WO2010092977A1 - リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 - Google Patents
リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 Download PDFInfo
- Publication number
- WO2010092977A1 WO2010092977A1 PCT/JP2010/051955 JP2010051955W WO2010092977A1 WO 2010092977 A1 WO2010092977 A1 WO 2010092977A1 JP 2010051955 W JP2010051955 W JP 2010051955W WO 2010092977 A1 WO2010092977 A1 WO 2010092977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slurry
- binder
- electrode
- electrode mixture
- formula
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a slurry for an electrode mixture of a lithium secondary battery excellent in stability, a flexible electrode using the slurry, and a lithium secondary battery having improved battery characteristics.
- Lithium secondary batteries are widely used as power sources for various portable electric and electronic devices or as batteries for electric vehicles.
- a lithium secondary battery is equipped with a positive electrode, a negative electrode, a non-aqueous electrolyte, and usually a separator, and development and improvement of each member is actively performed.
- the positive electrode is usually prepared by, for example, dispersing a positive electrode active material in a binder, and if necessary, a conductive material together with an organic solvent to prepare a slurry for a positive electrode mixture. After applying to a positive electrode current collector, the solvent is removed by drying. It is produced by rolling.
- PVdF polyvinylidene fluoride
- a positive electrode mixture prepared by mixing lithium-containing oxide such as LiCoO 2 as a positive electrode active material and graphite as a conductive agent with PVdF is dispersed in N-methylpyrrolidone to form a slurry.
- a negative electrode mixture prepared by mixing a carbonaceous material as a negative electrode active material and PVdF is dispersed in N-methylpyrrolidone to form a slurry.
- the electrode sheet using PVdF as a binder is poor in flexibility, and the electrode sheet used in the production of the square battery is folded at 180 degrees, or the electrode sheet used in the production of the cylindrical battery is used in the process of rounding the electrode sheet small.
- the problem that the electrode mixture is peeled off from the sheet is likely to occur, and the production yield becomes difficult.
- Patent Document 2 discloses vinylidene fluoride (VdF) -hexafluoropropylene (HFP) for the purpose of imparting binding properties to the expansion and contraction of the positive electrode active material during charge and discharge in a non-aqueous electrolyte secondary battery.
- a material having rubber elasticity which is mainly composed of a fluorine-based binary copolymer such as a copolymer, a VdF-3 fluoroethylene chloride (CTFE) copolymer, is described as a binder.
- Patent Document 3 describes that a fluorine-based polymer copolymer mainly composed of VdF, tetrafluoroethylene (TFE) and HFP is used as a binder instead of PVdF.
- TFE tetrafluoroethylene
- HFP tetrafluoroethylene
- HFP tetrafluoroethylene
- HFP tetrafluoroethylene
- HFP tetrafluoroethylene
- HFP tetrafluoroethylene
- Patent Document 4 describes a binder that is soluble in a general-purpose solvent but hardly swells in an organic solvent of an electrolytic solution.
- the binder disclosed in Patent Document 4 includes VdF 50 to 80 mol% and TFE 20 to 50 mol% binary fluorine-containing copolymer, VdF 50 to 80 mol%, TFE 17 to 50 mol%, and other copolymerization monomers. It is a ternary fluorine-containing copolymer of less than 3 mol%, and VdF / TFE copolymer and VdF / TFE / HFP copolymer are described as VdF / TFE copolymer used in the examples. Yes.
- the content of resin such as polymethacrylate, polymethylmethacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, etc. in the binder is about 20% by volume. It is described that it may be included below.
- Patent Document 5 proposes to use a polyimide on the positive electrode side and an aromatic polyamide on the negative electrode side in addition to PVdF as a binder in order to improve the cycle characteristics at high temperature. .
- Patent Document 6 proposes a method of treating the surface of the current collector with an acrylic polymer in order to improve the adhesion between the current collector and the binder. Further, it is described that a mixture of 50 to 95% by weight of PVdF and a copolymer of VdF and another polymer (for example, TFE, HFP, CTFE, etc.) can be used.
- Japanese Unexamined Patent Publication No. 04-249859 Japanese Patent Laid-Open No. 04-095363 Japanese Patent Publication No. 08-004007 Japanese Patent Laid-Open No. 10-233217 Japanese Patent Laid-Open No. 11-031513 JP 09-199133 A
- lithium-containing composite oxides including LiCoO 2 , LiNiO 2 , LiMn 2 O 4 are basically basic, and the reason for this is not confirmed, but they were coexisted with PVdF and many VdF-based copolymers.
- the positive electrode mixture slurry has a problem that gelation occurs and the stability of the slurry is impaired.
- the negative electrode when a basic material is used as the negative electrode active material, there are similar problems. Further, since the basic negative electrode is swelled severely, the conventional PVdF tends to cause the negative electrode active material to fall off.
- polyimide as a binder has been studied, there is a problem that the obtained electrode is very hard and easily cracked.
- VdF / TFE copolymer is rich in flexibility, but has a slight difficulty in adhesion to the current collector, and its improvement is also required.
- An object of the present invention is to provide a stable slurry for an electrode mixture that does not cause gelation and a method for producing the same, and thus an electrode having high flexibility due to improved adhesion between the mixture and the current collector, and further battery characteristics. It is in providing the lithium secondary battery excellent in the.
- a VdF / TFE copolymer obtained by copolymerizing a specific amount of TFE with VdF is surprisingly a basic electrode active material.
- the electrode mixture slurry prepared by mixing is found to be homogeneous and stable, and the electrode formed using this electrode mixture slurry has excellent flexibility. It was found that the electrode mixture and the current collector were not peeled off, and the battery characteristics of the lithium secondary battery were improved.
- VdF / TFE copolymers Such excellent base resistance is specifically seen in VdF / TFE copolymers not found in other VdF copolymers such as VdF / HFP copolymers and VdF / CTFE copolymers. Is a characteristic.
- the present invention is a slurry for electrode mixture of a lithium secondary battery containing an electrode active material (A), a binder (B) and an organic solvent (C), wherein the binder (B) (B1) Composition formula (B1): (VDF) m (TFE) n (HFP) l (In the formula, VDF is a structural unit derived from vinylidene fluoride; TFE is a structural unit derived from tetrafluoroethylene; HFP is a structural unit derived from hexafluoropropylene; 0.45 ⁇ m ⁇ 1; 0.05 ⁇ n ⁇ 0.
- the present invention relates to a slurry for an electrode mixture of a lithium secondary battery.
- the electrode active material (A) has the formula (A1): Li x M 1 y M 2 1-y O 2 (Wherein 0.4 ⁇ x ⁇ 1; 0.3 ⁇ y ⁇ 1; M 1 is at least one selected from the group consisting of Ni and Mn; M 2 is selected from the group consisting of Co, Al and Fe)
- the positive electrode active material (A1) includes a lithium-containing composite metal oxide represented by at least one kind, and the electrode active material (A) is a basic material containing Si and / or Sn. It is particularly suitable when it is a negative electrode active material (A2) containing.
- the present invention also relates to an electrode of a lithium secondary battery obtained by applying the slurry for electrode mixture of the present invention to a current collector and drying it.
- the present invention also relates to a lithium secondary battery including the non-aqueous electrolyte using the electrode of the present invention as a positive electrode and / or a negative electrode.
- a homogeneous and stable slurry for an electrode mixture can be provided, and an electrode having excellent adhesiveness with a current collector formed using the slurry for an electrode mixture and rich in flexibility.
- a lithium secondary battery excellent in battery characteristics can be provided using an electrode mixture.
- the electrode mixture slurry of the lithium secondary battery of the present invention includes an electrode active material (A), a binder (B), and an organic solvent (C).
- A electrode active material
- B binder
- C organic solvent
- Electrode active material In this invention, a positive electrode active material (A1) or a negative electrode active material (A2) may be sufficient.
- (A1) Cathode Active Material As the cathode active material (A1), the formula (A1): Li x M 1 y M 2 1-y O 2 (Wherein 0.4 ⁇ x ⁇ 1; 0.3 ⁇ y ⁇ 1; M 1 is at least one selected from the group consisting of Ni and Mn; M 2 is selected from the group consisting of Co, Al and Fe) A lithium-containing composite metal oxide represented by at least one).
- Formula (A1-1) LiNi x Co y Al z O 2 (Wherein 0.7 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 0.3; 0 ⁇ z ⁇ 0.03; 0.9 ⁇ x + y + z ⁇ 1.1),
- lithium-containing composite metal oxide represented by the formula (A1-1) include, for example, LiNi 0.8 Co 0.2 O 2 , LiNi 0.7 Co 0.3 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.7 Co 0.2 Al Examples thereof include 0.1 O 2 and LiNi 0.85 Co 0.1 Al 0.5 O 2. Among them, LiNi 0.82 Co 0.15 Al 0.03 O 2 (NCA) is preferable.
- lithium-containing composite metal oxide represented by the formula (A1-2) include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.75 Mn 0.25 O 2 , LiNi 0.25 Mn 0.75 O 2 , LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 , LiNi 0.4 Co 0.2 Mn 0.4 O 2 , LiNi 0.3 Co 0.5 Mn 0.2 O 2, etc., among which LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) preferable.
- NCM LiNi 1/3 Co 1/3 Mn 1/3 O 2
- lithium-containing composite metal oxide represented by the formula (A1-3) include Li 0.5 MnO 2 (spinel manganese), LiMnO 2 and the like.
- lithium-containing composite metal oxide represented by the formula (A1-4) include, for example, LiFe 1/3 Co 1/3 Mn 1/3 O 2 , Li 0.5 Fe 1/3 Co 1/3 Mn 1 / 3 O 2 , LiFe 0.4 Co 0.3 Mn 0.3 O 2 , Li 0.5 Fe 0.4 Co 0.3 Mn 0.3 O 2 and the like can be mentioned.
- LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like can also be used.
- Negative electrode active material examples include known basic materials such as a basic material containing Si and / or Sn. Specifically, metal compounds capable of inserting lithium ions, such as metal oxides and metal nitrides, Si, SiCuAl, SiNiAg, and CoSn 2 can also be used. Examples of the metal oxide include metal oxides containing Si and Sn, and examples of the metal nitride include Li 2.6 Co 0.4 N.
- Binder In the present invention, as the binder, a VdF / TFE-based fluoropolymer (B1) represented by the composition formula (B1) and a solvent-soluble thermoplastic resin (B2) (however, 2 types of polymers are used.
- the structural units VDF, TFE, and HFP can be connected in an arbitrary order, and may exist at random.
- VdF / TFE fluorine-containing copolymer is preferable from the viewpoint of good flexibility and alkali resistance.
- n (TFE) is preferably from 0.10 to 0.40, particularly preferably from 0.15 to 0.40 because of good base resistance and flexibility.
- a fluorine copolymer is preferred from the viewpoint of good flexibility and alkali resistance.
- a copolymer of 0.60 ⁇ m ⁇ 0.90 and 0.09 ⁇ n ⁇ 0.45 and 0.01 ⁇ l ⁇ 0.04 is obtained.
- a copolymer satisfying 0.60 ⁇ m ⁇ 0.70, 0.30 ⁇ n ⁇ 0.40 and 0.02 ⁇ l ⁇ 0.04 is preferable.
- the molecular weight of the VdF / TFE copolymer preferably has a number average molecular weight of 10,000 to 500,000 in terms of polystyrene as measured by GPC (gel permeation chromatography). If it is less than 10,000, the molecular weight is too low to form a film, and if it exceeds 500,000, the thixotropy of the electrode mixture becomes very large and it tends to be difficult to apply to the electrode current collector. . In order to improve the cycle characteristics, it is preferable that the molecular weight is relatively high. From this point, for example, in the case of a terpolymer, 150,000 to 500,000 are preferable.
- the VdF / TFE copolymer used as the binder (B1) in the present invention can be polymerized by a known polymerization method, and among them, the radical copolymerization method is mainly preferred. That is, the polymerization method is not limited as long as it proceeds radically, but is initiated by, for example, an organic or inorganic radical polymerization initiator, heat, light, ionizing radiation, or the like.
- the polymerization mode solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization and the like can be used.
- This VdF / TFE copolymer has excellent base resistance and is generally well used, not to mention nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide, which are used as solvents for PVdF. It is also soluble in low-boiling general-purpose organic solvents that are used, does not cause gelation even when mixed with an electrode active material, can impart flexibility to the electrode, and has low swellability with respect to non-aqueous electrolytes.
- nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide
- the binder (B2) is a solvent-soluble thermoplastic resin that functions to improve the adhesion to the current collector.
- the “solvent-soluble thermoplastic resin” is a thermoplastic resin that dissolves 5% by mass or more in an organic solvent (C) at 25 ° C. to form a uniform solution.
