[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010029965A1 - 感放射線性樹脂組成物 - Google Patents

感放射線性樹脂組成物 Download PDF

Info

Publication number
WO2010029965A1
WO2010029965A1 PCT/JP2009/065819 JP2009065819W WO2010029965A1 WO 2010029965 A1 WO2010029965 A1 WO 2010029965A1 JP 2009065819 W JP2009065819 W JP 2009065819W WO 2010029965 A1 WO2010029965 A1 WO 2010029965A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
polymer
repeating unit
carbon atoms
Prior art date
Application number
PCT/JP2009/065819
Other languages
English (en)
French (fr)
Inventor
琢磨 江畑
大樹 中川
恭彦 松田
一樹 笠原
賢二 星子
浩光 中島
憲彦 池田
香織 酒井
早紀 原田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008232552A external-priority patent/JP5141459B2/ja
Priority claimed from JP2009002730A external-priority patent/JP5287264B2/ja
Priority claimed from JP2009002797A external-priority patent/JP2010160348A/ja
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN2009801354994A priority Critical patent/CN102150082B/zh
Priority to EP09813111.3A priority patent/EP2325695B1/en
Priority to KR1020117005620A priority patent/KR101733251B1/ko
Publication of WO2010029965A1 publication Critical patent/WO2010029965A1/ja
Priority to US13/044,573 priority patent/US20110223537A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • the present invention relates to a radiation-sensitive resin composition used in semiconductor manufacturing processes such as ICs, circuit boards such as liquid crystals and thermal heads, and other photolithography processes. More specifically, a chemically amplified radiation-sensitive resin composition that can be suitably used in a photolithography process using far ultraviolet rays having a wavelength of 250 nm or less or an electron beam as an exposure light source, such as KrF excimer laser and ArF excimer laser. It is about.
  • the chemically amplified radiation-sensitive resin composition generates an acid in an exposed portion by irradiation with far ultraviolet rays or electron beams typified by a KrF excimer laser or an ArF excimer laser, and is exposed by a chemical reaction using this acid as a catalyst. It is a composition that causes a difference in the dissolution rate of the part and the unexposed part in the developer to form a resist pattern on the substrate.
  • a KrF excimer laser (wavelength 248 nm) is used as a light source
  • a polymer having a basic skeleton of poly (hydroxystyrene) (hereinafter sometimes referred to as “PHS”) that has low absorption in the 248 nm region.
  • PHS poly(hydroxystyrene)
  • a chemically amplified radiation-sensitive resin composition containing as a constituent is used. According to this composition, high sensitivity, high resolution, and good pattern formation can be realized.
  • a lithography material using an ArF excimer laser as a light source a polymer having an alicyclic hydrocarbon having no large absorption in the 193 nm region in its skeleton, particularly a polymer having a lactone skeleton in its repeating unit is constituted.
  • a resin composition as a component is used.
  • a radiation sensitive resin composition comprising a polymer having a mevalonic lactone skeleton or a ⁇ -butyrolactone skeleton in its repeating unit is disclosed. (See Patent Documents 1 and 2). In addition, a resin composition containing a polymer having an alicyclic lactone skeleton in the repeating unit as a constituent component is also disclosed (see, for example, Patent Documents 3 to 13).
  • JP-A-9-73173 US Pat. No. 6,388,101B JP 2000-159758 A JP 2001-109154 A JP 2004-101642 A JP 2003-113174 A Japanese Patent Laid-Open No. 2003-147023 JP 2002-308866 A JP 2002-371114 A JP 2003-64134 A Japanese Patent Laid-Open No. 2003-270787 JP 2000-26446 A JP 2000-122294 A
  • the above-mentioned composition has a lactone skeleton in its repeating unit, so that the resolution performance as a resist is remarkably improved.
  • the miniaturization of resist patterns has progressed to a level of 90 nm or less, not only high resolution performance but also other performance has been required.
  • liquid immersion exposure is currently being put into practical use, and a resist material that can cope with this liquid immersion exposure is demanded.
  • DOF Depth of Focus
  • LWR Line Width Roughness
  • MEEF Mask Error Enhancement Factor
  • the present invention has been made in view of such problems of the prior art, and has a wide focal depth, a small LWR and MEEF, excellent pattern collapse characteristics, and excellent development defect performance.
  • a composition is provided.
  • the present inventors have found that a polymer comprising a polymer having a repeating unit containing a cyclic carbonate structure and an acid diffusion having a carbamate structure. It has been found that the above problems can be solved by using an inhibitor or the like as a constituent of the radiation-sensitive resin composition, and the present invention has been completed. Specifically, the present invention provides the following radiation-sensitive resin composition.
  • R 1 independently of each other represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R is a monovalent group represented by general formula (a ′)
  • R 19 independently of each other represents a hydrogen atom or a chain hydrocarbon group having 1 to 5 carbon atoms
  • A represents a single bond
  • a carbon number represents a divalent alicyclic hydrocarbon group having 3 to 30 or a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms
  • the carbonate ester ring of the general formula (a ′) has a second bond bonded to A, and the first bond and the first bond A ring structure containing two bonds may be formed.
  • R 2 and R 3 are each independently a hydrogen atom, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, or a carbon number of 3 to 20 A monovalent alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is shown. Two R 2 may be bonded to form a ring structure.
  • a second carbon atom different from the first carbon atom having the first bond of the carbonate ring has the second bond
  • the repeating unit in which a condensed ring having a carbon atom and the second carbon atom as a constituent atom is formed, and the first carbon atom having the first bond of the carbonate ring also has the second bond.
  • R 1 independently of each other represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R is a monovalent group represented by general formula (a ′)
  • R 19 independently of each other represents a hydrogen atom or a chain hydrocarbon group having 1 to 5 carbon atoms
  • A represents a single bond, a divalent chain hydrocarbon group having 1 to 30 carbon atoms, a carbon number Represents a divalent alicyclic hydrocarbon group having 3 to 30 or a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms
  • the carbonate ester ring of the general formula (a ′) has a second bond bonded to A, and the first bond and the first bond A ring structure containing two bonds may be formed.
  • R 1 independently represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 17 represents an alkyl group having 1 to 10 carbon atoms
  • R 18 represents an alkyl group having 2 to 4 carbon atoms.
  • a represents a number from 1 to 6;
  • the radiation-sensitive resin composition of the present invention has a wide depth of focus, a small LWR and MEEF, excellent pattern collapse characteristics, and excellent development defect performance. Therefore, it can be suitably used as a lithography material using an ArF excimer laser as a light source. Moreover, it can respond also to the lithography material which uses immersion exposure and a KrF excimer laser as a light source.
  • 3 is an analysis chart by 13 C-NMR of a polymer (A-5) which is a constituent component of the radiation-sensitive resin composition of the present invention.
  • 3 is a 13 C-NMR analysis chart of a polymer (A-7) which is a constituent component of the radiation-sensitive resin composition of the present invention.
  • the present invention includes all embodiments including the invention-specific matters, and is not limited to the embodiments described below.
  • the same type of substituent is given the same reference numeral, and the description is omitted.
  • ... group means “optionally substituted ... group”.
  • alkyl group when “alkyl group” is described, it includes not only an unsubstituted alkyl group but also an alkyl group in which a hydrogen atom is substituted with another functional group.
  • ... Group means “a group that may have a branch ...”.
  • alkylcarbonyl group includes not only a linear alkylcarbonyl group but also a branched alkylcarbonyl group.
  • the radiation sensitive resin composition of the present invention comprises a polymer (A), an acid generator (B), and an acid diffusion inhibitor (C) as essential components, and depending on the purpose, a solvent (D), an additive (E ).
  • A polymer
  • B acid generator
  • C acid diffusion inhibitor
  • D solvent
  • E additive
  • Polymer (A) The polymer (A) in the present invention is a polymer having the repeating unit (a-1) represented by the general formula (a-1).
  • Repeating unit (a-1) is a group having a cyclic carbonate structure represented by the general formula (a-1) (a group represented by the general formula (a ′) (hereinafter referred to as “group (a ′)”). )) And is an essential repeating unit of the polymer (A).
  • Examples thereof include repeating units (a-1a) to (a-1v) represented by the following general formulas (a-1a) to (a-1v).
  • R 1 s independently denote a hydrogen atom, a methyl group, or a trifluoromethyl group. Of these, a methyl group is preferred.
  • R is a monovalent group represented by the general formula (a ′), and R 19 independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 5 carbon atoms.
  • chain hydrocarbon group having 1 to 5 carbon atoms include linear alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group; isopropyl group, isobutyl group, t A branched alkyl group having 3 to 5 carbon atoms such as a butyl group.
  • m and n are integers of 0 to 3
  • repeating unit a-1a is a 5-membered ring structure
  • a-1j is a 6-membered ring structure
  • a-1h is a 7-membered ring structure.
  • A represents a single bond, a divalent chain hydrocarbon group having 1 to 30 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms, or carbon.
  • a divalent aromatic hydrocarbon group having a number of 6 to 30 is shown.
  • chain hydrocarbon group refers to a hydrocarbon group that includes only a chain structure without including a cyclic structure in the main chain.
  • examples of the “divalent chain hydrocarbon group having 1 to 30 carbon atoms” include, for example, a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a tetramethylene group, and a pentamethylene group.
  • alicyclic hydrocarbon group means a hydrocarbon group containing only an alicyclic hydrocarbon structure and no aromatic ring structure as the ring structure. However, it is not necessary to be constituted only by the structure of the alicyclic hydrocarbon, and a part thereof may include a chain structure.
  • Examples of the “divalent alicyclic hydrocarbon group” include 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,4-cyclohexylene group, 1,5-cyclooctylene group, etc.
  • a monocyclic cycloalkylene group having 3 to 10 carbon atoms such as 1,4-norbornylene group, 2,5-norbornylene group, 1,5-adamantylene group, 2,6-adamantylene group, etc.
  • aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic hydrocarbon structure.
  • divalent aromatic hydrocarbon group examples include arylene groups such as a phenylene group, a tolylene group, a naphthylene group, a phenanthrylene group, and an anthrylene group.
  • the oxygen atom of (meth) acrylic acid constituting the polymer and the carbon atom constituting the structure (a ′) are linear chains having 1 to 5 carbon atoms.
  • a structure bonded through a linear alkyl group (repeating units a-1a to a-1f).
  • a cyclic structure may be included as a substituent of A (a-1p).
  • the carbonate ester ring of the general formula (a ′) has a second bond bonded to A, and the first bond and the first bond A ring structure containing two bonds may be formed.
  • the polymer (A) has a second carbon atom different from the first carbon atom having the first bond of the carbonate ring.
  • the carbonate ring and A may be integrated to form a condensed ring or a spiro ring.
  • the repeating units a-1g, a-1k, a-1l, a-1q, a-1t, a-1u, a-1i, a-1r, a-1s, a-1v formed the condensed ring. It is an example of a repeating unit.
  • a-1j and a-1n are examples of at least one repeating unit among the repeating units in which the spiro ring is formed.
  • the condensed ring or the spiro ring may be a hetero ring (a-1q to a-1v).
  • A is an alicyclic hydrocarbon group
  • the oxygen atom of (meth) acrylic acid constituting the polymer and the carbon atom constituting the cyclic carbonate are bonded via a norbornylene group.
  • the repeating units a-1k and a-1l are examples in which a condensed ring containing the carbon atom contained in A and the two carbon atoms constituting the cyclic carbonate is formed.
  • A is an aromatic hydrocarbon group
  • an oxygen atom of (meth) acrylic acid constituting a polymer and a carbon atom constituting a cyclic carbonate are bonded via a benzylene group (repeatedly) And the unit a-1o).
  • a second carbon atom different from the first carbon atom having the first bond of the carbonate ring has the second bond, and the first carbon atom and the carbon atom
  • a condensed ring having a second carbon atom as a constituent atom is formed.
  • the monomer may be, for example, Tetrahedron Letters, Vol. 27, no. 32 p. 3741 (1986), Organic Letters, Vol. 4, no. 15 p. 2561 (2002) and the like, and can be synthesized by a conventionally known method.
  • one of the exemplified repeating units (a-1) may be contained alone, or two or more thereof may be contained.
  • the content of the repeating unit (a-1) is preferably 5 to 80 mol% with respect to all repeating units constituting the polymer (A), and preferably 10 to 70 mol%. More preferred is 10 to 50 mol%.
  • the developability as a resist, low defect property, low LWR, low PEB temperature dependence, etc. can be improved.
  • the content of a-1 is less than 5 mol%, the developability and low defectivity as a resist may be lowered.
  • it exceeds 80 mol% there exists a possibility that the resolution as a resist, low LWR, and low PEB temperature dependence may fall.
  • low defectivity means that defects are hardly generated in the photolithography process.
  • the “defect” in the photolithography process include a watermark defect, a blob defect, a bubble defect, and the like. If a large number of these defects occur in device manufacturing, the device yield is greatly affected, which is not preferable.
  • the “watermark defect” is a defect in which a droplet trace of the immersion liquid remains on the resist pattern
  • the “blob defect” is a polymer once dissolved in the developer deposited by a shock of rinsing, A defect reattached to the substrate, and a “bubble defect” is a defect in which a desired pattern cannot be obtained due to a change in optical path due to the immersion liquid containing bubbles during immersion exposure.
  • Repeating unit (a-2) The polymer (A) preferably contains a polymer having a repeating unit (a-2) containing a lactone structure in addition to the repeating unit (a-1).
  • repeating unit (a-2) examples include repeating units (a-2a) to (a-2p) represented by the following general formulas (a-2a) to (a-2p).
  • R 1 each independently represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the repeating unit (a-2) is preferably a repeating unit containing a lactone ring condensed with an alicyclic hydrocarbon group.
  • the repeating unit a-2f is an example of a repeating unit containing a lactone ring condensed with a cyclohexane ring.
  • the repeating unit (a-2) is particularly preferably a repeating unit containing a lactone ring condensed with a polycyclic alicyclic hydrocarbon group.
  • the repeating units a-2a, a-2c, a-2g to a-2o are examples of repeating units containing a lactone ring condensed with a norbornene ring, and a-2d is a bicyclo [2.2.2] octane. It is an example of the repeating unit containing the lactone ring condensed to the ring.
  • Monomers that give the repeating unit (a-2) include (meth) acrylic acid-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (Meth) acrylic acid-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (meth) acrylic acid-5-oxo-4- Oxa-tricyclo [5.2.1.0 3,8 ] dec-2-yl ester, (meth) acrylic acid-10-methoxycarbonyl-5-oxo-4-oxa-tricyclo [5.2.1.0 3,8 ] non-2-yl ester, (meth) acrylic acid-6-oxo-7-oxa-bicyclo [3.2.1] oct-2-yl ester, (meth) acrylic acid-4-methoxycarbonyl -6-oxo-7-oki -Bicyclo [3.2.1] oct-2-yl ester, (
  • one of the exemplified repeating units (a-2) may be contained alone, or two or more thereof may be contained.
  • the content of the repeating unit (a-2) is preferably 0 to 90 mol%, preferably 0 to 80 mol%, based on all repeating units constituting the polymer (A). More preferred is 0 to 70 mol%. If the content of the repeating unit (a-2) exceeds 90 mol%, the resolution as a resist, LWR, and PEB temperature dependence may be reduced.
  • the polymer (A) is preferably a polymer having a repeating unit (a-3) represented by the following general formula (a-3) in addition to the repeating unit (a-1).
  • R 1 independently represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 4 represents an alkyl group having 1 to 20 carbon atoms or a carbon group having 3 to 20 carbon atoms. It represents an alicyclic hydrocarbon group, or two R 4 s combine to form an alicyclic structure having 3 to 20 carbon atoms, and the remaining R 4 represents an alkyl group having 1 to 10 carbon atoms.
  • R 1 independently represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 4 represents an alkyl group having 1 to 20 carbon atoms or a carbon group having 3 to 20 carbon atoms. It represents an alicyclic hydrocarbon group, or two R 4 s combine to form an alicyclic structure having 3 to 20 carbon atoms, and the remaining R
  • the “alkyl group having 1 to 20 carbon atoms” represented by R 4 includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, and a lauryl group.
  • Linear alkyl groups such as stearyl groups; branched alkyl groups such as i-propyl groups, 2-methylpropyl groups, 1-methylpropyl groups, isobutyl groups, t-butyl groups, isoamyl groups, 2-ethylhexyl groups; Etc.
  • examples of the “alicyclic hydrocarbon group having 3 to 20 carbon atoms” include cycloalkyl groups such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclododecyl group; bicyclo [2.2.1] heptyl group, bicyclo [2.2.2] octyl, bicyclo [4.4.0] decyl, tricyclo [5.2.1.0 2, 6] decyl group, tetracyclo [6.2.1.1 3 , 6 .
  • a polycyclic alicyclic hydrocarbon group such as 0 2,7 ] dodecyl group and tricyclo [3.3.1.1 3,7 ] decyl group (adamantyl group).
  • Examples of two R 4 are both bonded is formed together with the carbon atom bonded "alicyclic structure", an alicyclic structure constituting an alicyclic hydrocarbon group described above, for example, cycloalkane Examples include a structure and a polycyclic alicyclic structure.
  • the polymer (A) comprises repeating units (a-3a) represented by the general formula (a-3a) and repeating units represented by the general formula (a-3b). It is preferable to have at least one type of repeating unit.
  • repeating units represented by the following general formulas (a-3a1) to (a-3a9) are particularly preferable.
  • repeating unit (a-3b) a repeating unit represented by general formula (a-3b1) or (a-3b2) shown below is particularly preferable.
  • Monomers that give the repeating unit (a-3b) include (meth) acrylic acid 2-ethyladamantyl-2-yl ester, (meth) acrylic acid 2-ethyl-3-hydroxyadamantyl-2-yl ester, (Meth) acrylic acid 2-n-propyladamantyl-2-yl ester, (meth) acrylic acid 2-isopropyladamantyl-2-yl ester and the like are preferable, and (meth) acrylic acid 2-ethyladamantyl-2-yl ester is more preferable. preferable.
  • the polymer of the present invention includes a repeating unit (a-1) represented by the general formula (a-1), a repeating unit (a-3a) represented by the general formula (a-3a), and the general formula ( and at least one repeating unit of repeating units (a-3b) represented by a-3b).
  • a polymer having the repeating unit (a-1) and the repeating unit (a-3a) is preferable.
  • one of the exemplified repeating units (a-3a) and (a-3b) may be contained alone, or two or more thereof may be contained.
  • the content of the repeating units (a-3a) and (a-3b) is preferably 5 to 80 mol% with respect to all the repeating units constituting the polymer (A). It is more preferably from 10 to 80 mol%, particularly preferably from 20 to 70%.
  • the content of the repeating unit (a-3) exceeds 80 mol%, the adhesiveness of the resist film is lowered, and pattern collapse or pattern peeling may occur.
  • Examples of the other repeating unit (a-3) include repeating units represented by the following general formulas (a-3c) to (a-3i).
  • the polymer (A) may contain an alkyl group having one or more polar groups or an alicyclic hydrocarbon group as other repeating units.
  • the radiation-sensitive resin composition containing such a polymer promotes the solubility of the exposed portion of the resist in an alkali developer (alkaline aqueous solution).
  • the polar group examples include groups that are more polar than hydrocarbon groups, such as a hydroxyl group, a carbonyl group, a cyano group, an alkyl ester group, and an aromatic ester group.
  • the polar group has a hydroxyl group (preferably a secondary or tertiary hydroxyl group) from the viewpoint of further reducing the undissolved residue during development with an alkaline developer and further reducing the incidence of development defects. It is preferably a group or a group having a carbonyl group.
  • repeating unit represented by the following general formula is mentioned.
  • the polymer (A) can further contain other repeating units, for example, other repeating units derived from (meth) acrylic acid esters.
  • the polymer (A) can be synthesized according to a conventional method such as radical polymerization. For example, (1) a method in which a solution containing a monomer and a radical initiator is dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction; (2) a solution containing the monomer and a radical A method in which a solution containing an initiator is dropped into a reaction solvent or a solution containing a monomer separately to cause a polymerization reaction; (3) a plurality of types of solutions containing each monomer, and radical initiation It is preferable to synthesize
  • a conventional method such as radical polymerization.
  • the amount of the monomer in the dropped monomer solution is 30 mol% with respect to the total amount of monomers used for polymerization.
  • it is more preferably 50 mol% or more, and particularly preferably 70 mol% or more.
  • the reaction temperature in these methods may be appropriately determined depending on the initiator type. Usually, it is 30 to 180 ° C, preferably 40 to 160 ° C, and more preferably 50 to 140 ° C.
  • the dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, and more preferably 1 to 5 hours. Further, the total reaction time including the dropping time varies depending on the conditions as in the dropping time, but is usually 30 minutes to 8 hours, preferably 45 minutes to 7 hours, and more preferably 1 to 6 hours.
  • radical initiator used in the polymerization examples include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropionitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane- 1-carbonitrile), 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-2-propenylpropionamidine) dihydrochloride, 2, 2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis ⁇ 2-methyl- -[1,1-bis (hydroxymethyl) 2-hydroxyethyl] propionamide ⁇ , dimethyl-2,2′-azobis (2-methylpropionat
  • any solvent other than a solvent that inhibits polymerization (nitrobenzene having a polymerization inhibiting effect, mercapto compound having a chain transfer effect, etc.) and capable of dissolving the monomer may be used. It can. Examples thereof include alcohols, ethers, ketones, amides, esters / lactones, nitriles, and mixed solvents thereof.
  • Examples of the “alcohols” include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol and the like.
  • Examples of the “ethers” include propyl ether, isopropyl ether, butyl methyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, 1,3-dioxane and the like.
  • ketones include acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, and methyl isobutyl ketone.
  • amides include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • ester / lactone examples include ethyl acetate, methyl acetate, isobutyl acetate, ⁇ -butyrolactone, and the like.
  • nitriles include acetonitrile, propionitrile, butyronitrile and the like. These solvents can be used alone or in admixture of two or more.
  • the polymer obtained by the polymerization reaction is preferably recovered by a reprecipitation method. That is, after completion of the polymerization reaction, the polymer is recovered as a powder by introducing the polymerization solution into a reprecipitation solvent.
  • a reprecipitation solvent the solvent illustrated as the said polymerization solvent can be used individually or in mixture of 2 or more types.
  • the polymer (A) contains a low molecular weight component derived from a monomer, the content thereof is 0.1% by mass or less with respect to the total amount (100% by mass) of the polymer (A). It is preferable that it is 0.07 mass% or less, and it is especially preferable that it is 0.05 mass% or less.
  • this low molecular weight component When the content of this low molecular weight component is 0.1% by mass or less, a resist film is prepared using this polymer (A), and the water in contact with the resist film is subjected to immersion exposure. It is possible to reduce the amount of eluate in Furthermore, no foreign matter is deposited in the resist during resist storage, and coating unevenness does not occur during resist application. Therefore, it is possible to sufficiently suppress the occurrence of defects when forming a resist pattern.
  • the polystyrene-equivalent weight average molecular weight (hereinafter sometimes referred to as “Mw”) by gel permeation chromatography (GPC) is Mw500. It shall mean the following ingredients. Specifically, it is a component such as a monomer, dimer, trimer or oligomer.
  • This “low molecular weight component” can be removed by, for example, chemical purification methods such as washing with water, liquid-liquid extraction, and the like, and chemical purification methods combined with physical purification methods such as ultrafiltration and centrifugation. it can.
  • this low molecular weight component can be quantified by analyzing the polymer (A) by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the polymer (A) is preferably as low as possible impurities such as halogen and metal, thereby further improving the sensitivity, resolution, process stability, pattern shape, etc. when used as a resist. Can do.
  • the polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) of the polymer (A) by gel permeation chromatography (GPC) is not particularly limited, but is preferably 1,000 to 100,000. 1,000 to 30,000 is more preferable, and 1,000 to 20,000 is particularly preferable.
  • Mw of the polymer (A) is less than 1,000, the heat resistance when used as a resist tends to decrease.
  • the Mw of the polymer (A) exceeds 100,000, the developability when used as a resist tends to be lowered.
  • the ratio (Mw / Mn) of Mw to the number average molecular weight in terms of polystyrene (hereinafter referred to as “Mn”) by gel permeation chromatography (GPC) of the polymer (A) is usually 1.0 to 5. 0, preferably 1.0 to 3.0, and more preferably 1.0 to 2.0.
  • the polymer (A) can be used alone or in admixture of two or more.
  • Acid generator (B) is a radiation-sensitive acid generator that generates an acid upon exposure. This acid generator dissociates an acid-dissociable group present in the polymer (A) contained in the radiation-sensitive resin composition by an acid generated by exposure (releases a protecting group), The polymer (A) is alkali-soluble. As a result, the exposed portion of the resist film becomes readily soluble in an alkaline developer, thereby forming a positive resist pattern.
  • R 12 represents a hydrogen atom, a fluorine atom, a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 2 to 11 carbon atoms
  • R 13 represents an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or an alkanesulfonyl group having 1 to 10 carbon atoms
  • R 14 is independently an alkyl group having 1 to 10 carbon atoms
  • a phenyl group and a naphthyl group are shown.
  • R 14s may be bonded to each other to form a divalent group having 2 to 10 carbon atoms.
  • k represents an integer of 0 to 2
  • r represents an integer of 0 to 10
  • X ⁇ represents an anion represented by the following general formulas (b-1) to (b-4).
  • R 15 represents a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 12 carbon atoms, and y represents an integer of 1 to 10)
  • R 16 independently represents a fluorine-substituted alkyl group having 1 to 10 carbon atoms, provided that two R 16 are bonded to each other.
  • a divalent fluorine-substituted alkylene group having 2 to 10 carbon atoms may be formed.
  • examples of the “alkyl group having 1 to 10 carbon atoms” represented by R 12 , R 13 and R 14 include n already mentioned “alkyl group having 1 to 4 carbon atoms” and n A linear alkyl group such as a pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group or an n-decyl group; a branched alkyl group such as a neopentyl group or a 2-ethylhexyl group; Etc. Of these, methyl, ethyl, n-butyl, t-butyl and the like are preferable.
  • alkoxyl group having 1 to 10 carbon atoms represented by R 12 and R 13 includes a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, an n-pentyloxy group, and an n-hexyloxy group.
  • Linear alkoxyl groups such as n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group; i-propoxy group, 2-methylpropoxy group, 1-methylpropoxy group, t-butoxy Groups, branched alkoxyl groups such as neopentyloxy group, 2-ethylhexyloxy group, and the like.
  • methoxy, ethoxy, n-propoxy, n-butoxy and the like are preferable.
  • the “alkoxycarbonyl group having 2 to 11 carbon atoms” represented by R 12 includes a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an n-butoxycarbonyl group, an n-pentyloxycarbonyl group, an n- Linear alkoxycarbonyl groups such as hexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxycarbonyl group, n-nonyloxycarbonyl group, n-decyloxycarbonyl group; i-propoxycarbonyl group, 2-methyl And branched alkoxycarbonyl groups such as propoxycarbonyl group, 1-methylpropoxycarbonyl group, t-butoxycarbonyl group, neopentyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, and the like. Of these, a methoxycarbonyl group,
  • Examples of the “alkanesulfonyl group having 1 to 10 carbon atoms” represented by R 13 include a methanesulfonyl group, an ethanesulfonyl group, an n-propanesulfonyl group, an n-butanesulfonyl group, an n-pentanesulfonyl group, n A linear alkanesulfonyl group such as hexanesulfonyl group, n-heptanesulfonyl group, n-octanesulfonyl group, n-nonanesulfonyl group, n-decanesulfonyl group; tert-butanesulfonyl group, neopentanesulfonyl group, 2- And branched alkanesulfonyl groups such as ethylhexanesulfonyl group; cycloalkanesulfony
  • a methanesulfonyl group an ethanesulfonyl group, an n-propanesulfonyl group, an n-butanesulfonyl group, a cyclopentanesulfonyl group, a cyclohexanesulfonyl group, and the like are preferable.
  • r is preferably an integer of 0 to 2.
  • the “alkoxyl group” includes a linear alkoxyl group such as a methoxy group, an ethoxy group, an n-propoxy group, and an n-butoxy group; i-propoxy group And branched alkoxyl groups such as 2-methylpropoxy group, 1-methylpropoxy group and t-butoxy group; cycloalkyloxy groups such as cyclopentyloxy group and cyclohexyloxy group. These groups preferably have 1 to 20 carbon atoms.
  • alkoxyalkyl group examples include linear alkoxyalkyl groups such as methoxymethyl group, ethoxymethyl group, 2-methoxyethyl group and 2-ethoxyethyl group; branched groups such as 1-methoxyethyl group and 1-ethoxyethyl group An alkoxyalkyl group having a cycloalkane structure; and the like. These groups preferably have 1 to 20 carbon atoms.
  • alkoxycarbonyl group examples include linear alkoxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, n-butoxycarbonyl group; i-propoxycarbonyl group, 2-methylpropoxycarbonyl group, 1 -Branched alkoxycarbonyl groups such as methylpropoxycarbonyl group and t-butoxycarbonyl group; cycloalkyloxycarbonyl groups such as cyclopentyloxycarbonyl group and cyclohexyloxycarbonyl; and the like. These groups preferably have 2 to 21 carbon atoms.
  • alkoxycarbonyloxy group examples include linear alkoxycarbonyloxy groups such as methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, n-butoxycarbonyloxy group; i-propoxycarbonyloxy group, t A branched alkoxycarbonyloxy group such as a butoxycarbonyloxy group; a cycloalkyloxycarbonyl group such as a cyclopentyloxycarbonyl group and cyclohexyloxycarbonyl; These groups preferably have 2 to 21 carbon atoms.
  • phenyl group represented by R 14
  • a phenyl group, 4-cyclohexylphenyl group, 4-t-butylphenyl group, 4-methoxyphenyl group, 4-t-butoxyphenyl group and the like are preferable.
  • the “naphthyl group” represented by R 14 includes, for example, 1-naphthyl group; 2-methyl-1-naphthyl group, 3-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl-1-naphthyl group, 6-methyl-1-naphthyl group, 7-methyl-1-naphthyl group, 8-methyl-1-naphthyl group, 2,3-dimethyl -1-naphthyl group, 2,4-dimethyl-1-naphthyl group, 2,5-dimethyl-1-naphthyl group, 2,6-dimethyl-1-naphthyl group, 2,7-dimethyl-1-naphthyl group, 2,8-dimethyl-1-naphthyl group, 3,4-dimethyl-1-naphthyl
  • alkoxyl group examples include the groups exemplified in the section of the phenyl group Can do.
  • Examples of the “naphthyl group” represented by R 14 include 1-naphthyl group, 1- (4-methoxynaphthyl) group, 1- (4-ethoxynaphthyl) group, 1- (4-n-propoxynaphthyl) group, 1 -(4-n-butoxynaphthyl) group, 2- (7-methoxynaphthyl) group, 2- (7-ethoxynaphthyl) group, 2- (7-n-propoxynaphthyl) group, 2- (7-n- Butoxynaphthyl) group and the like are preferable.
  • This “divalent group” has at least one hydrogen atom selected from the group consisting of hydroxyl group, carboxyl group, cyano group, nitro group, alkoxyl group, alkoxyalkyl group, alkoxycarbonyl group and alkoxycarbonyloxy group. It may be substituted with a group. A part of hydrogen atoms may be substituted. Examples of the “alkoxyl group”, “alkoxyalkyl group”, “alkoxycarbonyl group”, and “alkoxycarbonyloxy group” include the groups exemplified in the section of the phenyl group.
  • R 14 a methyl group, an ethyl group, a phenyl group, a 4-methoxyphenyl group, a 1-naphthyl group, two R 14s are bonded to each other, and together with the sulfur atom in the general formula (B-1), tetrahydrothiophene A structure in which a ring is formed is preferable.
  • Examples of the cation of the general formula (B-1) include triphenylsulfonium cation, tri-1-naphthylsulfonium cation, tri-tert-butylphenylsulfonium cation, 4-fluorophenyl-diphenylsulfonium cation, di-4-fluorophenyl- Phenylsulfonium cation, tri-4-fluorophenylsulfonium cation, 4-cyclohexylphenyl-diphenylsulfonium cation, 4-methanesulfonylphenyl-diphenylsulfonium cation, 4-cyclohexanesulfonyl-diphenylsulfonium cation, 1-naphthyldimethylsulfonium cation, 1- Naphthyl diethylsulfonium cation, 1- (4-hydroxynaph
  • —C y F 2y — is a perfluoroalkylene group having a carbon number y and may be linear or branched. And y is preferably 1, 2, 4 or 8.
  • the “hydrocarbon group having 1 to 12 carbon atoms” represented by R 15 includes an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, A cyclic hydrocarbon group is preferred.
  • the “fluorine-substituted alkyl group having 1 to 10 carbon atoms” represented by R 16 includes a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, Nonafluorobutyl group, dodecafluoropentyl group, perfluorooctyl group and the like can be mentioned.
  • Examples of the “divalent fluorine-substituted alkylene group having 2 to 10 carbon atoms” formed by bonding two R 16 to each other include a tetrafluoroethylene group, a hexafluoropropylene group, an octafluorobutylene group, a decafluoropentylene group. Examples include a len group and an undecafluorohexylene group.
  • anion moiety of the general formula (B-1) examples include trifluoromethanesulfonate anion, perfluoro-n-butanesulfonate anion, perfluoro-n-octanesulfonate anion, 2- (bicyclo [2.2.1] hepta-2 -Yl) -1,1,2,2-tetrafluoroethanesulfonate anion, 2- (bicyclo [2.2.1] hept-2-yl) -1,1-difluoroethanesulfonate anion, 1-adamantylsulfonate anion
  • anions represented by the following formulas (b-3a) to (b-3g) are preferable.
  • the acid generator (B) is composed of combinations of cations and anions already exemplified. However, the combination is not particularly limited. In the resin composition of this invention, an acid generator (B) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • acid generators other than an acid generator (B).
  • acid generators include onium salt compounds, halogen-containing compounds, diazoketone compounds, sulfone compounds, and sulfonic acid compounds. Specifically, the following can be mentioned.
  • Examples of the “onium salt compound” include iodonium salts, sulfonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like. More specifically, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t -Butylphenyl) iodonium perfluoro-n
  • halogen-containing compound examples include haloalkyl group-containing hydrocarbon compounds, haloalkyl group-containing heterocyclic compounds, and the like. More specifically, (trichloromethyl) -s such as phenylbis (trichloromethyl) -s-triazine, 4-methoxyphenylbis (trichloromethyl) -s-triazine, 1-naphthylbis (trichloromethyl) -s-triazine, etc. -Triazine derivatives; 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane; and the like.
  • diazoketone compounds include 1,3-diketo-2-diazo compounds, diazobenzoquinone compounds, diazonaphthoquinone compounds, and the like. More specifically, 1,2-naphthoquinonediazide of 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonylchloride, 2,3,4,4′-tetrahydroxybenzophenone 4-sulfonic acid ester, 1,2-naphthoquinonediazide-5-sulfonic acid ester, 1,1,1-naphthoquinonediazide-4-sulfonic acid ester of 1,1,1-tris (4-hydroxyphenyl) ethane, 1,2, -Naphthoquinonediazide-5-sulfonic acid ester and the like.
  • sulfone compound examples include ⁇ -ketosulfone, ⁇ -sulfonylsulfone, ⁇ -diazo compounds of these compounds, and the like. More specifically, 4-trisphenacyl sulfone, mesityl phenacyl sulfone, bis (phenylsulfonyl) methane and the like can be mentioned.
  • sulfonic acid compound examples include alkyl sulfonic acid esters, alkyl sulfonic acid imides, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, imino sulfonates, and the like.
  • the total amount of the acid generator (B) and the other acid generator used is based on 100 parts by mass of the polymer (A) from the viewpoint of ensuring sensitivity and developability as a resist.
  • it is 0.1 to 30 parts by mass, and preferably 0.5 to 20 parts by mass.
  • the usage-amount of another acid generator is 80 mass% or less with respect to the total amount of an acid generator (B) and another acid generator, and it is further 60 mass% or less. preferable.
  • Acid diffusion inhibitor (C) The radiation sensitive resin composition of the present invention further contains an acid diffusion inhibitor (C) in addition to the polymer (A) and the acid generator (B) described so far.
  • This acid diffusion inhibitor (C) controls the diffusion phenomenon in the resist film of the acid generated from the acid generator upon exposure, and suppresses an undesirable chemical reaction in the non-exposed region.
  • the storage stability of the resulting radiation-sensitive resin composition is improved, the resolution as a resist is further improved, and the heat treatment from exposure to exposure is performed.
  • the change in the line width of the resist pattern due to the fluctuation of the holding time (PED) up to the above can be suppressed, and a composition having excellent process stability can be obtained.
  • Base (C-1) is a base represented by the following general formula (C-1).
  • R 2 and R 3 are each independently a hydrogen atom, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, or a carbon number of 3 to 20 A monovalent alicyclic hydrocarbon group or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is shown. Two R 2 may be bonded to form a ring structure.
  • the group represented by R 3 is preferably a tert-butyl group or a tert-amyl group.
  • two R 2 may be bonded to form a ring structure.
  • nitrogen compound (C-1) for example, Nt-butoxycarbonylpyrrolidine, Nt-butoxycarbonyl-2-phenyl) Benzimidazole.
  • Examples of the nitrogen-containing compound represented by the general formula (C-1) include Nt-butoxycarbonyldi-n-octylamine, Nt-butoxycarbonyldi-n-nonylamine, and Nt-butoxy. Carbonyl di-n-decylamine, Nt-butoxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, Nt-butoxycarbonyl-N-methyl -1-adamantylamine, (S)-( ⁇ )-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-butoxycarbonylpyrrolidine N, N′-di-t-butoxycarbonylpiperazine, N, N-di
  • Nt-amyloxycarbonyldi-n-octylamine Nt-amyloxycarbonyldi-n-nonylamine, Nt-amyloxycarbonyldi-n-decylamine, Nt-amyloxycarbonyldicyclohexylamine, Nt-amyloxycarbonyl-1-adamantylamine, Nt-amyloxycarbonyl-2-adamantylamine, Nt-amyloxycarbonyl-N-methyl-1-adamantylamine, (S)-( ⁇ ) -1- (t-amyloxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-amyloxycarbonyl) -2-pyrrolidinemethanol, Nt-amyloxycarbonyl-4-hydroxy Piperidine, Nt-amyloxycarbonylpyrrolidine, N, N'-di-t-amyloxycarbonyl Perazine,
  • Nt-butoxycarbonyldicyclohexylamine Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, (S)-( ⁇ )-1- (T-butoxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, Nt-butoxycarbonylpyrrolidine, Nt-butoxycarbonyl-4 -Hydroxypiperidine, Nt-butoxycarbonyl-2-phenylbenzimidazole, Nt-amyloxycarbonyldicyclohexylamine, Nt-amyloxycarbonyl-1-adamantylamine, Nt-amyloxycarbonyl-2- Adamantylamine, (S)-(-)-1- (t- (Miloxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1-
  • Photodegradable base (C-2):
  • the “photodegradable base” is a salt represented by the following general formula (C-2), which acts as a base in the initial structure, but decomposes and loses basicity when irradiated with actinic rays or radiation.
  • a compound Such a compound decomposes in the exposed portion and loses acid diffusion controllability, so that the acid is diffused.
  • the unexposed portion it acts as a base (that is, an acid diffusion control agent), and thus controls the diffusion of the acid. Therefore, the contrast between the exposed portion and the unexposed portion can be improved, and the LWR characteristics, pattern shape, and pattern collapse resistance of the radiation-sensitive resin composition can be improved.
  • X + Z ⁇ (C-2)
  • X + represents a sulfonium cation or an iodonium cation.
  • a sulfonium cation (c-2-1a) represented by the following general formula (c-2-1a) or an iodonium cation (c-2-1b) represented by the following general formula (c-2-1b) is preferable.
  • R 20 and R 21 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group or a halogen atom.
  • the sulfonium cation (c-2-1a) is an optionally substituted triphenylsulfonium cation
  • the iodonium cation (c-2-1b) is an optionally substituted diphenyliodonium cation.
  • the sulfonium cation (c-2-1a) is preferably one in which R 20 is a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom.
  • the iodonium cation (c-2-1b) is one in which R 21 is a hydrogen atom, an alkyl group. , An alkoxy group and a halogen atom are preferred. It is preferable that R 20 and R 21 are these groups in that the effect of reducing the solubility of the polymer (A) in the developer is excellent.
  • Z ⁇ is an anion represented by the general formula of R 21 —COO ⁇ , R 21 —SO 3 — or R 21 —N — —SO 2 —R ′ in addition to OH —. .
  • R 21 and R ' represents an alkyl group or an aryl group which may be substituted.
  • Examples of the optionally substituted alkyl group include an unsubstituted alkyl group, for example, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3 A hydroxyalkyl group having 1 to 4 carbon atoms such as a hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group; methoxy group, ethoxy group, n-propoxy group An alkoxyl group having 1 to 4 carbon atoms such as i-propoxy group, n-butoxy group, 2-methylpropoxy group, 1-methylpropoxy group and t-butoxy group; cyano group; cyanomethyl group, 2-cyanoethyl group, 3 -One or more substituents such as cyanoalkyl groups having 2 to 5 carbon atoms such as cyanopropyl group and 4-cyanobuty
  • Examples of the optionally substituted aryl group include a phenyl group, a benzyl group, a phenylethyl group, a phenylpropyl group, and a phenylcyclohexyl group. These compounds are substituted with a hydroxyl group, a cyano group, or the like. And the like. Among these, a phenyl group, a benzyl group, and a phenylcyclohexyl group are preferable.
  • Z ⁇ is preferably an anion represented by the following formula (C-2-2a), (C-2-2b) or (C-2-2c).
  • R 22 is a hydrogen atom, a part or all of the hydrogen atoms are substituted with fluorine atoms, hydroxyl groups, —OR ′′ groups, —OCOR ′′ groups, or —COOR ′′ groups.
  • R ′′ is a linear or branched chain having 1 to 10 carbon atoms.
  • Monovalent hydrocarbon group or cyclic or cyclic part having 3 to 20 carbon atoms A monovalent hydrocarbon group having the structure.
  • Specific examples of the compound having an anion represented by the general formula (C-2-2c) include compounds (i-1) to (i-25) represented by the following formula.
  • the compound (C-2) is specifically a sulfonium salt compound or iodonium salt compound that satisfies the above conditions.
  • sulfonium salt compounds examples include triphenylsulfonium hydroxide, triphenylsulfonium acetate, triphenylsulfonium salicylate, diphenyl-4-hydroxyphenylsulfonium hydroxide, diphenyl-4-hydroxyphenylsulfonium acetate, diphenyl-4- Examples thereof include hydroxyphenylsulfonium salicylate, triphenylsulfonium 10-camphor sulfonate, 4-tert-butoxyphenyl diphenylsulfonium 10-camphor sulfonate, and the like.
  • these sulfonium salt compounds can be used individually by 1 type or in combination of 2 or more types.
  • iodonium salt compound examples include bis (4-t-butylphenyl) iodonium hydroxide, bis (4-t-butylphenyl) iodonium acetate, bis (4-t-butylphenyl) iodonium hydroxide, bis (4-t-butylphenyl) iodonium acetate, bis (4-t-butylphenyl) iodonium salicylate, 4-t-butylphenyl-4-hydroxyphenyliodonium hydroxide, 4-t-butylphenyl-4-hydroxy Phenyliodonium acetate, 4-tert-butylphenyl-4-hydroxyphenyliodonium salicylate, bis (4-tert-butylphenyl) iodonium 10-camphorsulfonate, diphenyliodonium 10-camphor Mention may be made of the sulfonate and the like. In addition, these iodonium salt compounds can be
  • Examples of the acid diffusion inhibitor (C) other than the base (C-1) and the photodegradable base (C-2) include nitrogen such as tertiary amine compounds, quaternary ammonium hydroxide compounds, and nitrogen-containing heterocyclic compounds.
  • the containing compound can be mentioned.
  • tertiary amine compound examples include triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n -Tri (cyclo) alkylamines such as octylamine, cyclohexyldimethylamine, dicyclohexylmethylamine, tricyclohexylamine; aniline, N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4 -Aromatic amines such as methylaniline, 4-nitroaniline, 2,6-dimethylaniline, 2,6-diisopropylaniline; Alkanolamines such as triethanolamine, N, N-di (hydroxyethyl) aniline; N , N, N ′, N′-Tetramethylethyl Diamine, N, N, N ′,
  • Examples of the “quaternary ammonium hydroxide compound” include tetra-n-propylammonium hydroxide and tetra-n-butylammonium hydroxide.
  • nitrogen-containing heterocyclic compound examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4- Pyridines such as phenylpyridine, nicotine, nicotinic acid, nicotinamide, quinoline, 4-hydroxyquinoline, 8-oxyquinoline, acridine; piperazines such as piperazine, 1- (2-hydroxyethyl) piperazine; pyrazine, pyrazole, Pyridazine, quinosaline, purine, pyrrolidine, piperidine, 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane, imidazole 4-methylimidazole, 1 Benzyl-2-methylimidazole, 4-methyl-2-phenyl-methyl
  • the acid diffusion inhibitor (C) can be used alone or in combination of two or more.
  • the total amount of the acid diffusion inhibitor (C) used is preferably less than 10 parts by mass with respect to 100 parts by mass of the polymer (A) from the viewpoint of ensuring high sensitivity as a resist. More preferably, it is less than 5 parts by mass. When the total amount used exceeds 10 parts by mass, the sensitivity as a resist tends to be remarkably reduced. In addition, if the usage-amount of an acid diffusion inhibitor (C) is less than 0.001 mass part, there exists a possibility that the pattern shape and dimensional fidelity as a resist may fall depending on process conditions.
  • Solvent (D) As the solvent (D), at least the polymer (A), the acid generator (B), the acid diffusion inhibitor (C), and a solvent that can dissolve the additive (E) if desired are particularly limited. is not.
  • Examples of the solvent (D) include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-i-propyl ether acetate, propylene glycol mono-n-butyl ether acetate.
  • Propylene glycol monoalkyl ether acetates such as propylene glycol mono-i-butyl ether acetate, propylene glycol mono-sec-butyl ether acetate, propylene glycol mono-t-butyl ether acetate;
  • Cyclic ketones such as cyclopentanone, 3-methylcyclopentanone, cyclohexanone, 2-methylcyclohexanone, 2,6-dimethylcyclohexanone, isophorone; 2-butanone, 2-pentanone, 3-methyl-2-butanone, 2 Ketones such as hexanone, 4-methyl-2-pentanone, 3-methyl-2-pentanone, 3,3-dimethyl-2-butanone, 2-heptanone and 2-octanone; methyl 2-hydroxypropionate, 2- Ethyl hydroxypropionate, n-propyl 2-hydroxypropionate, i-propyl 2-hydroxypropionate, n-butyl 2-hydroxypropionate, i-butyl 2-hydroxypropionate, sec-butyl 2-hydroxypropionate, T-butyl 2-hydroxypropionate, etc.
  • n-propyl alcohol i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclohexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, propylene glycol monomethyl ether , Propylene glycol monoethyl Ether, propylene glycol mono -n- propyl ether,
  • propylene glycol monoalkyl ether acetates particularly propylene glycol monomethyl ether acetate.
  • ketones, alkyl 2-hydroxypropionate, alkyl 3-alkoxypropionate, ⁇ -butyrolactone and the like are preferable.
  • These solvent can be used individually by 1 type or in mixture of 2 or more types.
  • Additive (E) In the radiation-sensitive resin composition of the present invention, various additives (E) such as a fluorine-containing polymer, an alicyclic skeleton-containing polymer, a surfactant, and a sensitizer are blended as necessary. Can do. The amount of each additive can be determined as appropriate according to the purpose.
  • the fluorine-containing polymer exhibits an action of developing water repellency on the resist film surface particularly in immersion exposure. In addition, it suppresses the elution of components from the resist film to the immersion liquid, and does not leave droplets even if immersion exposure is performed by high-speed scanning, and as a result, suppresses immersion-derived defects such as watermark defects. It is an effective ingredient.
  • the structure of the fluorine-containing polymer is not particularly limited.
  • Fluorine-containing polymer that is insoluble in the developer and becomes alkali-soluble by the action of acid (2) itself is acceptable in the developer.
  • a fluorine-containing polymer which is soluble and increases in alkali solubility by the action of an acid (3) a fluorine-containing polymer which itself is insoluble in a developer and becomes alkali-soluble by the action of an alkali; and (4) itself is developed. Examples thereof include a fluorine-containing polymer that is soluble in a liquid and whose alkali solubility is increased by the action of an alkali.
  • fluorine-containing polymer examples include a polymer having at least one repeating unit selected from the repeating unit (a-3) and the fluorine-containing repeating unit. Furthermore, the polymer which has is preferable.
  • fluorine-containing repeating unit examples include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, perfluoroethyl (meth) acrylate, and perfluoro n-propyl (meth) acrylate.
  • fluorine-containing polymer for example, polymers represented by the following general formulas (E-1a) to (E-1f) are preferable. These fluorine-containing polymers can be used individually by 1 type or in mixture of 2 or more types.
  • the alicyclic skeleton-containing polymer is a component having an action of further improving dry etching resistance, pattern shape, adhesion to a substrate, and the like.
  • Examples of the alicyclic skeleton-containing polymer include 1-adamantanecarboxylic acid, 2-adamantanone, 1-adamantanecarboxylic acid t-butyl, 1-adamantanecarboxylic acid t-butoxycarbonylmethyl, 1-adamantanecarboxylic acid ⁇ - Butyrolactone ester, 1,3-adamantane dicarboxylic acid di-t-butyl, 1-adamantane acetate t-butyl, 1-adamantane acetate t-butoxycarbonylmethyl, 1,3-adamantane diacetate di-t-butyl, 2,5 Adamantane derivatives such as dimethyl-2,5-di (adamantylcarbonyloxy) hexane;
  • Surfactant is a component that exhibits the action of improving coatability, striation, developability, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol
  • nonionic surfactants such as distearate, KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the sensitizer absorbs radiation energy and transmits the energy to the acid generator (B), thereby increasing the amount of acid produced. It has the effect of improving the “apparent sensitivity”.
  • sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like. These sensitizers can be used individually by 1 type or in mixture of 2 or more types.
  • additives dyes, pigments, adhesion aids and the like can be used.
  • the latent image of the exposed area can be visualized, and the influence of halation during exposure can be reduced.
  • substrate can be improved by mix
  • other additives include alkali-soluble polymers, low-molecular alkali solubility control agents having acid-dissociable protecting groups, antihalation agents, storage stabilizers, antifoaming agents, and the like.
  • additive (E) one of the various additives described above may be used alone, or two or more of them may be used in combination.
  • Photoresist pattern forming method The radiation sensitive resin composition of the present invention is useful as a chemically amplified resist.
  • a polymer component mainly an acid dissociable group in the polymer (A)
  • A is dissociated by the action of an acid generated from an acid generator by exposure to generate a carboxyl group.
  • the solubility of the exposed portion of the resist in the alkaline developer is increased, and the exposed portion is dissolved and removed by the alkaline developer to obtain a positive photoresist pattern.
  • step (1) a step of forming a photoresist film on a substrate using the radiation sensitive resin composition (hereinafter sometimes referred to as “step (1)”). And (2) a step of irradiating the exposed photoresist film with radiation through a mask having a predetermined pattern (if necessary, through an immersion medium) and exposing (hereinafter referred to as “step (2)”). And (3) a step of developing the exposed photoresist film to form a photoresist pattern (hereinafter sometimes referred to as “step (3)”). is there.
  • an immersion liquid insoluble immersion protective film is formed on the resist film. It may be provided.
  • a solvent-peeling type protective film see, for example, JP-A-2006-227632
  • Any of liquid-removable protective films see, for example, WO 2005-069096 and WO 2006-035790
  • a resin composition solution obtained by dissolving the resin composition of the present invention in a solvent is applied to a substrate (silicon wafer, dioxide dioxide) by an appropriate application means such as spin coating, cast coating, roll coating or the like.
  • a photoresist film is formed by coating on a silicon-coated wafer or the like.
  • the solvent in the coating film is volatilized by pre-baking (PB) to form a resist film.
  • the thickness of the resist film is not particularly limited, but is preferably 0.1 to 5 ⁇ m, and more preferably 0.1 to 2 ⁇ m.
  • the prebaking heating condition varies depending on the composition of the radiation sensitive resin composition, it is preferably 30 to 200 ° C, more preferably 50 to 150 ° C.
  • a photoresist pattern using the radiation-sensitive resin composition of the present invention in order to maximize the potential of the radiation-sensitive resin composition, organic or inorganic reflection is performed on the substrate used.
  • a preventive film may be formed (see Japanese Patent Publication No. 6-12452).
  • a protective film may be provided on the photoresist film in order to prevent the influence of basic impurities and the like contained in the environmental atmosphere (see Japanese Patent Laid-Open No. 5-188598).
  • the immersion protective film may be provided on the photoresist film.
  • step (2) the photoresist film formed in step (1) is irradiated with radiation (possibly through an immersion medium such as water) and exposed.
  • radiation is irradiated through a mask having a predetermined pattern.
  • the radiation is appropriately selected from visible light, ultraviolet light, far ultraviolet light, X-rays, charged particle beams and the like according to the type of acid generator.
  • Far ultraviolet rays represented by ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm) are preferable, and ArF excimer laser is particularly preferable.
  • the exposure conditions such as the exposure amount are appropriately set according to the blending composition of the radiation-sensitive resin composition and the kind of additive.
  • PEB post-exposure heat treatment
  • the heating condition of PEB varies depending on the composition of the radiation sensitive resin composition, but is preferably 30 to 200 ° C, more preferably 50 to 170 ° C.
  • step (3) the exposed photoresist film is developed with a developer to form a predetermined photoresist pattern. After development, it is common to wash with water and dry.
  • Examples of the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine , Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3. [0]
  • An aqueous alkali solution in which at least one alkaline compound such as 5-nonene is dissolved is preferable.
  • the concentration of the alkaline aqueous solution is usually 10% by mass or less. If it exceeds 10% by mass, the unexposed area may be dissolved in the developer, which is not preferable.
  • the developer may be a solution obtained by adding an organic solvent to an alkaline aqueous solution.
  • organic solvent include ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone, cyclopentanone, cyclohexanone, 3-methylcyclopentanone, and 2,6-dimethylcyclohexanone; methyl alcohol, ethyl alcohol, n-propyl alcohol Alcohols such as i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclopentanol, cyclohexanol, 1,4-hexanediol and 1,4-hexanedimethylol; ethers such as tetrahydrofuran and dioxane; Examples thereof include esters such as ethyl acetate, n-butyl acetate and i-amyl acetate; aromatic hydrocarbons such as toluene
  • the amount of the organic solvent used is preferably 100 parts by volume or less with respect to 100 parts by volume of the alkaline aqueous solution. When the amount of the organic solvent exceeds 100 parts by volume, the developability is lowered, and there is a possibility that the development residue in the exposed part increases.
  • An appropriate amount of a surfactant or the like may be added to the developer.
  • Mw, Mn, and Mw / Mn use GPC columns (trade name “G2000HXL”, product name “G3000HXL”, product name “G4000HXL”, 1 each, manufactured by Tosoh Corporation), flow rate: 1.0 mL / min, Elution solvent: Tetrahydrofuran, Column temperature: It was measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under analysis conditions of 40 ° C. Further, the degree of dispersion “Mw / Mn” was calculated from the measurement results of Mw and Mn.
  • GPC gel permeation chromatography
  • the low molecular weight component is a component having a monomer as a main component and a molecular weight of less than 1,000 (that is, a trimer molecular weight or less).
  • the filtered white powder was slurried with 200 g of methanol and washed twice. Thereafter, the white powder was again filtered off and dried at 50 ° C. for 17 hours to obtain a white powder copolymer (37 g, yield 74%). This copolymer was designated as polymer (A-1).
  • This copolymer had Mw of 7321 and Mw / Mn of 1.70, and as a result of 13 C-NMR analysis, the monomer (M-6), monomer (M-12) and monomer The content of each repeating unit derived from the body (M-8) was 45.2: 19.5: 35.3 (mol%). The residual ratio of the low molecular weight component in this copolymer was 0.05% by mass. The measurement results are shown in Table 2.
  • Tables 7 and 8 show the compositions of the radiation-sensitive resin compositions prepared in each example and comparative example. Further, each of the radiation-sensitive resin compositions other than the polymers (A-1) to (A-31) and acid diffusion inhibitors (C-9) to (C-11) synthesized in the above synthesis examples. Components (acid generator (B), acid diffusion inhibitor (C) and solvent (D)) are shown below.
  • ⁇ Acid generator (B)> (B-1): 4-cyclohexylphenyl, diphenylsulfonium, nonafluoro-n-butanesulfonate, (B-2): Triphenylsulfonium nonafluoro-n-butanesulfonate, (B-3): 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nonafluoro-n-butanesulfonate (B-4): 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium ⁇ 2- (bicyclo [2.2.1] hept-2-yl) -1,1,2,2 -Tetrafluoroethanesulfonate, (B-5): triphenylsulfonium ⁇ 2- (bicyclo [2.2.1] hept-2-yl) -1,1,2,2-tetrafluoroethanesulfonate,
  • C-1) Nt-butoxycarbonyl-4-hydroxypiperidine
  • C-2) R-(+)-(t-butoxycarbonyl) -2-piperidinemethanol
  • C-3) Nt-butoxycarbonylpyrrolidine
  • C-4) Nt-butoxycarbonyl-2-phenylbenzimidazole
  • C-5) tri-n-octylamine
  • C-6) phenyldiethanolamine
  • C-7) triphenylsulfonium salicylate
  • C-8) Triphenylsulfonium camphorsulfonate.
  • Example 1 100 parts by mass of the polymer (A-1) obtained in Synthesis Example 1, 8.4 parts by mass of (B-2) triphenylsulfonium / nonafluoro-n-butanesulfonate as the acid generator (B), acid diffusion suppression
  • As the agent (C) 0.9 part by mass of (C-2) R-(+)-(t-butoxycarbonyl) -2-piperidinemethanol was mixed, and (D- 1) 1500 parts by weight of propylene glycol monomethyl ether acetate, 650 parts by weight of (D-2) cyclohexanone and 40 parts by weight of (D-3) ⁇ -butyrolactone were added to dissolve the above mixture to obtain a mixed solution.
  • the mixed solution was filtered through a filter having a pore size of 0.20 ⁇ m to prepare a radiation sensitive resin composition.
  • Table 3 shows the formulation of the radiation sensitive resin composition.
  • Sensitivity (unit: mJ / cm 2 ): A lower antireflection film having a film thickness of 77 nm was formed on an 8-inch wafer surface using a lower antireflection film forming agent (trade name: ARC29A, manufactured by Nissan Chemical Industries, Ltd.).
  • the radiation-sensitive resin compositions of Examples and Comparative Examples were applied to the surface of this substrate by spin coating, and subjected to SB (Soft Bake) for 90 seconds at a temperature shown in Table 4 on a hot plate, and the film thickness was 120 nm. A resist film was formed.
  • the resist film was exposed through a mask pattern using a full field reduction projection exposure apparatus (trade name: S306C, Nikon Corporation, numerical aperture 0.78). Thereafter, PEB was performed for 90 seconds at the temperature shown in Table 4, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution (hereinafter referred to as “TMAH aqueous solution”) at 25 ° C. for 60 seconds, followed by washing with water. And dried to form a positive resist pattern.
  • TMAH aqueous solution 2.38 mass% tetramethylammonium hydroxide aqueous solution
  • the exposure amount (mJ / cm 2 ) formed in a one-to-one line and space with a line width of 90 nm is defined as an optimum exposure amount through a mask with a one-to-one line and space with a dimension of 90 nm.
  • the optimum exposure amount (mJ / cm 2 ) was defined as “sensitivity”.
  • Isolated space depth of focus (unit: ⁇ m)
  • the focus fluctuation width when the 90 nmS / 1150 nmP pattern size resolved with the mask pattern of 115 nmS / 1150 nmP at the optimum exposure dose is within the range of 81 to 99 nmS / 1150 nmP was defined as the isolated line focal depth. Specifically, it was evaluated as “good” when the isolated space focal depth was 0.20 ⁇ m or more, and “bad” when it was less than 0.20 ⁇ m. The scanning electron microscope was used for observing the pattern dimensions.
  • LWR unit: nm
  • the line width was measured at 10 points at arbitrary points, and the 3 sigma value of the measured value (Variation) was defined as LWR. Specifically, when the LWR was 8.0 nm or less, it was evaluated as “good”, and when it exceeded 8.0 nm, it was evaluated as “bad”.
  • MEEF Using the scanning electron microscope, with the optimum exposure dose, five mask sizes (85.0 nmL / 180 nmP, 87.5 nmL / 180 nmP, 90.0 nmL / 180 nmP, 92.5 nmL / 180 nmP, 95.0 nmL / 180 nmP) Resolved pattern dimensions were measured. The measurement results were plotted with the horizontal axis representing the mask size and the vertical axis representing the line width, and the slope of the graph was determined by the least square method. This inclination was defined as MEEF. Specifically, it was evaluated as “good” when the MEEF was 4.0 or more and “bad” when it was less than 4.0.
  • Minimum collapse size When observing a 90 nm line-and-space pattern resolved at the optimum exposure amount for sensitivity evaluation, the line width of the resulting pattern is narrow when exposure is performed with an exposure amount larger than the optimum exposure amount. As a result, the resist pattern is finally collapsed.
  • the line width at the maximum exposure amount at which the resist pattern was not confirmed to be collapsed was defined as the minimum dimension before collapse (nm), which was used as an index of pattern collapse resistance. Specifically, when the dimension before the minimum collapse was 40.0 nm or less, it was evaluated as “good”, and when it exceeded 40.0 nm, “bad”. In addition, the said scanning electron microscope was used for the measurement of the dimension before minimum collapse.
  • a wafer for defect inspection was prepared as follows.
  • a lower-layer antireflection film forming agent (trade name: ARC25, manufactured by Brewer Science Co., Ltd.) was coated to a film thickness of 820 mm to produce a wafer substrate.
  • the lower-layer antireflection film-forming agent was coated to a film thickness of 770 mm to produce wafer substrates.
  • the radiation sensitive resin composition of the Example and the comparative example was apply
  • SB SoftBake
  • the radiation-sensitive resin composition was applied on the wafer substrate with a film thickness of 0.12 ⁇ m.
  • a full field exposure apparatus (trade name: S306C, manufactured by Nikon Corporation), 5 mm ⁇ 5 mm blank exposure was performed to expose the entire wafer surface. After exposure, PEB was performed under conditions of 130 ° C./90 seconds, and then developed with a 2.38 wt% TMAH aqueous solution at 25 ° C. for 30 seconds, washed with water, and dried to prepare a wafer for defect inspection. The above coating, firing and development were all performed inline using a coater / developer (trade name: CLEAN TRACK ACT8, manufactured by Tokyo Electron Ltd.).
  • the defect inspection apparatus Using the defect inspection apparatus, the total number of defects of development defects in the exposed portion of the wafer for defect inspection produced by the method was inspected.
  • the inspection of the total number of defects was performed by observing in the array mode and detecting the total number of defects of clusters and unclusters extracted from the difference caused by the comparison image and the pixel unit overlap.
  • the sensitivity was set so that the defect inspection apparatus could detect defects of 0.15 ⁇ m or more. By this inspection, it was evaluated as “good” when the number of development defects was 30 / wafer or less, and “defect” when it exceeded 30 / wafer.
  • Exposure margin was defined as the ratio of the exposure amount range when the pattern dimension resolved by the 90 nm 1L / 1S mask pattern was within ⁇ 10% of the mask design dimension to the optimum exposure amount. Specifically, it was evaluated as “good” when the exposure margin was 10% or more, and “bad” when it was less than 10%. The scanning electron microscope was used for observing the pattern dimensions.
  • Pattern cross-sectional shape The cross-sectional shape of the line-and-space pattern with a line width of 90 nm resolved with the above sensitivity is observed with the trade name “S-4200” (manufactured by Hitachi High-Technologies Corporation), and the line width in the middle of the resist pattern Lb and the line width La at the upper part of the film are measured, and the case where it is within the range of 0.9 ⁇ (La / Lb) ⁇ 1.1 is evaluated as “good”, and the case where it is out of range is determined as “bad”. It was evaluated.
  • Examples 26 and 27 Comparative Examples 12 and 13
  • the radiation-sensitive resin composition Examples 26 and 27
  • Examples 26 and 27 was prepared in the same manner as in Example 1 except that the composition of each component for preparing the radiation-sensitive resin composition was changed as shown in Table 11. Comparative Examples 12 and 13) were obtained.
  • Sensitivity (unit: mJ / cm 2 ) An 8-inch wafer surface was coated with a lower-layer antireflection film forming agent (trade name: DUV42P, manufactured by Brewer Science) to a film thickness of 60 nm to form a film.
  • the radiation sensitive resin compositions of Examples and Comparative Examples were applied to the surface of this substrate by spin coating, and SB was performed for 90 seconds at a temperature shown in Table 12 on a hot plate to form a resist film having a thickness of 335 nm. Formed.
  • the resist film was exposed through a mask pattern using a full-field reduction projection exposure apparatus (trade name: PASS 5500/750, manufactured by ASML, numerical aperture 0.70, exposure wavelength 248 nm).
  • PEB was performed for 90 seconds at the temperature shown in Table 12, and then developed with a 2.38 mass% TMAH aqueous solution at 25 ° C. for 60 seconds, washed with water, and dried to form a positive resist pattern.
  • the exposure amount (mJ / cm 2 ) formed in a one-to-one line-and-space with a line width of 130 nm is defined as an optimum exposure amount through a 130-nm one-to-one line-and-space mask.
  • the optimum exposure amount (mJ / cm 2 ) was defined as “sensitivity”.
  • the scanning electron microscope was used for length measurement.
  • Minimum resolution size The minimum dimension that can be resolved with the optimal exposure dose of the 130 nm 1L / 1S pattern is observed from above the pattern using the scanning electron microscope.
  • the minimum line width that can be resolved by this resist is defined as the minimum resolution dimension, which is used as an index of resolution. Specifically, it was evaluated as “good” when the dimension before the minimum collapse was 110 nm or less, and “bad” when it exceeded 110 nm.
  • the radiation-sensitive resin composition of the present invention can be suitably used as a lithography material using a KrF excimer laser and an ArF excimer laser as a light source. Moreover, it can respond also to immersion exposure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 重合体(A)と、感放射線性の酸発生剤(B)と、酸拡散抑制剤(C)と、溶剤(D)とを含有し、前記重合体(A)が、下記一般式(a-1)で示される繰り返し単位(a-1)を有する重合体であり、前記酸拡散抑制剤(C)が、下記一般式(C-1)で示される塩基(C-1)及び光分解性塩基(C-2)のうちの少なくとも一種の塩基を含有する感放射線性樹脂組成物。 〔一般式(a-1)中、Rは相互に独立して、水素原子等を示し、Rは一般式(a’)で示される1価の基であり、R19は炭素数1~5の鎖状炭化水素基等を示し、Aは炭素数が1~30である2価の鎖状炭化水素基等を示し、m及びnは0~3の整数(但し、m+n=1~3)を示す。一般式(C-1)中、R,Rは相互に独立して、炭素数が1~20である1価の鎖状炭化水素基等を示す。2つのRが結合されて、環構造が形成されていてもよい。〕

Description

感放射線性樹脂組成物
 本発明は、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造、その他のフォトリソグラフィー工程に使用される感放射線性樹脂組成物に関するものである。より具体的には、KrFエキシマレーザー・ArFエキシマレーザー等の波長250nm以下の遠紫外線や電子線を露光光源とするフォトリソグラフィー工程に好適に用いることができる、化学増幅型の感放射線性樹脂組成物に関するものである。
 化学増幅型の感放射線性樹脂組成物は、KrFエキシマレーザーやArFエキシマレーザーに代表される遠紫外線や電子線の照射により露光部に酸を生成させ、この酸を触媒とする化学反応により、露光部と未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる組成物である。
 例えば、KrFエキシマレーザー(波長248nm)を光源として用いる場合には、248nm領域での吸収が小さい、ポリ(ヒドロキシスチレン)(以下、「PHS」と記す場合がある。)を基本骨格とする重合体を構成成分とする化学増幅型感放射線性樹脂組成物が用いられている。この組成物によれば、高感度、高解像度、且つ良好なパターン形成を実現することが可能である。
 しかし、更なる微細加工を目的として、より短波長の光源、例えば、ArFエキシマレーザー(波長193nm)を光源として用いる場合には、193nm領域に大きな吸収を示すPHS等の芳香族化合物を使用することが困難であるという問題があった。
 そこで、ArFエキシマレーザーを光源とするリソグラフィー材料としては、193nm領域に大きな吸収を有しない脂環式炭化水素を骨格中に有する重合体、特に、その繰り返し単位中にラクトン骨格を有する重合体を構成成分とする樹脂組成物が用いられている。
 上記のような感放射線性樹脂組成物としては、例えば、その繰り返し単位中に、メバロニックラクトン骨格やγ-ブチロラクトン骨格を有する重合体を構成成分とする感放射線性樹脂組成物が開示されている(特許文献1及び2参照)。また、その繰り返し単位中に、脂環式ラクトン骨格を有する重合体を構成成分とする樹脂組成物も開示されている(例えば、特許文献3~13参照)。
特開平9-73173号公報 米国特許第6388101B号明細書 特開2000-159758号公報 特開2001-109154号公報 特開2004-101642号公報 特開2003-113174号公報 特開2003-147023号公報 特開2002-308866号公報 特開2002-371114号公報 特開2003-64134号公報 特開2003-270787号公報 特開2000-26446号公報 特開2000-122294号公報
 上記の組成物は、その繰り返し単位中にラクトン骨格を有することで、レジストとしての解像性能が飛躍的に向上することが見出されている。しかしながら、レジストパターンの微細化が線幅90nm以下のレベルまで進展している現在にあっては、単に解像性能が高いのみならず、他の性能も要求されるようになってきている。例えば、現在、レジストパターンの微細化技術の一つとして、液浸露光の実用化が進められており、この液浸露光にも対応可能なレジスト材料が求められている。具体的には、焦点深度(DOF:Depth Of Focus)、ライン幅の粗さ(LWR:Line Width Roughness)、マスク幅のずれによるライン幅のずれの増幅因子(MEEF:Mask Error Enhancement Factor)、パターン倒れ耐性、現像欠陥性能等の多様な要求特性を満足させる材料の開発が求められている。
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、焦点深度が広く、LWR及びMEEFが小さく、パターン倒れ特性に優れ、かつ、現像欠陥性能にも優れる感放射線性樹脂組成物を提供するものである。
 本発明者らは、前記のような従来技術の課題を解決するために鋭意検討した結果、環状炭酸エステル構造を含む繰り返し単位を有する重合体からなる重合体と、カルバミン酸エステル構造を有する酸拡散抑制剤等とを感放射線性樹脂組成物の構成成分とすることによって、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には、本発明により、以下の感放射線性樹脂組成物が提供される。
[1] 酸解離性基を有する重合体(A)と、感放射線性の酸発生剤(B)と、酸拡散抑制剤(C)と、を含有し、前記重合体(A)として、下記一般式(a-1)で示される繰り返し単位(a-1)を有する重合体を含有し、前記酸拡散抑制剤(C)として、下記一般式(C-1)で示される塩基(C-1)及び光分解性塩基(C-2)のうちの少なくとも一種の塩基を含有する感放射線性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
〔一般式(a-1)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、Rは一般式(a’)で示される1価の基であり、R19は相互に独立して、水素原子、炭素数1~5の鎖状炭化水素基を示し、Aは単結合、炭素数が1~30である2価の鎖状炭化水素基、炭素数が3~30である2価の脂環式炭化水素基又は炭素数が6~30である2価の芳香族炭化水素基を示し、m及びnは0~3の整数(但し、m+n=1~3)を示す。一般式(a’)の炭酸エステル環が一般式(a-1)に示される第1の結合に加えて、Aに結合される第2の結合を有し、前記第1の結合及び前記第2の結合を含む環構造が形成されていてもよい。〕
Figure JPOXMLDOC01-appb-C000006
〔一般式(C-1)中、R,Rは相互に独立して、水素原子、炭素数が1~20である1価の鎖状炭化水素基、炭素数が3~20である1価の脂環式炭化水素基又は炭素数が6~20である1価の芳香族炭化水素基を示す。2つのRが結合されて、環構造が形成されていてもよい。〕
[2] 前記重合体(A)として、前記炭酸エステル環の前記第1の結合を有する第1の炭素原子とは異なる第2の炭素原子が前記第2の結合を有し、前記第1の炭素原子及び前記第2の炭素原子を構成原子とする縮合環が形成された繰り返し単位、及び前記炭酸エステル環の前記第1の結合を有する第1の炭素原子が前記第2の結合をも有し、前記第1の炭素原子をスピロ原子とするスピロ環が形成された繰り返し単位のうちの少なくとも一種の繰り返し単位、を有する重合体を含有する前記[1]に記載の感放射線性樹脂組成物。
[3] 前記重合体(A)として、前記繰り返し単位(a-1)に加えて、ラクトン構造を含む繰り返し単位(a-2)を有する重合体を含有する前記[1]に記載の感放射線性樹脂組成物。
[4] 下記一般式(a-1)で示される繰り返し単位(a-1)と、下記一般式(a-3a)で示される繰り返し単位(a-3a)及び下記一般式(a―3b)で示される繰り返し単位(a-3b)のうちの少なくとも1種の繰り返し単位と、を有する重合体。
Figure JPOXMLDOC01-appb-C000007
〔一般式(a-1)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、Rは一般式(a’)で示される1価の基であり、R19は相互に独立して、水素原子、炭素数1~5の鎖状炭化水素基を示し、Aは単結合、炭素数が1~30である2価の鎖状炭化水素基、炭素数が3~30である2価の脂環式炭化水素基又は炭素数が6~30である2価の芳香族炭化水素基を示し、m及びnは0~3の整数(但し、m+n=1~3)を示す。一般式(a’)の炭酸エステル環が一般式(a-1)に示される第1の結合に加えて、Aに結合される第2の結合を有し、前記第1の結合及び前記第2の結合を含む環構造が形成されていてもよい。〕
Figure JPOXMLDOC01-appb-C000008
〔一般式(a-3a)、(a-3b)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、R17は炭素数1~10のアルキル基を示し、R18は炭素数2~4のアルキル基を示す。aは1~6の数を示す。〕
[5] 前記繰り返し単位(a-1)と、前記繰り返し単位(a-3a)とを有する、前記[4]に記載の重合体。
 本発明の感放射線性樹脂組成物は、焦点深度が広く、LWR及びMEEFが小さく、パターン倒れ特性に優れ、かつ、現像欠陥性能にも優れる。従って、ArFエキシマレーザーを光源とするリソグラフィー材料として好適に用いることができる。また、液浸露光・KrFエキシマレーザーを光源とするリソグラフィー材料としても対応可能である。
本発明の感放射線性樹脂組成物の構成成分である重合体(A-5)の13C-NMRによる分析チャートである。 本発明の感放射線性樹脂組成物の構成成分である重合体(A-7)の13C-NMRによる分析チャートである。
 以下、本発明の感放射線性樹脂組成物を実施するための形態について具体的に説明する。但し、本発明は、その発明特定事項を備える全ての実施形態を包含するものであり、以下に示す実施形態に限定されるものではない。なお、以下の説明においては、同種の置換基には、同一の符号を付した上で、説明を省略する。
 また、本明細書において、「・・・基」というときは、「置換されていてもよい・・・基」を意味するものとする。例えば、「アルキル基」と記載されている場合には、無置換のアルキル基のみならず、水素原子が他の官能基に置換されたアルキル基も含む。更に、「・・・基」というときは、「分岐を有していてもよい・・・基」を意味するものとする。例えば、「アルキルカルボニル基」と記載されている場合には、直鎖状のアルキルカルボニル基のみならず、分岐状のアルキルカルボニル基も含む。
 本発明の感放射線性樹脂組成物は、重合体(A)、酸発生剤(B)、酸拡散抑制剤(C)を必須成分とし、目的に応じて、溶剤(D)、添加剤(E)を含むものである。以下、成分ごとに説明する。
[1]重合体(A):
 本発明における重合体(A)は、前記一般式(a-1)で示される繰り返し単位(a-1)を有する重合体である。
[1-1]繰り返し単位(a-1):
 繰り返し単位(a-1)は、前記一般式(a-1)で示される、環状炭酸エステル構造を含む基(前記一般式(a’)で表される基(以下、「基(a’)」ともいう)を有する繰り返し単位であり、重合体(A)の必須繰り返し単位である。
 例えば、下記一般式(a-1a)~(a-1v)で示される繰り返し単位(a-1a)~(a-1v)を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 一般式(a-1)中、Rは、相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示す。これらの中ではメチル基が好ましい。また、Rは一般式(a’)で示される1価の基であり、R19は、相互に独立して、水素原子又は炭素数1~5の鎖状炭化水素基を示す。「炭素数1~5の鎖状炭化水素基」としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5の直鎖状アルキル基;イソプロピル基、イソブチル基、t-ブチル基等の炭素数3~5の分岐状アルキル基等を挙げることができる。
 一般式(a-1)中、m及びnは0~3の整数を示し、m+nは1~3の整数である。即ち、環状炭酸エステルは、m+n=1の場合は5員環構造、m+n=2の場合は6員環構造、m+n=3の場合は7員環構造となる。例えば、繰り返し単位a-1aは5員環構造、a-1jは6員環構造、a-1hは7員環構造の例である。
 一般式(a-1)中、Aは単結合、炭素数が1~30である2価の鎖状炭化水素基、炭素数が3~30である2価の脂環式炭化水素基又は炭素数が6~30である2価の芳香族炭化水素基を示す。
 Aが単結合の場合、重合体を構成する(メタ)アクリル酸の酸素原子と、基(a’)を構成する炭素原子とが直接結合されることになる。
 本明細書にいう「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された炭化水素基を意味するものとする。「炭素数が1~30である2価の鎖状炭化水素基」としては、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基、ヘキサデカメチレン基、ヘプタデカメチレン基、オクタデカメチレン基、ノナデカメチレン基、イコサレン基等の直鎖状アルキレン基;1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基、2-メチル-1,2-プロピレン基、1-メチル-1,4-ブチレン基、2-メチル-1,4-ブチレン基、メチリデン基、エチリデン基、プロピリデン基、2-プロピリデン基等の分岐状アルキレン基;等を挙げることができる。
 本明細書にいう「脂環式炭化水素基」とは、環構造としては、脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。但し、脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。
 「2価の脂環式炭化水素基」としては、例えば、1,3-シクロブチレン基、1,3-シクロペンチレン基等、1,4-シクロヘキシレン基、1,5-シクロオクチレン基等の炭素数3~10の単環型シクロアルキレン基;1,4-ノルボルニレン基、2,5-ノルボルニレン基、1,5-アダマンチレン基、2,6-アダマンチレン基等の多環型シクロアルキレン基;等を挙げることができる。
 本明細書にいう「芳香族炭化水素基」とは、環構造として、芳香環構造を含む炭化水素基を意味する。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。
 「2価の芳香族炭化水素基」としては、例えば、フェニレン基、トリレン基、ナフチレン基、フェナントリレン基、アントリレン基等のアリーレン基等を挙げることができる。
 Aが鎖状炭化水素基である場合の構造としては、重合体を構成する(メタ)アクリル酸の酸素原子と構造(a’)を構成する炭素原子とが、炭素数1~5の直鎖状アルキル基を介して結合されている構造を挙げることができる(繰り返し単位a-1a~a-1f)。この構造においては、Aの置換基として環状構造を含んでいてもよい(a-1p)。
 一般式(a’)の炭酸エステル環が一般式(a-1)に示される第1の結合に加えて、Aに結合される第2の結合を有し、前記第1の結合及び前記第2の結合を含む環構造が形成されていてもよい。
 より具体的には、本発明の感放射線性組成物は、前記重合体(A)として、前記炭酸エステル環の前記第1の結合を有する第1の炭素原子とは異なる第2の炭素原子が前記第2の結合を有し、前記第1の炭素原子及び前記第2の炭素原子を構成原子とする縮合環が形成された繰り返し単位、及び前記炭酸エステル環の前記第1の結合を有する第1の炭素原子が前記第2の結合をも有し、前記第1の炭素原子をスピロ原子とするスピロ環が形成された繰り返し単位のうちの少なくとも一種の繰り返し単位、を有する重合体を含有することが好ましい。
 換言すれば、炭酸エステル環とAとが一体となって縮合環やスピロ環を構成していてもよい。繰り返し単位a-1g,a-1k,a-1l,a-1q,a-1t,a-1u,a-1i,a-1r,a-1s,a-1vは、前記縮合環が形成された繰り返し単位の例である。一方、a-1j,a-1nは、前記スピロ環が形成された繰り返し単位のうちの少なくとも一種の繰り返し単位の例である。なお、前記縮合環や前記スピロ環はヘテロ環であってもよい(a-1q~a-1v)。
 Aが脂環式炭化水素基である場合の構造としては、重合体を構成する(メタ)アクリル酸の酸素原子と環状炭酸エステルを構成する炭素原子とが、ノルボルニレン基を介して結合されているもの(a-1k,a-1l)等を挙げることができる。なお、繰り返し単位a-1k,a-1lは、Aに含まれる炭素原子と環状炭酸エステルを構成する2つの炭素原子とを含む縮合環が形成されている例である。
 Aが芳香族炭化水素基である例としては、重合体を構成する(メタ)アクリル酸の酸素原子と環状炭酸エステルを構成する炭素原子とが、ベンジレン基を介して結合されているもの(繰り返し単位a-1o)等を挙げることができる。繰り返し単位a-1oは、前記炭酸エステル環の前記第1の結合を有する第1の炭素原子とは異なる第2の炭素原子が前記第2の結合を有し、前記第1の炭素原子及び前記第2の炭素原子を構成原子とする縮合環が形成されている例である。
 前記単量体は、例えば、Tetrahedron Letters,Vol.27,No.32 p.3741(1986)、Organic Letters,Vol.4,No.15 p.2561(2002)等に記載された、従来公知の方法により、合成することができる。
 重合体(A)には、例示された繰り返し単位(a-1)のうちの1種が単独で含まれていてもよいし、2種以上が含まれていてもよい。重合体(A)において、繰り返し単位(a-1)の含有率は、重合体(A)を構成する全繰り返し単位に対して、5~80モル%であることが好ましく、10~70モル%であることが更に好ましく、10~50モル%であることが特に好ましい。このような含有率とすることによって、レジストとしての現像性、低欠陥性、低LWR、低PEB温度依存性等を向上させることができる。一方、a-1の含有率が5モル%未満であると、レジストとしての現像性、低欠陥性が低下するおそれがある。また、80モル%を超えると、レジストとしての解像性、低LWR、低PEB温度依存性が低下するおそれがある。
 なお、「低欠陥性」とは、フォトリソグラフィー工程において欠陥が生じ難いことを意味する。フォトリソグラフィー工程における「欠陥」としては、ウォーターマーク欠陥、ブロッブ欠陥、バブル欠陥等を挙げることができる。デバイス製造において、これらの欠陥が大量に発生した場合には、デバイスの歩留まりに大きな影響を与えることとなり好ましくない。
 更に、「ウォーターマーク欠陥」とは、レジストパターン上に液浸液の液滴痕が残る欠陥であり、「ブロッブ欠陥」とは、現像液に一度溶けた重合体がリンスのショックで析出し、基板に再付着した欠陥であり、「バブル欠陥」とは、液浸露光時、液浸液が泡(バブル)を含むことで光路が変化し、所望のパターンが得られない欠陥である。
[1-2]繰り返し単位(a-2):
 重合体(A)として、前記繰り返し単位(a-1)に加えて、ラクトン構造を含む繰り返し単位(a-2)を有する重合体を含有することが好ましい。
 繰り返し単位(a-2)としては、例えば、下記一般式(a-2a)~(a-2p)で示される繰り返し単位(a-2a)~(a-2p)を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
〔一般式(a-2a)~(a-2p)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示す。〕
 繰り返し単位(a-2)としては、脂環式炭化水素基に縮合されたラクトン環を含む繰り返し単位であることが好ましい。繰り返し単位a-2fはシクロヘキサン環に縮合されたラクトン環を含む繰り返し単位の例である。
 繰り返し単位(a-2)としては、多環型の脂環式炭化水素基に縮合されたラクトン環を含む繰り返し単位であることが特に好ましい。繰り返し単位a-2a,a-2c,a-2g~a-2oは、ノルボルネン環に縮合されたラクトン環を含む繰り返し単位の例であり、a-2dは、ビシクロ[2.2.2]オクタン環に縮合されたラクトン環を含む繰り返し単位の例である。
 繰り返し単位(a-2)を与える単量体としては、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]デカ-2-イルエステル、(メタ)アクリル酸-10-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]ノナ-2-イルエステル、(メタ)アクリル酸-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-7-オキソ-8-オキサ-ビシクロ[3.3.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-7-オキソ-8-オキサ-ビシクロ[3.3.1]オクタ-2-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-メチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-エチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-プロピル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2,2-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5,5-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-3,3-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル等を挙げることができる。
 重合体(A)には、例示された繰り返し単位(a-2)のうちの1種が単独で含まれていてもよいし、2種以上が含まれていてもよい。重合体(A)において、繰り返し単位(a-2)の含有率は、重合体(A)を構成する全繰り返し単位に対して、0~90モル%であることが好ましく、0~80モル%であることが更に好ましく、0~70モル%であることが特に好ましい。繰り返し単位(a-2)の含有率が90モル%を超えると、レジストとしての解像性、LWR、PEB温度依存性が低下するおそれがある。
[1-3]繰り返し単位(a-3):
 重合体(A)は、繰り返し単位(a-1)に加えて、下記一般式(a-3)で示される繰り返し単位(a-3)を有する重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
〔一般式(a-3)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、Rは炭素数1~20のアルキル基又は炭素数3~20の脂環式炭化水素基を示すか、又は2つのRが結合して炭素数3~20の脂環式構造を形成しかつ残りのRが炭素数1~10のアルキル基を示す。〕
 一般式(a-3)中、Rで示される「炭素数1~20のアルキル基」としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基、ラウリル基、ステアリル基等の直鎖状アルキル基;i-プロピル基、2-メチルプロピル基、1-メチルプロピル基、イソブチル基、t-ブチル基、イソアミル基、2-エチルヘキシル基等の分岐状アルキル基;等を挙げることができる。また、「炭素数3~20の脂環式炭化水素基」としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロドデシル基等のシクロアルキル基;ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.2]オクチル基、ビシクロ[4.4.0]デシル基、トリシクロ[5.2.1.02,6]デシル基、テトラシクロ[6.2.1.13,6.02,7]ドデシル基、トリシクロ[3.3.1.13,7]デシル基(アダマンチル基)等の多環型脂環式炭化水素基;等を挙げることができる。2つのRが結合して両者が結合している炭素原子と共に形成される「脂環式構造」の例としては、上述した脂環式炭化水素基を構成する脂環式構造、例えばシクロアルカン構造、多環型脂環構造等を挙げることができる。
 重合体(A)は、繰り返し単位(a-3)の中でも、前記一般式(a-3a)で示される繰り返し単位(a-3a)及び前記一般式(a-3b)で示される繰り返し単位のうちの少なくとも1種の繰り返し単位を有することが好ましい。
 繰り返し単位(a-3a)としては、下記一般式(a-3a1)~(a-3a9)で示される繰り返し単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000012
 繰り返し単位(a-3b)としては、下記一般式(a-3b1)又は(a-3b2)で示される繰り返し単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
 繰り返し単位(a-3b)を与える単量体としては、(メタ)アクリル酸2-エチルアダマンチル-2-イルエステル、(メタ)アクリル酸2-エチル-3-ヒドロキシアダマンチル-2-イルエステル、(メタ)アクリル酸2-n-プロピルアダマンチル-2-イルエステル、(メタ)アクリル酸2-イソプロピルアダマンチル-2-イルエステル等が好ましく、(メタ)アクリル酸2-エチルアダマンチル-2-イルエステルが更に好ましい。
 本発明の重合体は、前記一般式(a-1)で示される繰り返し単位(a-1)と、前記一般式(a-3a)で示される繰り返し単位(a-3a)及び前記一般式(a―3b)で示される繰り返し単位(a-3b)のうちの少なくとも1種の繰り返し単位と、を有する。中でも、前記繰り返し単位(a-1)と、前記繰り返し単位(a-3a)と、を有する重合体が好ましい。
 重合体(A)には、例示された繰り返し単位(a-3a)及び(a―3b)のうちの1種が単独で含まれていてもよいし、2種以上が含まれていてもよい。重合体(A)において、繰り返し単位(a-3a)及び(a-3b)の含有率は、重合体(A)を構成する全繰り返し単位に対して、5~80モル%であることが好ましく、10~80モル%であることが更に好ましく、20~70%であることが特に好ましい。繰り返し単位(a-3)の含有率が80モル%を超えると、レジスト膜の密着性が低下し、パターン倒れやパターン剥れを起こすおそれがある。
 その他の繰り返し単位(a-3)としては、例えば、下記一般式(a-3c)~(a-3i)で示される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 重合体(A)には、その他の繰り返し単位として、一以上の極性基を有するアルキル基又は脂環式炭化水素基を有するものが含有されていてもよい。このような重合体を含有する感放射線性樹脂組成物は、レジストの露光部のアルカリ現像液(アルカリ水溶液)に対する溶解性が促進される。
 前記極性基としては、例えば、ヒドロキシル基、カルボニル基、シアノ基、アルキルエステル基、及び芳香族エステル基等の、炭化水素基に比べて極性を示す基を挙げることができる。なお、アルカリ現像液による現像時の溶け残りを更に少なくするとともに、現像欠陥の発生率を更に低減させるといった観点からは、極性基は、ヒドロキシル基(好ましくは2級又は3級ヒドロキシル基)を有する基、又はカルボニル基を有する基であることが好ましい。
 該繰り返し単位としては、下記一般式で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 重合体(A)は、更にその他の繰り返し単位、例えばその他の(メタ)アクリル酸エステル由来の繰り返し単位を含有することができる。
[1-4]製造方法:
 次に、重合体(A)の製造方法について説明する。
 重合体(A)は、ラジカル重合等の常法に従って合成することができる。例えば、(1)単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;(2)単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;(3)各々の単量体を含有する、複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;等の方法で合成することが好ましい。
 なお、単量体溶液に対して、単量体溶液を滴下して反応させる場合、滴下される単量体溶液中の単量体量は、重合に用いられる単量体総量に対して30mol%以上であることが好ましく、50mol%以上であることが更に好ましく、70mol%以上であることが特に好ましい。
 これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常、30~180℃であり、40~160℃が好ましく、50~140℃が更に好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常、30分~8時間であり、45分~6時間が好ましく、1~5時間が更に好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常、30分~8時間であり、45分~7時間が好ましく、1~6時間が更に好ましい。
 前記重合に使用されるラジカル開始剤としては、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-2-プロペニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン〕ジヒドロクロリド、2,2’-アゾビス{2-メチル-N-[1,1―ビス(ヒドロキシメチル)2-ヒドロキシエチル]プロピオンアミド}、ジメチル-2,2’-アゾビス(2-メチルプロピオネ-ト)、4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス(2-(ヒドロキシメチル)プロピオニトリル)等を挙げることができる。これらの開始剤は単独で又は2種以上を混合して使用することができる。
 重合溶媒としては、重合を阻害する溶媒(重合禁止効果を有するニトロベンゼン、連鎖移動効果を有するメルカプト化合物等)以外の溶媒であって、その単量体を溶解可能な溶媒であれば使用することができる。例えば、アルコール類、エーテル類、ケトン類、アミド類、エステル・ラクトン類、ニトリル類及びその混合溶媒等を挙げることができる。
 「アルコール類」としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール等を挙げることができる。「エーテル類」としては、プロピルエーテル、イソプロピルエーテル、ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、1,3-ジオキサン等を挙げることができる。
 「ケトン類」としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン等を挙げることができる。「アミド類」としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等を挙げることができる。「エステル・ラクトン類」としては、酢酸エチル、酢酸メチル、酢酸イソブチル、γ-ブチロラクトン等を挙げることができる。「ニトリル類」としては、アセトニトリル、プロピオニトリル、ブチロニトリル等を挙げることができる。これらの溶媒は、単独で又は2種以上を混合して使用することができる。
 重合反応により得られた重合体は、再沈殿法により回収することが好ましい。即ち、重合反応終了後、重合液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、前記重合溶媒として例示した溶媒を単独で又は2種以上を混合して使用することができる。
 なお、重合体(A)には、単量体由来の低分子量成分が含まれるが、その含有率は、重合体(A)の総量(100質量%)に対して、0.1質量%以下であることが好ましく、0.07質量%以下であることが更に好ましく、0.05質量%以下であることが特に好ましい。
 この低分子量成分の含有率が0.1質量%以下である場合には、この重合体(A)を使用してレジスト膜を作製し、液浸露光を行う際に、レジスト膜に接触した水への溶出物の量を少なくすることができる。更に、レジスト保管時に、レジスト中に異物が析出することがなく、レジスト塗布時においても塗布ムラが発生することない。従って、レジストパターン形成時における欠陥の発生を十分に抑制することができる。
 なお、本明細書において、単量体由来の「低分子量成分」というときは、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」と記す場合がある。)が、Mw500以下の成分を意味するものとする。具体的には、モノマー、ダイマー、トリマー、オリゴマー等の成分である。この「低分子量成分」は、例えば、水洗、液々抽出等の化学的精製法、化学的精製法と限外ろ過、遠心分離等の物理的精製法とを組み合わせた方法等により除去することができる。
 また、この低分子量成分は、重合体(A)を高速液体クロマトグラフィー(HPLC)による分析で定量することができる。なお、重合体(A)は、低分子量成分の他、ハロゲン、金属等の不純物が少ないほど好ましく、それにより、レジストとしたときの感度、解像度、プロセス安定性、パターン形状等を更に改善することができる。
 一方、重合体(A)のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」と記す。)は、特に限定されないが、1,000~100,000であることが好ましく、1,000~30,000であることが更に好ましく、1,000~20,000であることが特に好ましい。重合体(A)のMwが1,000未満であると、レジストとしたときの耐熱性が低下する傾向がある。一方、重合体(A)のMwが100,000を超えると、レジストとしたときの現像性が低下する傾向がある。
 また、重合体(A)のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算数平均分子量(以下、「Mn」と記す。)に対するMwの比(Mw/Mn)は、通常、1.0~5.0であり、1.0~3.0であることが好ましく、1.0~2.0であることが更に好ましい。
 本発明の樹脂組成物においては、重合体(A)を単独で又は2種以上を混合して使用することができる。
[2]酸発生剤(B):
 酸発生剤(B)は、露光により酸を発生する、感放射線性の酸発生剤である。この酸発生剤は、露光により発生した酸によって、感放射線性樹脂組成物に含有される重合体(A)中に存在する酸解離性基を解離させて(保護基を脱離させて)、重合体(A)をアルカリ可溶性とする。そして、その結果、レジスト被膜の露光部がアルカリ現像液に易溶性となり、これによりポジ型のレジストパターンが形成される。
 本実施形態における酸発生剤(B)としては、下記一般式(B-1)で示される化合物を含むものが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(B-1)中、R12は水素原子、フッ素原子、水酸基、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数2~11のアルコキシカルボニル基を示し、R13は炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数1~10のアルカンスルホニル基を示し、R14は相互に独立して炭素数1~10のアルキル基、フェニル基、ナフチル基を示す。但し、2個のR14が相互に結合して炭素数2~10の2価の基を形成していてもよい。kは0~2の整数を示し、rは0~10の整数を示し、Xは下記一般式(b-1)~(b-4)で表されるアニオンを示す。)
 R152ySO  :(b-1)
 R15SO  :(b-2)
(一般式(b-1),(b-2)中、R15は、水素原子、フッ素原子、炭素数1~12の炭化水素基を示し、yは1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000017
(一般式(b-3),(b-4)中、R16は相互に独立して炭素数1~10のフッ素置換アルキル基を示す。但し、2個のR16が相互に結合して炭素数2~10の2価のフッ素置換アルキレン基を形成していてもよい。)
 一般式(B-1)中、R12、R13及びR14で示される「炭素数1~10のアルキル基」としては、既に述べた「炭素数1~4のアルキル基」の他、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖状アルキル基;ネオペンチル基、2-エチルヘキシル基等の分岐状アルキル基;等を挙げることができる。これらの中では、メチル基、エチル基、n-ブチル基、t-ブチル基等が好ましい。
 また、R12及びR13で示される「炭素数1~10のアルコキシル基」としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の直鎖状アルコキシル基;i-プロポキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基、ネオペンチルオキシ基、2-エチルヘキシルオキシ基等の分岐状アルコキシル基;等を挙げることができる。これらの中では、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等が好ましい。
 また、R12で示される「炭素数2~11のアルコキシカルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-オクチルオキシカルボニル基、n-ノニルオキシカルボニル基、n-デシルオキシカルボニル基等の直鎖状アルコキシカルボニル基;i-プロポキシカルボニル基、2-メチルプロポキシカルボニル基、1-メチルプロポキシカルボニル基、t-ブトキシカルボニル基、ネオペンチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基等の分岐状アルコキシカルボニル基;等を挙げることができる。これらの中では、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基等が好ましい。
 また、R13で示される「炭素数1~10のアルカンスルホニル基」としては、例えば、メタンスルホニル基、エタンスルホニル基、n-プロパンスルホニル基、n-ブタンスルホニル基、n-ペンタンスルホニル基、n-ヘキサンスルホニル基、n-ヘプタンスルホニル基、n-オクタンスルホニル基、n-ノナンスルホニル基、n-デカンスルホニル基等の直鎖状アルカンスルホニル基;tert-ブタンスルホニル基、ネオペンタンスルホニル基、2-エチルヘキサンスルホニル基等の分岐状アルカンスルホニル基;シクロペンタンスルホニル基、シクロヘキサンスルホニル基等のシクロアルカンスルホニル基;等を挙げることができる。これらの中では、メタンスルホニル基、エタンスルホニル基、n-プロパンスルホニル基、n-ブタンスルホニル基、シクロペンタンスルホニル基、シクロヘキサンスルホニル基等が好ましい。
 また、一般式(B-1)においては、rが0~2の整数であることが好ましい。
 一般式(B-1)中、R14で示される「フェニル基」としては、フェニル基の他;o-トリル基、m-トリル基、p-トリル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基、4-エチルフェニル基、4-t-ブチルフェニル基、4-シクロヘキシルフェニル基、4-フルオロフェニル基等の置換フェニル基;これらの基の水素原子を、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニル基及びアルコキシカルボニルオキシ基の群から選択される少なくとも一種の基で置換した基;等を挙げることができる。
 フェニル基又は置換フェニル基の水素原子を置換する基のうち、「アルコキシル基」としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等の直鎖状アルコキシル基;i-プロポキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基等の分岐状アルコキシル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等のシクロアルキルオキシ基等を挙げることができる。これらの基の炭素数は1~20であることが好ましい。
 「アルコキシアルキル基」としては、メトキシメチル基、エトキシメチル基、2-メトキシエチル基、2-エトキシエチル基等の直鎖状アルコキシアルキル基;1-メトキシエチル基、1-エトキシエチル基等の分岐状アルコキシアルキル基;その他、シクロアルカン構造を有するアルコキシアルキル基;等を挙げることができる。これらの基の炭素数は1~20であることが好ましい。
 「アルコキシカルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基等の直鎖状アルコキシカルボニル基;i-プロポキシカルボニル基、2-メチルプロポキシカルボニル基、1-メチルプロポキシカルボニル基、t-ブトキシカルボニル基等の分岐状アルコキシカルボニル基;シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等のシクロアルキルオキシカルボニル基;等を挙げることができる。これらの基の炭素数は2~21であることが好ましい。
 「アルコキシカルボニルオキシ基」としては、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n-プロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基等の直鎖状アルコキシカルボニルオキシ基;i-プロポキシカルボニルオキシ基、t-ブトキシカルボニルオキシ基等の分岐状アルコキシカルボニルオキシ基;シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル等のシクロアルキルオキシカルボニル基;等を挙げることができる。これらの基の炭素数は2~21であることが好ましい。
 R14で示される「フェニル基」としては、フェニル基、4-シクロヘキシルフェニル基、4-t-ブチルフェニル基、4-メトキシフェニル基、4-t-ブトキシフェニル基等が好ましい。
 また、R14で示される「ナフチル基」としては、例えば、1-ナフチル基の他;2-メチル-1-ナフチル基、3-メチル-1-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-ナフチル基、5-メチル-1-ナフチル基、6-メチル-1-ナフチル基、7-メチル-1-ナフチル基、8-メチル-1-ナフチル基、2,3-ジメチル-1-ナフチル基、2,4-ジメチル-1-ナフチル基、2,5-ジメチル-1-ナフチル基、2,6-ジメチル-1-ナフチル基、2,7-ジメチル-1-ナフチル基、2,8-ジメチル-1-ナフチル基、3,4-ジメチル-1-ナフチル基、3,5-ジメチル-1-ナフチル基、3,6-ジメチル-1-ナフチル基、3,7-ジメチル-1-ナフチル基、3,8-ジメチル-1-ナフチル基、4,5-ジメチル-1-ナフチル基、5,8-ジメチル-1-ナフチル基、4-エチル-1-ナフチル基2-ナフチル基、1-メチル-2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基等の置換ナフチル基;これらの基の水素原子を、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニル基及びアルコキシカルボニルオキシ基の群から選択される少なくとも一種の基で置換した基;等を挙げることができる。
 ナフチル基又は置換ナフチル基の水素原子を置換する、「アルコキシル基」、「アルコキシアルキル基」、「アルコキシカルボニル基」、「アルコキシカルボニルオキシ基」としては、フェニル基の項で例示した基を挙げることができる。
 R14で示される「ナフチル基」としては、1-ナフチル基、1-(4-メトキシナフチル)基、1-(4-エトキシナフチル)基、1-(4-n-プロポキシナフチル)基、1-(4-n-ブトキシナフチル)基、2-(7-メトキシナフチル)基、2-(7-エトキシナフチル)基、2-(7-n-プロポキシナフチル)基、2-(7-n-ブトキシナフチル)基等が好ましい。
 また、2個のR14が相互に結合して形成される「炭素数2~10の2価の基」としては、2個のR14が相互に結合し、一般式(B-1)中の硫黄原子と共に5員又は6員の環を形成した構造、中でも、5員の環(テトラヒドロチオフェン環)を形成した構造が好ましい。
 この「2価の基」は、その水素原子が、ヒドロキシル基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、アルコキシアルキル基、アルコキシカルボニル基及びアルコキシカルボニルオキシ基の群から選択される少なくとも一種の基で置換されていてもよい。水素原子の一部が置換されていてもよい。「アルコキシル基」、「アルコキシアルキル基」、「アルコキシカルボニル基」、「アルコキシカルボニルオキシ基」としては、フェニル基の項で例示した基を挙げることができる。
 R14としては、メチル基、エチル基、フェニル基、4-メトキシフェニル基、1-ナフチル基、2個のR14が相互に結合し、一般式(B-1)中の硫黄原子と共にテトラヒドロチオフェン環を形成した構造が好ましい。
 一般式(B-1)のカチオンとしては、トリフェニルスルホニウムカチオン、トリ-1-ナフチルスルホニウムカチオン、トリ-tert-ブチルフェニルスルホニウムカチオン、4-フルオロフェニル-ジフェニルスルホニウムカチオン、ジ-4-フルオロフェニル-フェニルスルホニウムカチオン、トリ-4-フルオロフェニルスルホニウムカチオン、4-シクロヘキシルフェニル-ジフェニルスルホニウムカチオン、4-メタンスルホニルフェニル-ジフェニルスルホニウムカチオン、4-シクロヘキサンスルホニル-ジフェニルスルホニウムカチオン、1-ナフチルジメチルスルホニウムカチオン、1-ナフチルジエチルスルホニウムカチオン、1-(4-ヒドロキシナフチル)ジメチルスルホニウムカチオン、1-(4-メチルナフチル)ジメチルスルホニウムカチオン、1-(4-メチルナフチル)ジエチルスルホニウムカチオン、1-(4-シアノナフチル)ジメチルスルホニウムカチオン、1-(4-シアノナフチル)ジエチルスルホニウムカチオン、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムカチオン、1-(4-メトキシナフチル)テトラヒドロチオフェニウムカチオン、1-(4-エトキシナフチル)テトラヒドロチオフェニウムカチオン、1-(4-n-プロポキシナフチル)テトラヒドロチオフェニウムカチオン、1-(4-n-ブトキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-メトキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-エトキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-n-プロポキシナフチル)テトラヒドロチオフェニウムカチオン、2-(7-n-ブトキシナフチル)テトラヒドロチオフェニウムカチオン等が好ましい。
 一般式(b-1)中、「-C2y-」は、炭素数yのパーフルオロアルキレン基であり、直鎖状であっても分岐状であってもよい。そして、yは1、2、4又は8であることが好ましい。
 一般式(b-1),(b-2)中、R15で示される「炭素数1~12の炭化水素基」としては、炭素数1~12のアルキル基、シクロアルキル基、有橋脂環式炭化水素基が好ましい。具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、ノルボルニル基、ノルボニルメチル基、ヒドロキシノルボルニル基、アダマンチル基等を挙げることができる。
 一般式(b-3),(b-4)中、R16で示される「炭素数1~10のフッ素置換アルキル基」としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ドデカフルオロペンチル基、パーフルオロオクチル基等を挙げることができる。
 2個のR16が相互に結合して形成される「炭素数2~10の2価のフッ素置換アルキレン基」としては、テトラフルオロエチレン基、ヘキサフルオロプロピレン基、オクタフルオロブチレン基、デカフルオロペンチレン基、ウンデカフルオロヘキシレン基等を挙げることができる。
 一般式(B-1)のアニオン部位としては、トリフルオロメタンスルホネートアニオン、パーフルオロ-n-ブタンスルホネートアニオン、パーフルオロ-n-オクタンスルホネートアニオン、2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1,2,2-テトラフルオロエタンスルホネートアニオン、2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1-ジフルオロエタンスルホネートアニオン、1-アダマンチルスルホネートアニオンの他、下記式(b-3a)~(b-3g)で示されるアニオン等が好ましい。
Figure JPOXMLDOC01-appb-C000018
 酸発生剤(B)は、既に例示したカチオン及びアニオンの組合せで構成される。但し、その組合せは特に限定されるものでない。本発明の樹脂組成物においては、酸発生剤(B)は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 なお、本発明の樹脂組成物においては、酸発生剤(B)以外の酸発生剤を併用してもよい。そのような酸発生剤としては、例えば、オニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等を挙げることができる。具体的には、以下のものを挙げることができる。
 「オニウム塩化合物」としては、例えば、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等を挙げることができる。より具体的には、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプタ-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプタ-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、シクロヘキシル・2-オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル・2-オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2-オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート等を挙げることができる。
 「ハロゲン含有化合物」としては、例えば、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有複素環式化合物等を挙げることができる。より具体的には、フェニルビス(トリクロロメチル)-s-トリアジン、4-メトキシフェニルビス(トリクロロメチル)-s-トリアジン、1-ナフチルビス(トリクロロメチル)-s-トリアジン等の(トリクロロメチル)-s-トリアジン誘導体;1,1-ビス(4-クロロフェニル)-2,2,2-トリクロロエタン;等を挙げることができる。
 「ジアゾケトン化合物」としては、例えば、1,3-ジケト-2-ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができる。より具体的には、1,2-ナフトキノンジアジド-4-スルホニルクロリド、1,2-ナフトキノンジアジド-5-スルホニルクロリド、2,3,4,4’-テトラヒドロキシベンゾフェノンの1,2-ナフトキノンジアジド-4-スルホン酸エステル、1,2-ナフトキノンジアジド-5-スルホン酸エステル、1,1,1-トリス(4-ヒドロキシフェニル)エタンの1,2-ナフトキノンジアジド-4-スルホン酸エステル、1,2-ナフトキノンジアジド-5-スルホン酸エステル等を挙げることができる。
 「スルホン化合物」としては、例えば、β-ケトスルホン、β-スルホニルスルホンや、これらの化合物のα-ジアゾ化合物等を挙げることができる。より具体的には、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等を挙げることができる。
 「スルホン酸化合物」としては、例えば、アルキルスルホン酸エステル、アルキルスルホン酸イミド、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。
 より具体的には、ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネート、トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、ノナフルオロ-n-ブタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、パーフルオロ-n-オクタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、2-ビシクロ[2.2.1]ヘプタ-2-イル-1,1,2,2-テトラフルオロエタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、N-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)スクシンイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)スクシンイミド、N-(2-ビシクロ[2.2.1]ヘプタ-2-イル-1,1,2,2-テトラフルオロエタンスルホニルオキシ)スクシンイミド、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート、1,8-ナフタレンジカルボン酸イミドノナフルオロ-n-ブタンスルホネート、1,8-ナフタレンジカルボン酸イミドパーフルオロ-n-オクタンスルホネート等を挙げることができる。
 これらの酸発生剤は、1種を単独で又は2種以上を混合して使用することができる。
 本発明の樹脂組成物において、酸発生剤(B)と他の酸発生剤の総使用量は、レジストとしての感度及び現像性を確保する観点から、重合体(A)100質量部に対して、通常、0.1~30質量部であり、0.5~20質量部であることが好ましい。この場合、総使用量が0.1質量部未満では、感度及び現像性が低下する傾向がある。一方、30質量部を超えると、放射線に対する透明性が低下して、矩形のレジストパターンが得られ難くなる傾向がある。また、他の酸発生剤の使用割合は、酸発生剤(B)と他の酸発生剤との総量に対して、80質量%以下であることが好ましく、60質量%以下であることが更に好ましい。
[3]酸拡散抑制剤(C):
 本発明の感放射線性樹脂組成物は、これまでに説明した重合体(A)及び酸発生剤(B)に加えて、酸拡散抑制剤(C)を更に含有する。この酸拡散抑制剤(C)は、露光により酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制するものである。このような酸拡散抑制剤(C)を配合することにより、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度が更に向上するとともに、露光から露光後の加熱処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
 本発明の感放射線性樹脂組成物においては、酸拡散抑制剤(C)として、カルバミン酸エステル構造を有する塩基(C-1)及び光分解性塩基(C-2)のうちの少なくとも一種の塩基を用いる。
[3-1]塩基(C-1):
 塩基(C-1)は下記一般式(C-1)で示される塩基である。
Figure JPOXMLDOC01-appb-C000019
〔一般式(C-1)中、R,Rは相互に独立して、水素原子、炭素数が1~20である1価の鎖状炭化水素基、炭素数が3~20である1価の脂環式炭化水素基又は炭素数が6~20である1価の芳香族炭化水素基を示す。2つのRが結合されて、環構造が形成されていてもよい。〕
 前記一般式(C-1)中、Rで示される基としては、tert-ブチル基又はtert-アミル基が好ましい。
 前記一般式(C-1)において、2つのRが結合されて、環構造が形成されていてもよい。例えば、C-1中の窒素原子が環状アミンの一部をなすものも窒素化合物(C-1)に含まれる(例えば、N-t-ブトキシカルボニルピロリジン、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール等)。
 前記一般式(C-1)で表される窒素含有化合物としては、例えば、N-t-ブトキシカルボニルジ-n-オクチルアミン、N-t-ブトキシカルボニルジ-n-ノニルアミン、N-t-ブトキシカルボニルジ-n-デシルアミン、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、N-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニルピロリジン、N、N’-ジ-t-ブトキシカルボニルピペラジン、N,N-ジ-t-ブトキシカルボニル-1-アダマンチルアミン、N,N-ジ-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N,N’N’-テトラ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-ブトキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-ブトキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-ブトキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-ブトキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-ブトキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール等のN-tert-ブチル基含有アミノ化合物;
 N-t-アミロキシカルボニルジ-n-オクチルアミン、N-t-アミロキシカルボニルジ-n-ノニルアミン、N-t-アミロキシカルボニルジ-n-デシルアミン、N-t-アミロキシカルボニルジシクロヘキシルアミン、N-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-アミロキシカルボニル-2-アダマンチルアミン、N-t-アミロキシカルボニル-N-メチル-1-アダマンチルアミン、(S)-(-)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン、N-t-アミロキシカルボニルピロリジン、N、N‘-ジ-t-アミロキシカルボニルピペラジン、N,N-ジ-t-アミロキシカルボニル-1-アダマンチルアミン、N,N-ジ-t-アミロキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-アミロキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-アミロキシカルボニルヘキサメチレンジアミン、N,N,N’N’-テトラ-t-アミロキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-アミロキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-アミロキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-アミロキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-アミロキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-アミロキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-アミロキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-アミロキシカルボニルベンズイミダゾール、N-t-アミロキシカルボニル-2-メチルベンズイミダゾール、N-t-アミロキシカルボニル-2-フェニルベンズイミダゾール等のN-tert-アミル基含有アミノ化合物;等を挙げることができる。
 これらの化合物の中では、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニルピロリジン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-t-アミロキシカルボニルジシクロヘキシルアミン、N-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-アミロキシカルボニル-2-アダマンチルアミン、(S)-(-)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、N-t-アミロキシカルボニルピロリジン、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン、N-t-アミロキシカルボニル-2-フェニルベンズイミダゾールが好ましく、N-t-ブトキシカルボニルジシクロヘキシルアミン、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニルピロリジン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾールが更に好ましい。
[3-2]光分解性塩基(C-2):
 「光分解性塩基」とは、下記一般式(C-2)で示される塩であり、当初構造では塩基として作用するが、活性光線又は放射線を照射されると分解し、塩基性を消失する化合物である。このような化合物は露光部においては分解して酸拡散制御性を失うため酸を拡散させ、逆に未露光部では塩基(即ち酸拡散制御剤)として作用するため酸の拡散を制御する。従って、露光部と未露光部のコントラストを向上させることができ、感放射線性樹脂組成物のLWR特性、パターン形状、パターン倒れ耐性を向上させることができる。
 X   :(C-2)
 一般式(C-2)中、Xはスルホニウムカチオン又はヨードニウムカチオンを示す。中でも下記一般式(c-2-1a)で示されるスルホニウムカチオン(c-2-1a)又は下記一般式(c-2-1b)で示されるヨードニウムカチオン(c-2-1b)が好ましい。
Figure JPOXMLDOC01-appb-C000020
〔一般式(c-2-1a)、(c-2-1b)中、R20,R21は相互に独立して、水素原子、アルキル基、アルコキシ基、水酸基又はハロゲン原子を示す。〕
 スルホニウムカチオン(c-2-1a)は置換されていてもよいトリフェニルスルホニウムカチオンであり、ヨードニウムカチオン(c-2-1b)は置換されていてもよいジフェニルヨードニウムカチオンである。
 スルホニウムカチオン(c-2-1a)は、R20が水素原子、アルキル基、アルコキシ基又はハロゲン原子であるものが好ましく、ヨードニウムカチオン(c-2-1b)は、R21が水素原子、アルキル基、アルコキシ基、ハロゲン原子であるものが好ましい。R20,R21がこれらの基であると、重合体(A)の現像液に対する溶解性を低下させる効果に優れる点において好ましい。
 一般式(C-2)中、ZはOHの他、R21-COO、R21-SO 又はR21-N―SO-R’の一般式で示されるアニオンである。但し、前記一般式中、R21及びR’は、置換されていてもよいアルキル基又はアリール基を示す。
 置換されていてもよいアルキル基としては、非置換のアルキル基の他、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基等の炭素数1~4のヒドロキシアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基等の炭素数1~4のアルコキシル基;シアノ基;シアノメチル基、2-シアノエチル基、3-シアノプロピル基、4-シアノブチル基等の炭素数2~5のシアノアルキル基等の置換基を一種以上有するアルキル基を挙げることができる。これらの中でも、ヒドロキシメチル基、シアノ基、シアノメチル基を有するアルキル基が好ましい。
 置換されていてもよいアリール基としては、例えば、フェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルシクロヘキシル基等を挙げることができ、これらの化合物を、ヒドロキシル基、シアノ基等で置換した基等を挙げることができる。これらの中でも、フェニル基、ベンジル基、フェニルシクロヘキシル基が好ましい。
 Zとしては、下記式(C-2-2a)、(C-2-2b)又は(C-2-2c)で表されるアニオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 前記一般式(C-2-2c)中、R22は、水素原子、水素原子の一部若しくは全部がフッ素原子、ヒドロキシル基、-OR”基、-OCOR”基、若しくは-COOR”基で置換されていてもよい、炭素数1~10の直鎖状若しくは分岐状の1価の炭化水素基又は炭素数3~20の環状若しくは環状の部分構造を有する1価の炭化水素基を示し、R23は、単結合又は-O-(C=O)-基を示し、R24は、水素原子の一部若しくは全部がフッ素原子で置換されていてもよい、炭素数1~10の直鎖状若しくは分岐状の1価の炭化水素基又は炭素数3~20の環状若しくは環状の部分構造を有する1価の炭化水素基を示す。R”は炭素数1~10の直鎖状若しくは分岐状の1価の炭化水素基又は炭素数3~20の環状若しくは環状の部分構造を有する1価の炭化水素基を示す。
 一般式(C-2-2c)で表されるアニオンを有する化合物の具体例としては、下記式で示される化合物(i-1)~(i-25)を挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 化合物(C-2)は、具体的には、上記条件を満たすスルホニウム塩化合物又はヨードニウム塩化合物である。
 上記スルホニウム塩化合物としては、例えば、トリフェニルスルホニウムハイドロオキサイド、トリフェニルスルホニウムアセテート、トリフェニルスルホニウムサリチレート、ジフェニル-4-ヒドロキシフェニルスルホニウムハイドロオキサイド、ジフェニル-4-ヒドロキシフェニルスルホニウムアセテート、ジフェニル-4-ヒドロキシフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネート、4-t-ブトキシフェニル・ジフェニルスルホニウム10-カンファースルホネート等を挙げることができる。なお、これらのスルホニウム塩化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 また、上記ヨードニウム塩化合物としては、例えば、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムサリチレート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムハイドロオキサイド、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムアセテート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ジフェニルヨードニウム10-カンファースルホネート等を挙げることができる。なお、これらのヨードニウム塩化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 塩基(C-1)及び光分解性塩基(C-2)以外の酸拡散抑制剤(C)としては、例えば、3級アミン化合物、4級アンモニウムヒドロキシド化合物、含窒素複素環化合物等の窒素含有化合物を挙げることができる。
 「3級アミン化合物」としては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、2,6-ジメチルアニリン、2,6-ジイソプロピルアニリン等の芳香族アミン類;トリエタノールアミン、N,N-ジ(ヒドロキシエチル)アニリン等のアルカノールアミン類;N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼンテトラメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル等を挙げることができる。
 「4級アンモニウムヒドロキシド化合物」としては、例えば、テトラ-n-プロピルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド等を挙げることができる。
 「含窒素複素環化合物」としては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、2-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4-ヒドロキシキノリン、8-オキシキノリン、アクリジン等のピリジン類;ピペラジン、1-(2-ヒドロキシエチル)ピペラジン等のピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール、4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール等を挙げることができる。
 酸拡散抑制剤(C)は、1種を単独で又は2種以上を混合して使用することができる。
 本発明の樹脂組成物において、酸拡散抑制剤(C)の総使用量は、レジストとしての高い感度を確保する観点から、重合体(A)100質量部に対して、10質量部未満が好ましく、5質量部未満が更に好ましい。合計使用量が10質量部を超えると、レジストとしての感度が著しく低下する傾向にある。なお、酸拡散抑制剤(C)の使用量が0.001質量部未満では、プロセス条件によってはレジストとしてのパターン形状や寸法忠実度が低下するおそれがある。
[4]溶剤(D):
 溶剤(D)としては、少なくとも重合体(A)、酸発生剤(B)及び酸拡散抑制剤(C)、所望により添加剤(E)を溶解可能な溶剤であれば、特に限定されるものではない。
 溶剤(D)としては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-i-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノ-i-ブチルエーテルアセテート、プロピレングリコールモノ-sec-ブチルエーテルアセテート、プロピレングリコールモノ-t-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;
 シクロペンタノン、3-メチルシクロペンタノン、シクロヘキサノン、2-メチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、イソホロン等の環状のケトン類;2-ブタノン、2-ペンタノン、3-メチル-2-ブタノン、2-ヘキサノン、4-メチル-2-ペンタノン、3-メチル-2-ペンタノン、3,3-ジメチル-2-ブタノン、2-ヘプタノン、2-オクタノン等のケトン類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシプロピオン酸n-プロピル、2-ヒドロキシプロピオン酸i-プロピル、2-ヒドロキシプロピオン酸n-ブチル、2-ヒドロキシプロピオン酸i-ブチル、2-ヒドロキシプロピオン酸sec-ブチル、2-ヒドロキシプロピオン酸t-ブチル等の2-ヒドロキシプロピオン酸アルキル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等の3-アルコキシプロピオン酸アルキル類の他、
 n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、
 トルエン、キシレン、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ベンジルエチルエーテル、ジ-n-ヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、しゅう酸ジエチル、マレイン酸ジエチル、γ-ブチロラクトン、炭酸エチレン、炭酸プロピレン等を挙げることができる。
 これらの中でも、プロピレングリコールモノアルキルエーテルアセテート類、特に、プロピレングリコールモノメチルエーテルアセテートを用いることが好ましい。他には、ケトン類、2-ヒドロキシプロピオン酸アルキル類、3-アルコキシプロピオン酸アルキル類、γ-ブチロラクトン等が好ましい。これらの溶剤は、1種を単独で又は2種以上を混合して使用することができる。
[5]添加剤(E):
 本発明の感放射線性樹脂組成物には、必要に応じて、フッ素含有重合体、脂環式骨格含有重合体、界面活性剤、増感剤等の各種の添加剤(E)を配合することができる。各添加剤の配合量は、その目的に応じて適宜決定することができる。
 フッ素含有重合体は、特に液浸露光においてレジスト膜表面に撥水性を発現させる作用を示す。そして、レジスト膜から液浸液への成分の溶出を抑制したり、高速スキャンにより液浸露光を行ったとしても液滴を残すことなく、結果としてウォーターマーク欠陥等の液浸由来欠陥を抑制する効果がある成分である。
 フッ素含有重合体の構造は特に限定されるものでなく、(1)それ自身は現像液に不溶で、酸の作用によりアルカリ可溶性となるフッ素含有重合体、(2)それ自身が現像液に可溶であり、酸の作用によりアルカリ可溶性が増大するフッ素含有重合体、(3)それ自身は現像液に不溶で、アルカリの作用によりアルカリ可溶性となるフッ素含有重合体、(4)それ自身が現像液に可溶であり、アルカリの作用によりアルカリ可溶性が増大するフッ素含有重合体等を挙げることができる。
 「フッ素含有重合体」としては、繰り返し単位(a-3)及びフッ素含有繰り返し単位から選択される少なくとも一種の繰り返し単位を有する重合体を挙げることができ、更に、繰り返し単位(a-2)を更に有する重合体が好ましい。
 「フッ素含有繰り返し単位」としては、例えば、トリフルオロメチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロn-プロピル(メタ)アクリレート、パーフルオロi-プロピル(メタ)アクリレート、パーフルオロn-ブチル(メタ)アクリレート、パーフルオロi-ブチル(メタ)アクリレート、パーフルオロt-ブチル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート、2-(1,1,1,3,3,3-ヘキサフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ペンチル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ヘキシル(メタ)アクリレート、パーフルオロシクロヘキシルメチル(メタ)アクリレート、1-(2,2,3,3,3-ペンタフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,4-ヘプタフルオロ)ペンタ(メタ)アクリレート、1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ)デシル(メタ)アクリレート、1-(5-トリフルオロメチル-3,3,4,4,5,6,6,6-オクタフルオロ)ヘキシル(メタ)アクリレート等を挙げることができる。
 フッ素含有重合体としては、例えば、下記一般式(E-1a)~(E-1f)で示される重合体等が好ましい。これらのフッ素含有重合体は、1種を単独で又は2種以上を混合して使用することができる。
Figure JPOXMLDOC01-appb-C000023
 脂環式骨格含有重合体は、ドライエッチング耐性、パターン形状、基板との接着性等を更に改善する作用を示す成分である。
 脂環式骨格含有重合体としては、例えば、1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル、1-アダマンタンカルボン酸t-ブトキシカルボニルメチル、1-アダマンタンカルボン酸α-ブチロラクトンエステル、1,3-アダマンタンジカルボン酸ジ-t-ブチル、1-アダマンタン酢酸t-ブチル、1-アダマンタン酢酸t-ブトキシカルボニルメチル、1,3-アダマンタンジ酢酸ジ-t-ブチル、2,5-ジメチル-2,5-ジ(アダマンチルカルボニルオキシ)ヘキサン等のアダマンタン誘導体類;
 デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル、デオキシコール酸2-シクロヘキシルオキシエチル、デオキシコール酸3-オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類;リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル、リトコール酸2-シクロヘキシルオキシエチル、リトコール酸3-オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類;アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジn-ブチル、アジピン酸ジt-ブチル等のアルキルカルボン酸エステル類;
 3-〔2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等を挙げることができる。これらの脂環式骨格含有重合体は、1種を単独で又は2種以上を混合して使用することができる。
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する作用を示す成分である。界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名で、KP341(信越化学工業社製)、ポリフローNo.75、同No.95(共栄社化学社製)、エフトップEF301、同EF303、同EF352(トーケムプロダクツ社製)、メガファックスF171、同F173(大日本インキ化学工業社製)、フロラードFC430、同FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(旭硝子社製)等を挙げることができる。これらの界面活性剤は、1種を単独で又は2種以上を混合して使用することができる。
 増感剤は、放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(B)に伝達し、それにより酸の生成量を増加する作用を示すものであり、感放射線性樹脂組成物の「みかけの感度」を向上させる効果を有する。
 増感剤としては、カルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等を挙げることができる。これらの増感剤は、1種を単独で又は2種以上を混合して使用することができる。
 添加剤(E)としては、染料、顔料、接着助剤等を用いることもできる。例えば、染料或いは顔料を用いることによって、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できる。また、接着助剤を配合することによって、基板との接着性を改善することができる。他の添加剤としては、アルカリ可溶性重合体、酸解離性の保護基を有する低分子のアルカリ溶解性制御剤、ハレーション防止剤、保存安定化剤、消泡剤等を挙げることができる。
 なお、添加剤(E)は、以上説明した各種添加剤1種を単独で用いてもよいし、2種以上を併用してもよい。
[6]フォトレジストパターンの形成方法:
 本発明の感放射線性樹脂組成物は、化学増幅型レジストとして有用である。化学増幅型レジストにおいては、露光により酸発生剤から発生した酸の作用によって、重合体成分、主に、重合体(A)中の酸解離性基が解離して、カルボキシル基を生じる。その結果、レジストの露光部のアルカリ現像液に対する溶解性が高くなり、この露光部がアルカリ現像液によって溶解、除去され、ポジ型のフォトレジストパターンが得られる。
 本発明のフォトレジストパターン形成方法は、(1)前記感放射線性樹脂組成物を用いて、基板上にフォトレジスト膜を形成する工程(以下、「工程(1)」と記す場合がある。)と、(2)形成されたフォトレジスト膜に(必要に応じて液浸媒体を介し)、所定のパターンを有するマスクを通して放射線を照射し、露光する工程(以下、「工程(2)」と記す場合がある。)と、(3)露光されたフォトレジスト膜を現像し、フォトレジストパターンを形成する工程(以下、「工程(3)」と記す場合がある。)と、を備えたものである。
 また、液浸露光を行う場合は、工程(2)の前に、液浸液とレジスト膜との直接の接触を保護するために、液浸液不溶性の液浸用保護膜をレジスト膜上に設けてもよい。液浸用保護膜としては、工程(3)の前に溶剤により剥離する、溶剤剥離型保護膜(例えば、特開2006-227632号公報参照)、工程(3)の現像と同時に剥離する、現像液剥離型保護膜(例えば、WO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。但し、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 工程(1)では、本発明の樹脂組成物を溶剤に溶解させて得られた樹脂組成物溶液を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、基板(シリコンウエハー、二酸化シリコンで被覆されたウエハー等)上に塗布することにより、フォトレジスト膜を形成する。具体的には、得られるレジスト膜が所定の膜厚となるように樹脂組成物溶液を塗布した後、プレベーク(PB)することにより塗膜中の溶剤を揮発させ、レジスト膜を形成する。
 レジスト膜の厚みは特に限定されないが、0.1~5μmであることが好ましく、0.1~2μmであることが更に好ましい。
 また、プレベークの加熱条件は、感放射線性樹脂組成物の配合組成によって異なるが、30~200℃であることが好ましく、50~150℃であることが更に好ましい。
 なお、本発明の感放射線性樹脂組成物を用いたフォトレジストパターン形成においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、使用される基板上に有機系又は無機系の反射防止膜を形成してもよい(特公平6-12452号公報参照)。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、フォトレジスト膜上に保護膜を設けてもよい(特開平5-188598号公報参照)。更に、前記液浸用保護膜をフォトレジスト膜上に設けてもよい。なお、これらの技術は併用することができる。
 工程(2)では、工程(1)で形成されたフォトレジスト膜に(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光させる。なお、この際には、所定のパターンを有するマスクを通して放射線を照射する。
 放射線としては、酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等から適宜選択して照射する。ArFエキシマレーザー(波長193nm)、KrFエキシマレーザー(波長248nm)に代表される遠紫外線が好ましく、中でも、ArFエキシマレーザーが好ましい。
 また、露光量等の露光条件は、感放射線性樹脂組成物の配合組成や添加剤の種類等に応じて適宜設定する。本発明においては、露光後加熱処理(PEB)を行うことが好ましい。PEBにより、重合体成分中の酸解離性基の解離反応が円滑に進行する。このPEBの加熱条件は、感放射線性樹脂組成物の配合組成によって異なるが、30~200℃であることが好ましく、50~170℃であることが更に好ましい。
 工程(3)では、露光されたフォトレジスト膜を、現像液で現像することにより、所定のフォトレジストパターンを形成する。現像後は、水で洗浄し、乾燥することが一般的である。
 現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液が好ましい。アルカリ水溶液の濃度は、通常、10質量%以下である。10質量%を超えると、非露光部も現像液に溶解するおそれがあり好ましくない。
 また、現像液は、アルカリ水溶液に有機溶媒を加えたものであってもよい。有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロペンタノン、シクロヘキサノン、3-メチルシクロペンタノン、2,6-ジメチルシクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロペンタノール、シクロヘキサノール、1,4-ヘキサンジオール、1,4-ヘキサンジメチロール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸n-ブチル、酢酸i-アミル等のエステル類;トルエン、キシレン等の芳香族炭化水素類や、フェノール、アセトニルアセトン、ジメチルホルムアミド等を挙げることができる。これらの有機溶媒は、1種を単独で又は2種以上を混合して使用することができる。
 この有機溶媒の使用量は、アルカリ水溶液100体積部に対して、100体積部以下とすることが好ましい。有機溶媒の量が100体積部を超えると、現像性が低下して、露光部の現像残りが多くなるおそれがある。なお、現像液には、界面活性剤等を適量添加してもよい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。
[Mw、Mn、及びMw/Mn]:
 Mw及びMnは、GPCカラム(商品名「G2000HXL」2本、商品名「G3000HXL」1本、商品名「G4000HXL」1本、いずれも東ソー社製)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度「Mw/Mn」は、Mw及びMnの測定結果より算出した。
13C-NMR分析]:
 それぞれの重合体の13C-NMR分析は、核磁気共鳴装置(商品名:JNM-ECX400、日本電子社製)を使用し、測定した。
[低分子量成分の残存割合]:
 ODSカラム(商品名:Inertsil ODS-25μmカラム(4.6mmφ×250mm)、ジーエルサイエンス社製)を使用し、流量:1.0mL/分、溶出溶媒:アクリロニトリル/0.1%リン酸水溶液の分析条件で、高速液体クロマトグラフィー(HPLC)により測定した。なお、低分子量成分は、モノマーを主成分とする、分子量1,000未満(即ち、トリマーの分子量以下)の成分である。
(重合体(A)の合成)
 重合体(A-1)~(A-31)は、各合成例において、下記の単量体(M-1)~(M-17)を用いて合成した。単量体(M-12)~(M-15)は繰り返し単位(a-1)に相当する単量体、単量体(M-1),(M-8)は繰り返し単位(a-2)に相当する単量体、単量体(M-2),(M-3),(M-11)は繰り返し単位(a-3a)に相当する単量体、単量体(M-7),(M-10)は繰り返し単位(a-3b)に相当する単量体、単量体(M-5),(M-16),(M-17)は一以上の極性基を有する繰り返し単位に相当する単量体である。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(合成例1:重合体(A-1))
 単量体(M-6)26.50g(50モル%)、単量体(M-12)8.42g(20モル%)、単量体(M-8)15.08g(30モル%)を2-ブタノン100gに溶解し、更に開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)1.91g(5モル%)を投入した単量体溶液を準備した。
 次に、温度計及び滴下漏斗を備えた500mlの三つ口フラスコに50gの2-ブタノンを投入し、30分窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら80℃になるように加熱した。滴下漏斗を用い、予め準備しておいた単量体溶液を3時間かけて滴下した。滴下開始時を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷により30℃以下に冷却した。冷却後、1000gのメタノールに投入し、析出した白色粉末をろ別した。ろ別された白色粉末を、200gのメタノールにてスラリー状態とし、2度洗浄した。その後再度、白色粉末をろ別し、50℃にて17時間乾燥し、白色粉末の共重合体を得た(37g、収率74%)。この共重合体を重合体(A-1)とした。
 この共重合体は、Mwが7321であり、Mw/Mnが1.70であり、13C-NMR分析の結果、単量体(M-6),単量体(M-12)及び単量体(M-8)に由来する各繰り返し単位の含有率は、45.2:19.5:35.3(モル%)であった。この共重合体における低分子量成分の残存割合は、0.05質量%であった。この測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
(合成例2~31:重合体(A-2)~(A-31))
 表1,3,5に示す配合処方とした以外は、合成例1と同様にして重合体(A-2)~(A-31)を合成した。
 また、得られた重合体(A-2)~(A-31)についての、13C-NMR分析による各繰り返し単位の割合(モル%)、収率(%)、Mw、及び分散度(Mw/Mn)の測定結果を表2,4,6に示す。また、重合体A-5及びA-7の13C-NMR測定チャートを図1及び図2に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
(酸拡散抑制剤(C)の合成)
 酸拡散抑制剤(C-9)~(C-11)となる化合物を合成した。これらの化合物は光分解性塩基(C-2)に相当する化合物である。
(合成例32:光分解性塩基(C-9))
 イオン交換樹脂(商品名:QAE Sephadex A-25、GEヘルスケアバイオサイエンス社製)20gを超純水にて一昼夜膨潤させた後、カラム管に充填した。イオン交換樹脂を充填したカラム管に、式(X-1)で表されるナトリウム塩28gをメタノールに溶解した溶液を流し込み、スルホンアミドアニオンをイオン交換樹脂に担持した。十分量のメタノールにてフラッシュバックした後、トリフェニルスルホニウムクロライド5.2gをメタノールに溶解した溶液をカラム管に流し込み、アニオン交換反応を行った。得られた溶液をエバポレーターにて溶剤留去した後、室温で一昼夜乾燥して、下記式(C-9)で表される光分解性塩基(C-9)を得た(収量8.0g)。
Figure JPOXMLDOC01-appb-C000032
(合成例33:光分解性塩基(C-10))
 ジフェニルヨードニウムクロライド5.6gをメタノールに溶解した溶液をカラム管に流し込み、アニオン交換反応を行ったことを除いては、合成例32と同様にして下記式(C-10)で表される光分解性塩基(C-10)を得た(収量8.2g)。
Figure JPOXMLDOC01-appb-C000033
(合成例34:光分解性塩基(C-11))
 前記イオン交換樹脂20gを超純水にて一昼夜膨潤させた後、カラム管に充填した。予め(X-2)誘導体(セントラルガラス社製)を金属塩基(炭酸水素ナトリウム)にて脱プロトン化した下記式(X-2)で表されるナトリウム塩を用意し、前記ナトリウム塩28gをメタノールに溶解した溶液を前記カラム管に流し込み、スルホンアミドアニオンをイオン交換樹脂に担持した。十分量のメタノールにてフラッシュバックした後、トリフェニルスルホニウムクロライド5.2gをメタノールに溶解した溶液をカラム管に流し込み、アニオン交換を行った。得られた溶液をエバポレーターにて溶剤留去した後、室温で一昼夜乾燥して、下記式(C-11)で表される光分解性塩基(C-11)を得た(収量8.1g)。
Figure JPOXMLDOC01-appb-C000034
(感放射線性樹脂組成物の調製)
 表7及び表8に、各実施例及び比較例にて調製された感放射線性樹脂組成物の組成を示す。また、上記合成例にて合成した重合体(A-1)~(A-31)及び酸拡散抑制剤(C-9)~(C-11)以外の感放射線性樹脂組成物を構成する各成分(酸発生剤(B)、酸拡散抑制剤(C)及び溶剤(D))について以下に示す。
<酸発生剤(B)>
(B-1):4-シクロヘキシルフェニル・ジフェニルスルホニウム・ノナフルオロ-n-ブタンスルホネート、
(B-2):トリフェニルスルホニウム・ノナフルオロ-n-ブタンスルホネート、
(B-3):1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム・ノナフルオロ-n-ブタンスルホネート、
(B-4):1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム・2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1,2,2-テトラフルオロエタンスルホネート、
(B-5):トリフェニルスルホニウム・2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1,2,2-テトラフルオロエタンスルホネート、
(B-6):トリフェニルスルホニウム・2-(ビシクロ[2.2.1]ヘプタ-2-イル)-1,1-ジフルオロエタンスルホネート。
<酸拡散抑制剤(C)>
(C-1):N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、
(C-2):R-(+)-(t-ブトキシカルボニル)-2-ピペリジンメタノール、
(C-3):N-t-ブトキシカルボニルピロリジン、
(C-4):N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、
(C-5):トリ-n-オクチルアミン、
(C-6):フェニルジエタノールアミン、
(C-7):トリフェニルスルホニウムサリチレート、
(C-8):トリフェニルスルホニウムカンファースルホネート。
<溶剤(D)>
(D-1):プロピレングリコールモノメチルエーテルアセテート、
(D-2):シクロヘキサノン、
(D-3):γ-ブチロラクトン。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
(実施例1)
 合成例1で得られた重合体(A-1)100質量部、酸発生剤(B)として、(B-2)トリフェニルスルホニウム・ノナフルオロ-n-ブタンスルホネート8.4質量部、酸拡散抑制剤(C)として、(C-2)R-(+)-(t-ブトキシカルボニル)-2-ピペリジンメタノール0.9質量部を混合し、この混合物に、溶剤(D)として、(D-1)プロピレングリコールモノメチルエーテルアセテート1500質量部、(D-2)シクロヘキサノン650質量部及び(D-3)γ-ブチロラクトン40質量部を添加し、上記混合物を溶解させて混合溶液を得、得られた混合溶液を孔径0.20μmのフィルターでろ過して感放射線性樹脂組成物を調製した。表3に感放射線性樹脂組成物の配合処方を示す。
(実施例2~25、比較例1~11)
 感放射線性樹脂組成物を調製する各成分の組成を表7及び表8に示すように変更したことを除いては、実施例1と同様にして、感放射線性樹脂組成物(実施例2~25、比較例1~11)を得た。
[評価方法]
 得られた実施例1~25、比較例1~11の感放射線性樹脂組成物について、ArFエキシマレーザーを光源として、感度、密集ライン焦点深度、孤立スペース焦点深度、LWR、MEEF、最小倒壊前寸法、露光余裕、パターンの断面形状及び現像欠陥数について評価を行った。評価結果を表9及び表10に示す。
(1)感度(単位:mJ/cm):
 8インチのウエハー表面に、下層反射防止膜形成剤(商品名:ARC29A、日産化学社製)を用いて、膜厚77nmの下層反射防止膜を形成した。この基板の表面に、実施例及び比較例の感放射線性樹脂組成物をスピンコートにより塗布し、ホットプレート上にて、表4に示す温度で90秒間SB(SoftBake)を行い、膜厚120nmのレジスト被膜を形成した。
 このレジスト被膜を、フルフィールド縮小投影露光装置(商品名:S306C、ニコン社製、開口数0.78)を用い、マスクパターンを介して露光した。その後、表4に示す温度で90秒間PEBを行った後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(以下、「TMAH水溶液」と記す。)により、25℃で60秒現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。
 このとき、寸法90nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、線幅90nmの1対1ラインアンドスペースに形成される露光量(mJ/cm)を最適露光量とし、この最適露光量(mJ/cm)を「感度」とした。なお、測長には走査型電子顕微鏡(商品名:S9220、日立ハイテクノロジーズ社製)を用いた。
(2)密集ライン焦点深度(単位:μm)
 最適露光量にて90nm1L/1Sマスクパターンで解像されるパターン寸法が、マスクの設計寸法の±10%以内となる場合のフォーカスの振れ幅を密集ライン焦点深度とした。具体的には、密集ライン焦点深度が0.40μm以上の場合「良好」、0.40μm未満の場合「不良」と評価した。なお、パターン寸法の観測には前記走査型電子顕微鏡を用いた。
(3)孤立スペース焦点深度(単位:μm)
 最適露光量にて115nmS/1150nmPのマスクパターンで解像される90nmS/1150nmPパターン寸法が、81~99nmS/1150nmPの範囲内となる場合のフォーカスの振れ幅を孤立ライン焦点深度とした。具体的には、孤立スペース焦点深度が0.20μm以上の場合「良好」、0.20μm未満の場合「不良」と評価した。なお、パターン寸法の観測には前記走査型電子顕微鏡を用いた。
(4)LWR(単位:nm)
 前記走査型電子顕微鏡を用いて、最適露光量にて解像した90nm1L/1Sのパターンをパターン上部から観察する際に、線幅を任意のポイントで10点測定し、その測定値の3シグマ値(ばらつき)をLWRとした。具体的には、LWRが8.0nm以下の場合「良好」、8.0nmを超える場合「不良」と評価した。
(5)MEEF:
 前記走査型電子顕微鏡を用い、最適露光量において、5種類のマスクサイズ(85.0nmL/180nmP、87.5nmL/180nmP、90.0nmL/180nmP、92.5nmL/180nmP、95.0nmL/180nmP)で解像されるパターン寸法を測定した。その測定結果を、横軸をマスクサイズ、縦軸を線幅としてプロットし、最小二乗法によりグラフの傾きを求めた。この傾きをMEEFとした。具体的には、MEEFが4.0以上の場合「良好」、4.0未満の場合「不良」と評価した。
(6)最小倒壊前寸法(nm):
 上記感度の評価の最適露光量にて解像した90nmのライン・アンド・スペースパターンの観測において、この最適露光量よりも大きな露光量にて露光を行った場合、得られるパターンの線幅が細くなるため、最終的にレジストパターンの倒壊が見られる。このレジストパターンの倒壊が確認されない最大の露光量における線幅を最小倒壊前寸法(nm)と定義し、パターン倒れ耐性の指標とした。具体的には、最小倒壊前寸法が40.0nm以下の場合「良好」、40.0nmを超える場合「不良」と評価した。なお、最小倒壊前寸法の測定は、前記走査型電子顕微鏡を用いた。
(7)現像欠陥数(単位:個/Wafer)
 現像欠陥数は、欠陥検査装置(商品名:KLA2351、ケー・エル・エー・テンコール社製)を用いる下記方法により評価した。欠陥検査用ウエハーは、次のように作成した。下層反射防止膜形成剤(商品名:ARC25、ブルワー・サイエンス社製)を膜厚820Åとなるようにコートし、ウエハー基板を作製した。但し、実施例22~25については、前記下層反射防止膜形成剤を膜厚770Åとなるようにコートし、ウエハー基板を作製した。この基板上に、実施例及び比較例の感放射線性樹脂組成物を膜厚0.30μmで塗布し、表4に示す温度で90秒間SB(SoftBake)を行った。但し、実施例22~25については、ウエハー基板上に感放射線性樹脂組成物を膜厚0.12μmで塗布した。
 フルフィールド露光装置(商品名:S306C、ニコン社製)を用い、5mm×5mmのブランク露光を行い、ウエハー全面を露光させた。露光後、130℃/90秒の条件でPEBを行った後、2.38重量%のTMAH水溶液により、25℃で30秒間現像し、水洗し、乾燥して、欠陥検査用ウエハーを作成した。上記の塗布、焼成及び現像はコータ/デベロッパ(商品名:CLEAN TRACK ACT8、東京エレクトロン社製)を用い、全てインラインで実施した。
 前記欠陥検査装置を用い、前記方法により作製した欠陥検査用ウエハーの露光部における現像欠陥の欠陥総数を検査した。欠陥総数の検査は、アレイモードで観察し、比較イメージとピクセル単位の重ね合わせによって生じる差異から抽出されるクラスター及びアンクラスターの欠陥総数を検出することにより行った。前記欠陥検査装置は、0.15μm以上の欠陥を検出できるように感度を設定した。この検査により、現像欠陥数が30個/Wafer以下の場合「良好」、30個/Waferを超える場合「不良」と評価した。
(8)露光余裕(EL):
 90nm1L/1Sマスクパターンで解像されるパターン寸法が、マスクの設計寸法の±10%以内となる場合の露光量の範囲の、最適露光量に対する割合を露光余裕とした。具体的には、露光余裕が10%以上の場合「良好」、10%未満の場合「不良」と評価した。なお、パターン寸法の観測には前記走査型電子顕微鏡を用いた。
(9)パターンの断面形状:
 上記感度で解像した線幅90nmのライン・アンド・スペースパターンの断面形状を、商品名「S-4200」(株式会社日立ハイテクノロジーズ社製)にて観察し、レジストパターンの中間での線幅Lbと、膜の上部での線幅Laを測り、0.9≦(La/Lb)≦1.1の範囲内である場合を「良好」と評価し、範囲外である場合を「不良」と評価した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
(実施例26,27、比較例12,13)
 更に、感放射線性樹脂組成物を調製する各成分の組成を表11に示すように変更したことを除いては、実施例1と同様にして、感放射線性樹脂組成物(実施例26,27、比較例12,13)を得た。
Figure JPOXMLDOC01-appb-T000039
[評価方法]
 得られた実施例26,27、比較例12,13の感放射線性樹脂組成物について、KrFエキシマレーザーを光源として、感度、密集ライン焦点深度、及び最小倒壊前寸法について評価を行った。評価結果を表12に示す。
(1)感度(単位:mJ/cm
 8インチウエハー表面に、下層反射防止膜形成剤(商品名:DUV42P、ブルワー・サイエンス社製)を膜厚60nmとなるようにコートし、膜形成した。この基板の表面に、実施例及び比較例の感放射線性樹脂組成物をスピンコートにより塗布し、ホットプレート上にて、表12に示す温度で90秒間SBを行い、膜厚335nmのレジスト被膜を形成した。このレジスト被膜に、フルフィールド縮小投影露光装置(商品名:PASS5500/750、ASML社製、開口数0.70、露光波長248nm)を用い、マスクパターンを介して露光した。
 その後、表12に示す温度で90秒間PEBを行った後、2.38質量%のTMAH水溶液により、25℃で60秒現像し、水洗し、乾燥して、ポジ型レジストパターンを形成した。このとき、寸法130nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、線幅130nmの1対1ラインアンドスペースに形成される露光量(mJ/cm)を最適露光量とし、この最適露光量(mJ/cm)を「感度」とした。なお、測長には前記走査型電子顕微鏡を用いた。
(2)密集ライン焦点深度(単位:μm)
 最適露光量にて130nm1L/1Sマスクパターンで解像されるパターン寸法が、マスクの設計寸法の±10%以内となる場合のフォーカスの振れ幅を密集ライン焦点深度とした。なお、パターン寸法の観測には前記走査型電子顕微鏡を用いた。具体的には、密集ライン焦点深度が0.70μm以上の場合「良好」、0.70μm未満の場合「不良」と評価した。
(3)最小解像寸法(nm)
 130nm1L/1Sパターンの最適露光量にて解像可能な最小寸法を、前記走査型電子顕微鏡を用いてパターン上部から観察する。このレジストが解像可能な最小の線幅を最小解像寸法と定義し、解像性の指標とした。具体的には、最小倒壊前寸法が110nm以下の場合「良好」、110nmを超える場合「不良」と評価した。
Figure JPOXMLDOC01-appb-T000040
 本発明の感放射線性樹脂組成物は、KrFエキシマレーザー、及びArFエキシマレーザーを光源とするリソグラフィー材料として好適に用いることができる。また、液浸露光にも対応可能である。

Claims (5)

  1.  酸解離性基を有する重合体(A)と、感放射線性の酸発生剤(B)と、酸拡散抑制剤(C)と、を含有し、
     前記重合体(A)として、下記一般式(a-1)で示される繰り返し単位(a-1)を有する重合体を含有し、
     前記酸拡散抑制剤(C)として、下記一般式(C-1)で示される塩基(C-1)及び光分解性塩基(C-2)のうちの少なくとも一種の塩基を含有する感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔一般式(a-1)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、Rは一般式(a’)で示される1価の基であり、R19は相互に独立して、水素原子、炭素数1~5の鎖状炭化水素基を示し、Aは単結合、炭素数が1~30である2価の鎖状炭化水素基、炭素数が3~30である2価の脂環式炭化水素基又は炭素数が6~30である2価の芳香族炭化水素基を示し、m及びnは0~3の整数(但し、m+n=1~3)を示す。一般式(a’)の炭酸エステル環が一般式(a-1)に示される第1の結合に加えて、Aに結合される第2の結合を有し、前記第1の結合及び前記第2の結合を含む環構造が形成されていてもよい。〕
    Figure JPOXMLDOC01-appb-C000002
    〔一般式(C-1)中、R,Rは相互に独立して、水素原子、炭素数が1~20である1価の鎖状炭化水素基、炭素数が3~20である1価の脂環式炭化水素基又は炭素数が6~20である1価の芳香族炭化水素基を示す。2つのRが結合されて、環構造が形成されていてもよい。〕
  2.  前記重合体(A)として、前記炭酸エステル環の前記第1の結合を有する第1の炭素原子とは異なる第2の炭素原子が前記第2の結合を有し、前記第1の炭素原子及び前記第2の炭素原子を構成原子とする縮合環が形成された繰り返し単位、及び前記炭酸エステル環の前記第1の結合を有する第1の炭素原子が前記第2の結合をも有し、前記第1の炭素原子をスピロ原子とするスピロ環が形成された繰り返し単位のうちの少なくとも一種の繰り返し単位、を有する重合体を含有する請求項1に記載の感放射線性樹脂組成物。
  3.  前記重合体(A)として、前記繰り返し単位(a-1)に加えて、ラクトン構造を含む繰り返し単位(a-2)を有する重合体を含有する請求項1に記載の感放射線性樹脂組成物。
  4.  下記一般式(a-1)で示される繰り返し単位(a-1)と、下記一般式(a-3a)で示される繰り返し単位(a-3a)及び下記一般式(a―3b)で示される繰り返し単位(a-3b)のうちの少なくとも1種の繰り返し単位と、を有する重合体。
    Figure JPOXMLDOC01-appb-C000003
    〔一般式(a-1)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、Rは一般式(a’)で示される1価の基であり、R19は相互に独立して、水素原子、炭素数1~5の鎖状炭化水素基を示し、Aは単結合、炭素数が1~30である2価の鎖状炭化水素基、炭素数が3~30である2価の脂環式炭化水素基又は炭素数が6~30である2価の芳香族炭化水素基を示し、m及びnは0~3の整数(但し、m+n=1~3)を示す。一般式(a’)の炭酸エステル環が一般式(a-1)に示される第1の結合に加えて、Aに結合される第2の結合を有し、前記第1の結合及び前記第2の結合を含む環構造が形成されていてもよい。〕
    Figure JPOXMLDOC01-appb-C000004
    〔一般式(a-3a),(a-3b)中、Rは相互に独立して、水素原子、メチル基又はトリフルオロメチル基を示し、R17は炭素数1~10のアルキル基を示し、R18は炭素数2~4のアルキル基を示す。aは1~6の数を示す。〕
  5.  前記繰り返し単位(a-1)と、前記繰り返し単位(a-3a)とを有する、請求項4に記載の重合体。
PCT/JP2009/065819 2008-09-10 2009-09-10 感放射線性樹脂組成物 WO2010029965A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801354994A CN102150082B (zh) 2008-09-10 2009-09-10 放射线敏感性树脂组合物
EP09813111.3A EP2325695B1 (en) 2008-09-10 2009-09-10 Radiation-sensitive resin composition
KR1020117005620A KR101733251B1 (ko) 2008-09-10 2009-09-10 감방사선성 수지 조성물
US13/044,573 US20110223537A1 (en) 2008-09-10 2011-03-10 Radiation-sensitive resin composition and polymer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008232552A JP5141459B2 (ja) 2008-09-10 2008-09-10 感放射線性樹脂組成物
JP2008-232552 2008-09-10
JP2009002730A JP5287264B2 (ja) 2009-01-08 2009-01-08 感放射線性樹脂組成物
JP2009-002797 2009-01-08
JP2009002797A JP2010160348A (ja) 2009-01-08 2009-01-08 感放射線性樹脂組成物及び重合体
JP2009-002730 2009-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/044,573 Continuation US20110223537A1 (en) 2008-09-10 2011-03-10 Radiation-sensitive resin composition and polymer

Publications (1)

Publication Number Publication Date
WO2010029965A1 true WO2010029965A1 (ja) 2010-03-18

Family

ID=42005215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065819 WO2010029965A1 (ja) 2008-09-10 2009-09-10 感放射線性樹脂組成物

Country Status (6)

Country Link
US (1) US20110223537A1 (ja)
EP (1) EP2325695B1 (ja)
KR (1) KR101733251B1 (ja)
CN (1) CN102150082B (ja)
TW (1) TWI533082B (ja)
WO (1) WO2010029965A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191573A (ja) * 2010-03-15 2011-09-29 Jsr Corp 感放射線性樹脂組成物及び重合体
WO2011122588A1 (ja) * 2010-03-31 2011-10-06 Jsr株式会社 感放射線性樹脂組成物及び重合体
US20120009520A1 (en) * 2010-07-08 2012-01-12 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
WO2012036250A1 (ja) * 2010-09-17 2012-03-22 Jsr株式会社 感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP2012108447A (ja) * 2010-10-22 2012-06-07 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法
KR20120064032A (ko) 2010-12-08 2012-06-18 도오꾜오까고오교 가부시끼가이샤 신규 화합물
KR20120064033A (ko) 2010-12-08 2012-06-18 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물, 레지스트 패턴 형성 방법
JP2012173419A (ja) * 2011-02-18 2012-09-10 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法
JP2013125145A (ja) * 2011-12-14 2013-06-24 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法
JP2013145256A (ja) * 2012-01-13 2013-07-25 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト材料
JP2014071305A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 感活性光線性又は感放射線性組成物、並びに、それを用いたレジスト膜、マスクブランクス、及びレジストパターン形成方法
WO2014185279A1 (ja) * 2013-05-13 2014-11-20 株式会社ダイセル カルバミン酸エステル化合物とこれを含むレジスト製造用溶剤組成物
TWI554528B (zh) * 2010-12-28 2016-10-21 東京應化工業股份有限公司 光阻組成物,光阻圖型之形成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147079A1 (ja) * 2009-06-16 2010-12-23 Jsr株式会社 感放射線性樹脂組成物
WO2011145702A1 (ja) 2010-05-20 2011-11-24 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP5729114B2 (ja) * 2010-08-19 2015-06-03 Jsr株式会社 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
KR20140047045A (ko) * 2011-06-10 2014-04-21 도오꾜오까고오교 가부시끼가이샤 용제 현상 네거티브형 레지스트 조성물, 레지스트 패턴 형성 방법, 블록 코폴리머를 함유하는 층의 패턴 형성 방법
US11442181B2 (en) * 2016-06-22 2022-09-13 Riken Gel forming composition for radiation dosimetry and radiation dosimeter using gel that is formed from said composition
CN109991811A (zh) * 2019-02-27 2019-07-09 江苏南大光电材料股份有限公司 一种酸扩散抑制剂及其制备方法与光刻胶组合物
CN111205385A (zh) * 2020-02-28 2020-05-29 宁波南大光电材料有限公司 含酸抑制剂的改性成膜树脂及其制备方法与光刻胶组合物
CN113189842B (zh) * 2020-12-20 2024-05-17 江苏穿越光电科技有限公司 一种彩色滤光片的制备方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188598A (ja) 1991-06-28 1993-07-30 Internatl Business Mach Corp <Ibm> 表面反射防止コーティングフィルム
JPH0612452B2 (ja) 1982-09-30 1994-02-16 ブリュ−ワ−・サイエンス・インコ−ポレイテッド 集積回路素子の製造方法
JPH0973173A (ja) 1995-06-28 1997-03-18 Fujitsu Ltd レジスト材料及びレジストパターンの形成方法
JPH10133377A (ja) * 1996-10-30 1998-05-22 Fujitsu Ltd レジスト組成物、レジストパターンの形成方法及び半導体装置の製造方法
JP2000026446A (ja) 1998-07-03 2000-01-25 Nec Corp ラクトン構造を有する(メタ)アクリレート誘導体、重合体、フォトレジスト組成物、及びパターン形成方法
JP2000122294A (ja) 1998-08-10 2000-04-28 Toshiba Corp 感光性組成物及びパタ―ン形成方法
JP2000159758A (ja) 1998-09-25 2000-06-13 Shin Etsu Chem Co Ltd 新規なラクトン含有化合物、高分子化合物、レジスト材料及びパタ―ン形成方法
JP2000336121A (ja) * 1998-11-02 2000-12-05 Shin Etsu Chem Co Ltd 新規なエステル化合物、高分子化合物、レジスト材料、及びパターン形成方法
JP2001109154A (ja) 1999-10-06 2001-04-20 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
US6388101B1 (en) 1997-01-24 2002-05-14 Tokyo Ohka Kogyo Co., Ltd. Chemical-sensitization photoresist composition
JP2002308866A (ja) 2001-04-09 2002-10-23 Mitsubishi Chemicals Corp ラクトン構造を有する多環式化合物
JP2002338633A (ja) * 2001-05-21 2002-11-27 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
JP2002371114A (ja) 2001-06-14 2002-12-26 Shin Etsu Chem Co Ltd ラクトン構造を有する新規(メタ)アクリレート化合物、重合体、フォトレジスト材料、及びパターン形成法
JP2003064134A (ja) 2001-06-15 2003-03-05 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
JP2003113174A (ja) 2001-07-30 2003-04-18 Mitsubishi Chemicals Corp ラクトン構造を有する多環式化合物
JP2003147023A (ja) 2001-08-31 2003-05-21 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
JP2003270787A (ja) 2002-03-15 2003-09-25 Jsr Corp 感放射線性樹脂組成物
JP2004101642A (ja) 2002-09-05 2004-04-02 Fuji Photo Film Co Ltd レジスト組成物
WO2005069076A1 (ja) 2004-01-15 2005-07-28 Jsr Corporation 液浸用上層膜形成組成物およびフォトレジストパターン形成方法
WO2006035790A1 (ja) 2004-09-30 2006-04-06 Jsr Corporation 共重合体および上層膜形成組成物
JP2006227632A (ja) 2003-02-20 2006-08-31 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
JP2007298569A (ja) * 2006-04-27 2007-11-15 Jsr Corp 液浸露光用感放射線性樹脂組成物
JP2008191341A (ja) * 2007-02-02 2008-08-21 Jsr Corp ポジ型感放射線性樹脂組成物及びレジストパターン形成方法
WO2008117693A1 (ja) * 2007-03-28 2008-10-02 Jsr Corporation ポジ型感放射線性組成物およびそれを用いたレジストパターン形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441734B1 (ko) * 1998-11-02 2004-08-04 신에쓰 가가꾸 고교 가부시끼가이샤 신규한 에스테르 화합물, 고분자 화합물, 레지스트 재료및 패턴 형성 방법
TW550275B (en) * 2001-01-17 2003-09-01 Shinetsu Chemical Co High molecular compound, resist material and pattern forming method
US20040009429A1 (en) * 2002-01-10 2004-01-15 Fuji Photo Film Co., Ltd. Positive-working photosensitive composition
US7510822B2 (en) * 2002-04-10 2009-03-31 Fujifilm Corporation Stimulation sensitive composition and compound
JP2007256640A (ja) 2006-03-23 2007-10-04 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法
EP2309332A4 (en) * 2008-07-15 2012-01-25 Jsr Corp POSITIVE TYPE SENSITIVE SENSITIVE COMPOSITION, AND RESIST PATTERN FORMATION METHOD
KR20100121427A (ko) * 2009-05-07 2010-11-17 제이에스알 가부시끼가이샤 감방사선성 수지 조성물

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612452B2 (ja) 1982-09-30 1994-02-16 ブリュ−ワ−・サイエンス・インコ−ポレイテッド 集積回路素子の製造方法
JPH05188598A (ja) 1991-06-28 1993-07-30 Internatl Business Mach Corp <Ibm> 表面反射防止コーティングフィルム
JPH0973173A (ja) 1995-06-28 1997-03-18 Fujitsu Ltd レジスト材料及びレジストパターンの形成方法
JPH10133377A (ja) * 1996-10-30 1998-05-22 Fujitsu Ltd レジスト組成物、レジストパターンの形成方法及び半導体装置の製造方法
US6388101B1 (en) 1997-01-24 2002-05-14 Tokyo Ohka Kogyo Co., Ltd. Chemical-sensitization photoresist composition
JP2000026446A (ja) 1998-07-03 2000-01-25 Nec Corp ラクトン構造を有する(メタ)アクリレート誘導体、重合体、フォトレジスト組成物、及びパターン形成方法
JP2000122294A (ja) 1998-08-10 2000-04-28 Toshiba Corp 感光性組成物及びパタ―ン形成方法
JP2000159758A (ja) 1998-09-25 2000-06-13 Shin Etsu Chem Co Ltd 新規なラクトン含有化合物、高分子化合物、レジスト材料及びパタ―ン形成方法
JP2000336121A (ja) * 1998-11-02 2000-12-05 Shin Etsu Chem Co Ltd 新規なエステル化合物、高分子化合物、レジスト材料、及びパターン形成方法
JP2001109154A (ja) 1999-10-06 2001-04-20 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2002308866A (ja) 2001-04-09 2002-10-23 Mitsubishi Chemicals Corp ラクトン構造を有する多環式化合物
JP2002338633A (ja) * 2001-05-21 2002-11-27 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
JP2002371114A (ja) 2001-06-14 2002-12-26 Shin Etsu Chem Co Ltd ラクトン構造を有する新規(メタ)アクリレート化合物、重合体、フォトレジスト材料、及びパターン形成法
JP2003064134A (ja) 2001-06-15 2003-03-05 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
JP2003113174A (ja) 2001-07-30 2003-04-18 Mitsubishi Chemicals Corp ラクトン構造を有する多環式化合物
JP2003147023A (ja) 2001-08-31 2003-05-21 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
JP2003270787A (ja) 2002-03-15 2003-09-25 Jsr Corp 感放射線性樹脂組成物
JP2004101642A (ja) 2002-09-05 2004-04-02 Fuji Photo Film Co Ltd レジスト組成物
JP2006227632A (ja) 2003-02-20 2006-08-31 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
WO2005069076A1 (ja) 2004-01-15 2005-07-28 Jsr Corporation 液浸用上層膜形成組成物およびフォトレジストパターン形成方法
WO2006035790A1 (ja) 2004-09-30 2006-04-06 Jsr Corporation 共重合体および上層膜形成組成物
JP2007298569A (ja) * 2006-04-27 2007-11-15 Jsr Corp 液浸露光用感放射線性樹脂組成物
JP2008191341A (ja) * 2007-02-02 2008-08-21 Jsr Corp ポジ型感放射線性樹脂組成物及びレジストパターン形成方法
WO2008117693A1 (ja) * 2007-03-28 2008-10-02 Jsr Corporation ポジ型感放射線性組成物およびそれを用いたレジストパターン形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOJI NOZAKI ET AL.: "New Protective Groups in Alicyclic Methacrylate Polymers for 198-nm Resists", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 10, no. 4, 1997, pages 545 - 550, XP008144067 *
ORGANIC LETTERS, vol. 4, no. 15, 2002, pages 2561
See also references of EP2325695A4
TETRAHEDRON LETTERS, vol. 27, no. 32, 1986, pages 3741

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191573A (ja) * 2010-03-15 2011-09-29 Jsr Corp 感放射線性樹脂組成物及び重合体
JPWO2011122588A1 (ja) * 2010-03-31 2013-07-08 Jsr株式会社 感放射線性樹脂組成物及び重合体
WO2011122588A1 (ja) * 2010-03-31 2011-10-06 Jsr株式会社 感放射線性樹脂組成物及び重合体
US20120009520A1 (en) * 2010-07-08 2012-01-12 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
JP2012018304A (ja) * 2010-07-08 2012-01-26 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
US8535868B2 (en) * 2010-07-08 2013-09-17 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
WO2012036250A1 (ja) * 2010-09-17 2012-03-22 Jsr株式会社 感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP5900340B2 (ja) * 2010-09-17 2016-04-06 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
US8980529B2 (en) 2010-09-17 2015-03-17 Jsr Corporation Radiation-sensitive resin composition, polymer, and resist pattern-forming method
JP2012108447A (ja) * 2010-10-22 2012-06-07 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法
KR20120064032A (ko) 2010-12-08 2012-06-18 도오꾜오까고오교 가부시끼가이샤 신규 화합물
KR20120064033A (ko) 2010-12-08 2012-06-18 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물, 레지스트 패턴 형성 방법
KR101868636B1 (ko) * 2010-12-08 2018-06-18 도오꾜오까고오교 가부시끼가이샤 신규 화합물
US8497395B2 (en) 2010-12-08 2013-07-30 Tokyo Ohka Kogyo Co., Ltd. Compound
US8614049B2 (en) 2010-12-08 2013-12-24 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
JP2012121838A (ja) * 2010-12-08 2012-06-28 Tokyo Ohka Kogyo Co Ltd 新規化合物
KR101758931B1 (ko) 2010-12-28 2017-07-17 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물, 레지스트 패턴 형성 방법
US9494860B2 (en) 2010-12-28 2016-11-15 Tokyo Ohka Kogyo Co., Ltd. Resist composition, method of forming resist pattern
TWI554528B (zh) * 2010-12-28 2016-10-21 東京應化工業股份有限公司 光阻組成物,光阻圖型之形成方法
JP2012173419A (ja) * 2011-02-18 2012-09-10 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法
US9005872B2 (en) 2011-02-18 2015-04-14 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
US9164380B2 (en) 2011-12-14 2015-10-20 Tokyo Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
JP2013125145A (ja) * 2011-12-14 2013-06-24 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法
JP2013145256A (ja) * 2012-01-13 2013-07-25 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト材料
JP2014071305A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 感活性光線性又は感放射線性組成物、並びに、それを用いたレジスト膜、マスクブランクス、及びレジストパターン形成方法
WO2014185279A1 (ja) * 2013-05-13 2014-11-20 株式会社ダイセル カルバミン酸エステル化合物とこれを含むレジスト製造用溶剤組成物

Also Published As

Publication number Publication date
TWI533082B (zh) 2016-05-11
KR20110052704A (ko) 2011-05-18
EP2325695A4 (en) 2012-04-04
TW201017332A (en) 2010-05-01
EP2325695A1 (en) 2011-05-25
CN102150082B (zh) 2013-08-07
CN102150082A (zh) 2011-08-10
EP2325695B1 (en) 2017-12-20
KR101733251B1 (ko) 2017-05-08
US20110223537A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
KR101733251B1 (ko) 감방사선성 수지 조성물
JP5141459B2 (ja) 感放射線性樹脂組成物
JP5360065B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2009134088A (ja) 感放射線性樹脂組成物
KR20170107415A (ko) 감방사선성 수지 조성물
WO2009142181A1 (ja) 液浸露光用感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP5077355B2 (ja) 感放射線性組成物
JP5621275B2 (ja) イオンプランテーション用フォトレジストパターン形成方法。
JP5716397B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及びフォトレジスト膜
WO2010061875A1 (ja) 感放射線性樹脂組成物
JP2010276624A (ja) 感放射線性樹脂組成物
JP5304204B2 (ja) 重合体および感放射線性樹脂組成物
JP5176910B2 (ja) 感放射線性樹脂組成物
JP5333227B2 (ja) 感放射線性組成物、及びフォトレジストパターンの形成方法
JP2010126581A (ja) 重合体および感放射線性樹脂組成物
JP5051232B2 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP5568963B2 (ja) 重合体および感放射線性樹脂組成物
JP5176909B2 (ja) 重合体および感放射線性樹脂組成物
JP5347465B2 (ja) 感放射線性樹脂組成物
JP5077354B2 (ja) 感放射線性組成物
JP5157932B2 (ja) 感放射線性樹脂組成物
JP4752794B2 (ja) 感放射線性樹脂組成物及び感放射線性樹脂組成物用重合体
JP5387141B2 (ja) 感放射線性樹脂組成物およびそれに用いる重合体
JP5077352B2 (ja) 感放射線性組成物
JP2010126582A (ja) 重合体および感放射線性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135499.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009813111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117005620

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE