDF

Info

Publication number
WO2010038290A1
WO2010038290A1 PCT/JP2008/067825 JP2008067825W WO2010038290A1 WO 2010038290 A1 WO2010038290 A1 WO 2010038290A1 JP 2008067825 W JP2008067825 W JP 2008067825W WO 2010038290 A1 WO2010038290 A1 WO 2010038290A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mixed
hydrogen
gas turbine
fuel
Prior art date
Application number
PCT/JP2008/067825
Other languages
English (en)
French (fr)
Inventor
浩史 田邉
昇 日坂
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020107028985A priority Critical patent/KR101324900B1/ko
Priority to EP08877149.8A priority patent/EP2330281B1/en
Priority to KR1020137014303A priority patent/KR101369102B1/ko
Priority to PCT/JP2008/067825 priority patent/WO2010038290A1/ja
Priority to CN2008801300542A priority patent/CN102076941B/zh
Priority to US12/999,374 priority patent/US9097188B2/en
Priority to KR1020137014304A priority patent/KR101369116B1/ko
Publication of WO2010038290A1 publication Critical patent/WO2010038290A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a gas turbine apparatus that uses a mixed gas obtained by mixing three or more kinds of gases as a fuel gas for a combustor.
  • a low-calorie gas-only-fired gas turbine device that can generally use a plurality of low-calorie gases having different calories at the same time It has been known.
  • This low-calorie gas-only fired gas turbine device is used in, for example, an ironworks.
  • various by-product gases such as blast furnace gas (B gas), coke oven gas (C gas), and converter gas (L gas) are generated in the manufacturing process of steel products.
  • B gas blast furnace gas
  • C gas coke oven gas
  • L gas converter gas
  • Patent Document 1 A specific example of such a gas turbine apparatus that uses a mixed gas obtained by mixing a plurality of types of by-product gas and natural gas as a fuel gas for a combustor is disclosed in Patent Document 1 below, for example.
  • gas turbine apparatus disclosed in Patent Document 1 blast furnace gas, coke oven gas, and natural gas are mixed in a mixing section 51 as shown in FIG. 4, and the combustor of the gas turbine 52 is made by using the mixed gas as fuel gas. To supply.
  • Patent Document 2 discloses an example of a gas turbine device that supplies a part of combustion gas discharged from a gas turbine to an air compressor and reuses it.
  • JP 2004-27975 A Japanese Patent No. 295456
  • the present invention is a gas in which three or more kinds of gases (for example, a single gas such as butane gas and propane gas, or a gas in which a plurality of kinds of gases such as blast furnace gas and converter gas are mixed) are used.
  • a gas turbine apparatus capable of generating a mixed gas in which three or more of these gases are uniformly mixed, and further capable of preventing explosion by monitoring the hydrogen concentration and oxygen concentration in the mixed gas. This is the issue.
  • a gas turbine device that solves the above-mentioned problem burns fuel gas supplied from a fuel gas supply device together with compressed air supplied from an air compressor in a combustor, and gas is generated by the combustion gas generated at this time.
  • the fuel gas supply device configured to rotationally drive the turbine,
  • the fuel gas supply device has a plurality of mixers. In these mixers, three or more kinds of gases are mixed in order from the lighter specific gravity or mixed in order from the higher specific gravity. The mixed gas is supplied to the combustor as the fuel gas.
  • the gas turbine device of the second invention is the gas turbine device of the first invention
  • the fuel gas supply device comprises: A hydrogen / oxygen sensor for detecting hydrogen concentration and oxygen concentration in the mixed gas; A dilution gas mixing device for mixing a dilution gas for diluting the hydrogen concentration and oxygen concentration with the mixed gas; A control device for operating the dilution gas mixing device to mix the dilution gas into the mixed gas when the hydrogen concentration and oxygen concentration detected by the hydrogen / oxygen sensor are equal to or higher than a set value; It is set as the structure which has these.
  • the gas turbine device of the third invention is the gas turbine device of the second invention,
  • the dilution gas mixing apparatus is characterized in that a part of the combustion gas discharged from the gas turbine is mixed with the mixed gas as the dilution gas.
  • the gas turbine apparatus of 4th invention is the gas turbine apparatus of 1st invention
  • the fuel gas supply device includes a remixer that stirs and remixes the mixed gas.
  • the gas turbine apparatus of 5th invention is the gas turbine apparatus of 4th invention
  • the fuel gas supply device comprises: A hydrogen / oxygen sensor for detecting hydrogen concentration and oxygen concentration in the mixed gas; A control device for remixing the mixed gas by operating the remixer when the hydrogen concentration and the oxygen concentration detected by the hydrogen / oxygen sensor exceed a set value; It is set as the structure which has these.
  • the gas turbine apparatus of 6th invention is the gas turbine apparatus of 1st invention
  • the fuel gas supply device comprises: A hydrogen / oxygen sensor for detecting hydrogen concentration and oxygen concentration in the mixed gas; An emergency release valve; A control device for operating the emergency release valve to release the mixed gas when the hydrogen concentration and the oxygen concentration detected by the hydrogen / oxygen sensor exceed a set value; It is set as the structure which has these.
  • a gas turbine device is the gas turbine device according to any one of the second, fifth and sixth aspects of the invention.
  • the fuel gas supply device is downstream of the hydrogen / oxygen sensor, mixing the dilution gas by the dilution gas mixing device, remixing the mixed gas by the remixer, or the emergency discharge valve.
  • the mixed gas is discharged.
  • a gas turbine apparatus is the gas turbine apparatus according to any one of the second to seventh inventions, A gas compressor that compresses the mixed gas and supplies the compressed gas to the combustor;
  • the fuel gas supply device is arranged on the upstream side of the gas compressor to mix the dilution gas by the dilution gas mixing device, remix the gas mixture by the remixer, or the gas mixture by the emergency discharge valve. It is the structure which discharge
  • the fuel gas supplied from the fuel gas supply apparatus is combusted in the combustor together with the compressed air supplied from the air compressor, and the gas turbine is rotated by the combustion gas generated at this time.
  • the fuel gas supply apparatus includes a plurality of mixers, and these mixers mix three or more kinds of gases in order from a lighter specific gravity or a higher specific gravity. Since the mixed gas is generated in order from the one to produce a mixed gas, and this mixed gas is supplied to the combustor as the fuel gas, it is characterized in that it is mixed in order from the one with the lower specific gravity and the one with the higher specific gravity in order.
  • mixing is performed sequentially from the one having a specific gravity. For this reason, it is possible to generate a mixed gas in which three or more kinds of gases are uniformly mixed. By using this uniform mixed gas as the fuel gas of the combustor, the occurrence of uneven combustion is prevented and stable combustion is possible. It becomes.
  • the fuel gas supply device includes a hydrogen / oxygen sensor for detecting a hydrogen concentration and an oxygen concentration in the mixed gas, and the hydrogen A dilution gas mixing device that mixes a dilution gas for diluting the concentration and oxygen concentration with the mixed gas, and the dilution gas when the hydrogen concentration and oxygen concentration detected by the hydrogen / oxygen sensor exceed a set value. It is characterized by having a control device that operates a mixing device and mixes the dilution gas with the mixed gas, so that hydrogen and oxygen in the mixed gas are liberated and hydrogen and oxygen lumps are generated.
  • the dilution gas mixing device converts a part of the combustion gas discharged from the gas turbine into the mixed gas as the dilution gas. Since the combustion gas is effectively used as the diluent gas and nitrogen gas is not required, an efficient and inexpensive gas turbine device can be realized.
  • the fuel gas supply device includes a remixer for stirring and remixing the mixed gas. Therefore, even if hydrogen or oxygen in the mixed gas is liberated and hydrogen lumps or oxygen lumps are generated (even if specific gravity separation occurs), the mixed gas is supplied before being supplied to the combustor. A uniform mixing state can be obtained again by stirring and remixing in a remixer. For this reason, the danger of an explosion is reduced and the safe operation of the gas turbine apparatus becomes possible.
  • the fuel gas supply device includes a hydrogen / oxygen sensor for detecting a hydrogen concentration and an oxygen concentration in the mixed gas, and the hydrogen A control device for operating the remixer to remix the mixed gas when the hydrogen concentration and oxygen concentration detected by an oxygen sensor exceed a set value; Even if hydrogen and oxygen in the mixed gas are liberated and hydrogen and oxygen lumps are generated (even if specific gravity separation occurs), before the mixed gas with high hydrogen concentration and oxygen concentration is supplied to the combustor By detecting that the hydrogen concentration and oxygen concentration of the mixed gas are equal to or higher than the set values, and before the mixed gas is supplied to the combustor, the mixed gas is stirred in the remixer and remixed again. , Average It can be mixed state. For this reason, the danger of an explosion is reduced and the safe operation of the gas turbine apparatus becomes possible.
  • the fuel gas supply device includes a hydrogen / oxygen sensor that detects a hydrogen concentration and an oxygen concentration in the mixed gas, and an emergency release. And a control device that operates the emergency release valve to release the mixed gas when the hydrogen concentration and the oxygen concentration detected by the hydrogen / oxygen sensor exceed a set value. Therefore, when the hydrogen concentration and oxygen concentration of the mixed gas increase due to the release of hydrogen and oxygen in the mixed gas and the generation of hydrogen and oxygen lumps, the mixed gas is supplied to the combustor. It is possible to release the mixed gas by detecting that the hydrogen concentration and the oxygen concentration of the mixed gas are equal to or higher than the set values before the gas is discharged. For this reason, the danger of an explosion is reduced and the safe operation of the gas turbine apparatus becomes possible.
