[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010001896A1 - インクジェット記録装置、その制御方法及びプログラム - Google Patents

インクジェット記録装置、その制御方法及びプログラム Download PDF

Info

Publication number
WO2010001896A1
WO2010001896A1 PCT/JP2009/061966 JP2009061966W WO2010001896A1 WO 2010001896 A1 WO2010001896 A1 WO 2010001896A1 JP 2009061966 W JP2009061966 W JP 2009061966W WO 2010001896 A1 WO2010001896 A1 WO 2010001896A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
ink
ejection port
ejection
data
Prior art date
Application number
PCT/JP2009/061966
Other languages
English (en)
French (fr)
Inventor
孝 落合
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2010001896A1 publication Critical patent/WO2010001896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/15Arrangement thereof for serial printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules

Definitions

  • the present invention relates to an ink jet recording apparatus having a so-called long connecting head in which a plurality of recording chips each having a plurality of ejection port arrays arranged substantially in parallel are connected in the direction of the ejection port array, a control method thereof, and a program.
  • a recording device used as an output device such as a printer, a copying machine, or a composite electronic device including a computer or a word processor, or a workstation, has an image (including characters and symbols) on a recording medium such as paper based on the recorded information.
  • a recording apparatus is classified into an ink jet type, a wire dot type, a thermal type, a laser beam type, and the like according to a recording method.
  • an ink jet recording apparatus uses an ink jet recording head (hereinafter referred to as a recording head) as a recording unit, and ejects ink from a discharge port of the recording head toward a recording medium. And recording.
  • a recording head an ink jet recording head
  • Such an ink jet recording apparatus is easy to downsize the recording head, can form high-definition images at high speed, can record on so-called plain paper without requiring special processing, and has low running cost. It has the advantage of being.
  • noise since it is a non-impact method, noise is low, it is easy to adopt a configuration for forming a color image using multi-color ink, and a configuration corresponding to recording on a large recording medium It has the advantage that it is easy to.
  • serial type ink jet recording apparatus that performs recording while scanning in the main scanning direction that intersects the conveyance direction (sub-scanning direction) of the recording medium, an image is recorded using a recording head that moves along the recording medium. That is, every time the recording operation for one main scan is completed by the recording head, the recording medium is conveyed by a predetermined amount, thereby performing recording on the entire recording medium.
  • the recording medium is set at a predetermined position, and the recording medium is Recording is performed on the entire recording medium by continuously performing a recording operation for one line while being conveyed.
  • a full-line type ink jet recording apparatus is capable of further increasing the speed of image formation, and has recently attracted attention as a recording apparatus for on-demand recording, for which demand is increasing (for example, Patent Documents). 1).
  • a full-line type recording apparatus for on-demand recording for mono-color recording such as text, for example, 30 pages or more per minute on an A3 size recording medium with a resolution of 600 ⁇ 600 dpi (dots / inch) or more. Recording is required.
  • a full-color image such as a photograph, it is required to record at a high resolution of, for example, 1200 ⁇ 1200 dpi on an A3 size recording medium at 30 pages or more per minute.
  • a recording head used in a full-line type recording apparatus it is possible to process all of the ink jet recording elements positioned over the entire width of the recording area of the recording medium, in particular, all the ejection openings forming part of the ink jet recording elements without any defects.
  • in a full-line type recording apparatus in order to perform recording at a resolution of 1200 dpi on A3 size paper, it is necessary to form about 14,000 discharge ports (recording width about 280 mm) in the recording head. It becomes. Processing all of such a large number of discharge ports without one defect is difficult in terms of the manufacturing process. Even if such a recording head can be manufactured, the yield rate is low and the manufacturing cost is high.
  • the connecting head is a recording head formed by connecting, in the direction of the discharge port array, a plurality of recording chips in which a plurality of discharge port arrays in which a plurality of recording elements are arranged are arranged substantially in parallel.
  • a longer length is realized by arranging these chips with high accuracy so that a plurality of relatively inexpensive short-chip-type recording heads used in the serial type are connected in the direction of the discharge port array. Recording head.
  • connection head configuration as a full-line type recording head has been described here, a so-called serial type recording head can also be made longer by the connection head configuration.
  • connection head has a problem that a so-called connection streak is likely to occur due to its configuration.
  • the connecting stripe is a deterioration in image quality at a portion where the end portions of the ejection port array are adjacent to each other between the recording chips. This is caused by variations in the conveyance of the recording medium of the recording apparatus (so-called conveyance meandering) and an inclination that occurs in the relative positional relationship between the full-line type recording head and the recording medium. Because of these effects, the discharge port pitch formed by the discharge ports of the adjacent recording elements in the connection portion is not the same as the other discharge port pitch, and corresponds to the connection portion of the recording chip on the recorded image. May occur.
  • connection head Due to the structure of the connection head, the distance between the discharge port arrays used for recording at the connection portion in the discharge port array direction is often larger than the discharge port array used for recording at the non-connection portion. For this reason, it is considered that one of the reasons is that the connecting portion is easily influenced by the above-described meandering and tilting.
  • FIG. 7 is an explanatory diagram showing the magnitude of the inter-column distance in the connecting portion and the degree of occurrence of connecting stripes.
  • FIGS. 7A and 7B respectively show a case where the distance between the columns of the connecting portion is small and a case where the distance is large.
  • FIG. 7A shows a case where there is no inclination (relationship between the recording head and the recording medium). If there is no inclination, the landing position deviation that causes the connecting stripe does not occur due to the effect of the inter-column distance.
  • FIG. 7 shows a case where there is no inclination (relationship between the recording head and the recording medium). If there is no inclination, the landing position deviation that causes the connecting stripe does not occur due to the effect of the inter-column distance.
  • FIG. 7A shows a case where there is no inclination (relationship between the recording head and the recording medium). If there is no inclination, the landing position deviation that causes the connecting stripe does not occur due to the effect of
  • FIG. 7B shows a case where there is an inclination (relationship between the recording head and the recording medium).
  • the inter-column distance of the connecting portion is larger, the displacement of the connecting portion becomes larger due to the same degree of inclination. I understand that. That is, the shift of the connecting portion increases in proportion to the distance between the rows of the connecting portion.
  • FIG. 7B shows an example of the slope when the recording density of the joint portion is low, but the stripe when the recording density of the joint portion is high when the opposite slope occurs is shown. Even in such a case, it goes without saying that the shift of the connecting portion increases in proportion to the inter-column distance.
  • the discharge ports at the respective chip ends are not arranged so as to be adjacent to each other in the discharge row direction, and a predetermined number of the discharge ports at the respective chip ends are conveyed.
  • the ejection data patterns to be recorded in the overlapping portion are allocated to both ejection ports that overlap each other so that they are mutually exclusive. Such allocation can be realized by performing processing such as data allocation masking.
  • the appearance of the connecting stripe varies depending on the color of the ink when recording the connecting portion. That is, when recording is performed with dark ink, for example, black ink, even when a slight deviation of several micron level occurs between the ejection port arrays constituting the chips, it is very easy to visually recognize. The reason is considered that there is a large difference in contrast between the recording medium having a color close to white and the ink color. On the other hand, when recording is performed with light-colored ink, for example, yellow ink, even if a deviation of about several tens of microns occurs between the ejection port arrays constituting the chips, it is difficult to visually recognize.
  • the reason is considered that the difference in contrast between the recording medium having a color close to white and the color of ink is generally small.
  • the expression that the color of the ink is dark or light means that when the same DUTY, for example, a 100% patch is applied and the color is measured under the same conditions, the color of the ink having a lower brightness is darker.
  • the opposite is qualitatively expressed that the ink color is light.
  • the present invention has been made in view of the above-described problems, and while maintaining a high-speed recording using a recording head that is elongated by a connection configuration, the occurrence of connection stripes is suppressed and the recorded image is recorded.
  • the purpose is to achieve high image quality.
  • the ink jet recording apparatus of the present invention includes a plurality of recording chips in the direction of the ejection port array that enable recording for at least two colors, in which a plurality of ejection port arrays for ejecting one color of ink per row are arranged substantially in parallel.
  • An inkjet recording apparatus comprising a recording head connected to perform recording by relatively moving the recording head and a recording medium in a main scanning direction that is a direction substantially orthogonal to the ejection port array direction,
  • the ejection port arrays that are responsible for discharging ink with high lightness when recording the same driving amount are the ejection ports that are responsible for discharging ink with low lightness when recording the same driving amount
  • a gradation information acquiring unit configured to acquire a gradation information of each ink color at a connecting portion of the recording chip, and having a configuration in which a distance between the columns in the main scanning direction is increased compared to the columns;
  • a linking part data processing unit that generates ejection data from the data and distributes the ejection data to each of the ejection port arrays, and performs correction processing according to the gradation information acquired by the gradation information acquisition unit in the process; It is characterized by that.
  • the control method of the ink jet recording apparatus includes a plurality of discharge port arrays for discharging one color of ink per column arranged substantially in parallel so that a recording chip capable of recording at least two colors is arranged in the discharge port array direction.
  • the main scanning direction includes a recording head having a configuration in which the inter-column distance in the main scanning direction, which is a direction substantially orthogonal to the ejection port array direction, is separated from the ejection port arrays that are responsible for discharging ink with low brightness.
  • a method of controlling an ink jet recording apparatus that performs recording by relatively moving the recording head and a recording medium, and acquiring gradation information of each ink color at a connecting portion of the recording chip; Together to generate ejection data from the elephant picture data to distribute to the each discharge port array, and having a process of performing correction processing according to the acquired gradation information in the process.
  • the program according to the present invention is a recording in which a plurality of recording chips that enable recording for at least two colors, in which a plurality of ejection port arrays that eject ink of one color per row are arranged in parallel, are connected in the ejection port array direction.
  • the ejection port arrays that are responsible for ejecting ink with high brightness when the same ejection amount is recorded at the connecting portion of the recording chip by the head are used for ink with low brightness when the same ejection amount is recorded.
  • a program for controlling an ink jet recording apparatus that performs recording by moving relative to a medium, a process for acquiring gradation information of each ink color at a connecting portion of the recording chip, and a target image While distributing said each outlet row to generate ejection data from over data to execute the correction process as performed according to the the acquired gradation information in the process on the computer.
  • the present invention it is possible to achieve high image quality of recorded images by suppressing the generation of connecting stripes while realizing high-speed recording using a recording head that is elongated by the connecting configuration.
  • FIG. 1 is an external perspective view illustrating a configuration of a main part of an ink jet printer according to a first embodiment.
  • FIG. 3 is an exploded perspective view illustrating a configuration example of a main part of the recording head according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a control system in the ink jet printer according to the first embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of a recording head according to the first embodiment.
  • FIG. 6 is a diagram illustrating another configuration example of a recording head. It is a schematic diagram showing in detail the state of the ejection port arrays of adjacent recording chips.
  • FIG. 1 is an external perspective view showing a configuration of a main part of an ink jet printer (ink jet recording apparatus) IJRA according to an embodiment to which the present invention is applied.
  • the inkjet printer according to the present embodiment has a configuration in which a full-line recording head IJH that discharges ink is disposed over the entire width of a recording medium P (here, a foldable continuous sheet). It has become. Ink is ejected toward the recording medium P from the ejection port of the recording head chip IT of the recording head IJH at a predetermined timing.
  • the recording head IJH thus configured is moved relative to the recording medium P to perform recording.
  • the recording paper P is conveyed in the VS direction shown in FIG. 1 (main scanning direction in the full-line type) by driving the conveyance motor under the control of the control circuit described below.
  • An image is recorded.
  • reference numeral 5018 denotes a conveyance roller.
  • a discharge roller 5019 holds the recording medium P at the recording position together with the conveying roller 5018, and conveys the recording medium P in the direction of the arrow VS in conjunction with the conveying roller 5018 driven by a drive motor (not shown). To do.
  • An ink supply tube (not shown) is connected to the recording head IJH, and ink is ejected from the ink jet recording element.
  • a heating element (electric / thermal energy converter) that generates thermal energy used for ink ejection is provided in the interior (liquid path) communicating with the ink ejection port.
  • the ink discharge port surface is sealed by a cap portion (not shown) of the capping unit, so that the ink sticks due to evaporation of the ink solvent or the adhering foreign matter such as dust. Clogging due to such as is prevented.
  • the cap portion of the capping means is a cap portion for discharging ink that does not contribute to image recording from the ink discharge port (preliminary discharge) for eliminating discharge defects and clogging of the ink discharge port that is not frequently used. It can be used for discharging toward the water.
  • a negative pressure generated by a pump is introduced into the cap portion in the capping state, and ink that does not contribute to image recording is sucked and discharged into the cap portion from the ink discharge port of the recording head IJH. It is also possible to recover the ink ejection port that caused the ejection failure. Further, by disposing a blade (wiping member) (not shown) at a position adjacent to the cap portion, it is possible to clean (wipe) the formation surface of the ink discharge port in the recording head IJH.
  • FIG. 1 a foldable continuous sheet is illustrated as the recording medium P, but there is no problem even if it is a cut sheet.
  • a configuration including one full line recording head IJH is illustrated, a configuration in which, for example, two full line recording heads having the same configuration are provided for high-quality recording and high-speed recording.
  • FIG. 2 is an exploded perspective view illustrating a configuration example of a main part of the above-described recording head IJH.
  • the recording head IJH includes a heater board 23 that is a substrate on which a plurality of heaters (heating elements) 22 for heating ink are formed, and a top plate 24 that covers the heater board 23 as main elements. Is done.
  • a plurality of discharge ports 25 are formed in the top plate 24, and a tunnel-like liquid path 26 communicating with each discharge port 25 is formed behind each discharge port 25.
  • Each liquid path 26 is commonly connected to one ink liquid chamber at the rear thereof. Then, ink is supplied to the ink liquid chamber via an ink supply port, and this ink is supplied from the ink liquid chamber to each liquid path 26.
  • the discharge port 25 forms a discharge port capable of discharging ink.
  • each heater 22 is positioned at a position corresponding to each liquid passage 26.
  • four discharge ports 25, heaters 22, and liquid paths 26 are representatively shown, and one heater 22 is arranged corresponding to each liquid path 26.
  • the recording head IJH assembled as shown in FIG. 2 when a predetermined drive pulse is supplied to the heater 22, the ink on the heater 22 boils to form bubbles, and the volume expansion of the bubbles. As a result, the ink is pushed out from the ejection port 25 and ejected.
  • the ink jet recording system to which the present invention can be applied is not limited to the bubble jet (registered trademark) system using a heating element (heater) as shown in FIG.
  • the present invention can be applied to an ink jet system that ejects ink using mechanical pressure by a piezoelectric element.
  • an ink jet system that ejects ink using mechanical pressure by a piezoelectric element.
  • a charge control type in which ink droplets are continuously ejected into particles
  • there are a charge control type and a divergence control type there are a charge control type and a divergence control type.
  • an on-demand type that ejects ink droplets as necessary, it can also be applied to a pressure control system that ejects ink droplets from an orifice by mechanical vibration of a piezoelectric vibration element.
  • the present invention is applicable to a recording head including various ink jet recording elements.
  • FIG. 3 is a block diagram illustrating a configuration example of a control system in the ink jet printer according to the present embodiment.
  • 31 is an image data input unit
  • 32 is an operation unit
  • 33 is a CPU unit for performing various processes
  • 34 is a storage medium for storing various data.
  • the print information storage memory of the storage medium 34 stores information 34a mainly relating to the type of the recording medium, information 34b relating to ink used for printing, and information 34c relating to the environment such as temperature and humidity during recording.
  • the storage medium 34 stores various control program groups 34d.
  • 35 is a RAM
  • 36 is an image data processing unit
  • 37 is an image recording unit for outputting an image
  • 38 is a bus unit for transferring various data.
  • the image data input unit 31 inputs multi-value image data from an image input device such as a scanner or a digital camera, or multi-value image data stored in a hard disk of a personal computer.
  • the operation unit 32 includes various keys for instructing various parameter settings and recording start.
  • the CPU 33 controls the entire printer according to various programs in the storage medium.
