WO2010010952A1 - 脂肪酸アルキルエステル用曇り点降下剤 - Google Patents
脂肪酸アルキルエステル用曇り点降下剤 Download PDFInfo
- Publication number
- WO2010010952A1 WO2010010952A1 PCT/JP2009/063286 JP2009063286W WO2010010952A1 WO 2010010952 A1 WO2010010952 A1 WO 2010010952A1 JP 2009063286 W JP2009063286 W JP 2009063286W WO 2010010952 A1 WO2010010952 A1 WO 2010010952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fatty acid
- polyglycerin
- cloud point
- acid alkyl
- ester
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/14—Use of additives to fuels or fires for particular purposes for improving low temperature properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
- C10L1/191—Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
Definitions
- the present invention relates to a cloud point depressant for fatty acid alkyl esters. More specifically, a cloud point depressant for a fatty acid alkyl ester containing a specific polyglycerin fatty acid ester, a cloud point depressant composition for a fatty acid alkyl ester, and a fatty acid containing the cloud point depressant or the cloud point depressant composition
- the present invention relates to an alkyl ester composition.
- fatty acid alkyl esters are gaining attention as a new energy alternative to petroleum because they are obtained by transesterification of fats and oils (triglycerides) and alcohol, and can be biomass-derived diesel fuel.
- fatty acid methyl esters obtained from vegetable oils are particularly in the spotlight because they are similar to light oil in physical properties such as viscosity and specific gravity, and combustibility, and are recyclable.
- Fatty acid methyl esters are liquid at room temperature, but when stored at low temperatures such as in cold regions, some trace amounts of components such as saturated fatty acid methyl esters and reaction intermediates such as palmitic acid and stearic acid are crystallized. Turn into. As a result, there is a problem that the commercial value of the fatty acid methyl ester is lowered, such as loss of fluidity of the fatty acid methyl ester, white turbidity or solidification.
- the fatty acid methyl ester is produced by adding a solvent or the like to the raw oil or fat, or after cooling the raw oil or fat as it is to precipitate the saturated fatty acid methyl ester that causes crystallization.
- a solvent or the like to the raw oil or fat, or after cooling the raw oil or fat as it is to precipitate the saturated fatty acid methyl ester that causes crystallization.
- the conditions of the wintering treatment are severed, or the raw material fats and oils are pre-esterified to lower the crystallinity. What is necessary is just to use for the wintering process.
- Patent Document 1 discloses a technique using a poly (meth) acrylate ester of a long-chain alcohol in order to reduce the CFPP value (ColdCFilter Plugging Point, low-temperature filter clogging point) of biofuel.
- Document 2 reports a technique for improving the low-temperature performance of fuel oil and the like using a specific ethylene-vinyl ester copolymer as a fluidity improver.
- Non-Patent Document 1 a new comb-type low-temperature fluidity improver in which ozonide (1,2,4-trioxolane) is introduced into a polar group was produced as a trial, and the results of the study were described. The outline, manufacturing method, and utilization technology about diesel are introduced.
- An object of the present invention is to provide a cloud point depressant for a fatty acid alkyl ester, a cloud point depressant composition for a fatty acid alkyl ester, and a cloud point depressant which have a low cloud point and are excellent in suppressing the occurrence of clouding or solidification at low temperatures. Or it is providing the fatty-acid alkylester composition containing this cloud point depressant composition.
- the present inventors have determined a polyglycerin having a hydroxyl value of 850 mgKOH / g or less and a proportion of primary hydroxyl groups occupying 50% or more of the constituent hydroxyl groups.
- the polyglycerin fatty acid ester obtained by using the polyglycerin fatty acid ester has a specific hydroxyl value
- the polyglycerin fatty acid ester is added to the fatty acid alkyl ester to form cloudiness or
- the present inventors have found that the occurrence of solidification can be suppressed and have completed the present invention.
- a polyglycerin fatty acid ester which is an esterified product of a polyglycerin having a hydroxyl value of 850 mgKOH / g or less and a primary hydroxyl group content of 50% or more of all hydroxyl groups of polyglycerin and a fatty acid.
- a cloud point depressant for a fatty acid alkyl ester comprising a polyglycerin fatty acid ester having a hydroxyl value of 100 mgKOH / g or less, [2] A polyglycerin fatty acid ester which is an esterified product of a polyglycerin having a hydroxyl value of 850 mg KOH / g or less and a primary hydroxyl group content of 50% or more of all hydroxyl groups of polyglycerin and a fatty acid.
- a cloud point depressant composition for a fatty acid alkyl ester comprising a polyglycerol fatty acid ester having a hydroxyl value of 100 mgKOH / g or less, and a fluidity improver, and [3] a fatty acid alkyl ester, 1)
- the cloud point depressant for fatty acid alkyl esters and the cloud point depressant composition for fatty acid alkyl esters of the present invention can reduce the cloud point of fatty acid alkyl esters and suppress the occurrence of clouding or solidification at low temperatures. Excellent effect. Further, since the cloud point depressant and the cloud point depressant composition exhibit the above-mentioned effects, the cold resistance of the depressant or the fatty acid alkyl ester composition containing the depressant composition is improved. It can contribute to the improvement of merchandise value and the handling.
- the polyglycerin fatty acid ester which is a substantially active ingredient of the cloud point depressant for fatty acid alkyl esters of the present invention, has a hydroxyl value of 850 mgKOH / g or less, and a primary hydroxyl group content of all hydroxyl groups of the polyglycerol. Can be obtained by esterifying a specific polyglycerin having a ratio of 50% or more with a fatty acid.
- Polyglycerin is a polymer of glycerin and refers to a substance having a hydroxyl group and an ether bond in the molecule obtained by dehydration condensation of glycerin.
- polyglycerol is obtained by heating glycerol under an alkali catalyst under normal pressure or reduced pressure.
- low boiling point components can be removed through gases such as nitrogen and water vapor, ion components such as catalysts used by ion exchange resins and ion exchange membranes can be removed, and color components using an adsorbent such as activated carbon. It can be purified by removing odor components, performing reduction treatment by hydrogenation or the like, or fractionating by molecular distillation or rectification.
- polyglycerin When polyglycerin is produced using glycerin as a raw material, intramolecular condensation occurs during dehydration condensation, and undesirable by-products such as 6-membered rings and 8-membered rings are generated.
- polyglycerin containing almost no by-products can be prepared using glycidol, epichlorohydrin, monochlorohydrin or the like as a raw material so that these by-products are not generated.
- the hydroxyl value of polyglycerin is 850 mgKOH / g or less, preferably 840 mgKOH / g or less, and more preferably 800 mgKOH / g or less, from the viewpoint of the effect of suppressing oil crystal growth. From the viewpoint of workability and esterification reaction with a fatty acid, 750 mgKOH / g or more is preferable.
- required by weighted average is in the said range, and it is more preferable that the hydroxyl value of each polyglycerol is in the said range.
- the “hydroxyl value” means a value measured by a standard oil and fat test analysis method (pyridine acetic anhydride method, 2.3.6.2-1996).
- the method for adjusting the hydroxyl value of polyglycerin is not particularly limited.
- the hydroxyl value decreases with the lapse of the polymerization reaction time, so the hydroxyl value is determined by confirming the process of decreasing the hydroxyl value of polyglycerol during the reaction. Can be adjusted.
- the ratio (henceforth primary hydroxyl group content rate) which a primary hydroxyl group accounts among all the hydroxyl groups of a polyglycerol is 50% or more from a viewpoint of an oil-fat crystal growth inhibitory effect, 55% or more is preferable, and 60 % Or more is more preferable, and 70% or more is more preferable.
- the upper limit value is not particularly limited, but is preferably 100% or less in order to maximize the effect.
- required by carrying out weighted average is in the said range, and the primary hydroxyl group content rate of each polyglycerol used is in the said range. It is more preferable that In the present specification, the “primary hydroxyl group content” is calculated using a method of measuring nuclear magnetic resonance spectra (NMR) of carbon atoms and hydrogen atoms.
- NMR nuclear magnetic resonance spectra
- the proportion of secondary hydroxyl groups in all the hydroxyl groups of polyglycerin (hereinafter referred to as secondary hydroxyl group content) is 50% or less, preferably 45% or less, and preferably 40% or less from the viewpoint of the effect of suppressing the growth of oil crystal. Is more preferable, 30% or less is more preferable, and 0% is further preferable.
- the method for adjusting the primary hydroxyl group content is not particularly limited.
- the polyglycerin obtained above is reacted with a reagent that selectively reacts with a primary hydroxyl group, that is, a reagent that serves as a protective group for the primary hydroxyl group, thereby changing the polarity of the polyglycerol.
- a reagent that selectively reacts with a primary hydroxyl group that is, a reagent that serves as a protective group for the primary hydroxyl group
- the primary hydroxyl group content can be adjusted by appropriately selecting polyglycerols having primary hydroxyl groups.
- the selected polyglycerol may be subjected to a protecting group elimination treatment according to a method known to those skilled in the art.
- Examples of the reagent that selectively reacts with the primary hydroxyl group include t -butyldiphenylsilyl chloride, isobutene, 1-trimethylpyridinium tetrafluoroborate, t -butyldimethylsilyl chloride, chlorotriphenylmethyl, and the like.
- the reaction ratio of polyglycerin and the reagent is appropriately adjusted according to the desired number of primary hydroxyl groups in the polyglycerin, but it is preferable to use an excessive amount of the reagent in order to surely proceed the reaction.