  • the fuel gas supply device is located downstream of the hydrogen / oxygen sensor, and Since the configuration is such that the dilution gas is mixed by the dilution gas mixing device, the mixed gas is remixed by the remixer, or the mixed gas is released by the emergency discharge valve.
  • the mixed gas with high hydrogen concentration and oxygen concentration detected by the hydrogen / oxygen sensor, it is more reliable to mix the dilution gas by the dilution gas mixing device, the remixing of the mixed gas by the remixer, or the emergency.
  • the mixed gas can be discharged by the discharge valve.
  • the gas turbine apparatus of any one of the second to seventh inventions further comprising a gas compressor that compresses the mixed gas and supplies the compressed mixed gas to the combustor.
  • the fuel gas supply device is arranged on the upstream side of the gas compressor to mix the dilution gas by the dilution gas mixing device, remix the gas mixture by the remixer, or the gas mixture by the emergency discharge valve. It is characterized by the structure that discharges the gas, and before the mixed gas with high hydrogen concentration and oxygen concentration flows into the gas compressor, the diluted gas is mixed by the diluted gas mixing device, and the mixed gas is remixed by the remixer. Alternatively, since the mixed gas is released by the emergency release valve, the risk of explosion can be reliably reduced even for the gas turbine device having the gas compressor.
  • FIG. 1 is a configuration diagram of a gas turbine apparatus according to Embodiment 1 of the present invention.
  • the gas turbine apparatus according to the first embodiment is a combined power generation apparatus that operates a gas turbine and a steam turbine to generate power, and includes a gas turbine 1, a steam turbine 5, a combustor 2, and air.
  • the compressor 3, the generator 4, the gas compressor 6, the exhaust heat recovery boiler 7, and the fuel gas supply device 8 are provided.
  • the mixed gas a generated by the fuel gas supply device 8 flows into the gas compressor 6 via the fuel supply line 9 and is compressed here, and then is supplied as fuel gas to the combustor 2 via the fuel supply line 10. Supplied.
  • the fuel gas (mixed gas a) supplied from the fuel gas supply device 8 is burned together with the compressed air b supplied from the air compressor 3.
  • the combustion gas c generated at this time is supplied to the gas turbine 1 to rotationally drive the gas turbine 1.
  • the gas turbine 1, the steam turbine 5, the air compressor 3, the generator 4 and the gas compressor 6 are disposed on the same rotating shaft 11, and the air compressor 3, the generator 4 and the gas compressor 6 are gas turbines. 1 and the steam turbine 5 are rotationally driven.
  • the air compressor 3 sucks outside air (air) g and compresses it, and supplies the compressed air b to the combustor 2 as described above.
  • the generator 4 generates power and transmits this generated power to a power system (not shown) inside or outside the steelworks.
  • the gas compressor 6 sucks and compresses the mixed gas a, and supplies the compressed mixed gas a to the combustor 2 as described above.
  • the fuel gas supply device 8 which is a feature of the first embodiment, has two mixers 15, 16, and these mixers 15, 16 use the three types of first gas I, second gas.
  • the gas II and the third gas III are mixed in order from a lighter specific gravity or mixed in order from a higher specific gravity to produce a mixed gas a, and the mixed gas a is passed through the gas compressor 6 as described above. It is configured to supply to the combustor 2.
  • a downstream end of a fuel supply line 18 provided with a flow rate adjustment valve 17 and a downstream end of a fuel supply line 20 provided with a flow rate adjustment valve 19 are connected on the inlet side of the first mixer 15.
  • the upstream end of the fuel supply line 21 is connected to the outlet side of the first mixer 15.
  • the downstream end of the fuel supply line 21 and the downstream end of the fuel supply line 23 provided with the flow rate adjusting valve 22 are connected to the inlet side of the second mixer 16, while the outlet side of the second mixer 16 is connected. Is connected to the upstream end of the fuel supply line 9.
  • the fuel gas supply device 8 first, in the first mixer 15, the first gas I supplied through the fuel supply line 18 while the flow rate is adjusted by the flow rate adjustment valve 17, and the flow rate adjustment by the flow rate adjustment valve 19.
  • the second gas II supplied through the fuel supply line 20 is mixed while the mixed gas f is generated.
  • the third gas III supplied through the fuel supply line 23 while the flow rate is adjusted by the flow control valve 22, and the mixed gas f supplied through the fuel supply line 21. Are mixed to generate a mixed gas a.
  • the first gas I, the second gas II, and the third gas III have a specific gravity relationship such that the first gas I ⁇ second gas II ⁇ third gas III or the first gas I> second.
  • the gas II is selected to be greater than the third gas III.
  • the 1st gas I, the 2nd gas II, and the 3rd gas III are mixed in an order from light specific gravity, or are mixed in order from a heavy specific gravity.
  • Table 1 shows the specific gravity of each gas type.
  • the first gas I is blast furnace gas when they are mixed in descending order of specific gravity.
  • the second gas II is natural gas
  • the third gas III is coke oven gas
  • the gases are mixed in order from lighter specific gravity
  • the first gas I is coke oven gas
  • the second gas II is natural gas
  • the third gas III becomes blast furnace gas.
  • the fuel gas supplied from the fuel gas supply device 8 is burned in the combustor 2 together with the compressed air b supplied from the air compressor 3, and is generated at this time.
  • the fuel gas supply device 8 configured to rotationally drive the gas turbine 1 with the combustion gas c, the fuel gas supply device 8 has two mixers 15 and 16, and these mixers 15 and 16 use the three first types.
  • the gas I, the second gas II, and the third gas III are mixed in order from the lighter specific gravity or mixed in order from the higher specific gravity to generate the mixed gas a, and the combustor uses the mixed gas a as the fuel gas.
  • the components are mixed in order from the one with the lower specific gravity. Therefore, it is possible to generate a mixed gas a in which three kinds of the first gas I, the second gas II, and the third gas III are uniformly mixed, and this uniform mixed gas a is used as the fuel gas of the combustor 2. This prevents the occurrence of uneven combustion and enables stable combustion.
  • the present invention there are three kinds of gases (for example, three kinds of gases such as a single gas such as butane gas and propane gas, or a mixture of plural kinds of gases such as blast furnace gas and converter gas).
  • the gas is not limited to a mixture of three or more gases (for example, a single gas such as butane gas or propane gas, or a gas in which a plurality of gases such as blast furnace gas or converter gas are mixed). It can also be applied to the case of mixing three or more gases.
  • FIG. 2 is a configuration diagram of a gas turbine apparatus according to Embodiment 2 of the present invention. 2 that are the same as those in FIG. 1 (Embodiment 1) are assigned the same reference numerals as in FIG. 1, and detailed descriptions thereof are omitted.
  • a hydrogen / oxygen sensor is further provided in the fuel gas supply device 8 of the second embodiment.
  • a hydrogen / oxygen sensor is further provided. 31, 39, an emergency discharge valve 32, a control device 33, and a dilution gas mixing device 34.
  • the hydrogen / oxygen sensor 31 is provided in the fuel supply line 9 on the downstream side of the second mixer 16 and detects the hydrogen concentration and oxygen concentration in the mixed gas a.
  • the emergency release valve 32 is a three-way valve provided in the fuel supply line 9 on the downstream side of the hydrogen / oxygen sensor 31. Normally, the mixed gas a is circulated to the gas compressor 6 side and supplied to the combustor 2. In an emergency where the hydrogen concentration or oxygen concentration in the mixed gas a is high, the flow direction is switched and the mixed gas a is discharged from the fuel supply line 9.
  • the dilution gas mixing device 34 has a configuration in which a ventilator 36, a gas cooler 37, and a flow rate adjusting valve 38 are arranged in the dilution gas supply line 35 sequentially from the upstream side.
  • the upstream side of the dilution gas supply line 35 is connected to the exhaust line 12 on the downstream side of the exhaust heat recovery boiler 7, and the downstream side of the dilution gas supply line 35 is connected to the fuel supply line 9 on the downstream side of the emergency release valve 32. It is connected to the.
  • the ventilator 36 when the ventilator 36 is activated, a part of the combustion gas (exhaust gas) c flowing through the exhaust line 12 is introduced into the dilution gas supply line 35, cooled by the gas cooler 37, and flowed by the flow rate adjustment valve 38. It is adjusted and mixed with the mixed gas a as a diluent gas. At this time, the hydrogen concentration and the oxygen concentration in the mixed gas a are diluted with a part of the fuel gas a (diluted gas) to be reduced.
  • the connecting portion of the fuel supply line 9 and the dilution gas supply line 35 is a mixing portion, but a mixer is provided here to mix the mixed gas a and the combustion gas (exhaust gas) c. Also good.
  • the hydrogen / oxygen sensor 39 supplies fuel immediately after the connecting portion (mixing portion) where the mixed gas a and the combustion gas (exhaust gas) c are mixed on the downstream side of the emergency release valve 32 and before entering the gas compressor 6. It is provided in the line 9 and detects the hydrogen concentration and oxygen concentration in the mixed gas a or the hydrogen concentration and oxygen concentration in the mixed gas of the mixed gas a and the combustion gas (exhaust gas) c.
