[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010092977A1 - リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 - Google Patents

リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 Download PDF

Info

Publication number
WO2010092977A1
WO2010092977A1 PCT/JP2010/051955 JP2010051955W WO2010092977A1 WO 2010092977 A1 WO2010092977 A1 WO 2010092977A1 JP 2010051955 W JP2010051955 W JP 2010051955W WO 2010092977 A1 WO2010092977 A1 WO 2010092977A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
binder
electrode
electrode mixture
formula
Prior art date
Application number
PCT/JP2010/051955
Other languages
English (en)
French (fr)
Inventor
明天 高
博之 有馬
英郎 坂田
瞳 中澤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2010800073074A priority Critical patent/CN102318108A/zh
Priority to JP2010550535A priority patent/JP5625917B2/ja
Publication of WO2010092977A1 publication Critical patent/WO2010092977A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry for an electrode mixture of a lithium secondary battery excellent in stability, a flexible electrode using the slurry, and a lithium secondary battery having improved battery characteristics.
  • Lithium secondary batteries are widely used as power sources for various portable electric and electronic devices or as batteries for electric vehicles.
  • a lithium secondary battery is equipped with a positive electrode, a negative electrode, a non-aqueous electrolyte, and usually a separator, and development and improvement of each member is actively performed.
  • the positive electrode is usually prepared by, for example, dispersing a positive electrode active material in a binder, and if necessary, a conductive material together with an organic solvent to prepare a slurry for a positive electrode mixture. After applying to a positive electrode current collector, the solvent is removed by drying. It is produced by rolling.
  • PVdF polyvinylidene fluoride
  • a positive electrode mixture prepared by mixing lithium-containing oxide such as LiCoO 2 as a positive electrode active material and graphite as a conductive agent with PVdF is dispersed in N-methylpyrrolidone to form a slurry.
  • a negative electrode mixture prepared by mixing a carbonaceous material as a negative electrode active material and PVdF is dispersed in N-methylpyrrolidone to form a slurry.
  • the electrode sheet using PVdF as a binder is poor in flexibility, and the electrode sheet used in the production of the square battery is folded at 180 degrees, or the electrode sheet used in the production of the cylindrical battery is used in the process of rounding the electrode sheet small.
  • the problem that the electrode mixture is peeled off from the sheet is likely to occur, and the production yield becomes difficult.
  • Patent Document 2 discloses vinylidene fluoride (VdF) -hexafluoropropylene (HFP) for the purpose of imparting binding properties to the expansion and contraction of the positive electrode active material during charge and discharge in a non-aqueous electrolyte secondary battery.
  • a material having rubber elasticity which is mainly composed of a fluorine-based binary copolymer such as a copolymer, a VdF-3 fluoroethylene chloride (CTFE) copolymer, is described as a binder.
  • Patent Document 3 describes that a fluorine-based polymer copolymer mainly composed of VdF, tetrafluoroethylene (TFE) and HFP is used as a binder instead of PVdF.
  • TFE tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • HFP tetrafluoroethylene
  • Patent Document 4 describes a binder that is soluble in a general-purpose solvent but hardly swells in an organic solvent of an electrolytic solution.
  • the binder disclosed in Patent Document 4 includes VdF 50 to 80 mol% and TFE 20 to 50 mol% binary fluorine-containing copolymer, VdF 50 to 80 mol%, TFE 17 to 50 mol%, and other copolymerization monomers. It is a ternary fluorine-containing copolymer of less than 3 mol%, and VdF / TFE copolymer and VdF / TFE / HFP copolymer are described as VdF / TFE copolymer used in the examples. Yes.
  • the content of resin such as polymethacrylate, polymethylmethacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, etc. in the binder is about 20% by volume. It is described that it may be included below.
  • Patent Document 5 proposes to use a polyimide on the positive electrode side and an aromatic polyamide on the negative electrode side in addition to PVdF as a binder in order to improve the cycle characteristics at high temperature. .
  • Patent Document 6 proposes a method of treating the surface of the current collector with an acrylic polymer in order to improve the adhesion between the current collector and the binder. Further, it is described that a mixture of 50 to 95% by weight of PVdF and a copolymer of VdF and another polymer (for example, TFE, HFP, CTFE, etc.) can be used.
  • Japanese Unexamined Patent Publication No. 04-249859 Japanese Patent Laid-Open No. 04-095363 Japanese Patent Publication No. 08-004007 Japanese Patent Laid-Open No. 10-233217 Japanese Patent Laid-Open No. 11-031513 JP 09-199133 A
  • lithium-containing composite oxides including LiCoO 2 , LiNiO 2 , LiMn 2 O 4 are basically basic, and the reason for this is not confirmed, but they were coexisted with PVdF and many VdF-based copolymers.
  • the positive electrode mixture slurry has a problem that gelation occurs and the stability of the slurry is impaired.
  • the negative electrode when a basic material is used as the negative electrode active material, there are similar problems. Further, since the basic negative electrode is swelled severely, the conventional PVdF tends to cause the negative electrode active material to fall off.
  • polyimide as a binder has been studied, there is a problem that the obtained electrode is very hard and easily cracked.
  • VdF / TFE copolymer is rich in flexibility, but has a slight difficulty in adhesion to the current collector, and its improvement is also required.
  • An object of the present invention is to provide a stable slurry for an electrode mixture that does not cause gelation and a method for producing the same, and thus an electrode having high flexibility due to improved adhesion between the mixture and the current collector, and further battery characteristics. It is in providing the lithium secondary battery excellent in the.
  • a VdF / TFE copolymer obtained by copolymerizing a specific amount of TFE with VdF is surprisingly a basic electrode active material.
  • the electrode mixture slurry prepared by mixing is found to be homogeneous and stable, and the electrode formed using this electrode mixture slurry has excellent flexibility. It was found that the electrode mixture and the current collector were not peeled off, and the battery characteristics of the lithium secondary battery were improved.
  • VdF / TFE copolymers Such excellent base resistance is specifically seen in VdF / TFE copolymers not found in other VdF copolymers such as VdF / HFP copolymers and VdF / CTFE copolymers. Is a characteristic.
  • the present invention is a slurry for electrode mixture of a lithium secondary battery containing an electrode active material (A), a binder (B) and an organic solvent (C), wherein the binder (B) (B1) Composition formula (B1): (VDF) m (TFE) n (HFP) l (In the formula, VDF is a structural unit derived from vinylidene fluoride; TFE is a structural unit derived from tetrafluoroethylene; HFP is a structural unit derived from hexafluoropropylene; 0.45 ⁇ m ⁇ 1; 0.05 ⁇ n ⁇ 0.
  • the present invention relates to a slurry for an electrode mixture of a lithium secondary battery.
  • the electrode active material (A) has the formula (A1): Li x M 1 y M 2 1-y O 2 (Wherein 0.4 ⁇ x ⁇ 1; 0.3 ⁇ y ⁇ 1; M 1 is at least one selected from the group consisting of Ni and Mn; M 2 is selected from the group consisting of Co, Al and Fe)
  • the positive electrode active material (A1) includes a lithium-containing composite metal oxide represented by at least one kind, and the electrode active material (A) is a basic material containing Si and / or Sn. It is particularly suitable when it is a negative electrode active material (A2) containing.
  • the present invention also relates to an electrode of a lithium secondary battery obtained by applying the slurry for electrode mixture of the present invention to a current collector and drying it.
  • the present invention also relates to a lithium secondary battery including the non-aqueous electrolyte using the electrode of the present invention as a positive electrode and / or a negative electrode.
  • a homogeneous and stable slurry for an electrode mixture can be provided, and an electrode having excellent adhesiveness with a current collector formed using the slurry for an electrode mixture and rich in flexibility.
  • a lithium secondary battery excellent in battery characteristics can be provided using an electrode mixture.
  • the electrode mixture slurry of the lithium secondary battery of the present invention includes an electrode active material (A), a binder (B), and an organic solvent (C).
  • A electrode active material
  • B binder
  • C organic solvent
  • Electrode active material In this invention, a positive electrode active material (A1) or a negative electrode active material (A2) may be sufficient.
  • (A1) Cathode Active Material As the cathode active material (A1), the formula (A1): Li x M 1 y M 2 1-y O 2 (Wherein 0.4 ⁇ x ⁇ 1; 0.3 ⁇ y ⁇ 1; M 1 is at least one selected from the group consisting of Ni and Mn; M 2 is selected from the group consisting of Co, Al and Fe) A lithium-containing composite metal oxide represented by at least one).
  • Formula (A1-1) LiNi x Co y Al z O 2 (Wherein 0.7 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 0.3; 0 ⁇ z ⁇ 0.03; 0.9 ⁇ x + y + z ⁇ 1.1),
  • lithium-containing composite metal oxide represented by the formula (A1-1) include, for example, LiNi 0.8 Co 0.2 O 2 , LiNi 0.7 Co 0.3 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.7 Co 0.2 Al Examples thereof include 0.1 O 2 and LiNi 0.85 Co 0.1 Al 0.5 O 2. Among them, LiNi 0.82 Co 0.15 Al 0.03 O 2 (NCA) is preferable.
  • lithium-containing composite metal oxide represented by the formula (A1-2) include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.75 Mn 0.25 O 2 , LiNi 0.25 Mn 0.75 O 2 , LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 , LiNi 0.4 Co 0.2 Mn 0.4 O 2 , LiNi 0.3 Co 0.5 Mn 0.2 O 2, etc., among which LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) preferable.
  • NCM LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • lithium-containing composite metal oxide represented by the formula (A1-3) include Li 0.5 MnO 2 (spinel manganese), LiMnO 2 and the like.
  • lithium-containing composite metal oxide represented by the formula (A1-4) include, for example, LiFe 1/3 Co 1/3 Mn 1/3 O 2 , Li 0.5 Fe 1/3 Co 1/3 Mn 1 / 3 O 2 , LiFe 0.4 Co 0.3 Mn 0.3 O 2 , Li 0.5 Fe 0.4 Co 0.3 Mn 0.3 O 2 and the like can be mentioned.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like can also be used.
  • Negative electrode active material examples include known basic materials such as a basic material containing Si and / or Sn. Specifically, metal compounds capable of inserting lithium ions, such as metal oxides and metal nitrides, Si, SiCuAl, SiNiAg, and CoSn 2 can also be used. Examples of the metal oxide include metal oxides containing Si and Sn, and examples of the metal nitride include Li 2.6 Co 0.4 N.
  • Binder In the present invention, as the binder, a VdF / TFE-based fluoropolymer (B1) represented by the composition formula (B1) and a solvent-soluble thermoplastic resin (B2) (however, 2 types of polymers are used.
  • the structural units VDF, TFE, and HFP can be connected in an arbitrary order, and may exist at random.
  • VdF / TFE fluorine-containing copolymer is preferable from the viewpoint of good flexibility and alkali resistance.
  • n (TFE) is preferably from 0.10 to 0.40, particularly preferably from 0.15 to 0.40 because of good base resistance and flexibility.
  • a fluorine copolymer is preferred from the viewpoint of good flexibility and alkali resistance.
  • a copolymer of 0.60 ⁇ m ⁇ 0.90 and 0.09 ⁇ n ⁇ 0.45 and 0.01 ⁇ l ⁇ 0.04 is obtained.
  • a copolymer satisfying 0.60 ⁇ m ⁇ 0.70, 0.30 ⁇ n ⁇ 0.40 and 0.02 ⁇ l ⁇ 0.04 is preferable.
  • the molecular weight of the VdF / TFE copolymer preferably has a number average molecular weight of 10,000 to 500,000 in terms of polystyrene as measured by GPC (gel permeation chromatography). If it is less than 10,000, the molecular weight is too low to form a film, and if it exceeds 500,000, the thixotropy of the electrode mixture becomes very large and it tends to be difficult to apply to the electrode current collector. . In order to improve the cycle characteristics, it is preferable that the molecular weight is relatively high. From this point, for example, in the case of a terpolymer, 150,000 to 500,000 are preferable.
  • the VdF / TFE copolymer used as the binder (B1) in the present invention can be polymerized by a known polymerization method, and among them, the radical copolymerization method is mainly preferred. That is, the polymerization method is not limited as long as it proceeds radically, but is initiated by, for example, an organic or inorganic radical polymerization initiator, heat, light, ionizing radiation, or the like.
  • the polymerization mode solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization and the like can be used.
  • This VdF / TFE copolymer has excellent base resistance and is generally well used, not to mention nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide, which are used as solvents for PVdF. It is also soluble in low-boiling general-purpose organic solvents that are used, does not cause gelation even when mixed with an electrode active material, can impart flexibility to the electrode, and has low swellability with respect to non-aqueous electrolytes.
  • nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide
  • the binder (B2) is a solvent-soluble thermoplastic resin that functions to improve the adhesion to the current collector.
  • the “solvent-soluble thermoplastic resin” is a thermoplastic resin that dissolves 5% by mass or more in an organic solvent (C) at 25 ° C. to form a uniform solution.
  • Polyvinylidene fluoride (PVdF ) At least one selected from the group consisting of polyacrylic acid polymers, polymethacrylic acid polymers, polyimides, polyamides and polyamideimides.
  • PVdF those conventionally used as binders for lithium secondary batteries can be used as they are.
  • the binder (B2) it is 10 to 90% by mass of the total amount of the binders (B1) and (B2), and more preferably 50 to 90% by mass.
  • the binder (B1) has a role of imparting flexibility and the binder (B2) has a role of imparting adhesiveness, the composition may be arbitrarily balanced according to the purpose.
  • polyacrylic acid polymers include polyacrylic acid, ammonium salts and sodium salts thereof; polyacrylic acid alkyl esters; polyacrylic acid amides; alkoxysilyl-modified polyacrylic acid esters.
  • polymethacrylic acid polymer examples include polymethacrylic acid, ammonium salts and sodium salts thereof; polymethacrylic acid alkyl esters; polymethacrylic acid amides; alkoxysilyl-modified polymethacrylic acid esters.
  • the binder (B2) When at least one selected from the group consisting of an acrylic acid polymer, a polymethacrylic acid polymer, polyimide, polyamide and polyamideimide is used as the binder (B2), the binders (B1) and (B2) are used. 1) to 20% by mass of the total amount of ()) is preferred from the standpoint of maintaining flexibility and good adhesion.
  • the above composition when graphite is used as the negative electrode active material, the above composition is preferable, but when using an active material with high swellability such as silica, metal, and alloy, polyimide, polyamide, or polyamideimide is used as a binder (
  • the binder (B1) is preferably used in an amount of 1 to 40% by mass of the total amount of (B1) and (B2). In this case, the binder (B2) plays a role of suppressing swelling, and the binder (B1) plays a role of imparting flexibility.
  • the electrode mixture slurry of the present invention can be obtained by mixing and dispersing an electrode active material (A), a binder (B), and an electrode material such as a conductive material described later in an organic solvent. .
  • Examples of the organic solvent (C) used for preparing the electrode mixture slurry of the present invention include nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, and the like.
  • Nitrotone solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, and the like.
  • Ketone solvents such as ethyl acetate and butyl acetate
  • ether solvents such as tetrahydrofuran and dioxane
  • general-purpose organic solvents having a low boiling point such as mixed solvents thereof.
  • N-methylpyrrolidone is particularly preferred because of its excellent slurry stability and coating properties.
  • the water content of the organic solvent (C) is important. That is, when the water content is 100 ppm or less, further 30 ppm or less, the basic expression due to the basic electrode active material is small, and gelation can be suppressed.
  • a conductive material As another electrode material, for example, a conductive material is exemplified.
  • the conductive material include carbon blacks such as acetylene black and ketjen black, and carbon materials such as graphite.
  • the electrode active material (A), the conductive material (D) and the like are dispersed and mixed in a solution obtained by dissolving the binder (B) in the organic solvent (C).
  • the method is common.
  • the powder of the binder (B), the electrode active material (A), and the conductive material (D) may be mixed first, and then the organic solvent (C) may be added to prepare a slurry.
  • the blending ratio of the binder (B) (the sum of (B1) and (B2)) is a solid content (electrode active material ( A), binder (B), conductive material (D), etc.) is 0.1 to 20% by mass, preferably 1 to 10% by mass.
  • the compounding amount of the electrode active material (A) is 80 to 98% by mass, preferably 90 to 97% by mass in the solid content.
  • the blending amount of the conductive material (D) is 1 to 20% by mass, preferably 2 to 10% by mass in the solid content.
  • the solid content concentration of the slurry is preferably 40 to 70% by mass from the viewpoint of good workability, coating property, and slurry stability.
  • the slurry for electrode mixture of the present invention is a stable and homogeneous fluid that does not gel, and can be applied to a current collector, dried, rolled, and cut into a predetermined size to produce an electrode. Conventional methods and conditions can be adopted as the method and conditions for producing the positive electrode and the negative electrode.
  • Examples of the current collector on which the electrode mixture slurry is applied include aluminum foil, etched aluminum foil, and aluminum foil coated with a conductive paste.
  • the electrode of the present invention uses a VdF / TFE copolymer that is flexible and does not cause gelation as the binder (B1), and improves the adhesion to the current collector with the binder (B2).
  • the electrode mixture and the current collector have good adhesion, and even when processed into a spiral or fold type electrode, the electrode mixture layer does not crack or peel off. Since it is difficult to swell with respect to electrolyte solution, even if charging / discharging is repeated, a battery characteristic does not fall large.
  • the present invention also relates to a lithium secondary battery in which the electrode of the present invention is used as a positive electrode and / or a negative electrode and provided with a non-aqueous electrolyte.
  • the negative electrode may include an electrode of the present invention containing a negative electrode active material made of a basic material such as an alloy, or a negative electrode using a known carbon material as a negative electrode active material. It may be.
  • a negative electrode using a carbon material is prepared using a negative electrode active material and a negative electrode binder by a known material and method, and is applied or adhered to a negative electrode current collector such as a copper foil. Can be produced.
  • a carbonaceous material that can be doped / undoped with lithium or the like is used.
  • a conductive polymer such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
  • a conductive polymer such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
  • pyrolytic carbons such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
  • cokes petroleum coke, pitch coke, coal coke, etc.
  • carbon black acetylene black, etc.
  • glassy carbon organic polymer material fired bodies
  • organic polymer materials Preferred are those fired in an inert gas stream or in vacuum at a temperature of 500 ° C. or higher.
  • non-aqueous electrolyte a solution obtained by dissolving a known electrolyte salt in a known electrolyte salt dissolving organic solvent can be used.
  • the organic solvent for dissolving the electrolyte salt is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl
  • Known hydrocarbon solvents such as carbonate; one or more of fluorine solvents such as fluoroethylene carbonate, fluoroether and fluorinated carbonate can be used.
  • electrolyte salt examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2.
  • LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 or combinations thereof are preferred.
  • the concentration of the electrolyte salt is required to be 0.8 mol / liter or more, and further 1.0 mol / liter or more. Although the upper limit depends on the organic solvent for dissolving the electrolyte salt, it is usually 1.5 mol / liter.
  • the lithium secondary battery of the present invention can be produced by enclosing these members in a battery case and sealing them.
  • a separator may be interposed between the positive electrode and the negative electrode.
  • Example 1 (Preparation of slurry for positive electrode mixture) The ratio of each electrode material shown in Table 1 is measured so that the positive electrode active material (A1): binder (B1) + (B2): conductive material (D) has a mass ratio of 95: 5: 5. did.
  • the binder (B1) + (B2) is dissolved in N-methylpyrrolidone (NMP) so as to have a concentration of 10% by mass, and then a predetermined amount of the positive electrode active material (A1) is added to the NMP solution of the binder.
  • NMP N-methylpyrrolidone
  • a conductive material (D) were added and mixed thoroughly with a stirrer. While stirring, NMP was sequentially added so that the solid content concentration was 50% by mass to prepare a slurry for positive electrode mixture.
  • the prepared slurry for positive electrode mixture was filtered through a Ni mesh (200 mesh) sieve to make the particle size of the solid content uniform. Subsequently, the positive electrode mixture slurry after filtration was subjected to vacuum defoaming treatment. After the defoaming of the positive electrode mixture slurry is completed, the positive electrode mixture slurry is applied onto an Al foil having a thickness of 22 ⁇ m, which is a current collector plate, with an applicator (the amount by which the dry weight of the positive electrode coating film is 18 mg / cm 2 ). ) After the application, NMP was completely volatilized while drying at 100 to 120 ° C. using a blast dryer or a hot plate to produce a strip-shaped positive electrode.
  • Each component for preparing the positive electrode mixture slurry was as follows.
  • Positive electrode mixture slurry (A1) (A1-1): LiNi 0.82 Co 0.15 Al 0.03 O 2 (manufactured by Toda Kogyo Co., Ltd.) (A1-2): LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.)
  • Binder (B1) (B1-1): VdF / TFE copolymer (VdF / TFE 80/20 mol% ratio)
  • B1-2): VdF / TFE / HFP copolymer (VdF / TFE / HFP 65 / 32.5 / 2.5 mol% ratio)
  • C C-methylpyrrolidone
  • the produced positive electrode was cut into a length of 3 cm and a width of 6 cm, then folded by 180 ° and then expanded, and the presence or absence of cracks in the positive electrode was visually confirmed. The results are shown in Table 1.
  • Example 2 A positive electrode was produced in the same manner as in Example 1 except that the resin shown in Table 2 was used as the binder (B2) in the ratio shown in Table 2, and the density and crack presence were examined. The results are shown in Table 2.
  • Example 3 A positive electrode was prepared in the same manner as in Example 2 except that the binders (B1) and (B2) were used in the types and proportions shown in Table 3, and examined for cracks. The results are shown in Table 3.
  • Example 4 A positive electrode was produced in the same manner as in Example 2 except that the binders (B1) and (B2) were used in the types and proportions shown in Table 4, and an adhesive tape (PR51 manufactured by Ace Global Co., Ltd.) was applied to the produced positive electrode. ) was peeled off and the state of the positive electrode mixture layer was visually observed. The results are shown in Table 4.
  • Example 5 Using the positive electrode shown in Table 5, a lithium secondary battery (laminate cell) was produced by the following method. For these lithium secondary batteries, rate characteristics and cycle characteristics were examined as follows. The results are shown in Table 5.
  • the strip-shaped positive electrode was cut to 40 mm ⁇ 72 mm (with a positive electrode terminal of 10 mm ⁇ 10 mm), the strip-shaped negative electrode was cut to 42 mm ⁇ 74 mm (with a negative electrode terminal of 10 mm ⁇ 10 mm), and a lead body was welded to each terminal. Further, a microporous polyethylene film having a thickness of 20 ⁇ m was cut into a size of 78 mm ⁇ 46 mm to form a separator, and a positive electrode and a negative electrode were set so as to sandwich the separator, and these were put in an aluminum laminate packaging material.
  • Rate characteristic (%) 2C discharge capacity (mAh) /0.2C discharge capacity (mAh) ⁇ 100
  • Cycle characteristics As for the cycle characteristics, a charge / discharge cycle performed under the above-described charge / discharge conditions (charging at 1.0 V until the charging current becomes 1/10 C at 4.2 V and discharging to 3.0 V at a current equivalent to 1 C) is 1
  • the discharge capacity after the first cycle and the discharge capacity after 100 cycles are measured.
  • the value obtained by the following formula is used as the capacity retention rate.
  • Capacity retention rate (%) 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) ⁇ 100
  • Example 6 Si negative electrode active material; manufactured by Fuji Silysia Chemical Co., Ltd.), acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.), and binders (B) ((B1) and (B2)) shown in Table 6 was mixed in a disperser using NMP as a solvent at a mass ratio of 45:45:10 to prepare a slurry for negative electrode mixture.
  • This slurry was uniformly applied onto a negative electrode current collector (copper foil having a thickness of 10 ⁇ m) and dried to form a negative electrode mixture layer, then compression-molded with a roller press, cut, and then dried.
  • the lead body was welded to produce a strip-shaped negative electrode.
  • the positive electrode uses A1-2 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) as the positive electrode active material, and the binder B1-1 and the binder B2-1 are 50/50 (mass ratio). It was produced in the same manner as in Example 1 except that it was used in combination.
  • a lithium secondary battery (laminate cell) was produced in the same manner as in Example 5, and the cycle characteristics were measured in the same manner as in Example 5. The results are shown in Table 6.
  • Example 7 In Example 6, the negative electrode active material was changed to SiO 2 (manufactured by Aldrich) or Sn particles (manufactured by Aldrich), and the negative electrode binder was blended in the types and proportions shown in Table 7, and Similarly, lithium secondary batteries were produced, and the cycle characteristic test of Example 5 and the bending test of Example 3 were performed on them. The results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 ゲル化を生じない安定した電極合剤用スラリーおよびその製造方法を提供し、ひいては合剤と集電体との接着性が向上し柔軟性に富む電極、さらには電池特性に優れたリチウム二次電池を提供する。該電極合剤用スラリーは、電極活物質と結着剤と有機溶媒を含むリチウム二次電池の電極合剤用スラリーであって、結着剤が、組成式:(VDF)m(TFE)n(HFP)l(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および含フッ素重合体以外の溶剤可溶型熱可塑性樹脂を含むことを特徴とするリチウム二次電池の電極合剤用スラリーである。

Description

リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
 本発明は、安定性に優れたリチウム二次電池の電極合剤用スラリー、該スラリーを用いた柔軟性に富む電極および電池特性が改善されたリチウム二次電池に関する。
 リチウム二次電池は、各種の携帯型の電気電子機器の電源として、あるいは電気自動車のバッテリーなどとして広く使用されている。
 リチウム二次電池は正極と負極と非水電解液、通常はさらにセパレータを備えており、それぞれの部材の開発改良が盛んに行われている。
 このうち正極は、通常、たとえば正極活物質を結着剤、要すれば導電材とともに有機溶剤に分散させて正極合剤用スラリーを調製し、正極集電体に塗布後、溶剤を乾燥除去し圧延することにより作製されている。
 リチウム二次電池の正極用の結着剤としては、従来からポリフッ化ビニリデン(PVdF)がよく使用されている。たとえば特許文献1には、正極活物質としてLiCoO2のようなリチウム含有酸化物と導電剤としてのグラファイトをPVdFと混合し作製した正極合剤をN-メチルピロリドンに分散させてスラリー状にしたものをアルミ箔の正極集電体に塗布し、また負極活物質としての炭素質材料とPVdFとを混合し作製した負極合剤をN-メチルピロリドンに分散させてスラリー状にしたものを負極集電体である銅箔上に塗布し、それぞれ乾燥後、ローラープレス機により圧縮成形して電極シートに加工する技術が開示されている。しかし、PVdFはリチウムイオン二次電池に使用されているプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、またはそれらの混合物といった非水電解液の有機溶媒に対し膨潤しやすい。そのため、充放電を繰り返していくうちに集電体である金属箔との接着性がわるくなり、その結果電池内部抵抗の上昇が起こり電池性能が低下するという問題が生ずる。さらに、PVdFを結着剤として使用した電極シートは柔軟性に乏しく、角型電池作製での電極シートを180度に折り畳む工程時や、円筒型電池作製での電極シートを小さく丸める工程時に、電極シートから電極合剤が剥離するといった問題が生じやすく、生産の歩留りがわるくなっている。
 また、特許文献2には、非水電解液二次電池における充放電時の正極活物質の膨脹、収縮に対して結着性をもたせる目的でフッ化ビニリデン(VdF)-ヘキサフルオロプロピレン(HFP)共重合体、VdF-3フッ化塩化エチレン(CTFE)共重合体というフッ素系二元共重合体を主成分とするゴム弾性を有する材料が結着剤として記載されている。しかし、このような共重合体はPVdFに比べ結晶性がわるく、そのためPVdF以上に非水電解液の有機溶媒に対して膨潤しやすく、電解液の種類によっては溶出してしまい結着剤としての役目を果たさなくなる。
 同様な結着剤として特許文献3には、PVdFの代わりに主としてVdF、テトラフルオロエレチレン(TFE)およびHFPから構成されるフッ素系高分子共重合体を結着剤に使用するという内容が記載されている。その特許請求の範囲に記載された共重合体の組成範囲は、モル分率で、VdFが0.3~0.9、HFPが0.03~0.5、TFEが0~0.5で、これら3つのモノマーのモル分率の合計が0.80~1というものである。
 また、特に汎用溶剤に溶解性をもつが電解液の有機溶媒に対しては膨潤しにくい結着剤が特許文献4に記載されている。特許文献4に開示されている結着剤は、VdF50~80モル%とTFE20~50モル%の二元含フッ素共重合体とVdF50~80モル%とTFE17~50モル%と他の共重合モノマー3モル%未満の三元含フッ素共重合体であり、実施例で使用されているVdF/TFE系共重合体としてはVdF/TFE共重合体とVdF/TFE/HFP共重合体が記載されている。また、集電体との接着性を向上させるためには、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネートなどの樹脂を結着剤中における含有量は約20体積%以下含ませてもよいことが記載されている。
 また、特許文献5には、高温でのサイクル特性を改善するために、結着剤としてPVdFに加えて正極側にはポリイミドを、負極側には芳香族ポリアミドを併用することが提案されている。
 またさらに、特許文献6には、集電体と結着剤との接着性を向上させるために集電体の表面をアクリル系重合体で処理する方法が提案されており、その結着剤として、PVdF50~95重量%とVdFと他のポリマー(たとえばTFE、HFP、CTFEなど)との共重合体との混合物も使用できることが記載されている。
 一方、正極活物質についても、電池特性や安全性、資源(希少金属)枯渇などの観点から種々開発が進められ、最近ではNiやMnを含み希少金属であるCoを少なくした正極活物質が出現している。しかし、これらNiやMnを含有する正極材料では塩基性が高いためスラリーがゲル化しやすくなる。また、負極活物質についても、従来から使用されている炭素系材料に加えて、塩基性の材料からなる活物質が出現している。
特開平04-249859号公報 特開平04-095363号公報 特公平08-004007号公報 特開平10-233217号公報 特開平11-031513号公報 特開平09-199133号公報
 ところで、LiCoO2、LiNiO2、LiMn24も含めリチウム含有複合酸化物は基本的に塩基性であり、その理由は確認されていないが、PVdFや多くのVdF系共重合体と共存させた正極合剤用スラリーではゲル化が起こり、スラリーの安定性が損なわれるという問題がある。負極においても塩基性の材料を負極活物質として用いる場合には、同様の問題がある。また、塩基性の負極の場合は膨潤が激しいため、従来のPVdFでは負極活物質の脱落が起こりやすい。ポリイミドを結着剤とすることも検討されているが、得られる電極が非常に硬くなり割れやすいという問題がある。
 また、VdF/TFE系共重合体は、柔軟性には富むが集電体との接着性にやや難があり、その改善も要求される点である。
 本発明の目的は、ゲル化を生じない安定した電極合剤用スラリーおよびその製造方法を提供し、ひいては合剤と集電体との接着性が向上し柔軟性に富む電極、さらには電池特性に優れたリチウム二次電池を提供することにある。
 かかる目的について、本発明者らがさらに検討した結果、VdF系共重合体のうちで、VdFにTFEを特定量で共重合したVdF/TFE系共重合体が意外にも塩基性の電極活物質に対して安定であり、混合して調製した電極合剤用スラリーも均質かつ安定なものになることを見出し、さらにこの電極合剤用スラリーを用いて形成した電極は優れた柔軟性を有し、電極合剤と集電体との剥離も生じず、リチウム二次電池の電池特性も向上することが判明した。
 このような優れた耐塩基性は、VdF/HFP系共重合体やVdF/CTFE系共重合体などの他のVdF系共重合体では認められないVdF/TFE系共重合体に特異的に見られる特性である。
 すなわち本発明は、電極活物質(A)と結着剤(B)と有機溶媒(C)を含むリチウム二次電池の電極合剤用スラリーであって、結着剤(B)が、
(B1)組成式(B1):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および
(B2)含フッ素重合体(B1)以外の溶剤可溶型熱可塑性樹脂
を含むことを特徴とするリチウム二次電池の電極合剤用スラリーに関する。
 電極活物質(A)が、式(A1):
Lix1 y2 1-y2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物を含む正極活物質(A1)である場合に特に好適であり、また、電極活物質(A)がSiおよび/またはSnを含有する塩基性材料を含む負極活物質(A2)である場合に特に好適である。
 本発明はまた、本発明の電極合剤用スラリーを集電体に塗工し乾燥して得られるリチウム二次電池の電極に関する。
 またさらに本発明は、本発明の電極を正極および/または負極とし、非水電解液を備えるリチウム二次電池にも関する。
 本発明によれば、均質かつ安定な電極合剤用スラリーを提供でき、さらにこの電極合剤用スラリーを用いて形成した集電体との接着性に優れかつ柔軟性に富む電極、またさらにこの電極合剤を用いて電池特性に優れたリチウム二次電池を提供することができる。
 本発明のリチウム二次電池の電極合剤用スラリーは、電極活物質(A)と結着剤(B)と有機溶媒(C)を含む。以下、各成分について説明する。
(A)電極活物質
 本発明においては、正極活物質(A1)でも負極活物質(A2)でもよい。
(A1)正極活物質
 正極活物質(A1)としては、式(A1):
Lix1 y2 1-y2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物である。
 具体的には、
式(A1-1):
LiNixCoyAlz2
(式中、0.7≦x≦1;0≦y≦0.3;0≦z≦0.03;0.9≦x+y+z≦1.1)、
式(A1-2):
LiNixCoyMnz2
(式中、0.3≦x≦0.6;0≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)、
式(A1-3):
LixMnz2
(式中、0.4≦x≦0.6;0.9≦z≦1)、または
式(A1-4):
LiFexCoyMnz2
(式中、0.3≦x≦0.6;0.1≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)
で示されるリチウム含有複合金属酸化物が好ましい。
 式(A1-1)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiNi0.8Co0.22、LiNi0.7Co0.32、LiNi0.82Co0.15Al0.032、LiNi0.7Co0.2Al0.12、LiNi0.85Co0.1Al0.52などがあげられ、なかでもLiNi0.82Co0.15Al0.032(NCA)が好ましい。
 式(A1-2)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiNi0.5Mn0.52、LiNi0.75Mn0.252、LiNi0.25Mn0.752、LiNi1/3Co1/3Mn1/32、LiNi0.4Co0.2Mn0.42、LiNi0.3Co0.5Mn0.22などがあげられ、なかでもLiNi1/3Co1/3Mn1/32(NCM)が好ましい。
 式(A1-3)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLi0.5MnO2(スピネルマンガン)、LiMnO2などがあげられる。
 式(A1-4)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiFe1/3Co1/3Mn1/32、Li0.5Fe1/3Co1/3Mn1/32、LiFe0.4Co0.3Mn0.32、Li0.5Fe0.4Co0.3Mn0.32などがあげられる。
 そのほか、LiCoO2、LiNiO2、LiMn24なども使用できる。
(A2)負極活物質
 負極活物質(A2)としては、公知の塩基性材料、たとえばSiおよび/またはSnを含有する塩基性を呈する材料が例示できる。具体的には、リチウムイオンを挿入可能な金属化合物、たとえば金属酸化物や金属窒化物、Si、SiCuAl、SiNiAg、CoSn2なども使用できる。金属酸化物としてはSiやSnを含む金属酸化物が、金属窒化物としてはLi2.6Co0.4Nなどがあげられる。
(B)結着剤
 本発明においては、結着剤として、組成式(B1)で示されるVdF/TFE系含フッ素重合体(B1)と、溶剤可溶型熱可塑性樹脂(B2)(ただし、B1は除く)という2種類のポリマーを使用する。
(B1)VdF/TFE系含フッ素重合体
 結着剤(B1)は、組成式(B1):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体を含む。なお、構造単位VDF、TFEおよびHFPは任意の順序で連結し得るものであり、ランダムに存在してもよい。
 これらのうち、含フッ素重合体としては、式(B1)において、0.50≦m≦0.90、0.10≦n≦0.50および0≦l≦0.08(ただし、m+n+l=1である)であるVdF/TFE系含フッ素共重合体が、柔軟性および耐アルカリ性が良好な点から好ましい。
 なかでも、式(B1)において、0.50≦m≦0.90および0.10≦n≦0.50(ただし、m+n=1である)であるVdF/TFE二元含フッ素共重合体が、柔軟性および耐アルカリ性が良好な点から好ましい。さらには耐塩基性や柔軟性が良好なことからn(TFE)が0.10~0.40、特に0.15~0.40であるものが好ましい。
 また、0.50≦m≦0.90、0.09≦n≦0.49および0.01≦l≦0.04(ただし、m+n+l=1である)であるVdF/TFE/HFP三元含フッ素共重合体が、柔軟性および耐アルカリ性が良好な点から好ましい。さらには耐塩基性や柔軟性が良好なことから、0.60≦m≦0.90で0.09≦n≦0.45で0.01≦l≦0.04である共重合体が、さらには0.60≦m≦0.70で0.30≦n≦0.40で0.02≦l≦0.04である共重合体が好ましい。
 二元系または三元系にかかわらず、TFEの含有量が上記の範囲より多くなりすぎると有機溶媒に溶解しにくくなり、一方、少なくなりすぎると耐塩基性が低く柔軟性が低くなりやすく、本発明の効果が充分には奏されないことがある。
 VdF/TFE系共重合体の分子量は、GPC(ゲル透過クロマトグラフィー)測定での数平均分子量がポリスチレン換算値で10,000~500,000のものが好ましい。10,000より小さいと分子量が低すぎて成膜できず、また500,000を超えると電極合剤のチキソ性が非常に大きくなり、電極集電体に塗布するのが困難となる傾向がある。また、サイクル特性を向上させるためには比較的分子量が高い方が好ましく、この点からたとえば三元共重合体の場合、150,000~500,000のものが好ましい。
 本発明で結着剤(B1)として用いるVdF/TFE系共重合体は公知の重合方法により重合することができ、そのうちでも主としてラジカル共重合法が好ましい。すなわち重合方法としては、ラジカル的に進行するものであれば手段は何ら制限されないが、たとえば有機もしくは無機のラジカル重合開始剤、熱、光または電離放射線などによって開始される。重合の形態も溶液重合、バルク重合、懸濁重合、乳化重合などを用いることができる。
 このVdF/TFE系共重合体は、耐塩基性に優れており、PVdFの溶剤として使用されているN-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素系有機溶媒はもちろん、一般的によく使用される低沸点の汎用有機溶媒にも可溶であり、電極活物質と混合してもゲル化を起こさず、また電極に柔軟性を付与でき、しかも非水電解液に対する膨潤性も小さい。
(B2)溶剤可溶型熱可塑性樹脂
 本発明において結着剤(B2)は、集電体との接着性を向上させる働きをする溶剤可溶型熱可塑性樹脂である。本発明において「溶剤可溶型熱可塑性樹脂」とは、有機溶媒(C)に対して25℃において5質量%以上溶解して均一な溶液を形成する熱可塑性樹脂であり、ポリフッ化ビニリデン(PVdF)、ポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種が好ましい。
 PVdFとしては、従来からリチウム二次電池用の結着剤として使用されているものがそのまま使用できる。結着剤(B2)としてPVdFを使用するときは、結着剤(B1)と(B2)の合計量の10~90質量%、さらには50~90質量%であることが、柔軟性を維持し、密着性が良好な点から好ましい。つまり、結着剤(B1)が柔軟性を付与する役割を、結着剤(B2)が密着性を付与する役割を担うため、目的にあわせて任意にバランスをとる配合でよい。
 ポリアクリル酸系重合体としては、たとえばポリアクリル酸、そのアンモニウム塩、ナトリウム塩;ポリアクリル酸アルキルエステル;ポリアクリル酸アミド;アルコキシシリル変性ポリアクリル酸エステルなどが例示できる。
 ポリメタクリル酸系重合体としては、たとえばポリメタクリル酸、そのアンモニウム塩、ナトリウム塩;ポリメタクリル酸アルキルエステル;ポリメタクリル酸アミド;アルコキシシリル変性ポリメタクリル酸エステルなどが例示できる。
 結着剤(B2)としてアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種を使用するときは、結着剤(B1)と(B2)の合計量の1~20質量%であることが、柔軟性を維持し、密着性が良好な点から好ましい。
 負極のバインダーとして用いる場合、負極活物質としてグラファイトを用いる場合は上記配合が好ましいが、シリカや金属、合金といった膨潤性が高い活物質を用いる場合は、ポリイミドやポリアミド、ポリアミドイミドを結着剤(B2)として用いてかつ、結着剤(B1)を(B1)と(B2)の合計量の1~40質量%配合することが好ましい。この場合、結着剤(B2)は膨潤性をおさえる役割を、結着剤(B1)は柔軟性を付与する役割を担う。
(C)有機溶媒
 本発明の電極合剤用スラリーは、電極活物質(A)と結着剤(B)、さらには後述する導電材などの電極材料を有機溶媒に混合分散させることで得られる。
 本発明の電極合剤用スラリーの調製に用いる有機溶媒(C)としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素系有機溶媒のほか、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン系溶剤;酢酸エチル、酢酸ブチルなどのエステル系溶剤;テトラヒドロフラン、ジオキサンなどのエーテル系溶剤;さらにそれらの混合溶剤などの低沸点の汎用有機溶媒をあげることができる。これらのなかで特に、スラリーの安定性、塗工性に優れている点からN-メチルピロリドンが好ましい。
 さらに、安定な電極合剤用スラリーを製造するためには、有機溶媒(C)の水分含有量が重要である。すなわち、水分含有量を100ppm以下、さらには30ppm以下とするときには、塩基性電極活物質に起因する塩基性の発現が少なく、ゲル化を抑制することができる。
(D)その他の電極材料
 本発明において、本発明の効果を損なわない範囲で、必要に応じて、他の電極材料を配合することができる。
 他の電極材料としては、たとえば導電材などが例示される。導電材としては、たとえばアセチレンブラック、ケッチェンブラックなどのカーボンブラック類やグラファイトなどの炭素材料などがあげられる。
 本発明の電極合剤用スラリーの調製法としては、結着剤(B)を有機溶媒(C)に溶解させた溶液に電極活物質(A)や導電材(D)などを分散混合させるといった方法が一般的である。そのほか、たとえば結着剤(B)や電極活物質(A)、導電材(D)の粉末同士を先に混合した後、有機溶媒(C)を添加しスラリーを調製してもよい。
 本発明の電極合剤用スラリーにおいて結着剤(B)((B1)と(B2)の合計)の配合割合は、正極であるか負極であるかを問わず、固形分(電極活物質(A)、結着剤(B)、導電材(D)など)中の0.1~20質量%、好ましくは1~10質量%である。電極活物質(A)の配合量は、固形分中の80~98質量%、好ましくは90~97質量%である。導電材(D)を配合する場合の導電材(D)の配合量は、固形分中の1~20質量%、好ましくは2~10質量%である。スラリーの固形分濃度としては、作業性や塗工性、スラリーの安定性が良好な点から、40~70質量%が好ましい。
 本発明の電極合剤用スラリーはゲル化せず安定で均質な流動物であり、集電体に塗布し、乾燥、圧延し、所定の大きさに切断することにより電極を作製できる。正極および負極の作製方法や条件は通常の方法と条件が採用できる。
 電極合剤用スラリーを塗布する集電体としては、たとえばアルミニウム箔、エッチドアルミ箔、導電ペーストを塗布したアルミ箔などがあげられる。
 本発明の電極は、柔軟性に富みゲル化も起こさないVdF/TFE系共重合体を結着剤(B1)として用い、集電体との接着性を結着剤(B2)で向上させているため電極合剤と集電体との接着力が良好で、巻回(スパイラル)型や折畳み型の電極に加工しても、電極合剤層の割れや剥離は生じず、また、非水電解液に対して膨潤しにくいので充放電を繰り返しても電池特性が大きく低下することはない。
 本発明はまた、本発明の電極を正極および/または負極とし、非水電解液を備えたリチウム二次電池にも関する。
 本発明の電極を正極として用いる場合、負極としては、合金などの塩基性材料からなる負極活物質を含む本発明の電極を用いてもよいし、公知の炭素材料を負極活物質として用いた負極であってもよい。炭素材料を用いた負極は、公知の材料と方法により、負極活物質と負極用の結着剤とを用いて負極合剤を調製し、銅箔などの負極集電体に塗布または接着させることで作製できる。炭素材料の負極活物質としては、リチウムなどをドープ/脱ドープ可能な炭素質材料が用いられ、たとえばポリアセン、ポリピロールなどの導電性ポリマーあるいはコークス、ポリマー炭、カーボンファイバーなどのほか、単位体積当たりのエネルギー密度が大きいことから、熱分解炭素類、コークス類(石油コークス、ピッチコークス、石炭コークスなど)、カーボンブラック(アセチレンブラックなど)、ガラス状炭素、有機高分子材料焼成体(有機高分子材料を500℃以上の温度で不活性ガス気流中、あるいは真空中で焼成したもの)などが好ましい。
 非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものが使用できる。
 電解質塩溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネートなどの公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種もしくは2種以上が使用できる。
 電解質塩としては、たとえばLiClO4、LiAsF6、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2252などがあげられ、サイクル特性が良好な点から特にLiPF6、LiBF4、LiN(SO2CF32、LiN(SO2252またはこれらの組合せが好ましい。
 電解質塩の濃度は、0.8モル/リットル以上、さらには1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒にもよるが、通常1.5モル/リットルである。
 本発明のリチウム二次電池は、これらの各部材を電池ケースに収め封止することで作製できる。なお、正極と負極の間にセパレータを介在させてもよい。
 つぎに、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれらのみに限定されるものではない。
実施例1
(正極合剤用スラリーの調製)
 目的とする表1に示す各電極材料の割合を正極活物質(A1):結着剤(B1)+(B2):導電材(D)が質量比で95:5:5になるように秤量した。結着剤(B1)+(B2)を濃度が10質量%になるようにN-メチルピロリドン(NMP)に溶解させたのち、この結着剤のNMP溶液に所定量の正極活物質(A1)と導電材(D)を加え、攪拌機で充分に混合した。撹拌しながら固形分濃度が50質量%になるようにNMPを逐次追加し、正極合剤用スラリーを調製した。
(正極の作製)
 調製した上記正極合剤用スラリーをNiメッシュ(200メッシュ)の篩を通してろ過して固形分の粒径を均一化した。つづいて、ろ過後の正極合剤用スラリーに真空脱泡処理を施した。正極合剤用スラリーの脱泡が完了した後、集電板である厚さ22μmのAl箔上に正極合剤用スラリーをアプリケーターにより塗布(正極塗膜の乾燥質量が18mg/cm2となる量)を行った。塗布後、送風乾燥機またはホットプレートを用いて100~120℃で乾燥しながらNMPを完全に揮発させ、帯状の正極を作製した。
 正極合剤用スラリー調製用の各成分はつぎのものであった。
正極合剤用スラリー(A1)
(A1-1):LiNi0.82Co0.15Al0.032(戸田工業(株)製)
(A1-2):LiNi1/3Co1/3Mn1/32(日本化学工業(株)製)
結着剤(B1)
(B1-1):VdF/TFE共重合体(VdF/TFE=80/20モル%比)
(B1-2):VdF/TFE/HFP共重合体(VdF/TFE/HFP=65/32.5/2.5モル%比)
結着剤(B2)
(B2-1):PVdF(呉羽化学(株)製のKF1120)
有機溶媒(C)
(C-1):N-メチルピロリドン(水分含有量30ppm)
 作製した正極の密度をつぎの要領で測定した。結果を表1に示す。
(密度の測定)
 正極をギャップが75μmのロールプレスに70℃で2回通し、さらにギャップを35μmに変更して2回通した後、正極の面積/膜厚/重量を測定して密度(g/cm3)を算出する。
(割れの有無)
 作製した正極を縦3cm、横6cmに切り取った後、180°折り畳んだ後拡げて、正極の割れの有無を目視で確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、PVdFと比較した場合、TFEを共重合した共重合体の方が結着剤としての柔軟性が高いために密度が向上しやすいことがわかる。また、PVdFに比べて耐アルカリ性が高く、柔軟なTFEを共重合した共重合体の方が、正極の割れが抑えられることがわかる。
実施例2
 結着剤(B2)として表2に示す樹脂を表2示す割合で使用したほかは実施例1と同様にして正極を作製し、密度および割れの有無を調べた。結果を表2に示す。
結着剤(B2)
(B2-2):ポリメチルメタクリレート(PMMA)(Aldrich社製)
(B2-3):メチルメタクリレート(MMA)/メタクリル酸(MA)(MMA/MA=1:0.016モル比)(Aldrich社製)
(B2-4):ポリアミドイミド(PAI)(日立化成工業(株)製のHPC7200)
(B2-5):ポリイミド(PI)(日立化成工業(株)製のHCI-7000)
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、結着剤(B1)と(B2)を併用したものの柔軟性が高く、割れにくいことが分かる。
実施例3
 結着剤(B1)と(B2)を表3に示す種類と割合で用いたほかは実施例2と同様にして正極を作製し、割れの有無を調べた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、結着剤(B2)の量を減らしても柔軟性が高く、割れにくいことが分かる。
実施例4
 結着剤(B1)と(B2)を表4に示す種類と割合で用いたほかは実施例2と同様にして正極を作製し、作製した正極に粘着テープ((株)エースグローバル製のPR51)を貼り付けた後引き剥がし、正極合剤層の状態を目視で観察した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、結着剤(B1)と(B2)を併用したものの集電体への密着性が良好であることが分かる。
実施例5
 表5に示す正極を使用してつぎの方法でリチウム二次電池(ラミネートセル)を作製した。これらのリチウム二次電池について、レート特性およびサイクル特性をつぎの要領で調べた。結果を表5に示す。
(リチウム二次電池(ラミネートセル)の作製)
 人造黒鉛粉末(日立化成(株)製。商品名MAG-D)に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
 帯状の正極を40mm×72mm(10mm×10mmの正極端子付)に切り取り、また帯状の負極を42mm×74mm(10mm×10mmの負極端子付)に切り取り、各端子にリード体を溶接した。また、厚さ20μmの微孔性ポリエチレンフィルムを78mm×46mmの大きさに切ってセパレータとし、セパレータを挟むように正極と負極をセットし、これらをアルミニウムラミネート包装材内に入れた。ついで包装材中に電解液(エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3/7の溶媒にLiPF6を1モル/リットルの濃度で溶解したもの)を2mlずつ入れて密封して容量72mAhのラミネートセルを作製した。
(レート特性)
 充電については、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し0.2C相当の電流で3.0Vまで放電し、放電容量を求める。引き続き、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し、2C相当の電流で3.0Vになるまで放電し、放電容量を求める。この2Cでの放電容量と、0.2Cでの放電容量との比から、つぎの計算式に代入してレート特性を求める。
 レート特性(%)=2C放電容量(mAh)/0.2C放電容量(mAh)×100
(サイクル特性)
 サイクル特性については、上記の充放電条件(1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、最初のサイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値を容量維持率の値とする。
 容量維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、結着剤(B1)と(B2)を併用した正極を用いても電池特性が維持されることが分かる。
実施例6
 Si(負極活物質。富士シリシア化学(株)製)とアセチレンブラック(電気化学工業(株)製のデンカブラック)と表6に示す結着剤(B)((B1)および(B2))とを質量比で45:45:10の割合で、溶媒としてNMPを用い、ディスパーザーにて混合して負極合剤用スラリーを調製した。このスラリーを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
 正極は、正極活物質としてA1-2(LiNi1/3Co1/3Mn1/32)を用い、結着剤B1-1と結着剤B2-1を50/50(質量比)で併用したほかは実施例1と同様にして作製した。
 この負極と正極とを用いて実施例5と同様にしてリチウム二次電池(ラミネートセル)を作製し、サイクル特性を実施例5と同様にして測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果から、負極活物質として塩基性材料を使用した場合にもサイクル特性が維持されることが分かる。
実施例7
 実施例6において、負極活物質をSiO2(アルドリッチ社製)またはSn粒子(アルドリッチ社製)に変更し、負極の結着剤を表7に示す種類と割合で配合したほかは実施例6と同様にしてリチウム二次電池を作製し、これらに対し実施例5のサイクル特性試験、および実施例3の折り曲げ試験を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7の結果より、負極活物質としてSiO2またはSn粒子を用いた場合であっても、ポリアミドイミド(B2-4)またはポリイミド(B2-5)を単独で用いた場合は柔軟性がないが、VdF/TFE/HFP共重合体(B1-2)を併用することで容量を維持しつつ柔軟性を付与することができることがわかる。

Claims (15)

  1. 電極活物質(A)と結着剤(B)と有機溶媒(C)を含むリチウム二次電池の電極合剤用スラリーであって、結着剤(B)が、
    (B1)組成式(B1):
    (VDF)m(TFE)n(HFP)l
    (式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および
    (B2)含フッ素重合体(B1)以外の溶剤可溶型熱可塑性樹脂
    を含むことを特徴とするリチウム二次電池の電極合剤用スラリー。
  2. 電極活物質(A)が正極活物質(A1)であり、式(A1):
    Lix1 y2 1-y2
    (式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物を含む請求項1記載の電極合剤用スラリー。
  3. 正極活物質(A1)が、
    式(A1-1):
    LiNixCoyAlz2
    (式中、0.7≦x≦1;0≦y≦0.3;0≦z≦0.03;0.9≦x+y+z≦1.1)、
    式(A1-2):
    LiNixCoyMnz2
    (式中、0.3≦x≦0.6;0≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)、
    式(A1-3):
    LixMnz2
    (式中、0.4≦x≦0.6;0.9≦z≦1)、または
    式(A1-4):
    LiFexCoyMnz2
    (式中、0.3≦x≦0.6;0.1≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)
    である請求項2記載の電極合剤用スラリー。
  4. 電極活物質(A)がSiおよび/またはSnを含有する塩基性材料を含む負極活物質(A2)である請求項1記載の電極合剤用スラリー。
  5. 結着剤(B2)が、ポリフッ化ビニリデン、ポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種である請求項1~4のいずれかに記載の電極合剤用スラリー。
  6. 結着剤(B1)が、式(B1)において、0.50≦m≦0.90、0.10≦n≦0.50および0≦l≦0.08(ただし、m+n+l=1)である含フッ素共重合体を含む請求項1~5のいずれかに記載の電極合剤用スラリー。
  7. 結着剤(B1)が、式(B1)において、0.50≦m≦0.90および0.10≦n≦0.50(ただし、m+n=1)である二元含フッ素共重合体を含む請求項1~6のいずれかに記載の電極合剤用スラリー。
  8. 結着剤(B1)が、式(B1)において、0.50≦m≦0.90、0.09≦n≦0.49および0.01≦l≦0.04(ただし、m+n+l=1)である含フッ素共重合体を含む請求項1~6のいずれかに記載の電極合剤用スラリー。
  9. 有機溶媒(C)の水分含有量が30ppm以下である請求項1~8のいずれかに記載の電極合剤用スラリー。
  10. 請求項1~9のいずれかに記載の電極合剤用スラリーを集電体に塗工し乾燥して得られるリチウム二次電池の電極。
  11. 請求項10記載の電極を正極および/または負極とし、非水電解液を備えるリチウム二次電池。
  12. 電極活物質(A)と結着剤(B)を有機溶媒(C)に分散させてリチウム二次電池の電極合剤用スラリーを製造する方法において、結着剤(B)が、
    (B1)組成式(B1):
    (VDF)m(TFE)n(HFP)l
    (式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および
    (B2)含フッ素重合体(B1)以外の溶剤可溶型熱可塑性樹脂
    を含み、かつ
    有機溶媒(C)の水分含有量が100ppm以下である
    ことを特徴とするリチウム二次電池の電極合剤用スラリーの製造方法。
  13. 有機溶媒(C)の水分含有量が30ppm以下である請求項12記載の製造方法。
  14. 有機溶媒(C)がN-メチルピロリドンである請求項12または13記載の製造方法。
  15. 請求項12~14のいずれかに記載の製造方法で得られるリチウム二次電池の電極合剤用スラリー。
PCT/JP2010/051955 2009-02-12 2010-02-10 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 WO2010092977A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800073074A CN102318108A (zh) 2009-02-12 2010-02-10 锂二次电池的电极合剂用浆料、使用了该浆料的电极和锂二次电池
JP2010550535A JP5625917B2 (ja) 2009-02-12 2010-02-10 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009030348 2009-02-12
JP2009-030348 2009-12-25

Publications (1)

Publication Number Publication Date
WO2010092977A1 true WO2010092977A1 (ja) 2010-08-19

Family

ID=42561819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051955 WO2010092977A1 (ja) 2009-02-12 2010-02-10 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池

Country Status (4)

Country Link
JP (1) JP5625917B2 (ja)
KR (1) KR20110111481A (ja)
CN (1) CN102318108A (ja)
WO (1) WO2010092977A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128521A1 (ja) * 2012-03-02 2013-09-06 株式会社豊田自動織機 二次電池
WO2013176092A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
WO2013176093A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
JP2016514356A (ja) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション 電極、電気化学セル並びに電極及び電気化学セルの形成方法
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
WO2018148212A1 (en) * 2017-02-07 2018-08-16 Colorado State University Research Foundation Thermoplastic carbon composite electrodes
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
JP2020520075A (ja) * 2017-05-15 2020-07-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムイオン電気化学セル用材料並びにその製造及び使用方法
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
JP2022045347A (ja) * 2020-09-08 2022-03-18 ダイキン工業株式会社 含フッ素カルボン酸塩化合物
WO2023277055A1 (ja) * 2021-06-29 2023-01-05 ダイキン工業株式会社 電極形成用組成物、電極および二次電池
WO2023007933A1 (ja) * 2021-07-30 2023-02-02 ダイキン工業株式会社 負極合剤、負極および二次電池
US12095095B2 (en) 2017-03-28 2024-09-17 Enevate Corporation Reaction barrier between electrode active material and current collector

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007088A (ja) * 2012-06-26 2014-01-16 Hitachi Maxell Ltd 非水電解質二次電池およびその製造方法
JP6192019B2 (ja) 2013-01-31 2017-09-06 三井化学株式会社 リチウム電池およびその製造方法
CN109721892B (zh) * 2017-10-27 2020-11-03 中昊晨光化工研究院有限公司 低凝胶含量的偏氟乙烯热塑性树脂及其制备方法和应用
US12021233B2 (en) 2018-10-03 2024-06-25 Daikin Industries, Ltd. Positive electrode structure and secondary battery
CN109713306B (zh) * 2018-11-28 2021-11-05 桑德新能源技术开发有限公司 粘结剂、正极浆料及其制备方法、锂离子电池
CN110137497B (zh) * 2019-05-11 2021-05-25 珠海冠宇电池股份有限公司 一种负极粘结剂及其制备方法及锂离子电池
TW202130027A (zh) * 2019-12-18 2021-08-01 日商大金工業股份有限公司 固體二次電池用漿料、用於固體二次電池之層之形成方法及固體二次電池
WO2021184392A1 (en) * 2020-03-20 2021-09-23 Guangdong Haozhi Technology Co. Limited Method of preparing cathode for secondary battery
CN113937287B (zh) * 2020-06-29 2023-04-18 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的二次电池
CN114361452B (zh) * 2021-12-15 2023-09-19 电子科技大学中山学院 一种粘合剂、电极浆料及其制造方法和应用
CN116261796A (zh) * 2022-03-21 2023-06-13 宁德新能源科技有限公司 电化学装置和电子装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199132A (ja) * 1996-01-22 1997-07-31 Elf Atochem Japan Kk 電極およびそれを使用した二次電池
JPH09199134A (ja) * 1996-01-22 1997-07-31 Elf Atochem Japan Kk 電極およびそれを使用した二次電池
JPH10233217A (ja) * 1996-12-16 1998-09-02 Daikin Ind Ltd 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JPH1131513A (ja) * 1997-05-13 1999-02-02 Sony Corp 非水電解液二次電池
JPH11195419A (ja) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd 非水系電池用電極合剤および非水系電池
JP2000021407A (ja) * 1998-06-30 2000-01-21 Toshiba Corp リチウム二次電池
JP2002260668A (ja) * 2000-11-29 2002-09-13 Wilson Greatbatch Ltd ポリアミック酸‐pvdfバインダー混合物を含有した熱処理された電極の使用
JP2003317722A (ja) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池
JP2006134682A (ja) * 2004-11-05 2006-05-25 Sony Corp 負極および電池、並びにそれらの製造方法
JP2006185887A (ja) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007305495A (ja) * 2006-05-12 2007-11-22 Sony Corp 電池の製造方法、及び電極の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081865A (ko) * 1996-01-22 1999-11-15 베아트리체 델로스탈 금속에 대한 플루오르화 수지의 부착 방법
EP0964464B1 (en) * 1996-12-16 2010-08-25 Daikin Industries, Ltd. Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same
JPH11135121A (ja) * 1997-10-27 1999-05-21 Toray Ind Inc 電極用合剤の製造方法
CN1314159C (zh) * 2001-08-24 2007-05-02 索尼株式会社 电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199132A (ja) * 1996-01-22 1997-07-31 Elf Atochem Japan Kk 電極およびそれを使用した二次電池
JPH09199134A (ja) * 1996-01-22 1997-07-31 Elf Atochem Japan Kk 電極およびそれを使用した二次電池
JPH10233217A (ja) * 1996-12-16 1998-09-02 Daikin Ind Ltd 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JPH1131513A (ja) * 1997-05-13 1999-02-02 Sony Corp 非水電解液二次電池
JPH11195419A (ja) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd 非水系電池用電極合剤および非水系電池
JP2000021407A (ja) * 1998-06-30 2000-01-21 Toshiba Corp リチウム二次電池
JP2002260668A (ja) * 2000-11-29 2002-09-13 Wilson Greatbatch Ltd ポリアミック酸‐pvdfバインダー混合物を含有した熱処理された電極の使用
JP2003317722A (ja) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池
JP2006134682A (ja) * 2004-11-05 2006-05-25 Sony Corp 負極および電池、並びにそれらの製造方法
JP2006185887A (ja) * 2004-11-30 2006-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007305495A (ja) * 2006-05-12 2007-11-22 Sony Corp 電池の製造方法、及び電極の製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US10516155B2 (en) 2010-12-22 2019-12-24 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
JP2013182807A (ja) * 2012-03-02 2013-09-12 Toyota Industries Corp 二次電池およびそれを搭載した車両
WO2013128521A1 (ja) * 2012-03-02 2013-09-06 株式会社豊田自動織機 二次電池
JPWO2013176092A1 (ja) * 2012-05-21 2016-01-14 ダイキン工業株式会社 電極合剤
US9444103B2 (en) 2012-05-21 2016-09-13 Daikin Industries, Ltd. Electrode mixture
US9444104B2 (en) 2012-05-21 2016-09-13 Daikin Industries, Ltd. Electrode mixture
JPWO2013176093A1 (ja) * 2012-05-21 2016-01-14 ダイキン工業株式会社 電極合剤
WO2013176093A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
WO2013176092A1 (ja) * 2012-05-21 2013-11-28 ダイキン工業株式会社 電極合剤
JP2016514356A (ja) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション 電極、電気化学セル並びに電極及び電気化学セルの形成方法
US10679765B2 (en) 2017-02-07 2020-06-09 Colorado State University Research Foundation Thermoplastic carbon composite electrodes
US10991476B2 (en) 2017-02-07 2021-04-27 Colorado State University Research Foundation Thermoplastic carbon composite electrodes
WO2018148212A1 (en) * 2017-02-07 2018-08-16 Colorado State University Research Foundation Thermoplastic carbon composite electrodes
US12095095B2 (en) 2017-03-28 2024-09-17 Enevate Corporation Reaction barrier between electrode active material and current collector
JP7139353B2 (ja) 2017-05-15 2022-09-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー リチウムイオン電気化学セル用材料並びにその製造及び使用方法
JP2020520075A (ja) * 2017-05-15 2020-07-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムイオン電気化学セル用材料並びにその製造及び使用方法
US11901500B2 (en) 2017-12-07 2024-02-13 Enevate Corporation Sandwich electrodes
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
JP2022045347A (ja) * 2020-09-08 2022-03-18 ダイキン工業株式会社 含フッ素カルボン酸塩化合物
JP7480095B2 (ja) 2020-09-08 2024-05-09 ダイキン工業株式会社 含フッ素カルボン酸塩化合物
WO2023277055A1 (ja) * 2021-06-29 2023-01-05 ダイキン工業株式会社 電極形成用組成物、電極および二次電池
WO2023007933A1 (ja) * 2021-07-30 2023-02-02 ダイキン工業株式会社 負極合剤、負極および二次電池

Also Published As

Publication number Publication date
JPWO2010092977A1 (ja) 2012-08-16
KR20110111481A (ko) 2011-10-11
CN102318108A (zh) 2012-01-11
JP5625917B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5625917B2 (ja) リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP5494497B2 (ja) リチウム二次電池の正極合剤用スラリー、該スラリーを用いた正極およびリチウム二次電池
JP5382120B2 (ja) リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
JP5949915B2 (ja) 電極合剤
JP3356021B2 (ja) 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JP5949914B2 (ja) 電極合剤
WO2013111822A1 (ja) 結着剤、正極合剤及び負極合剤
JP7160696B2 (ja) 非水電解質二次電池用電極
EP2064768A1 (en) Secondary battery of improved high-rate discharging properties
JPH11195419A (ja) 非水系電池用電極合剤および非水系電池
KR20160076419A (ko) 비수전해질 이차전지용 전극 권회 소자, 이를 포함하는 비수전해질 이차전이지, 및 이의 제조 방법
US9786917B2 (en) Method for producing binder composition for storage battery device
JP2014132591A (ja) リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
CN114930577A (zh) 负极活性材料、以及包含该负极活性材料的负极和二次电池
JP5412853B2 (ja) リチウム二次電池の正極の製造方法および正極ならびにリチウム二次電池
JP7060405B2 (ja) バインダー組成物、電極合剤および非水電解質二次電池
JP2004356004A (ja) 正極板およびそれを含む非水電解質二次電池
WO2012043763A1 (ja) 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池
JP5509644B2 (ja) リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
KR20150029090A (ko) 접착력이 향상된 바인더 및 상기 바인더를 포함하는 리튬 이차전지
JPH1021926A (ja) 非水電解液二次電池用電極フィルム
JP7209420B2 (ja) 非水電解質二次電池用電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007307.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550535

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117018837

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741254

Country of ref document: EP

Kind code of ref document: A1