- the reagent is preferably used in an amount of 2 to 10 mol, more preferably 3 to 7 mol, relative to 1 mol of polyglycerol.
- the reaction between polyglycerin and the reagent is preferably carried out at ⁇ 78 to 150 ° C., more preferably 0 to 100 ° C., from the viewpoint of the progress of the reaction and the certainty of protection.
- the method of fractionating the target polyglycerol from the obtained reaction product can be achieved by utilizing the chemical and physical differences of the polyglycerol introduced with a protecting group.
- the target polyglycerin can be fractionated by a method such as distillation, vacuum distillation, molecular distillation using the difference in boiling point, or the target polyglycerin can be separated using the difference in solubility in water or an organic solvent. It can also be fractionated.
- the target polyglycerin is fractionated by dispersing the reaction product in water and extracting it with an organic solvent immiscible with water (eg, chloroform, dichloromethane, petroleum ether, hexane, benzene, toluene, ether, ethyl acetate, etc.). can do.
- an organic solvent immiscible with water eg, chloroform, dichloromethane, petroleum ether, hexane, benzene, toluene, ether, ethyl acetate, etc.
- water eg, chloroform, dichloromethane, petroleum ether, hexane, benzene, toluene, ether, ethyl acetate, etc.
- an organic solvent immiscible with water eg, chloroform, dichloromethane, petroleum ether, hexane, benzene, toluene, ether, ethy
- the separation of the protective group of the separated polyglycerol can be performed by a method used in general organic synthesis.
- removal of the protecting group can be achieved by a method in which p-toluenesulfonic acid is allowed to act in methanol, a method of heating and stirring in an acetic acid aqueous solution, or the like.
- a triphenylmethyl group is introduced into polyglycerin, the resulting reaction product is protected by adding about 2 to 3 times the amount of acetic acid aqueous solution and stirring at 50 to 70 ° C. for 24 hours. Groups can be removed.
- the polyglycerin used in the present invention may be a synthetic product or a commercially available product as long as the hydroxyl value and the primary hydroxyl group content have desired values.
- the hydroxyl value and / or the primary hydroxyl content may be adjusted according to the above.
- the fatty acid which is another constituent of the polyglycerin fatty acid ester of the present invention includes, as a functional group, a carboxylic acid obtained by hydrolyzing and separating oil or fat extracted from natural animals and plants and purifying it with or without separation. There is no particular limitation as long as the substance is contained. Alternatively, it may be a fatty acid obtained by chemically synthesizing petroleum or the like as a raw material. Alternatively, the fatty acid may be reduced by hydrogenation or the like, a condensed fatty acid obtained by condensation polymerization of a fatty acid containing a hydroxyl group, or a polymerized fatty acid obtained by heat polymerization of a fatty acid having an unsaturated bond.
- fatty acids may be appropriately determined in consideration of the desired effect.
- Specific examples include saturated or unsaturated fatty acids having 2 to 22 carbon atoms, that is, caproic acid, caprylic acid, octylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitooleic acid, stearic acid, isostearic acid.
- Acid oleic acid, linoleic acid, linolenic acid, behenic acid, elaidic acid, erucic acid, ricinoleic acid having a hydroxyl group in the molecule, 12-hydroxystearic acid and condensates thereof, citric acid, succinic acid, lactic acid, Examples include acetic acid and malic acid. These can be used singly or in combination of two or more.
- caprylic acid capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, behenic acid, ricinoleic acid, 12-hydroxystearic acid, erucic acid, and oleic acid are preferred from the viewpoint of workability.
- the fatty acids can be used singly or in combination of two or more.
- the fatty acids are composed of the fatty acids shown in the following groups (1) to (3), and the groups (1) to (3): It is preferably used as a mixed fatty acid mixed so that the amount of each of the fatty acids represented by the formula (1) to (3) is within the range shown below and the total weight of the groups (1) to (3) is 100% by weight. .
- Group (1) Group composed of saturated fatty acids having 8 to 14 carbon atoms (the amount used is 0 to 70% by weight)
- Group (2) Group composed of saturated fatty acids having 16 to 22 carbon atoms (the amount used is 20 to 60% by weight)
- Group (3) Group composed of unsaturated fatty acids having 14 to 22 carbon atoms (the amount used is 0 to 50% by weight)
- Esterification of polyglycerin and fatty acid is performed according to a method known in the art. For example, it can be esterified under an alkali catalyst, an acid catalyst, or without a catalyst under normal pressure or reduced pressure. Specifically, polyglycerin, a fatty acid, and a catalyst are charged, and 160.degree. It can be obtained by reacting at a temperature of ⁇ 260 ° C. until free fatty acid disappears.
- the polyglycerin fatty acid ester obtained may be further purified according to the usage requirements of the product used.
- the purification method may be any known method and is not particularly limited. For example, adsorption treatment with activated carbon, activated clay, etc., deodorization treatment under reduced pressure using water vapor, nitrogen, etc. as a carrier gas, washing with acid or alkali, or molecular distillation. And may be purified.
- the esterification rate of the polyglycerin fatty acid ester can be adjusted by changing the ratio of the polyglycerin and fatty acid to be added, the reaction temperature, the reaction time, the type of catalyst and the amount added.
- the esterification rate of the polyglycerol fatty acid ester is preferably 80% or more. If the esterification rate is less than 80%, the emulsification of the oil and fat becomes unstable at the time of thawing, and it may be difficult to obtain the effect of freezing resistance.
- the hydroxyl value of the polyglycerol fatty acid ester can be adjusted by changing the charging ratio (% by weight) of the polyglycerol and the fatty acid.
- the hydroxyl value of the polyglycerol fatty acid ester of the present invention is 100 mgKOH / g or less, preferably 80 mgKOH / g or less, more preferably 60 mgKOH / g or less, and further preferably 30 mgKOH / g or less.
- 5 mgKOH / g or more is preferable from a viewpoint of the certainty of reaction in esterification with polyglycerol and a fatty acid.
- the HLB value of the polyglycerin fatty acid ester is preferably 1 to 7, and more preferably 1 to 6, from the viewpoints of solubility in fatty acid alkyl and the effect of suppressing crystal growth.
- the cloud point depressant for fatty acid alkyl esters of the present invention contains the polyglycerin fatty acid ester as a substantially active ingredient, but contains other additives known in the art as long as the effects of the present invention are not impaired. May be.
- the content of the polyglycerol fatty acid ester in the cloud point depressant is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably substantially 100% by weight.
- the present invention also provides a cloud point depressant composition for fatty acid alkyl esters, comprising the polyglycerin fatty acid ester and a fluidity improver.
- the content of the polyglycerol fatty acid ester in the cloud point depressant composition is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more.
- the fluidity improver is not particularly limited, but a light oil fluidity improver is preferred. Specific examples include ethylene-vinyl acetate copolymer (EVA), polyalkyl methacrylate (PMA), polyalkylene oxide fatty acid ester, alkenyl succinic acid amide and the like.
- EVA ethylene-vinyl acetate copolymer
- PMA polyalkyl methacrylate
- polyalkylene oxide fatty acid ester polyalkylene oxide fatty acid ester
- alkenyl succinic acid amide alkenyl succinic acid amide
- the content of the fluidity improver in the cloud point depressant composition is not particularly limited, but is preferably 10% by weight or more from the viewpoint of improving fluidity and lowering the cloud point. Further, from the viewpoint of suppressing the occurrence of fogging, 50% by weight or less is preferable.
- the cloud point depressant composition for fatty acid alkyl esters of the present invention is a solvent naphtha, toluene, 1, 2, and 2 as long as the effects of the present invention are not impaired in addition to the polyglycerin fatty acid ester and the fluidity improver.
- Additives such as 4-trimethylbenzene and kerosene can be contained.
- the present invention still further provides a fatty acid alkyl ester composition containing the fatty acid alkyl ester and the cloud point depressant or cloud point depressant composition.
- Fatty acid alkyl esters that is, fatty acid alkyl esters whose generation of cloudiness or solidification is suppressed by polyglycerin fatty acid esters are palm oil, soybean oil, rapeseed oil, sunflower oil, corn oil, jatropha oil (jatropha oil), beef tallow, pork Examples include diesel fuel (hereinafter abbreviated as “BDF”) using oils and fats derived from animals and plants such as fat and chicken fat. Specific examples include methyl myristate, methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, methyl linolenate, and the like, and particularly fatty acid alkyl esters containing one or more of these. It is not limited. In some cases, a BDF mixed fuel obtained by mixing a fatty acid alkyl ester and light oil may be used.
- the content of the polyglycerin fatty acid ester in the composition is preferably 0.005 to 5% by weight, more preferably 0.010 to 3% by weight, from the viewpoint of the effect of suppressing crystal growth. If it is 0.005% by weight or more, a sufficient effect of suppressing cloudiness or solidification can be obtained, and if it is 5% by weight or less, crystallization of the raw material fats and oils is not promoted, so that applicable fatty acid alkyl esters are limited. Not.
- polyglycerol fatty acid ester of this invention you may use 2 or more types of polyglycerol fatty acid ester whose hydroxyl value is 100 mgKOH / g or less in combination. In that case, the total content is preferably within the above range.
- the fatty acid alkyl ester composition of the present invention can contain an additive as long as it contains the fatty acid alkyl ester and the polyglycerol fatty acid ester.
- a fluidity improver is preferable and the fluidity improver for light oils is more preferable. Specific examples include the same ones as described above.
- the content of the fluidity improver in the composition is preferably 0.005 to 5% by weight from the viewpoints of clouding suppression and cloud point depression.
- cloud point refers to a value measured according to the standard oil and fat analysis test method (cloud point 2.2.7-1996).
- the ratio of primary hydroxyl groups and secondary hydroxyl groups in polyglycerin is determined by spectral analysis using a nuclear magnetic resonance apparatus (13C-NMR). Dissolve 500 mg of polyglycerin in 2.8 mL of heavy water, and after filtration, obtain a 13C-NMR (125 MHz) spectrum by gated decoupling. In the gate decoupled measurement method, the peak intensity is proportional to the carbon number.
- the 13C chemical shifts indicating the presence of primary hydroxyl groups and secondary hydroxyl groups are about 63 ppm for methylene carbon (CH 2 OH) and about 71 ppm for methine carbon (CHOH), respectively.
- the abundance ratio between the hydroxyl group and the secondary hydroxyl group is calculated.
- the methine carbon (CHOH) indicating the secondary hydroxyl group overlaps with the methylene carbon peak further adjacent to the methine carbon bonded to the methylene carbon indicating the primary hydroxyl group, and the integral value of itself cannot be obtained.
- the integrated value is calculated from the signal intensity around 74 ppm of methylene carbon (CH 2 ) adjacent to (CHOH).
- Example 1 (Synthesis Example 1) To a three-necked flask equipped with a thermometer, a Dimroth and a stirrer, 200 g of polyglycerin (Great Oil KT-1) manufactured by Taiyo Kagaku and 600 mL of pyridine were added. To this, 370 g of chlorotriphenylmethyl (manufactured by Wako Pure Chemical Industries, Ltd.), which is a reagent that selectively reacts with a primary hydroxyl group, was added, stirred at 100 ° C. for 1 hour, cooled to room temperature (25 ° C.) and further stirred for 24 hours. . Thereafter, the reaction solution was distilled under reduced pressure to remove most of pyridine.
- polyglycerin Great Oil KT-1 manufactured by Taiyo Kagaku and 600 mL of pyridine were added.
- chlorotriphenylmethyl manufactured by Wako Pure Chemical Industries, Ltd.
- the obtained reaction product was added with 800 mL of water, transferred to a separatory funnel, and extracted with 400 mL of ethyl acetate (extraction number: 3 times).
- the ethyl acetate layers were combined and concentrated, and 156 g of the resulting residue and 300 g of acetic acid were added to a three-necked flask equipped with a thermometer, a Dimroth and a stirrer, and heated to reflux at 120 ° C. for 8 hours to remove the triphenylmethyl group.
- the product was purified to obtain polyglycerin A.
- the resulting polyglycerol A had a hydroxyl value of 840 mg KOH / g, a primary hydroxyl group content of 52.5%, and a secondary hydroxyl group content of 47.5%.
- the mixed fatty acid contains at least one selected from the group consisting of saturated fatty acids having 8 to 14 carbon atoms, that is, caprylic acid, capric acid, lauric acid, and myristic acid, as the fatty acids of group (1).
- a fatty acid (manufactured by Taiyo Kagaku Co., Ltd.) containing at least one selected from the group consisting of saturated fatty acids having 16 to 22 carbon atoms, ie, palmitic acid, stearic acid, and isostearic acid, as the fatty acids of group (2)
- the fatty acid (manufactured by Taiyo Kagaku Co., Ltd.) is selected from the group consisting of unsaturated fatty acids having 18 to 22 carbon atoms, that is, oleic acid, erucic acid, and ricinoleic acid, as the group (3) fatty acid.
- the fatty acid contained (manufactured by Taiyo Kagaku Co.) was used.
- Example 2 (Synthesis Example 2) A hydroxyl value of 803 mgKOH / g, primary hydroxyl group contained, in the same manner as in Synthesis Example 1 except that polyglycerin (Great Oil KT-2) manufactured by Taiyo Kagaku was used in place of polyglycerol (Great Oil KT-1) Purified polyglycerin B having a rate of 62.1% and a secondary hydroxyl group content of 37.9% was obtained. Thereafter, 55.0 g of the obtained polyglycerin B, 185.0 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask, and 250 ° C. while removing generated water under a nitrogen stream. To obtain a polyglycerol fatty acid ester B having a hydroxyl value of 18 mgKOH / g.
- Example 3 (Synthesis Example 3) A hydroxyl value of 790 mg KOH / g, primary hydroxyl group contained, in the same manner as in Synthesis Example 1, except that polyglycerin (Great Oil KT-3) manufactured by Taiyo Kagaku was used instead of polyglycerin (Great Oil KT-1) Purified polyglycerin C having a rate of 63.0% and a secondary hydroxyl group content of 37.0% was obtained. Thereafter, 70.0 g of the obtained polyglycerin C, 170.0 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask and 250 ° C. while removing generated water under a nitrogen stream. To obtain a polyglycerol fatty acid ester C having a hydroxyl value of 87 mgKOH / g.
- Example 4 (Synthesis Example 4) In the same manner as in Synthesis Example 3, polyglycerin C was obtained. Thereafter, 62.4 g of the obtained polyglycerin C, 177.6 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask, and 250 ° C. while removing generated water under a nitrogen stream. To obtain a polyglycerol fatty acid ester D having a hydroxyl value of 65 mgKOH / g.
- Example 5 (Synthesis Example 5) In the same manner as in Synthesis Example 3, polyglycerin C was obtained. Thereafter, 60 g of the obtained polyglycerin C, 180 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask and reacted at 250 ° C. while removing the generated water under a nitrogen stream, Polyglycerin fatty acid ester E having a hydroxyl value of 13 mgKOH / g was obtained.
- Example 6 (Synthesis Example 6) In the same manner as in Synthesis Example 3, polyglycerin C was obtained. Thereafter, 57.6 g of the obtained polyglycerin C, 182.4 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask, and 250 ° C. while removing generated water under a nitrogen stream. To obtain a polyglycerol fatty acid ester F having a hydroxyl value of 20 mgKOH / g.
- Example 7 (Synthesis Example 7) In the same manner as in Synthesis Example 3, polyglycerin C was obtained. Thereafter, 57.1 g of the obtained polyglycerin C, 182.9 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask and 250 ° C. while removing generated water under a nitrogen stream. To obtain a polyglycerol fatty acid ester G having a hydroxyl value of 24 mgKOH / g.
- Example 8 (Synthesis Example 8) A hydroxyl value of 766 mg KOH / g, containing a primary hydroxyl group in the same manner as in Synthesis Example 1, except that polyglycerin (Great Oil KT-X) manufactured by Taiyo Kagaku is used instead of polyglycerin (Great Oil KT-1) Purified polyglycerin D having a rate of 71.9% and a secondary hydroxyl group content of 28.1% was obtained. Thereafter, 62.4 g of the obtained polyglycerin D, 177.6 g of the mixed fatty acid shown in Table 1, and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask, and 250 ° C. while removing generated water under a nitrogen stream. To obtain polyglycerol fatty acid ester H having a hydroxyl value of 13 mgKOH / g.
- Comparative Example 1 (Synthesis Example 9) A hydroxyl value of 1077 mgKOH / g and a primary hydroxyl group are contained in the same manner as in Synthesis Example 1, except that polyglycerin (Great Oil KT-4) manufactured by Taiyo Kagaku is used instead of polyglycerin (Great Oil KT-1). A purified polyglycerin E having a rate of 45.8% and a secondary hydroxyl group content of 54.2% was obtained.
- Comparative Example 2 (Synthesis Example 10) A hydroxyl value of 988 mgKOH / g and a primary hydroxyl group are contained in the same manner as in Synthesis Example 1, except that polyglycerin (Great Oil KT-5) manufactured by Taiyo Kagaku is used instead of polyglycerin (Great Oil KT-1). Purified polyglycerin F having a rate of 46.3% and a secondary hydroxyl group content of 53.7% was obtained. Thereafter, 48.0 g of the obtained polyglycerin F, 192.0 g of the mixed fatty acid shown in Table 1 and 0.1 g of sodium hydroxide were placed in a 300 mL four-necked flask, and 250 ° C. while removing generated water under a nitrogen stream. To obtain a polyglycerol fatty acid ester J having a hydroxyl value of 23 mgKOH / g.
- Example 9 The polyglycerin fatty acid ester H obtained in Example 8 and a commercially available ethylene-vinyl acetate copolymer (EVA, manufactured by Sanyo Chemical Industries), which is a fluidity improver for light oil, are in a weight ratio (polyglycerin fatty acid ester / EVA). ) To obtain a cloud point depressant composition A.
- EVA ethylene-vinyl acetate copolymer
- Test example 1 (fogging suppression effect) To the fatty acid methyl ester (a product derived from soybean oil), the obtained polyglycerol fatty acid ester (cloud point depressant) or cloud point depressant composition was added so that the polyglycerol fatty acid ester concentration was 0.2% by weight.
- the fatty acid alkyl ester compositions (Examples 10 to 18 and Comparative Examples 6 to 10) were prepared by stirring and dissolving. The obtained composition was filled in a graduated test tube, sealed, and stored in a thermostatic bath at 0 ° C., and the crystal precipitation state after storage for 3 days, 2 weeks, 1 month, and 2 months was visually observed. Then, according to the following evaluation criteria, the effect of suppressing the occurrence of fogging was evaluated.
- the amount of crystal precipitation can be determined by, for example, leaving the test tube after storage and reading the scales indicated by the upper end of the packing and the upper end of the precipitated crystal. It can be determined by calculating the ratio (%) of the scale length occupied by the precipitated crystal, where the scale length occupied by the whole object is 100%.
- a composition to which no polyglycerin fatty acid ester is added that is, a fatty acid methyl ester as a reference example 1, and a mixture of a fatty acid methyl ester and an ethylene-vinyl acetate copolymer (EVA) as a reference example 2
- EVA ethylene-vinyl acetate copolymer
- Test Example 2 Cloud point measurement
- the cloud point immediately after preparation was measured according to the standard oil analysis method (cloud point 2.2.7-1996).
- the results are shown in Table 2. The same measurement was performed for Reference Examples 1 and 2.
- the cloud point depressant for fatty acid alkyl esters of the present invention can suppress the occurrence of clouding and solidification of fatty acid alkyl esters at low temperatures, it improves the fluidity and storage stability of fatty acid alkyl esters in cold regions and the like. And can be suitably used for biodiesel fuels mainly composed of fatty acid alkyl esters.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステルを含有してなる、脂肪酸アルキルエステル用曇り点降下剤。本発明の脂肪酸アルキルエステル用曇り点降下剤は、低温下における脂肪酸アルキルエステルの曇りや固化の発生を抑制することができることから、寒冷地等での脂肪酸アルキルエステルの流動性及び保存性を向上させることができ、脂肪酸アルキルエステルを主成分とするバイオディーゼル燃料に好適に用いられる。
Description
本発明は、脂肪酸アルキルエステル用曇り点降下剤に関する。より詳しくは、特定のポリグリセリン脂肪酸エステルを含む脂肪酸アルキルエステル用曇り点降下剤、脂肪酸アルキルエステル用曇り点降下剤組成物、ならびに該曇り点降下剤又は該曇り点降下剤組成物を含有する脂肪酸アルキルエステル組成物に関する。
近年、脂肪酸アルキルエステルは、油脂(トリグリセリド)とアルコールとのエステル交換反応により得られ、バイオマス由来のディーゼル燃料となり得ることから、石油代替の新エネルギーとして注目されている。なかでも、植物油から得られる脂肪酸メチルエステルは、粘度、比重等の物性や、燃焼性が軽油に類似しており、また、リサイクル可能なことから、特に脚光を浴びている。
脂肪酸メチルエステルは、常温では液体であるが、寒冷地等の低温下で保存すると、一部の微量の含有成分、例えば、飽和脂肪酸メチルエステルや反応中間体であるパルミチン酸、ステアリン酸等が結晶化する。その結果、脂肪酸メチルエステルの流動性が失われたり、白濁や固化が生じたりする等、商品価値が低下するという問題がある。
これらの問題を解決する為に、脂肪酸メチルエステルは、原料油脂に溶剤等を加えて製造されるか、あるいは原料油脂をそのまま冷却して結晶化の原因となる飽和脂肪酸メチルエステルを析出させた後、これを滴下式、遠心式、ろ過式等の手段によって分離するいわゆるウインタリング処理等を行って分別して製造される。
またさらに、より多くの飽和脂肪酸メチルエステル等を除去して耐寒性に優れる脂肪酸メチルエステルを得るためには、ウインタリング処理の条件を過酷にしたり、原料油脂を予めエステル交換して結晶性を低下させたものをウインタリング処理に供したりすればよい。
しかしながら、ウインタリング処理を繰り返し、飽和脂肪酸メチルエステルを完全に取り除くことは難しく、また、ウインタリング処理能力によっては生産性の低下や脂肪酸メチルエステルの歩留まりの低下につながりやすく、生産コストの上昇を招きやすい。
これに対して、特許文献1では、バイオ燃料のCFPP値(Cold Filter Plugging Point、低温フィルター目詰まり点)を低下させるために、長鎖アルコールのポリ(メタ)アクリル酸エステルを用いる技術が、特許文献2では、流動性向上剤として特定のエチレン-ビニルエステル共重合体を用いて燃料油等の低温性能を向上させる技術が報告されている。また、非特許文献1では、極性基にオゾニド(1,2,4-trioxolane)を導入した新たな櫛型低温流動性改善剤を試作しその検討結果が記載され、非特許文献2では、バイオディーゼルについての概要、製法、利用技術が紹介されている。
N.S. Soriano, V.P. Migo, K. Sato and M. Matsumura, "Crystallization behavior of neat biodiesel and biodiesel treated with ozonated vegetable oil", Eur. J. Lipid Sci. Technol., 107, 689-696(2005)
松村正利、「図解 バイオディーゼル最前線」、工業調査会、2006年
従来技術に拠って、脂肪酸アルキルエステルの耐寒性を向上させることは可能であるが、その効果は未だ十分なものではない。
本発明の課題は、曇り点が低く、低温における曇り又は固化の発生を抑制する効果に優れる脂肪酸アルキルエステル用曇り点降下剤、脂肪酸アルキルエステル用曇り点降下剤組成物、ならびに該曇り点降下剤又は該曇り点降下剤組成物を含有する脂肪酸アルキルエステル組成物を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、水酸基価が850mgKOH/g以下であり、かつ、構成水酸基に占める1級水酸基の割合が50%以上であるポリグリセリンを用いて得られるポリグリセリン脂肪酸エステルであって、さらに、特定の水酸基価を有するものである場合に、該ポリグリセリン脂肪酸エステルを脂肪酸アルキルエステルに添加することにより、低温下の脂肪酸アルキルエステルにおける曇り又は固化の発生を抑制することができることを見出し、本発明を完成するに至った。
即ち、本発明は、
〔1〕 水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステルを含有してなる、脂肪酸アルキルエステル用曇り点降下剤、
〔2〕 水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステル、及び流動性向上剤を含有してなる、脂肪酸アルキルエステル用曇り点降下剤組成物、ならびに
〔3〕 脂肪酸アルキルエステルと、前記〔1〕記載の曇り点降下剤、又は前記〔2〕記載の曇り点降下剤組成物、を含有してなる脂肪酸アルキルエステル組成物であって、ポリグリセリン脂肪酸エステルの含有量が0.005~5重量%である、脂肪酸アルキルエステル組成物
に関する。
〔1〕 水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステルを含有してなる、脂肪酸アルキルエステル用曇り点降下剤、
〔2〕 水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステル、及び流動性向上剤を含有してなる、脂肪酸アルキルエステル用曇り点降下剤組成物、ならびに
〔3〕 脂肪酸アルキルエステルと、前記〔1〕記載の曇り点降下剤、又は前記〔2〕記載の曇り点降下剤組成物、を含有してなる脂肪酸アルキルエステル組成物であって、ポリグリセリン脂肪酸エステルの含有量が0.005~5重量%である、脂肪酸アルキルエステル組成物
に関する。
本発明の脂肪酸アルキルエステル用曇り点降下剤及び脂肪酸アルキルエステル用曇り点降下剤組成物は、脂肪酸アルキルエステルの曇り点を低下させ、低温下での曇り又は固化の発生を抑制することができるという優れた効果を奏する。また、該曇り点降下剤及び該曇り点降下剤組成物は前記効果を発揮することから、該降下剤又は該降下剤組成物を含有する脂肪酸アルキルエステル組成物の耐寒性を向上し、ひいては、商品価値の向上、及びハンドリングの改善に寄与することができる。
本発明の脂肪酸アルキルエステル用曇り点降下剤の実質的な有効成分であるポリグリセリン脂肪酸エステルは、水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上である特定のポリグリセリンと、脂肪酸をエステル化することにより得られる。
ポリグリセリンはグリセリンの重合物であり、グリセリンを脱水縮合する等して得られる分子内に水酸基とエーテル結合を有している物質をいう。通常、ポリグリセリンはグリセリンをアルカリ触媒下において常圧あるいは減圧下で加熱することにより得られる。また、使用目的によって窒素、水蒸気等の気体を通じて低沸点成分等を除去したり、イオン交換樹脂、イオン交換膜等によって使用した触媒等イオン成分を除去したり、活性炭等吸着剤を用いて色成分、臭成分を除去したり、水素添加等により還元処理を行ったり、あるいはまた、分子蒸留、精留によって分画する等して精製することができる。
なお、グリセリンを原料としてポリグリセリンを製造した場合、脱水縮合に際して分子内縮合が生じ、6員環や8員環等好ましくない副生成物が生じる。本発明においては、これらの副生成物が発生しないように、グリシドール、エピクロルヒドリン、モノクロロヒドリン等を原料として使用して、該副生成物を殆ど含有しないポリグリセリンを調製することができる。
ポリグリセリンの水酸基価は、油脂結晶成長抑制効果の観点から、850mgKOH/g以下であり、840mgKOH/g以下が好ましく、800mgKOH/g以下がより好ましい。作業性及び脂肪酸とのエステル化反応の観点から、750mgKOH/g以上が好ましい。また、ポリグリセリンを2種以上用いる場合は、加重平均することにより求められた水酸基価が上記範囲内であることが好ましく、各ポリグリセリンの水酸基価が上記範囲内であることがより好ましい。なお、本明細書において、「水酸基価」とは基準油脂試験分析法(ピリジン無水酢酸法、2.3.6.2-1996)により測定した値をいう。
ポリグリセリンの水酸基価を調整する方法としては、特に限定するものではない。例えば、グリセリン重合法、グリシドール重合法等に従ってポリグリセリンを調製する場合、重合反応時間の経過と共に水酸基価が低下するため、反応中のポリグリセリンの水酸基価低下過程を確認することにより、水酸基価を調整することができる。
また、ポリグリセリンの全ての水酸基のうち1級水酸基が占める割合(以降、1級水酸基含有率という)は、油脂結晶成長抑制効果の観点から、50%以上であり、55%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。上限値は、特に限定するものではないが、その効果を最大限に発揮させるためには100%以下であることが好ましい。また、ポリグリセリンを2種以上用いる場合は、加重平均することにより求められた1級水酸基含有率が上記範囲内であることが好ましく、用いられる各ポリグリセリンの1級水酸基含有率が上記範囲内であることがより好ましい。なお、本明細書において、「1級水酸基含有率」は、炭素原子及び水素原子の核磁気共鳴スペクトル(NMR)を測定する方法を用いて算出される。
ポリグリセリンの全ての水酸基のうち2級水酸基が占める割合(以降、2級水酸基含有率という)は、油脂結晶成長抑制効果の観点から、50%以下であり、45%以下が好ましく、40%以下がより好ましく、30%以下がさらに好ましく、0%であることがさらに好ましい。なお、ここでいう2級水酸基含有率は、下記式:
2級水酸基含有率(%)=100(%)-1級水酸基含有率(%)
により算出した値のことをいう。
2級水酸基含有率(%)=100(%)-1級水酸基含有率(%)
により算出した値のことをいう。
1級水酸基含有率を調整する方法としては、特に限定するものではない。例えば、上記により得られたポリグリセリンに1級水酸基に選択的に反応する試薬、即ち、1級水酸基の保護基となる試薬を反応させて、ポリグリセリンの極性を変化させる。その後、1級水酸基を多く有するポリグリセリンほど極性が低くなることを利用して、1級水酸基を有するポリグリセリンを適宜選択することにより、1級水酸基含有率を調整することができる。なお、選択したポリグリセリンは、当業者に公知の方法に従って、保護基の脱離処理を行うとよい。
1級水酸基に選択的に反応する試薬としては、例えば、t -ブチルジフェニルシリルクロライド、イソブテン、1-トリメチルピリジニウムテトラフルオロボレート、t -ブチルジメチルシリルクロライド、クロロトリフェニルメチル等が挙げられる。
ポリグリセリンと前記試薬との反応比は、所望されるポリグリセリン中の1級水酸基の数にあわせて適宜調整されるが、確実に反応を進行させるため前記試薬を過剰量使用することが好ましい。例えば、前記試薬は、ポリグリセリン1モルに対して、好ましくは2~10モル、より好ましくは3~7モル使用される。
ポリグリセリンと前記試薬との反応は、反応の進行及び保護の確実性の観点から、好ましくは-78~150℃、より好ましくは0~100℃で行われる。
得られた反応物から目的のポリグリセリンを分別する方法は、保護基が導入されたポリグリセリンの化学的及び物理的差を利用して達成することができる。例えば、沸点の差を利用して蒸留、減圧蒸留、分子蒸留等の方法で目的のポリグリセリンを分別することができ、又は水もしくは有機溶剤への溶解度の差を利用して目的のポリグリセリンを分画することもできる。例えば、反応物を水に分散させ、水と混和しない有機溶剤(例えば、クロロホルム、ジクロロメタン、石油エーテル、ヘキサン、ベンゼン、トルエン、エーテル、酢酸エチル等)で抽出することにより目的のポリグリセリンを分画することができる。この分画方法を使用する場合、水の代わりに水含有エタノール、食塩水、硫酸ナトリウム水溶液等の無機塩の溶液を使用することもできる。水と酢酸エチルを用いて目的のポリグリセリンを分画することが好ましい。
分別されたポリグリセリンの保護基の脱離は、一般の有機合成で行われている方法で行うことができる。例えば、メタノール中でp-トルエンスルホン酸を作用させる方法、酢酸水溶液中で加熱攪拌する方法等により保護基の脱離が達成される。1例として、トリフェニルメチル基をポリグリセリンに導入した場合、得られた反応物に対して約2~3倍量の酢酸水溶液を加えて、50~70℃で24時間攪拌することにより、保護基を脱離することができる。
なお、本発明に用いられるポリグリセリンとしては、水酸基価と1級水酸基含有率が所望の値を有するものであれば、合成品を用いても市販品を用いてもよく、合成品又は市販品の水酸基価、及び/又は1級水酸基含有率を前記に従って調整して用いてもよい。
本発明のポリグリセリン脂肪酸エステルのもう一つの構成成分である脂肪酸としては、天然の動植物より抽出した油脂を加水分解し、分離してあるいは分離せずに精製して得られるカルボン酸を官能基として含む物質であれば特に限定するものではない。又は石油等を原料にして化学的に合成して得られる脂肪酸であってもよい。もしくはこれら脂肪酸を水素添加等して還元したものや、水酸基を含む脂肪酸を縮重合して得られる縮合脂肪酸や、不飽和結合を有する脂肪酸を加熱重合して得られる重合脂肪酸であってもよい。これら脂肪酸の選択に当たっては所望の効果を勘案して適宜決めればよい。具体例としては、炭素数2~22の飽和又は不飽和の脂肪酸、即ち、カプロン酸、カプリル酸、オクチル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトオレイン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘニン酸、エライジン酸、エルカ酸の他、分子中に水酸基を有するリシノール酸、12-ヒドロキシステアリン酸及びこれらの縮合物、クエン酸、コハク酸、乳酸、酢酸、リンゴ酸等が挙げられる。これらは1種又は2種以上を組み合わせて利用できる。なかでも、作業性の観点から、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、ベヘニン酸、リシノール酸、12-ヒドロキシステアリン酸、エルカ酸、及びオレイン酸が好ましい。また、上記脂肪酸は1種又は2種以上を組み合わせて利用することができるが、脂肪酸が以下の群(1)~(3)で示される脂肪酸で構成され、かつ群(1)~(3)で示される脂肪酸の脂肪酸全体における各使用量が下記に示す範囲内であり、群(1)~(3)の合計重量が100重量%となる、ように混合した混合脂肪酸として使用することが好ましい。
群(1):炭素数8~14の飽和脂肪酸で構成される群(使用量が0~70重量%)
群(2):炭素数16~22の飽和脂肪酸で構成される群(使用量が20~60重量%)
群(3):炭素数14~22の不飽和脂肪酸で構成される群(使用量が0~50重量%)
群(1):炭素数8~14の飽和脂肪酸で構成される群(使用量が0~70重量%)
群(2):炭素数16~22の飽和脂肪酸で構成される群(使用量が20~60重量%)
群(3):炭素数14~22の不飽和脂肪酸で構成される群(使用量が0~50重量%)
ポリグリセリンと脂肪酸とのエステル化は、当該分野で公知の方法に従って行われる。例えば、アルカリ触媒下、酸触媒下、又は無触媒下にて、常圧又は減圧下でエステル化することができ、具体的には、ポリグリセリン、脂肪酸、触媒を仕込み、窒素ガス気流下で160~260℃の温度で遊離脂肪酸がなくなるまで反応させて得ることができる。
なお、得られたポリグリセリン脂肪酸エステルは使用される製品の使用上の要求によってさらに精製してもよい。精製の方法は公知のいかなる方法でもよく特に限定するものではない。例えば、活性炭や活性白土等にて吸着処理したり、水蒸気、窒素等をキャリアーガスとして用いて減圧下脱臭処理を行ったり、又は酸やアルカリを用いて洗浄を行ったり、分子蒸留を行ったりして精製してもよい。
ポリグリセリン脂肪酸エステルのエステル化率は、添加するポリグリセリンと脂肪酸の仕込み比率、反応温度、反応時間、触媒の種類及び添加量等を変化させることにより調整することができる。ポリグリセリン脂肪酸エステルのエステル化率は、80%以上が好ましい。エステル化率が80%未満であると、解凍時に油脂の乳化が不安定になり、冷凍耐性の効果が得られにくい場合がある。
また、ポリグリセリン脂肪酸エステルの水酸基価は、ポリグリセリンと脂肪酸の仕込み比率(重量%)を変えることにより調整することができる。水酸基価が100mgKOH/gより大きくなると、油脂に対して不溶となったり、油脂結晶抑制効果が十分に発揮できなかったりする。従って、本発明のポリグリセリン脂肪酸エステルの水酸基価は、100mgKOH/g以下であり、80mgKOH/g以下が好ましく、60mgKOH/g以下がより好ましく、30mgKOH/g以下がさらに好ましい。また、ポリグリセリンと脂肪酸とのエステル化における反応の確実性の観点から、5mgKOH/g以上が好ましい。
ポリグリセリン脂肪酸エステルのHLB値は、脂肪酸アルキルへの溶解性及び結晶成長抑制効果の観点から、1~7が好ましく、1~6がより好ましい。なお、ここでいうHLB値は、下記式:
HLB=20×(1-S/A)
(式中、S:エステルのけん化価、A:構成脂肪酸の酸価である)
により算出した値のことをいう。
HLB=20×(1-S/A)
(式中、S:エステルのけん化価、A:構成脂肪酸の酸価である)
により算出した値のことをいう。
かくして本発明におけるポリグリセリン脂肪酸エステルが得られる。本発明の脂肪酸アルキルエステル用曇り点降下剤は、前記ポリグリセリン脂肪酸エステルを実質的な有効成分として含有するが、本発明の効果を損なわない範囲で、当該分野で公知のその他の添加剤を含有してもよい。ポリグリセリン脂肪酸エステルの含有量は、曇り点降下剤中、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは実質的に100重量%である。
また、本発明は、前記ポリグリセリン脂肪酸エステル、及び流動性向上剤を含有する、脂肪酸アルキルエステル用曇り点降下剤組成物を提供する。
曇り点降下剤組成物における、ポリグリセリン脂肪酸エステルの含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上である。
流動性向上剤としては、特に限定はないが、軽油用流動性向上剤が好ましい。具体例としては、エチレン-酢酸ビニル共重合体(EVA)、ポリアルキルメタクリレート(PMA)、ポリアルキレンオキシド脂肪酸エステル、アルケニルコハク酸アミド等が挙げられる。
流動性向上剤の曇り点降下剤組成物中の含有量は、特に限定はないが、流動性の向上、及び曇り点降下の観点から、10重量%以上が好ましい。また、曇り発生抑制の観点から、50重量%以下が好ましい。
なお、本発明の脂肪酸アルキルエステル用曇り点降下剤組成物は、前記ポリグリセリン脂肪酸エステル、及び流動性向上剤以外に、本発明の効果を損なわない範囲で、ソルベントナフサ、トルエン、1,2,4-トリメチルベンゼン、ケロセン等の添加剤を含有することができる。
本発明は、またさらに、脂肪酸アルキルエステル、及び前記曇り点降下剤又は曇り点降下剤組成物を含有する脂肪酸アルキルエステル組成物を提供する。
脂肪酸アルキルエステル、即ち、ポリグリセリン脂肪酸エステルによって曇り又は固化の発生が抑制される脂肪酸アルキルエステルとしては、パーム油、大豆油、菜種油、ひまわり油、トウモロコシ油、ジャトロファ油(ヤトロファ油)、牛脂、豚脂、鶏脂等の動植物由来の油脂を原料としたディーゼル用燃料(以下、BDFと略す)が挙げられる。具体的には、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、オレイン酸メチル、リノール酸メチル、リノレン酸メチル等が挙げられ、これらの1種又は2種以上を含む脂肪酸アルキルエステルであれば特に限定されるものではない。場合によっては脂肪酸アルキルエステルと軽油とを混ぜ合わせたBDF混合燃料であっても構わない。
ポリグリセリン脂肪酸エステルの組成物中の含有量は、結晶成長抑制効果の観点から、0.005~5重量%が好ましく、0.010~3重量%がより好ましい。0.005重量%以上であれば十分な曇り又は固化の抑制効果が得られ、また5重量%以下であれば原料油脂の結晶化を促進することもないことから適応可能な脂肪酸アルキルエステルが限定されない。なお、本発明のポリグリセリン脂肪酸エステルとしては、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステルを2種以上組み合わせて用いてもよい。その場合の総含有量は、上記範囲内であることが好ましい。
また、本発明の脂肪酸アルキルエステル組成物は、前記脂肪酸アルキルエステル及びポリグリセリン脂肪酸エステルを含有するものであれば、添加剤を含有することができる。
添加剤としては、特に限定はないが、流動性向上剤が好ましく、軽油用流動性向上剤がより好ましい。具体例としては、前述と同様のものが挙げられる。流動性向上剤の組成物中の含有量は、曇り発生抑制、及び曇り点降下の観点から、0.005~5重量%が好ましい。
本明細書において、「曇り点」は、基準油脂分析試験法(曇り点2.2.7-1996)に従って測定した値をいう。
以下、本発明を実施例、及び比較例に基づいて説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
〔1級水酸基含有率の測定〕
ポリグリセリン中の1級水酸基と2級水酸基の割合は、核磁気共鳴装置(13C-NMR)におけるスペクトル分析にて決定する。
ポリグリセリン500mgを重水2.8mLに溶解し、ろ過後、ゲートつきデカップリングにより13C-NMR(125MHz)スペクトルを取得する。ゲートデカップルド測定手法では、ピーク強度は炭素数に比例する。1級水酸基と2級水酸基の存在を示す13C化学シフトはそれぞれメチレン炭素(CH2OH)が63ppm付近、メチン炭素(CHOH)が71ppm付近であり、2種それぞれのシグナル強度の分析により、1級水酸基と2級水酸基の存在比を算出する。但し、2級水酸基を示すメチン炭素(CHOH)は、1級水酸基を示すメチレン炭素に結合するメチン炭素にさらに隣接するメチレン炭素ピークと重なり、それ自体の積分値を得られないため、メチン炭素(CHOH)と隣り合うメチレン炭素(CH2)の74ppm付近のシグナル強度により積分値を算出する。
ポリグリセリン中の1級水酸基と2級水酸基の割合は、核磁気共鳴装置(13C-NMR)におけるスペクトル分析にて決定する。
ポリグリセリン500mgを重水2.8mLに溶解し、ろ過後、ゲートつきデカップリングにより13C-NMR(125MHz)スペクトルを取得する。ゲートデカップルド測定手法では、ピーク強度は炭素数に比例する。1級水酸基と2級水酸基の存在を示す13C化学シフトはそれぞれメチレン炭素(CH2OH)が63ppm付近、メチン炭素(CHOH)が71ppm付近であり、2種それぞれのシグナル強度の分析により、1級水酸基と2級水酸基の存在比を算出する。但し、2級水酸基を示すメチン炭素(CHOH)は、1級水酸基を示すメチレン炭素に結合するメチン炭素にさらに隣接するメチレン炭素ピークと重なり、それ自体の積分値を得られないため、メチン炭素(CHOH)と隣り合うメチレン炭素(CH2)の74ppm付近のシグナル強度により積分値を算出する。
実施例1(合成例1)
温度計、ジムロート及び攪拌装置を付けた3つ口フラスコに、太陽化学社製のポリグリセリン(グレートオイルKT-1)200g及びピリジン600mLを加えた。ここへ1級水酸基に選択的に反応する試薬であるクロロトリフェニルメチル(和光純薬社製)370gを加えて100℃で1時間攪拌し、室温(25℃)まで冷却後さらに24時間攪拌した。その後、反応液を減圧下で蒸留してピリジンの大部分を除去した。得られた反応物は水800mLを加えて分液ロートに移し、酢酸エチル400mLで抽出した(抽出回数:3回)。酢酸エチル層を合わせて濃縮し、得られた残渣156g及び酢酸300gを温度計、ジムロート及び攪拌装置を付けた3つ口フラスコに加えて、120℃で8時間加熱還流してトリフェニルメチル基を脱離後、精製して、ポリグリセリンAを得た。得られたポリグリセリンAの水酸基価は840mgKOH/g、1級水酸基含有率は52.5%、2級水酸基含有率は47.5%であった。
温度計、ジムロート及び攪拌装置を付けた3つ口フラスコに、太陽化学社製のポリグリセリン(グレートオイルKT-1)200g及びピリジン600mLを加えた。ここへ1級水酸基に選択的に反応する試薬であるクロロトリフェニルメチル(和光純薬社製)370gを加えて100℃で1時間攪拌し、室温(25℃)まで冷却後さらに24時間攪拌した。その後、反応液を減圧下で蒸留してピリジンの大部分を除去した。得られた反応物は水800mLを加えて分液ロートに移し、酢酸エチル400mLで抽出した(抽出回数:3回)。酢酸エチル層を合わせて濃縮し、得られた残渣156g及び酢酸300gを温度計、ジムロート及び攪拌装置を付けた3つ口フラスコに加えて、120℃で8時間加熱還流してトリフェニルメチル基を脱離後、精製して、ポリグリセリンAを得た。得られたポリグリセリンAの水酸基価は840mgKOH/g、1級水酸基含有率は52.5%、2級水酸基含有率は47.5%であった。
上記で得られたポリグリセリンA55.2g、表1に示す脂肪酸の混合物(以下、混合脂肪酸と記載)184.8g及び触媒として水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価25mgKOH/gのポリグリセリン脂肪酸エステルAを得た。なお、混合脂肪酸には、群(1)の脂肪酸として、炭素数8~14の飽和脂肪酸、即ち、カプリル酸、カプリン酸、ラウリン酸、及びミリスチン酸からなる群より選択される1種類以上を含有する脂肪酸(太陽化学社製)を、群(2)の脂肪酸として、炭素数16~22の飽和脂肪酸、即ち、パルミチン酸、ステアリン酸、及びイソステアリン酸からなる群より選択される1種類以上を含有する脂肪酸(太陽化学社製)を、群(3)の脂肪酸として、炭素数18~22の不飽和脂肪酸、即ち、オレイン酸、エルカ酸、及びリシノール酸からなる群より選択される1種類以上を含有する脂肪酸(太陽化学社製)を使用した。
実施例2(合成例2)
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-2)を用いる以外は、合成例1と同様にして、水酸基価803mgKOH/g、1級水酸基含有率62.1%、2級水酸基含有率37.9%の精製したポリグリセリンBを得た。その後、得られたポリグリセリンB55.0g、表1に示す混合脂肪酸185.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価18mgKOH/gのポリグリセリン脂肪酸エステルBを得た。
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-2)を用いる以外は、合成例1と同様にして、水酸基価803mgKOH/g、1級水酸基含有率62.1%、2級水酸基含有率37.9%の精製したポリグリセリンBを得た。その後、得られたポリグリセリンB55.0g、表1に示す混合脂肪酸185.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価18mgKOH/gのポリグリセリン脂肪酸エステルBを得た。
実施例3(合成例3)
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-3)を用いる以外は、合成例1と同様にして、水酸基価790mgKOH/g、1級水酸基含有率63.0%、2級水酸基含有率37.0%の精製したポリグリセリンCを得た。その後、得られたポリグリセリンC70.0g、表1に示す混合脂肪酸170.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価87mgKOH/gのポリグリセリン脂肪酸エステルCを得た。
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-3)を用いる以外は、合成例1と同様にして、水酸基価790mgKOH/g、1級水酸基含有率63.0%、2級水酸基含有率37.0%の精製したポリグリセリンCを得た。その後、得られたポリグリセリンC70.0g、表1に示す混合脂肪酸170.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価87mgKOH/gのポリグリセリン脂肪酸エステルCを得た。
実施例4(合成例4)
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC62.4g、表1に示す混合脂肪酸177.6g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価65mgKOH/gのポリグリセリン脂肪酸エステルDを得た。
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC62.4g、表1に示す混合脂肪酸177.6g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価65mgKOH/gのポリグリセリン脂肪酸エステルDを得た。
実施例5(合成例5)
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC60g、表1に示す混合脂肪酸180g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価13mgKOH/gのポリグリセリン脂肪酸エステルEを得た。
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC60g、表1に示す混合脂肪酸180g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価13mgKOH/gのポリグリセリン脂肪酸エステルEを得た。
実施例6(合成例6)
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC57.6g、表1に示す混合脂肪酸182.4g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価20mgKOH/gのポリグリセリン脂肪酸エステルFを得た。
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC57.6g、表1に示す混合脂肪酸182.4g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価20mgKOH/gのポリグリセリン脂肪酸エステルFを得た。
実施例7(合成例7)
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC57.1g、表1に示す混合脂肪酸182.9g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価24mgKOH/gのポリグリセリン脂肪酸エステルGを得た。
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC57.1g、表1に示す混合脂肪酸182.9g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価24mgKOH/gのポリグリセリン脂肪酸エステルGを得た。
実施例8(合成例8)
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-X)を用いる以外は、合成例1と同様にして、水酸基価766mgKOH/g、1級水酸基含有率71.9%、2級水酸基含有率28.1%の精製したポリグリセリンDを得た。その後、得られたポリグリセリンD62.4g、表1に示す混合脂肪酸177.6g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価13mgKOH/gのポリグリセリン脂肪酸エステルHを得た。
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-X)を用いる以外は、合成例1と同様にして、水酸基価766mgKOH/g、1級水酸基含有率71.9%、2級水酸基含有率28.1%の精製したポリグリセリンDを得た。その後、得られたポリグリセリンD62.4g、表1に示す混合脂肪酸177.6g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価13mgKOH/gのポリグリセリン脂肪酸エステルHを得た。
比較例1(合成例9)
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-4)を用いる以外は、合成例1と同様にして、水酸基価1077mgKOH/g、1級水酸基含有率45.8%、2級水酸基含有率54.2%の精製したポリグリセリンEを得た。その後、得られたポリグリセリンE43.2g、表1に示す混合脂肪酸196.8g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価22mgKOH/gのポリグリセリン脂肪酸エステルIを得た。
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-4)を用いる以外は、合成例1と同様にして、水酸基価1077mgKOH/g、1級水酸基含有率45.8%、2級水酸基含有率54.2%の精製したポリグリセリンEを得た。その後、得られたポリグリセリンE43.2g、表1に示す混合脂肪酸196.8g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価22mgKOH/gのポリグリセリン脂肪酸エステルIを得た。
比較例2(合成例10)
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-5)を用いる以外は、合成例1と同様にして、水酸基価988mgKOH/g、1級水酸基含有率46.3%、2級水酸基含有率53.7%の精製したポリグリセリンFを得た。その後、得られたポリグリセリンF48.0g、表1に示す混合脂肪酸192.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価23mgKOH/gのポリグリセリン脂肪酸エステルJを得た。
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルKT-5)を用いる以外は、合成例1と同様にして、水酸基価988mgKOH/g、1級水酸基含有率46.3%、2級水酸基含有率53.7%の精製したポリグリセリンFを得た。その後、得られたポリグリセリンF48.0g、表1に示す混合脂肪酸192.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価23mgKOH/gのポリグリセリン脂肪酸エステルJを得た。
比較例3(合成例11)
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルDE-1)を用いる以外は、合成例1と同様にして、水酸基価886mgKOH/g、1級水酸基含有率61.3%、2級水酸基含有率38.7%の精製したポリグリセリンGを得た。その後、得られたポリグリセリンG52.8g、表1に示す混合脂肪酸187.2g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価30mgKOH/gのポリグリセリン脂肪酸エステルKを得た。
ポリグリセリン(グレートオイルKT-1)の代わりに、太陽化学社製のポリグリセリン(グレートオイルDE-1)を用いる以外は、合成例1と同様にして、水酸基価886mgKOH/g、1級水酸基含有率61.3%、2級水酸基含有率38.7%の精製したポリグリセリンGを得た。その後、得られたポリグリセリンG52.8g、表1に示す混合脂肪酸187.2g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価30mgKOH/gのポリグリセリン脂肪酸エステルKを得た。
比較例4(合成例12)
合成例11と同様にして、ポリグリセリンGを得た。その後、得られたポリグリセリンG168.0g、ステアリン酸72.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価571mgKOH/gのポリグリセリン脂肪酸エステルLを得た。
合成例11と同様にして、ポリグリセリンGを得た。その後、得られたポリグリセリンG168.0g、ステアリン酸72.0g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価571mgKOH/gのポリグリセリン脂肪酸エステルLを得た。
比較例5(合成例13)
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC74.4g、表1に示す混合脂肪酸165.6g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価110mgKOH/gのポリグリセリン脂肪酸エステルMを得た。
合成例3と同様にして、ポリグリセリンCを得た。その後、得られたポリグリセリンC74.4g、表1に示す混合脂肪酸165.6g、水酸化ナトリウム0.1gを300mL容の四ツ口フラスコに入れ、窒素気流下で生成水を除去しながら250℃で反応させ、水酸基価110mgKOH/gのポリグリセリン脂肪酸エステルMを得た。
実施例9
実施例8で得られたポリグリセリン脂肪酸エステルH、及び市販の軽油用流動性向上剤であるエチレン-酢酸ビニル共重合体(EVA、三洋化成工業社製)を重量比(ポリグリセリン脂肪酸エステル/EVA)で1/1となるよう混合して、曇り点降下剤組成物Aを得た。
実施例8で得られたポリグリセリン脂肪酸エステルH、及び市販の軽油用流動性向上剤であるエチレン-酢酸ビニル共重合体(EVA、三洋化成工業社製)を重量比(ポリグリセリン脂肪酸エステル/EVA)で1/1となるよう混合して、曇り点降下剤組成物Aを得た。
試験例1(曇り発生抑制効果)
脂肪酸メチルエステル(大豆油由来品)に、得られたポリグリセリン脂肪酸エステル(曇り点降下剤)又は曇り点降下剤組成物を、ポリグリセリン脂肪酸エステル濃度が0.2重量%となるよう添加して、攪拌溶解して脂肪酸アルキルエステル組成物(実施例10~18及び比較例6~10)を調製した。得られた組成物は目盛り付き試験管に充填して密閉後、0℃の恒温槽中に保存して、3日間、2週間、1ヶ月、及び2ヶ月保存後の結晶析出状態を目視で観察し、以下の評価基準に従って、曇りの発生抑制効果を評価した。結果を表2に示す。なお、析出した結晶は、試験管底部に沈殿するため、結晶析出量は、例えば、保存後の試験管を静置して、充填物の上端と析出結晶の上端が示す目盛りをそれぞれ読み取り、充填物全体が占める目盛り長さを100%とした場合の、析出結晶が占める目盛り長さの割合(%)を算出して求めることができる。また、参考例として、ポリグリセリン脂肪酸エステルを添加しない組成物、即ち、脂肪酸メチルエステルを参考例1、脂肪酸メチルエステル、及びエチレン-酢酸ビニル共重合体(EVA)の混合物を参考例2として準備し、同様の評価を行った。
脂肪酸メチルエステル(大豆油由来品)に、得られたポリグリセリン脂肪酸エステル(曇り点降下剤)又は曇り点降下剤組成物を、ポリグリセリン脂肪酸エステル濃度が0.2重量%となるよう添加して、攪拌溶解して脂肪酸アルキルエステル組成物(実施例10~18及び比較例6~10)を調製した。得られた組成物は目盛り付き試験管に充填して密閉後、0℃の恒温槽中に保存して、3日間、2週間、1ヶ月、及び2ヶ月保存後の結晶析出状態を目視で観察し、以下の評価基準に従って、曇りの発生抑制効果を評価した。結果を表2に示す。なお、析出した結晶は、試験管底部に沈殿するため、結晶析出量は、例えば、保存後の試験管を静置して、充填物の上端と析出結晶の上端が示す目盛りをそれぞれ読み取り、充填物全体が占める目盛り長さを100%とした場合の、析出結晶が占める目盛り長さの割合(%)を算出して求めることができる。また、参考例として、ポリグリセリン脂肪酸エステルを添加しない組成物、即ち、脂肪酸メチルエステルを参考例1、脂肪酸メチルエステル、及びエチレン-酢酸ビニル共重合体(EVA)の混合物を参考例2として準備し、同様の評価を行った。
〔曇り発生抑制効果の評価基準〕
5:結晶析出が認められず、組成物は透明
4:結晶析出が認められる(析出量は系全体量に対して10%未満)
3:結晶析出が認められる(析出量は系全体量に対して10%以上、30%未満)
2:結晶析出が認められる(析出量は系全体量に対して30%以上、50%未満)
1:結晶析出が認められる(析出量は系全体量に対して50%以上)
5:結晶析出が認められず、組成物は透明
4:結晶析出が認められる(析出量は系全体量に対して10%未満)
3:結晶析出が認められる(析出量は系全体量に対して10%以上、30%未満)
2:結晶析出が認められる(析出量は系全体量に対して30%以上、50%未満)
1:結晶析出が認められる(析出量は系全体量に対して50%以上)
試験例2(曇り点測定)
試験例1と同様にして調製した脂肪酸アルキルエステル組成物について、調製直後の曇り点を基準油脂分析試験法(曇り点2.2.7-1996)に従って測定した。結果を表2に示す。なお、参考例1及び2についても同様の測定を行った。
試験例1と同様にして調製した脂肪酸アルキルエステル組成物について、調製直後の曇り点を基準油脂分析試験法(曇り点2.2.7-1996)に従って測定した。結果を表2に示す。なお、参考例1及び2についても同様の測定を行った。
表2より、特定のポリグリセリンを用いたポリグリセリン脂肪酸エステルを脂肪酸アルキルエステルに添加することにより、ポリグリセリン脂肪酸エステルを添加しない参考例1やポリグリセリンの水酸基価が850mgKOH/gを超えたり、かつ、1級水酸基含有率が50%未満であったりするポリグリセリンを用いた比較例の組成物に比べて曇り点が低く、曇りの発生が抑制され、さらにその効果が持続されていることも分かる。実施例10~18の結果より、ポリグリセリンの水酸基価、1級水酸基含有率及びポリグリセリン脂肪酸エステルの水酸基価が前記範囲内であれば、ポリグリセリン脂肪酸エステルの構成脂肪酸が異なるものであっても、曇りの発生抑制効果が発揮されることが判明した。
本発明の脂肪酸アルキルエステル用曇り点降下剤は、低温下における脂肪酸アルキルエステルの曇りや固化の発生を抑制することができることから、寒冷地等での脂肪酸アルキルエステルの流動性及び保存性を向上させることができ、脂肪酸アルキルエステルを主成分とするバイオディーゼル燃料に好適に用いられる。
Claims (3)
- 水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステルを含有してなる、脂肪酸アルキルエステル用曇り点降下剤。
- 水酸基価が850mgKOH/g以下であり、かつ、ポリグリセリンの全ての水酸基のうち1級水酸基含有率が50%以上であるポリグリセリンと、脂肪酸とのエステル化物であるポリグリセリン脂肪酸エステルであって、水酸基価が100mgKOH/g以下であるポリグリセリン脂肪酸エステル、及び流動性向上剤を含有してなる、脂肪酸アルキルエステル用曇り点降下剤組成物。
- 脂肪酸アルキルエステルと、請求項1記載の曇り点降下剤、又は請求項2記載の曇り点降下剤組成物、を含有してなる脂肪酸アルキルエステル組成物であって、ポリグリセリン脂肪酸エステルの含有量が0.005~5重量%である、脂肪酸アルキルエステル組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009546543A JP4443629B2 (ja) | 2008-07-24 | 2009-07-24 | 脂肪酸アルキルエステル用曇り点降下剤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-191438 | 2008-07-24 | ||
JP2008191438 | 2008-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010010952A1 true WO2010010952A1 (ja) | 2010-01-28 |
Family
ID=41570412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063286 WO2010010952A1 (ja) | 2008-07-24 | 2009-07-24 | 脂肪酸アルキルエステル用曇り点降下剤 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4443629B2 (ja) |
WO (1) | WO2010010952A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2508991A (en) * | 2011-06-01 | 2014-06-18 | Total Sa | Subsea electrical architectures |
WO2016156302A1 (en) * | 2015-03-30 | 2016-10-06 | Dupont Nutrition Biosciences Aps | Fuel compositions comprising polyglycerol esters of a fatty acid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006041011A1 (ja) * | 2004-10-12 | 2006-04-20 | Taiyo Kagaku Co., Ltd. | ポリグリセリン脂肪酸エステルおよびこれを含有する組成物 |
JP2008081559A (ja) * | 2006-09-26 | 2008-04-10 | Nippon Shokubai Co Ltd | バイオディーゼル燃料組成物およびその製造方法 |
JP2008143939A (ja) * | 2006-12-06 | 2008-06-26 | Lion Corp | 脂肪酸アルキルエステル組成物 |
JP2008291116A (ja) * | 2007-05-24 | 2008-12-04 | Nippon Shokubai Co Ltd | バイオディーゼル燃料用添加剤及びその添加剤を含んでなる燃料 |
-
2009
- 2009-07-24 JP JP2009546543A patent/JP4443629B2/ja active Active
- 2009-07-24 WO PCT/JP2009/063286 patent/WO2010010952A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006041011A1 (ja) * | 2004-10-12 | 2006-04-20 | Taiyo Kagaku Co., Ltd. | ポリグリセリン脂肪酸エステルおよびこれを含有する組成物 |
JP2008081559A (ja) * | 2006-09-26 | 2008-04-10 | Nippon Shokubai Co Ltd | バイオディーゼル燃料組成物およびその製造方法 |
JP2008143939A (ja) * | 2006-12-06 | 2008-06-26 | Lion Corp | 脂肪酸アルキルエステル組成物 |
JP2008291116A (ja) * | 2007-05-24 | 2008-12-04 | Nippon Shokubai Co Ltd | バイオディーゼル燃料用添加剤及びその添加剤を含んでなる燃料 |
Non-Patent Citations (1)
Title |
---|
HENDRICKSON: "The Determination of Primary Alcohol Groups in Polyglycols Using Triphenylchloromethane", ANAL.CHEM., vol. 36, no. 1, 1964, pages 126 - 128 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2508991A (en) * | 2011-06-01 | 2014-06-18 | Total Sa | Subsea electrical architectures |
GB2508991B (en) * | 2011-06-01 | 2016-06-29 | Total Sa | Subsea electrical architectures |
WO2016156302A1 (en) * | 2015-03-30 | 2016-10-06 | Dupont Nutrition Biosciences Aps | Fuel compositions comprising polyglycerol esters of a fatty acid |
Also Published As
Publication number | Publication date |
---|---|
JP4443629B2 (ja) | 2010-03-31 |
JPWO2010010952A1 (ja) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moser | Biodiesel production, properties, and feedstocks | |
Dunn | Effects of minor constituents on cold flow properties and performance of biodiesel | |
US8673029B2 (en) | Use of fuels or fuel additives based on triglycerides of modified structure and process for their preparation | |
Chen et al. | Biodiesel production from tung (Vernicia montana) oil and its blending properties in different fatty acid compositions | |
ES2593283T3 (es) | Método para la producción de ésteres alquílicos de ácidos grasos | |
Man et al. | A Brønsted ammonium ionic liquid-KOH two-stage catalyst for biodiesel synthesis from crude palm oil | |
CA2501105C (en) | Use of a mixture of esters of fatty acids as a fuel or solvent | |
Chen et al. | From ethyl biodiesel to biolubricants: Options for an Indian mustard integrated biorefinery toward a green and circular economy | |
JP4443628B2 (ja) | 油脂結晶成長抑制剤 | |
JP2006348294A (ja) | ヤシ由来バイオディーゼル組成物 | |
EP2850162A1 (en) | Ester compound of a polyoly and fatty acid oligomer for use as a cold flow improver in fuel compositions | |
Hakimi et al. | Engine-compatible biodiesel from Leucaena leucocephala seed oil | |
JP4443629B2 (ja) | 脂肪酸アルキルエステル用曇り点降下剤 | |
Shah et al. | Synthesis of jatropha oil based biodiesel using environmentally friendly catalyst and their blending studies with diesel | |
JP5197947B2 (ja) | 脂肪酸アルキルエステル組成物 | |
US11591545B2 (en) | Method of producing biodiesel | |
WO2009133846A1 (ja) | 脂肪酸アルキルエステルの製造方法及び脂肪酸アルキルエステルの製造用触媒 | |
JP5394104B2 (ja) | 絶縁油用組成物 | |
WO2008053837A1 (fr) | Carburant | |
US20080120899A1 (en) | Biofuel | |
Abdo Ahmed et al. | Synthesis and characterization of dicarboxylate esters as environmentally friendly palm biodiesel pour point depressants | |
JP6470069B2 (ja) | 油脂結晶成長抑制剤、及び該剤を含有する油脂組成物 | |
Sern et al. | Synthesis of palmitic acid-based esters and their effect on the pour point of palm oil methyl esters | |
CN111303951A (zh) | 含混合草酸酯的清洁柴油新体系 | |
Chi | The production of methyl esters from vegetable oil/fatty acid mixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2009546543 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09800466 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09800466 Country of ref document: EP Kind code of ref document: A1 |