  • the dilution gas mixing device 34 when the hydrogen concentration and the oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 31 are equal to or higher than the first set value (value set lower than the explosion limit), the dilution gas mixing device 34 is used. Is activated. That is, the ventilator 36 is started and the flow rate adjustment valve 38 is opened to start the flow rate adjustment. As a result, as described above, a part of the combustion gas (exhaust gas) c is mixed with the mixed gas a as a diluent gas. Further, in the control device 33, the hydrogen concentration and oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 31 are higher than the first set value, the second set value (value set lower than the explosion limit).
  • the emergency release valve 32 When the above is reached, the emergency release valve 32 is operated (the flow direction of the emergency release valve 32 is switched) to release the mixed gas a.
  • the control device 33 operates the diluting gas mixing device 34 (starts the ventilator 36) when the hydrogen concentration and oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 39 exceeds the first set value.
  • the flow rate adjustment valve 38 is opened to start the flow rate adjustment), and the emergency release valve 32 when the hydrogen concentration and the oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 39 become equal to or higher than the second set value. May be operated (by switching the flow direction of the emergency release valve 32) to release the mixed gas a.
  • the fuel gas supply device 8 detects the hydrogen concentration and the oxygen concentration in the mixed gas a.
  • the hydrogen / oxygen sensor 31 or 39
  • the dilution gas mixing device 34 for mixing the diluted gas for diluting the hydrogen concentration and oxygen concentration with the mixed gas a
  • the hydrogen / oxygen sensor 31 or 39
  • the dilution gas mixing device 34 Since the dilution gas mixing device 34 is operated when the hydrogen concentration and the oxygen concentration are equal to or higher than the first set values, and the control device 33 mixes the dilution gas with the mixed gas a, the hydrogen in the mixed gas a Even if hydrogen and oxygen lumps are generated due to liberation of oxygen and oxygen, the hydrogen concentration and oxygen concentration of the mixed gas a are set before the mixed gas a having a high hydrogen concentration and oxygen concentration is supplied to the combustor 2. Greater than or equal to It detects that there can be reduced by diluting the hydrogen concentration and the oxygen concentration of the mixed gas a at a dilution gas. For this reason, it is possible to operate the gas turbine device safely by suppressing the hydrogen concentration and oxygen concentration of the mixed gas a to below the explosion limit.
  • the dilution gas mixing device 8 is configured to mix a part of the combustion gas (exhaust gas) c discharged from the gas turbine 1 into the mixed gas a as a dilution gas. Since the combustion gas is effectively used as the dilution gas and nitrogen gas or the like is not required, an efficient and inexpensive gas turbine device can be realized.
  • the fuel gas supply device 8 includes the hydrogen / oxygen sensor 31 (or 39) for detecting the hydrogen concentration and the oxygen concentration in the mixed gas a, and the emergency release valve. 32, and a control device 33 that operates the emergency release valve 32 to release the mixed gas a when the hydrogen concentration and the oxygen concentration detected by the hydrogen / oxygen sensor 31 (or 39) are equal to or higher than the second set value. Therefore, when the hydrogen concentration and the oxygen concentration of the mixed gas a increase due to the generation of hydrogen lumps and oxygen lumps by liberation of hydrogen and oxygen in the mixed gas a, the mixed gas a is combusted.
  • the fuel gas supply device 8 is arranged on the downstream side of the hydrogen / oxygen sensor 31, and the dilution gas mixing by the dilution gas mixing device 34 and the emergency release valve are performed. Since the mixed gas a is released by 32, the dilution gas mixing device 34 is more reliably downstream than the mixed gas a having a high hydrogen concentration and high oxygen concentration detected by the upstream hydrogen / oxygen sensor 31. It is possible to mix the dilution gas by the above and the discharge of the mixed gas a by the emergency release valve 32.
  • the gas compressor 6 is provided with the gas compressor 6 that compresses the mixed gas a and supplies the mixed gas a to the combustor 2, and the fuel gas supply device 8 includes the gas compressor.
  • the dilution gas mixing device 34 mixes the dilution gas and the emergency discharge valve 32 releases the mixed gas a.
  • the gas mixture 6 having a high hydrogen concentration and oxygen concentration is used as the gas compressor 6.
  • the dilution gas is mixed by the dilution gas mixing device 34 and the mixed gas a is discharged by the emergency discharge valve 32. Therefore, the gas turbine device having the gas compressor 6 is surely exploded. Risk can be reduced.
  • FIG. 3 is a configuration diagram of a gas turbine apparatus according to Embodiment 3 of the present invention. 3 that are the same as those in FIG. 1 (Embodiment 1) and FIG. 2 (Embodiment 2) are assigned the same reference numerals as in FIGS. 1 and 2, and detailed descriptions thereof are omitted. To do.
  • a hydrogen / oxygen sensor is further provided in the fuel gas supply device 8 of the third embodiment. 31, 39, an emergency discharge valve 32, a remixer 41, and a control device 42.
  • the remixer 41 is installed in the fuel supply line 9 on the downstream side of the hydrogen / oxygen sensor 31 and the emergency release valve 32, and the mixed gas a generated in the second mixer 16 is stirred and remixed.
  • the hydrogen / oxygen sensor 39 is provided in the fuel supply line 9 immediately after the remixer 41 and before entering the gas compressor 6, and detects the hydrogen concentration and oxygen concentration in the mixed gas a.
  • the remixer 41 is turned on. Operate to remix gas mixture a.
  • the hydrogen concentration and oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 31 are higher than the first set value, the second set value (value set lower than the explosion limit).
  • the emergency release valve 32 is operated (the flow direction of the emergency release valve 32 is switched) to release the mixed gas a.
  • the control device 42 operates the remixer 41 when the hydrogen concentration and the oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 39 are equal to or higher than the first set value, thereby reusing the mixed gas a.
  • the emergency release valve 32 When the hydrogen concentration and the oxygen concentration in the mixed gas a detected by the hydrogen / oxygen sensor 39 are equal to or higher than the second set value, the emergency release valve 32 is operated (the flow direction of the emergency release valve 32 is changed). Alternatively, the mixed gas a may be released.
  • the fuel gas supply device 8 includes a hydrogen / oxygen sensor 31 (or 39) for detecting the hydrogen concentration and oxygen concentration in the mixed gas a, and the hydrogen concentration detected by the hydrogen / oxygen sensor 31 (or 39) and Since the control device 42 is configured to operate the remixer 41 and remix the mixed gas a when the oxygen concentration becomes equal to or higher than the first set value, hydrogen and oxygen in the mixed gas a are liberated.
  • the hydrogen concentration and oxygen concentration of the mixed gas a before the mixed gas a having a high hydrogen concentration and oxygen concentration is supplied to the combustor 2.
  • the first set value By detecting that it is above and mixing the mixed gas a with the remixer 2 before the mixed gas a is supplied to the combustor 2, it is possible to obtain a uniform mixed state again. it can. For this reason, the danger of an explosion is reduced and the safe operation of the gas turbine apparatus becomes possible.
  • the remixer 41 is not limited to the case where the control device 42 operates the remixer 41 based on the detection signal of the hydrogen / oxygen sensor 31 (or 39) as described above. Or you may make it operate
  • the fuel gas supply device 8 is configured to remix the mixed gas a by the remixer 41 on the downstream side of the hydrogen / oxygen sensor 31.
  • the mixed gas a detected by the upstream hydrogen / oxygen sensor 31 can be more reliably remixed by the remixer 41 on the downstream side with respect to the mixed gas a having a high hydrogen concentration and high oxygen concentration.
  • the gas compressor 6 is compressed and supplied to the combustor 2 by compressing the mixed gas a
  • the fuel gas supply apparatus 8 includes the gas compressor. 6
  • the mixed gas a is remixed by the remixer 41, and the mixed gas a by the remixer 41 before the mixed gas a having a high hydrogen concentration and high oxygen concentration flows into the gas compressor 6. Since remixing of “a” is performed, the risk of explosion can be reliably reduced even for the gas turbine apparatus having the gas compressor 6.
  • the configuration of the second embodiment may be combined with the configuration of the third embodiment.
  • the present invention is not limited to a low-calorie gas-burning gas turbine apparatus, and can be applied to any gas turbine apparatus that uses a mixed gas obtained by mixing three or more kinds of gases as a fuel gas for a combustor.
  • the present invention relates to three or more kinds of gases (for example, a single gas such as butane gas or propane gas, or a mixture of a plurality of kinds of gases such as a blast furnace gas or a converter gas). ) Is used as a fuel gas for the combustor. For example, it is applied to a case where a mixed gas mixed with various by-product gases generated at an ironworks is used as the fuel gas for the combustor. It is useful.
  • gases for example, a single gas such as butane gas or propane gas, or a mixture of a plurality of kinds of gases such as a blast furnace gas or a converter gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 本発明は3種以上のガスを均一に混合した混合ガスを生成することなどが可能なガスタービン装置を提供することを目的とする。そのため、燃料ガス供給装置(8)から供給される燃料ガスを空気圧縮機(3)から供給される圧縮空気(b)とともに燃焼器(2)で燃焼し、このときに発生する燃焼ガス(c)によってガスタービン1を回転駆動する構成のガスタービン装置において、燃料ガス供給装置(8)は2つの混合器(15,16)を有しており、これらの混合器(15,16)で3種の第1ガス(I)、第2ガス(II)及び第3ガス(III)を、比重の軽いものから順に混合して又は比重の重いものから順に混合して混合ガス(a)を生成し、この混合ガス(a)を燃料ガスとして燃焼器(2)に供給する構成とする。

Description

ガスタービン装置
 本発明は3種以上のガスを混合してなる混合ガスを燃焼器の燃料ガスとして用いるガスタービン装置に関する。
 3種以上のガスを混合してなる混合ガスを燃焼器の燃料ガスとして用いるガスタービン装置の例としては、一般に各種のカロリーの異なる低カロリーガスを同時に複数使用可能な低カロリーガス専焼ガスタービン装置が知られている。この低カロリーガス専焼ガスタービン装置は例えば製鉄所で使用されている。製鉄所では鉄鋼製品の製造過程において高炉ガス(Bガス)、コークス炉ガス(Cガス)、転炉ガス(Lガス)などの各種の副生ガスが発生するが、これらの副生ガスは可燃性成分を含んでいる。このため、製鉄所では前記副生ガスをガスタービン装置の燃料ガスなどに使用することによって前記副生ガスの有効利用が図っている。
 前記副生ガスは発生量の変動が大きいため、ガスタービン装置の燃料ガスとして用いる場合には単独では用いずに複数のガス種を混合した混合ガスとして用いられる。また、前記混合ガスに更に天然ガス(LNG)などを混合してカロリー調整が行われることもある。
 このような複数種の副生ガスと天然ガスを混合した混合ガスを燃焼器の燃料ガスとして用いるガスタービン装置の具体例としては、例えば下記の特許文献1に開示されたものがある。この特許文献1に開示されたガスタービン装置では、図4に示すように高炉ガスとコークス炉ガスと天然ガスとを混合部51で混合し、この混合ガスを燃料ガスとしてガスタービン52の燃焼器へ供給する。
 なお、本発明に関連する先行技術文献としては前述の特許文献1の他、特許文献2も挙げられる。この特許文献2にはガスタービンから排出された燃焼ガスの一部を空気圧縮機に供給して再利用するガスタービン装置の例が開示されている。
特開2004-27975号公報 特許第2954456号公報
 複数種のガスを混合してガスタービン装置の燃料ガスに用いる場合、これら複数種のガスが均一に混合されていないと、混合ガスのカロリーが均一にならずに燃焼ムラが生じるおそれがある。このため、複数種のガスを混合してガスタービン装置の燃料ガスに用いる場合には、これら複数種のガスをできるだけ均一に混合する必要があるが、上記特許文献1に開示された従来のガスタービン装置では均一混合に関する工夫については特にみられない。
 更には、複数種のガスを均一に混合した混合ガスを生成したとしても、その後に前記混合ガス中の水素や酸素が遊離して水素塊や酸素塊が発生する可能性があり、水素塊や酸素塊が発生すると爆発の危険性が高まる。特に混合ガスをガス圧縮機で圧縮してから燃焼器に供給する方式のガスタービン装置においては、前記水素塊や前記酸素塊も圧縮されるため、更に爆発する可能性が高くなる。
 従って本発明は上記の事情に鑑み、3種以上のガス(例えばブタンガスやプロパンガスなどのような単独のガスや、高炉ガスや転炉ガスなどのような複数種のガスが混合されたガスのうちの3種以上のガス)を均一に混合した混合ガスを生成することができ、更には前記混合ガス中の水素濃度及び酸素濃度を監視して爆発を防止するもできるガスタービン装置を提供することを課題とする。
 上記課題を解決する第1発明のガスタービン装置は、燃料ガス供給装置から供給される燃料ガスを空気圧縮機から供給される圧縮空気とともに燃焼器で燃焼し、このときに発生する燃焼ガスによってガスタービンを回転駆動する構成のガスタービン装置において、
 前記燃料ガス供給装置は複数の混合器を有しており、これらの混合器で3種以上のガスを、比重の軽いものから順に混合して又は比重の重いものから順に混合して混合ガスを生成し、この混合ガスを前記燃料ガスとして前記燃焼器に供給する構成とした特徴とする。
 また、第2発明のガスタービン装置は、第1発明のガスタービン装置において、
 前記燃料ガス供給装置は、
 前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、
 前記水素濃度及び酸素濃度を希釈するための希釈ガスを前記混合ガスに混合する希釈ガス混合装置と、
 前記水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記希釈ガス混合装置を作動させて前記希釈ガスを前記混合ガスに混合させる制御装置と、
を有する構成としたことを特徴とする。
 また、第3発明のガスタービン装置は、第2発明のガスタービン装置において、
 前記希釈ガス混合装置は、前記ガスタービンから排出された燃焼ガスの一部を前記希釈ガスとして前記混合ガスに混合する構成としたことを特徴とする。
 また、第4発明のガスタービン装置は、第1発明のガスタービン装置において、
 前記燃料ガス供給装置は、前記混合ガスを攪拌して再混合する再混合器を有する構成としたことを特徴とする。
 また、第5発明のガスタービン装置は、第4発明のガスタービン装置において、
 前記燃料ガス供給装置は、
 前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、
 この水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記再混合器を作動させて前記混合ガスを再混合させる制御装置と、
を有する構成としたことを特徴とする。
 また、第6発明のガスタービン装置は、第1発明のガスタービン装置において、
 前記燃料ガス供給装置は、
 前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、
 緊急放出弁と、
 前記水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記緊急放出弁を作動させて前記混合ガスを放出させる制御装置と、
を有する構成としたことを特徴とする。
 また、第7発明のガスタービン装置は、第2,第5,第6発明の何れかのガスタービン装置において、
 前記燃料ガス供給装置は、前記水素・酸素センサよりも下流側で、前記希釈ガス混合装置による前記希釈ガスの混合、前記再混合器による前記混合ガスの再混合、又は、前記緊急放出弁による前記混合ガスの放出を行なう構成としたことを特徴とする。
 また、第8発明のガスタービン装置は、第2~第7発明の何れかのガスタービン装置において、
 前記混合ガスを圧縮して前記燃焼器へ供給するガス圧縮機を有しており、
 前記燃料ガス供給装置は、このガス圧縮機の上流側で、前記希釈ガス混合装置による前記希釈ガスの混合、前記再混合器による前記混合ガスの再混合、又は、前記緊急放出弁による前記混合ガスの放出を行なう構成としたことを特徴とする。
 第1発明のガスタービン装置によれば、燃料ガス供給装置から供給される燃料ガスを空気圧縮機から供給される圧縮空気とともに燃焼器で燃焼し、このときに発生する燃焼ガスによってガスタービンを回転駆動する構成のガスタービン装置において、前記燃料ガス供給装置は複数の混合器を有しており、これらの混合器で3種以上のガスを、比重の軽いものから順に混合して又は比重の重いものから順に混合して混合ガスを生成し、この混合ガスを前記燃料ガスとして前記燃焼器に供給する構成とした特徴としているため、比重の軽いものから順に混合する場合と比重の重いものから順に混合する場合の何れでも、比重の近いものから順次に混合されることになる。このため、3種以上のガスが均一に混合された混合ガスの生成が可能となり、この均一混合ガスが燃焼器の燃料ガスとして用いられることによって燃焼ムラの発生が防止され、安定した燃焼が可能となる。
 また、第2発明のガスタービン装置によれば、第1発明のガスタービン装置において、前記燃料ガス供給装置は、前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、前記水素濃度及び酸素濃度を希釈するための希釈ガスを前記混合ガスに混合する希釈ガス混合装置と、前記水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記希釈ガス混合装置を作動させて前記希釈ガスを前記混合ガスに混合させる制御装置とを有する構成としたことを特徴としているため、混合ガス中の水素や酸素が遊離して水素塊や酸素塊が発生したとしても、この水素濃度及び酸素濃度の高い混合ガスが燃焼器に供給される前に当該混合ガスの水素濃度及び酸素濃度が設定値以上であることを検知し、希釈ガスで当該混合ガスの水素濃度及び酸素濃度を希釈して低減することができる。このため、混合ガスの水素濃度及び酸素濃度を爆発限界以下に抑えて安全なガスタービン装置の操業が可能となる。
 また、第3発明のガスタービン装置によれば、第2発明のガスタービン装置において、前記希釈ガス混合装置は、前記ガスタービンから排出された燃焼ガスの一部を前記希釈ガスとして前記混合ガスに混合する構成としたことを特徴としており、希釈ガスとして燃焼ガスが有効利用され、窒素ガスなどを必要としないため、効率的で安価なガスタービン装置を実現することができる。
 また、第4発明のガスタービン装置によれば、第1発明のガスタービン装置において、前記燃料ガス供給装置は、前記混合ガスを攪拌して再混合する再混合器を有する構成としたことを特徴としているため、混合ガス中の水素や酸素が遊離して水素塊や酸素塊が発生したとしても(比重分離を起こしても)、当該混合ガスが燃焼器に供給される前に当該混合ガスを再混合器で攪拌して再混合することにより、再度、均一混合状態にすることができる。このため、爆発の危険性が低減されて安全なガスタービン装置の操業が可能となる。
 また、第5発明のガスタービン装置によれば、第4発明のガスタービン装置において、前記燃料ガス供給装置は、前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、この水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記再混合器を作動させて前記混合ガスを再混合させる制御装置とを有する構成としたことを特徴とするため、混合ガス中の水素や酸素が遊離して水素塊や酸素塊が発生したとしても(比重分離を起こしても)、この水素濃度及び酸素濃度の高い混合ガスが燃焼器に供給される前に当該混合ガスの水素濃度及び酸素濃度が設定値以上であることを検知し、当該混合ガスが燃焼器に供給される前に当該混合ガスを再混合器で攪拌して再混合することにより、再度、均一混合状態にすることができる。このため、爆発の危険性が低減されて安全なガスタービン装置の操業が可能となる。
 また、第6発明のガスタービン装置によれば、第1発明のガスタービン装置において、前記燃料ガス供給装置は、前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、緊急放出弁と、前記水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記緊急放出弁を作動させて前記混合ガスを放出させる制御装置とを有する構成としたことを特徴としているため、混合ガス中の水素や酸素が遊離して水素塊や酸素塊が発生することによって当該混合ガスの水素濃度及び酸素濃度の高くなったときには、当該混合ガスが燃焼器に供給される前に当該混合ガスの水素濃度及び酸素濃度が設定値以上になったことを検知して当該混合ガスを放出することができる。このため、爆発の危険性が低減されて安全なガスタービン装置の操業が可能となる。
 また、第7発明のガスタービン装置によれば、第2,第5,第6発明の何れかのガスタービン装置において、前記燃料ガス供給装置は、前記水素・酸素センサよりも下流側で、前記希釈ガス混合装置による前記希釈ガスの混合、前記再混合器による前記混合ガスの再混合、又は、前記緊急放出弁による前記混合ガスの放出を行なう構成としたことを特徴としているため、上流側の水素・酸素センサで検知された水素濃度及び酸素濃度の高い混合ガスに対して、より確実に下流側で希釈ガス混合装置による希釈ガスの混合、再混合器による混合ガスの再混合、又は、緊急放出弁による混合ガスの放出を行うことができる。
 また、第8発明のガスタービン装置によれば、第2~第7発明の何れかのガスタービン装置において、前記混合ガスを圧縮して前記燃焼器へ供給するガス圧縮機を有しており、前記燃料ガス供給装置は、このガス圧縮機の上流側で、前記希釈ガス混合装置による前記希釈ガスの混合、前記再混合器による前記混合ガスの再混合、又は、前記緊急放出弁による前記混合ガスの放出を行なう構成としたことを特徴としており、水素濃度及び酸素濃度の高い混合ガスがガス圧縮機に流入する前に希釈ガス混合装置による希釈ガスの混合、再混合器による混合ガスの再混合、又は、緊急放出弁による混合ガスの放出が行われるため、ガス圧縮機を有するガスタービン装置に対しても確実に爆発の危険性を低減することができる。
本発明の実施の形態例1に係るガスタービン装置の構成図である。 本発明の実施の形態例2に係るガスタービン装置の構成図である。 本発明の実施の形態例3に係るガスタービン装置の構成図である。 従来のガスタービン装置の構成図である。
符号の説明
 1 ガスタービン, 2 燃焼器, 3 空気圧縮機, 4 発電機, 5 蒸気タービン, 6 ガス圧縮機, 7 排熱回収ボイラ, 8 燃料ガス供給装置, 9,10 燃料供給ライン, 11 回転軸, 12 排気ライン, 13 煙突, 14 蒸気ライン, 15 第1混合器, 16 第2混合器, 17 流量調整弁, 18 燃料供給ライン, 19 流量調整弁, 20,21 燃料供給ライン, 22 流量調整弁, 23 燃料供給ライン, 31 水素・酸素センサ, 32 緊急放出弁, 33 制御装置, 34 希釈ガス混合装置, 35 希釈ガス供給ライン, 36 通風機, 37 ガス冷却器, 38 流量調整弁, 39 水素・酸素センサ, 41 再混合器, 42 制御装置, I 第1ガス, II 第2ガス, III 第3ガス, a 混合ガス(燃料ガス), b 圧縮空気, c 燃焼ガス,排ガス, d 給水, e 水蒸気, f 混合ガス, g 外気(空気)
 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。
 <実施の形態例1>
 図1は本発明の実施の形態例1に係るガスタービン装置の構成図である。図1に示すように、本実施の形態例1のガスタービン装置はガスタービンと蒸気タービンとを稼動させて発電を行うコンバインド発電装置であり、ガスタービン1と蒸気タービン5と燃焼器2と空気圧縮機3と発電機4とガス圧縮機6と排熱回収ボイラ7と燃料ガス供給装置8とを有している。
 燃料ガス供給装置8で生成された混合ガスaは、燃料供給ライン9を介してガス圧縮機6へ流入し、ここで圧縮された後、燃料供給ライン10を介して燃焼器2へ燃料ガスとして供給される。燃焼器2では燃料ガス供給装置8から供給される燃料ガス(混合ガスa)を、空気圧縮機3から供給される圧縮空気bとともに燃焼する。このときに発生する燃焼ガスcがガスタービン1に供給されてガスタービン1を回転駆動する。
 ガスタービン1から排出された燃焼ガス(排ガス)cは排気ライン(煙道)12を流通し、排気ライン12に設けられた排熱回収ボイラ7で給水dと熱交換されて熱回収された後、煙突13から放散される。一方、給水dは排熱回収ボイラ7で燃焼ガス(排ガス)cとの熱交換により加熱されて水蒸気eとなる。この水蒸気eが蒸気ライン14を介して蒸気タービン5に供給されることにより蒸気タービン5が回転駆動される。蒸気タービン5から排出された水蒸気eは図示しない復水器で復水され、再び給水dとして利用される。
 ガスタービン1、蒸気タービン5、空気圧縮機3、発電機4及びガス圧縮機6は同一の回転軸11上に配置されており、空気圧縮機3、発電機4及びガス圧縮機6はガスタービン1及び蒸気タービン5によって回転駆動される。このため、空気圧縮機3では外気(空気)gを吸入して圧縮し、この圧縮空気bを前述の如く燃焼器2へ供給する。発電機4では発電し、この発電電力を製鉄所内や製鉄所外の図示しない電力系統に送電する。ガス圧縮機6では混合ガスaを吸入して圧縮し、この圧縮混合ガスaを前述の如く燃焼器2へ供給する。
 そして、本実施の形態例1の特徴である燃料ガス供給装置8は、2つの混合器15,16を有しており、これらの混合器15,16で3種の第1ガスI,第2ガスII及び第3ガスIIIを、比重の軽いものから順に混合して又は比重の重いものから順に混合して混合ガスaを生成し、この混合ガスaを前述の如くガス圧縮機6を介して燃焼器2に供給する構成となっている。
 詳述すると、第1混合器15の入口側には流量調整弁17を備えた燃料供給ライン18の下流端と、流量調整弁19を備えた燃料供給ライン20の下流端とが接続される一方、第1混合器15の出口側には燃料供給ライン21の上流端が接続されている。また、第2混合器16の入口側には燃料供給ライン21の下流端と、流量調整弁22を備えた燃料供給ライン23の下流端とが接続される一方、第2混合器16の出口側には燃料供給ライン9の上流端が接続されている。
 従って、燃料ガス供給装置8では、まず、第1混合器15において、流量調整弁17で流量調整されながら燃料供給ライン18を介して供給される第1ガスIと、流量調整弁19で流量調整されながら燃料供給ライン20を介して供給される第2ガスIIとが混合されて混合ガスfが生成される。続いて、第2混合器16において、流量調整弁22で流量調整されながら燃料供給ライン23を介して供給される第3ガスIIIと、燃料供給ライン21を介して供給される前記混合ガスfとが混合されて混合ガスaが生成される。
 しかも、第1ガスIと第2ガスIIと第3ガスIIIは、これらの比重の大小関係が、第1ガスI<第2ガスII<第3ガスIII、又は、第1ガスI>第2ガスII>第3ガスIIIとなるように選択されている。このため、第1ガスIと第2ガスIIと第3ガスIIIは、比重の軽いものから順に混合されるか、又は、比重の重いものから順に混合されることになる。表1に各ガス種の比重を示す。これらのガス種から、例えば製鉄所の副生ガスである高炉ガス及びコークス炉ガスと天然ガス(LNG)を用いるとすると、比重の重いものから順に混合する場合には第1ガスIが高炉ガス、第2ガスIIが天然ガス、第3ガスIIIがコークス炉ガスとなり、比重の軽いものから順に混合する場合には第1ガスIがコークス炉ガス、第2ガスIIが天然ガス、第3ガスIIIが高炉ガスとなる。
Figure JPOXMLDOC01-appb-T000001
 本実施の形態例1のガスタービン装置によれば、燃料ガス供給装置8から供給される燃料ガスを空気圧縮機3から供給される圧縮空気bとともに燃焼器2で燃焼し、このときに発生する燃焼ガスcによってガスタービン1を回転駆動する構成のガスタービン装置において、燃料ガス供給装置8は2つの混合器15,16を有しており、これらの混合器15,16で3種の第1ガスI、第2ガスII及び第3ガスIIIを、比重の軽いものから順に混合して又は比重の重いものから順に混合して混合ガスaを生成し、この混合ガスaを燃料ガスとして燃焼器2に供給する構成であるため、比重の軽いものから順に混合する場合と比重の重いものから順に混合する場合の何れでも、比重の近いものから順次に混合されることになる。このため、3種の第1ガスI、第2ガスII及び第3ガスIIIが均一に混合された混合ガスaの生成が可能となり、この均一混合ガスaが燃焼器2の燃料ガスとして用いられることによって燃焼ムラの発生が防止され、安定した燃焼が可能となる。
 なお、本発明は3種のガス(例えばブタンガスやプロパンガスなどのような単独のガスや、高炉ガスや転炉ガスなどのような複数種のガスが混合されたガスうちの3種のガス)を混合する場合に限定するものではなく、3種以上のガス(例えばブタンガスやプロパンガスなどのような単独のガスや、高炉ガスや転炉ガスなどのような複数種のガスが混合されたガスのうちの3種以上のガス)を混合する場合にも適用することができる。
 <実施の形態例2>
 図2は本発明の実施の形態例2に係るガスタービン装置の構成図である。なお、図2において図1(実施の形態例1)と同様の部分については図1と同一の符号を付し、重複する詳細な説明は省略する。
 図2に示すように、本実施の形態例2の燃料ガス供給装置8では、上記実施の形態例1の燃料ガス供給装置8(図1)と同様の構成に加えて、更に水素・酸素センサ31,39と緊急放出弁32と制御装置33と希釈ガス混合装置34とを有している。
 水素・酸素センサ31は第2混合器16の下流側で燃料供給ライン9に設けられており、混合ガスa中の水素濃度及び酸素濃度を検出する。緊急放出弁32は水素・酸素センサ31よりも下流側において燃料供給ライン9に設けられた三方弁であり、通常は混合ガスaをガス圧縮機6側へ流通させて燃焼器2へ供給させる一方、混合ガスa中の水素濃度や酸素濃度が高い緊急時には流通方向を切り換えて混合ガスaを燃料供給ライン9から放出する。
 希釈ガス混合装置34は希釈ガス供給ライン35に上流側から順に通風機36、ガス冷却器37及び流量調整弁38を配置した構成となっている。また、希釈ガス供給ライン35の上流側は、排熱回収ボイラ7の下流側で排気ライン12に接続され、希釈ガス供給ライン35の下流側は、緊急放出弁32の下流側で燃料供給ライン9に接続されている。従って、通風機36が作動すると、排気ライン12を流れる燃焼ガス(排ガス)cの一部が、希釈ガス供給ライン35に導入され、ガス冷却器37で冷却され、且つ、流量調整弁38で流量調整されて混合ガスaに希釈ガスとして混合される。このとき混合ガスa中の水素濃度及び酸素濃度が、前記燃料ガスaの一部(希釈ガス)に希釈されて低減する。なお、図示例では燃料供給ライン9と希釈ガス供給ライン35の接続部が混合部となっているが、ここに混合器を設けて混合ガスaと燃焼ガス(排ガス)cを混合するようにしてもよい。水素・酸素センサ39は緊急放出弁32の下流側で混合ガスaと燃焼ガス(排ガス)cとが混合する前記接続部(混合部)の直後からガス圧縮機6に入るまでの間で燃料供給ライン9に設けられており、混合ガスa中の水素濃度及び酸素濃度、或いは混合ガスaと燃焼ガス(排ガス)cとの混合ガス中の水素濃度及び酸素濃度を検出する。
 制御装置33では、水素・酸素センサ31で検出した混合ガスa中の水素濃度及び酸素濃度が第1設定値(爆発限界よりも低く設定された値)以上になったときに希釈ガス混合装置34を作動させる。即ち、通風機36を起動させるとともに流量調整弁38を開けて流量調整を開始させる。その結果、前述の如く燃焼ガス(排ガス)cの一部が希釈ガスとして混合ガスaに混合させる。また、制御装置33では、水素・酸素センサ31で検出した混合ガスa中の水素濃度及び酸素濃度が前記第1設定値よりも高値の第2設定値(爆発限界よりも低く設定された値)以上になったときに緊急放出弁32を作動させて(緊急放出弁32の流通方向を切り換えて)、混合ガスaを放出させる。或いは、制御装置33では、水素・酸素センサ39で検出した混合ガスa中の水素濃度及び酸素濃度が前記第1設定値以上になったときに希釈ガス混合装置34を作動(通風機36を起動させるとともに流量調整弁38を開けて流量調整を開始)させ、水素・酸素センサ39で検出した混合ガスa中の水素濃度及び酸素濃度が前記第2設定値以上になったときに緊急放出弁32を作動させて(緊急放出弁32の流通方向を切り換えて)、混合ガスaを放出させるようにしてもよい。
 本実施の形態例2のガスタービン装置のその他の構成については、上記実施の形態例1(図1)のガスタービン装置と同様である。
 本実施の形態例2のガスタービン装置によれば、上記実施の形態例1と同様の作用効果が得られ、しかも、燃料ガス供給装置8は、混合ガスa中の水素濃度及び酸素濃度を検出する水素・酸素センサ31(又は39)と、水素濃度及び酸素濃度を希釈するための希釈ガスを混合ガスaに混合する希釈ガス混合装置34と、水素・酸素センサ31(又は39)で検出した水素濃度及び酸素濃度が第1設定値以上になったときに希釈ガス混合装置34を作動させて希釈ガスを混合ガスaに混合させる制御装置33とを有する構成としたため、混合ガスa中の水素や酸素が遊離して水素塊や酸素塊が発生したとしても、この水素濃度及び酸素濃度の高い混合ガスaが燃焼器2に供給される前に当該混合ガスaの水素濃度及び酸素濃度が設定値以上であることを検知し、希釈ガスで当該混合ガスaの水素濃度及び酸素濃度を希釈して低減することができる。このため、混合ガスaの水素濃度及び酸素濃度を爆発限界以下に抑えて安全なガスタービン装置の操業が可能となる。
 また、本実施の形態例2のガスタービン装置によれば、希釈ガス混合装置8は、ガスタービン1から排出された燃焼ガス(排ガス)cの一部を希釈ガスとして混合ガスaに混合する構成としており、希釈ガスとして燃焼ガスが有効利用され、窒素ガスなどを必要としないため、効率的で安価なガスタービン装置を実現することができる。
 また、本実施の形態例2のガスタービン装置によれば、燃料ガス供給装置8は、混合ガスa中の水素濃度及び酸素濃度を検出する水素・酸素センサ31(又は39)と、緊急放出弁32と、水素・酸素センサ31(又は39)で検出した水素濃度及び酸素濃度が第2設定値以上になったときに緊急放出弁32を作動させて混合ガスaを放出させる制御装置33とを有する構成としたため、混合ガスa中の水素や酸素が遊離して水素塊や酸素塊が発生することによって当該混合ガスaの水素濃度及び酸素濃度の高くなったときには、当該混合ガスaが燃焼器2に供給される前に当該混合ガスaの水素濃度及び酸素濃度が第2設定値以上になったことを検知して当該混合ガスaを放出することができる。このため、爆発の危険性が低減されて安全なガスタービン装置の操業が可能となる。
 また、本実施の形態例2のガスタービン装置によれば、燃料ガス供給装置8は、水素・酸素センサ31よりも下流側で、希釈ガス混合装置34による希釈ガスの混合、及び、緊急放出弁32による混合ガスaの放出を行なう構成としたため、上流側の水素・酸素センサ31で検知された水素濃度及び酸素濃度の高い混合ガスaに対して、より確実に下流側で希釈ガス混合装置34による希釈ガスの混合、及び、緊急放出弁32による混合ガスaの放出を行うことができる。
 また、本実施の形態例2のガスタービン装置によれば、混合ガスaを圧縮して燃焼器2へ供給するガス圧縮機6を有しており、燃料ガス供給装置8は、このガス圧縮機6の上流側で、希釈ガス混合装置34による希釈ガスの混合、及び、緊急放出弁32による混合ガスaの放出を行なう構成としており、水素濃度及び酸素濃度の高い混合ガスaがガス圧縮機6に流入する前に希釈ガス混合装置34による希釈ガスの混合、及び、緊急放出弁32による混合ガスaの放出が行われるため、ガス圧縮機6を有するガスタービン装置に対しても確実に爆発の危険性を低減することができる。
 <実施の形態例3>
 図3は本発明の実施の形態例3に係るガスタービン装置の構成図である。なお、図3において図1(実施の形態例1)及び図2(実施の形態例2)と同様の部分については図1及び図2と同一の符号を付し、重複する詳細な説明は省略する。
 図3に示すように、本実施の形態例3の燃料ガス供給装置8では、上記実施の形態例1の燃料ガス供給装置8(図1)と同様の構成に加えて、更に水素・酸素センサ31,39と緊急放出弁32と再混合器41と制御装置42とを有している。
 再混合器41は水素・酸素センサ31及び緊急放出弁32よりも下流側において燃料供給ライン9に設置されており、第2混合器16で生成された混合ガスaを攪拌して再混合する。水素・酸素センサ39は再混合器41の直後からガス圧縮機6に入るまでの間で燃料供給ライン9に設けられており、混合ガスa中の水素濃度及び酸素濃度を検出する。制御装置42では、水素・酸素センサ31で検出した混合ガスa中の水素濃度及び酸素濃度が第1設定値(爆発限界よりも低く設定された値)以上になったときに再混合器41を作動させて混合ガスaを再混合させる。また、制御装置42では、水素・酸素センサ31で検出した混合ガスa中の水素濃度及び酸素濃度が前記第1設定値よりも高値の第2設定値(爆発限界よりも低く設定された値)以上になったときに緊急放出弁32を作動させて(緊急放出弁32の流通方向を切り換えて)、混合ガスaを放出させる。或いは、制御装置42では、水素・酸素センサ39で検出した混合ガスa中の水素濃度及び酸素濃度が前記第1設定値以上になったときに再混合器41を作動させて混合ガスaを再混合させ、水素・酸素センサ39で検出した混合ガスa中の水素濃度及び酸素濃度が前記第2設定値以上になったときに緊急放出弁32を作動させて(緊急放出弁32の流通方向を切り換えて)、混合ガスaを放出させるようにしてもよい。
 本実施の形態例3のガスタービン装置のその他の構成については、上記実施の形態例1,2(図1,図2)のガスタービン装置と同様である。
 本実施の形態例3のガスタービン装置によれば、上記実施の形態例1と同様の作用効果が得られるとともに、緊急放出弁32に関しては上記実施の形態例2と同様の作用効果が得られ、しかも、燃料ガス供給装置8は、混合ガスa中の水素濃度及び酸素濃度を検出する水素・酸素センサ31(又は39)と、この水素・酸素センサ31(又は39)で検出した水素濃度及び酸素濃度が第1設定値以上になったときに再混合器41を作動させて混合ガスaを再混合させる制御装置42とを有する構成としたため、混合ガスa中の水素や酸素が遊離して水素塊や酸素塊が発生したとしても(比重分離を起こしても)、この水素濃度及び酸素濃度の高い混合ガスaが燃焼器2に供給される前に当該混合ガスaの水素濃度及び酸素濃度が第1設定値以上であることを検知し、当該混合ガスaが燃焼器2に供給される前に当該混合ガスaを再混合器2で攪拌して再混合することにより、再度、均一混合状態にすることができる。このため、爆発の危険性が低減されて安全なガスタービン装置の操業が可能となる。
 なお、再混合器41は、上記の如く水素・酸素センサ31(又は39)の検知信号に基づいて制御装置42が再混合器41を作動させる場合に限定するものでなく、常時、連続的に或いは間欠的に作動するようにしてもよい。
 また、本実施の形態例3のガスタービン装置によれば、燃料ガス供給装置8は、水素・酸素センサ31よりも下流側で、再混合器41による混合ガスaの再混合を行なう構成としたため、上流側の水素・酸素センサ31で検知された水素濃度及び酸素濃度の高い混合ガスaに対して、より確実に下流側で再混合器41による混合ガスaの再混合を行なうことができる。
 また、本実施の形態例3のガスタービン装置によれば、混合ガスaを圧縮して燃焼器2へ供給するガス圧縮機6を有しており、燃料ガス供給装置8は、このガス圧縮機6の上流側で、再混合器41による混合ガスaの再混合を行なう構成としており、水素濃度及び酸素濃度の高い混合ガスaがガス圧縮機6に流入する前に再混合器41による混合ガスaの再混合が行われるため、ガス圧縮機6を有するガスタービン装置に対しても確実に爆発の危険性を低減することができる。
 なお、本実施の形態例3の構成に上記実施の形態例2の構成を組み合わせてもよい。
 また、本発明は低カロリーガス専焼ガスタービン装置に限らず、3種以上のガスを混合した混合ガスを燃焼器の燃料ガスとして用いるガスタービン装置であれば適用することができる。
 本発明は3種類以上のガス(例えばブタンガスやプロパンガスなどのような単独のガスや、高炉ガスや転炉ガスなどのような複数種のガスが混合されたガスのうちの3種以上のガス)を混合した混合ガスを燃焼器の燃料ガスとして用いるガスタービン装置に関するものであり、例えば製鉄所で発生する各種の副生ガスなどを混合した混合ガスを燃焼器の燃料ガスとして用いる場合に適用して有用なものである。
                                                                                