- Polyvinylidene fluoride (PVdF ) At least one selected from the group consisting of polyacrylic acid polymers, polymethacrylic acid polymers, polyimides, polyamides and polyamideimides.
- PVdF those conventionally used as binders for lithium secondary batteries can be used as they are.
- the binder (B2) it is 10 to 90% by mass of the total amount of the binders (B1) and (B2), and more preferably 50 to 90% by mass.
- the binder (B1) has a role of imparting flexibility and the binder (B2) has a role of imparting adhesiveness, the composition may be arbitrarily balanced according to the purpose.
- polyacrylic acid polymers include polyacrylic acid, ammonium salts and sodium salts thereof; polyacrylic acid alkyl esters; polyacrylic acid amides; alkoxysilyl-modified polyacrylic acid esters.
- polymethacrylic acid polymer examples include polymethacrylic acid, ammonium salts and sodium salts thereof; polymethacrylic acid alkyl esters; polymethacrylic acid amides; alkoxysilyl-modified polymethacrylic acid esters.
- the binder (B2) When at least one selected from the group consisting of an acrylic acid polymer, a polymethacrylic acid polymer, polyimide, polyamide and polyamideimide is used as the binder (B2), the binders (B1) and (B2) are used. 1) to 20% by mass of the total amount of ()) is preferred from the standpoint of maintaining flexibility and good adhesion.
- the above composition when graphite is used as the negative electrode active material, the above composition is preferable, but when using an active material with high swellability such as silica, metal, and alloy, polyimide, polyamide, or polyamideimide is used as a binder (
- the binder (B1) is preferably used in an amount of 1 to 40% by mass of the total amount of (B1) and (B2). In this case, the binder (B2) plays a role of suppressing swelling, and the binder (B1) plays a role of imparting flexibility.
- the electrode mixture slurry of the present invention can be obtained by mixing and dispersing an electrode active material (A), a binder (B), and an electrode material such as a conductive material described later in an organic solvent. .
- Examples of the organic solvent (C) used for preparing the electrode mixture slurry of the present invention include nitrogen-containing organic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, and the like.
- Nitrotone solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, and the like.
- Ketone solvents such as ethyl acetate and butyl acetate
- ether solvents such as tetrahydrofuran and dioxane
- general-purpose organic solvents having a low boiling point such as mixed solvents thereof.
- N-methylpyrrolidone is particularly preferred because of its excellent slurry stability and coating properties.
- the water content of the organic solvent (C) is important. That is, when the water content is 100 ppm or less, further 30 ppm or less, the basic expression due to the basic electrode active material is small, and gelation can be suppressed.
- a conductive material As another electrode material, for example, a conductive material is exemplified.
- the conductive material include carbon blacks such as acetylene black and ketjen black, and carbon materials such as graphite.
- the electrode active material (A), the conductive material (D) and the like are dispersed and mixed in a solution obtained by dissolving the binder (B) in the organic solvent (C).
- the method is common.
- the powder of the binder (B), the electrode active material (A), and the conductive material (D) may be mixed first, and then the organic solvent (C) may be added to prepare a slurry.
- the blending ratio of the binder (B) (the sum of (B1) and (B2)) is a solid content (electrode active material ( A), binder (B), conductive material (D), etc.) is 0.1 to 20% by mass, preferably 1 to 10% by mass.
- the compounding amount of the electrode active material (A) is 80 to 98% by mass, preferably 90 to 97% by mass in the solid content.
- the blending amount of the conductive material (D) is 1 to 20% by mass, preferably 2 to 10% by mass in the solid content.
- the solid content concentration of the slurry is preferably 40 to 70% by mass from the viewpoint of good workability, coating property, and slurry stability.
- the slurry for electrode mixture of the present invention is a stable and homogeneous fluid that does not gel, and can be applied to a current collector, dried, rolled, and cut into a predetermined size to produce an electrode. Conventional methods and conditions can be adopted as the method and conditions for producing the positive electrode and the negative electrode.
- Examples of the current collector on which the electrode mixture slurry is applied include aluminum foil, etched aluminum foil, and aluminum foil coated with a conductive paste.
- the electrode of the present invention uses a VdF / TFE copolymer that is flexible and does not cause gelation as the binder (B1), and improves the adhesion to the current collector with the binder (B2).
- the electrode mixture and the current collector have good adhesion, and even when processed into a spiral or fold type electrode, the electrode mixture layer does not crack or peel off. Since it is difficult to swell with respect to electrolyte solution, even if charging / discharging is repeated, a battery characteristic does not fall large.
- the present invention also relates to a lithium secondary battery in which the electrode of the present invention is used as a positive electrode and / or a negative electrode and provided with a non-aqueous electrolyte.
- the negative electrode may include an electrode of the present invention containing a negative electrode active material made of a basic material such as an alloy, or a negative electrode using a known carbon material as a negative electrode active material. It may be.
- a negative electrode using a carbon material is prepared using a negative electrode active material and a negative electrode binder by a known material and method, and is applied or adhered to a negative electrode current collector such as a copper foil. Can be produced.
- a carbonaceous material that can be doped / undoped with lithium or the like is used.
- a conductive polymer such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
- a conductive polymer such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
- pyrolytic carbons such as polyacene or polypyrrole, coke, polymer charcoal, carbon fiber, or the like per unit volume.
- cokes petroleum coke, pitch coke, coal coke, etc.
- carbon black acetylene black, etc.
- glassy carbon organic polymer material fired bodies
- organic polymer materials Preferred are those fired in an inert gas stream or in vacuum at a temperature of 500 ° C. or higher.
- non-aqueous electrolyte a solution obtained by dissolving a known electrolyte salt in a known electrolyte salt dissolving organic solvent can be used.
- the organic solvent for dissolving the electrolyte salt is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl
- Known hydrocarbon solvents such as carbonate; one or more of fluorine solvents such as fluoroethylene carbonate, fluoroether and fluorinated carbonate can be used.
- electrolyte salt examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2.
- LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 or combinations thereof are preferred.
- the concentration of the electrolyte salt is required to be 0.8 mol / liter or more, and further 1.0 mol / liter or more. Although the upper limit depends on the organic solvent for dissolving the electrolyte salt, it is usually 1.5 mol / liter.
- the lithium secondary battery of the present invention can be produced by enclosing these members in a battery case and sealing them.
- a separator may be interposed between the positive electrode and the negative electrode.
- Example 1 (Preparation of slurry for positive electrode mixture) The ratio of each electrode material shown in Table 1 is measured so that the positive electrode active material (A1): binder (B1) + (B2): conductive material (D) has a mass ratio of 95: 5: 5. did.
- the binder (B1) + (B2) is dissolved in N-methylpyrrolidone (NMP) so as to have a concentration of 10% by mass, and then a predetermined amount of the positive electrode active material (A1) is added to the NMP solution of the binder.
- NMP N-methylpyrrolidone
- a conductive material (D) were added and mixed thoroughly with a stirrer. While stirring, NMP was sequentially added so that the solid content concentration was 50% by mass to prepare a slurry for positive electrode mixture.
- the prepared slurry for positive electrode mixture was filtered through a Ni mesh (200 mesh) sieve to make the particle size of the solid content uniform. Subsequently, the positive electrode mixture slurry after filtration was subjected to vacuum defoaming treatment. After the defoaming of the positive electrode mixture slurry is completed, the positive electrode mixture slurry is applied onto an Al foil having a thickness of 22 ⁇ m, which is a current collector plate, with an applicator (the amount by which the dry weight of the positive electrode coating film is 18 mg / cm 2 ). ) After the application, NMP was completely volatilized while drying at 100 to 120 ° C. using a blast dryer or a hot plate to produce a strip-shaped positive electrode.
- Each component for preparing the positive electrode mixture slurry was as follows.
- Positive electrode mixture slurry (A1) (A1-1): LiNi 0.82 Co 0.15 Al 0.03 O 2 (manufactured by Toda Kogyo Co., Ltd.) (A1-2): LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.)
- Binder (B1) (B1-1): VdF / TFE copolymer (VdF / TFE 80/20 mol% ratio)
- B1-2): VdF / TFE / HFP copolymer (VdF / TFE / HFP 65 / 32.5 / 2.5 mol% ratio)
- C C-methylpyrrolidone
- the produced positive electrode was cut into a length of 3 cm and a width of 6 cm, then folded by 180 ° and then expanded, and the presence or absence of cracks in the positive electrode was visually confirmed. The results are shown in Table 1.
- Example 2 A positive electrode was produced in the same manner as in Example 1 except that the resin shown in Table 2 was used as the binder (B2) in the ratio shown in Table 2, and the density and crack presence were examined. The results are shown in Table 2.
- Example 3 A positive electrode was prepared in the same manner as in Example 2 except that the binders (B1) and (B2) were used in the types and proportions shown in Table 3, and examined for cracks. The results are shown in Table 3.
- Example 4 A positive electrode was produced in the same manner as in Example 2 except that the binders (B1) and (B2) were used in the types and proportions shown in Table 4, and an adhesive tape (PR51 manufactured by Ace Global Co., Ltd.) was applied to the produced positive electrode. ) was peeled off and the state of the positive electrode mixture layer was visually observed. The results are shown in Table 4.
- Example 5 Using the positive electrode shown in Table 5, a lithium secondary battery (laminate cell) was produced by the following method. For these lithium secondary batteries, rate characteristics and cycle characteristics were examined as follows. The results are shown in Table 5.
- the strip-shaped positive electrode was cut to 40 mm ⁇ 72 mm (with a positive electrode terminal of 10 mm ⁇ 10 mm), the strip-shaped negative electrode was cut to 42 mm ⁇ 74 mm (with a negative electrode terminal of 10 mm ⁇ 10 mm), and a lead body was welded to each terminal. Further, a microporous polyethylene film having a thickness of 20 ⁇ m was cut into a size of 78 mm ⁇ 46 mm to form a separator, and a positive electrode and a negative electrode were set so as to sandwich the separator, and these were put in an aluminum laminate packaging material.
- Rate characteristic (%) 2C discharge capacity (mAh) /0.2C discharge capacity (mAh) ⁇ 100
- Cycle characteristics As for the cycle characteristics, a charge / discharge cycle performed under the above-described charge / discharge conditions (charging at 1.0 V until the charging current becomes 1/10 C at 4.2 V and discharging to 3.0 V at a current equivalent to 1 C) is 1
- the discharge capacity after the first cycle and the discharge capacity after 100 cycles are measured.
- the value obtained by the following formula is used as the capacity retention rate.
- Capacity retention rate (%) 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) ⁇ 100
- Example 6 Si negative electrode active material; manufactured by Fuji Silysia Chemical Co., Ltd.), acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.), and binders (B) ((B1) and (B2)) shown in Table 6 was mixed in a disperser using NMP as a solvent at a mass ratio of 45:45:10 to prepare a slurry for negative electrode mixture.
- This slurry was uniformly applied onto a negative electrode current collector (copper foil having a thickness of 10 ⁇ m) and dried to form a negative electrode mixture layer, then compression-molded with a roller press, cut, and then dried.
- the lead body was welded to produce a strip-shaped negative electrode.
- the positive electrode uses A1-2 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) as the positive electrode active material, and the binder B1-1 and the binder B2-1 are 50/50 (mass ratio). It was produced in the same manner as in Example 1 except that it was used in combination.
- a lithium secondary battery (laminate cell) was produced in the same manner as in Example 5, and the cycle characteristics were measured in the same manner as in Example 5. The results are shown in Table 6.
- Example 7 In Example 6, the negative electrode active material was changed to SiO 2 (manufactured by Aldrich) or Sn particles (manufactured by Aldrich), and the negative electrode binder was blended in the types and proportions shown in Table 7, and Similarly, lithium secondary batteries were produced, and the cycle characteristic test of Example 5 and the bending test of Example 3 were performed on them. The results are shown in Table 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
(B1)組成式(B1):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および
(B2)含フッ素重合体(B1)以外の溶剤可溶型熱可塑性樹脂
を含むことを特徴とするリチウム二次電池の電極合剤用スラリーに関する。
LixM1 yM2 1-yO2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物を含む正極活物質(A1)である場合に特に好適であり、また、電極活物質(A)がSiおよび/またはSnを含有する塩基性材料を含む負極活物質(A2)である場合に特に好適である。
本発明においては、正極活物質(A1)でも負極活物質(A2)でもよい。
正極活物質(A1)としては、式(A1):
LixM1 yM2 1-yO2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物である。
式(A1-1):
LiNixCoyAlzO2
(式中、0.7≦x≦1;0≦y≦0.3;0≦z≦0.03;0.9≦x+y+z≦1.1)、
式(A1-2):
LiNixCoyMnzO2
(式中、0.3≦x≦0.6;0≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)、
式(A1-3):
LixMnzO2
(式中、0.4≦x≦0.6;0.9≦z≦1)、または
式(A1-4):
LiFexCoyMnzO2
(式中、0.3≦x≦0.6;0.1≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)
で示されるリチウム含有複合金属酸化物が好ましい。
負極活物質(A2)としては、公知の塩基性材料、たとえばSiおよび/またはSnを含有する塩基性を呈する材料が例示できる。具体的には、リチウムイオンを挿入可能な金属化合物、たとえば金属酸化物や金属窒化物、Si、SiCuAl、SiNiAg、CoSn2なども使用できる。金属酸化物としてはSiやSnを含む金属酸化物が、金属窒化物としてはLi2.6Co0.4Nなどがあげられる。
本発明においては、結着剤として、組成式(B1)で示されるVdF/TFE系含フッ素重合体(B1)と、溶剤可溶型熱可塑性樹脂(B2)(ただし、B1は除く)という2種類のポリマーを使用する。
結着剤(B1)は、組成式(B1):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体を含む。なお、構造単位VDF、TFEおよびHFPは任意の順序で連結し得るものであり、ランダムに存在してもよい。
本発明において結着剤(B2)は、集電体との接着性を向上させる働きをする溶剤可溶型熱可塑性樹脂である。本発明において「溶剤可溶型熱可塑性樹脂」とは、有機溶媒(C)に対して25℃において5質量%以上溶解して均一な溶液を形成する熱可塑性樹脂であり、ポリフッ化ビニリデン(PVdF)、ポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種が好ましい。
本発明の電極合剤用スラリーは、電極活物質(A)と結着剤(B)、さらには後述する導電材などの電極材料を有機溶媒に混合分散させることで得られる。
本発明において、本発明の効果を損なわない範囲で、必要に応じて、他の電極材料を配合することができる。
(正極合剤用スラリーの調製)
目的とする表1に示す各電極材料の割合を正極活物質(A1):結着剤(B1)+(B2):導電材(D)が質量比で95:5:5になるように秤量した。結着剤(B1)+(B2)を濃度が10質量%になるようにN-メチルピロリドン(NMP)に溶解させたのち、この結着剤のNMP溶液に所定量の正極活物質(A1)と導電材(D)を加え、攪拌機で充分に混合した。撹拌しながら固形分濃度が50質量%になるようにNMPを逐次追加し、正極合剤用スラリーを調製した。
調製した上記正極合剤用スラリーをNiメッシュ(200メッシュ)の篩を通してろ過して固形分の粒径を均一化した。つづいて、ろ過後の正極合剤用スラリーに真空脱泡処理を施した。正極合剤用スラリーの脱泡が完了した後、集電板である厚さ22μmのAl箔上に正極合剤用スラリーをアプリケーターにより塗布(正極塗膜の乾燥質量が18mg/cm2となる量)を行った。塗布後、送風乾燥機またはホットプレートを用いて100~120℃で乾燥しながらNMPを完全に揮発させ、帯状の正極を作製した。
(A1-1):LiNi0.82Co0.15Al0.03O2(戸田工業(株)製)
(A1-2):LiNi1/3Co1/3Mn1/3O2(日本化学工業(株)製)
結着剤(B1)
(B1-1):VdF/TFE共重合体(VdF/TFE=80/20モル%比)
(B1-2):VdF/TFE/HFP共重合体(VdF/TFE/HFP=65/32.5/2.5モル%比)
結着剤(B2)
(B2-1):PVdF(呉羽化学(株)製のKF1120)
有機溶媒(C)
(C-1):N-メチルピロリドン(水分含有量30ppm)
作製した正極の密度をつぎの要領で測定した。結果を表1に示す。
正極をギャップが75μmのロールプレスに70℃で2回通し、さらにギャップを35μmに変更して2回通した後、正極の面積/膜厚/重量を測定して密度(g/cm3)を算出する。
作製した正極を縦3cm、横6cmに切り取った後、180°折り畳んだ後拡げて、正極の割れの有無を目視で確認した。結果を表1に示す。
結着剤(B2)として表2に示す樹脂を表2示す割合で使用したほかは実施例1と同様にして正極を作製し、密度および割れの有無を調べた。結果を表2に示す。
(B2-2):ポリメチルメタクリレート(PMMA)(Aldrich社製)
(B2-3):メチルメタクリレート(MMA)/メタクリル酸(MA)(MMA/MA=1:0.016モル比)(Aldrich社製)
(B2-4):ポリアミドイミド(PAI)(日立化成工業(株)製のHPC7200)
(B2-5):ポリイミド(PI)(日立化成工業(株)製のHCI-7000)
結着剤(B1)と(B2)を表3に示す種類と割合で用いたほかは実施例2と同様にして正極を作製し、割れの有無を調べた。結果を表3に示す。
結着剤(B1)と(B2)を表4に示す種類と割合で用いたほかは実施例2と同様にして正極を作製し、作製した正極に粘着テープ((株)エースグローバル製のPR51)を貼り付けた後引き剥がし、正極合剤層の状態を目視で観察した。結果を表4に示す。
表5に示す正極を使用してつぎの方法でリチウム二次電池(ラミネートセル)を作製した。これらのリチウム二次電池について、レート特性およびサイクル特性をつぎの要領で調べた。結果を表5に示す。
人造黒鉛粉末(日立化成(株)製。商品名MAG-D)に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
充電については、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し0.2C相当の電流で3.0Vまで放電し、放電容量を求める。引き続き、1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し、2C相当の電流で3.0Vになるまで放電し、放電容量を求める。この2Cでの放電容量と、0.2Cでの放電容量との比から、つぎの計算式に代入してレート特性を求める。
レート特性(%)=2C放電容量(mAh)/0.2C放電容量(mAh)×100
サイクル特性については、上記の充放電条件(1.0Cで4.2Vにて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、最初のサイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値を容量維持率の値とする。
容量維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
Si(負極活物質。富士シリシア化学(株)製)とアセチレンブラック(電気化学工業(株)製のデンカブラック)と表6に示す結着剤(B)((B1)および(B2))とを質量比で45:45:10の割合で、溶媒としてNMPを用い、ディスパーザーにて混合して負極合剤用スラリーを調製した。このスラリーを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
実施例6において、負極活物質をSiO2(アルドリッチ社製)またはSn粒子(アルドリッチ社製)に変更し、負極の結着剤を表7に示す種類と割合で配合したほかは実施例6と同様にしてリチウム二次電池を作製し、これらに対し実施例5のサイクル特性試験、および実施例3の折り曲げ試験を行った。結果を表7に示す。
Claims (15)
- 電極活物質(A)と結着剤(B)と有機溶媒(C)を含むリチウム二次電池の電極合剤用スラリーであって、結着剤(B)が、
(B1)組成式(B1):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および
(B2)含フッ素重合体(B1)以外の溶剤可溶型熱可塑性樹脂
を含むことを特徴とするリチウム二次電池の電極合剤用スラリー。 - 電極活物質(A)が正極活物質(A1)であり、式(A1):
LixM1 yM2 1-yO2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群から選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物を含む請求項1記載の電極合剤用スラリー。 - 正極活物質(A1)が、
式(A1-1):
LiNixCoyAlzO2
(式中、0.7≦x≦1;0≦y≦0.3;0≦z≦0.03;0.9≦x+y+z≦1.1)、
式(A1-2):
LiNixCoyMnzO2
(式中、0.3≦x≦0.6;0≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)、
式(A1-3):
LixMnzO2
(式中、0.4≦x≦0.6;0.9≦z≦1)、または
式(A1-4):
LiFexCoyMnzO2
(式中、0.3≦x≦0.6;0.1≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)
である請求項2記載の電極合剤用スラリー。 - 電極活物質(A)がSiおよび/またはSnを含有する塩基性材料を含む負極活物質(A2)である請求項1記載の電極合剤用スラリー。
- 結着剤(B2)が、ポリフッ化ビニリデン、ポリアクリル酸系重合体、ポリメタクリル酸系重合体、ポリイミド、ポリアミドおよびポリアミドイミドよりなる群から選ばれる少なくとも1種である請求項1~4のいずれかに記載の電極合剤用スラリー。
- 結着剤(B1)が、式(B1)において、0.50≦m≦0.90、0.10≦n≦0.50および0≦l≦0.08(ただし、m+n+l=1)である含フッ素共重合体を含む請求項1~5のいずれかに記載の電極合剤用スラリー。
- 結着剤(B1)が、式(B1)において、0.50≦m≦0.90および0.10≦n≦0.50(ただし、m+n=1)である二元含フッ素共重合体を含む請求項1~6のいずれかに記載の電極合剤用スラリー。
- 結着剤(B1)が、式(B1)において、0.50≦m≦0.90、0.09≦n≦0.49および0.01≦l≦0.04(ただし、m+n+l=1)である含フッ素共重合体を含む請求項1~6のいずれかに記載の電極合剤用スラリー。
- 有機溶媒(C)の水分含有量が30ppm以下である請求項1~8のいずれかに記載の電極合剤用スラリー。
- 請求項1~9のいずれかに記載の電極合剤用スラリーを集電体に塗工し乾燥して得られるリチウム二次電池の電極。
- 請求項10記載の電極を正極および/または負極とし、非水電解液を備えるリチウム二次電池。
- 電極活物質(A)と結着剤(B)を有機溶媒(C)に分散させてリチウム二次電池の電極合剤用スラリーを製造する方法において、結着剤(B)が、
(B1)組成式(B1):
(VDF)m(TFE)n(HFP)l
(式中、VDFはフッ化ビニリデン由来の構造単位;TFEはテトラフルオロエチレン由来の構造単位;HFPはヘキサフルオロプロピレン由来の構造単位;0.45≦m≦1;0.05≦n≦0.5;0≦l≦0.1。ただし、m+n+l=1である)で示される含フッ素重合体、および
(B2)含フッ素重合体(B1)以外の溶剤可溶型熱可塑性樹脂
を含み、かつ
有機溶媒(C)の水分含有量が100ppm以下である
ことを特徴とするリチウム二次電池の電極合剤用スラリーの製造方法。 - 有機溶媒(C)の水分含有量が30ppm以下である請求項12記載の製造方法。
- 有機溶媒(C)がN-メチルピロリドンである請求項12または13記載の製造方法。
- 請求項12~14のいずれかに記載の製造方法で得られるリチウム二次電池の電極合剤用スラリー。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800073074A CN102318108A (zh) | 2009-02-12 | 2010-02-10 | 锂二次电池的电极合剂用浆料、使用了该浆料的电极和锂二次电池 |
JP2010550535A JP5625917B2 (ja) | 2009-02-12 | 2010-02-10 | リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009030348 | 2009-02-12 | ||
JP2009-030348 | 2009-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092977A1 true WO2010092977A1 (ja) | 2010-08-19 |
Family
ID=42561819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051955 WO2010092977A1 (ja) | 2009-02-12 | 2010-02-10 | リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5625917B2 (ja) |
KR (1) | KR20110111481A (ja) |
CN (1) | CN102318108A (ja) |
WO (1) | WO2010092977A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128521A1 (ja) * | 2012-03-02 | 2013-09-06 | 株式会社豊田自動織機 | 二次電池 |
WO2013176092A1 (ja) * | 2012-05-21 | 2013-11-28 | ダイキン工業株式会社 | 電極合剤 |
WO2013176093A1 (ja) * | 2012-05-21 | 2013-11-28 | ダイキン工業株式会社 | 電極合剤 |
JP2016514356A (ja) * | 2013-03-12 | 2016-05-19 | エネヴェート・コーポレーション | 電極、電気化学セル並びに電極及び電気化学セルの形成方法 |
US9997765B2 (en) | 2010-12-22 | 2018-06-12 | Enevate Corporation | Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells |
WO2018148212A1 (en) * | 2017-02-07 | 2018-08-16 | Colorado State University Research Foundation | Thermoplastic carbon composite electrodes |
US10388943B2 (en) | 2010-12-22 | 2019-08-20 | Enevate Corporation | Methods of reducing occurrences of short circuits and/or lithium plating in batteries |
US10686214B2 (en) | 2017-12-07 | 2020-06-16 | Enevate Corporation | Sandwich electrodes and methods of making the same |
JP2020520075A (ja) * | 2017-05-15 | 2020-07-02 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | リチウムイオン電気化学セル用材料並びにその製造及び使用方法 |
US11133498B2 (en) | 2017-12-07 | 2021-09-28 | Enevate Corporation | Binding agents for electrochemically active materials and methods of forming the same |
JP2022045347A (ja) * | 2020-09-08 | 2022-03-18 | ダイキン工業株式会社 | 含フッ素カルボン酸塩化合物 |
WO2023277055A1 (ja) * | 2021-06-29 | 2023-01-05 | ダイキン工業株式会社 | 電極形成用組成物、電極および二次電池 |
WO2023007933A1 (ja) * | 2021-07-30 | 2023-02-02 | ダイキン工業株式会社 | 負極合剤、負極および二次電池 |
US12095095B2 (en) | 2017-03-28 | 2024-09-17 | Enevate Corporation | Reaction barrier between electrode active material and current collector |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014007088A (ja) * | 2012-06-26 | 2014-01-16 | Hitachi Maxell Ltd | 非水電解質二次電池およびその製造方法 |
JP6192019B2 (ja) | 2013-01-31 | 2017-09-06 | 三井化学株式会社 | リチウム電池およびその製造方法 |
CN109721892B (zh) * | 2017-10-27 | 2020-11-03 | 中昊晨光化工研究院有限公司 | 低凝胶含量的偏氟乙烯热塑性树脂及其制备方法和应用 |
US12021233B2 (en) | 2018-10-03 | 2024-06-25 | Daikin Industries, Ltd. | Positive electrode structure and secondary battery |
CN109713306B (zh) * | 2018-11-28 | 2021-11-05 | 桑德新能源技术开发有限公司 | 粘结剂、正极浆料及其制备方法、锂离子电池 |
CN110137497B (zh) * | 2019-05-11 | 2021-05-25 | 珠海冠宇电池股份有限公司 | 一种负极粘结剂及其制备方法及锂离子电池 |
TW202130027A (zh) * | 2019-12-18 | 2021-08-01 | 日商大金工業股份有限公司 | 固體二次電池用漿料、用於固體二次電池之層之形成方法及固體二次電池 |
WO2021184392A1 (en) * | 2020-03-20 | 2021-09-23 | Guangdong Haozhi Technology Co. Limited | Method of preparing cathode for secondary battery |
CN113937287B (zh) * | 2020-06-29 | 2023-04-18 | 珠海冠宇电池股份有限公司 | 一种负极极片及含该负极极片的二次电池 |
CN114361452B (zh) * | 2021-12-15 | 2023-09-19 | 电子科技大学中山学院 | 一种粘合剂、电极浆料及其制造方法和应用 |
CN116261796A (zh) * | 2022-03-21 | 2023-06-13 | 宁德新能源科技有限公司 | 电化学装置和电子装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09199132A (ja) * | 1996-01-22 | 1997-07-31 | Elf Atochem Japan Kk | 電極およびそれを使用した二次電池 |
JPH09199134A (ja) * | 1996-01-22 | 1997-07-31 | Elf Atochem Japan Kk | 電極およびそれを使用した二次電池 |
JPH10233217A (ja) * | 1996-12-16 | 1998-09-02 | Daikin Ind Ltd | 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤 |
JPH1131513A (ja) * | 1997-05-13 | 1999-02-02 | Sony Corp | 非水電解液二次電池 |
JPH11195419A (ja) * | 1997-12-26 | 1999-07-21 | Kureha Chem Ind Co Ltd | 非水系電池用電極合剤および非水系電池 |
JP2000021407A (ja) * | 1998-06-30 | 2000-01-21 | Toshiba Corp | リチウム二次電池 |
JP2002260668A (ja) * | 2000-11-29 | 2002-09-13 | Wilson Greatbatch Ltd | ポリアミック酸‐pvdfバインダー混合物を含有した熱処理された電極の使用 |
JP2003317722A (ja) * | 2002-04-26 | 2003-11-07 | Kureha Chem Ind Co Ltd | 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池 |
JP2006134682A (ja) * | 2004-11-05 | 2006-05-25 | Sony Corp | 負極および電池、並びにそれらの製造方法 |
JP2006185887A (ja) * | 2004-11-30 | 2006-07-13 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JP2007305495A (ja) * | 2006-05-12 | 2007-11-22 | Sony Corp | 電池の製造方法、及び電極の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990081865A (ko) * | 1996-01-22 | 1999-11-15 | 베아트리체 델로스탈 | 금속에 대한 플루오르화 수지의 부착 방법 |
EP0964464B1 (en) * | 1996-12-16 | 2010-08-25 | Daikin Industries, Ltd. | Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same |
JPH11135121A (ja) * | 1997-10-27 | 1999-05-21 | Toray Ind Inc | 電極用合剤の製造方法 |
CN1314159C (zh) * | 2001-08-24 | 2007-05-02 | 索尼株式会社 | 电池 |
-
2010
- 2010-02-10 JP JP2010550535A patent/JP5625917B2/ja active Active
- 2010-02-10 KR KR1020117018837A patent/KR20110111481A/ko active Search and Examination
- 2010-02-10 CN CN2010800073074A patent/CN102318108A/zh active Pending
- 2010-02-10 WO PCT/JP2010/051955 patent/WO2010092977A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09199132A (ja) * | 1996-01-22 | 1997-07-31 | Elf Atochem Japan Kk | 電極およびそれを使用した二次電池 |
JPH09199134A (ja) * | 1996-01-22 | 1997-07-31 | Elf Atochem Japan Kk | 電極およびそれを使用した二次電池 |
JPH10233217A (ja) * | 1996-12-16 | 1998-09-02 | Daikin Ind Ltd | 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤 |
JPH1131513A (ja) * | 1997-05-13 | 1999-02-02 | Sony Corp | 非水電解液二次電池 |
JPH11195419A (ja) * | 1997-12-26 | 1999-07-21 | Kureha Chem Ind Co Ltd | 非水系電池用電極合剤および非水系電池 |
JP2000021407A (ja) * | 1998-06-30 | 2000-01-21 | Toshiba Corp | リチウム二次電池 |
JP2002260668A (ja) * | 2000-11-29 | 2002-09-13 | Wilson Greatbatch Ltd | ポリアミック酸‐pvdfバインダー混合物を含有した熱処理された電極の使用 |
JP2003317722A (ja) * | 2002-04-26 | 2003-11-07 | Kureha Chem Ind Co Ltd | 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池 |
JP2006134682A (ja) * | 2004-11-05 | 2006-05-25 | Sony Corp | 負極および電池、並びにそれらの製造方法 |
JP2006185887A (ja) * | 2004-11-30 | 2006-07-13 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JP2007305495A (ja) * | 2006-05-12 | 2007-11-22 | Sony Corp | 電池の製造方法、及び電極の製造方法 |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9997765B2 (en) | 2010-12-22 | 2018-06-12 | Enevate Corporation | Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells |
US11177467B2 (en) | 2010-12-22 | 2021-11-16 | Enevate Corporation | Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells |
US10985361B2 (en) | 2010-12-22 | 2021-04-20 | Enevate Corporation | Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries |
US10516155B2 (en) | 2010-12-22 | 2019-12-24 | Enevate Corporation | Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells |
US10431808B2 (en) | 2010-12-22 | 2019-10-01 | Enevate Corporation | Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells |
US10388943B2 (en) | 2010-12-22 | 2019-08-20 | Enevate Corporation | Methods of reducing occurrences of short circuits and/or lithium plating in batteries |
US11837710B2 (en) | 2010-12-22 | 2023-12-05 | Enevate Corporation | Methods of reducing occurrences of short circuits and/or lithium plating in batteries |
JP2013182807A (ja) * | 2012-03-02 | 2013-09-12 | Toyota Industries Corp | 二次電池およびそれを搭載した車両 |
WO2013128521A1 (ja) * | 2012-03-02 | 2013-09-06 | 株式会社豊田自動織機 | 二次電池 |
JPWO2013176092A1 (ja) * | 2012-05-21 | 2016-01-14 | ダイキン工業株式会社 | 電極合剤 |
US9444103B2 (en) | 2012-05-21 | 2016-09-13 | Daikin Industries, Ltd. | Electrode mixture |
US9444104B2 (en) | 2012-05-21 | 2016-09-13 | Daikin Industries, Ltd. | Electrode mixture |
JPWO2013176093A1 (ja) * | 2012-05-21 | 2016-01-14 | ダイキン工業株式会社 | 電極合剤 |
WO2013176093A1 (ja) * | 2012-05-21 | 2013-11-28 | ダイキン工業株式会社 | 電極合剤 |
WO2013176092A1 (ja) * | 2012-05-21 | 2013-11-28 | ダイキン工業株式会社 | 電極合剤 |
JP2016514356A (ja) * | 2013-03-12 | 2016-05-19 | エネヴェート・コーポレーション | 電極、電気化学セル並びに電極及び電気化学セルの形成方法 |
US10679765B2 (en) | 2017-02-07 | 2020-06-09 | Colorado State University Research Foundation | Thermoplastic carbon composite electrodes |
US10991476B2 (en) | 2017-02-07 | 2021-04-27 | Colorado State University Research Foundation | Thermoplastic carbon composite electrodes |
WO2018148212A1 (en) * | 2017-02-07 | 2018-08-16 | Colorado State University Research Foundation | Thermoplastic carbon composite electrodes |
US12095095B2 (en) | 2017-03-28 | 2024-09-17 | Enevate Corporation | Reaction barrier between electrode active material and current collector |
JP7139353B2 (ja) | 2017-05-15 | 2022-09-20 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | リチウムイオン電気化学セル用材料並びにその製造及び使用方法 |
JP2020520075A (ja) * | 2017-05-15 | 2020-07-02 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | リチウムイオン電気化学セル用材料並びにその製造及び使用方法 |
US11901500B2 (en) | 2017-12-07 | 2024-02-13 | Enevate Corporation | Sandwich electrodes |
US10686214B2 (en) | 2017-12-07 | 2020-06-16 | Enevate Corporation | Sandwich electrodes and methods of making the same |
US11916228B2 (en) | 2017-12-07 | 2024-02-27 | Enevate Corporation | Binding agents for electrochemically active materials and methods of forming the same |
US11133498B2 (en) | 2017-12-07 | 2021-09-28 | Enevate Corporation | Binding agents for electrochemically active materials and methods of forming the same |
JP2022045347A (ja) * | 2020-09-08 | 2022-03-18 | ダイキン工業株式会社 | 含フッ素カルボン酸塩化合物 |
JP7480095B2 (ja) | 2020-09-08 | 2024-05-09 | ダイキン工業株式会社 | 含フッ素カルボン酸塩化合物 |
WO2023277055A1 (ja) * | 2021-06-29 | 2023-01-05 | ダイキン工業株式会社 | 電極形成用組成物、電極および二次電池 |
WO2023007933A1 (ja) * | 2021-07-30 | 2023-02-02 | ダイキン工業株式会社 | 負極合剤、負極および二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010092977A1 (ja) | 2012-08-16 |
KR20110111481A (ko) | 2011-10-11 |
CN102318108A (zh) | 2012-01-11 |
JP5625917B2 (ja) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5625917B2 (ja) | リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 | |
JP5494497B2 (ja) | リチウム二次電池の正極合剤用スラリー、該スラリーを用いた正極およびリチウム二次電池 | |
JP5382120B2 (ja) | リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池 | |
JP5949915B2 (ja) | 電極合剤 | |
JP3356021B2 (ja) | 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤 | |
JP5949914B2 (ja) | 電極合剤 | |
WO2013111822A1 (ja) | 結着剤、正極合剤及び負極合剤 | |
JP7160696B2 (ja) | 非水電解質二次電池用電極 | |
EP2064768A1 (en) | Secondary battery of improved high-rate discharging properties | |
JPH11195419A (ja) | 非水系電池用電極合剤および非水系電池 | |
KR20160076419A (ko) | 비수전해질 이차전지용 전극 권회 소자, 이를 포함하는 비수전해질 이차전이지, 및 이의 제조 방법 | |
US9786917B2 (en) | Method for producing binder composition for storage battery device | |
JP2014132591A (ja) | リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池 | |
CN114930577A (zh) | 负极活性材料、以及包含该负极活性材料的负极和二次电池 | |
JP5412853B2 (ja) | リチウム二次電池の正極の製造方法および正極ならびにリチウム二次電池 | |
JP7060405B2 (ja) | バインダー組成物、電極合剤および非水電解質二次電池 | |
JP2004356004A (ja) | 正極板およびそれを含む非水電解質二次電池 | |
WO2012043763A1 (ja) | 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池 | |
JP5509644B2 (ja) | リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池 | |
KR20150029090A (ko) | 접착력이 향상된 바인더 및 상기 바인더를 포함하는 리튬 이차전지 | |
JPH1021926A (ja) | 非水電解液二次電池用電極フィルム | |
JP7209420B2 (ja) | 非水電解質二次電池用電極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080007307.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10741254 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010550535 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117018837 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10741254 Country of ref document: EP Kind code of ref document: A1 |