  • the storage medium 34 stores a program for operating the printer in accordance with a control program and an error processing program. All operations in this example are operations according to this program.
  • As the storage medium 34 for storing such a program ROM, FD, CD-ROM, HD, memory card, magneto-optical disk, or the like can be used.
  • the RAM 35 is used as a work area for various programs in the storage medium 34, a temporary save area for error processing, and a work area for image processing.
  • the RAM 35 can also copy various tables in the storage medium 34, change the contents of the tables, and proceed with image processing while referring to the changed tables.
  • the image data processing unit 36 applies various image processing such as color matching processing, color separation processing, output ⁇ correction, resolution conversion, and the like to the data input by the image data input unit 31 and then inputs the multivalue
  • the image data is quantized into N-value image data for each pixel.
  • a dot arrangement pattern corresponding to the gradation value is selected based on the gradation value “N” indicated by each quantized pixel. Since this dot arrangement pattern is a binary pattern indicating whether or not dots are recorded, binary ejection data can be obtained by selecting the dot arrangement pattern.
  • the image data processing unit 36 performs N-ary processing on the input multi-value image data, and then creates binary ejection data based on the N-value image data. For example, when multi-value image data expressed in 8 bits (256 gradations) is input to the image data input unit 31, the image data processing unit 36 quantizes the gradation value of the output image data to 25 values. Next, the image data processing unit 36 assigns a dot arrangement pattern to the 25-value image data, thereby generating binary ejection data indicating ink ejection / non-ejection. Thereafter, binary ejection data is distributed to a plurality of ejection port arrays, and binary ejection data corresponding to the ejection ports of each ejection port array is determined.
  • the multilevel error diffusion method is used for the N-value processing of the input gradation image data.
  • the present invention is not limited to this, and an arbitrary halftone processing method such as an average density storage method or a dither matrix method is used. be able to.
  • the image data processing unit 36 only needs to be able to finally create binary ejection data from multi-value image data, and it is not essential to interpose the N-value conversion process as described above.
  • a binarization process may be performed in which multi-value image data input to the image data processing unit 36 is directly converted into binary ejection data.
  • the image recording unit 37 ejects ink from the corresponding ejection port 25 based on the binary ejection data created by the image data processing unit 36 to form a dot image on the recording medium.
  • the bus line 38 transmits address signals, data, control signals, and the like in the apparatus.
  • FIG. 4 is a diagram showing a schematic configuration of the recording head IJH, and shows a plurality of recording head chips arranged in the recording head IJH and an ejection port array of each recording head chip.
  • the recording head IJH of the present embodiment includes chip-like component parts (hereinafter referred to as recording chips) 41 to 46 having a relatively short length in the ejection port array direction.
  • the recording head IJH includes recording chips 41 to 46 in which a plurality of ejection port rows (A row, B row, C row, and D row) that eject ink of one color per row are arranged in parallel in the ejection port row direction. Multiple connected.
  • Each discharge port array has a discharge port arranged on a straight line.
  • the recording chip 41 is described as 41A, 41B, 41C, 41D.
  • the long recording head IJH is formed by arranging the recording chips 41 to 46 in a staggered manner in the discharge port array direction. That is, the recording chip and the recording chip connected to the recording chip are arranged so as to be shifted in a direction substantially orthogonal to the ejection port array direction (main scanning direction), and the ejection port arrays partially overlap in the ejection port array direction. ing.
  • the configuration of the ejection port array of each of the recording chips 41 to 46 is the same, the configuration will be described taking the recording chip 41 as an example.
  • the recording chip 41 has four rows of ejection openings (41A, 41B, 41C, 41D), and each row has a plurality of ejection openings arranged at a resolution of 1200 dpi.
  • the A, B, C, and D columns which are ejection port arrays provided in the respective recording chips 41 to 46, have the same color (type) for each ejection port array in the recording head IJH. Ink is ejected.
  • the A column is black (Bk)
  • the B column is cyan (C)
  • the C column is magenta (M)
  • the D column is yellow (Y). It is configured.
  • the combination of the ink color at this time and the ejection port array that ejects the ink color is a characteristic part of the present invention.
  • the ejection port rows that are responsible for ejecting ink having higher brightness when the same driving amount is recorded are configured such that the distance between the rows in the recording medium conveyance direction is longer.
  • the recording medium is configured such that the shorter the distance between the ejection port arrays in the recording medium conveyance direction, the darker the ink is recorded.
  • the color density of ink when the same DUTY, for example, 100% patch is applied and colorimetry is performed under the same conditions, the ink having a lower lightness is a darker color.
  • each recording chip is composed of four ejection port arrays and records with four colors of ink.
  • the number of the discharge port rows of each recording chip as long as the characteristic part of the present invention of recording with darker ink is satisfied.
  • the number of inks can be arbitrary.
  • adjacent recording chips 51 and recording chips 52 are each composed of six ejection port arrays, and C, M, Y, Bk, LC (light cyan), and LM (light magenta). A configuration in which recording is performed with these six colors of ink may be used.
  • the distance between the rows of the ejection port arrays is smaller, that is, the ejection port arrays 51A and 52A, 51B and 52B, 51C and 52C, 51D and 52D, 51E and 52E, and 51F and 52F in this order.
  • the order is M, Lc, Lm, Y.
  • special colors such as red, blue, green, and light gray are included, they are included in the scope of the present invention as long as the relationship between the inter-column distance and the ink color as described above is satisfied.
  • the present invention is not limited to the recording with darker ink as the distance between the ejection opening arrays is shorter.
  • rows having a short distance between the ejection port rows are recorded with particularly dark ink (for example, Bk) among N color inks, and those having a long distance between the ejection port rows are particularly thin inks (for example, Bk). , Y, LC, LM).
  • the remaining columns are recorded with medium-color inks (for example, M, C, R, G, B), but for medium-color inks, Even if the positions are switched, the influence is small, so the positions of the columns may be arbitrary.
  • the distance between the discharge port arrays constituting the connecting portion is a point, and if the configuration includes a relationship in which the distance between the discharge port columns is different for each ink color, it is necessary to be in a nested state.
  • the present invention can be applied.
  • the ejection port arrays constituting the connecting portion may be in the same recording head or may be non-identical recording heads.
  • the number of recording chips in one recording head, that is, the number of portions corresponding to the connecting portion may be arbitrary.
  • FIG. 6 is a schematic diagram showing in detail the state of the ejection port arrays of the adjacent recording chip 41 and recording chip 42.
  • the recording chip 41 and the recording chip 42 are arranged such that predetermined ejection ports overlap in the ejection port array direction.
  • This overlapping portion is referred to as a connecting portion.
  • a portion other than the connecting portion is referred to as a non-connecting portion.
  • the recording chip 41 and the recording chip 42 are configured such that 32 ejection ports overlap each other in the ejection port array direction from the ejection ports located at the end in the ejection port array direction ( (Part of the illustration is omitted.)
  • the discharge ports of the overlapping portions in the connecting portion are on the same recording line, but this configuration is not necessarily required.
  • the recording resolution of the joint portion is doubled by shifting each half pitch, or a special configuration in which the resolution of the discharge port of the joint portion changes depending on the position,
  • the present invention can be applied without any problem as long as it is included in the category.
  • FIG. 8 is a flowchart of image data processing in the present embodiment. According to this flowchart, the recording data (binary discharge data) of each discharge port array in the connecting portion is determined. The flowchart here is executed by the image data processing unit 36 under the control of the CPU 33.
  • step S101 gradation information acquisition processing is performed for the joint portion.
  • tone information used in referring to the correction table in step S102 is obtained based on the multivalued image data decomposed corresponding to each ink color.
  • multilevel image data represented by 256 gradations from 0 to 255 is divided into 17 stages, and gradation information as to which stage it belongs to is obtained. This information is used when determining the correction amount of the joint data described below.
  • the processing in step S101 is an example of processing by the gradation information acquisition means referred to in the present invention.
  • step S102 based on the gradation information obtained in step S101 and the ink color information for recording the target image, reference is made to the correction table for the joint portion data.
  • FIG. 9 is an example of a correction table. For each ink color, reference is made to the ratio of the correction amount to the multi-value image data in the gradation.
  • the correction table stores data prepared in advance.
  • the correction table is created by performing linear interpolation on the data for 17 steps, but the number of gradation steps and the interpolation method are not particularly limited, and the correction table is appropriately created. Just do it.
  • the greater the distance between the discharge port rows at the joint the greater the displacement between the discharge port rows at the joint, so the greater the distance between the discharge port rows at the joint.
  • the idea is to hide the white-out connecting stripes.
  • a shift when the recording density of the joint portion becomes higher and a shift when the recording density becomes lower may occur. It has been found by the inventor's investigation that white streaks (concentrations appear to be thin) are often caused by deviation.
  • step S103 based on the reference information of the correction table obtained in step S102, the connecting portion data is corrected.
  • the corrected multi-value image data is obtained by multiplying the pixel value of the multi-value image data by the correction amount ratio described above.
  • what is necessary is just to perform a rounding calculation suitably, when a fraction arises by calculation.
  • step S104 the binarization processing of the corrected multi-value image data processed in step S103 is performed.
  • the binarization method is not particularly limited, such as an error diffusion method or an INDEX expansion method.
  • the multi-value image data is quantized into N-value data by the error diffusion method, and dot arrangement is performed on the N-value data. Binarization is performed by assigning patterns.
  • step S105 a connection part data distribution process is performed.
  • data is distributed at the connecting portions between the recording chips, and binary data to be recorded at the discharge ports constituting the connecting portions between the recording chips is masked using a separately prepared connecting portion distribution mask. It is assigned by processing or the like.
  • the mask pattern is not particularly limited, such as a checkered mask, a random mask, and a gradation mask that has fewer records at the end of each discharge port array.
  • the processing of these steps S102 to S105 is an example of processing by the connecting portion data processing means referred to in the present invention.
  • a printer having the same configuration as that of FIG. 1 described above was used, and the recording head IJH shown in FIG. 4 was provided.
  • the recording head was driven so that the amount of ejection from one ejection port was 2.8 pl.
  • an ink containing a color material a commercially available ink BCI-7 for an inkjet printer PIXUS iP7100 (manufactured by Canon Inc.) was used.
  • the relationship between each ejection port array and the ink color is as follows.
  • the A column is black (Bk)
  • the B column is cyan (C)
  • M magenta
  • D row was filled with ink so as to record yellow (Y) ink.
  • a photo glossy paper dedicated to inkjet (Pro Photo Paper, PR-101: manufactured by Canon Inc.) was prepared.
  • the ink droplet ejection drive frequency was 8 kHz
  • the recording resolution was 1200 dpi in the main scanning direction (printing medium conveyance direction) and 1200 dpi in the sub-scanning direction (ejection port array direction).
  • gradation patch image data with a recording duty varied (0 to 255 divided into 17 gradations) was prepared.
  • photographic image data including various duties other than the above 17 types of duty were prepared. At this time, the duty is the same for each ink color in a certain gradation.
  • the prepared patch image data was recorded by one relative movement (main scanning) between the recording head and the recording medium.
  • the binarization processing and data distribution processing of the patch image data were executed according to the flowchart of FIG. 8, and ink was ejected to record the patch image.
  • the connection table correction table shown in FIG. 9 was used.
  • FIG. 10 shows a schematic view of a print image for one gradation of halftone among patch images obtained by this recording, together with a diagram of the head configuration. As can be seen from FIG. 10, according to the above-described recording method, it is possible to suppress the generation of connecting stripes between the recording chips.
  • photographic image data including various duties other than the 17 types of duty was recorded. Also in this case, the binarization processing and data distribution processing of the image data were executed according to the flowchart of FIG. Even in this case, as in the case of recording the patch image, the connecting stripes between the recording chips were hardly visually recognized, and an image with satisfactory image quality with little image quality deterioration could be recorded.
  • ⁇ Comparative example> 11 and 12 are diagrams for explaining a comparative example for comparison with the embodiment of the present invention. Also in this comparative example, the same recording head as that shown in FIG. 4 is used, but the order of inks recorded in each ejection port array is different. That is, in each of the recording chips 41 to 46, the ink is recorded so that the A column is yellow (Y), the B column is magenta (M), the C column is cyan (C), and the D column is black (Bk). Filled.
  • a specific comparative example is shown below.
  • Various conditions for recording are the same as those in the example except for the contents described above. That is, the printer having the same configuration as that of FIG. 1 described above was used, and the recording head IJH shown in FIG. 4 was provided. The recording head was driven so that the amount of ejection from one ejection port was 2.8 pl.
  • As an ink containing a color material a commercially available ink BCI-7 for an inkjet printer PIXUS iP7100 (manufactured by Canon Inc.) was used.
  • As the recording medium P photo glossy paper dedicated to inkjet (Pro Photo Paper, PR-101: manufactured by Canon Inc.) was prepared.
  • the ink droplet ejection drive frequency was 8 kHz
  • the recording resolution was 1200 dpi in the main scanning direction (printing medium conveyance direction) and 1200 dpi in the sub-scanning direction (ejection port array direction).
  • gradation patch image data with a recording duty varied (0 to 255 divided into 17 gradations) was prepared. At this time, the duty is the same for each ink color in a certain gradation.
  • photographic image data including various duties other than the above 17 types of duty were prepared.
  • the prepared patch image data was recorded by one relative movement (main scanning) between the recording head and the recording medium.
  • FIG. 12 shows a schematic diagram of a print image for one gradation of halftones in the patch image obtained by this recording, together with a diagram of the head configuration.
  • FIG. 12 in this comparative example, the occurrence of a connecting stripe between the recording chips is confirmed.
  • the appearance of the connecting stripes is shown as a schematic diagram, and the actual appearance is not necessarily reproduced exactly.
  • the head configuration is such that, as the distance between the ejection port arrays in the main scanning direction is shorter, the darker ink is recorded, and the correction process in the connecting portion data distribution process is the distance between the ejection port arrays.
  • a head configuration that prints with darker ink as the distance between the ejection port arrays in the main scanning direction which is a characteristic part of the present invention, is shorter, and By appropriately performing the correction processing of the connecting portion data, the generation of connecting stripes was suppressed.
  • the former can be applied only to a head configuration that records with darker ink as the distance between the ejection port arrays is shorter.
  • the connecting stripes can be sufficiently suppressed. In such a case, the correction process of the joint data is not applied, that is, corresponds to a correction amount of 0, which is within the scope of the present invention.
  • the form of the recording head having a head configuration in which the position of the connecting portion of the ejection port array is the same in the direction of the ejection port array in any ink color is shown.
  • the present invention can be applied even to a recording head having a different head configuration for each ink color.
  • FIG. 13 is a schematic diagram of a head configuration in which the position of the connecting portion is different for each ink color.
  • the configuration is the same as that of the first embodiment except that the configuration of the head is different.
  • the connecting position of each ink color is different, so when performing correction processing of connecting portion data for each ink color, it is not affected by the occurrence of connecting stripes of other ink colors. There is an effect that the accuracy is increased.
  • the head configuration of the ejection port array itself is connected in the same manner as in FIG. 13 by appropriately limiting the ejection ports to be used in the configuration in which the end portions of the ejection port arrays are arranged in the sub-scanning direction as shown in FIG. Even if the positions of the portions are different for each ink color, there is no problem. By taking this method, there is an advantage that a general-purpose recording chip can be diverted.
  • the head configuration becomes larger.
  • the connecting line is less noticeable, and the connecting part of some colors is the same, for example, yellow and magenta have the same connecting position. In some cases. Even in this case, it is within the scope of the present invention, and there is no problem with other configurations.
  • the correction processing of the joint data is applied to the multi-value image data.
  • the correction process may be performed.
  • a method of appropriately increasing / decreasing the data after the binarization processing in order to correct the connection portion data will be described.
  • the arrangement of the pattern after binarization is somewhat disrupted, but it is suitable as long as it is possible to alleviate the connecting stripes at the connecting portion intended by the present invention. Correction may be performed.
  • FIG. 14 is a flowchart of image data processing in the present embodiment. According to this flowchart, the recording data (binary discharge data) of each discharge port array in the connecting portion is determined. The flowchart here is executed by the image data processing unit 36 under the control of the CPU 33.
  • step S201 multi-valued image data that has undergone color separation is given to each ink color data as input, and binarization processing is performed.
  • the binarization method is not particularly limited, such as an error diffusion method and an INDEX expansion method.
  • the multi-value image data is quantized into N-value data by the error diffusion method, and the N-value data It is binarized by assigning a dot arrangement pattern to.
  • step S202 gradation information acquisition processing for the joint portion is performed.
  • tone information used in referring to the correction table in step S203 is obtained based on the binarized data obtained in the binarization process in step S201.
  • multilevel image data represented by 256 gradations from 0 to 255 is divided into 17 stages, and gradation information as to which stage it belongs to is obtained. This information is used when determining the correction amount of the data of the connecting portion shown below.
  • the process in step S201 is an example of the process performed by the gradation information acquisition unit referred to in the present invention.
  • step S203 based on the gradation information obtained in step S202 and the information on the ink color for recording the target image, the correction table for the connecting portion data is referred to.
  • the correction table may be the same as that described with reference to FIG.
  • For each ink color reference is made to the ratio of the correction amount (increase / decrease in the number of recording dots) to the binary data in the gradation.
  • the correction table stores data prepared in advance.
  • the correction table is created by performing linear interpolation on the data for 17 steps, but the number of gradation steps and the interpolation method are not particularly limited, and the correction table is appropriately created. Just do it.
  • the greater the distance between the discharge port rows at the joint the greater the displacement between the discharge port rows at the joint, so the greater the distance between the discharge port rows at the joint. Increase the amount of recording, to record more. As a result, the idea is to hide the white-out connecting stripes.
  • step S204 based on the reference information of the correction table obtained in step S203, correction processing for the joint portion data is performed. Specifically, the number of recording dots in the binary data is increased or decreased based on the above-described correction amount ratio (increasing or decreasing the number of recording dots).
  • step S205 a connection part data distribution process is performed.
  • data is distributed at the connecting portions between the recording chips, and binary data to be recorded at the discharge ports constituting the connecting portions between the recording chips is masked using a separately prepared connecting portion distribution mask. It is assigned by processing or the like.
  • the mask pattern is not particularly limited, such as a checkered mask, a random mask, and a gradation mask that has fewer records at the end of each discharge port array.
  • the processing of these steps S201, S203, S204, and S205 is an example of processing by the connecting portion data processing means referred to in the present invention.
  • the gradation information acquisition process of the joint portion in step 202 is performed based on the binary data after the binarization process in step S201, but the multi-value image data before applying step 201 is used. Therefore, the gradation information of the joint portion may be acquired.
  • the correction process of the connection part data in step 204 is performed before the connection part data distribution process in step S205. Conversely, after the connection part data distribution process is performed, the correction process of the connection part data is performed. You may do it.
  • connection head configuration in the recording head of the full-line type inkjet recording apparatus has been described.
  • the present invention can also be applied to a case where a connection head configuration is adopted in a recording head of a serial type ink jet recording apparatus that discharges a recording medium while scanning the carriage in the main scanning direction.
  • FIG. 15 is a schematic view showing one configuration of a serial type ink jet recording apparatus.
  • the serial type recording head 1501 performs recording by reciprocating in the main scanning direction while the carriage 1502 is supported by the shaft 1503.
  • the recording head 1501 of the present embodiment includes chip-shaped components (hereinafter referred to as recording chips) 151 and 152 having a relatively short length in the ejection port array direction.
  • the recording head 1501 includes recording chips 151 and 152 in which a plurality of ejection port rows (A row, B row, C row, and D row) that eject ink of one color per row are arranged substantially in parallel in the ejection port row direction. Connected. Each of the ejection port arrays is formed by arranging ejection ports on a straight line.
  • the recording chip 151 is described as 151A, 151B, 151C, 151D.
  • the recording chip 151 and the recording chip 152 are arranged so as to be shifted in a direction (main scanning direction) substantially orthogonal to the ejection port array direction, and the ejection port arrays partially overlap in the ejection port array direction. It is configured.
  • the configuration of the ejection port arrays of the recording chips 151 and 152 is the same, the configuration will be described by taking the recording chip 151 as an example.
  • the recording chip 151 has four discharge port arrays (151A, 151B, 151C, and 151D), and each of the columns has a plurality of discharge ports arranged at a resolution of 1200 dpi.
  • the A, B, C, and D rows which are ejection port arrays provided in the respective recording chips 151 and 152, have the same color (type) for each ejection port array in the recording head 1501. Ink is ejected.
  • the A column is black (Bk)
  • the B column is cyan (C)
  • the C column is magenta (M)
  • the D column is yellow (Y). It is configured.
  • the combination of the ink color at this time and the ejection port array that ejects the ink color is a characteristic part of the present invention.
  • the ejection port rows that are responsible for ejecting ink having higher brightness when the same driving amount is recorded are configured such that the distance between the rows in the recording medium conveyance direction is longer.
  • the recording medium is configured such that the shorter the distance between the ejection port arrays in the recording medium conveyance direction, the darker the ink is recorded.
  • the color density of ink when the same DUTY, for example, 100% patch is applied and colorimetry is performed under the same conditions, the ink having a lower lightness is a darker color.
  • each recording chip is composed of four ejection port arrays and records with four colors of ink.
  • the number of the discharge port rows of each recording chip as long as the characteristic part of the present invention of recording with darker ink is satisfied.
  • the number of inks can be arbitrary.
  • adjacent recording chips 51 and recording chips 52 are each composed of six ejection port arrays, and C, M, Y, Bk, LC (light cyan), and LM (light magenta). A configuration in which recording is performed with these six colors of ink may be used.
  • the distance between the rows of the ejection port arrays is smaller, that is, the ejection port arrays 51A and 52A, 51B and 52B, 51C and 52C, 51D and 52D, 51E and 52E, and 51F and 52F in this order.
  • the order is M, Lc, Lm, Y.
  • special colors such as red, blue, green, and light gray are included, they are included in the scope of the present invention as long as the relationship between the inter-column distance and the ink color as described above is satisfied.
  • the distance between the discharge port arrays constituting the connecting portion is a point, and if the configuration includes a relationship in which the distance between the discharge port columns is different for each ink color, it is necessary to be in a nested state.
  • the present invention can be applied.
  • the ejection port arrays constituting the connecting portion may be in the same recording head or may be non-identical recording heads.
  • the number of recording chips in one recording head, that is, the number of portions corresponding to the connecting portion may be arbitrary.
  • FIG. 16 is a schematic diagram showing in detail the state of the ejection port arrays of the adjacent recording chip 151 and recording chip 152.
  • the recording chip 151 and the recording chip 152 are arranged so that predetermined ejection ports overlap in the ejection port array direction.
  • This overlapping portion is referred to as a connecting portion.
  • a portion other than the connecting portion is referred to as a non-connecting portion.
  • the recording chip 151 and the recording chip 152 are configured such that 32 ejection ports in the ejection port array direction overlap each other from the ejection ports located at the end in the ejection port array direction ( (Part of the illustration is omitted.)
  • the discharge ports of the overlapping portions in the connecting portion are on the same recording line, but this configuration is not necessarily required.
  • the recording resolution of the joint portion is doubled by shifting each half pitch, or a special configuration in which the resolution of the discharge port of the joint portion changes depending on the position,
  • the present invention can be applied without any problem as long as it is included in the category.
  • FIG. 17 is a flowchart of image data processing in the present embodiment. According to this flowchart, the recording data (binary discharge data) of each discharge port array in the connecting portion is determined. Basically, it is the same as the image data processing described in the first embodiment, but a pass decomposition process in multi-pass printing unique to a serial type printing apparatus is added.
  • step S1001 a gradation information acquisition process is performed for the joint portion.
  • tone information used in referring to the correction table in step S1002 is obtained based on the multivalued image data decomposed corresponding to each ink color.
  • multilevel image data represented by 256 gradations from 0 to 255 is divided into 17 stages, and gradation information as to which stage it belongs to is obtained. This information is used when determining the correction amount of the joint data described below.
  • the process in step S1001 is an example of the process performed by the gradation information acquisition unit referred to in the present invention.
  • step S1002 based on the gradation information obtained in step S1001 and the information on the ink color for recording the target image, the correction table for the connecting portion data is referred to.
  • the correction table may be provided as appropriate as in the first embodiment. For each ink color, reference is made to the ratio of the correction amount to the multi-value image data in the gradation.
  • the correction table stores data prepared in advance.
  • the correction table is created by performing linear interpolation on the data for 17 steps, but the number of gradation steps and the interpolation method are not particularly limited, and the correction table is appropriately created. Just do it.
  • the greater the distance between the discharge port rows at the joint the greater the displacement between the discharge port rows at the joint, so the greater the distance between the discharge port rows at the joint.
  • the idea is to increase the amount of recording so as to record more (to eliminate the appearance of blank connecting lines).
  • a shift when the recording density of the joint portion becomes higher and a shift when the recording density becomes lower may occur. It has been found by the inventor's investigation that white streaks (concentrations appear to be thin) are often caused by deviation.
  • step S1003 based on the reference information of the correction table obtained in step S1002, correction processing for the joint portion data is performed.
  • the corrected multi-value image data is obtained by multiplying the pixel value of the multi-value image data by the correction amount ratio described above.
  • what is necessary is just to perform a rounding calculation suitably, when a fraction arises by calculation.
  • step S1004 binarization processing of the corrected multi-valued image data processed in step S1003 is performed.
  • the binarization method is not particularly limited, such as an error diffusion method or an INDEX expansion method.
  • the multi-value image data is quantized into N-value data by the error diffusion method, and dot arrangement is performed on the N-value data. Binarization is performed by assigning patterns.
  • step S1005 a pass decomposition process in multipass printing is performed.
  • a conventional method such as pass mask processing may be applied.
  • step S1006 a connection part data distribution process is performed.
  • data is distributed at the connecting portions between the recording chips, and binary data to be recorded at the discharge ports constituting the connecting portions between the recording chips is masked using a separately prepared connecting portion distribution mask. It is assigned by processing or the like.
  • the mask pattern is not particularly limited, such as a checkered mask, a random mask, and a gradation mask that has fewer records at the end of each discharge port array.
  • the processing of these steps S1002 to S1006 is an example of processing by the connecting portion data processing means referred to in the present invention.
  • a printer having the same configuration as in FIG. 15 described above was used, and the recording head 1501 shown in FIG. 15 was provided.
  • the recording head was driven so that the amount of ejection from one ejection port was 2.8 pl.
  • the ink containing the color material a commercially available ink BCI-7 for the ink jet printer PIXUS iP7100 (manufactured by Canon Inc.) was used.
  • the relationship between each ejection port array and the ink color is as follows.
  • the A column is black (Bk)
  • the B column is cyan (C)
  • M magenta
  • D row was filled with ink so as to record yellow (Y) ink.
  • photo glossy paper dedicated to inkjet was prepared.
  • the ink droplet ejection drive frequency was 15 kHz
  • the recording resolution was 1200 dpi in the main scanning direction and 1200 dpi in the sub-scanning direction (ejection port array direction).
  • the number of passes was four, and a random pattern type pass mask was used as a pass decomposition method.
  • gradation patch image data with a recording duty varied (0 to 255 divided into 17 gradations) was prepared.
  • photographic image data including various duties other than the above 17 types of duty were prepared. At this time, the duty is the same for each ink color in a certain gradation.
  • the prepared patch image data was recorded by reciprocally scanning the recording head with respect to the recording medium in the main scanning direction. At that time, the binarization process and the data distribution process of the patch image data were executed according to the flowchart of FIG. 17, and ink was ejected to record the patch image.
  • the connection table correction table shown in FIG. 9 was used.
  • photographic image data including various duties other than the 17 types of duty was recorded. Also in this case, the binarization process and the data distribution process of the image data were executed according to the flowchart of FIG. Even in this case, as in the case of recording the patch image, the connecting stripes between the recording chips were hardly visually recognized, and an image with satisfactory image quality with little image quality deterioration could be recorded.
  • ⁇ Comparative example> As a comparative example, the configuration of the printer was the same as that of the example, and the order of ink recorded in each ejection port array was changed. That is, in each of the recording chips 151 and 152, ink is printed so that the A row is yellow (Y), the B row is magenta (M), the C row is cyan (C), and the D row is black (Bk). Filled.
  • a specific comparative example is shown below.
  • Various conditions for recording are the same as those in the example except for the contents described above. That is, a printer having the same configuration as that shown in FIG. The recording head was driven so that the amount of ejection from one ejection port was 2.8 pl.
  • As an ink containing a color material a commercially available ink BCI-7 for an inkjet printer PIXUS iP7100 (manufactured by Canon Inc.) was used.
  • As a recording medium photo glossy paper dedicated to inkjet (Pro Photo Paper, PR-101: manufactured by Canon Inc.) was prepared.
  • the ink droplet ejection drive frequency was 15 kHz
  • the recording resolution was 1200 dpi in the main scanning direction and 1200 dpi in the sub-scanning direction (ejection port array direction).
  • gradation patch image data with a recording duty varied (0 to 255 divided into 17 gradations) was prepared. At this time, the duty is the same for each ink color in a certain gradation.
  • photographic image data including various duties other than the above 17 types of duty were prepared.
  • the prepared patch image data was recorded by reciprocally scanning the recording head with respect to the recording medium in the main scanning direction.
  • the head configuration is such that, as the distance between the ejection port arrays in the main scanning direction is shorter, the darker ink is recorded, and the correction process in the connecting portion data distribution process is the distance between the ejection port arrays.
  • a head configuration that prints with darker ink as the distance between the ejection port arrays in the main scanning direction which is a characteristic part of the present invention, is shorter, and By appropriately performing the correction processing of the connecting portion data, the generation of connecting stripes was suppressed.
  • the former can be applied only to a head configuration that records with darker ink as the distance between the ejection port arrays is shorter.
  • the connecting stripes can be sufficiently suppressed. In such a case, the correction process of the joint data is not applied, that is, corresponds to a correction amount of 0, which is within the scope of the present invention.
  • the present invention can be applied to a system composed of a plurality of devices (for example, a host computer, interface device, reader, printer, etc.) or to an apparatus composed of a single device (for example, a copying machine, a facsimile machine).
  • the image data processing is not limited to being executed in the recording apparatus as described above, and may be executed in an external device (computer) for controlling the recording apparatus.
  • the external device executes up to binary data determination processing (step S103 in FIG. 8) of each ejection port array, and transfers these binary data to the recording device, and the recording device records based on the transfer data.
  • the recording apparatus constitutes the image processing apparatus of the present invention.
  • the external apparatus is The image processing apparatus of the invention is configured.
  • the present invention is also implemented by supplying software program code for realizing the functions of the above-described embodiment to an external device (for example, a computer) connected to the recording device, and controlling the recording device by the external device according to the program.
  • an external device for example, a computer
  • the software program code itself realizes the functions of the above-described embodiments, and the program code itself and means for supplying the program code to an external device (computer) (for example, a storage medium storing the program code) Constitutes the present invention.
  • a storage medium for storing the program code for example, a floppy (registered trademark) disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
  • the computer is not limited to the case where the functions of the above-described embodiments are realized by executing the supplied program code. That is, the program code is included in the embodiment of the present invention even when the function of the above-described embodiment is realized in cooperation with the OS running on the computer or other application software. Needless to say.
  • the CPU or the like provided in the function expansion board or function expansion unit performs an actual process. You may do part or all. That is, it is needless to say that the present invention includes the case where the functions of the above-described embodiment are realized by the processing by the CPU or the like.
  • recording not only forms significant information such as characters and graphics, but also forms images, patterns, patterns, etc. on a wide variety of recording media, regardless of significance. Or it shall represent also when processing a medium. It does not matter whether it has been made obvious so that humans can perceive it visually.
  • Recording medium is not only paper used in general recording apparatuses, but also widely represents cloth, plastic film, metal plate, glass, ceramics, wood, leather, etc. that can accept ink. Shall.
  • the term “ink” should be interpreted broadly in the same way as the definition of “recording (printing)” above, and when applied to a recording medium, it forms an image, a pattern, a pattern, etc., or processes the recording medium. Or a liquid that can be subjected to ink processing. Examples of the ink that can be used for the ink treatment include solidification or insolubilization of the colorant in the ink applied to the recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

記録ヘッドIJHは、一列あたり一色分のインクを吐出する吐出口列(A列、B列、C列、D列)を略平行に複数列配した記録チップ41~46を、吐出口列方向に複数つなげてなる。この場合に、記録チップとそれにつなげる記録チップとを吐出口列方向と略直交する方向にずらして配置するとともに、吐出口列方向において吐出口列が一部オーバーラップするように構成されている。記録媒体の搬送方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するような構成とされており、記録チップ41~46のそれぞれにおいて、A列はブラック(Bk)、B列はシアン(C)、C列はマゼンタ(M)、D列はイエロー(Y)のインクを記録するように構成されている。

Description

インクジェット記録装置、その制御方法及びプログラム
  本発明は、吐出口列を略平行に複数列配した記録チップを吐出口列方向に複数つなげてなる、いわゆる長尺つなぎヘッドを備えたインクジェット記録装置、その制御方法及びプログラムに関する。
  プリンタや複写機等、或いはコンピュータやワードプロセッサ等を含む複合電子機器やワークステーション等の出力機器として用いられる記録装置は、記録情報に基づいて用紙等の記録媒体に画像(文字や記号等を含む)を記録するように構成されている。このような記録装置は、記録方式によって、インクジェット式、ワイヤドット式、サーマル式、レーザービーム式等に分類される。
  各方式の記録装置のうち、インクジェット式の記録装置(インクジェット記録装置)は、記録手段としてインクジェット記録ヘッド(以下、記録ヘッド)を用い、その記録ヘッドの吐出口から記録媒体に向かってインクを吐出して記録を行うものである。このようなインクジェット記録装置は、記録ヘッドのコンパクト化が容易であること、高精細の画像を高速に形成できること、いわゆる普通紙に特別の処理を必要とせずに記録することができランニングコストが低廉であるという利点を有している。また、ノンインパクト方式であるので騒音が小さいこと、多色のインクを使用してカラー画像を形成するための構成を採るのが容易であること、サイズの大きな記録媒体への記録に対応した構成とし易い等の利点も有している。
  記録媒体の搬送方向(副走査方向)と交差する主走査方向に走査しながら記録を行ういわゆるシリアルタイプのインクジェット記録装置においては、記録媒体に沿って移動する記録ヘッドを用いて画像を記録する。すなわち、記録ヘッドによって1主走査分の記録動作を終了する毎に記録媒体を所定量ずつ搬送する動作を繰り返すことにより、記録媒体全域に対する記録を行う。
  一方、記録ヘッドが記録媒体の幅に相当する記録幅をもち、記録媒体の搬送方向の移動のみを伴ういわゆるフルラインタイプのインクジェット記録装置においては、記録媒体を所定位置にセットし、記録媒体を搬送しながら1ライン分の記録動作を連続して行うことにより、記録媒体全域に対する記録を行う。このようなフルラインタイプのインクジェット記録装置は、画像形成の一層の高速化が可能であり、最近ニーズが高まっているオンデマンド記録用の記録装置としての可能性が注目されている(例えば特許文献1参照)。
このようなオンデマンド記録用のフルラインタイプの記録装置において、文章等モノカラーの記録には、例えば解像度600×600dpi(ドット/インチ)以上の解像度でA3サイズの記録媒体に毎分30頁以上で記録することが求められる。また、写真のようなフルカラー画像の記録には、例えば1200×1200dpi以上の高い解像度でA3サイズの記録媒体に毎分30頁以上で記録することが求められる。
ところで、フルラインタイプの記録装置に用いられる記録ヘッドにおいて、記録媒体の記録領域の全幅に渡って位置するインクジェット記録素子、特にインクジェット記録素子の一部を成す吐出口を全て欠陥なく加工することは現状難しい。例えば、フルラインタイプの記録装置において、A3サイズの用紙に1200dpiの解像度の記録を行うためには、記録ヘッドに約1万4千個の吐出口(記録幅約280mm)を形成することが必要となる。このような多数の吐出口の全てを一つの欠陥もなく加工することは、その製造プロセス上困難を伴う。また、このような記録ヘッドを製造できたとしても、良品率が低く製造コストが多大となってしまう。
上述したような理由から、フルラインタイプの記録ヘッドとして、いわゆる長尺つなぎヘッドが提案されている。つなぎヘッドは、複数の記録素子が配列された吐出口列を略平行に複数列配した記録チップを、前記吐出口列方向につなげてなる記録ヘッドである。つまり、シリアルタイプにおいて用いられているような比較的安価な短尺チップ形態の記録ヘッドを吐出口列方向に複数個つなぎ合わせるように、それらのチップを高精度に配列することによって長尺化を実現する記録ヘッドである。
なお、ここでは、フルラインタイプの記録ヘッドとしてのつなぎヘッド構成に関して述べたが、いわゆるシリアルタイプの記録ヘッドにおいても、つなぎヘッド構成により長尺化を実現することができる。
 
特開2002-292859号公報
しかしながら、つなぎヘッドは、その構成上、いわゆるつなぎスジが発生しやすいという課題がある。つなぎスジとは、記録チップ間で吐出口列の端部が互いに隣り合う部分における画質劣化のことである。その原因としては、記録装置の記録媒体の搬送バラツキ(いわゆる搬送蛇行)や、フルラインタイプの記録ヘッドと記録媒体との相対位置関係に発生する傾きがある。これらの影響のため、つなぎ部分において隣り合う記録素子の吐出口によって形成される吐出口ピッチが、他の吐出口ピッチと同一とならず、記録された画像上に、記録チップのつなぎ部分に対応したスジ(つなぎスジ)が発生することがあった。
つなぎヘッドの構成上、つなぎ部分で記録に使用される吐出口列の吐出口列方向に対する列間距離が、非つなぎ部分で記録に使用される吐出口列よりも大きくなってしまう場合が多い。このため、つなぎ部分において、上記搬送蛇行や傾き等の影響を受けやすいことが一因として考えられる。
また、上述の列間距離が大きくなるほどそれに応じてつなぎスジがより顕著に発生し易いことを確認している。図7は、つなぎ部分における列間距離の大小とつなぎスジの発生の程度を表わす説明図である。図7(a)、(b)において、つなぎ部分の列間距離が小さい場合と大きな場合についてそれぞれ示している。図7(a)は傾きなし(記録ヘッドと記録媒体間の関係)の場合であり、傾きがなければ、つなぎスジの原因となる着弾位置ズレは列間距離の影響では生じない。一方、図7(b)は傾きあり(記録ヘッドと記録媒体間の関係)の場合であり、つなぎ部分の列間距離が大きい方が、同じ程度の傾きによってつなぎ部分のズレが大きくなってしまうことがわかる。すなわち、つなぎ部分の列間距離に比例して、つなぎ部分のズレが増大してしまう。図7(b)では、つなぎ部分の記録濃度が低くなる場合のスジとなる場合の傾きの例を示したが、反対側の傾きが生じた場合につなぎ部分の記録濃度が高くなる場合のスジとなる場合においても、列間距離に比例して、つなぎ部分のズレが増大してしまうことは言うまでもない。
この課題を解決するためには、上述の列間距離をできるだけ小さくすれば、その分、つなぎスジの発生を抑制することができると考えられる。しかしながら、吐出口の配置や吐出口を備える記録素子の配線レイアウト、及び、記録ヘッドとそれを保護するキャップとが接触するスペース部の確保等の兼ね合いから、つなぎ部分での列間距離を近づけるのは難しい。
このようなつなぎヘッドによって生じるつなぎスジに対しては、特許文献1でも開示されているとおり、これまで改善策がいくつか提案されている。例えば、つなぎ部分のチップ配列を高精度に行うための配列方法や配列装置を用いて、吐出口ピッチのズレを小さくする方法がある。
また、他の対策としては、チップのつなぎ部分において、それぞれのチップ端の吐出口を吐出列方向に隣接させるように配列させず、それぞれのチップ端における所定数ずつの吐出口を記録媒体の搬送方向に並べてオーバーラップさせて配列する方法がある。この場合、記録時には、互いにオーバーラップする両方の吐出口からインクを吐出させることによって、つなぎスジを目立たなくする。具体的には、互いにオーバーラップする両方の吐出口にオーバーラップ部分で記録すべき吐出データのパターンが互いに排他となるように割り振る。このような割り振りは、データ割り振りマスク等の処理を施すことで実現できる。
また、つなぎ部を構成する各吐出口列が記録を行うドットの数を適宜増減させて補正を行うことで、つなぎスジを目立たなくする方法もある。
しかしながら、これらの対策は、いずれも写真調の記録を行う際に発生するつなぎスジに対しては、決して十分とはいえないものであった。
本願発明者が鋭意検討した結果、つなぎ部の記録を行う際、インクの色によって、つなぎスジの見え方が異なることを見出した。すなわち、色の濃いインク、例えばブラックのインクで記録した場合は、チップ間を構成する吐出口列間に数ミクロンレベルのわずかなズレが生じた場合においても、非常に視認されやすくなる。理由としては、一般的に白に近い色を有する記録媒体と、インクの色とのコンストラストの差が大きいためと考えられる。一方、色の薄いインク、例えばイエローのインクで記録した場合は、チップ間を構成する吐出口列間に数10ミクロン程度のズレが生じたとしても、視認されにくい。理由としては、一般的に白に近い色を有する記録媒体と、インクの色とのコンストラストの差が小さいためと考えられる。なお、ここでのインクの色が濃い、薄いという表現は、同一のDUTY、例えば100%のパッチを打ち、同一条件で測色した場合に、明度のより低いものをインクの色が濃い、その逆をインクの色が薄いということを定性的に表わしている。
本発明は、上述のような課題を鑑みてなされたものであり、つなぎ構成によって長尺化した記録ヘッドを用いて記録の高速化を維持しつつ、つなぎスジの発生を抑制して記録画像の高画質化を達成できるようにすることを目的とする。
本願発明では、インク色によってつなぎスジの見え方が異なる現象に着目して、つなぎヘッドの構成、各吐出口列におけるインクの充填位置、及びつなぎ部での記録方法を鋭意工夫したものである。
すなわち、本発明のインクジェット記録装置は、一列あたり一色分のインクを吐出する吐出口列を略平行に複数列配した少なくとも二色分以上の記録を可能とする記録チップを吐出口列方向に複数つなげてなる記録ヘッドを備え、前記吐出口列方向と略直交する方向である主走査方向に前記記録ヘッドと記録媒体とを相対的に移動させて記録を行うインクジェット記録装置であって、前記記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士は、同一の打込量を記録した際に明度が低いインクの吐出を担う吐出口列同士に比べて前記主走査方向における列間距離が離れた構成を成し、更に、前記記録チップのつなぎ部における各インク色の階調情報を取得する階調情報取得手段と、対象画像データから吐出データを生成して前記各吐出口列に分配するとともに、その過程で前記階調情報取得手段により取得された階調情報に応じた補正処理を行うつなぎ部データ処理手段とを備えたことを特徴とする。
本発明のインクジェット記録装置の制御方法は、一列あたり一色分のインクを吐出する吐出口列を略平行に複数列配した少なくとも二色分以上の記録を可能とする記録チップを吐出口列方向に複数つなげてなる記録ヘッドで、前記記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士は、同一の打込量を記録した際に明度が低いインクの吐出を担う吐出口列同士に比べて、前記吐出口列方向と略直交する方向である主走査方向における列間距離が離れた構成を成す記録ヘッドを備え、前記主走査方向に前記記録ヘッドと記録媒体とを相対的に移動させて記録を行うインクジェット記録装置の制御方法であって、前記記録チップのつなぎ部における各インク色の階調情報を取得する処理と、対象画像データから吐出データを生成して前記各吐出口列に分配するとともに、その過程で前記取得された階調情報に応じた補正処理を行う処理とを有することを特徴とする。
本発明のプログラムは、一列あたり一色分のインクを吐出する吐出口列を略平行に複数列配した少なくとも二色分以上の記録を可能とする記録チップを吐出口列方向に複数つなげてなる記録ヘッドで、前記記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士は、同一の打込量を記録した際に明度が低いインクの吐出を担う吐出口列同士に比べて前記吐出口列方向と略直交する方向である主走査方向における列間距離が離れた構成を成す記録ヘッドを備え、前記主走査方向に前記記録ヘッドと記録媒体とを相対的に移動させて記録を行うインクジェット記録装置を制御するためのプログラムであって、前記記録チップのつなぎ部における各インク色の階調情報を取得する処理と、対象画像データから吐出データを生成して前記各吐出口列に分配するとともに、その過程で前記取得された階調情報に応じた補正処理を行う処理とをコンピュータに実行させる。
本発明によれば、つなぎ構成によって長尺化した記録ヘッドを用いて記録の高速化を実現しつつ、つなぎスジの発生を抑制して記録画像の高画質化を達成することができる。
第1の実施形態に係るインクジェット方式のプリンタの主要部の構成を示す外観斜視図である。 第1の実施形態の記録ヘッドの要部の構成例を示す分解斜視図である。 第1の実施形態に係るインクジェット方式のプリンタにおける制御系の構成例を示すブロック図である。 第1の実施形態の記録ヘッドの概略構成を示す図である。 記録ヘッドの他の構成例を示す図である。 隣り合う記録チップの吐出口列の状態を詳細に表わした模式図である。 つなぎ部分における列間距離の大小とつなぎスジの発生の程度を表わす説明図である。 第1の実施形態における画像データ処理のフローチャートである。 つなぎ部データを補正する補正テーブルの例を示す図である。 実施例を説明するための図である。 比較例における記録ヘッドの概略構成を示す図である。 比較例を説明するための図である。 第2の実施形態の記録ヘッドの概略構成を示す図である。 第3の実施形態における画像データ処理のフローチャートである。 第4の実施形態に係るインクジェット方式のプリンタの主要部の構成を示す外観斜視図である。 隣り合う記録チップの吐出口列の状態を詳細に表わした模式図である。 第4の実施形態における画像データ処理のフローチャートである。
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
(第1の実施形態)
<インクジェット記録装置の基本構成(図1)>
図1は、本発明を適用した実施形態に係るインクジェット方式のプリンタ(インクジェット記録装置)IJRAの主要部の構成を示す外観斜視図である。本実施形態に係るインクジェット方式のプリンタは、図1に示すように、記録媒体P(ここでは折畳可能な連続シート)の全幅にわたる範囲にインクを吐出するフルライン記録ヘッドIJHを配置した構成となっている。記録ヘッドIJHの記録ヘッドチップITの吐出口からはインクが所定のタイミングで記録媒体Pに向けて吐出される。
このようにした記録ヘッドIJHを、記録媒体Pと相対的に移動させて記録を行う。本実施形態では、以下に説明する制御回路による制御によって搬送モータを駆動することにより、記録用紙Pが図1に示すVS方向(フルラインタイプでいう主走査方向)に搬送され、記録用紙P上に画像記録がなされる。図1において、5018は搬送ローラである。5019は排出側のローラであり、搬送ローラ5018と共に記録媒体Pを記録位置に保持すると共に、駆動モータ(不図示)によって駆動される搬送ローラ5018に連動して記録媒体Pを矢印VS方向に搬送する。
なお、記録ヘッドIJHには不図示のインク供給チューブが接続され、インクジェット記録素子からインクが吐出される。本例のインクジェット記録素子は、インク吐出口に連通する内部(液路)に、インク吐出に利用される熱エネルギーを発生する発熱素子(電気・熱エネルギー変換体)が設けられている。
記録ヘッドIJHは、記録を行わないときに、不図示のキャッピング手段のキャップ部によってインク吐出口面が密閉されることにより、インク溶剤の蒸発に起因するインクの固着、或いは塵埃等の異物の付着等による目詰まりが防止される。また、キャッピング手段のキャップ部は、使用頻度の低いインク吐出口の吐出不良や目詰まりを解消するための空吐出(予備吐出)、つまりインク吐出口から、画像の記録に寄与しないインクをキャップ部に向かって吐出させるために利用することができる。また、キャッピング状態のキャップ部の内部に、不図示のポンプによって発生させた負圧を導入し、記録ヘッドIJHのインク吐出口から、画像の記録に寄与しないインクをキャップ部内に吸引排出させて、吐出不良を起こしたインク吐出口を回復させることもできる。また、キャップ部の隣接位置に、不図示のブレード(拭き部材)を配置することにより、記録ヘッドIJHにおけるインク吐出口の形成面をクリーニング(ワイピング)することも可能である。
なお、図1では、記録媒体Pとして折畳可能な連続シートを図示したが、カットシートであっても何ら問題ない。また、1つのフルライン記録ヘッドIJHが備えられた構成を図示したが、高画質記録や高速記録のために、同じ構成のフルライン記録ヘッドを例えば2個備えるような構成としても良い。
<記録ヘッドの基本構成(図2)>
図2は、上述した記録ヘッドIJHの要部の構成例を示す分解斜視図である。記録ヘッドIJHは、インクを加熱するための複数のヒータ(発熱素子)22が形成された基板であるヒータボード23と、このヒータボード23の上に被せられる天板24と、を主要素として構成される。天板24には複数の吐出口25が形成されており、各吐出口25の後方には、各吐出口25に連通するトンネル状の液路26が形成されている。各液路26は、その後方において1つのインク液室に共通に接続されている。そして、インク液室にはインク供給口を介してインクが供給され、このインクがインク液室から各液路26に供給される。吐出口25は、インクの吐出が可能な吐出口を形成する。
ヒータボード23と天板24は、図2に示すように、各液路26に対応した位置に各ヒータ22が位置するように組み立てられる。図2においては、吐出口25、ヒータ22、及び液路26が4つずつ代表的に示されており、ヒータ22は、それぞれの液路26に対応して1つずつ配置される。そして、図2に示すように組み立てられた記録ヘッドIJHは、ヒータ22に所定の駆動パルスが供給されることにより、そのヒータ22上のインクが沸騰して気泡を形成し、この気泡の体積膨張によりインクが吐出口25から押し出されて吐出される。
なお、本発明を適用可能なインクジェット記録方式は、図2に示したような発熱素子(ヒータ)を使用したバブルジェット(登録商標)方式に限られるものではない。例えば、ピエゾ素子による機械的圧力を利用してインクを吐出するインクジェット方式にも本発明を適用することができる。例えば、インク滴を連続噴射して粒子化するコンティニュアス型の場合には荷電制御型や発散制御型等がある。また、必要に応じてインク滴を吐出するオンデマンド型の場合には、ピエゾ振動素子の機械的振動によりオリフィスからインク滴を吐出する圧力制御方式等にも適用可能である。このように、種々のインクジェット記録素子を備えた記録ヘッドに対して本発明は適用可能である。
<インクジェット記録装置の制御構成(図3)>
図3は、本実施形態に係るインクジェット方式のプリンタにおける制御系の構成例を示すブロック図である。図3において、31は画像データ入力部、32は操作部、33は各種処理を行うCPU部、34は各種データを記憶する記憶媒体である。記憶媒体34のプリント情報格納メモリには、記録媒体の主に種類に関する情報34a、プリントに用いるインクに関する情報34b、記録時の温度、湿度等の環境に関する情報34cが格納される。また、記憶媒体34には、各種制御プログラム群34dが格納される。更に、35はRAM、36は画像データ処理部、37は画像出力を行う画像記録部、38は各種データを転送するバス部である。
更に詳述すると、画像データ入力部31は、スキャナやデジタルカメラ等の画像入力機器からの多値画像データやパーソナルコンピュータのハードディスク等に保存されている多値画像データを入力する。操作部32は、各種パラメータの設定及び記録開始を指示する各種キーを備えている。
CPU33は、記憶媒体中の各種プログラムに従って本プリンタ全体を制御する。記憶媒体34は、制御プログラムやエラー処理プログラムに従って本プリンタを動作させるためのプログラム等を格納している。本例の動作は、全てこのプログラムに従う動作である。このようなプログラムを格納する記憶媒体34としては、ROM、FD、CD-ROM、HD、メモリカード、光磁気ディスク等を用いることができる。RAM35は、記憶媒体34中の各種プログラムのワークエリア、エラー処理時の一時待避エリア、及び画像処理時のワークエリアとして用いられる。また、RAM35は、記憶媒体34の中の各種テーブルをコピーした後、そのテーブルの内容を変更し、この変更したテーブルを参照しながら画像処理を進めることも可能である。
画像データ処理部36は、画像データ入力部31で入力されたデータに対して、カラーマッチング処理、色分解処理、出力γ補正、解像度変換等の各種画像処理を適用した後、入力された多値画像データをN値の画像データに各画素毎に量子化する。次いで、量子化された各画素が示す階調値"N"に基づいてその階調値に対応するドット配置パターンを選択する。このドット配置パターンはドットの記録の有無を示す2値のパターンであるので、ドット配置パターンの選択によって2値の吐出データを得ることができる。
このように、画像データ処理部36は、入力された多値画像データをN値化処理した後、そのN値の画像データに基づいて2値の吐出データを作成する。例えば8bit(256階調)で表現される多値画像データが画像データ入力部31に入力される場合、画像データ処理部36においては出力する画像データの階調値を25値に量子化する。次いで、画像データ処理部36では、25値の画像データにドット配置パターンが割り当てられ、これにより、インクの吐出・非吐出を示す2値の吐出データが作成される。その後、2値の吐出データが複数の吐出口列に分配され、各吐出口列の吐出口に対応する2値の吐出データが決定される。なお、本例においては、入力階調画像データのN値化処理に多値誤差拡散法を用いるが、これに限らず、平均濃度保存法やディザマトリックス法等、任意の中間調処理方法を用いることができる。また、画像データ処理部36は、多値画像データから最終的に2値の吐出データを作成できればよく、上述したようにN値化処理を介在させることは必須ではない。例えば、画像データ処理部36に入力された多値画像データを直接2値の吐出データに変換するような2値化処理を行っても良い。
画像記録部37は、画像データ処理部36で作成された2値の吐出データに基づいて、対応する吐出口25からインクを吐出して、記録媒体上にドット画像を形成する。バスライン38は、本装置内のアドレス信号、データ、制御信号等を伝送する。
<ヘッド構成、インクの色順(図4~図6)>
図4は、記録ヘッドIJHの概略構成を示す図であり、記録ヘッドIJHに配置される複数の記録ヘッドチップ及び各記録ヘッドチップの吐出口列を示している。本実施形態の記録ヘッドIJHは、吐出口列方向の長さが比較的短いチップ状の構成部品(以下、記録チップという)41~46を備える。
記録ヘッドIJHは、一列あたり一色分のインクを吐出する吐出口列(A列、B列、C列、D列)を略平行に複数列配した記録チップ41~46を、吐出口列方向に複数つなげてなる。各吐出口列は、直線上に吐出口が配置されたものであり、図中では、例えば記録チップ41であれば41A、41B、41C、41Dのように記載する。
本実施形態では、記録チップ41~46を吐出口列方向に千鳥状に配置配列することによって、長尺の記録ヘッドIJHを形成している。すなわち、記録チップとそれにつなげる記録チップとを吐出口列方向と略直交する方向(主走査方向)にずらして配置するとともに、吐出口列方向において吐出口列が一部オーバーラップするように構成されている。 
各記録チップ41~46の吐出口列の構成はいずれも同じであることから、記録チップ41を例にその構成を説明する。記録チップ41は、上述の通り、4列の吐出口列(41A、41B、41C、41D)を有しており、各列とも1200dpiの解像度で配列された複数の吐出口を有している。
また、各記録チップ41~46に設けられた、吐出口列であるA列、B列、C列、D列は、記録ヘッドIJHにおいて、それぞれの吐出口列毎にそれぞれ同一色(種類)のインクを吐出する。ここでは、記録チップ41~46のそれぞれにおいて、A列はブラック(Bk)、B列はシアン(C)、C列はマゼンタ(M)、D列はイエロー(Y)のインクを記録するように構成されている。
このときのインク色とそれを吐出する吐出口列の組み合わせに関しては、本発明の特徴的となる部分である。記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士ほど、記録媒体の搬送方向における列間距離が離れた構成となっている。換言すれば、記録媒体の搬送方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するような構成としている。インクの色の濃さに関しては、同一DUTY、例えば100%のパッチを打ち、同一条件で測色した場合に、明度の低いものほど色の濃いインクとしている。
なお、本実施形態では、各記録チップが4列の吐出口列から構成され、4色のインクで記録する場合を述べているが、少なくとも二色分以上の記録を可能とするものであれば良い。すなわち、上述したように、吐出口列間の距離が短い列同士ほど、色の濃いインクで記録する、という本発明の特徴部分を満たしてさえいれば、各記録チップの吐出口列の数、インクの数は任意とすることができる。例えば、図5に示すように、隣り合う記録チップ51と記録チップ52とが6列の吐出口列からそれぞれ構成され、C、M、Y、Bk、LC(淡シアン)、LM(淡マゼンタ)の6色のインクで記録するような構成でも良い。この場合、吐出口列の列間距離が小さい方、すなわち、吐出口列51Aと52A、51Bと52B、51Cと52C、51Dと52D、51Eと52E、51Fと52Fの順に、それぞれBk、C、M、Lc、Lm、Yの順とする。他にも、レッド、ブルー、グリーン等、淡グレー等、特色が含まれていても、上述のような列間距離とインクの色の関係を満たしていれば、本発明の範疇に含まれる。また、本発明は、吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するものに限定されるものではない。例えば、吐出口列間の距離が短い列同士は、N色のインクのうち特に色の濃いインク(例えば、Bk)で記録し、吐出口列間の距離が長い列同士は特に薄いインク(例えば、Y、LC、LM)で記録する。そして、残りの列同士は、色の濃さが中程度のインク(例えば、M、C、R、G、B)で記録するが、色の濃さが中程度のインクについては、列同士の位置が入れ替わったとしても影響が少ないため、列同士の位置を任意としてもよい。
なお、上述の例では、吐出口列がインクの色に応じて入れ子の状態となったヘッド構成の場合で説明した。ただし、本発明はつなぎ部を構成する吐出口列間の距離がポイントであって、インク色毎に吐出口列間の距離が異なる関係が含まれる構成であれば、入れ子の状態である必要はなく、本発明を適用可能である。更に言うと、つなぎ部を構成する吐出口列同士は、同一の記録ヘッド内でもよいし、同一でない記録ヘッド同士であっても構わない。加えて、1記録ヘッド内における記録チップの個数、すなわち、つなぎ部に相当する部分の数は任意であってよい。
図6は、隣り合う記録チップ41と記録チップ42の吐出口列の状態を詳細に表わした模式図である。記録チップ41と記録チップ42とは、所定の吐出口が吐出口列向にオーバーラップするように配置されている。このオーバーラップ部分を、つなぎ部と称する。一方、つなぎ部以外の部分を非つなぎ部と称する。
このように配置することによって、記録を行った際に、記録チップ同士のつなぎ目の位置に対応する記録媒体上の白スジの発生を防止している。本実施形態では、記録チップ41と記録チップ42とで、吐出口列方向の端部に位置する吐出口から、吐出口列方向に32個分の吐出口が互いに重なるように構成されている(図は一部省略)。
なお、図示例では、つなぎ部においてオーバーラップする部分の吐出口同士が、同一記録ライン上となる場合を説明したが、必ずしもこの構成である必要はない。例えば、それぞれ半ピッチずつずらすことで、つなぎ部の記録解像度を2倍に高めた構成や、つなぎ部の吐出口の解像度が位置によって変わっているような特殊な構成であっても、本発明の範疇に含まれれば何ら問題なく本発明を適用可能である。
<画像データ処理方法(図8)>
図8は、本実施形態における画像データ処理のフローチャートである。このフローチャートに従って、つなぎ部における各吐出口列の記録データ(2値の吐出データ)が決定される。なお、ここでのフローチャートは、CPU33の制御の下で、画像データ処理部36において実行される。
ステップS101において、つなぎ部の階調情報取得処理を行う。ここでは、各インク色に対応して分解された多値画像データに基づいて、ステップS102の補正テーブルの参照において用いられる階調情報を得る。詳しくは、0~255の256階調で示される多値画像データを17段階に分け、いずれの段階に属するかの階調情報を得る。本情報は、以下に述べるつなぎ部データの補正量を決定する際に用いられる。このステップS101の処理が、本発明でいう階調情報取得手段による処理例である。
次に、ステップS102において、ステップS101で得られた階調情報、及び対象画像を記録するインク色の情報に基づいて、つなぎ部データの補正テーブルの参照を行う。図9は、補正テーブルの一例である。各インク色毎に、階調における多値画像データに対する補正量の比率を参照する。なお、この補正テーブルは予め用意したデータを格納しておいたものである。ここでは、17段階分のデータに対して線形補間をして補正テーブルを作成しているが、階調の段階数、補間の方法については特に限定されるものではなく、適宜補正テーブルが作成されればよい。
基本的な考え方として、つなぎ部での吐出口列間の距離が大きくなるほどつなぎ部での吐出口列間のズレが大きくなってしまうことから、つなぎ部での吐出口列間の距離が大きくなるほど、より多く記録するように記録の量を増やす。これにより、白抜けしたつなぎスジを見えなくする、という思想である。補足しておくと、つなぎ部をオーバーラップしたヘッド構成において、大別すると、つなぎ部の記録濃度がより高くなる場合のズレと、より低くなる場合のズレが発生し得るが、いずれもパターンのズレが生じることによって白スジ(濃度が薄く見える)となる場合が多いことが発明者の検討によってわかっている。
しかしながら、同程度のズレに対して、それぞれのインクの色によって、適切な補正量は異なるため、一概に、上述の思想は成り立たず、補正テーブルは実験的に最適なパラメータが決められればよい。また、補正テーブルの例として、+側、すなわち記録ドット数をより増加させる場合の例を示したが、-側に減少させるのが適切な場合は、記録ドット数が減少するよう補正してもよい。
次に、ステップS103において、ステップS102で得られた補正テーブルの参照情報に基づいて、つなぎ部データの補正処理を行う。具体的には、上述の補正量の比率を、多値画像データのそれぞれの画素値に対して乗じた値を補正後の多値画像データとする。なお、計算により端数が生じた場合は、適宜丸め計算を行えばよい。
ステップS104において、ステップS103で処理された補正後の多値画像データの2値化処理が行われる。2値化手法としては、誤差拡散法、INDEX展開法等、特に問わないが、ここでは上述した通り、多値画像データを誤差拡散法によりN値データに量子化し、そのN値データにドット配置パターンを割り当てることで2値化する。
ステップS105において、つなぎ部データ分配処理を行う。これは、記録チップ間のつなぎ部分においてデータを分配処理するもので、記録チップ間のつなぎ部を構成する吐出口で記録を行う2値データを、別途用意したつなぎ部の分配マスクを用いたマスク処理等によって割り当てるものである。マスク処理で分配する場合、市松模様のマスク、ランダムマスク、各吐出口列の端部ほど少ない記録とする、グラデーションマスク等、マスクのパターンは特に問わない。これにより、記録チップ41-42間(図4を参照)をはじめとした、各記録チップ間におけるつなぎ部において、いずれの吐出口で記録がなされるかが決定される。これらステップS102~S105の処理が、本発明でいうつなぎ部データ処理手段による処理例である。

  以下、具体的な実施例を示す。記録に際しては、上述した図1と同様の構成のプリンタを用い、図4で示した記録ヘッドIJHを備えた。1つの吐出口からの1回の吐出量が2.8plとなるように記録ヘッドを駆動した。色材を含有するインクとしては、市販のインクジェットプリンタPIXUS iP7100(キヤノン株式会社製)用のインクBCI-7を用いた。なお、各吐出口列とインクの色の関係は、上述の通り、記録チップ41~46のそれぞれにおいて、A列はブラック(Bk)、B列はシアン(C)、C列はマゼンタ(M)、D列はイエロー(Y)のインクを記録するようにインクを充填した。記録媒体P5としては、インクジェット専用フォト光沢紙(プロフォトペーパー、PR-101:キヤノン株式会社製)を用意した。
更に詳細には、インク滴の吐出駆動周波数を8kHzとし、記録解像度としては主走査方向(記録媒体の搬送方向)が1200dpi、副走査方向(吐出口列方向)が1200dpiとした。また、テスト画像のデータとして、記録デューティを振った階調パッチ画像データ(0~255までを17階調分に分けたもの)を用意した。また、上記17種のデューティ以外の様々なディーティも含んだ写真調の画像データを用意した。このとき、ある一つの階調においては、各インク色とも同じデューティとした。
以上のような設定条件下において、用意したパッチ画像データを、記録ヘッドと記録媒体との一度の相対移動(主走査)で記録した。その際、パッチ画像データの2値化処理及びデータ分配処理は図8のフローチャートに従って実行し、インクを吐出して上記パッチ画像を記録した。つなぎ部の補正テーブルとしては図9に示したものを用いた。
その結果、いずれの階調においても、記録チップ間でのつなぎスジはほとんど視認されず、画質劣化の見られない満足のいく画質の画像が記録できた。図10は、この記録によって得られたパッチ画像のうち、中間調の一階調分の印字画像の様子の概略図を、ヘッド構成の図と合わせて示したものである。図10から分かるように、上述の記録方法によれば、記録チップ間でのつなぎスジの発生を抑制できる。
次に、上記17種のデューティ以外の様々なディーティを含んだ写真調の画像データを記録した。その際も、画像データの2値化処理及びデータ分配処理は図8のフローチャートに従って実行した。この場合でも、上記パッチ画像を記録したときと同様、記録チップ間でのつなぎスジはほとんど視認されず、画質劣化の少ない満足のいく画質の画像を記録することができた。
<比較例>
図11、図12は、本発明の実施例と比較するための比較例を説明するための図である。本比較例においても、図4で示したものと同様の記録ヘッドを用いるが、各吐出口列で記録するインク順が異なっている。すなわち、記録チップ41~46のそれぞれにおいて、A列はイエロー(Y)、B列はマゼンタ(M)、C列はシアン(C)、D列はブラック(Bk)のインクを記録するようにインクを充填した。
また、本比較例では、本発明の実施形態で述べたようなつなぎ部データの補正処理は適用しない。
以下、具体的な比較例を示す。記録に際しての諸条件は上述の内容以外は、実施例と同じである。すなわち、上述した図1と同様の構成のプリンタを用い、図4で示した記録ヘッドIJHを備えた。1つの吐出口からの1回の吐出量が2.8plとなるように記録ヘッドを駆動した。色材を含有するインクとしては、市販のインクジェットプリンタPIXUS iP7100(キヤノン株式会社製)用のインクBCI-7を用いた。記録媒体Pとしては、インクジェット専用フォト光沢紙(プロフォトペーパー、PR-101:キヤノン株式会社製)を用意した。
更に詳細には、インク滴の吐出駆動周波数を8kHzとし、記録解像度としては主走査方向(記録媒体の搬送方向)が1200dpi、副走査方向(吐出口列方向)が1200dpiとした。また、テスト画像のデータとして、記録デューティを振った階調パッチ画像データ(0~255までを17階調分に分けたもの)を用意した。このとき、ある一つの階調においては、各インク色とも同じデューティとした。また、上記17種のデューティ以外の様々なディーティも含んだ写真調の画像データを用意した。
以上のような設定条件下において、用意したパッチ画像データを、記録ヘッドと記録媒体との一度の相対移動(主走査)で記録した。
その結果、ほとんどの階調、特に中間調から高濃度部にかけて、記録ヘッドにおける記録チップ間でのつなぎスジが視認され、画質が劣化した満足のいかない画質の画像となった。図12は、この記録によって得られたパッチ画像のうち、中間調の一階調分の印字画像の様子の概略図を、ヘッド構成の図と合わせて示したものである。図12から分かるように、本比較例では、記録チップ間でのつなぎスジの発生が確認される。なお、図面上はつなぎスジの見え方を概略図として示したものであって、実際の見え方を必ずしも厳密に再現しているわけではない。
次に、上記17種のデューティ以外の様々なディーティを含んだ写真調の画像データを記録した。この場合も、上記パッチ画像を記録したときと同様、主走査方向に対する記録チップ間でのつなぎスジが一部視認され、画質が劣化した満足のいかない画質の画像となってしまった。
以上説明したように、主走査方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するようなヘッド構成とし、つなぎ部データ分配処理における補正処理を吐出口列間の距離に応じて適用することで、記録ヘッドの記録チップ間におけるつなぎスジの発生抑制し、高品位な記録を得ることができた。
なお、以上述べた本実施形態では、本発明の特徴的な部分である、主走査方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するようなヘッド構成、及び、つなぎ部データの補正処理をともに適切に行うことで、つなぎスジの発生を抑制した。記録装置のズレの状態や、つなぎヘッド構成における吐出口列間の距離によっては、前者の吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するようなヘッド構成のみの適用でも十分つなぎスジを抑制可能な場合もある。その場合は、つなぎ部データの補正処理は適用しない、すなわち補正量0に相当し、本発明の範疇である。
(第2の実施形態)
第1の実施形態では、吐出口列のつなぎ部の位置が、いずれのインク色においても吐出口列方向において同一となるヘッド構成である記録ヘッドにおける形態を示したが、つなぎ部の位置は、それぞれのインク色毎に異なるようなヘッド構成である記録ヘッドであっても、本発明を適用することができる。
図13は、つなぎ部の位置がインク色毎に異なるヘッド構成の概略図である。ヘッドの構成が異なる以外は、第1の実施形態と同様である。本形態をとることで、各インク色のつなぎ位置がそれぞれ異なるため、インク色毎につなぎ部データの補正処理を行う際、他のインク色のつなぎスジの発生の影響を受けないため、補正の精度が高くなるという効果がある。
また、吐出口列自体のヘッド構成は図4のように各吐出口列の端部が副走査方向に並んだ構成において、使用する吐出口を適宜制限することで、図13と同様に、つなぎ部の位置を、それぞれのインク色毎に異ならせたような構成であっても、何ら構わない。この方法を取ることで、汎用的な記録チップを流用できるという利点がある。
なお、つなぎ部の記録位置をずらすと、ヘッド構成がより大きくなってしまうため、例えば、つなぎスジが目立ち難い、イエローとマゼンタはつなぎ位置を同じとする等、一部の色のつなぎ部を同一とする場合もある。この場合においても、本発明の範疇であり、その他構成であっても何ら問題ない。
(第3の実施形態)
以上の実施形態においては、多値画像データに対して、つなぎ部データの補正処理を適用したが、対象画像データから2値の吐出データを生成して各吐出口列に分配する過程のいずれかで補正処理を行うようにすればよい。本実施形態では、つなぎ部データを補正するために、2値化処理の後のデータを適宜増減させる方法を説明する。この場合、生成後の2値データを変更することから、2値化後のパターンの配置が多少崩れてしまうが、本発明で目的とするつなぎ部におけるつなぎスジの緩和を実現可能な範囲で適した補正を行えばよい。
図14は、本実施形態における画像データ処理のフローチャートである。このフローチャートに従って、つなぎ部における各吐出口列の記録データ(2値の吐出データ)が決定される。なお、ここでのフローチャートは、CPU33の制御の下で、画像データ処理部36において実行される。
ステップS201において、入力として、各インク色のデータに色分解された多値画像データが与えられ、2値化処理が行われる。2値化手法としては、誤差拡散法、INDEX展開法等、特に問わないが、ここでは上述の実施形態と同じく、多値画像データを誤差拡散法によりN値データに量子化し、そのN値データにドット配置パターンを割り当てることで2値化する。
ステップS202において、つなぎ部の階調情報取得処理を行う。ここでは、ステップS201の2値化処理にて得られた2値化データに基づいて、ステップS203の補正テーブルの参照において用いられる階調情報を得る。詳しくは、0~255の256階調で示される多値画像データを17段階に分け、いずれの段階に属するかの階調情報を得る。本情報は、以下示すつなぎ部のデータの補正量を決定する際に用いられる。このステップS201の処理が、本発明でいう階調情報取得手段による処理例である。
次に、ステップS203において、ステップS202で得られた階調情報、及び対象画像を記録するインク色の情報に基づいて、つなぎ部データの補正テーブルの参照を行う。補正テーブルに関しては、図9で説明したようなものと同様でよい。各インク色毎に、階調における2値データに対する補正量(記録ドット数の増減)の比率を参照する。なお、この補正テーブルは予め用意したデータを格納しておいたものである。ここでは、17段階分のデータに対して線形補間をして補正テーブルを作成しているが、階調の段階数、補間の方法については特に限定されるものではなく、適宜補正テーブルが作成されればよい。
基本的な考え方として、つなぎ部での吐出口列間の距離が大きくなるほどつなぎ部での吐出口列間のズレが大きくなってしまうことから、つなぎ部での吐出口列間の距離が大きくなるほど、より多く記録するように記録の量を増やす。これにより、白抜けしたつなぎスジを見えなくする、という思想である。
しかしながら、同程度のズレに対して、それぞれのインクの色によって、適切な補正量は異なるため、一概に、上述の思想は成り立たず、補正テーブルは実験的に最適なパラメータが決められればよい。また、補正テーブルの例として、+側、すなわち記録ドット数をより増加させる場合の例を示したが、-側に減少させるのが適切な場合は、記録ドット数が減少するよう補正してもよい。
次に、ステップS204において、ステップS203で得られた補正テーブルの参照情報に基づいて、つなぎ部データの補正処理を行う。具体的には、上述の補正量の比率(記録ドット数の増減)に基づいて、2値データの記録ドット数の増減を行う。
ステップS205において、つなぎ部データ分配処理を行う。これは、記録チップ間のつなぎ部分においてデータを分配処理するもので、記録チップ間のつなぎ部を構成する吐出口で記録を行う2値データを、別途用意したつなぎ部の分配マスクを用いたマスク処理等によって割り当てるものである。マスク処理で分配する場合、市松模様のマスク、ランダムマスク、各吐出口列の端部ほど少ない記録とする、グラデーションマスク等、マスクのパターンは特に問わない。これにより、記録チップ間41-42(図4を参照)をはじめとした、各記録チップ間におけるつなぎ部において、いずれの吐出口で記録がなされるかが決定される。これらステップS201、S203、S204、S205の処理が、本発明でいうつなぎ部データ処理手段による処理例である。
なお、上記の説明では、ステップS201における2値化処理後の2値データに基づいて、ステップ202におけるつなぎ部の階調情報取得処理を行ったが、ステップ201を適用する前の多値画像データから、つなぎ部の階調情報を取得するようにしても良い。
また、ステップ204におけるつなぎ部データの補正処理について、ステップS205におけるつなぎ部データ分配処理の前に行うとしたが、逆に、つなぎ部データ分配処理を行った後、つなぎ部データの補正処理を行うようにしても良い。
(第4の実施形態)
第1~3の実施形態では、フルラインタイプのインクジェット記録装置の記録ヘッドにおけるつなぎヘッド構成について説明した。本発明は、キャリッジを主走査方向に走査しつつ、記録媒体を排紙させる方式であるシリアルタイプのインクジェット記録装置の記録ヘッドにおいてつなぎヘッド構成を採用する場合であっても適用可能である。
図15は、シリアルタイプのインクジェット記録装置の一構成を示す概略図である。シリアルタイプの記録ヘッド1501は、キャリッジ1502がシャフト1503に支持されつつ主走査方向に往復移動をすることで記録が行われる。
本実施形態の記録ヘッド1501は、吐出口列方向の長さが比較的短いチップ状の構成部品(以下、記録チップという)151、152を備える。
記録ヘッド1501は、一列あたり一色分のインクを吐出する吐出口列(A列、B列、C列、D列)を略平行に複数列配した記録チップ151、152を、吐出口列方向につなげてなる。各吐出口列は、直線上に吐出口が配列されたものであり、図中では、例えば記録チップ151であれば151A、151B、151C、151Dのように記載する。
 本実施形態では、記録チップ151と記録チップ152とを吐出口列方向と略直交する方向(主走査方向)にずらして配置するとともに、吐出口列方向において吐出口列が一部オーバーラップするように構成されている。
各記録チップ151、152の吐出口列の構成はいずれも同じであることから、記録チップ151を例にその構成を説明する。記録チップ151は、上述の通り、4列の吐出口列(151A、151B、151C、151D)を有しており、各列とも1200dpiの解像度で配列された複数の吐出口を有している。
また、各記録チップ151、152に設けられた、吐出口列であるA列、B列、C列、D列は、記録ヘッド1501において、それぞれの吐出口列毎にそれぞれ同一色(種類)のインクを吐出する。ここでは、記録チップ151、152のそれぞれにおいて、A列はブラック(Bk)、B列はシアン(C)、C列はマゼンタ(M)、D列はイエロー(Y)のインクを記録するように構成されている。
このときのインク色とそれを吐出する吐出口列の組み合わせに関しては、本発明の特徴的となる部分である。記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士ほど、記録媒体の搬送方向における列間距離が離れた構成となっている。換言すれば、記録媒体の搬送方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するような構成としている。インクの色の濃さに関しては、同一DUTY、例えば100%のパッチを打ち、同一条件で測色した場合に、明度の低いものほど色の濃いインクとしている。
なお、本実施形態では、各記録チップが4列の吐出口列から構成され、4色のインクで記録する場合を述べているが、少なくとも二色分以上の記録を可能とするものであれば良い。すなわち、上述したように、吐出口列間の距離が短い列同士ほど、色の濃いインクで記録する、という本発明の特徴部分を満たしてさえいれば、各記録チップの吐出口列の数、インクの数は任意とすることができる。例えば、図5に示すように、隣り合う記録チップ51と記録チップ52とが6列の吐出口列からそれぞれ構成され、C、M、Y、Bk、LC(淡シアン)、LM(淡マゼンタ)の6色のインクで記録するような構成でも良い。この場合、吐出口列の列間距離が小さい方、すなわち、吐出口列51Aと52A、51Bと52B、51Cと52C、51Dと52D、51Eと52E、51Fと52Fの順に、それぞれBk、C、M、Lc、Lm、Yの順とする。他にも、レッド、ブルー、グリーン等、淡グレー等、特色が含まれていても、上述のような列間距離とインクの色の関係を満たしていれば、本発明の範疇に含まれる。
なお、上述の例では、吐出口列がインクの色に応じて入れ子の状態となったヘッド構成の場合で説明した。ただし、本発明はつなぎ部を構成する吐出口列間の距離がポイントであって、インク色毎に吐出口列間の距離が異なる関係が含まれる構成であれば、入れ子の状態である必要はなく、本発明を適用可能である。更に言うと、つなぎ部を構成する吐出口列同士は、同一の記録ヘッド内でもよいし、同一でない記録ヘッド同士であっても構わない。加えて、1記録ヘッド内における記録チップの個数、すなわち、つなぎ部に相当する部分の数は任意であってよい。
図16は、隣り合う記録チップ151と記録チップ152の吐出口列の状態を詳細に表わした模式図である。記録チップ151と記録チップ152とは、所定の吐出口が吐出口列向にオーバーラップするように配置されている。このオーバーラップ部分を、つなぎ部と称する。一方、つなぎ部以外の部分を非つなぎ部と称する。
このように配置することによって、記録を行った際に、記録チップ同士のつなぎ目の位置に対応する記録媒体上の白スジの発生を防止している。本実施形態では、記録チップ151と記録チップ152とで、吐出口列方向の端部に位置する吐出口から、吐出口列方向に32個分の吐出口が互いに重なるように構成されている(図は一部省略)。
なお、図示例では、つなぎ部においてオーバーラップする部分の吐出口同士が、同一記録ライン上となる場合を説明したが、必ずしもこの構成である必要はない。例えば、それぞれ半ピッチずつずらすことで、つなぎ部の記録解像度を2倍に高めた構成や、つなぎ部の吐出口の解像度が位置によって変わっているような特殊な構成であっても、本発明の範疇に含まれれば何ら問題なく本発明を適用可能である。
<画像データ処理方法(図17)>
図17は、本実施形態における画像データ処理のフローチャートである。このフローチャートに従って、つなぎ部における各吐出口列の記録データ(2値の吐出データ)が決定される。基本的には第1の実施形態で説明した画像データ処理と同様であるが、シリアルタイプの記録装置に特有のマルチパス記録におけるパス分解処理が加わる。
ステップS1001において、つなぎ部の階調情報取得処理を行う。ここでは、各インク色に対応して分解された多値画像データに基づいて、ステップS1002の補正テーブルの参照において用いられる階調情報を得る。詳しくは、0~255の256階調で示される多値画像データを17段階に分け、いずれの段階に属するかの階調情報を得る。本情報は、以下に述べるつなぎ部データの補正量を決定する際に用いられる。このステップS1001の処理が、本発明でいう階調情報取得手段による処理例である。
次に、ステップS1002において、ステップS1001で得られた階調情報、及び対象画像を記録するインク色の情報に基づいて、つなぎ部データの補正テーブルの参照を行う。補正テーブルは、第1の実施形態と同様に適宜設ければ良い。各インク色毎に、階調における多値画像データに対する補正量の比率を参照する。なお、この補正テーブルは予め用意したデータを格納しておいたものである。ここでは、17段階分のデータに対して線形補間をして補正テーブルを作成しているが、階調の段階数、補間の方法については特に限定されるものではなく、適宜補正テーブルが作成されればよい。
基本的な考え方として、つなぎ部での吐出口列間の距離が大きくなるほどつなぎ部での吐出口列間のズレが大きくなってしまうことから、つなぎ部での吐出口列間の距離が大きくなるほど、より多く記録するように記録の量を増やす(白抜けしたつなぎスジをみえなくする)という思想である。補足しておくと、つなぎ部をオーバーラップしたヘッド構成において、大別すると、つなぎ部の記録濃度がより高くなる場合のズレと、より低くなる場合のズレが発生し得るが、いずれもパターンのズレが生じることによって白スジ(濃度が薄く見える)となる場合が多いことが発明者の検討によってわかっている。
しかしながら、同程度のズレに対して、それぞれのインクの色によって、適切な補正量は異なるため、一概に、上述の思想は成り立たず、補正テーブルは実験的に最適なパラメータが決められればよい。また、補正テーブルの例として、+側、すなわち記録ドット数をより増加させる場合の例を示したが、-側に減少させるのが適切な場合は、記録ドット数が減少するよう補正してもよい。
次に、ステップS1003において、ステップS1002で得られた補正テーブルの参照情報に基づいて、つなぎ部データの補正処理を行う。具体的には、上述の補正量の比率を、多値画像データのそれぞれの画素値に対して乗じた値を補正後の多値画像データとする。なお、計算により端数が生じた場合は、適宜丸め計算を行えばよい。
ステップS1004において、ステップS1003で処理された補正後の多値画像データの2値化処理が行われる。2値化手法としては、誤差拡散法、INDEX展開法等、特に問わないが、ここでは上述した通り、多値画像データを誤差拡散法によりN値データに量子化し、そのN値データにドット配置パターンを割り当てることで2値化する。
ステップS1005において、マルチパス記録におけるパス分解処理を行う。例えばパスマスク処理等、従前の方法を適用すればよい。
ステップS1006において、つなぎ部データ分配処理を行う。これは、記録チップ間のつなぎ部分においてデータを分配処理するもので、記録チップ間のつなぎ部を構成する吐出口で記録を行う2値データを、別途用意したつなぎ部の分配マスクを用いたマスク処理等によって割り当てるものである。マスク処理で分配する場合、市松模様のマスク、ランダムマスク、各吐出口列の端部ほど少ない記録とする、グラデーションマスク等、マスクのパターンは特に問わない。これにより、記録チップ151-152間(図16を参照)をはじめとした、各記録チップ間におけるつなぎ部において、いずれの吐出口で記録がなされるかが決定される。これらステップS1002~S1006の処理が、本発明でいうつなぎ部データ処理手段による処理例である。

以下、具体的な実施例を示す。記録に際しては、上述した図15と同様の構成のプリンタを用い、図15で示した記録ヘッド1501を備えた。1つの吐出口からの1回の吐出量が2.8plとなるように記録ヘッドを駆動した。色材を含有するインクとしては、市販のインクジェットプリンタPIXUS iP7100(キヤノン株式会社製)用のインクBCI-7を用いた。なお、各吐出口列とインクの色の関係は、上述の通り、記録チップ151、152のそれぞれにおいて、A列はブラック(Bk)、B列はシアン(C)、C列はマゼンタ(M)、D列はイエロー(Y)のインクを記録するようにインクを充填した。記録媒体としては、インクジェット専用フォト光沢紙(プロフォトペーパー、PR-101:キヤノン株式会社製)を用意した。
更に詳細には、インク滴の吐出駆動周波数を15kHzとし、記録解像度としては主走査方向が1200dpi、副走査方向(吐出口列方向)が1200dpiとした。また、パス数は4パスとし、パス分解方法としてランダムパターンタイプのパスマスクを用いた。また、テスト画像のデータとして、記録デューティを振った階調パッチ画像データ(0~255までを17階調分に分けたもの)を用意した。また、上記17種のデューティ以外の様々なディーティも含んだ写真調の画像データを用意した。このとき、ある一つの階調においては、各インク色とも同じデューティとした。
以上のような設定条件下において、用意したパッチ画像データを、記録ヘッドを記録媒体に対して主走査方向に往復走査させ記録した。その際、パッチ画像データの2値化処理及びデータ分配処理は図17のフローチャートに従って実行し、インクを吐出して上記パッチ画像を記録した。つなぎ部の補正テーブルとしては図9に示したものを用いた。
その結果、いずれの階調においても、記録チップ間でのつなぎスジはほとんど視認されず、画質劣化の見られない満足のいく画質の画像が記録できた。
次に、上記17種のデューティ以外の様々なディーティを含んだ写真調の画像データを記録した。その際も、画像データの2値化処理及びデータ分配処理は図17のフローチャートに従って実行した。この場合でも、上記パッチ画像を記録したときと同様、記録チップ間でのつなぎスジはほとんど視認されず、画質劣化の少ない満足のいく画質の画像を記録することができた。
<比較例>
比較例として、プリンタの構成を実施例と同じとし、各吐出口列で記録するインク順を異ならせた。すなわち、記録チップ151、152のそれぞれにおいて、A列はイエロー(Y)、B列はマゼンタ(M)、C列はシアン(C)、D列はブラック(Bk)のインクを記録するようにインクを充填した。
また、本比較例では、本発明の実施形態で述べたようなつなぎ部データの補正処理は適用しない。
以下、具体的な比較例を示す。記録に際しての諸条件は上述の内容以外は、実施例と同じである。すなわち、上述した図15と同様の構成のプリンタを用い、記録ヘッド1501を備えた。1つの吐出口からの1回の吐出量が2.8plとなるように記録ヘッドを駆動した。色材を含有するインクとしては、市販のインクジェットプリンタPIXUS iP7100(キヤノン株式会社製)用のインクBCI-7を用いた。記録媒体としては、インクジェット専用フォト光沢紙(プロフォトペーパー、PR-101:キヤノン株式会社製)を用意した。
更に詳細には、インク滴の吐出駆動周波数を15kHzとし、記録解像度としては主走査方向が1200dpi、副走査方向(吐出口列方向)が1200dpiとした。また、テスト画像のデータとして、記録デューティを振った階調パッチ画像データ(0~255までを17階調分に分けたもの)を用意した。このとき、ある一つの階調においては、各インク色とも同じデューティとした。また、上記17種のデューティ以外の様々なディーティも含んだ写真調の画像データを用意した。
以上のような設定条件下において、用意したパッチ画像データを、記録ヘッドを記録媒体に対して主走査方向に往復走査させ記録した。
その結果、ほとんどの階調、特に中間調から高濃度部にかけて、記録ヘッドにおける記録チップ間でのつなぎスジが視認され、画質が劣化した満足のいかない画質の画像となった。
次に、上記17種のデューティ以外の様々なディーティを含んだ写真調の画像データを記録した。この場合も、上記パッチ画像を記録したときと同様、主走査方向に対する記録チップ間でのつなぎスジが一部視認され、画質が劣化した満足のいかない画質の画像となってしまった。
以上説明したように、主走査方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するようなヘッド構成とし、つなぎ部データ分配処理における補正処理を吐出口列間の距離に応じて適用することで、記録ヘッドの記録チップ間におけるつなぎスジの発生抑制し、高品位な記録を得ることができた。
なお、以上述べた本実施形態では、本発明の特徴的な部分である、主走査方向における吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するようなヘッド構成、及び、つなぎ部データの補正処理をともに適切に行うことで、つなぎスジの発生を抑制した。記録装置のズレの状態や、つなぎヘッド構成における吐出口列間の距離によっては、前者の吐出口列間の距離が短い列同士ほど、色の濃いインクで記録するようなヘッド構成のみの適用でも十分つなぎスジを抑制可能な場合もある。その場合は、つなぎ部データの補正処理は適用しない、すなわち、補正量0に相当し、本発明の範疇である。
<他の実施形態>
以上述べた各実施形態は一例であり、本発明の範囲を逸脱しなければ異なる実施形態であっても構わない。
本発明は、複数の機器(例えばホストコンピュータ、インタフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても、一つの機器(例えば複写機、ファクシミリ装置)からなる装置に適用してもよい。また、画像データ処理は、上述したように記録装置内で実行する場合には限られず、記録装置を制御するための外部装置(コンピュータ)において実行してもよい。この場合、外部装置において各吐出口列の2値データの決定処理(図8のステップS103)まで実行し、これら2値データを記録装置へ転送し、記録装置ではその転送データに基づいて記録を行う。従って、上述した特徴的な画像データ処理を記録装置で行う場合、その記録装置が本発明の画像処理装置を構成し、上記特徴的な画像データ処理を外部装置で行う場合、その外部装置が本発明の画像処理装置を構成することになる。
また、記録装置と接続された外部装置(例えばコンピュータ)に、上述の実施形態の機能を実現するソフトウェアプログラムコードを供給し、そのプログラムに従って外部装置が記録装置を制御して実施したものも本発明の範疇に含まれる。この場合、ソフトウェアプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体及びそのプログラムコードを外部装置(コンピュータ)に供給する手段(例えばかかるプログラムコードを格納した記憶媒体)は本発明を構成する。かかるプログラムコードを格納する記憶媒体としては例えばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
またコンピュータが、供給されたプログラムコードを実行することで、上述の実施形態の機能が実現される場合に限らない。つまり、そのプログラムコードがコンピュータにおいて稼働しているOS、或いは他のアプリケーションソフト等と共同して前述の実施形態の機能が実現される場合にもかかるプログラムコードは本発明の実施形態に含まれることは言うまでもない。
更に、供給されたプログラムコードが、コンピュータの機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに格納された後、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行ってもよい。つまり、そのCPU等による処理によって前述した実施形態の機能が実現される場合も本発明に含まれることは言うまでもない。
本明細書において、「記録(プリント)」とは、文字、図形等有意の情報を形成する場合のみならず、有意無意を問わず、広く記録媒体上に画像、模様、パターン等を形成する、又は媒体の加工を行う場合も表わすものとする。また、人間が視覚で知覚し得るように顕在化したものであるか否かも問わない。
また、「記録媒体」とは、一般的な記録装置で用いられる紙のみならず、広く、布、プラスチック・フィルム、金属板、ガラス、セラミックス、木材、皮革等、インクを受容可能なものも表わすものとする。
更に、「インク」とは、上記「記録(プリント)」の定義と同様広く解釈されるべきもので、記録媒体上に付与されることによって、画像、模様、パターン等の形成又は記録媒体の加工、或いはインクの処理に供され得る液体を表わすものとする。また、インクの処理に供され得る例としては、記録媒体に付与されるインク中の色剤の凝固又は不溶化がある。
 

Claims (7)

  1. 一列あたり一色分のインクを吐出する吐出口列を略平行に複数列配した少なくとも二色分以上の記録を可能とする記録チップを吐出口列方向に複数つなげてなる記録ヘッドを備え、
    前記吐出口列方向と略直交する方向である主走査方向に前記記録ヘッドと記録媒体とを相対的に移動させて記録を行うインクジェット記録装置であって、
    前記記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士は、同一の打込量を記録した際に明度が低いインクの吐出を担う吐出口列同士に比べて前記主走査方向における列間距離が離れた構成を成し、
    更に、前記記録チップのつなぎ部における各インク色の階調情報を取得する階調情報取得手段と、
    対象画像データから吐出データを生成して前記各吐出口列に分配するとともに、その過程で前記階調情報取得手段により取得された階調情報に応じた補正処理を行うつなぎ部データ処理手段とを備えたことを特徴とするインクジェット記録装置。
  2. 前記つなぎ部データ処理手段は、対象画像データから2値の吐出データを生成して前記各吐出口列に分配することを特徴とする請求項1に記載のインクジェット記録装置。
  3. 前記記録ヘッドは、記録チップとそれにつなげる記録チップとを前記主走査方向にずらして配置するとともに、前記吐出口列方向において前記吐出口列が一部オーバーラップするように構成されていることを特徴とする請求項1又は2に記載のインクジェット記録装置。
  4. 前記記録ヘッドは、記録媒体の幅に相当する記録幅をもち、前記主走査方向にのみ記録媒体と相対的に移動するフルラインタイプの記録ヘッドであることを特徴とする請求項1乃至3のいずれか1項に記載のインクジェット記録装置。
  5. 前記記録ヘッドは、前記主走査方向及び前記吐出口列方向に記録媒体と相対的に移動するシリアルタイプの記録ヘッドであることを特徴とする請求項1乃至3のいずれか1項に記載のインクジェット記録装置。
  6. 一列あたり一色分のインクを吐出する吐出口列を略平行に複数列配した少なくとも二色分以上の記録を可能とする記録チップを吐出口列方向に複数つなげてなる記録ヘッドで、前記記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士は、同一の打込量を記録した際に明度が低いインクの吐出を担う吐出口列同士に比べて前記吐出口列方向と略直交する方向である主走査方向における列間距離が離れた構成を成す記録ヘッドを備え、
    前記主走査方向に前記記録ヘッドと記録媒体とを相対的に移動させて記録を行うインクジェット記録装置の制御方法であって、
    前記記録チップのつなぎ部における各インク色の階調情報を取得する処理と、
    対象画像データから吐出データを生成して前記各吐出口列に分配するとともに、その過程で前記取得された階調情報に応じた補正処理を行う処理とを有することを特徴とするインクジェット記録装置の制御方法。
  7. 一列あたり一色分のインクを吐出する吐出口列を略平行に複数列配した少なくとも二色分以上の記録を可能とする記録チップを吐出口列方向に複数つなげてなる記録ヘッドで、前記記録チップのつなぎ部において、同一の打込量を記録した際に明度が高いインクの吐出を担う吐出口列同士は、同一の打込量を記録した際に明度が低いインクの吐出を担う吐出口列同士に比べて前記吐出口列方向と略直交する方向である主走査方向における列間距離が離れた構成を成す記録ヘッドを備え、
    前記主走査方向に前記記録ヘッドと記録媒体とを相対的に移動させて記録を行うインクジェット記録装置を制御するためのプログラムであって、
    前記記録チップのつなぎ部における各インク色の階調情報を取得する処理と、
    対象画像データから吐出データを生成して前記各吐出口列に分配するとともに、その過程で前記取得された階調情報に応じた補正処理を行う処理とをコンピュータに実行させるためのプログラム。
PCT/JP2009/061966 2008-07-01 2009-06-30 インクジェット記録装置、その制御方法及びプログラム WO2010001896A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-172354 2008-07-01
JP2008172354A JP2010012625A (ja) 2008-07-01 2008-07-01 インクジェット記録装置、その制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2010001896A1 true WO2010001896A1 (ja) 2010-01-07

Family

ID=41465988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061966 WO2010001896A1 (ja) 2008-07-01 2009-06-30 インクジェット記録装置、その制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2010012625A (ja)
WO (1) WO2010001896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045317A1 (en) * 2015-01-14 2016-07-20 Seiko Epson Corporation Recording apparatus and recording method
EP3045316A1 (en) * 2015-01-14 2016-07-20 Seiko Epson Corporation Recording apparatus and recording method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135971A (ja) 2010-12-27 2012-07-19 Seiko Epson Corp 液体吐出装置、及び、液体吐出方法
US8491094B2 (en) 2011-03-24 2013-07-23 Seiko Epson Corporation Fluid ejection device and method of manufacturing a fluid ejection device
JP2015009426A (ja) * 2013-06-28 2015-01-19 理想科学工業株式会社 インクジェット印刷装置
JP6183110B2 (ja) * 2013-09-30 2017-08-23 ブラザー工業株式会社 液体吐出装置、液体吐出方法、及び該液体吐出装置に用いられるプログラム
US9636915B2 (en) 2013-10-30 2017-05-02 Seiko Epson Corporation Printing device, and control method of a printing device
JP6020659B2 (ja) * 2015-05-26 2016-11-02 セイコーエプソン株式会社 液体吐出装置、及び、液体吐出方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305959A (ja) * 2004-04-26 2005-11-04 Canon Inc インクジェット記録ヘッド
JP2007176112A (ja) * 2005-12-28 2007-07-12 Canon Inc インクジェット記録装置およびインクジェット記録方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305959A (ja) * 2004-04-26 2005-11-04 Canon Inc インクジェット記録ヘッド
JP2007176112A (ja) * 2005-12-28 2007-07-12 Canon Inc インクジェット記録装置およびインクジェット記録方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045317A1 (en) * 2015-01-14 2016-07-20 Seiko Epson Corporation Recording apparatus and recording method
EP3045316A1 (en) * 2015-01-14 2016-07-20 Seiko Epson Corporation Recording apparatus and recording method

Also Published As

Publication number Publication date
JP2010012625A (ja) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5213317B2 (ja) インクジェット記録装置およびインクジェット記録方法
JP5178071B2 (ja) インクジェット記録装置およびインクジェット記録方法
JP5132294B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP5063323B2 (ja) インクジェット記録装置およびインクジェット記録方法
US7296868B2 (en) Ink jet printing system
JP5347300B2 (ja) 印刷装置
JP4018598B2 (ja) インクジェット記録装置およびインクジェット記録方法
US7695087B2 (en) Printing apparatus and printing method
JP4994819B2 (ja) 記録装置及びデータ生成方法
WO2010001896A1 (ja) インクジェット記録装置、その制御方法及びプログラム
JP4298334B2 (ja) 記録方法および記録装置
JP5517833B2 (ja) 画像処理装置および画像処理方法
JP5328247B2 (ja) 画像形成装置、その制御方法、画像処理装置及びプログラム
JP5072349B2 (ja) 画像形成装置およびその制御方法
JP2004284279A (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2006168073A (ja) インクジェット記録システム
JP5871501B2 (ja) 画像処理装置、画像処理方法及び記録装置
JP6673438B2 (ja) インクジェットプリンタ
JP2008162096A (ja) 画像形成装置およびその制御方法
JP5781189B2 (ja) 記録装置、記録方法および制御装置
JP2006137115A (ja) 記録システム、画像処理装置、および画像処理方法
JP2006159791A (ja) インクジェット記録方法、インクジェット記録装置、および画像処理方法
JP2005074972A (ja) 記録装置および記録方法
JP2014019096A (ja) インクジェット記録装置、画像処理装置、およびインクジェット記録方法
JP2008049492A (ja) インクジェット記録ヘッドおよびインクジェット記録装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773474

Country of ref document: EP

Kind code of ref document: A1