Claims (8)

  1.  燃料ガス供給装置から供給される燃料ガスを空気圧縮機から供給される圧縮空気とともに燃焼器で燃焼し、このときに発生する燃焼ガスによってガスタービンを回転駆動する構成のガスタービン装置において、
     前記燃料ガス供給装置は複数の混合器を有しており、これらの混合器で3種以上のガスを、比重の軽いものから順に混合して又は比重の重いものから順に混合して混合ガスを生成し、この混合ガスを前記燃料ガスとして前記燃焼器に供給する構成とした特徴とするガスタービン装置。
  2.  請求項1に記載のガスタービン装置において、
     前記燃料ガス供給装置は、
     前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、
     前記水素濃度及び酸素濃度を希釈するための希釈ガスを前記混合ガスに混合する希釈ガス混合装置と、
     前記水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記希釈ガス混合装置を作動させて前記希釈ガスを前記混合ガスに混合させる制御装置と、
    を有する構成としたことを特徴とするガスタービン装置。
  3.  請求項2に記載のガスタービン装置において、
     前記希釈ガス混合装置は、前記ガスタービンから排出された燃焼ガスの一部を前記希釈ガスとして前記混合ガスに混合する構成としたことを特徴とするガスタービン装置。
  4.  請求項1に記載のガスタービン装置において、
     前記燃料ガス供給装置は、前記混合ガスを攪拌して再混合する再混合器を有する構成としたことを特徴とするガスタービン装置。
  5.  請求項4に記載のガスタービン装置において、
     前記燃料ガス供給装置は、
     前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、
     この水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記再混合器を作動させて前記混合ガスを再混合させる制御装置と、
    を有する構成としたことを特徴とするガスタービン装置。
  6.  請求項1に記載のガスタービン装置において、
     前記燃料ガス供給装置は、
     前記混合ガス中の水素濃度及び酸素濃度を検出する水素・酸素センサと、
     緊急放出弁と、
     前記水素・酸素センサで検出した前記水素濃度及び酸素濃度が設定値以上になったときに前記緊急放出弁を作動させて前記混合ガスを放出させる制御装置と、
    を有する構成としたことを特徴とするガスタービン装置。
  7.  請求項2,5,6の何れか1項に記載のガスタービン装置において、
     前記燃料ガス供給装置は、前記水素・酸素センサよりも下流側で、前記希釈ガス混合装置による前記希釈ガスの混合、前記再混合器による前記混合ガスの再混合、又は、前記緊急放出弁による前記混合ガスの放出を行なう構成としたことを特徴とするガスタービン装置。
  8.  請求項2~7の何れか1項に記載のガスタービン装置において、
     前記混合ガスを圧縮して前記燃焼器へ供給するガス圧縮機を有しており、
     前記燃料ガス供給装置は、このガス圧縮機の上流側で、前記希釈ガス混合装置による前記希釈ガスの混合、前記再混合器による前記混合ガスの再混合、又は、前記緊急放出弁による前記混合ガスの放出を行なう構成としたことを特徴とするガスタービン装置。
                                                                                    
PCT/JP2008/067825 2008-10-01 2008-10-01 ガスタービン装置 WO2010038290A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020107028985A KR101324900B1 (ko) 2008-10-01 2008-10-01 가스 터빈 장치
EP08877149.8A EP2330281B1 (en) 2008-10-01 2008-10-01 Gas turbine device
KR1020137014303A KR101369102B1 (ko) 2008-10-01 2008-10-01 가스 터빈 장치
PCT/JP2008/067825 WO2010038290A1 (ja) 2008-10-01 2008-10-01 ガスタービン装置
CN2008801300542A CN102076941B (zh) 2008-10-01 2008-10-01 燃气轮机装置
US12/999,374 US9097188B2 (en) 2008-10-01 2008-10-01 Gas turbine device
KR1020137014304A KR101369116B1 (ko) 2008-10-01 2008-10-01 가스 터빈 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067825 WO2010038290A1 (ja) 2008-10-01 2008-10-01 ガスタービン装置

Publications (1)

Publication Number Publication Date
WO2010038290A1 true WO2010038290A1 (ja) 2010-04-08

Family

ID=42073083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067825 WO2010038290A1 (ja) 2008-10-01 2008-10-01 ガスタービン装置

Country Status (5)

Country Link
US (1) US9097188B2 (ja)
EP (1) EP2330281B1 (ja)
KR (3) KR101324900B1 (ja)
CN (1) CN102076941B (ja)
WO (1) WO2010038290A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535604A (ja) * 2010-07-02 2013-09-12 エクソンモービル アップストリーム リサーチ カンパニー 低エミッショントリプルサイクル発電システム及び方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031436A1 (de) * 2009-07-01 2011-01-05 Uhde Gmbh Verfahren und Vorrichtung zur Warmhaltung von Koksofenkammern während des Stillstandes eines Abhitzekessels
US20140250892A1 (en) * 2011-10-17 2014-09-11 Kawasaki Jukogyo Kabushiki Kaisha Lean fuel intake gas turbine
US9778776B2 (en) 2012-07-30 2017-10-03 Beijing Lenovo Software Ltd. Method and system for processing data
JP6099408B2 (ja) * 2013-01-18 2017-03-22 三菱日立パワーシステムズ株式会社 発電システム、及び発電システムの運転方法
JP6134587B2 (ja) * 2013-06-11 2017-05-24 ヤンマー株式会社 ガスエンジン
US20150082800A1 (en) * 2013-09-25 2015-03-26 Korea Electric Power Corporation Method for suppressing generation of yellow plum of complex thermal power plant using high thermal capacity gas
PL3269948T3 (pl) * 2016-07-15 2022-07-18 Carbon-Clean Technologies Gmbh Sposób dostosowania mocy elektrowni z turbiną parową i elektrownia z turbiną parową
NL2021484B1 (nl) * 2018-08-20 2020-04-23 Micro Turbine Tech B V Fuel/air supply device
EP3862549B1 (en) * 2020-02-05 2025-05-07 General Electric Technology GmbH Method for operating a power plant, and power plant
KR102773279B1 (ko) * 2022-07-11 2025-02-27 에이치디한국조선해양 주식회사 선박 연료 공급 제어 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954456B2 (ja) 1993-07-14 1999-09-27 株式会社日立製作所 排気再循環型コンバインドプラント
JP2003254090A (ja) * 2002-02-26 2003-09-10 Jfe Steel Kk 高炉ガスと添加ガスとの混合装置および混合方法
JP2004027975A (ja) 2002-06-26 2004-01-29 Jfe Steel Kk 副生ガスを用いた発電方法および発電設備
JP2004332057A (ja) * 2003-05-08 2004-11-25 Sumitomo Metal Ind Ltd 転炉又は真空脱炭炉におけるガス測定装置の異常検出方法
JP2007291905A (ja) * 2006-04-24 2007-11-08 Chugoku Electric Power Co Inc:The ガス置換方法、ガス置換装置及び燃料ガス置換用ガス

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761948A (en) * 1987-04-09 1988-08-09 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
JPH0439392Y2 (ja) * 1987-12-18 1992-09-16
JPH01286260A (ja) 1988-05-13 1989-11-17 Fuji Electric Co Ltd 燃料電池の保護装置
JPH083770Y2 (ja) 1989-08-04 1996-01-31 株式会社鶴見製作所 メカニカルシールにおける固定密封環の固定部構造
JPH05125958A (ja) 1991-11-01 1993-05-21 Mitsubishi Heavy Ind Ltd 液体燃料の供給装置
JPH05138308A (ja) 1991-11-15 1993-06-01 Kawasaki Steel Corp 金属鋳造薄帯の表面性状改善方法および装置
JP2001107743A (ja) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd ガスタービンシステムおよびそれを備えたコンバインドプラント
US6397575B2 (en) * 2000-03-23 2002-06-04 General Electric Company Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system
KR100785955B1 (ko) * 2002-10-10 2007-12-14 엘피피 컴버션, 엘엘씨 연소용 액체 연료의 기화 기구 및 사용 방법
US7007487B2 (en) * 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
JP4011572B2 (ja) 2004-09-10 2007-11-21 カワサキプラントシステムズ株式会社 ガス改質設備
CN101023255B (zh) 2004-09-29 2010-05-05 川崎重工业株式会社 燃气轮机设备、低热量气体供给设备以及该气体的热量上升的抑制方法
EP1645804A1 (de) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Brenners, insbesondere eines Brenners einer Gasturbine, sowie Vorrichtung zur Durchführung des Verfahrens
BRPI0519804A2 (pt) 2005-02-18 2009-03-17 Kawasaki Heavy Ind Ltd método para controlar o valor de gás calorìfico e dispositivo de controle de valor calorìfico de gás
JP2006233920A (ja) 2005-02-28 2006-09-07 Mitsubishi Heavy Ind Ltd 燃料ガスカロリー制御装置及びガスタービンシステム
JP4563242B2 (ja) * 2005-04-19 2010-10-13 三菱重工業株式会社 燃料ガスカロリ制御方法及び装置
JP4728176B2 (ja) * 2005-06-24 2011-07-20 株式会社日立製作所 バーナ、ガスタービン燃焼器及びバーナの冷却方法
JP4642630B2 (ja) * 2005-10-20 2011-03-02 カワサキプラントシステムズ株式会社 ガスタービンの制御システムおよび制御方法
JP2007113541A (ja) 2005-10-24 2007-05-10 Kawasaki Plant Systems Ltd ガスタービン用燃料ガスの減熱設備および減熱方法
US7950216B2 (en) 2007-01-30 2011-05-31 Pratt & Whitney Canada Corp. Gas turbine engine fuel control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954456B2 (ja) 1993-07-14 1999-09-27 株式会社日立製作所 排気再循環型コンバインドプラント
JP2003254090A (ja) * 2002-02-26 2003-09-10 Jfe Steel Kk 高炉ガスと添加ガスとの混合装置および混合方法
JP2004027975A (ja) 2002-06-26 2004-01-29 Jfe Steel Kk 副生ガスを用いた発電方法および発電設備
JP2004332057A (ja) * 2003-05-08 2004-11-25 Sumitomo Metal Ind Ltd 転炉又は真空脱炭炉におけるガス測定装置の異常検出方法
JP2007291905A (ja) * 2006-04-24 2007-11-08 Chugoku Electric Power Co Inc:The ガス置換方法、ガス置換装置及び燃料ガス置換用ガス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2330281A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535604A (ja) * 2010-07-02 2013-09-12 エクソンモービル アップストリーム リサーチ カンパニー 低エミッショントリプルサイクル発電システム及び方法

Also Published As

Publication number Publication date
CN102076941A (zh) 2011-05-25
KR20110028462A (ko) 2011-03-18
EP2330281B1 (en) 2015-12-23
EP2330281A1 (en) 2011-06-08
US20110167783A1 (en) 2011-07-14
CN102076941B (zh) 2013-11-06
KR20130065740A (ko) 2013-06-19
US9097188B2 (en) 2015-08-04
KR20130065739A (ko) 2013-06-19
EP2330281A4 (en) 2014-11-05
KR101324900B1 (ko) 2013-11-04
KR101369116B1 (ko) 2014-03-04
KR101369102B1 (ko) 2014-02-28

Similar Documents

Publication Publication Date Title
WO2010038290A1 (ja) ガスタービン装置
EP2141335B1 (en) An inlet air heating system for a gas turbine engine
EP0785975B1 (en) Improvements in the combustion and utilisation of fuel gases
JP6520309B2 (ja) 燃焼装置、ガスタービン及び発電装置
JP4898594B2 (ja) ガスタービン装置
RU2509904C2 (ru) Способ и устройство для окисления топлива
CN100432536C (zh) 采用催化燃烧的换热气体涡轮发动机系统和方法
JP2012145111A5 (ja)
EP2309189A2 (en) Low NOx combustor for hydrogen-containing fuel and its operation
TWI320071B (ja)
JP2009276053A (ja) ガスタービンNOxの乾式三元触媒還元法
US20130276433A1 (en) Lean-fuel gas turbine engine
WO2009151073A1 (ja) 希薄燃料吸入ガスタービンシステム
US9500127B2 (en) Power plant and method for its operation
RU2629850C2 (ru) Система и способ получения водорода
JP2018162936A (ja) 燃焼装置及びガスタービン
EP2588809B1 (en) Method and system for low-emission incineration of low-calorific waste gas
JP5200150B2 (ja) ガスタービン装置
JP5124041B2 (ja) ガスタービン装置
CN114450521B (zh) 氧燃料燃烧过程中的火焰控制
JP2005023798A (ja) 再生サイクルガスタービン及びガスタービンの再生器
JP4795999B2 (ja) ガスタービン発電システム
AU698257B2 (en) Improvements in the combustion and utilisation of fuel gases
WO2014129226A1 (ja) 希薄燃料吸入ガスタービンの制御方法および制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130054.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008877149

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107028985

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12999374

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP