[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010097936A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2010097936A1
WO2010097936A1 PCT/JP2009/053678 JP2009053678W WO2010097936A1 WO 2010097936 A1 WO2010097936 A1 WO 2010097936A1 JP 2009053678 W JP2009053678 W JP 2009053678W WO 2010097936 A1 WO2010097936 A1 WO 2010097936A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
control
sensor
detection unit
select
Prior art date
Application number
PCT/JP2009/053678
Other languages
English (en)
French (fr)
Inventor
弘記 上野
一郎 北折
貴彦 堤
遠藤 弘淳
隆史 遊磨
優幸 松井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200980153596.6A priority Critical patent/CN102271951B/zh
Priority to US13/124,981 priority patent/US8914185B2/en
Priority to JP2011501418A priority patent/JP5152401B2/ja
Priority to PCT/JP2009/053678 priority patent/WO2010097936A1/ja
Priority to EP09840789.3A priority patent/EP2402199B1/en
Publication of WO2010097936A1 publication Critical patent/WO2010097936A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H2059/0295Selector apparatus with mechanisms to return lever to neutral or datum position, e.g. by return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/122Avoiding failures by using redundant parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1268Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • F16H59/105Range selector apparatus comprising levers consisting of electrical switches or sensors

Definitions

  • the present invention relates to vehicle control, and more particularly, to control when abnormality occurs in a sensor that detects the position of a shift lever.
  • a vehicle in which the position of a shift lever operated by a driver is detected by a sensor, and the control state (traveling range) of the automatic transmission is switched according to the detection result of the sensor.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-223162
  • Patent Document 1 when an abnormality occurs in a shift lever sensor (shift selection switch) and a wire harness connected to the shift lever sensor, the automatic transmission is controlled to a neutral state, but the vehicle is traveling on a highway.
  • a technique is disclosed in which the automatic transmission is not controlled to be in a neutral state under a specific traveling environment such as when the vehicle is stopped at an intersection or when the driver is not recognizing a failure. According to the technique disclosed in Patent Document 1, even when an abnormality occurs in the shift lever sensor (shift selection switch), the vehicle does not immediately stop traveling. It can be moved.
  • the automatic transmission is controlled to be in a neutral state when a shift lever sensor abnormality occurs in a driving environment other than a specific driving environment. I can't let you.
  • the present invention has been made to solve the above-described problems, and its purpose is to switch the control mode according to the abnormality pattern of the sensor when an abnormality of the sensor that detects the position of the movable portion occurs. Accordingly, it is an object of the present invention to provide a control device that can improve the convenience of retreating the vehicle while avoiding forward / reverse switching unintended by the driver.
  • a control device is a control device for a vehicle that travels by the output of an automatic transmission that changes the rotation of a driving force source, and is operated by a driver of the vehicle, and is in a first direction related to forward / reverse switching.
  • a second detection unit having a plurality of sensors configured to detect positions of the movable unit in the first direction, and a second of the movable unit.
  • a second detection unit having a plurality of sensors for detecting a position in the direction, and a control unit for controlling at least one of the driving force source and the automatic transmission based on detection results of the first detection unit and the second detection unit.
  • the control unit determines whether each sensor of the first detection unit and each sensor of the second detection unit is abnormal, and all the sensors of the first detection unit are normal and some of the sensors of the second detection unit
  • a first abnormality that is abnormal occurs, the first control that allows the vehicle to travel by the output of the automatic transmission is executed, all the sensors of the second detection unit are normal, and at least one of the first detection units.
  • the second abnormality which is an abnormality of the sensor of the part, occurs, the second control is executed that allows the vehicle to travel while suppressing the output of the automatic transmission more than when the first control is executed.
  • the control unit when the first abnormality occurs, performs the first control based on the detection result of the first detection unit and the detection result of the remaining normal sensors excluding the abnormal sensors of the second detection unit. If the second abnormality occurs, the control state of the automatic transmission before the abnormality detection of the first detection unit is established as the second control when the second abnormality occurs. After the predetermined condition is satisfied, the lowering control is executed to lower the output of the automatic transmission than when the first control is executed.
  • the predetermined condition includes a condition that an operation of the movable part is detected. More preferably, the predetermined condition includes a condition that the detection result of the second detection unit has changed.
  • the movable part is moved along the shift gate.
  • the predetermined condition includes a condition that it is detected that the position of the movable part is not included in a predetermined range corresponding to the shift gate.
  • the lowering control includes at least one of control for setting the control state of the automatic transmission to a neutral state for cutting off power and control for reducing the output of the driving force source.
  • the plurality of sensors of the second detection unit include a main sensor used to determine the position in the second direction and a sub sensor used to monitor abnormality of the main sensor.
  • the control unit executes the first control, when the main sensor of the second detection unit is abnormal and the sub sensor is normal, the detection result of the first detection unit and the detection result of the sub sensor of the second detection unit The control state of the automatic transmission is switched based on
  • the control unit changes the control state of the automatic transmission to the power when the third abnormality occurs. At least one of the control for setting the neutral state to shut off the power and the control for reducing the output of the driving force source is executed.
  • control unit determines that the third abnormality has occurred when at least some of the sensors of the first detection unit are abnormal and at least some of the sensors of the second detection unit are abnormal.
  • the correspondence between the detection result of the first detection unit and the position in the first direction is learned based on the detection result of the first detection unit when the detection result of the second detection unit changes.
  • the control unit is at least one of when the learning result of the position in the first direction is erased and when the control state of the automatic transmission is a parking state in which the vehicle axle is locked. When switching, the control state of the automatic transmission is prohibited.
  • the control unit is configured to detect the abnormality of the second detection unit. Until the operation of the movable part is detected, the control state of the automatic transmission before the abnormality detection of the second detection part is maintained, and when the operation of the movable part is detected, the power is cut off from the control state of the automatic transmission. At least one of control for setting the neutral state to be performed and control for reducing the output of the driving force source is executed.
  • FIG. 6 is a diagram (part 1) illustrating a shift position determination region;
  • FIG. 6 is a second diagram illustrating a shift position determination region;
  • It is a functional block diagram of ECU.
  • FIG. 5 is a (second) diagram illustrating a processing flow of an ECU.
  • FIG. 9 is a (third) diagram illustrating a processing flow of the ECU.
  • FIG. 10 is a third diagram illustrating a shift position determination area;
  • FIG. 1 shows a configuration of a shift control system 10 according to the present embodiment.
  • the shift control system 10 controls a control state (hereinafter also referred to as “traveling range”) of the speed change mechanism 2 that changes the speed of a driving device 1 (for example, an engine) that is a driving power source of a vehicle and transmits the speed to a driving wheel. ) Function as a shift-by-wire system that switches by electrical control.
  • a hybrid vehicle will be described as an example of a vehicle on which the shift control system 10 is mounted.
  • the vehicle is not particularly limited to a hybrid vehicle.
  • the transmission mechanism 2 is described as a transmission including a continuously variable transmission mechanism, but may be configured of a stepped transmission mechanism.
  • the shift control system 10 includes a P switch 20, a shift lever mechanism 26, an HV (Hybrid Vehicle) -ECU (Electronic Control Unit) 30, a parking control device (hereinafter also referred to as “P-ECU”) 40, and an actuator 42. And an encoder 46 and a shift switching mechanism 48.
  • the P switch 20 is a momentary switch for switching the travel range to a parking range (hereinafter also referred to as “P range”).
  • the driver inputs an instruction to switch the traveling range to the P range through the P switch 20.
  • a P command signal indicating an instruction from the driver received by the P switch 20 is transmitted to the HV-ECU 30. Note that the travel range may be switched from the non-P range to the P range by using a device other than the P switch 20.
  • Non-P range Switching from the P range to a travel range other than the P range (hereinafter also referred to as “non-P range”) is performed by operating a shift lever 270 (described later). Note that the travel range does not have to be switched from the P range to the non-P range by operating the shift lever 270. For example, the travel range is switched from the P range to the non-P range by operating the P switch 20. May be.
  • the shift lever mechanism 26 includes a shift gate 260, a shift lever 270, a shift sensor 22, and a select sensor 24.
  • the shift gate 260 is formed along the select direction (see FIG. 1) and the first shift path 262 and the second shift path 264, which are formed along the shift direction (see FIG. 1), respectively.
  • the first shift path 262 includes a reverse position (R position) at the upper end position, a forward position (D position) at the lower end position, and a neutral position (N position) at the center position (position connected to the select path 266). ) are provided.
  • a neutral position (M position) is provided at the upper end position (connection position with the select path 266), and a brake position (B position) is provided at the lower end position.
  • the select path 266 connects the N position of the first shift path 262 and the M position of the second shift path 264.
  • shift position the position of the shift lever 270 (hereinafter also referred to as “shift position”) may be switched between the R position and the D position, The decimal may be switched.
  • shift lever 270 when the shift lever 270 is moved in the select direction, the vehicle is not switched at least between the R position and the D position, and the vehicle is not switched back and forth.
  • Shift lever 270 is a momentary type shift lever that is maintained in the M position when not operated by the driver and is moved along a path formed in shift gate 260 by the operation of the driver. Since the structure and operation of the momentary type shift lever are well-known techniques, detailed description thereof will not be given. The shift lever 270 is not limited to the momentary type.
  • the shift sensor 22 detects a voltage signal corresponding to the position of the shift lever 270 in the shift direction (see FIG. 1).
  • the shift sensor 22 is a multi-system sensor.
  • the shift sensor 22 includes two systems of sensors, that is, a shift main sensor 22A and a shift sub sensor 22B. Note that the shift sensor 22 may include two or more sensors.
  • the shift main sensor 22A and the shift sub sensor 22B detect the shift voltage values Vsha and Vshb corresponding to the position of the shift lever 270 in the shift direction, and output the detection results to the HV-ECU 30.
  • the shift voltage value Vsha and the shift voltage value Vshb are the same value.
  • the shift voltage value Vsha detected by the shift main sensor 22A is mainly used by the HV-ECU 30 to determine the position of the shift lever 270 in the shift direction.
  • the shift voltage value Vshb detected by the shift sub sensor 22B is mainly used by the HV-ECU 30 to monitor the shift voltage value Vsha for abnormality (abnormality of the shift main sensor 22A).
  • abnormality abnormality of the shift main sensor 22A
  • the shift voltage value Vsh is a value within the range from the lower limit value Vshmin to the upper limit value Vshmax corresponding to the boundary of the movable range in the shift direction of the shift lever 270.
  • the lower limit value Vshmin and the upper limit value Vshmax are both voltage values in the range of at least about 0 to 5 volts.
  • the relationship between the position of the shift lever 270 in the shift direction and the shift voltage value Vsh has, for example, a linear relationship. Note that it is not necessary to have a linear relationship as long as the position of the shift lever 270 in the shift direction can be calculated based on the shift voltage value Vsh.
  • the select sensor 24 detects a voltage signal corresponding to the position of the shift lever 270 in the select direction (see FIG. 1).
  • the select sensor 24 is a multi-system sensor.
  • the select sensor 24 includes two systems of sensors, that is, a select main sensor 24A and a select sub sensor 24B. Note that the select sensor 24 may include two or more sensors.
  • the select main sensor 24A and the select sub sensor 24B detect the select voltage values Vsea and Vseb corresponding to the position of the shift lever 270 in the select direction, and output the detection results to the HV-ECU 30.
  • the select voltage value Vsea and the select voltage value Vseb are the same value.
  • the select voltage value Vsea detected by the select main sensor 24A is mainly used by the HV-ECU 30 to determine the position of the shift lever 270 in the select direction.
  • the select voltage value Vseb detected by the select sub sensor 24B is mainly used by the HV-ECU 30 to monitor the abnormality of the select voltage value Vsea (abnormality of the select main sensor 24A).
  • the select voltage value Vse is also described without distinguishing them.
  • the select voltage value Vse is a value within the range from the lower limit value Vsemin to the upper limit value Vsemax corresponding to the boundary of the movable range in the select direction of the shift lever 270.
  • the lower limit value Vsemin and the upper limit value Vsemax are both voltage values in the range of at least about 0 to 5 volts.
  • the relationship between the position of the shift lever 270 in the select direction and the select voltage value Vse is, for example, a linear relationship. Note that a linear relationship may not be provided as long as the position of the shift lever 270 in the select direction can be calculated based on the select voltage value Vse.
  • the shift main sensor 22A, the shift sub sensor 22B, the select main sensor 24A, and the select sub sensor 24B are connected to the connector 25, respectively.
  • the connector 25 By inserting the connector 25 into a connector (not shown) on the HV-ECU 30 side, the shift main sensor 22A, shift sub sensor 22B, select main sensor 24A, select sub sensor 24B and the HV-ECU 30 are electrically connected. Connected to.
  • the HV-ECU 30 comprehensively manages the operation of the shift control system 10 based on the outputs from the P switch 20, the shift sensor 22, and the select sensor 24.
  • the HV-ECU 30 determines the shift position based on the shift voltage value Vsh from the shift sensor 22 and the select voltage value Vse from the select sensor 24.
  • the HV-ECU 30 moves to the destination position. Confirm the corresponding shift position.
  • maps as shown in FIGS. 2 and 3 for detecting the shift position based on the shift voltage value Vsh and the select voltage value Vse are stored in advance. .
  • an upper limit value Vshmax and a lower limit value Vshmin are set for the boundary of the movable range in the shift direction.
  • An upper limit value Vsemax and a lower limit value Vsemin are set for the boundary of the movable range in the select direction.
  • Threshold value Vsemid is set between upper limit value Vsemax and lower limit value Vsemin.
  • the upper limit value Vsemax, the lower limit value Vsemin, and the threshold value Vsemid are set within a range of 0 to 5 volts.
  • Threshold value Vshmid (1) and threshold value Vshmid (2) are set between upper limit value Vshmax and lower limit value Vshmin.
  • the upper limit value Vshmax, the lower limit value Vshmin, the threshold value Vshmid (1), and the threshold value Vshmid (2) are set within a range of 0 to 5 volts.
  • the HV-ECU 30 learns in advance the shift voltage value Vsh when the shift lever 270 is positioned on the select path 266 (for example, when the select voltage value Vse has changed) as the reference voltage value VC, and stores the internal storage unit 3300. (See FIG. 4), a value obtained by subtracting the predetermined value ⁇ V from the reference voltage value VC is set as a threshold value Vshmid (1), and a value obtained by adding the predetermined value ⁇ V to the reference voltage value VC is set as a threshold. Set to the value Vshmid (2). Therefore, the threshold value Vshmid (1) and the threshold value Vshmid (2) are values that vary depending on the learning result of the reference voltage value VC. Reference voltage value VC is erased from storage unit 3300 when power supply from a battery (not shown) is interrupted (for example, when the battery is removed from the vehicle).
  • the HV-ECU 30 has a shift voltage value Vsh of a shift L region between Vshmin and Vshmid (1), a shift M region between Vshmid (1) and Vshmid (2), and Vshmid (2) and Vshmax. It is determined whether it is included in any of the shift H regions.
  • the HV-ECU 30 determines whether the select voltage value Vse is included in a select L region between Vsemin and Vsemid or a select H region between Vsemid and Vsemax.
  • the HV-ECU 30 detects the shift position as the R position when the shift voltage value Vsh is included in the shift L region and the select voltage value Vse is included in the select H region.
  • the HV-ECU 30 detects the shift position as the N position when the shift voltage value Vsh is included in the shift M region and the select voltage value Vse is included in the select H region.
  • HV-ECU 30 detects the shift position as the D position when shift voltage value Vsh is included in the shift H region and select voltage value Vse is included in the select H region.
  • HV-ECU 30 detects the shift position as the M position when shift voltage value Vsh is included in the shift M region and select voltage value Vse is included in the select L region.
  • the HV-ECU 30 detects the shift position as the B position when the shift voltage value Vsh is included in the shift region H and the select voltage value Vse is included in the select region L.
  • the HV-ECU 30 detects the shift position as the EX position when the shift voltage value Vsh is included in the shift L region and the select voltage value Vse is included in the select L region. If the shift voltage value Vsh and the select voltage value Vse are normal values, the EX position is not detected.
  • the HV-ECU 30 calculates the required torque based on the vehicle information (for example, the accelerator opening degree), outputs a drive command corresponding to the required torque to the drive device 1, and displays the detection results of the shift sensor 22 and the select sensor 24. Based on the determined shift position, a range command corresponding to the determined shift position is output to the transmission mechanism 2. As a result, the output torque of the drive device 1 is controlled to a torque corresponding to the required torque, and ranges (D range, N range, R range, B range) corresponding to the shift position where the traveling range of the speed change mechanism 2 is determined. One of these). In the D range, the vehicle moves forward, and in the R range, the vehicle moves backward. Further, in the N range, the power transmission of the speed change mechanism 2 is interrupted.
  • the vehicle information for example, the accelerator opening degree
  • the HV-ECU 30 transmits a P request signal to the P-ECU 40.
  • the P-ECU 40 is connected to the HV-ECU 30 so that they can communicate with each other.
  • the P-ECU 40 controls the actuator 42 that drives the shift switching mechanism 48 to switch the traveling range between the P range and the non-P range. Control the behavior.
  • Actuator 42 is configured by a switched reluctance motor (hereinafter referred to as “SR motor”), and drives shift switching mechanism 48 in accordance with a control signal from P-ECU 40. Specifically, when the actuator 42 receives a P command signal from the P-ECU 40, the parking gear, which forms a parking mechanism (not shown), is fitted with a parking pole so that the travel range is set to the P range. The shift switching mechanism 48 is driven so as to enter a parking lock state (hereinafter also referred to as “P lock state”) that locks the axle.
  • P lock state a parking lock state
  • autonomous P control when the vehicle power is turned off (when an ignition switch (not shown) is turned off), the control for automatically switching the traveling range to the P range (hereinafter also referred to as “auto P control”) is performed. It has been adopted.
  • the actuator 42 drives the shift switching mechanism 48 so as to release the P lock state.
  • the actuator 42 is described as being configured by a motor, but may be configured by hydraulic pressure.
  • Encoder 46 rotates integrally with actuator 42 and detects the rotation status of the SR motor.
  • the encoder 46 of this embodiment is a rotary encoder that outputs A-phase, B-phase, and Z-phase signals.
  • the P-ECU 40 obtains a signal output from the encoder 46, grasps the rotation state of the SR motor, controls the energization for driving the SR motor, and indicates that the P-lock state is currently set. Either a signal (P detection signal) or a signal (non-P detection signal) indicating that the P lock state is currently released is transmitted to the HV-ECU 30.
  • the present invention provides a retreat traveling control according to a combination of abnormality of the shift sensor 22 and the select sensor 24 when an abnormality occurs in at least one of the shift sensor 22 and the select sensor 24. It is characterized in that
  • the present invention specifies an abnormal pattern of the shift sensor 22 and the select sensor 24, and when the specified abnormal pattern is a pattern that can be evacuated, the evacuation according to the abnormal pattern is performed even after the abnormality occurs. By running, the vehicle continues to run as much as possible.
  • FIG. 4 shows a functional block diagram of the HV-ECU 30 according to the present embodiment.
  • HV-ECU 30 includes an input interface 3100, an arithmetic processing unit 3200, a storage unit 3300, and an output interface 3400.
  • the input interface 3100 includes shift voltage values Vsha, Vshb from the shift sensor 22 (shift main sensor 22A, shift sub sensor 22B), and select voltage values Vsea, Vseb from the select sensor 24 (select main sensor 24A, select sub sensor 24B). Are transmitted to the arithmetic processing unit 3200.
  • the storage unit 3300 stores various information, programs, threshold values, maps, and the like, and data is read from or stored in the arithmetic processing unit 3200 as necessary. Note that the information stored in the storage unit 3300 includes a shift position, a travel range history, and the like in addition to the maps shown in FIGS. 2 and 3 and the learning value of the reference voltage value VC.
  • the arithmetic processing unit 3200 includes an abnormality determination unit 3210, an abnormality pattern determination unit 3220, a normal control unit 3230, a first failsafe control unit 3240, a second failsafe control unit 3250, and a third failsafe control unit 3260. And a fourth fail-safe control unit 3270.
  • the abnormality determination unit 3210 determines whether each of the shift main sensor 22A, the shift sub sensor 22B, the select main sensor 24A, and the select sub sensor 24B is abnormal.
  • the abnormality determination unit 3210 determines that the shift main sensor 22A is normal when Vshmin ⁇ Vsha ⁇ Vshmax, and determines that the shift main sensor 22A is abnormal when Vsha ⁇ Vshmin or Vsha> Vshmax. Similarly, abnormality determination unit 3210 determines that shift subsensor 22B is normal when Vshmin ⁇ Vshb ⁇ Vshmax, and determines that shift subsensor 22B is abnormal when Vshb ⁇ Vshmin or Vshb> Vshmax.
  • the abnormality determination unit 3210 determines that the select main sensor 24A is normal when Vsemin ⁇ Vsea ⁇ Vsemax, and determines that the select main sensor 24A is abnormal when Vsea ⁇ Vsemin or Vsea> Vsemax. Similarly, the abnormality determining unit 3210 determines that the select subsensor 24B is normal when Vsemin ⁇ Vseb ⁇ Vsemax, and determines that the select subsensor 24B is abnormal when Vseb ⁇ Vsemin or Vseb> Vsemax.
  • the abnormal pattern determination unit 3220 stratifies the determination result of the abnormality determination unit 3210 into first to fourth abnormal patterns.
  • the abnormal pattern stratification method described below is merely an example, and the number of abnormal patterns and the stratification method are not limited thereto.
  • the abnormal pattern determination unit 3220 all the sensors of the shift sensor 22 (the shift main sensor 22A and the shift sub sensor 22B) are normal, and some of the sensors (the select main sensor 24A and the select sub sensor 24B) of the select sensor 24 If it is abnormal, it is identified as the first abnormal pattern.
  • the abnormal pattern determination unit 3220 all the sensors of the select sensor 24 (select main sensor 24A and select sub sensor 24B) are normal, and at least some of the sensors (shift main sensor 22A and shift sub sensor 22B) of the shift sensor 22. If there is an abnormality in at least one of them, the second abnormality pattern is specified.
  • the abnormal pattern determination unit 3220 has an abnormality in at least a part of the shift sensor 22 (at least one of the shift main sensor 22A and the shift sub sensor 22B) and at least a part of the select sensor 24 (the select main sensor 24A). When at least one of the select sub sensor 24B) is abnormal, it is identified as a third abnormal pattern.
  • the abnormal pattern determination unit 3220 all the sensors of the shift sensor 22 (shift main sensor 22A and shift sub sensor 22B) are normal, and all the sensors of the select sensor 24 (select main sensor 24A and select sub sensor 24B) are abnormal. In this case, the fourth abnormal pattern is specified.
  • the normal control unit 3230 that is, all the sensors of the shift sensor 22 (the shift main sensor 22A and the shift sub sensor 22B) and the select sensor 24
  • the shift position is determined based on the shift voltage value Vsha from the shift main sensor 22A and the select voltage value Vsea from the select main sensor 24A, and the travel range is controlled according to the determined shift position.
  • the first fail-safe control unit 3240 executes the first fail-safe control when the abnormal pattern determination unit 3220 specifies the first abnormal pattern.
  • the first abnormal pattern all the sensors (the shift main sensor 22A and the shift sub sensor 22B) of the shift sensor 22 related to the forward / reverse switching are normal, and the forward / reverse switching is performed against the driver's intention. There is nothing. Further, a part of the select sensor 24 is normal.
  • the shift position is determined using the shift voltage value Vsh and the detection result of a normal sensor that is not abnormal among the select main sensor 24A and the select sub sensor 24B.
  • the travel range is controlled according to the determined shift position.
  • the second fail-safe control unit 3250 executes the second fail-safe control when the abnormal pattern determination unit 3220 specifies the second abnormal pattern.
  • the second abnormal pattern although both sensors of the select sensor 24 that are not related to forward / reverse switching are normal, at least some of the sensors of the shift sensor 22 related to forward / backward switching are abnormal, and the driver There is a possibility that the forward / reverse switching is performed contrary to the intention.
  • the current range (current travel range) is maintained until the operation of the shift lever 270 in the select direction is detected (until the select voltage value Vse changes), and the shift lever 270
  • an operation in the select direction is detected (when the select voltage value Vse changes)
  • the travel range is switched to the N range, and torque reduction (for example, fuel cut) of the drive device 1 is performed.
  • the third fail-safe control unit 3260 performs the third fail-safe control when the abnormal pattern determination unit 3220 specifies the third abnormal pattern.
  • the third abnormal pattern at least a part of the sensors of the shift sensor 22 related to the forward / reverse switching may be abnormal, and the forward / backward switching may be performed against the driver's intention.
  • the select sensor 24 since at least a part of the select sensor 24 is also abnormal, there is a possibility that an operation of the shift lever 270 in the select direction is erroneously detected.
  • the connector 25 since both the shift sensor 22 and the select sensor 24 are abnormal, the connector 25 may be disconnected from the HV-ECU 30 in the first place.
  • the traveling range is switched to the N range and the torque of the drive device 1 is reduced.
  • 4th fail safe control part 3270 performs 4th fail safe control, when abnormal pattern judgment part 3220 specifies with the 4th abnormal pattern.
  • the fourth abnormal pattern all the sensors of the shift sensor 22 related to the forward / reverse switching are normal and there is no possibility that the forward / reverse switching is performed against the driver's intention. The sensor is abnormal, and it is very likely that a shift position unintended by the driver is detected.
  • the current range is maintained until the operation in the shift direction of the shift lever 270 is detected (until the shift voltage value Vsh changes), and the operation in the shift direction of the shift lever 270 is not performed.
  • the travel range is switched to the N range, and the torque of the drive device 1 is reduced.
  • FIG. 5 is a processing flow of the HV-ECU 30 when the above-described functions are realized by software. This process is repeatedly performed at a predetermined cycle time.
  • step (hereinafter, step is described as S) 10 HV-ECU 30 determines whether or not at least some of the sensors of shift sensor 22 are abnormal. If at least some of shift sensors 22 are abnormal (YES in S10), the process proceeds to S200. If all the sensors of shift sensor 22 are normal (NO in S10), the process proceeds to S20.
  • the HV-ECU 30 determines whether or not at least some of the sensors of the select sensor 24 are abnormal. If at least some sensors of select sensor 24 are abnormal (YES in S20), the process proceeds to S100. If all the sensors of select sensor 24 are normal (NO in S20), it is determined that none of the above-described first to fourth abnormal patterns is applicable, and the process proceeds to S30.
  • the HV-ECU 30 executes the normal control described above. That is, the HV-ECU 30 determines the shift position based on the shift voltage value Vsha and the select voltage value Vsea, and controls the traveling range according to the determined shift position.
  • the HV-ECU 30 determines whether only one of the select sensors 24 is abnormal. If only one of the select sensors 24 is abnormal (YES in S100), the HV-ECU 30 identifies the first abnormal pattern described above and corresponds to the first failsafe control described above. The process of S102 is executed. On the other hand, if all the sensors of select sensor 24 are abnormal (NO in S100), HV-ECU 30 specifies that the above-described fourth abnormal pattern is present, and S104 corresponding to the above-described fourth fail-safe control. The processes of S112 are executed.
  • the HV-ECU 30 determines the shift position using the shift voltage value Vsha and the detection result of the normal sensor that is not abnormal among the select main sensor 24A and the select sub sensor 24B.
  • the driving range is controlled according to the determined shift position. For example, when the select main sensor 24A is abnormal and the select sub sensor 24B is normal, the shift voltage value Vsha and the select voltage value Vshb (normally a select sub sensor for monitoring that is not used for determining the position in the select direction). 24B detection value) is used to determine the shift position.
  • the HV-ECU 30 determines whether or not the current range is the P range. If the current range is the P range (YES in S104), the process proceeds to S108. If not (NO in S104), the process proceeds to S106.
  • HV-ECU 30 determines whether or not shift lever 270 has been operated in the shift direction. For example, the HV-ECU 30 determines that the shift lever 270 has been operated in the shift direction when the shift voltage value Vsh changes more than a predetermined amount. If there is an operation in the shift direction of shift lever 270 (YES in S106), the process proceeds to S110. If there is no operation in the shift direction (NO in S106), the process proceeds to S108.
  • HV-ECU 30 maintains the traveling range in the current range.
  • HV-ECU 30 switches the travel range to the N range.
  • HV-ECU 30 decreases the output torque of drive device 1.
  • HV-ECU 30 determines whether or not the current range is the P range. If the current range is P range (YES in S200), the process proceeds to S208. If not (NO in S200), the process proceeds to S202.
  • the HV-ECU 30 determines whether at least some of the sensors of the select sensor 24 are abnormal. If at least a part of the select sensors 24 are abnormal (YES in S202), the HV-ECU 30 identifies the third abnormal pattern as described above, and S300 corresponding to the third failsafe control described above. The process of S302 is executed. On the other hand, when all the sensors of select sensor 24 are normal (NO in S202), HV-ECU 30 specifies that the above-described second abnormality pattern is present, and S204 corresponding to the above-described second fail-safe control. The processes of S212 are executed.
  • HV-ECU 30 determines whether or not shift lever 270 has been operated in the select direction. For example, the HV-ECU 30 determines that the shift lever 270 has been operated in the select direction when the select voltage value Vse changes more than a predetermined amount. If there is an operation in the select direction of shift lever 270 (YES in S204), the process proceeds to S210. If there is no operation in the select direction (NO in S204), the process proceeds to S206.
  • the HV-ECU 30 determines whether or not the current range is the R range. If the current range is the R range (YES in S206), the process proceeds to S210. If not (NO in S206), the process proceeds to S208.
  • HV-ECU 30 maintains the traveling range in the current range.
  • HV-ECU 30 switches the travel range to the N range.
  • HV-ECU 30 decreases the output torque of drive device 1.
  • HV-ECU 30 switches the traveling range to the N range. In S302, HV-ECU 30 decreases the output torque of drive device 1.
  • both sensors of the shift sensor 22 related to the detection of the R position are normal, and at least the position of the shift lever 270 in the shift direction is not erroneously detected. Therefore, even when the position of the shift lever 270 in the select direction is determined using the detection results of the remaining normal select sub-sensors 24B among the select sensors 24, the travel range is at least contrary to the driver's intention. There is no switching from the D range to the R range.
  • the HV-ECU 30 executes the first failsafe control. That is, the HV-ECU 30 uses the shift voltage value Vsh (shift voltage value Vsha) and the select voltage value Vshb that is a detection value of the monitoring select subsensor 24B that is not normally used for determining the position in the select direction. The shift position is determined, and the traveling range is controlled according to the determined shift position, as in the normal control (S102).
  • Vsh shift voltage value Vsha
  • Vshb select voltage value of the monitoring select subsensor 24B that is not normally used for determining the position in the select direction.
  • the shift position is determined, and the traveling range is controlled according to the determined shift position, as in the normal control (S102).
  • the shift sub sensor 22B related to the detection of the R position is abnormal. Therefore, the shift voltage value Vsha cannot be monitored using the shift voltage value Vshb, and the reliability of the shift voltage value Vsha cannot be verified. Therefore, it cannot be said that there is no possibility that the driving range is switched from the D range to the R range against the driver's intention.
  • the select sensor 24 since the select sensor 24 is normal, the operation of the shift lever 270 in the select direction can be accurately detected.
  • the HV-ECU 30 executes the second fail-safe control. That is, the HV-ECU 30 holds the current D range until an operation in the select direction of the shift lever 270 is detected based on the select voltage value Vse (NO in S204, NO in S206, S208). .
  • Vse select voltage value
  • HV-ECU 30 switches the travel range to the N range and reduces the output torque of drive device 1 at the point in time when operation of shift lever 270 in the select direction is detected (YES in S204, S210, S212). .
  • the driving force in the forward direction or the reverse direction generated due to erroneous detection of the shift position can be appropriately suppressed.
  • some sensors of the shift sensor 22 related to the detection of the R position are abnormal and may be switched to the R range against the driver's intention. Furthermore, since some sensors of the select sensor 24 are also abnormal, it is not possible to accurately detect not only the operation of the shift lever 270 in the shift direction but also the operation in the select direction. Considering that both the shift sensor 22 and the select sensor 24 are abnormal, the connector 25 may be disconnected from the HV-ECU 30.
  • the HV-ECU 30 executes the third fail-safe control. That is, the HV-ECU 30 switches the travel range to the N range and reduces the output torque of the drive device 1 when both the shift sensor 22 and the select sensor 24 are abnormal (S300, S302). As a result, the driving force in the forward direction or the reverse direction generated due to erroneous detection of the shift position can be appropriately suppressed.
  • both sensors of the shift sensor 22 related to the detection of the R position are normal, and the position of the shift lever 270 in the shift direction can be accurately detected. Therefore, there is no possibility of switching to the R range against the driver's intention.
  • both sensors of the select sensor 24 are abnormal, and it is very likely that a shift position not intended by the driver is detected.
  • HV-ECU 30 performs the fourth failsafe control.
  • HV-ECU 30 holds the current D range until an operation in the shift direction of shift lever 270 is detected based on shift voltage value Vsh (NO in S106, S108).
  • Vsh shift voltage value
  • HV-ECU 30 switches the travel range to the N range and detects the output torque of drive device 1 at the time when the shift lever 270 is operated in the shift direction (YES in S106, S110, S112). .
  • the driving force in the forward direction or the reverse direction generated due to erroneous detection of the shift position can be appropriately suppressed.
  • the abnormal pattern of the shift sensor and the select sensor is specified, and according to the specified abnormal pattern. Evacuate. As a result, it is possible to improve the convenience of retreating the vehicle while avoiding the generation of the driving force in the forward direction and the reverse direction not intended by the driver.
  • HV-ECU 30 determines whether or not the current shift position is the EX position during the second fail-safe control (S260). If the current shift position is the EX position (in S260). YES), even if the shift lever 270 is not operated in the select direction (NO in S204), the travel range may be switched to the N range (S210).
  • the HV-ECU 30 determines whether or not the current shift position is the EX position (S160). If the current shift position is the EX position (S160) YES), even if there is no operation in the shift direction of the shift lever 270 (NO in S106), the travel range may be switched to the N range (S110).
  • the processing of S150 and S152 may be added to the processing flow shown in FIG. That is, HV-ECU 30 determines that the first condition that, for example, the battery is removed from the vehicle and the learned value of reference voltage value VC is erased when the first abnormal pattern occurs (YES in S100), and Whether or not at least one of the second conditions that the range is the P range (that is, a travel range in which the learning value of the reference voltage value VC may be deleted when the battery is removed from the vehicle) is satisfied. If it is determined (S150) and at least one of the conditions is satisfied (YES in S150), then switching of the travel range may be prohibited (S152). If it does in this way, it will be possible to run without performing erroneous learning of the reference voltage value VC.
  • the reason for determining whether or not the second condition that the current range is the P range is satisfied in the process of S150 in FIG. 7 is that the above-described auto P control is adopted in the vehicle according to the present embodiment.
  • the range is the P range
  • the battery is removed from the vehicle when the vehicle power is off. Therefore, when the second condition is satisfied (when the current range is in the P range) This is for the purpose of prohibiting the switching of the travel range because the battery may be removed.
  • the application of the right-hand drive to the vehicle has been described as an example.
  • the present invention is not particularly limited thereto, and may be applied to a left-hand drive vehicle, for example.
  • the shape of the shift gate is symmetrical to that of the right-hand drive vehicle shift gate 260.
  • the shift position may be determined based on the map shown in FIG. 8 that is symmetrical to the map shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 ECU(30)は、Rポジションの検出に関連するシフト方向のシフトレバー位置を検出する多重系のシフトセンサ(22)と、Rポジションの検出には関連しないセレクト方向のシフトレバー位置を検出する多重系のセレクトセンサ(24)とに接続される。ECU(30)は、セレクトセンサ(24)の一部のみが異常である場合、残りの正常なセンサを用いて検出されたシフトポジションに応じて走行レンジを制御する。一方、ECU(30)は、シフトセンサ(22)の一部のみが異常である場合、シフトレバー(270)の操作が検出されるまで現レンジを保持し、シフトレバー(270)の操作が検出された時点で、走行レンジをNレンジに切り替える。

Description

車両の制御装置
 本発明は、車両の制御に関し、特に、シフトレバーの位置を検出するセンサに異常が生じた場合の制御に関する。
 従来より、運転者によって操作されるシフトレバーの位置をセンサによって検出し、そのセンサの検出結果に応じて自動変速機の制御状態(走行レンジ)を切り替える車両が知られている。
 このような車両において、シフトレバーの位置を検出するシフトレバーセンサの異常が発生した場合の制御が、たとえば特開平5-223162号公報(特許文献1)に開示されている。
 特許文献1には、シフトレバーセンサ(シフト選択スイッチ)およびこれに接続されるワイヤハーネスに異常が発生した場合に自動変速機をニュートラル状態に制御するが、車両が高速道路を走行している場合、車両が交差点に停車している場合、操縦者が故障を認識せず停車している場合などの特定の走行環境下では、自動変速機をニュートラル状態に制御しない技術が開示されている。この特許文献1に開示された技術によれば、シフトレバーセンサ(シフト選択スイッチ)の異常が発生した場合にも、直ちに車両が走行不能とはならず、特定の走行環境等の下では車両の移動が可能となる。
特開平5-223162号公報 特開2001-294056号公報 特開2002-213600号公報 特開2003-65436号公報 特開昭61-157441号公報 特開2004-251309号公報
 しかしながら、特許文献1に開示された技術では、特定の走行環境下以外の走行環境下では、シフトレバーセンサの異常が発生した時点で自動変速機がニュートラル状態に制御されるため、車両を退避走行させることができない。
 本発明は、上述の課題を解決するためになされたものであって、その目的は、可動部の位置を検出するセンサの異常が生じた場合に、センサの異常パターンに応じて制御態様を切り替えることによって、運転者が意図しない前後進の切替を回避しつつ、車両を退避走行させる利便性を向上させることができる制御装置を提供することである。
 この発明に係る制御装置は、駆動力源の回転を変速する自動変速機の出力によって走行する車両の制御装置であって、車両の運転者によって操作され、前後進の切替に関連する第1方向と前後進の切替に関連しない第2方向とに移動可能に構成された可動部と、可動部の第1方向の位置を検出する複数のセンサを有する第1検出部と、可動部の第2方向の位置を検出する複数のセンサを有する第2検出部と、第1検出部および第2検出部の検出結果に基づいて駆動力源および自動変速機の少なくともいずれかを制御する制御ユニットとを含む。制御ユニットは、第1検出部の各センサおよび第2検出部の各センサが異常であるか否かを判定し、第1検出部の全部のセンサが正常かつ第2検出部の一部のセンサが異常である第1異常が生じた場合、自動変速機の出力によって車両を走行させることが可能な第1制御を実行し、第2検出部の全センサが正常かつ第1検出部の少なくとも一部のセンサが異常である第2異常が生じた場合、第1制御実行時よりも自動変速機の出力を抑制しつつ車両を走行させることが可能な第2制御を実行する。
 好ましくは、制御ユニットは、第1異常が生じた場合、第1制御として、第1検出部の検出結果と第2検出部の異常なセンサを除いた残りの正常なセンサの検出結果とに基づいて自動変速機の制御状態を切り替える制御を実行し、第2異常が生じた場合、第2制御として、所定条件が成立するまでは第1検出部の異常検出前の自動変速機の制御状態を保持し、所定条件が成立した後は第1制御実行時よりも自動変速機の出力を低下させる低下制御を実行する。
 さらに好ましくは、所定条件は、可動部の操作が検出されたという条件を含む。
 さらに好ましくは、所定条件は、第2検出部の検出結果が変化したという条件を含む。
 さらに好ましくは、可動部は、シフトゲートに沿って移動される。所定条件は、可動部の位置がシフトゲートに対応する所定範囲に含まれない位置であることが検出されたという条件を含む。
 さらに好ましくは、低下制御は、自動変速機の制御状態を動力を遮断するニュートラル状態とする制御および駆動力源の出力を低下させる制御の少なくともいずれかの制御を含む。
 さらに好ましくは、第2検出部の複数のセンサは、第2方向の位置を確定させるために用いられる主センサと、主センサの異常を監視するために用いられる副センサとを含む。制御ユニットは、第1制御を実行する場合、第2検出部の主センサが異常で副センサが正常であるときは、第1検出部の検出結果と第2検出部の副センサの検出結果とに基づいて自動変速機の制御状態を切り替える。
 さらに好ましくは、制御ユニットは、可動部の操作を検出できない第3異常が第1検出部および第2検出部に生じた場合、第3異常が生じた時点で、自動変速機の制御状態を動力を遮断するニュートラル状態とする制御および駆動力源の出力を低下させる制御の少なくともいずれかの制御を実行する。
 さらに好ましくは、制御ユニットは、第1検出部の少なくとも一部のセンサが異常かつ第2検出部の少なくとも一部のセンサが異常である場合に、第3異常が生じたと判断する。
 さらに好ましくは、第1検出部の検出結果と第1方向の位置との対応関係は、第2検出部の検出結果が変化した時点の第1検出部の検出結果に基づいて学習される。制御ユニットは、第1異常が生じた場合に、第1方向の位置の学習結果が消去されたときおよび自動変速機の制御状態が車両の車軸をロックするパーキング状態であるときの少なくともいずれかのときは、自動変速機の制御状態の切り替えを禁止する。
 さらに好ましくは、制御ユニットは、第1検出部の全部のセンサが正常かつ第2検出部の全部のセンサが異常である第4異常が生じた場合、第2検出部の異常が検出されてから可動部の操作が検出されるまで、第2検出部の異常検出前の自動変速機の制御状態を保持し、可動部の操作が検出された時点で、自動変速機の制御状態を動力を遮断するニュートラル状態とする制御および駆動力源の出力を低下させる制御の少なくともいずれかの制御を実行する。
 本発明によれば、運転者が意図しない前後進の切替を回避しつつ、車両を退避走行させる利便性を向上させることができる。
本実施例に係る車両に搭載されるシフト制御システムの構成を示す図である。 シフトポジションの判定領域を示す図(その1)である。 シフトポジションの判定領域を示す図(その2)である。 ECUの機能ブロック図である。 ECUの処理フローを示す図(その1)である。 ECUの処理フローを示す図(その2)である。 ECUの処理フローを示す図(その3)である。 シフトポジションの判定領域を示す図(その3)である。
符号の説明
 1 駆動装置、2 変速機構、10 シフト制御システム、20 スイッチ、22 シフトセンサ、22A シフトメインセンサ、22B シフトサブセンサ、24 セレクトセンサ、24A セレクトメインセンサ、24B セレクトサブセンサ、25 コネクタ、26 シフトレバー機構、30 HV-ECU、40 P-ECU、42 アクチュエータ、46 エンコーダ、48 シフト切換機構、260 シフトゲート、262 第1シフト経路、264 第2シフト経路、266 セレクト経路、270 シフトレバー、3100 入力インターフェイス、3200 演算処理部、3210 異常判定部、3220 異常パターン判定部、3230 通常制御部、3240 フェールセーフ制御部、3250 フェールセーフ制御部、3260 フェールセーフ制御部、3270 フェールセーフ制御部、3300 記憶部、3400 出力インターフェイス。
 以下、図面を参照しつつ、本発明の実施例について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰り返さない。
 図1は、本実施例に係るシフト制御システム10の構成を示す。本実施例に係るシフト制御システム10は、車両の駆動力源である駆動装置1(たとえばエンジン)の回転を変速して駆動輪に伝達する変速機構2の制御状態(以下「走行レンジ」ともいう)を電気制御により切り替えるシフトバイワイヤシステムとして機能する。本実施例において、シフト制御システム10が搭載される車両として、ハイブリッド車両を一例に説明するが、特にハイブリッド車両に限定されるものではない。なお、本実施例において、変速機構2は、無段変速機構から構成される変速機として説明するが、有段変速機構から構成されてもよい。
 シフト制御システム10は、Pスイッチ20と、シフトレバー機構26と、HV(Hybrid Vehicle)-ECU(Electronic Control Unit)30と、パーキング制御装置(以下「P-ECU」ともいう)40と、アクチュエータ42と、エンコーダ46と、シフト切換機構48とを含む。
 Pスイッチ20は、走行レンジをパーキングレンジ(以下、「Pレンジ」ともいう)に切り替えるためのモーメンタリスイッチである。運転者は、Pスイッチ20を通じて、走行レンジをPレンジに切り替える指示を入力する。Pスイッチ20が受付けた運転者からの指示を示すP指令信号は、HV-ECU30に送信される。なお、このようなPスイッチ20以外により、非PレンジからPレンジに走行レンジを切り替えるものであってもよい。
 PレンジからPレンジ以外の走行レンジ(以下、「非Pレンジ」ともいう)への切り替えは、シフトレバー270(後述)を操作することにより行なわれる。なお、このようなシフトレバー270の操作により走行レンジをPレンジから非Pレンジに切り替えるものでなくてもよく、たとえば、Pスイッチ20の操作により走行レンジをPレンジから非Pレンジに切り替えるようにしてもよい。
 シフトレバー機構26は、シフトゲート260と、シフトレバー270と、シフトセンサ22と、セレクトセンサ24とから構成される。
 シフトゲート260は、各々がシフト方向(図1参照)に沿って形成される第1シフト経路262および第2シフト経路264と、セレクト方向(図1参照)に沿って形成され、第1シフト経路262と第2シフト経路264とを接続するセレクト経路266とを有する。
 第1シフト経路262には、上端の位置に後進ポジション(Rポジション)が、下端の位置に前進ポジション(Dポジション)が、中央の位置(セレクト経路266との接続位置)にニュートラルポジション(Nポジション)がそれぞれ設けられる。
 第2シフト経路264には、上端の位置(セレクト経路266との接続位置)に中立ポジション(Mポジション)が設けられ、下端の位置にブレーキポジション(Bポジション)が設けられる。セレクト経路266は、第1シフト経路262のNポジションと第2シフト経路264のMポジションとを接続する。
 したがって、シフトレバー270がシフト方向に移動される際には、シフトレバー270の位置(以下、「シフトポジション」ともいう)がRポジションとDポジションとの間で切り替えられる場合があり、車両の前後進が切り替えられる場合がある。一方、シフトレバー270がセレクト方向に移動される際には、少なくともRポジションとDポジションとの間で切り替えられることはなく、車両の前後進が切り替えられることはない。
 シフトレバー270は、運転者による非操作時にはMポジションに維持され、運転者の操作によってシフトゲート260に形成される経路に沿って移動されるモーメンタリタイプのシフトレバーである。なお、モーメンタリタイプのシフトレバーの構造および動作については、周知の技術であるため、その詳細な説明は行なわない。また、シフトレバー270は、モーメンタリタイプであることに限定されない。
 シフトセンサ22は、シフトレバー270のシフト方向(図1参照)の位置に応じた電圧信号を検出する。シフトセンサ22は、多重系のセンサである。本実施例においては、シフトセンサ22は、2系統のセンサ、すなわちシフトメインセンサ22Aとシフトサブセンサ22Bとを含む。なお、シフトセンサ22が2系統以上のセンサを含んでもよい。
 シフトメインセンサ22Aおよびシフトサブセンサ22Bは、それぞれシフトレバー270のシフト方向の位置に応じたシフト電圧値Vsha,Vshbを検出し、検出結果をHV-ECU30に出力する。シフトメインセンサ22Aおよびシフトサブセンサ22Bがいずれも正常である場合、シフト電圧値Vshaとシフト電圧値Vshbとは同じ値となる。
 シフトメインセンサ22Aが検出したシフト電圧値Vshaは、主にHV-ECU30がシフトレバー270のシフト方向の位置を確定するために用いられる。一方、シフトサブセンサ22Bが検出したシフト電圧値Vshbは、主にHV-ECU30がシフト電圧値Vshaの異常(シフトメインセンサ22Aの異常)を監視するために用いられる。なお、以下の説明においては、シフト電圧値Vshaとシフト電圧値Vshbとを区別して説明する必要がない場合には、これらを区別することなくシフト電圧値Vshとも記載する。
 シフト電圧値Vshは、シフトレバー270のシフト方向についての移動可能な範囲の境界に対応する下限値Vshminから上限値Vshmaxまでの範囲内の値となる。なお、本実施例において、下限値Vshminおよび上限値Vshmaxは、いずれも少なくとも0~5ボルト程度の範囲内の電圧値である。
 シフトレバー270のシフト方向の位置とシフト電圧値Vshとの関係はたとえば線形の関係を有する。なお、シフト電圧値Vshに基づいてシフトレバー270のシフト方向の位置が演算できれば、線形の関係を有していなくてもよい。
 セレクトセンサ24は、シフトレバー270のセレクト方向(図1参照)の位置に応じた電圧信号を検出する。セレクトセンサ24は、多重系のセンサである。本実施例においては、セレクトセンサ24は、2系統のセンサ、すなわちセレクトメインセンサ24Aとセレクトサブセンサ24Bとを含む。なお、セレクトセンサ24が2系統以上のセンサを含んでもよい。
 セレクトメインセンサ24Aおよびセレクトサブセンサ24Bは、それぞれシフトレバー270のセレクト方向の位置に応じたセレクト電圧値Vsea,Vsebを検出し、検出結果をHV-ECU30に出力する。セレクトメインセンサ24Aおよびセレクトサブセンサ24Bがいずれも正常である場合、セレクト電圧値Vseaとセレクト電圧値Vsebとは同じ値となる。
 セレクトメインセンサ24Aが検出したセレクト電圧値Vseaは、主にHV-ECU30がシフトレバー270のセレクト方向の位置を確定するために用いられる。一方、セレクトサブセンサ24Bが検出したセレクト電圧値Vsebは、主にHV-ECU30がセレクト電圧値Vseaの異常(セレクトメインセンサ24Aの異常)を監視するために用いられる。なお、以下の説明においては、セレクト電圧値Vseaとセレクト電圧値Vsebとを区別して説明する必要がない場合には、これらを区別することなくセレクト電圧値Vseとも記載する。
 セレクト電圧値Vseは、シフトレバー270のセレクト方向についての移動可能な範囲の境界に対応する下限値Vseminから上限値Vsemaxまでの範囲内の値となる。なお、本実施例において、下限値Vseminおよび上限値Vsemaxは、いずれも少なくとも0~5ボルト程度の範囲内の電圧値である。
 シフトレバー270のセレクト方向の位置とセレクト電圧値Vseとの関係はたとえば線形の関係を有する。なお、セレクト電圧値Vseに基づいてシフトレバー270のセレクト方向の位置が演算できれば、線形の関係を有していなくてもよい。
 シフトメインセンサ22A、シフトサブセンサ22B、セレクトメインセンサ24A、セレクトサブセンサ24Bは、それぞれコネクタ25に接続される。コネクタ25をHV-ECU30側のコネクタ(図示せず)に挿入することによって、シフトメインセンサ22A、シフトサブセンサ22B、セレクトメインセンサ24A、セレクトサブセンサ24Bの各センサとHV-ECU30とが電気的に接続される。
 HV-ECU30は、Pスイッチ20、シフトセンサ22およびセレクトセンサ24からの各出力に基づいて、シフト制御システム10の動作を統括的に管理する。
 HV-ECU30は、シフトセンサ22からのシフト電圧値Vshと、セレクトセンサ24からのセレクト電圧値Vseとに基づいてシフトポジションを判定する。
 HV-ECU30は、シフトレバー270の位置がMポジション以外の位置に移動されて、シフトレバー270が移動先の位置において予め定められた認識時間が経過するまで維持されると、移動先の位置に対応するシフトポジションを確定する。
 HV-ECU30の記憶部3300(図4参照)には、たとえば、シフト電圧値Vsh、セレクト電圧値Vseに基づいてシフトポジションを検出するための図2、3に示すようなマップが予め記憶される。
 図2に示すように、シフト方向の移動可能な範囲の境界に対して上限値Vshmaxおよび下限値Vshminが設定される。セレクト方向の移動可能な範囲の境界に対して上限値Vsemaxおよび下限値Vseminが設定される。
 上限値Vsemaxおよび下限値Vseminの間には、しきい値Vsemidが設定される。上限値Vsemax、下限値Vsemin、しきい値Vsemidは、0~5ボルトの間の範囲内で設定される。
 上限値Vshmaxおよび下限値Vshminの間には、しきい値Vshmid(1)およびしきい値Vshmid(2)(>Vshmid(1))が設定される。上限値Vshmax、下限値Vshmin、しきい値Vshmid(1)、しきい値Vshmid(2)は0~5ボルトの間の範囲内に設定される。
 なお、HV-ECU30は、シフトレバー270がセレクト経路266上に位置する時(たとえばセレクト電圧値Vseが変化した時)のシフト電圧値Vshを基準電圧値VCとして予め学習して内部の記憶部3300(図4参照)に記憶しておき、基準電圧値VCから所定値ΔVを減じた値をしきい値Vshmid(1)に設定し、基準電圧値VCに所定値ΔVを加えた値をしきい値Vshmid(2)に設定する。したがって、しきい値Vshmid(1)およびしきい値Vshmid(2)は、基準電圧値VCの学習結果によって変動する値である。なお、基準電圧値VCは、図示しないバッテリからの電力の供給が遮断された場合(たとえばバッテリが車両から取り外された場合)には記憶部3300から消去される。
 HV-ECU30は、シフト電圧値Vshが、VshminとVshmid(1)との間のシフトL領域、Vshmid(1)とVshmid(2)との間のシフトM領域、Vshmid(2)とVshmaxとの間のシフトH領域のいずれの領域に含まれるか否かを判断する。
 HV-ECU30は、セレクト電圧値Vseが、VseminとVsemidとの間のセレクトL領域、VsemidとVsemaxとの間のセレクトH領域のいずれの領域に含まれるか否かを判断する。
 図3に示すように、HV-ECU30は、シフト電圧値VshがシフトL領域に含まれ、かつセレクト電圧値VseがセレクトH領域に含まれる場合、シフトポジションをRポジションと検出する。
 HV-ECU30は、シフト電圧値VshがシフトM領域に含まれ、かつセレクト電圧値VseがセレクトH領域に含まれる場合、シフトポジションをNポジションと検出する。
 HV-ECU30は、シフト電圧値VshがシフトH領域に含まれ、かつセレクト電圧値VseがセレクトH領域に含まれる場合、シフトポジションをDポジションと検出する。
 HV-ECU30は、シフト電圧値VshがシフトM領域に含まれ、かつセレクト電圧値VseがセレクトL領域に含まれる場合、シフトポジションをMポジションと検出する。
 HV-ECU30は、シフト電圧値Vshがシフト領域Hに含まれ、かつセレクト電圧値Vseがセレクト領域Lに含まれる場合、シフトポジションをBポジションと検出する。
 HV-ECU30は、シフト電圧値VshがシフトL領域に含まれ、かつセレクト電圧値VseがセレクトL領域に含まれる場合、シフトポジションをEXポジションと検出する。なお、シフト電圧値Vshおよびセレクト電圧値Vseが正常な値であれば、EXポジションが検出されることはない。
 HV-ECU30は、車両情報(たとえばアクセル開度など)に基づいて要求トルクを演算し、要求トルクに応じた駆動指令を駆動装置1に出力するとともに、シフトセンサ22およびセレクトセンサ24の検出結果に基づいてシフトポジションを確定し、確定されたシフトポジションに応じたレンジ指令を変速機構2に出力する。これにより、駆動装置1の出力トルクが要求トルクに応じたトルクに制御されるとともに、変速機構2の走行レンジが確定されたシフトポジションに対応するレンジ(Dレンジ、Nレンジ、Rレンジ、Bレンジのいずれか)に切り替えられる。なお、Dレンジでは車両は前進し、Rレンジでは車両は後進する。また、Nレンジでは、変速機構2の動力伝達が遮断される。
 また、HV-ECU30は、Pスイッチ20からのP指令信号を受信すると、P-ECU40に対してP要求信号を送信する。
 P-ECU40は、HV-ECU30と相互に通信可能に接続される。P-ECU40は、HV-ECU30からのP指令信号または非P指令信号を受信すると、走行レンジををPレンジと非Pレンジとの間で切り替えるために、シフト切換機構48を駆動するアクチュエータ42の動作を制御する。
 アクチュエータ42は、スイッチドリラクタンスモータ(以下、「SRモータ」と表記する)により構成され、P-ECU40からの制御信号に応じてシフト切換機構48を駆動する。アクチュエータ42は、P-ECU40からP指令信号を受信した場合には、走行レンジをPレンジにするように、具体的には、図示しないパーキング機構を構成するパーキングギヤとパーキングポールとを嵌め合わせて車軸をロックするパーキングロック状態(以下、「Pロック状態」ともいう)にするように、シフト切換機構48を駆動する。
 なお、本実施例に係る車両においては、車両電源オフ時(図示しないイグニッションスイッチがオフされた時)に走行レンジを自動的にPレンジに切り替える制御(以下、「オートP制御」ともいう)が採用されている。
 また、アクチュエータ42は、P-ECU40から非P指令信号を受信した場合には、Pロック状態を解除するようにシフト切換機構48を駆動する。なお、本発明においてアクチュエータ42は、モータにより構成されるものとして説明するが、油圧により構成されるようにしてもよい。
 エンコーダ46は、アクチュエータ42と一体的に回転し、SRモータの回転状況を検出する。本実施例のエンコーダ46は、A相、B相およびZ相の信号を出力するロータリーエンコーダである。
 P-ECU40は、エンコーダ46から出力される信号を取得してSRモータの回転状況を把握し、SRモータを駆動するための通電の制御を行なととともに、現在Pロック状態であることを示す信号(P検出信号)および現在Pロック状態が解除された状態であることを示す信号(非P検出信号)のいずれかをHV-ECU30に送信する。
 以上のような構造を有する車両において、本発明は、シフトセンサ22およびセレクトセンサ24の少なくともいずれかに異常が生じた場合、シフトセンサ22およびセレクトセンサ24の異常の組合わせに応じた退避走行制御を行なう点に特徴を有する。
 すなわち、シフトセンサ22およびセレクトセンサ24の少なくともいずれかに異常が生じた場合、従来においては異常が生じた時点で走行レンジをNレンジに切り替えるフェールセーフ制御を実行していた。これに対し、本発明は、シフトセンサ22およびセレクトセンサ24の異常パターンを特定し、特定された異常パターンが退避走行が可能なパターンである場合には異常発生後においても異常パターンに応じた退避走行を行なうことによって、可能な限り車両の走行を継続させるものである。
 図4に、本実施例に係るHV-ECU30の機能ブロック図を示す。HV-ECU30は、入力インターフェイス3100と、演算処理部3200と、記憶部3300と、出力インターフェイス3400とを含む。
 入力インターフェイス3100は、シフトセンサ22(シフトメインセンサ22A、シフトサブセンサ22B)からのシフト電圧値Vsha,Vshb、セレクトセンサ24(セレクトメインセンサ24A、セレクトサブセンサ24B)からのセレクト電圧値Vsea,Vsebなどを受信して演算処理部3200に送信する。
 記憶部3300には、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部3200からデータが読み出されたり、格納されたりする。なお、記憶部3300に記憶される情報には、上述した図2、3に示すマップや基準電圧値VCの学習値の他、シフトポジションおよび走行レンジの履歴なども含まれる。
 演算処理部3200は、異常判定部3210と、異常パターン判定部3220と、通常制御部3230と、第1フェールセーフ制御部3240と、第2フェールセーフ制御部3250と、第3フェールセーフ制御部3260と、第4フェールセーフ制御部3270とを含む。
 異常判定部3210は、シフトメインセンサ22A、シフトサブセンサ22B、セレクトメインセンサ24A、セレクトサブセンサ24Bの各センサが異常か否かを、それぞれ判定する。
 異常判定部3210は、Vshmin<Vsha<Vshmaxの場合にシフトメインセンサ22Aが正常と判定し、Vsha<VshminあるいはVsha>Vshmaxの場合にシフトメインセンサ22Aが異常と判定する。同様に、異常判定部3210は、Vshmin<Vshb<Vshmaxの場合にシフトサブセンサ22Bが正常と判定し、Vshb<VshminあるいはVshb>Vshmaxの場合にシフトサブセンサ22Bが異常と判定する。
 異常判定部3210は、Vsemin<Vsea<Vsemaxの場合にセレクトメインセンサ24Aが正常と判定し、Vsea<VseminあるいはVsea>Vsemaxの場合にセレクトメインセンサ24Aが異常と判定する。同様に、異常判定部3210は、Vsemin<Vseb<Vsemaxの場合にセレクトサブセンサ24Bが正常と判定し、Vseb<VseminあるいはVseb>Vsemaxの場合にセレクトサブセンサ24Bが異常と判定する。
 なお、各センサの異常をそれぞれ判定できる手法であれば、他の手法を用いて異常を判定してもよい。
 異常パターン判定部3220は、異常判定部3210の判定結果を、第1~第4の異常パターンに層別する。なお、以下に説明する異常パターンの層別手法はあくまで一例であって、異常パターンの数および層別手法はこれらに限定されるものではない。
 異常パターン判定部3220は、シフトセンサ22の全部のセンサ(シフトメインセンサ22Aおよびシフトサブセンサ22B)が正常で、かつセレクトセンサ24の一部のセンサ(セレクトメインセンサ24Aおよびセレクトサブセンサ24Bのいずれか)が異常である場合、第1異常パターンと特定する。
 異常パターン判定部3220は、セレクトセンサ24の全部のセンサ(セレクトメインセンサ24Aおよびセレクトサブセンサ24B)が正常で、かつシフトセンサ22の少なくとも一部のセンサ(シフトメインセンサ22Aおよびシフトサブセンサ22Bの少なくともいずれか)が異常ある場合、第2異常パターンと特定する。
 異常パターン判定部3220は、シフトセンサ22の少なくとも一部のセンサ(シフトメインセンサ22Aおよびシフトサブセンサ22Bの少なくともいずれか)が異常で、かつセレクトセンサ24の少なくとも一部のセンサ(セレクトメインセンサ24Aおよびセレクトサブセンサ24Bの少なくともいずれか)が異常である場合、第3異常パターンと特定する。
 異常パターン判定部3220は、シフトセンサ22の全部のセンサ(シフトメインセンサ22Aおよびシフトサブセンサ22B)が正常で、かつセレクトセンサ24の全部のセンサ(セレクトメインセンサ24Aおよびセレクトサブセンサ24B)が異常である場合、第4異常パターンと特定する。
 通常制御部3230は、異常パターン判定部3220が第1~第4のいずれの異常パターンも特定しない場合、すなわちシフトセンサ22の全部のセンサ(シフトメインセンサ22Aおよびシフトサブセンサ22B)およびセレクトセンサ24の全部のセンサ(セレクトメインセンサ24Aおよびセレクトサブセンサ24B)がすべて正常である場合に、通常制御を実行する。通常制御においては、シフトメインセンサ22Aからのシフト電圧値Vshaおよびセレクトメインセンサ24Aからのセレクト電圧値Vseaに基づいてシフトポジションが確定され、確定されたシフトポジションに応じて走行レンジが制御される。
 第1フェールセーフ制御部3240は、異常パターン判定部3220が第1異常パターンと特定した場合に、第1フェールセーフ制御を実行する。第1異常パターンでは、前後進の切替に関連するシフトセンサ22の全部のセンサ(シフトメインセンサ22Aおよびシフトサブセンサ22B)が正常であり、運転者の意図に反して前後進の切替が行なわれることはない。さらに、セレクトセンサ24の一部は正常である。
 そのため、第1フェールセーフ制御においては、シフト電圧値Vshと、セレクトメインセンサ24Aおよびセレクトサブセンサ24Bのうち異常ではない正常なセンサの検出結果とを用いてシフトポジションが確定される。そして、通常制御と同様、確定されたシフトポジションに応じて走行レンジが制御される。
 第2フェールセーフ制御部3250は、異常パターン判定部3220が第2異常パターンと特定した場合に、第2フェールセーフ制御を実行する。第2異常パターンでは、前後進の切替には関連しないセレクトセンサ24の双方のセンサが正常ではあるものの、前後進の切替に関連するシフトセンサ22の少なくとも一部のセンサが異常であり、運転者の意図に反して前後進の切替が行なわれる可能性がある。
 そのため、第2フェールセーフ制御においては、シフトレバー270のセレクト方向の操作が検出されるまで(セレクト電圧値Vseが変化するまで)は、現レンジ(現在の走行レンジ)が保持され、シフトレバー270のセレクト方向の操作が検出された時点(セレクト電圧値Vseが変化した時点)で、走行レンジがNレンジに切り替えられるとともに、駆動装置1のトルクダウン(たとえばフューエルカット)が行なわれる。なお、走行レンジをNレンジに切り替える制御および駆動装置1のトルクダウン制御のいずれか一方の制御を行なうようにしてもよい。第2フェールセーフ制御においては、現レンジがRレンジである場合、シフトレバー270のセレクト方向の操作が検出される前であっても、走行レンジがNレンジに切り替えられる。
 第3フェールセーフ制御部3260は、異常パターン判定部3220が第3異常パターンと特定した場合に、第3フェールセーフ制御を実行する。第3異常パターンでは、前後進の切替に関連するシフトセンサ22の少なくとも一部のセンサが異常であり、運転者の意図に反して前後進の切替が行なわれる可能性がある。さらに、セレクトセンサ24の少なくとも一部も異常であるため、シフトレバー270のセレクト方向の操作を誤検出する可能性がある。また、シフトセンサ22およびセレクトセンサ24の双方のセンサに異常がまたがっているため、そもそもコネクタ25がHV-ECU30から抜けてしまっている可能性がある。
 そのため、第3フェールセーフ制御では、異常パターン判定部3220が第3異常パターンと特定した時点で、走行レンジがNレンジに切り替えられるとともに、駆動装置1のトルクダウンが行なわれる。なお、走行レンジをNレンジに切り替える制御および駆動装置1のトルクダウン制御のいずれか一方の制御を行なうようにしてもよい。
 第4フェールセーフ制御部3270は、異常パターン判定部3220が第4異常パターンと特定した場合に、第4フェールセーフ制御を実行する。第4異常パターンでは、前後進の切替に関連するシフトセンサ22の全部のセンサが正常であり運転者の意図に反して前後進の切替が行なわれる可能性はないが、セレクトセンサ24の全部のセンサが異常であり、運転者が意図しないシフトポジションが検出される可能性が非常に高い。
 そのため、第4フェールセーフ制御においては、シフトレバー270のシフト方向の操作が検出されるまで(シフト電圧値Vshが変化するまで)は、現レンジが保持され、シフトレバー270のシフト方向の操作が検出された時点(シフト電圧値Vshが変化した時点)で、走行レンジがNレンジに切り替えられるとともに、駆動装置1のトルクダウンが行なわれる。なお、走行レンジをNレンジに切り替える制御および駆動装置1のトルクダウン制御のいずれか一方の制御を行なうようにしてもよい。
 なお、第2~4の異常パターンが生じている場合であっても、現レンジがPレンジである場合には、Pレンジを保持する制御が優先的に実行される。
 上述した機能は、ソフトウェアによって実現されるようにしてもよく、ハードウェアにより実現されるようにしてもよい。
 図5は、上述した機能をソフトウェアによって実現する場合のHV-ECU30の処理フローである。なお、この処理は、予め定められたサイクルタイムで繰り返し行なわれる。
 図5に示すように、ステップ(以下、ステップをSと記載する)10にて、HV-ECU30は、シフトセンサ22の少なくとも一部のセンサが異常であるか否かを判定する。シフトセンサ22の少なくとも一部のセンサが異常であると(S10にてYES)、処理はS200に移される。シフトセンサ22の全部のセンサが正常であると(S10にてNO)、処理はS20に移される。
 S20にて、HV-ECU30は、セレクトセンサ24の少なくとも一部のセンサが異常であるか否かを判断する。セレクトセンサ24の少なくとも一部のセンサが異常であると(S20にてYES)、処理はS100に移される。セレクトセンサ24の全部のセンサが正常であると(S20にてNO)、上述した第1~第4のいずれの異常パターンにも該当しないと判断して、処理はS30に移される。
 S30にて、HV-ECU30は、上述した通常制御を実行する。すなわち、HV-ECU30は、シフト電圧値Vshaおよびセレクト電圧値Vseaに基づいてシフトポジションを確定し、確定されたシフトポジションに応じて走行レンジを制御する。
 S100にて、HV-ECU30は、セレクトセンサ24のいずれか一方のセンサのみが異常であるのか否かを判断する。HV-ECU30は、セレクトセンサ24のいずれか一方のセンサのみが異常であると(S100にてYES)、上述した第1異常パターンであると特定して、上述した第1フェールセーフ制御に相当するS102の処理を実行する。一方、HV-ECU30は、セレクトセンサ24の全部のセンサが異常であると(S100にてNO)、上述した第4異常パターンであると特定して、上述した第4フェールセーフ制御に相当するS104~S112の処理を実行する。
 S102にて、HV-ECU30は、シフト電圧値Vshaと、セレクトメインセンサ24Aおよびセレクトサブセンサ24Bのうち異常ではない正常なセンサの検出結果とを用いてシフトポジションを確定し、通常制御と同様、確定されたシフトポジションに応じて走行レンジを制御する。たとえば、セレクトメインセンサ24Aが異常でセレクトサブセンサ24Bが正常である場合には、シフト電圧値Vshaおよびセレクト電圧値Vshb(通常ではセレクト方向の位置の確定には用いられない監視用のセレクトサブセンサ24Bの検出値)を用いてシフトポジションが確定される。
 S104にて、HV-ECU30は、現レンジがPレンジであるか否かを判断する。現レンジがPレンジであると(S104にてYES)、処理はS108に移される。もしそうでないと(S104にてNO)、処理はS106に移される。
 S106にて、HV-ECU30は、シフトレバー270のシフト方向の操作があったか否かを判断する。たとえば、HV-ECU30は、シフト電圧値Vshが所定量よりも大きく変化した場合に、シフトレバー270のシフト方向の操作があったと判断する。シフトレバー270のシフト方向の操作があると(S106にてYES)、処理はS110に移される。シフト方向の操作がない場合(S106にてNO)、処理はS108に移される。
 S108にて、HV-ECU30は、走行レンジを現レンジに保持する。S110にて、HV-ECU30は、走行レンジをNレンジに切り替える。S112にて、HV-ECU30は、駆動装置1の出力トルクを低下させる。
 S200にて、HV-ECU30は、現レンジがPレンジであるか否かを判断する。現レンジがPレンジであると(S200にてYES)、処理はS208に移される。もしそうでないと(S200にてNO)、処理はS202に移される。
 S202にて、HV-ECU30は、セレクトセンサ24の少なくとも一部のセンサが異常であるか否かを判断する。HV-ECU30は、セレクトセンサ24の少なくとも一部のセンサが異常であると(S202にてYES)、上述した第3異常パターンであると特定して、上述した第3フェールセーフ制御に相当するS300~S302の処理を実行する。一方、HV-ECU30は、セレクトセンサ24の全部のセンサが正常であると(S202にてNO)、上述した第2異常パターンであると特定して、上述した第2フェールセーフ制御に相当するS204~S212の処理を実行する。
 S204にて、HV-ECU30は、シフトレバー270のセレクト方向の操作があったか否かを判断する。たとえば、HV-ECU30は、セレクト電圧値Vseが所定量よりも大きく変化した場合に、シフトレバー270のセレクト方向の操作があったと判断する。シフトレバー270のセレクト方向の操作があると(S204にてYES)、処理はS210に移される。セレクト方向の操作がない場合(S204にてNO)、処理はS206に移される。
 S206にて、HV-ECU30は、現レンジがRレンジであるか否かを判断する。現レンジがRレンジであると(S206にてYES)、処理はS210に移される。もしそうでないと(S206にてNO)、処理はS208に移される。
 S208にて、HV-ECU30は、走行レンジを現レンジに保持する。S210にて、HV-ECU30は、走行レンジをNレンジに切り替える。S212にて、HV-ECU30は、駆動装置1の出力トルクを低下させる。
 S300にて、HV-ECU30は、走行レンジをNレンジに切り替える。S302にて、HV-ECU30は、駆動装置1の出力トルクを低下させる。
 以上のような構造およびフローチャートに基づく本実施例に係るHV-ECU30の動作について説明する。
 <セレクトセンサ24の一部のセンサのみに異常が生じた場合>
 たとえば、Dレンジでの前進走行中に、セレクトメインセンサ24Aに異常が生じ、他のシフトメインセンサ22A、シフトサブセンサ22B、セレクトサブセンサ24Bのいずれもが正常である場合(S10にてNO、S20にてYES、S100にてYES)を想定する。なお、この異常パターンは、上述した第1異常パターンである。
 この場合、Rポジションの検出に関連するシフトセンサ22の双方のセンサが正常であり、少なくともシフトレバー270のシフト方向の位置を誤って検出することはない。したがって、セレクトセンサ24のうちの残りの正常なセレクトサブセンサ24Bの検出結果を用いてシフトレバー270のセレクト方向の位置を確定した場合であっても、少なくとも運転者の意図に反して走行レンジがDレンジからRレンジに切り替えられることはない。
 そこで、HV-ECU30は、第1フェールセーフ制御を実行する。すなわち、HV-ECU30は、シフト電圧値Vsh(シフト電圧値Vsha)および通常ではセレクト方向の位置の確定には用いられない監視用のセレクトサブセンサ24Bの検出値であるセレクト電圧値Vshbを用いてシフトポジションを確定し、通常制御と同様、確定されたシフトポジションに応じて走行レンジを制御する(S102)。
 したがって、運転者が意図しないRレンジへの切替を回避しつつ、通常制御時(S30)と同様の制御態様で、車両を退避走行させることが可能となる。
 <シフトセンサ22の少なくとも一部のセンサに異常が生じた場合>
 たとえば、Dレンジでの前進走行中に、シフトサブセンサ22Bに異常が生じ、他のシフトメインセンサ22A、セレクトメインセンサ24A、セレクトサブセンサ24Bのいずれもが正常である場合(S10にてYES、S200にてNO、S202にてNO)を想定する。なお、この異常パターンは、上述した第2異常パターンである。
 この場合、Rポジションの検出に関連するシフトサブセンサ22Bが異常である。そのため、シフト電圧値Vshaをシフト電圧値Vshbを用いて監視することができず、シフト電圧値Vshaの信頼性を検証することができない。したがって、運転者の意図に反して走行レンジがDレンジからRレンジに切り替えられる可能性が全くないとまでは言い切れない。一方、セレクトセンサ24は正常であるため、シフトレバー270のセレクト方向の操作は正確に検出することが可能である。
 そこで、HV-ECU30は、第2フェールセーフ制御を実行する。すなわち、HV-ECU30は、セレクト電圧値Vseに基づいてシフトレバー270のセレクト方向の操作が検出されるまでは現レンジであるDレンジを保持する(S204にてNO、S206にてNO、S208)。これにより、Rポジションの検出に関連するシフトセンサ22のうちの一部のセンサが異常である場合であっても、車両の走行を継続させることができ、安全な場所まで車両を移動させることができる。
 そして、HV-ECU30は、シフトレバー270のセレクト方向の操作が検出された時点で、走行レンジをNレンジに切り替えるとともに、駆動装置1の出力トルクを低下させる(S204にてYES、S210、S212)。これにより、シフトポジションの誤検出によって発生する前進方向あるいは後進方向の駆動力を適切に抑制することができる。
 <シフトセンサ22およびセレクトセンサ24に異常が生じた場合>
 たとえば、Dレンジでの前進走行中に、シフトサブセンサ22Bおよびセレクトサブセンサ24Bに異常が生じた場合(S10にてYES、S200にてNO、S202にてYES)を想定する。なお、この異常パターンは、上述した第3異常パターンである。
 この場合、Rポジションの検出に関連するシフトセンサ22の一部のセンサが異常であり、運転者の意図に反してRレンジに切り替えられる可能性がある。さらに、セレクトセンサ24の一部のセンサも異常であるため、シフトレバー270のシフト方向の操作だけでなくセレクト方向の操作をも正確に検出することができない。また、シフトセンサ22およびセレクトセンサ24の双方のセンサに異常がまたがっていることを考慮すると、コネクタ25がHV-ECU30から抜けてしまっている可能性もある。
 そこで、HV-ECU30は、第3フェールセーフ制御を実行する。すなわち、HV-ECU30は、シフトセンサ22およびセレクトセンサ24の双方に異常が生じた時点で、走行レンジをNレンジに切り替えるとともに、駆動装置1の出力トルクを低下させる(S300、S302)。これにより、シフトポジションの誤検出によって発生する前進方向あるいは後進方向の駆動力を適切に抑制することができる。
 <シフトセンサ22が正常でセレクトセンサ24の双方に異常が生じた場合>
 たとえば、Dレンジでの前進走行中に、セレクトメインセンサ24Aおよびセレクトサブセンサ24Bの双方に異常が生じ、シフトセンサ22の双方のセンサが正常である場合(S10にてNO、S20にてYES、S100にてNO、S104にてNO)を想定する。なお、この異常パターンは、上述した第4異常パターンである。
 この場合、Rポジションの検出に関連するシフトセンサ22の双方のセンサが正常であり、シフトレバー270のシフト方向の位置を正確に検出することが可能である。したがって、運転者の意図に反してRレンジに切り替えられる可能性はない。しかしながら、セレクトセンサ24の双方のセンサが異常であり、運転者が意図しないシフトポジションが検出される可能性が非常に高い。
 そのため、HV-ECU30は、第4フェールセーフ制御を実行する。すなわち、HV-ECU30は、シフト電圧値Vshに基づいてシフトレバー270のシフト方向の操作が検出されるまでは現レンジであるDレンジを保持する(S106にてNO、S108)。これにより、セレクトセンサ24の双方のセンサが異常である場合であっても、車両の走行を継続させることができ、安全な場所まで車両を移動させることができる。
 そして、HV-ECU30は、シフトレバー270のシフト方向の操作が検出された時点で、走行レンジをNレンジに切り替えるとともに、駆動装置1の出力トルクを低下させる(S106にてYES、S110、S112)。これにより、シフトポジションの誤検出によって発生する前進方向あるいは後進方向の駆動力を適切に抑制することができる。
 以上のように、本実施例に係る制御装置においては、シフトセンサおよびセレクトセンサの少なくともいずれかに異常が生じた場合、シフトセンサおよびセレクトセンサの異常パターンを特定し、特定された異常パターンに応じた退避走行を行なう。これにより、運転者が意図しない前進方向および後進方向の駆動力の発生を回避しつつ、車両を退避走行させる利便性を向上させることができる。
 なお、上述したHV-ECU30の制御に対しては、さまざまな変形を行なうことが可能である。
 たとえば、図6に示すように、図5の処理フローに対して、S160およびS260の処理を追加してもよい。すなわち、HV-ECU30は、第2フェールセーフ制御中において、現在のシフトポジションがEXポジションであるか否かを判断し(S260)、現在のシフトポジションがEXポジションである場合には(S260にてYES)、たとえシフトレバー270のセレクト方向の操作がない場合であっても(S204にてNO)、走行レンジをNレンジに切り替える(S210)ようにしてもよい。
 同様に、HV-ECU30は、第4フェールセーフ制御中において、現在のシフトポジションがEXポジションであるか否かを判断し(S160)、現在のシフトポジションがEXポジションである場合には(S160にてYES)、たとえシフトレバー270のシフト方向の操作がない場合であっても(S106にてNO)、走行レンジをNレンジに切り替える(S110)ようにしてもよい。
 このように、通常では検出されることがないEXポジションが検出された時点で走行レンジをNレンジとすることによって、運転者の意図に反して前後進が切り替えられることを適切に防止できる。
 また、図7に示すように、図6に示す処理フローに対して、S150およびS152の処理を追加してもよい。すなわち、HV-ECU30は、第1異常パターンが生じた場合(S100にてYES)に、たとえばバッテリが車両から取り外されて基準電圧値VCの学習値が消去されたという第1条件、および、現レンジがPレンジ(すなわちバッテリが車両から取り外されて基準電圧値VCの学習値が消去される可能性がある走行レンジ)であるという第2条件の少なくともいずれかの条件が成立したか否かを判断し(S150)、少なくともいずれかの条件が成立した場合(S150にてYES)に、その後の走行レンジの切り替えを禁止する(S152)ようにしてもよい。このようにすると、基準電圧値VCの誤まった学習を行なうことなく走行可能となる。
 なお、上述したように、図7のS150の処理では、基準電圧値VCの学習値が消去されたという第1条件、現レンジがPレンジであるという第2条件のいずれか一方の条件のみを判断するようにしてもよい。
 図7のS150の処理で現レンジがPレンジであるという第2条件が成立したか否かを判断する理由は、本実施例に係る車両においては上述したオートP制御が採用されるため、現レンジがPレンジであるときには車両電源オフである可能性があり、車両電源オフのときにバッテリが車両から取り外されると想定されることから、第2条件成立時(現レンジがPレンジにある時)にバッテリが取り外される可能性があるとして、走行レンジの切り替えを禁止するためである。
 また、本実施例においては、右ハンドルの車両への適用を一例として説明したが、特にこれに限定されるものではなく、たとえば、左ハンドルの車両に適用してもよい。左ハンドルの車両においては、シフトゲートの形状は、右ハンドルの車両のシフトゲート260と左右対称の形状となる。このような場合には、上述の図2に示したマップと左右対称となる図8に示すマップに基づいて、シフトポジションを判定すればよい。
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (11)

  1.  駆動力源(1)の回転を変速する自動変速機(2)の出力によって走行する車両の制御装置であって、
     前記車両の運転者によって操作され、前後進の切替に関連する第1方向と前後進の切替に関連しない第2方向とに移動可能に構成された可動部(270)と、
     前記可動部(270)の前記第1方向の位置を検出する複数のセンサを有する第1検出部(22)と、
     前記可動部(270)の前記第2方向の位置を検出する複数のセンサを有する第2検出部(24)と、
     前記第1検出部(22)および前記第2検出部(24)の検出結果に基づいて前記駆動力源(1)および前記自動変速機(2)の少なくともいずれかを制御する制御ユニット(30)とを含み、
     前記制御ユニット(30)は、前記第1検出部(22)の各センサおよび前記第2検出部(24)の各センサが異常であるか否かを判定し、前記第1検出部(22)の全部のセンサが正常かつ前記第2検出部(24)の一部のセンサが異常である第1異常が生じた場合、前記自動変速機(2)の出力によって前記車両を走行させることが可能な第1制御を実行し、前記第2検出部(24)の全センサが正常かつ前記第1検出部(22)の少なくとも一部のセンサが異常である第2異常が生じた場合、前記第1制御実行時よりも前記自動変速機(2)の出力を抑制しつつ前記車両を走行させることが可能な第2制御を実行する、車両の制御装置。
  2.  前記制御ユニット(30)は、前記第1異常が生じた場合、前記第1制御として、前記第1検出部(22)の検出結果と前記第2検出部(24)の異常なセンサを除いた残りの正常なセンサの検出結果とに基づいて前記自動変速機(2)の制御状態を切り替える制御を実行し、前記第2異常が生じた場合、前記第2制御として、所定条件が成立するまでは前記第1検出部(22)の異常検出前の前記自動変速機(2)の制御状態を保持し、前記所定条件が成立した後は前記第1制御実行時よりも前記自動変速機(2)の出力を低下させる低下制御を実行する、請求の範囲第1項に記載の車両の制御装置。
  3.  前記所定条件は、前記可動部(270)の操作が検出されたという条件を含む、請求の範囲第2項に記載の車両の制御装置。
  4.  前記所定条件は、前記第2検出部(24)の検出結果が変化したという条件を含む、請求の範囲第2項に記載の車両の制御装置。
  5.  前記可動部(270)は、シフトゲート(260)に沿って移動され、
     前記所定条件は、前記可動部(270)の位置が前記シフトゲート(260)に対応する所定範囲に含まれない位置であることが検出されたという条件を含む、請求の範囲第2項に記載の車両の制御装置。
  6.  前記低下制御は、前記自動変速機(2)の制御状態を動力を遮断するニュートラル状態とする制御および前記駆動力源(1)の出力を低下させる制御の少なくともいずれかの制御を含む、請求の範囲第2項に記載の車両の制御装置。
  7.  前記第2検出部(24)の複数のセンサは、前記第2方向の位置を確定させるために用いられる主センサ(24A)と、前記主センサの異常を監視するために用いられる副センサ(24B)とを含み、
     前記制御ユニット(30)は、前記第1制御を実行する場合、前記第2検出部(24)の前記主センサ(24A)が異常で前記副センサ(24B)が正常であるときは、前記第1検出部(22)の検出結果と前記第2検出部(24)の前記副センサ(24B)の検出結果とに基づいて前記自動変速機(2)の制御状態を切り替える、請求の範囲第1項に記載の車両の制御装置。
  8.  前記制御ユニット(30)は、前記可動部(270)の操作を検出できない第3異常が前記第1検出部(22)および前記第2検出部(24)に生じた場合、前記第3異常が生じた時点で、前記自動変速機(2)の制御状態を動力を遮断するニュートラル状態とする制御および前記駆動力源(1)の出力を低下させる制御の少なくともいずれかの制御を実行する、請求の範囲第1項に記載の車両の制御装置。
  9.  前記制御ユニット(30)は、前記第1検出部(22)の少なくとも一部のセンサが異常かつ前記第2検出部(24)の少なくとも一部のセンサが異常である場合に、前記第3異常が生じたと判断する、請求の範囲第8項に記載の車両の制御装置。
  10.  前記第1検出部(22)の検出結果と前記第1方向の位置との対応関係は、前記第2検出部(24)の検出結果が変化した時点の前記第1検出部(22)の検出結果に基づいて学習され、
     前記制御ユニット(30)は、前記第1異常が生じた場合に、前記第1方向の位置の学習結果が消去されたときおよび前記自動変速機(2)の制御状態が前記車両の車軸をロックするパーキング状態であるときの少なくともいずれかのときは、前記自動変速機(2)の制御状態の切り替えを禁止する、請求の範囲第1項に記載の車両の制御装置。
  11.  前記制御ユニット(30)は、前記第1検出部(22)の全部のセンサが正常かつ前記第2検出部(24)の全部のセンサが異常である第4異常が生じた場合、前記第2検出部(24)の異常が検出されてから前記可動部(270)の操作が検出されるまで、前記第2検出部(24)の異常検出前の前記自動変速機(2)の制御状態を保持し、前記可動部(270)の操作が検出された時点で、前記自動変速機(2)の制御状態を動力を遮断するニュートラル状態とする制御および前記駆動力源(1)の出力を低下させる制御の少なくともいずれかの制御を実行する、請求の範囲第1項に記載の車両の制御装置。
PCT/JP2009/053678 2009-02-27 2009-02-27 車両の制御装置 WO2010097936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980153596.6A CN102271951B (zh) 2009-02-27 2009-02-27 车辆的控制装置
US13/124,981 US8914185B2 (en) 2009-02-27 2009-02-27 Vehicle control device
JP2011501418A JP5152401B2 (ja) 2009-02-27 2009-02-27 車両の制御装置
PCT/JP2009/053678 WO2010097936A1 (ja) 2009-02-27 2009-02-27 車両の制御装置
EP09840789.3A EP2402199B1 (en) 2009-02-27 2009-02-27 Control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053678 WO2010097936A1 (ja) 2009-02-27 2009-02-27 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2010097936A1 true WO2010097936A1 (ja) 2010-09-02

Family

ID=42665163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053678 WO2010097936A1 (ja) 2009-02-27 2009-02-27 車両の制御装置

Country Status (5)

Country Link
US (1) US8914185B2 (ja)
EP (1) EP2402199B1 (ja)
JP (1) JP5152401B2 (ja)
CN (1) CN102271951B (ja)
WO (1) WO2010097936A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041501A (ja) * 2011-08-18 2013-02-28 Hitachi Automotive Systems Ltd 車両制御装置、車両制御システム
JP2013194839A (ja) * 2012-03-21 2013-09-30 Aisin Aw Co Ltd 油圧制御装置
DE102014210049A1 (de) 2013-06-07 2014-12-11 Suzuki Motor Corporation System zur Bestimmung der Schaltposition
CN105203105A (zh) * 2015-09-30 2015-12-30 南京多伦科技股份有限公司 一种微惯性测量系统的汽车档位信息采集装置及采集方法
JP2016038002A (ja) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 車両用シフト位置検出装置および車両用シフト制御装置
CN105508592A (zh) * 2014-09-16 2016-04-20 富士重工业株式会社 线控换挡控制装置
JP2016133201A (ja) * 2015-01-21 2016-07-25 トヨタ自動車株式会社 車両用シフト操作装置
KR20180126128A (ko) * 2017-05-16 2018-11-27 현대자동차주식회사 시프트 바이 와이어 시스템의 기어포지션 검출방법
DE102018007892A1 (de) 2017-10-06 2019-04-11 Suzuki Motor Corporation Fahrzeugsteuervorrichtung
EP3533682A1 (en) 2018-01-15 2019-09-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
WO2022097448A1 (ja) * 2020-11-04 2022-05-12 株式会社オートネットワーク技術研究所 車載ecu、プログラム及びフェールセーフ方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978308B2 (ja) 2007-05-25 2012-07-18 トヨタ自動車株式会社 シフト切換装置
US9221350B2 (en) * 2009-01-09 2015-12-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP5359459B2 (ja) 2009-03-27 2013-12-04 トヨタ自動車株式会社 車両のシフト制御装置
JP5660309B2 (ja) * 2011-01-14 2015-01-28 スズキ株式会社 車両駆動用モータ制御装置
US9086949B2 (en) * 2011-02-14 2015-07-21 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP2014238127A (ja) * 2013-06-07 2014-12-18 スズキ株式会社 車両用変速機のシフト制御装置
US10179512B2 (en) * 2013-11-06 2019-01-15 Kawasaki Jukogyo Kabushiki Kaisha Vehicle and electric power supply unit incorporated in vehicle
JP6187306B2 (ja) * 2014-02-18 2017-08-30 トヨタ自動車株式会社 車両のシフト切替制御装置
JP6418105B2 (ja) * 2014-12-02 2018-11-07 トヨタ自動車株式会社 車両用シフト装置
US20180274672A1 (en) * 2015-09-25 2018-09-27 Nissan Motor Co., Ltd. Control device for continuously variable transmission and control method for continuously variable transmission
CN107763203B (zh) * 2016-08-15 2019-11-12 法法汽车(中国)有限公司 一种车辆档位信号故障的处理方法及系统
WO2018101150A1 (ja) * 2016-12-01 2018-06-07 ヤマハ発動機株式会社 鞍乗型車両
JP2018096528A (ja) * 2016-12-16 2018-06-21 トヨタ自動車株式会社 車両のシフト制御装置
US11008039B2 (en) * 2017-04-12 2021-05-18 Toyota Jidosha Kabushiki Kaisha Lane change assist apparatus for vehicle
KR101964919B1 (ko) * 2017-05-26 2019-08-13 주식회사 만도 주차 제어 장치 및 그 방법
CN107859736B (zh) * 2017-11-02 2020-01-14 盛瑞传动股份有限公司 一种具有倒车保护功能的换挡控制方法
ES1224624Y (es) * 2018-12-14 2019-04-29 Teylor Intelligent Processes Sl Asistente electronico de cambios de marcha
KR102238146B1 (ko) * 2019-12-13 2021-04-08 주식회사 현대케피코 전동식 변속 레버 시스템의 제어 장치 및 그 제어 방법
CN113374860B (zh) * 2021-07-20 2022-08-23 潍柴动力股份有限公司 一种变速箱档位识别方法、装置、存储介质和设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157441A (ja) 1984-12-29 1986-07-17 Isuzu Motors Ltd 自動変速装置
JPH05223162A (ja) 1992-02-12 1993-08-31 Toyota Motor Corp 自動変速機の変速操作装置
JP2001294056A (ja) 2000-04-17 2001-10-23 Toyota Motor Corp シフト制御装置、その方法及びその装置を備えた移動体
JP2002048234A (ja) * 2000-08-04 2002-02-15 Nippon Soken Inc 自動変速機の制御装置
JP2002213600A (ja) 2001-01-19 2002-07-31 Aisin Ai Co Ltd 自動変速装置におけるフェール制御装置
JP2003065436A (ja) 2001-08-29 2003-03-05 Bosch Automotive Systems Corp 変速機変速制御システムの制御方法
JP2003139227A (ja) * 2001-11-02 2003-05-14 Nissan Diesel Motor Co Ltd 車両の機械式自動変速装置
JP2004251309A (ja) 2003-02-18 2004-09-09 Nissan Motor Co Ltd シフトバイワイヤ式自動変速機のレンジ選択装置
JP2006336717A (ja) * 2005-05-31 2006-12-14 Denso Corp 車両制御システム
JP2007192338A (ja) * 2006-01-20 2007-08-02 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2008290622A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp シフト切換装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282194B (en) 1993-07-29 1998-01-14 Fuji Heavy Ind Ltd Failure detecting system and method for automatic transmission
JP3523351B2 (ja) 1994-12-27 2004-04-26 ジヤトコ株式会社 自動変速機の制御方法およびその装置
JPH08303287A (ja) 1995-05-10 1996-11-19 Fujitsu Ten Ltd 電子燃料噴射制御装置のフェールセーフモードからの復帰方法及び車両用電子燃料噴射制御装置
JP3283405B2 (ja) * 1995-07-27 2002-05-20 ヤマハ発動機株式会社 エンジン駆動式船舶推進機のシフト制御方法および装置
JPH09136637A (ja) 1995-11-16 1997-05-27 Toyota Motor Corp 車両制御システム
JP3651088B2 (ja) 1995-11-30 2005-05-25 株式会社デンソー 内燃機関の制御装置
US6047679A (en) * 1997-04-25 2000-04-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an internal combustion engine
JP4004131B2 (ja) * 1998-02-27 2007-11-07 いすゞ自動車株式会社 オートクラッチ車両
JP3853527B2 (ja) * 1998-10-29 2006-12-06 三菱電機株式会社 自動車用エンジンの出力制御システム
JP3852228B2 (ja) 1998-11-11 2006-11-29 トヨタ自動車株式会社 エンジン始動制御装置
JP4546601B2 (ja) * 2000-02-21 2010-09-15 本田技研工業株式会社 車両用自動変速機のシフト制御装置
JP2001304390A (ja) 2000-04-25 2001-10-31 Mitsubishi Electric Corp 同期噛合式自動変速機の制御装置
US6659911B2 (en) * 2000-11-28 2003-12-09 Yamaha Marine Kabushiki Kaisha Shift assist system for an outboard motor
US6655343B2 (en) * 2001-05-08 2003-12-02 Yamaha Marine Kabushiki Kaisha Engine control system for an outboard motor
JP3937774B2 (ja) 2001-09-05 2007-06-27 三菱ふそうトラック・バス株式会社 車両の定速走行制御装置
JP4284905B2 (ja) 2001-12-04 2009-06-24 日産自動車株式会社 無段変速機の変速制御装置
US6939266B2 (en) * 2002-01-22 2005-09-06 Bombardier Recreational Products Inc Shift interrupt system
JP2004052819A (ja) 2002-07-16 2004-02-19 Aisin Aw Co Ltd 車輌のレンジ切替え装置
JP4007123B2 (ja) * 2002-08-26 2007-11-14 トヨタ自動車株式会社 内燃機関の制御装置
AU2003291936A1 (en) * 2002-11-16 2004-06-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Gearbox device with a switching device
JP4356353B2 (ja) 2002-12-27 2009-11-04 アイシン・エィ・ダブリュ株式会社 ポジション判断装置、ポジション判断方法及びプログラム
JP2004293441A (ja) * 2003-03-27 2004-10-21 Nissan Diesel Motor Co Ltd アクセルセンサ異常処理装置
US20040226801A1 (en) * 2003-05-15 2004-11-18 De Jonge Robert A. Vehicle shifter
JP4049028B2 (ja) 2003-06-18 2008-02-20 トヨタ自動車株式会社 変速機のシフト操作装置
US20050030009A1 (en) 2003-06-24 2005-02-10 Moreno Daniel J. Discrete absolute sensor and code
ATE540867T1 (de) * 2004-05-28 2012-01-15 Volvo Ab Verfahren zum lenken eines schiffs mit zwei aussenbordantrieben und schiff mit zwei aussenbordantrieben
JP2006162050A (ja) 2004-12-10 2006-06-22 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2006349016A (ja) 2005-06-15 2006-12-28 Honda Motor Co Ltd シフト装置およびその制御方法
JP2007009946A (ja) 2005-06-28 2007-01-18 Denso Corp 車両制御システム
JP2007062664A (ja) 2005-09-01 2007-03-15 Tokai Rika Co Ltd シフト装置
KR100726546B1 (ko) 2005-10-05 2007-06-11 현대모비스 주식회사 차량용 전자식 변속 레버 구조
JP4301232B2 (ja) * 2005-10-26 2009-07-22 トヨタ自動車株式会社 自動変速機の変速制御装置
DE102006035482B4 (de) 2005-12-06 2021-08-05 Toyota Jidosha Kabushiki Kaisha Schaltsteuervorrichtung und Schaltsteuerverfahren eines Fahrzeugautomatikgetriebes
JP4341631B2 (ja) * 2006-01-31 2009-10-07 トヨタ自動車株式会社 車両の異常判定装置
JP4379448B2 (ja) * 2006-08-03 2009-12-09 トヨタ自動車株式会社 自動変速機の診断装置
JP4609418B2 (ja) 2006-11-15 2011-01-12 トヨタ自動車株式会社 シフト切換機構の制御装置および制御方法
JP5057952B2 (ja) 2007-12-06 2012-10-24 アルパイン株式会社 角速度補正装置及びその補正方法並びにナビゲーション装置
JP5463620B2 (ja) * 2008-02-26 2014-04-09 日産自動車株式会社 自動変速機搭載車のシフトバイワイヤ故障時制御装置
JP5143690B2 (ja) * 2008-09-30 2013-02-13 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP5359459B2 (ja) * 2009-03-27 2013-12-04 トヨタ自動車株式会社 車両のシフト制御装置
JP2011110943A (ja) * 2009-11-24 2011-06-09 Denso Corp 車両駆動システムの制御装置
CN106836362B (zh) * 2011-03-03 2019-08-09 伊顿智能动力有限公司 操作液压电路的控制系统的方法、控制液压致动系统的方法、为液压系统配置控制器的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157441A (ja) 1984-12-29 1986-07-17 Isuzu Motors Ltd 自動変速装置
JPH05223162A (ja) 1992-02-12 1993-08-31 Toyota Motor Corp 自動変速機の変速操作装置
JP2001294056A (ja) 2000-04-17 2001-10-23 Toyota Motor Corp シフト制御装置、その方法及びその装置を備えた移動体
JP2002048234A (ja) * 2000-08-04 2002-02-15 Nippon Soken Inc 自動変速機の制御装置
JP2002213600A (ja) 2001-01-19 2002-07-31 Aisin Ai Co Ltd 自動変速装置におけるフェール制御装置
JP2003065436A (ja) 2001-08-29 2003-03-05 Bosch Automotive Systems Corp 変速機変速制御システムの制御方法
JP2003139227A (ja) * 2001-11-02 2003-05-14 Nissan Diesel Motor Co Ltd 車両の機械式自動変速装置
JP2004251309A (ja) 2003-02-18 2004-09-09 Nissan Motor Co Ltd シフトバイワイヤ式自動変速機のレンジ選択装置
JP2006336717A (ja) * 2005-05-31 2006-12-14 Denso Corp 車両制御システム
JP2007192338A (ja) * 2006-01-20 2007-08-02 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
JP2008290622A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp シフト切換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402199A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041501A (ja) * 2011-08-18 2013-02-28 Hitachi Automotive Systems Ltd 車両制御装置、車両制御システム
JP2013194839A (ja) * 2012-03-21 2013-09-30 Aisin Aw Co Ltd 油圧制御装置
DE102014210049B4 (de) * 2013-06-07 2021-06-17 Suzuki Motor Corporation System zur Bestimmung der Schaltposition
DE102014210049A1 (de) 2013-06-07 2014-12-11 Suzuki Motor Corporation System zur Bestimmung der Schaltposition
JP2014238126A (ja) * 2013-06-07 2014-12-18 スズキ株式会社 シフト判定装置
JP2016038002A (ja) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 車両用シフト位置検出装置および車両用シフト制御装置
CN105508592A (zh) * 2014-09-16 2016-04-20 富士重工业株式会社 线控换挡控制装置
JP2016061320A (ja) * 2014-09-16 2016-04-25 富士重工業株式会社 シフトバイワイヤ制御装置
US9574658B2 (en) 2014-09-16 2017-02-21 Fuji Jukogyo Kabushiki Kaisha Shift-by-wire control apparatus
JP2016133201A (ja) * 2015-01-21 2016-07-25 トヨタ自動車株式会社 車両用シフト操作装置
CN105203105A (zh) * 2015-09-30 2015-12-30 南京多伦科技股份有限公司 一种微惯性测量系统的汽车档位信息采集装置及采集方法
KR20180126128A (ko) * 2017-05-16 2018-11-27 현대자동차주식회사 시프트 바이 와이어 시스템의 기어포지션 검출방법
KR102324759B1 (ko) 2017-05-16 2021-11-10 현대자동차주식회사 시프트 바이 와이어 시스템의 기어포지션 검출방법
DE102018007892A1 (de) 2017-10-06 2019-04-11 Suzuki Motor Corporation Fahrzeugsteuervorrichtung
FR3072147A1 (fr) 2017-10-06 2019-04-12 Suzuki Motor Corporation Dispositif de commande de vehicule
EP3533682A1 (en) 2018-01-15 2019-09-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
RU2706754C1 (ru) * 2018-01-15 2019-11-20 Тойота Дзидося Кабусики Кайся Оборудование управления движением транспортного средства в аварийном режиме
US11061400B2 (en) 2018-01-15 2021-07-13 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
WO2022097448A1 (ja) * 2020-11-04 2022-05-12 株式会社オートネットワーク技術研究所 車載ecu、プログラム及びフェールセーフ方法

Also Published As

Publication number Publication date
JPWO2010097936A1 (ja) 2012-08-30
EP2402199A1 (en) 2012-01-04
US20110202231A1 (en) 2011-08-18
EP2402199B1 (en) 2014-07-02
CN102271951A (zh) 2011-12-07
EP2402199A4 (en) 2012-12-26
US8914185B2 (en) 2014-12-16
JP5152401B2 (ja) 2013-02-27
CN102271951B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5152401B2 (ja) 車両の制御装置
US10625604B2 (en) Vehicle shift control device
JP4978308B2 (ja) シフト切換装置
US10378646B2 (en) Shift control system for vehicle and shift control method for vehicle
US20170219089A1 (en) Shift position detecting device for vehicle and shift control device for vehicle
JP2009058085A (ja) シフト制御装置
JP2004251309A (ja) シフトバイワイヤ式自動変速機のレンジ選択装置
EP3260740B1 (en) Control system for vehicle
CN103354880B (zh) 车辆的控制装置
CN103348164A (zh) 车辆的控制装置
JP5040467B2 (ja) 自動変速機の制御装置及び制御方法
US20200324791A1 (en) Vehicle control device
JP5939220B2 (ja) シフトレバー位置判定装置
JP4978611B2 (ja) 変速機の制御装置および制御方法
JP2010060125A (ja) 変速機の制御装置および制御方法
KR101091622B1 (ko) 자동차용 변속기의 레버포지션 통신 방법 및 장치
US12025217B2 (en) Control apparatus for vehicle
JP5109839B2 (ja) 変速機の制御装置および制御方法
KR20190027001A (ko) 차량용 변속기의 고장진단방법
JPH0650423A (ja) 車両用自動変速機の制御装置
KR20140080031A (ko) 차량용 변속기 제어 장치
KR20110061198A (ko) 차량의 쉬프트 락 제어시스템
JP2008008351A (ja) 自動変速装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153596.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13124981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009840789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011501418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE