[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013111822A1 - 結着剤、正極合剤及び負極合剤 - Google Patents

結着剤、正極合剤及び負極合剤 Download PDF

Info

Publication number
WO2013111822A1
WO2013111822A1 PCT/JP2013/051468 JP2013051468W WO2013111822A1 WO 2013111822 A1 WO2013111822 A1 WO 2013111822A1 JP 2013051468 W JP2013051468 W JP 2013051468W WO 2013111822 A1 WO2013111822 A1 WO 2013111822A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
binder
vdf
fluoropolymer
active material
Prior art date
Application number
PCT/JP2013/051468
Other languages
English (en)
French (fr)
Inventor
貴視 井口
隆宏 北原
卓司 石川
俊樹 一坂
一暢 内田
倫行 深谷
学 藤澤
市川 賢治
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020147021780A priority Critical patent/KR101599658B1/ko
Priority to CN201380005826.0A priority patent/CN104053687B/zh
Priority to US14/374,003 priority patent/US9343744B2/en
Publication of WO2013111822A1 publication Critical patent/WO2013111822A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder, a positive electrode mixture, and a negative electrode mixture. More specifically, the present invention relates to a binder suitable for an electrode mixture used in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a positive electrode mixture and a negative electrode mixture using the binder.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries
  • Used for small and portable electric / electronic devices such as mobile phones, smart phones, tablet PCs, ultrabooks, etc., and also for in-vehicle power supplies for automobiles and large power supplies for stationary applications. It is being put into practical use as a wide range of power sources.
  • the electrode manufacturing technique is a major point.
  • a negative electrode when a negative electrode is produced using a carbonaceous material such as coke or carbon as a negative electrode active material, the negative electrode is usually obtained by pulverizing the carbonaceous material and dispersing it in a solvent together with a binder. A mixture is prepared, applied to the negative electrode current collector, dried by removing the solvent, and rolled.
  • a carbonaceous material that merely occludes and releases lithium ions is also referred to as an active material.
  • the positive electrode is usually powdered with, for example, a lithium-containing oxide as a positive electrode active material, dispersed in a solvent together with a conductive agent and a binder to prepare a positive electrode mixture, and applied to the positive electrode current collector. It is produced by removing the solvent by drying and rolling.
  • a lithium-containing oxide as a positive electrode active material
  • a solvent together with a conductive agent and a binder to prepare a positive electrode mixture
  • a positive electrode current collector it is produced by removing the solvent by drying and rolling.
  • polyvinylidene fluoride is often used as a binder for lithium ion secondary batteries.
  • Patent Document 1 a positive electrode mixture prepared by mixing a lithium-containing oxide such as LiCoO 2 as a positive electrode active material and graphite as a conductive agent with polyvinylidene fluoride is dispersed in N-methylpyrrolidone to form a slurry.
  • a positive electrode current collector made of aluminum foil
  • a negative electrode mixture prepared by mixing a carbonaceous material as a negative electrode active material and polyvinylidene fluoride is dispersed in N-methylpyrrolidone to form a slurry.
  • the polyvinylidene fluoride resin has a low adhesive strength with a base material such as a metal, an improvement in the adhesive strength is desired.
  • the electrode sheet using the polyvinylidene fluoride binder is poor in flexibility, and the electrode sheet used in the process of folding the electrode sheet in the production of the square battery by 180 degrees or the process of rolling the electrode sheet in the production of the cylindrical battery small There is a tendency that the sheet is cracked or the electrode mixture is peeled off from the electrode sheet, and the production yield tends to deteriorate.
  • the polyvinylidene fluoride resin has a problem that it easily gels under alkaline conditions and has insufficient alkali resistance.
  • a method for improving the adhesion of a polyvinylidene fluoride resin to a base material such as a metal introduction of a functional group such as a carboxyl group into the polyvinylidene fluoride resin has been studied.
  • a polar vinylidene fluoride copolymer obtained by copolymerizing a monomer mainly composed of vinylidene fluoride and a small amount of a monoester or vinylene carbonate of an unsaturated dibasic acid is disclosed ( For example, see Patent Document 2.)
  • Patent Document 2 a copolymer of vinylidene fluoride and a monomer having a carboxyl group or a carbonate group is disclosed.
  • Patent Document 3 a binder using a copolymer of vinylidene fluoride and tetrafluoroethylene is also disclosed (for example, see Patent Document 3).
  • Patent Document 3 describes that by using such a copolymer, the binder is excellent in flexibility.
  • a binder using a copolymer of vinylidene fluoride and tetrafluoroethylene and a monomer having a carboxyl group or a carbonate group is further excellent in adhesiveness to a current collector. The effect is described.
  • a paint or varnish comprising a copolymer of at least one monomer selected from vinylidene fluoride, tetrafluoroethylene, chlorotrifluoroethylene and hexafluoropropylene and a specific acrylamide derivative is hard and stable.
  • a coating that is transparent in the absence of a pigment and sufficiently adheres to metal and glass can be formed (for example, see Patent Document 4). Since the copolymer disclosed in Patent Document 4 is used for paints and varnishes, it is limited to those having a relatively low solution viscosity.
  • the form of the lithium ion secondary battery is a cylindrical type, a square type, a lami type, etc., and the electrode sheet is wound, pressed and introduced, so the electrode sheet is broken, the powder electrode material is dropped, Since it is easy to peel off from the current collecting base material, a binder having excellent adhesiveness and flexibility has been desired. In addition, durability at high voltage is also important.
  • the present invention has been made in view of the above situation in the field of non-aqueous electrochemical devices such as non-aqueous (secondary) batteries (especially lithium ion batteries), electric double layer capacitors, and the like. Even if it is reduced, it retains the powder electrode material well, has excellent adhesion to the current collector substrate, and does not crack even if it is thickly coated, rolled and pressed for high density It is an object of the present invention to provide a binder, a positive electrode mixture, and a negative electrode mixture that have a high capacity and a high voltage.
  • the present inventor has studied various binders having excellent adhesion and flexibility to the substrate, and has a polymer unit based on a monomer having an amide group or an amide bond, and has a specific solution viscosity.
  • a binder containing a vinylidene fluoride copolymer is a carbon used for an electrode current collector in a base material such as a metal, particularly a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor. And found excellent adhesion to metal and metal and flexibility. If the binder is excellent in adhesion, the amount of binder used can be reduced. As a result, the electrode density can be improved, the electrode resistance can be reduced, and the battery performance can be improved.
  • the manufacturing cost can be reduced by the amount of the binder used.
  • the binder is excellent in flexibility, the electrode will not crack even if the electrode is thickly coated, wound and pressed for high density.
  • the present inventor has found that such a binder can be used very suitably for electrode mixtures in non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries and electric double layer capacitors, and has reached the present invention. It is what.
  • the present invention is a binder comprising a fluoropolymer, wherein the fluoropolymer includes a polymer unit based on vinylidene fluoride and an amide group (—CO—NRR ′ (R and R ′ are the same). Or differently, each represents a hydrogen atom or an optionally substituted alkyl group.)) Or an amide bond (—CO—NR ′′ — (R ′′ represents a hydrogen atom, an optionally substituted alkyl).
  • the present invention is also a positive electrode mixture comprising a positive electrode active material, an organic solvent, and the above binder.
  • the present invention is also a negative electrode mixture comprising a negative electrode active material, an organic solvent, and the above binder.
  • the present invention is also a positive electrode having a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and made of the positive electrode active material and the binder.
  • the present invention is also a negative electrode having a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector and made of the negative electrode active material and the binder.
  • This invention is also a lithium ion secondary battery provided with the positive electrode of this invention, a negative electrode, and a non-aqueous electrolyte.
  • This invention is also a lithium ion secondary battery provided with a positive electrode, the negative electrode of this invention, and a non-aqueous electrolyte.
  • the fluorine-containing polymer constituting the binder of the present invention includes a polymer unit based on vinylidene fluoride and an amide group (—CO—NRR ′ (R and R ′ are the same or different and each has a hydrogen atom or a substituent). Represents an optionally substituted alkyl group.)) Or an amide bond (—CO—NR ′′ — (R ′′ represents a hydrogen atom, an optionally substituted alkyl group or an optionally substituted phenyl).
  • R ′′ represents a hydrogen atom, an optionally substituted alkyl group or an optionally substituted phenyl.
  • a monomer having an amide group or an amide bond has better oxidation resistance than a monomer having another functional group, and is suitable for increasing the voltage of the battery.
  • the monomer having an amide group or amide bond is not particularly limited as long as it has one or more polymerizable carbon-carbon double bonds and one or more amide groups or amide bonds in the molecule. . Moreover, 1 type (s) or 2 or more types can be used as a monomer which has the said amide group or amide bond.
  • the fluorine-containing polymer has a solution viscosity of 10 to 20,000 mPa ⁇ s. Thereby, the obtained binder becomes a thing further excellent in adhesiveness with a base material.
  • the solution viscosity is a solution viscosity at 25 ° C. of a 5% by mass N-methyl-2-pyrrolidone solution of the fluoropolymer.
  • the solution viscosity is preferably 20 to 10,000 mPa ⁇ s, more preferably 30 to 7,000 mPa ⁇ s, still more preferably 40 to 6,000 mPa ⁇ s, still more preferably 80 to 5,000 mPa ⁇ s, 100 to 3,000 mPa ⁇ s is particularly preferable, and 150 to 1,500 mPa ⁇ s is most preferable.
  • the polymer units based on the monomer having an amide group or an amide bond is 0.01 to 3 mol% with respect to the total polymer units.
  • the content of the polymer unit based on the monomer having an amide group or an amide bond is within the above range, the adhesion of the obtained binder to the base material is not impaired without impairing the characteristics based on vinylidene fluoride. Can be improved.
  • the content of the polymerized units based on the monomer having an amide group or an amide bond is more preferably 0.01 to 2.5 mol%, still more preferably 0.04 to 2 mol%.
  • the fluoropolymer has a polymer unit based on vinylidene fluoride and a polymer unit based on the monomer having an amide group or an amide bond, other units copolymerizable with these monomers can be used. You may further have the polymer unit based on a monomer.
  • the fluoropolymer preferably further has a polymer unit based on tetrafluoroethylene.
  • the obtained binder becomes the thing excellent in the softness
  • chemical resistance particularly alkali resistance
  • the fluoropolymer has a polymer unit based on tetrafluoroethylene
  • the polymer unit based on vinylidene fluoride is 50 to 90 mol% and the polymer unit based on tetrafluoroethylene is 9% based on the total polymer units. It is preferably 9.9 to 49.9 mol%.
  • flexibility and chemical-resistance of the binder which are obtained can be improved, without impairing the characteristic based on another polymerization unit.
  • the polymerized units based on vinylidene fluoride are 55 to 80 mol%
  • the polymerized units based on tetrafluoroethylene are 19.9 to 44.9 mol%.
  • the polymerized units based on vinylidene fluoride are 60 to 75 mol%, and the polymerized units based on tetrafluoroethylene are 24.9 to 39.9 mol%. Further, from the viewpoint of stabilizing the viscosity of the electrode mixture, more preferably 55 to 89.5 mol% of polymerized units based on vinylidene fluoride and 10.4 to 44.9 mol of polymerized units based on tetrafluoroethylene. More preferably, the polymerized units based on vinylidene fluoride are 60.0 to 89.0 mol%, and the polymerized units based on tetrafluoroethylene are 10.9 to 39.9 mol%.
  • the monomer for forming the fluoropolymer in addition to those described above, vinyl fluoride, trifluoroethylene, trifluorochloroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, 2, 3, 3, 3 -Tetrafluoropropene, propylene and the like can be used. Of these, hexafluoropropylene and 2,3,3,3-tetrafluoropropene are particularly preferred from the viewpoints of flexibility and chemical resistance.
  • the polymerized units based on the monomers are preferably 0.1 to 50 mol% with respect to the total polymerized units.
  • the amide group is a group represented by —CO—NRR ′.
  • R and R ' are a hydrogen atom or an alkyl group.
  • R and R ′ may be the same or different from each other.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched.
  • the alkyl group preferably has 1 to 30 carbon atoms. More preferably, it is 1-20.
  • substituents examples include a halogen atom, an alkoxy group having 1 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms.
  • the monomer having an amide group is not particularly limited as long as it has one or more polymerizable carbon-carbon double bonds and one or more amide groups in the molecule as described above.
  • X 1 is the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • X 2 represents a hydrogen atom or an alkyl which may have a substituent.
  • Y represents a single bond or an alkylene group which may have a substituent, and R 1 and R 2 may be the same or different and each may have a hydrogen atom or a substituent.
  • X 1 in the general formula (1) is a hydrogen atom or an alkyl group. Two X 1 in the general formula (1) may be the same or different from each other.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same groups as those described above for R and R ′.
  • X 1 is preferably a hydrogen atom or a halogen atom, particularly preferably a hydrogen atom.
  • X 2 in the general formula (1) is a hydrogen atom or an alkyl group.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for X 1 above.
  • X 2 among them, a hydrogen atom and a methyl group are preferable.
  • Y in the general formula (1) is a single bond or an alkylene group.
  • the alkylene group may or may not have a substituent.
  • the alkylene group may be chain-like, cyclic or branched.
  • the alkylene group preferably has 1 to 30 carbon atoms. More preferably, it is 1-25.
  • R 1 and R 2 in the general formula (1) are a hydrogen atom or an alkyl group.
  • R 1 and R 2 may be the same or different from each other.
  • the alkyl group may or may not have a substituent.
  • the alkyl group may be linear, cyclic or branched. Examples of the alkyl group include the same as those described for X 1 above.
  • a hydrogen atom and a halogen atom are preferable, and a hydrogen atom is particularly preferable.
  • X 3 represents a hydrogen atom or a methyl group.
  • R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent).
  • Preferred are (meth) acrylamides.
  • Specific examples of R 3 and R 4 in the general formula (2) are the same as those described for R 1 and R 2 in the general formula (1).
  • Examples of the (meth) acrylamides include (meth) acrylamide and derivatives thereof. Specifically, (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-methoxymethyl (meta) ) Acrylamide, N-butoxymethyl (meth) acrylamide, 4-acroylmorpholine, diacetone (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2- (meth) acrylamide Examples include -2-methylpropanesulfonic acid. Of these, N-tert-butylacrylamide is preferred.
  • the amide bond is a bond represented by —CO—NR ′′ —, and may be a bond represented by —CO—NR ′′ —CO—.
  • R ′′ represents a hydrogen atom, an optionally substituted alkyl group or an optionally substituted phenyl group. The alkyl group and the substituent are listed as R in the monomer having an amide group.
  • Examples of the monomer having an amide bond include N-vinylacetamide derivatives such as N-vinylacetamide, N-methyl-N-vinylacetamide, maleimide, N-butylmaleimide, and the like. And maleimide derivatives such as N-phenylmaleimide, among which N-vinylacetamide is preferred.
  • the fluoropolymer preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000. Further, from the viewpoint of improving battery characteristics, it is more preferably 80000 to 1950,000, and further preferably 100,000 to 1900000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the fluorine-containing polymer preferably has a number average molecular weight (in terms of polystyrene) of 16000 to 1300000 in terms of improving battery characteristics. More preferably, it is 20000 to 1200000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • Copolymerization of vinylidene fluoride, the above-mentioned monomer having an amide group or amide bond, and other monomers copolymerizable with those monomers as necessary is suspension polymerization, emulsion polymerization, solution Although methods such as polymerization can be employed, aqueous suspension polymerization and emulsion polymerization are preferred from the viewpoint of ease of post-treatment.
  • a polymerization initiator In the above copolymerization, a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • a polymerization initiator an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide such as dialkyl peroxydicarbonate, di-n-propylperoxydicarbonate, disec-butylperoxydicarbonate, etc.
  • Peroxycarbonates, peroxyesters such as t-butylperoxyisobutyrate and t-butylperoxypivalate, dialkyl peroxides such as di-t-butylperoxide, and the like are also used as di ( ⁇ -hydro -Dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide, di (Perfull Palerill) Par Xide, Di (perfluorohexanoyl) peroxide, Di (perfluoro
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts. , T-butyl permaleate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
  • a known surfactant can be used.
  • a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used.
  • fluorine-containing anionic surfactants are preferable, and may include an ether bond (that is, an oxygen atom may be inserted between carbon atoms), or a linear or branched fluorine-containing group having 4 to 20 carbon atoms.
  • Anionic surfactants are more preferred.
  • the addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
  • Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • the addition amount may vary depending on the size of the chain transfer constant of the compound used, but is usually used in the range of 0.01 to 20% by mass with respect to the polymerization solvent.
  • Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
  • a fluorine-based solvent may be used in addition to water.
  • the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
  • Perfluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , etc. Among them, perfluoroalkanes are preferable.
  • the amount of the fluorine-based solvent used is preferably 10 to 100% by mass with respect to the aqueous medium from the viewpoints of suspension and economy.
  • the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG.
  • a suspension agent such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, gelatin, It is used by adding in the range of 0.005 to 1.0 mass%, preferably 0.01 to 0.4 mass% with respect to water.
  • polymerization initiators include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (peroxide). Fluoroacyl) peroxide and the like can be used.
  • the amount used is the total amount of monomers (vinylidene fluoride, monomers having the amide group or amide bond, and other monomers copolymerizable with those monomers as necessary) The amount is preferably 0.1 to 5% by mass.
  • a chain transfer agent such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate or carbon tetrachloride may be added to adjust the degree of polymerization of the resulting polymer.
  • the amount used is usually from 0.1 to 5% by mass, preferably from 0.5 to 3% by mass, based on the total amount of monomers.
  • the total amount of monomers charged is 1: 1 to 1:10, preferably 1: 2 to 1: 5 in a weight ratio of the total amount of monomer to water, and the polymerization is carried out at a temperature of 10 to 50 ° C. 100 hours.
  • the amount of the monomer to be copolymerized with vinylidene fluoride is determined by the adhesiveness of the obtained copolymer, It is determined in consideration of chemical resistance, molecular weight, polymerization yield and the like.
  • the fluoropolymer obtained above has good adhesion to a substrate such as a metal, and can be suitably used as a binder used for electrodes of non-aqueous electrolyte secondary batteries and the like.
  • the binder of the present invention may further contain other components as long as it contains the above-mentioned fluoropolymer, and one or more of these other components can be used.
  • Examples of the other components that can be used in the binder include vinylidene fluoride [VdF] polymer, polymethacrylate, polymethyl methacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, styrene rubber, and butadiene rubber. can give. Among these, a VdF polymer is preferable. The content of these other components is preferably 10 to 900% by mass with respect to the fluoropolymer.
  • VdF polymer examples include polyvinylidene fluoride [PVdF], VdF / tetrafluoroethylene [TFE] copolymer, VdF / hexafluoropropylene [HFP] copolymer, and VdF / chlorotrifluoroethylene [CTFE] copolymer.
  • PVdF polyvinylidene fluoride
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • the VdF polymer preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the VdF polymer preferably has a number average molecular weight (in terms of polystyrene) of 35,000 to 1400000. More preferably, it is 40,000 to 1300000, and still more preferably 50000 to 1200000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • the PVdF may be a homopolymer consisting only of polymerized units based on VdF (VdF units), or from polymerized units based on VdF and polymerized units based on a monomer ( ⁇ ) copolymerizable with VdF. It may be.
  • Examples of the monomer ( ⁇ ) include tetrafluoroethylene, vinyl fluoride, trifluoroethylene, trifluorochloroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, 2,3,3,3-tetrafluoropropene, and propylene. Etc. Further, unsaturated dibasic acid monoesters such as those described in JP-A-6-172452, such as maleic acid monomethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, vinylene carbonate, etc.
  • the adhesiveness with the collector which consists of metal foils of aluminum and copper by giving the flexibility to the material by slightly lowering the crystallinity of the above-mentioned fluorine-containing polymer other than the compound containing the polar group as described above.
  • Z is —CH 2 OH, —COOH, carboxylate, carboxylate group or epoxy group
  • X and X ′ are the same or different, and both are hydrogen atoms or fluorine atoms, and Rf has 1 to 40 carbon atoms.
  • a fluorine-containing ethylenic monomer having at least one functional group It can be used.
  • the polymerized units based on the monomer ( ⁇ ) are preferably 5 mol% or less of the total polymerized units, more preferably 4.5 mol% or less, and less than 4 mol%. More preferably, it is still more preferable that it is less than 3 mol%.
  • the PVdF preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and further preferably 100000 to 1500,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the PVdF preferably has a number average molecular weight (polystyrene conversion) of 35,000 to 1400000. When it is less than 35,000, the adhesion of the obtained electrode is lowered. When it exceeds 1400000, it will become easy to gelatinize when preparing an electrode mixture.
  • the number average molecular weight is preferably 40000 or more, more preferably 50000 or more, still more preferably 60000 or more, preferably 1300000 or less, and more preferably 1200000 or less.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • the PVdF is obtained by a conventionally known method such as solution polymerization or suspension polymerization by appropriately mixing VdF forming a polymerization unit and the monomer ( ⁇ ) and an additive such as a polymerization initiator. Can be manufactured.
  • VdF / TFE copolymer is a copolymer comprising polymerized units based on VdF (VdF units) and polymerized units based on TFE (TFE units).
  • the VdF / TFE copolymer preferably contains 50 to 95 mol% of VdF units with respect to all polymerized units. When the VdF unit is less than 50 mol%, the change with time of the viscosity of the electrode mixture increases, and when it exceeds 95 mol%, the flexibility of the electrode obtained from the mixture tends to be inferior.
  • the VdF / TFE copolymer preferably contains 55 mol% or more, more preferably 60 mol% or more of VdF units based on all polymerized units. Further, the VdF / TFE copolymer preferably contains 92 mol% or less, more preferably 89 mol% or less, of VdF units based on the total polymerization units.
  • the composition of the VdF / TFE copolymer can be measured using an NMR analyzer.
  • the VdF / TFE copolymer may contain a polymer unit based on a monomer that can be copolymerized with VdF and TFE in addition to the VdF unit and the TFE unit.
  • a copolymer of VdF and TFE is sufficient, but a single amount that can be copolymerized with the copolymer to such an extent that the excellent electrolytic solution swelling resistance of the copolymer is not impaired.
  • the body can be copolymerized to further improve the adhesion.
  • the content of polymerized units based on monomers that can be copolymerized with VdF and TFE is preferably less than 3.0 mol% based on the total polymerized units of the VdF / TFE copolymer.
  • it is 3.0 mol% or more, generally the crystallinity of the copolymer of VdF and TFE is remarkably lowered, and as a result, the electrolytic solution swelling resistance tends to be lowered.
  • Examples of monomers that can be copolymerized with VdF and TFE include unsaturated dibasic acid monoesters, such as maleic acid monomethyl ester, citraconic acid monomethyl ester, and citraconic acid, as described in JP-A-6-172245.
  • the adhesiveness with the collector which consists of metal foils of aluminum and copper by giving the flexibility to the material by slightly lowering the crystallinity of the above-mentioned fluorine-containing polymer other than the compound containing the polar group as described above.
  • Z is —CH 2 OH, —COOH, carboxylate, carboxylate group or epoxy group
  • X and X ′ are the same or different, and both are hydrogen atoms or fluorine atoms
  • Rf has 1 to 40 carbon atoms.
  • a divalent fluorine-containing alkylene group or a divalent fluorine-containing alkylene group containing an ether bond having 1 to 40 carbon atoms) and a fluorine-containing ethylenic monomer having at least one functional group Is possible.
  • the VdF / TFE copolymer may contain other polymerization units in addition to the VdF unit and the TFE unit, but more preferably comprises only the VdF unit and the TFE unit.
  • the VdF / TFE copolymer preferably has a weight average molecular weight (polystyrene conversion) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the VdF / TFE copolymer preferably has a number average molecular weight (in terms of polystyrene) of 35000 to 1400000. More preferably, it is 40,000 to 1300000, and still more preferably 50000 to 1200000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • VdF / TFE copolymer for example, monomers such as VdF and TFE that form polymerization units, and additives such as a polymerization initiator are appropriately mixed, and suspension polymerization or emulsion polymerization is performed.
  • a method of performing solution polymerization or the like can be employed, aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like.
  • a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • the VdF / HFP copolymer is a copolymer comprising polymerized units based on VdF (VdF units) and polymerized units based on HFP (HFP units).
  • the VdF / HFP copolymer preferably contains 80 to 98 mol% of VdF units with respect to all polymerized units. If the VdF unit is less than 80 mol%, the resulting electrode has a large swelling property with respect to the electrolyte solution, and the battery characteristics are greatly deteriorated. If it exceeds 98 mol%, the flexibility of the electrode obtained from the mixture tends to be inferior. is there.
  • the VdF / HFP copolymer preferably contains 83 mol% or more, more preferably 85 mol% or more of VdF units based on all polymerized units.
  • the VdF / HFP copolymer preferably contains 97 mol% or less, more preferably 96 mol% or less of VdF units based on the total polymerization units.
  • the composition of the VdF / HFP copolymer can be measured using an NMR analyzer.
  • the VdF / HFP copolymer may contain a polymer unit based on a monomer that can be copolymerized with VdF and HFP in addition to the VdF unit and the HFP unit.
  • a copolymer of VdF and HFP is sufficient, but a monomer that can be copolymerized with the copolymer to such an extent that the excellent electrolytic solution swelling resistance of the copolymer is not impaired.
  • the body can be copolymerized to further improve the adhesion.
  • the content of polymerized units based on monomers that can be copolymerized with VdF and HFP is preferably less than 3.0 mol% based on the total polymerized units of the VdF / HFP copolymer.
  • it is 3.0 mol% or more, generally, the crystallinity of the copolymer of VdF and HFP is remarkably lowered, and as a result, the electrolytic solution swelling resistance tends to be lowered.
  • Examples of the monomer that can be copolymerized with VdF and HFP include the same monomers and TFE as the monomers that can be copolymerized with VdF and TFE exemplified for the VdF / TFE copolymer.
  • the VdF / HFP copolymer preferably has a weight average molecular weight (polystyrene conversion) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the VdF / HFP copolymer preferably has a number average molecular weight (polystyrene conversion) of 35000 to 1400000. More preferably, it is 40,000 to 1300000, and still more preferably 50000 to 1200000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • Examples of a method for producing the VdF / HFP copolymer include suspension polymerization and emulsion polymerization by appropriately mixing monomers such as VdF and HFP forming polymerization units and additives such as a polymerization initiator. Although a method of performing solution polymerization or the like can be employed, aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like. In the above polymerization, a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • the VdF / CTFE copolymer is a copolymer comprising polymerized units based on VdF (VdF units) and polymerized units based on CTFE (CTFE units).
  • the VdF / CTFE copolymer preferably contains 80 to 98 mol% of VdF units based on all polymerized units. Even if the VdF unit is less than 80 mol% or more than 98 mol%, the change with time of the viscosity of the electrode mixture becomes large. Further, the VdF / CTFE copolymer preferably contains 97.5 mol% or less, and more preferably 97 mol% or less of VdF units based on the total polymerization units. The VdF / CTFE copolymer preferably contains 85% by mole or more, more preferably 90% by mole or more of VdF units with respect to all the polymerized units. The composition of the VdF / CTFE copolymer can be measured using an NMR analyzer.
  • the VdF / CTFE copolymer may include a polymer unit based on a monomer that can be copolymerized with VdF and CTFE in addition to the VdF unit and the CTFE unit.
  • a copolymer of VdF and CTFE is sufficient, but a monomer that can be copolymerized with the copolymer to such an extent that the excellent electrolytic solution swelling resistance of the copolymer is not impaired.
  • the body can be copolymerized to further improve the adhesion.
  • the content of polymerized units based on monomers that can be copolymerized with VdF and CTFE is preferably less than 3.0 mol% based on the total polymerized units of the VdF / CTFE copolymer.
  • it is 3.0 mol% or more, generally the crystallinity of the copolymer of VdF and CTFE is remarkably lowered, and as a result, the electrolytic solution swelling resistance tends to be lowered.
  • Examples of the monomer that can be copolymerized with VdF and CTFE include monomers similar to the monomers that can be copolymerized with VdF and TFE exemplified for the VdF / TFE copolymer, and TFE and HFP. it can.
  • the VdF / CTFE copolymer preferably has a weight average molecular weight (in terms of polystyrene) of 50,000 to 2,000,000. More preferably, it is 80000 to 1700000, and still more preferably 100000 to 1500,000.
  • the weight average molecular weight can be measured at 50 ° C. using N, N-dimethylformamide as a solvent by gel permeation chromatography (GPC).
  • the VdF / CTFE copolymer preferably has a number average molecular weight (polystyrene conversion) of 35,000 to 1400000. More preferably, it is 40,000 to 1300000, and still more preferably 50000 to 1200000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) at 50 ° C. using N, N-dimethylformamide as a solvent.
  • Examples of a method for producing the VdF / CTFE copolymer include suspension polymerization and emulsion polymerization by appropriately mixing monomers such as VdF and CTFE forming polymerization units and additives such as a polymerization initiator. Although a method of performing solution polymerization or the like can be employed, aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like. In the above polymerization, a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • VdF polymers PVdF and VdF / TFE copolymers are preferable, and PVdF is more preferable.
  • the mass ratio of the fluoropolymer to the VdF polymer (fluoropolymer) / (VdF polymer) is preferably 90/10 to 10/90, more preferably 80/20 to 15/87. 75/25 to 15/85 is more preferable.
  • the binder of this invention can also comprise an electrode mixture with an active material and an organic solvent.
  • a non-aqueous electrolyte secondary battery to which the binder of the present invention is applied includes a positive electrode in which a positive electrode mixture is held on a positive electrode current collector, and a negative electrode in which a negative electrode mixture is held on a negative electrode current collector And a non-aqueous electrolyte solution.
  • non-aqueous electrolyte batteries that use organic or non-aqueous electrolytes as electrolytes, such as lithium ion secondary batteries, improved low heavy load performance due to the low conductivity of non-aqueous electrolytes For this reason, the active material layer is thinned to increase the electrode area.
  • a current collector made of a metal foil such as iron, stainless steel, copper, aluminum, nickel, titanium, or a metal net, a fine powdery active material, a conductive agent such as carbon, and a binder. It has been attempted to apply and bond an electrode mixture forming composition to be an electrode. It is necessary to reduce the amount of the binder used as much as possible, and it is required to maintain the active material and the like even with a small amount and to have excellent adhesion to the current collector. In addition, since the binder is usually electrically insulating, an increase in the amount of use increases the internal resistance of the battery. Also in this respect, the binder is required to perform its function with the smallest possible use amount.
  • the amount of the binder is very small and is preferably 30% by mass or less based on the total electrode mixture. With such a small amount of binder, the binder cannot completely fill the gaps between the fine particle components of the electrode mixture or between the fine particle components and the current collector. In the case of paints and lining materials containing fillers such as pigments, the binder uses a sufficient amount of binder to completely fill the gaps between the fillers. Almost no problem. However, in the case of a binder for electrodes, the amount used is extremely small as described above, and a material that retains the active material well even in a small amount and has excellent adhesion to the current collector is required.
  • the present invention is also a positive electrode mixture composed of a positive electrode active material, an organic solvent, and the above binder.
  • the present invention is also a negative electrode mixture comprising a negative electrode active material, an organic solvent, and the above binder.
  • the positive electrode mixture and the negative electrode mixture may be collectively referred to as an electrode mixture.
  • the positive electrode active material used in the present invention is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • a substance containing lithium and at least one transition metal is preferable, and examples thereof include a lithium transition metal composite oxide and a lithium-containing transition metal phosphate compound.
  • the transition metal of the lithium transition metal composite oxide is preferable as the transition metal of the lithium transition metal composite oxide
  • a specific example of the lithium transition metal composite oxide is a lithium-cobalt composite such as LiCoO 2.
  • substituted ones for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 , Li 4 Ti 5 O 12 and the like.
  • the transition metal of the lithium-containing transition metal phosphate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable.
  • the lithium-containing transition metal phosphate compound include LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al , Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiFePO 4 are preferable.
  • a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.
  • These surface adhering substances are, for example, a method of dissolving or suspending in a solvent and impregnating and drying the positive electrode active material, and a method of dissolving or suspending a surface adhering substance precursor in a solvent and impregnating and adding to the positive electrode active material, followed by heating. It can be made to adhere to the positive electrode active material surface by the method of making it react by the method etc., the method of adding to a positive electrode active material precursor, and baking simultaneously.
  • the amount of the surface adhering substance is by mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit is preferably 20% or less, more preferably 10%. % Or less, more preferably 5% or less.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently exhibited. If the amount is too large, the resistance may increase in order to inhibit the entry and exit of lithium ions.
  • the positive electrode active material particles As the shape of the positive electrode active material particles, a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, a column shape, etc., which are conventionally used, are used, and the primary particles are aggregated to form secondary particles. Thus, it is preferable that the secondary particles have a spherical or elliptical shape.
  • an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken.
  • the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration.
  • spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced.
  • the mixing with the conductive agent is also preferable because it can be easily mixed uniformly.
  • the tap density of the positive electrode active material is usually 1.3 g / cm 3 or more, preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, and most preferably 1.7 g / cm 3 or more. . If the tap density of the positive electrode active material is lower than the lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the necessary amount of the conductive material and the binder increases. In some cases, the filling rate of the substance is limited, and the battery capacity is limited. By using a metal composite oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. In general, the tap density is preferably as large as possible, but there is no particular upper limit.
  • the tap density is 2.5 g / cm 3 or less, preferably 2.4 g / cm 3 or less.
  • the tap density of the positive electrode active material is measured by passing a sieve having a mesh size of 300 ⁇ m, dropping the sample onto a 20 cm 3 tapping cell to fill the cell volume, and then measuring a powder density measuring device (for example, a tap denser manufactured by Seishin Enterprise Co., Ltd. ), A tapping with a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
  • a powder density measuring device for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.
  • the median diameter d50 (secondary particle diameter when primary particles are aggregated to form secondary particles) of the positive electrode active material particles is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m. Above, most preferably 3 ⁇ m or more, usually 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 16 ⁇ m or less, and most preferably 15 ⁇ m or less. If the lower limit is not reached, a high bulk density product may not be obtained, and if the upper limit is exceeded, it takes time for the diffusion of lithium in the particles. When a conductive agent, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur.
  • the median diameter d50 in the present invention is measured by a known laser diffraction / scattering particle size distribution measuring apparatus.
  • LA-920 manufactured by HORIBA is used as a particle size distribution meter
  • a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
  • the average primary particle diameter of the positive electrode active material is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, Most preferably, it is 0.1 ⁇ m or more, usually 3 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and most preferably 0.6 ⁇ m or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there.
  • the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
  • the BET specific surface area of the positive electrode active material is 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, 4.0 m 2 / g or less, preferably 2 .5m 2 / g or less, still more preferably not more than 1.5 m 2 / g. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered, and if the BET specific surface area is larger, the tap density is difficult to increase, and there may be a problem in applicability when forming the positive electrode active material.
  • the BET specific surface area is determined by using a surface area meter (for example, a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample for 30 minutes at 150 ° C. under nitrogen flow, and then measuring the relative pressure of nitrogen relative to atmospheric pressure. It is defined by a value measured by a nitrogen adsorption BET one-point method using a gas flow method using a nitrogen-helium mixed gas that is accurately adjusted to have a value of 0.3.
  • a surface area meter for example, a fully automated surface area measuring device manufactured by Okura Riken
  • a general method is used as a manufacturing method of the inorganic compound.
  • various methods are conceivable for producing a spherical or elliptical spherical active material.
  • transition metal raw materials such as transition metal nitrates and sulfates and, if necessary, raw materials of other elements such as water.
  • Dissolve or pulverize and disperse in a solvent adjust the pH while stirring, create and recover a spherical precursor, and dry it as necessary.
  • LiOH, Li 2 CO 3 , LiNO 3 and other Li A method of obtaining an active material by adding a source and baking at a high temperature, transition metal raw materials such as transition metal nitrates, sulfates, hydroxides and oxides, and if necessary, raw materials of other elements in a solvent such as water Dissolve or pulverize and disperse in the powder and dry mold it with a spray drier to make a spherical or oval spherical precursor.
  • a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 and calcinate at a high temperature.
  • Transition metal source materials such as transition metal nitrates, sulfates, hydroxides and oxides, Li sources such as LiOH, Li 2 CO 3 and LiNO 3 , and source materials of other elements as necessary, such as water
  • Transition metal source materials such as transition metal nitrates, sulfates, hydroxides and oxides, Li sources such as LiOH, Li 2 CO 3 and LiNO 3 , and source materials of other elements as necessary, such as water
  • Examples thereof include a method of dissolving or pulverizing and dispersing in a solvent and drying and molding it with a spray dryer or the like to obtain a spherical or elliptical precursor, which is fired at a high temperature to obtain an active material.
  • one kind of positive electrode active material powder may be used alone, or two or more kinds having different compositions or different powder physical properties may be used in any combination and ratio.
  • the negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • carbonaceous material As a carbonaceous material, (1) natural graphite, (2) Artificial carbonaceous material and artificial graphite material; carbonaceous material ⁇ for example, natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or those obtained by oxidizing these pitches, needle coke, pitch Coke and carbon materials partially graphitized, furnace black, acetylene black, pyrolysis products of organic substances such as pitch-based carbon fibers, carbonizable organic substances (for example, coal tar pitch from soft pitch to hard pitch, or dry distillation liquefaction Heavy oil such as coal, heavy oil of normal pressure, direct current heavy oil of reduced pressure residue, crude oil, cracked petroleum heavy oil such as ethylene tar produced during thermal decomposition of naphtha, acenaphthylene, decacyclene, Aromatic hydrocarbons such as anthracene and phenanthrene, N-ring compounds such as phenazine and acridine, thiophene, bi
  • Ring compounds polyphenylenes such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, insolubilized products of these, organic polymers such as nitrogen-containing polyacrylonitrile, polypyrrole, sulfur-containing polythiophene, Organic polymers such as polystyrene, natural polymers such as polysaccharides such as cellulose, lignin, mannan, polygalacturonic acid, chitosan and saccharose, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, furfuryl alcohol resin, phenol -Thermosetting resins such as formaldehyde resin and imide resin) and their carbides or carbonizable organic substances in low molecular organic solvents such as benzene, toluene, xylene, quinoline, n-hexane, and the like Charcoal Carbonaceous material things ⁇ heat treated one or more times in the range
  • the content of the positive electrode active material or the negative electrode active material is preferably 40% by mass or more in the electrode mixture in order to increase the capacity of the obtained electrode.
  • the positive electrode mixture and the negative electrode mixture of the present invention may further contain a conductive agent.
  • a conductive agent include carbon blacks such as acetylene black and ketjen black, carbon materials such as graphite, carbon fibers, carbon nanotubes, and carbon nanohorns.
  • the ratio of the powder component (active material and conductive agent) to the fluoropolymer in the electrode mixture is usually about 80:20 to 99.5: 0.5 by weight, and the powder component is retained. It is determined in consideration of the adhesion to the current collector and the conductivity of the electrode.
  • the fluorine-containing polymer in the electrode mixture layer formed on the current collector, cannot completely fill the voids between the powder components, but the fluorine-containing polymer as a solvent. It is preferable to use a solvent that dissolves the polymer well, because the fluorine-containing polymer is uniformly dispersed and stitched in the electrode mixture layer after drying, and the powder component is well retained.
  • the organic solvent examples include nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and dimethylformamide; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone; And ester solvents such as butyl acetate; ether solvents such as tetrahydrofuran and dioxane; and low-boiling general-purpose organic solvents such as mixed solvents thereof.
  • the organic solvent is preferably N-methyl-2-pyrrolidone and / or N, N-dimethylacetamide from the viewpoint of excellent stability and coating property of the electrode mixture.
  • the amount of the organic solvent in the electrode mixture is determined in consideration of the application property to the current collector, the thin film forming property after drying, and the like.
  • the weight ratio of the binder to the organic solvent is preferably 5:95 to 20:80.
  • the fluoropolymer is desirably used with a small particle size of an average particle size of 1000 ⁇ m or less, particularly 50 to 350 ⁇ m, in order to enable rapid dissolution in the organic solvent.
  • the electrode mixture may further contain, for example, an acrylic resin such as polymethacrylate and polymethyl methacrylate, polyimide, polyamide, and a polyamideimide resin. .
  • the blending ratio is 0.1 to 20% by mass, preferably 1 to 10% by mass of the electrode mixture. is there.
  • an electrode material such as an electrode active material is dispersed and mixed in a solution obtained by dissolving the binder in the organic solvent is generally used. Then, the obtained electrode mixture is uniformly applied to a current collector such as a metal foil or a metal net, dried, and pressed as necessary to form a thin electrode mixture layer on the current collector to form a thin film electrode
  • a current collector such as a metal foil or a metal net
  • an organic solvent may be added to produce a mixture.
  • the binder and electrode active material powders are melted by heating and extruded with an extruder to produce a thin film mixture, which is then applied onto a current collector coated with a conductive adhesive or a general-purpose organic solvent.
  • an electrode sheet can be produced.
  • a binder solution may be applied to an electrode active material preformed in advance.
  • the application method as a binder is not specifically limited.
  • the present invention is also a positive electrode having a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and made of the positive electrode active material and the binder.
  • the present invention is also a negative electrode having a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector and made of the negative electrode active material and the binder.
  • Examples of the positive electrode current collector and the negative electrode current collector include metal foils such as iron, stainless steel, copper, aluminum, nickel, and titanium, or metal nets. Among these, as the positive electrode current collector, an aluminum foil or the like is preferable, and as the negative electrode current collector, a copper foil or the like is preferable.
  • the positive electrode and negative electrode of the present invention can be produced, for example, by the method described above.
  • This invention is also a lithium ion secondary battery provided with the positive electrode of this invention, a negative electrode, and a non-aqueous electrolyte. Moreover, this invention is also a lithium ion secondary battery provided with a positive electrode, the negative electrode of this invention, and a non-aqueous electrolyte.
  • the positive electrode is the positive electrode of the present invention described above, or the negative electrode is the negative electrode of the present invention described above.
  • the positive electrode and the negative electrode may be the positive electrode of the present invention and the negative electrode of the present invention, respectively.
  • the non-aqueous electrolyte is not particularly limited, but examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, Known hydrocarbon solvents such as diethyl carbonate; one or more fluorine solvents such as fluoroethylene carbonate, fluoroether and fluorinated carbonate can be used. Any conventionally known electrolyte can be used, and LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, cesium carbonate, and the like can be used.
  • acrylic resins such as polymethacrylate and polymethylmethacrylate, polyimide, polyamide and polyamide An imide resin or the like may be used in combination.
  • a separator may be interposed between the positive electrode and the negative electrode.
  • a conventionally well-known thing may be used as a separator.
  • the binder of the present invention is not only a lithium ion secondary battery using the liquid electrolyte described above as a binder for a non-aqueous electrolyte secondary battery, but also serves as a separator that holds the electrolyte and electrolyte. It is also useful for a polymer electrolyte lithium secondary battery as a polymer electrolyte (so-called polymer gel electrolyte). It is also useful as a binder for electric double layer capacitors.
  • the binder of this invention consists of the above-mentioned structure, it is excellent in adhesiveness with base materials, such as a metal.
  • the binder can be used very suitably for an electrode mixture of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • Example 1 (Production of fluoropolymer A) Into an autoclave with an internal volume of 4 L, 1.1 kg of pure water was charged, and after sufficient nitrogen substitution, 880 g of octafluorocyclobutane was charged, and the inside of the system was maintained at 45 ° C. and a stirring speed of 580 rpm.
  • TFE tetrafluoroethylene
  • VdF 1,1-difluoroethylene
  • TBAA Nt-butylacrylamide
  • Example 2 (Production of fluorinated polymer B) After putting 1.8 kg of pure water into an autoclave with an internal volume of 6 L and sufficiently purging with nitrogen, 1.8 kg of octafluorocyclobutane was charged, and the inside of the system was maintained at 37 ° C. and a stirring speed of 580 rpm. Thereafter, 82 g of tetrafluoroethylene, 224 g of 1,1-difluoroethylene, and 5.7 g of a 10% by mass methanol solution of Nt-butylacrylamide were added, and then a 50% by mass methanol solution of di-n-propyl peroxydicarbonate. Was added to initiate polymerization.
  • VdF / TFE / TBAA 66.3 / 33.2 / 0.5 (mol%) 5 wt% NMP solution viscosity: 338 mPa ⁇ s (25 ° C.) Weight average molecular weight: 630000
  • Example 3 (Production of fluoropolymer C) Under the same polymerization conditions as in Example 2, the 10% by mass methanol solution of Nt-butylacrylamide initially charged was changed to 3.8 g, and 10% by mass methanol solution of Nt-butylacrylamide added continuously. Was polymerized at a total amount of 21.5 g to obtain a fluorinated polymer C.
  • the obtained fluoropolymer C had the following composition and physical properties.
  • VdF / TFE / TBAA 66.4 / 33.3 / 0.3 (mol%) 5 wt% NMP solution viscosity: 1021 mPa ⁇ s (25 ° C.)
  • Example 7 (Production of fluoropolymer D) After putting 1.8 kg of pure water into an autoclave with an internal volume of 6 L and sufficiently purging with nitrogen, 1.8 kg of octafluorocyclobutane was charged, and the inside of the system was maintained at 37 ° C. and a stirring speed of 580 rpm. Thereafter, 82 g of tetrafluoroethylene, 224 g of 1,1-difluoroethylene, and 2.29 g of a 10% by mass methanol solution of N-vinylacetamide (NVAA) were added, and then 50% by mass methanol of di-n-propyl peroxydicarbonate. The polymerization was started by adding 1.7 g of the solution.
  • NVAA N-vinylacetamide
  • VdF / TFE / NVAA 66.8 / 32.9 / 0.3 (mol%) 5 wt% NMP solution viscosity: 121 mPa ⁇ s (25 ° C.) Weight average molecular weight: 280000
  • TBAA Nt-butylacrylamide
  • the obtained fluoropolymer I had the following composition and physical properties.
  • VdF / TFE / TBAA 83.4 / 16.3 / 0.3 (mol%) 5 wt% NMP solution viscosity: 400 mPa ⁇ s (25 ° C.)
  • TBAA Nt-butylacrylamide
  • the obtained fluoropolymer J had the following composition and physical properties.
  • VdF / TFE / TBAA 83.0 / 16.7 / 0.3 (mol%) 5 wt% NMP solution viscosity: 600 mPa ⁇ s (25 ° C.)
  • Comparative Example 1 (Production of fluorinated polymer Z) After putting 1.3 kg of pure water into an autoclave with an internal volume of 4 L and sufficiently replacing with nitrogen, 1.3 kg of octafluorocyclobutane was charged, and the inside of the system was maintained at 37 ° C. and a stirring speed of 580 rpm. Thereafter, 55 g of tetrafluoroethylene and 145 g of 1,1-difluoroethylene were charged, and then 1 g of a 50 mass% methanol solution of di-n-propyl peroxydicarbonate was added to initiate polymerization.
  • Comparative Example 2 (Fluoropolymer Y) KF7200 which is PVdF manufactured by Kureha Chemical Industry Co., Ltd. was used. Weight average molecular weight: 790000
  • Example 4 (Production of fluorinated polymer E) An NMP solution of fluoropolymer A and an NMP solution of fluoropolymer Y are prepared, respectively, and solution-blended so that the weight ratio of the solid content of fluoropolymer A and fluoropolymer Y is 50/50. It was manufactured by.
  • Example 5 (Production of fluoropolymer F) Prepare an NMP solution of fluorinated polymer A and an NMP solution of fluorinated polymer Y, respectively, and blend the solution so that the weight ratio of the solid content of fluorinated polymer A and fluorinated polymer Y is 30/70. It was manufactured by.
  • Example 6 (Production of fluoropolymer G) Prepare an NMP solution of fluoropolymer A and an NMP solution of fluoropolymer X, respectively, and blend the solution so that the weight ratio of the solid content of fluoropolymer A and fluoropolymer X is 30/70. It was manufactured by.
  • Example 8 (Production of fluoropolymer H) Prepare an NMP solution of fluoropolymer A and an NMP solution of fluoropolymer X, respectively, and blend the solution so that the weight ratio of the solid content of fluoropolymer A and fluoropolymer X is 20/80. It was manufactured by.
  • Example 11 (Production of fluoropolymer K) Prepare an NMP solution of fluorinated polymer I and an NMP solution of fluorinated polymer Y, respectively, and blend the solution so that the weight ratio of the solid content of fluorinated polymer I and fluorinated polymer Y is 20/80. It was manufactured by.
  • Example 12 (Production of fluoropolymer L) An NMP solution of fluorinated polymer J and an NMP solution of fluorinated polymer Y are prepared, respectively, and solution-blended so that the weight ratio of the solid content of fluorinated polymer J and fluorinated polymer Y is 20/80. It was manufactured by.
  • the measurement and evaluation methods for various physical properties of the fluoropolymer are as follows.
  • the positive electrode was created and evaluated as follows using the fluorine-containing copolymer. The results are shown in Tables 1 and 2.
  • the ratio of each target electrode material is such that LiCoO 2 (manufactured by Nippon Chemical Industry Co., Ltd.): fluorine-containing copolymer: acetylene black (manufactured by Nippon Graphite Co., Ltd.) is in a mass ratio of 92: 5: 3. Weigh.
  • NMP N-methylpyrrolidone
  • a predetermined amount of LiCoO 2 and acetylene black are added to the NMP solution of this binder, and a stirrer (TKHIVIS MIX made by Primix Co., Ltd.) added NMP at 40 rpm for 30 minutes and solid content concentration of 50% by mass, and stirred for 30 minutes at 80 rpm while performing vacuum defoaming treatment.
  • An agent slurry is prepared.
  • the prepared slurry for positive electrode mixture is filtered through a sieve of Ni mesh (200 mesh) to make the particle size of the solid content uniform. Subsequently, a slurry for positive electrode mixture is applied onto an Al foil (made by Toyo Aluminum Co., Ltd.) having a thickness of 22 ⁇ m, which is a current collector plate, with an applicator (amount so that the dry mass of the positive electrode coating film is 25 mg / cm 2 ). After the application, NMP is completely volatilized while drying at 100 to 120 ° C. using a constant air thermostat (manufactured by Yamato Scientific Co., Ltd.) to produce a positive electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、従来に比べて使用量を減らした場合でも、粉末電極材料をよく保持し、かつ集電基材との密着性に優れ、高密度化のため電極を厚塗りし捲回、プレスしても電極が割れることがない柔軟性を有する、高容量化かつ高電圧化に適した結着剤、正極合剤及び負極合剤を提供することを目的とする。 本発明は、含フッ素重合体を含む結着剤であって、前記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及びアミド基(-CO-NRR'(R及びR'は、同一又は異なって、夫々水素原子又は置換基を有してもよいアルキル基を表す。))又はアミド結合(-CO-NR"-(R"は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。))を有する単量体に基づく重合単位を有し、溶液粘度が10~20,000mPa・sであることを特徴とする結着剤である。

Description

結着剤、正極合剤及び負極合剤
本発明は、結着剤、正極合剤及び負極合剤に関する。より詳しくは、リチウムイオン二次電池等の非水系電解液二次電池に用いられる電極合剤に好適な結着剤、それを用いた正極合剤及び負極合剤に関する。
リチウムイオン二次電池等の非水系電解液二次電池は、高電圧、高エネルギー密度で、自己放電が少ない、メモリー効果が少ない、超軽量化が可能である、等の理由から、ノート型パソコン、携帯電話、スーマートフォン、タブレットパソコン、ウルトラブック等小型で携帯に適した電気・電子機器等に用いられるとともに、さらには、自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源として実用化されつつある。
非水系電解液二次電池のエネルギー密度を向上させるうえでは、電極作製技術が大きなポイントとなっている。例えば、リチウムイオン二次電池の電極については、コークスやカーボン等の炭素質材料を負極活物質として負極を作製する場合、通常、炭素質材料を粉末化し、結着剤とともに溶剤に分散させて負極合剤を調製し、負極集電体に塗布後、溶剤を乾燥除去し、圧延することにより作製する。なお、本明細書では、単にリチウムイオンを吸蔵放出するにすぎない炭素質材料も活物質と称することとする。また同様に正極は、通常、例えばリチウム含有酸化物を正極活物質としてこれを粉末化し、導電剤及び結着剤とともに溶剤に分散させて正極合剤を調製し、正極集電体に塗布後、溶剤を乾燥除去し圧延することにより作製するものである。従来、リチウムイオン二次電池の結着剤としては、ポリフッ化ビニリデンがよく使用されている。
例えば特許文献1には、正極活物質としてLiCoOのようなリチウム含有酸化物と導電剤としてのグラファイトをポリフッ化ビニリデンと混合し作製した正極合剤をN-メチルピロリドンに分散させてスラリー状にしたものをアルミ箔の正極集電体に塗布し、また負極活物質としての炭素質材料とポリフッ化ビニリデンとを混合し作製した負極合剤をN-メチルピロリドンに分散させてスラリー状にしたものを負極集電体である銅箔上に塗布し、それぞれ乾燥後、ローラープレス機により圧縮成形して電極シートに加工する技術が開示されている。
しかし、ポリフッ化ビニリデン樹脂は金属等の基材との接着強度が小さいため、接着強度の改良が望まれている。また、ポリフッ化ビニリデン結着剤を使用した電極シートは柔軟性に乏しく、角型電池作製での電極シートを180度折り畳む工程時や、円筒型電池作製での電極シートを小さく丸める工程時に、電極シートが割れたり、電極シートから電極合剤が剥離するといった問題が生じやすく、生産の歩留りが悪くなる傾向があった。更に、ポリフッ化ビニリデン樹脂は、アルカリ性条件下でゲル化しやすく、耐アルカリ性が不充分であるという問題もあった。
ポリフッ化ビニリデン樹脂の、金属等の基材への接着性を改善する方法としては、ポリフッ化ビニリデン樹脂にカルボキシル基等の官能基を導入することが検討されている。例えば、フッ化ビニリデンを主成分とする単量体と、少量の、不飽和二塩基酸のモノエステル又はビニレンカーボネートとを共重合してなる極性フッ化ビニリデン系共重合体が開示されている(例えば、特許文献2参照。)。特許文献2の実施例には、フッ化ビニリデンと、カルボキシル基やカーボネート基を有する単量体との共重合体が開示されている。
また、フッ化ビニリデンとテトラフルオロエチレンとの共重合体を用いた結着剤も開示されている(例えば、特許文献3参照。)。特許文献3には、このような共重合体を用いることで、結着剤が柔軟性に優れることが記載されている。また、特許文献3には、フッ化ビニリデン及びテトラフルオロエチレンと、カルボキシル基やカーボネート基を有する単量体との共重合体を用いた結着剤が、集電体との接着性に更に優れる旨が記載されている。
また、フッ化ビニリデン、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンから選択される少なくとも1種の単量体と、特定アクリルアミド誘導体との共重合体からなるペイントやワニスが、硬く、安定していて、顔料の不存在下で透明であり、金属及びガラスに充分接着するコーティングを形成することができる旨が開示されている(例えば、特許文献4参照。)。特許文献4に開示された共重合体は、ペイントやワニスに用いられるものであることから、溶液粘度が比較的低いものに限定されている。
特開平4-249859号公報 特開2001-19896号公報 特開平10-233217号公報 特開平3-20311号公報
上述したように、リチウムイオン二次電池等の非水系電解液二次電池の需要の増大に伴い、その電極に用いる結着剤が種々検討されているが、特に、金属等の基材との接着性(密着性)に優れる多様な結着剤が求められている。
また、近年電子機器の小型軽量化、薄型軽量化の要望が非常に大きくなり、より電池の高性能化が必要となってきた。電池のエネルギー密度を高めるために、電極の高密度化(高容量化)や高電圧化が検討されている。
元来結着剤は、電極の電気化学的性能にはほとんど寄与しないので、電極の高密度化や電極の内部抵抗を下げるためには、その使用量は極力少ないことが望ましい。また、リチウムイオン二次電池の形態は円筒型、角型、ラミ型等であり、電極シートは捲回、プレスして導入されるので、電極シートが割れたり、粉末電極材料が脱落したり、集電基材と剥離したりしやすいことから、接着性と柔軟性とに優れた結着剤が望まれるようになった。また、合わせて高電圧における耐久性も重要である。
本発明は、非水系(二次)電池(特にリチウムイオン電池)、電気二重層キャパシタ等の非水系電気化学素子分野において、上記現状に鑑みてなされたものであり、従来に比べて使用量を減らした場合でも、粉末電極材料をよく保持し、かつ集電基材との密着性に優れ、高密度化のため電極を厚塗りし捲回、プレスしても電極が割れることがない柔軟性を有する、高容量化かつ高電圧化に適した結着剤、正極合剤及び負極合剤を提供することを目的とするものである。
本発明者は、基材との密着性及び柔軟性に優れる結着剤を種々検討し、アミド基又はアミド結合を有する単量体に基づく重合単位を有し、かつ特定の溶液粘度を有するフッ化ビニリデン系共重合体を含む結着剤が、金属等の基材、中でも、リチウムイオン二次電池等の非水系電解液二次電池や電気二重層キャパシタ等における電極集電体に用いられる炭素や金属との密着性や、柔軟性に優れることを見いだした。結着剤が密着性に優れるものであると、結着剤の使用量を減らすことができる。その結果、電極密度を向上させることができるとともに、電極の抵抗を低減することもでき、電池性能を向上させることが可能となる。また、結着剤の使用量が減った分、製造コストを削減することも可能となる。更に、結着剤が柔軟性に優れるものであると、高密度化のため電極を厚塗りし捲回、プレスしても電極が割れることがない。本発明者は、このような結着剤が、リチウムイオン二次電池等の非水系電解液二次電池や電気二重層キャパシタ等における電極合剤に極めて好適に使用できることを見いだし、本発明に到達したものである。
すなわち、本発明は、含フッ素重合体を含む結着剤であって、上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及びアミド基(-CO-NRR’(R及びR’は、同一又は異なって、夫々水素原子又は置換基を有してもよいアルキル基を表す。))又はアミド結合(-CO-NR”-(R”は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。))を有する単量体に基づく重合単位を有し、溶液粘度が10~20,000mPa・sであることを特徴とする結着剤である。
本発明はまた、正極活物質、有機溶剤、及び、上記結着剤からなることを特徴とする正極合剤でもある。
本発明はまた、負極活物質、有機溶剤、及び、上記結着剤からなることを特徴とする負極合剤でもある。
本発明はまた、正極集電体と、正極集電体上に形成された、正極活物質と上記結着剤とからなる正極活物質層とを有する正極でもある。
本発明はまた、負極集電体と、負極集電体上に形成された、負極活物質と上記結着剤とからなる負極活物質層とを有する負極でもある。
本発明はまた、本発明の正極、負極及び非水系電解液を備えるリチウムイオン二次電池でもある。
本発明はまた、正極、本発明の負極及び非水系電解液を備えるリチウムイオン二次電池でもある。
以下に本発明を詳細に説明する。
本発明の結着剤を構成する含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及びアミド基(-CO-NRR’(R及びR’は、同一又は異なって、夫々水素原子又は置換基を有してもよいアルキル基を表す。))又はアミド結合(-CO-NR”-(R”は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。))を有する単量体に基づく重合単位を有する。これにより、得られる結着剤が、基材との密着性及び柔軟性に優れたものとなる。また、アミド基又はアミド結合を有する単量体は他の官能基を有する単量体と比較して耐酸化性が良く、電池の高電圧化にも適している。
上記アミド基又はアミド結合を有する単量体としては、分子内に1個以上の重合性炭素-炭素二重結合と、1個以上のアミド基又はアミド結合とを有するものであれば特に限定されない。また、上記アミド基又はアミド結合を有する単量体として、1種又は2種以上を用いることができる。
上記含フッ素重合体は、溶液粘度が10~20,000mPa・sである。これにより、得られる結着剤が、基材との密着性に一層優れたものとなる。上記溶液粘度は、上記含フッ素重合体の5質量%N-メチル-2-ピロリドン溶液の、25℃における溶液粘度である。
上記溶液粘度としては、20~10,000mPa・sが好ましく、30~7,000mPa・sがより好ましく、40~6,000mPa・sが更に好ましく、80~5,000mPa・sが更により好ましく、100~3,000mPa・sが特に好ましく、150~1,500mPa・sが最も好ましい。
上記含フッ素重合体においては、上記アミド基又はアミド結合を有する単量体に基づく重合単位が全重合単位に対して0.01~3モル%であることが好ましい。上記アミド基又はアミド結合を有する単量体に基づく重合単位の含有量が上記範囲内であると、ビニリデンフルオライドに基づく特性を損なうことなく、得られる結着剤の基材との密着性を向上させることができる。上記アミド基又はアミド結合を有する単量体に基づく重合単位の含有量として、より好ましくは、0.01~2.5モル%であり、更に好ましくは0.04~2モル%である。
上記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及び上記アミド基又はアミド結合を有する単量体に基づく重合単位を有するものである限り、それらの単量体と共重合可能なその他の単量体に基づく重合単位を更に有していてもよい。
上記その他の単量体としては、テトラフルオロエチレンが特に好ましい。すなわち、上記含フッ素重合体は、更にテトラフルオロエチレンに基づく重合単位を有することが好ましい。これにより、得られる結着剤が柔軟性に優れたものとなる。また、耐薬品性(特に耐アルカリ性)も向上する。
上記含フッ素重合体がテトラフルオロエチレンに基づく重合単位を有するものである場合、全重合単位に対して、ビニリデンフルオライドに基づく重合単位が50~90モル%、テトラフルオロエチレンに基づく重合単位が9.9~49.9モル%であることが好ましい。これにより、他の重合単位に基づく特性を損なうことなく、得られる結着剤の柔軟性や耐薬品性を向上させることができる。より好ましくは、ビニリデンフルオライドに基づく重合単位は55~80モル%、テトラフルオロエチレンに基づく重合単位は19.9~44.9モル%である。更に好ましくはビニリデンフルオライドに基づく重合単位は60~75モル%、テトラフルオロエチレンに基づく重合単位は24.9~39.9モル%である。
また、電極合剤の粘度の安定化という点で、より好ましくは、ビニリデンフルオライドに基づく重合単位が55~89.5モル%、テトラフルオロエチレンに基づく重合単位が10.4~44.9モル%であり、更に好ましくは、ビニリデンフルオライドに基づく重合単位が60.0~89.0モル%、テトラフルオロエチレンに基づく重合単位が10.9~39.9モル%である。
上記含フッ素重合体を形成するための単量体としては、上述した以外にも、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、プロピレン等を使用することができる。中でも、柔軟性と耐薬品性の観点からヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペンが特に好ましい。
これらの単量体を用いる場合、該単量体に基づく重合単位は、全重合単位に対して0.1~50モル%であることが好ましい。
以下に、本発明について具体例を挙げて更に詳述する。
上記アミド基を有する単量体において、該アミド基は、-CO-NRR’で表される基である。R及びR’は、水素原子又はアルキル基である。R及びR’は、同じであってもよく、互いに異なっていてもよい。
上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基の炭素数は1~30であることが好ましい。より好ましくは1~20である。
上記置換基としては、ハロゲン原子、炭素数1~30のアルコキシ基、炭素数6~30のアリール基等が挙げられる。
上記アミド基を有する単量体は、上述したように、分子内に1個以上の重合性炭素-炭素二重結合と、1個以上のアミド基とを有するものであれば特に限定されないが、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、Xは、同一又は異なって、夫々水素原子、又は、置換基を有してもよいアルキル基を表す。Xは、水素原子、又は、置換基を有してもよいアルキル基を表す。Yは、単結合、又は、置換基を有してもよいアルキレン基を表す。R及びRは、同一又は異なって、夫々水素原子、又は、置換基を有してもよいアルキル基を表す。)で表される、分子内に重合性炭素-炭素二重結合とアミド基とを1個ずつ有する単量体であることが好ましい。
上記一般式(1)中のXは、水素原子又はアルキル基である。上記一般式(1)中の2つのXは、同じであってもよく、互いに異なっていてもよい。
上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記R及びR’について述べたものと同様のものを挙げることができる。
上記Xとしては、水素原子、ハロゲン原子が好ましく、水素原子が特に好ましい。
上記一般式(1)中のXは、水素原子又はアルキル基である。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記Xについて述べたものと同様のものを挙げることができる。上記Xとしては、中でも、水素原子、メチル基が好ましい。
上記一般式(1)中のYは、単結合又はアルキレン基である。上記アルキレン基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキレン基は鎖状でも、環状でも、分岐していてもよい。上記アルキレン基の炭素数は1~30であることが好ましい。より好ましくは1~25である。
上記置換基としては、上記Xについて述べたものと同様のものを挙げることができる。
上記一般式(1)中のR及びRは、水素原子又はアルキル基である。R及びRは、同じであってもよく、互いに異なっていてもよい。上記アルキル基は、置換基を有していてもよく、有していなくてもよい。また、上記アルキル基は鎖状でも、環状でも、分岐していてもよい。上記アルキル基としては、上記Xについて述べたものと同様のものを挙げることができる。上記R及びRとしては、中でも、水素原子、ハロゲン原子が好ましく、水素原子が特に好ましい。
上記アミド基を有する単量体としては、中でも、下記一般式(2):
Figure JPOXMLDOC01-appb-C000002
(式中、Xは、水素原子又はメチル基を表す。R及びRは、同一又は異なって、夫々水素原子、又は、置換基を有してもよいアルキル基を表す。)で表される(メタ)アクリルアミド類が好ましい。上記一般式(2)におけるR及びRの具体例は、上記一般式(1)におけるR及びRについて述べたものと同様である。
上記(メタ)アクリルアミド類としては、(メタ)アクリルアミド及びその誘導体を挙げることができる。具体的には、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-tert-ブチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、4-アクロイルモルホリン、ジアセトン(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等を挙げることができる。これらのなかでも、N-tert-ブチルアクリルアミドが好ましい。
上記アミド結合を有する単量体において、該アミド結合は-CO-NR”-で表される結合であり、-CO-NR”-CO-で表される結合であってもよい。R”は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。アルキル基及び置換基としてはアミド基を有する単量体におけるRとして挙げたアルキル基及び置換基と同じであってよい。上記アミド結合を有する単量体としては、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド等のN-ビニルアセトアミド誘導体;マレイミド、N-ブチルマレイミド、N-フェニルマレイミド等のマレイミド誘導体があげられる。これらのなかでも、N-ビニルアセトアミドが好ましい。
上記含フッ素重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましくは100000~1500000である。
また、電池特性が向上するという点で、より好ましくは80000~1950000であり、更に好ましくは100000~1900000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記含フッ素重合体は、電池特性が向上するという点で、数平均分子量(ポリスチレン換算)が16000~1300000であることが好ましい。より好ましくは20000~1200000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
ビニリデンフルオライド、上記アミド基又はアミド結合を有する単量体、及び、必要に応じてそれらの単量体と共重合可能なその他の単量体の共重合は、懸濁重合、乳化重合、溶液重合等の方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましい。
上記の共重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。上記重合開始剤としては、油溶性ラジカル重合開始剤又は水溶性ラジカル開始剤を使用できる。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえばジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類、ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類などが、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとして挙げられる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどがあげられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
上記界面活性剤としては、公知の界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤などが使用できる。なかでも、含フッ素アニオン性界面活性剤が好ましく、エーテル結合を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)、炭素数4~20の直鎖又は分岐した含フッ素アニオン性界面活性剤がより好ましい。添加量(対重合水)は、好ましくは50~5000ppmである。
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチルなどの酢酸エステル類;メタノール、エタノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素などがあげられる。添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.01~20質量%の範囲で使用される。
上記溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。
上記懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられ、なかでも、パーフルオロアルカン類が好ましい。フッ素系溶媒の使用量は、懸濁性及び経済性の面から、水性媒体に対して10~100質量%が好ましい。
重合温度としては特に限定されず、0~100℃であってよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。
フッ素系溶媒を用いないで水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、水に対して0.005~1.0質量%、好ましくは0.01~0.4質量%の範囲で添加して使用する。
この場合の重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等が使用できる。その使用量は、単量体合計量(ビニリデンフルオライド、上記アミド基又はアミド結合を有する単量体、及び、必要に応じてそれらの単量体と共重合可能なその他の単量体の合計量)に対して0.1~5質量%であることが好ましい。
また、酢酸エチル、酢酸メチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる重合体の重合度を調節することも可能である。その使用量は、通常は、単量体合計量に対して0.1~5質量%、好ましくは0.5~3質量%である。
単量体の合計仕込量は、単量体合計量:水の重量比で1:1~1:10、好ましくは1:2~1:5であり、重合は温度10~50℃で10~100時間行う。
上記の懸濁重合により、容易にビニリデンフルオライド、上記アミド基又はアミド結合を有する単量体、及び、必要に応じてその他の単量体を共重合させることができる。
ビニリデンフルオライドと共重合させる単量体(すなわち上記アミド基又はアミド結合を有する単量体、及び、必要に応じてその他の単量体)の仕込量は、得られる共重合体の接着性、耐薬品性、分子量、重合収率等を考慮して決められる。
上記で得られた含フッ素重合体は、金属等の基材との密着性が良好で、非水系電解液二次電池等の電極に用いる結着剤に好適に用いることができる。本発明の結着剤は、上記含フッ素重合体を含む限り、その他の成分を更に含んでいてもよく、該その他の成分は1種又は2種以上を用いることができる。
上記結着剤に使用可能な上記その他の成分としては、フッ化ビニリデン〔VdF〕重合体、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、スチレンゴム、ブタジエンゴムなどがあげられる。これらの中でも、VdF重合体が好ましい。
これらその他の成分の含有量は、含フッ素重合体に対して10~900質量%であることが好ましい。
上記VdF重合体としては、ポリフッ化ビニリデン〔PVdF〕、VdF/テトラフルオロエチレン〔TFE〕共重合体、VdF/ヘキサフルオロプロピレン〔HFP〕共重合体、VdF/クロロトリフルオロエチレン〔CTFE〕共重合体等が挙げられる。
上記VdF重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましくは100000~1500000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF重合体は、数平均分子量(ポリスチレン換算)が35000~1400000であることが好ましい。より好ましくは40000~1300000であり、更に好ましくは50000~1200000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、VdFに基づく重合単位(VdF単位)のみからなるホモポリマーであってもよいし、VdFに基づく重合単位と、VdFと共重合可能な単量体(α)に基づく重合単位とからなるものであってもよい。
上記単量体(α)としては、例えば、テトラフルオロエチレン、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、プロピレン等が挙げられる。また、特開平6-172452号公報に記載されているような不飽和二塩基酸モノエステル、たとえばマレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステルやビニレンカーボネートなど、また特開平7-201316号公報に記載されているような、-SOM、-OSOM、-COOM、-OPOM(Mはアルカリ金属を表わす)やアミン系極性基である-NHR、-NR(R、R、Rはアルキル基を表わす)などの親水性極性基を有する化合物、たとえばCH=CH-CH-A、CH=C(CH)-CH-A、CH=CH-CH-O-CO-CH(CHCOOR)-A、CH=CH-CH-O-CH-CH(OH)-CH-A、CH=C(CH)-CO-O-CH-CH-CH-A、CH=CH-CO-O-CH-CH-A、CH=CHCO-NH-C(CH-CH-A(Aは親水性極性基、またRはアルキル基を表わす)やその他、マレイン酸や無水マレイン酸などがあげられる。さらに、CH=CH-CH-O-(CH-OH(3≦n≦8)、
Figure JPOXMLDOC01-appb-C000003
CH=CH-CH-O-(CH-CH-O)-H(1≦n≦14)、CH=CH-CH-O-(CH-CH(CH)-O)-H(1≦n≦14)などの水酸化アリルエーテルモノマーや、カルボキシル化および/または-(CF-CF(3≦n≦8)で置換されるアリルエーテルおよびエステルモノマー、たとえばCH=CH-CH-O-CO-C-COOH、CH=CH-CH-O-CO-C10-COOH、CH=CH-CH-O-C-(CFCF、CH=CH-CH-CO-O-C-(CFCF、CH=C(CH)-CO-O-CH-CFなども同様に共重合可能な単量体として使用できる。ところで、以上のような極性基などを含む化合物以外でも上記含フッ素重合体の結晶性を少し低下させ材料に柔軟性を与えることによりアルミや銅の金属箔からなる集電体との接着性が向上しうることがこれまでの研究より類推できるようになった。これより、たとえばエチレン、プロピレンなどの不飽和炭化水素系モノマー(CH=CHR、Rは水素原子、アルキル基またはClなどのハロゲン)や、フッ素系モノマーである3フッ化塩化エチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブテンやCF=CF-O-C2n+1(nは1以上の整数)、CH=CF-C2n+1(nは1以上の整数)、CH=CF-(CFCFH(nは1以上の整数)、さらにCF=CF-O-(CFCF(CF)O)-C2n+1(m、nは1以上の整数)も使用可能である。
そのほか式:
Figure JPOXMLDOC01-appb-C000004
(式中、Zは-CHOH、-COOH、カルボン酸塩、カルボキシエステル基またはエポキシ基、XおよびX’は同じかまたは異なりいずれも水素原子またはフッ素原子、Rは炭素数1~40の2価の含フッ素アルキレン基または炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基を表わす。)で示される少なくとも1種の官能基を有する含フッ素エチレン性単量体も使用可能である。これらの単量体を1種または2種以上共重合することにより、さらに集電体との接着性が向上し、充放電を繰り返し行なっても集電体より電極活物質が剥がれ落ちることがなく、良好な充放電サイクル特性が得られる。
上記PVdFは、単量体(α)に基づく重合単位が全重合単位の5モル%以下であることが好ましく、4.5モル%以下であることがより好ましく、4モル%未満であることが更に好ましく、3モル%未満であることが更により好ましい。
上記PVdFは、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましく100000~1500000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、数平均分子量(ポリスチレン換算)が35000~1400000であることが好ましい。
35000未満であると、得られた電極の密着性が低くなる。1400000を超えると、電極合剤を調製する際にゲル化しやすくなる。
上記数平均分子量は、40000以上が好ましく、50000以上がより好ましく、60000以上が更に好ましく、1300000以下が好ましく、1200000以下がより好ましい。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記PVdFは、例えば、重合単位を形成するVdF及び上記単量体(α)や、重合開始剤等の添加剤を適宜混合して、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。
上記VdF/TFE共重合体は、VdFに基づく重合単位(VdF単位)及びTFEに基づく重合単位(TFE単位)からなる共重合体である。
上記VdF/TFE共重合体は、VdF単位を、全重合単位に対して50~95モル%含むことが好ましい。VdF単位が50モル%未満であると電極合剤の粘度の経時変化が大きくなり、95モル%より多いと合剤から得られる電極の柔軟性が劣る傾向がある。
上記VdF/TFE共重合体は、VdF単位を全重合単位に対して55モル%以上含むことが好ましく、60モル%以上含むことがより好ましい。また、上記VdF/TFE共重合体は、VdF単位を全重合単位に対して92モル%以下含むことがより好ましく、89モル%以下含むことが更に好ましい。
上記VdF/TFE共重合体の組成は、NMR分析装置を用いて測定することができる。
上記VdF/TFE共重合体は、VdF単位及びTFE単位の他に、VdF及びTFEと共重合し得る単量体に基づく重合単位を含むものであってもよい。本発明の効果を達成するためには、VdFとTFEとの共重合体で充分であるが、さらに共重合体の優れた耐電解液膨潤性を損なわない程度にそれらと共重合しうる単量体を共重合させて接着性をさらに向上させることができる。
上記VdF及びTFEと共重合し得る単量体に基づく重合単位の含有量は、上記VdF/TFE共重合体の全重合単位に対して3.0モル%未満が好ましい。3.0モル%以上であると、一般的にVdFとTFEの共重合体の結晶性が著しく低下し、その結果耐電解液膨潤性が低下する傾向がある。
上記VdF及びTFEと共重合し得る単量体としては、特開平6-172452号公報に記載されているような不飽和二塩基酸モノエステル、たとえばマレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステルやビニレンカーボネートなど、また特開平7-201316号公報に記載されているような、-SOM、-OSOM、-COOM、-OPOM(Mはアルカリ金属を表わす)やアミン系極性基である-NHR、-NR(R、R、Rはアルキル基を表わす)などの親水性極性基を有する化合物、たとえばCH=CH-CH-A、CH=C(CH)-CH-A、CH=CH-CH-O-CO-CH(CHCOOR)-A、CH=CH-CH-O-CH-CH(OH)-CH-A、CH=C(CH)-CO-O-CH-CH-CH-A、CH=CH-CO-O-CH-CH-A、CH=CHCO-NH-C(CH-CH-A(Aは親水性極性基、またRはアルキル基を表わす)やその他、マレイン酸や無水マレイン酸などがあげられる。さらに、CH=CH-CH-O-(CH-OH(3≦n≦8)、
Figure JPOXMLDOC01-appb-C000005
CH=CH-CH-O-(CH-CH-O)-H(1≦n≦14)、CH=CH-CH-O-(CH-CH(CH)-O)-H(1≦n≦14)などの水酸化アリルエーテルモノマーや、カルボキシル化および/または-(CF-CF(3≦n≦8)で置換されるアリルエーテルおよびエステルモノマー、たとえばCH=CH-CH-O-CO-C-COOH、CH=CH-CH-O-CO-C10-COOH、CH=CH-CH-O-C-(CFCF、CH=CH-CH-CO-O-C-(CFCF、CH=C(CH)-CO-O-CH-CFなども同様に共重合可能な単量体として使用できる。
ところで、以上のような極性基などを含む化合物以外でも上記含フッ素重合体の結晶性を少し低下させ材料に柔軟性を与えることによりアルミや銅の金属箔からなる集電体との接着性が向上しうることがこれまでの研究より類推できるようになった。これより、たとえばエチレン、プロピレンなどの不飽和炭化水素系モノマー(CH=CHR、Rは水素原子、アルキル基またはClなどのハロゲン)や、フッ素系モノマーである3フッ化塩化エチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブテン、2,3,3,3-テトラフルオロプロペン、CF=CF-O-C2n+1(nは1以上の整数)、CH=CF-C2n+1(nは1以上の整数)、CH=CF-(CFCFH(nは1以上の整数)、さらにCF=CF-O-(CFCF(CF)O)-C2n+1(m、nは1以上の整数)も使用可能である。
そのほか式:
Figure JPOXMLDOC01-appb-C000006
(式中、Zは-CHOH、-COOH、カルボン酸塩、カルボキシエステル基またはエポキシ基、XおよびX’は同じかまたは異なりいずれも水素原子またはフッ素原子、Rは炭素数1~40の2価の含フッ素アルキレン基または炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基を表わす)で示される少なくとも1種の官能基を有する含フッ素エチレン性単量体も使用可能である。これらの単量体を1種または2種以上共重合することにより、さらに集電体との接着性が向上し、充放電を繰り返し行なっても集電体より電極活物質が剥がれ落ちることがなく、良好な充放電サイクル特性が得られる。
これら単量体の中でも、柔軟性と耐薬品性の観点から、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペンが特に好ましい。
このように上記VdF/TFE共重合体は、VdF単位及びTFE単位の他に、他の重合単位を含むものであってもよいが、VdF単位及びTFE単位のみからなることがより好ましい。
上記VdF/TFE共重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましくは100000~1500000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF/TFE共重合体は、数平均分子量(ポリスチレン換算)が35000~1400000であることが好ましい。より好ましくは40000~1300000であり、更に好ましくは50000~1200000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF/TFE共重合体を製造する方法としては、例えば、重合単位を形成するVdFおよびTFE等の単量体や、重合開始剤等の添加剤を適宜混合して、懸濁重合、乳化重合、溶液重合等を行う方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましい。
上記重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
上記VdF/HFP共重合体は、VdFに基づく重合単位(VdF単位)及びHFPに基づく重合単位(HFP単位)からなる共重合体である。
上記VdF/HFP共重合体は、VdF単位を、全重合単位に対して80~98モル%含むことが好ましい。VdF単位が80モル%未満であると得られた電極の電解液に対する膨潤性が大きく、電池特性が大幅に低下し、98モル%より多いと合剤から得られる電極の柔軟性が劣る傾向がある。
上記VdF/HFP共重合体は、VdF単位を全重合単位に対して83モル%以上含むことが好ましく、85モル%以上含むことがより好ましい。また、上記VdF/HFP共重合体は、VdF単位を全重合単位に対して97モル%以下含むことがより好ましく、96モル%以下含むことが更に好ましい。
上記VdF/HFP共重合体の組成は、NMR分析装置を用いて測定することができる。
上記VdF/HFP共重合体は、VdF単位及びHFP単位の他に、VdF及びHFPと共重合し得る単量体に基づく重合単位を含むものであってもよい。本発明の効果を達成するためには、VdFとHFPとの共重合体で充分であるが、さらに共重合体の優れた耐電解液膨潤性を損なわない程度にそれらと共重合しうる単量体を共重合させて接着性をさらに向上させることができる。
上記VdF及びHFPと共重合し得る単量体に基づく重合単位の含有量は、上記VdF/HFP共重合体の全重合単位に対して3.0モル%未満が好ましい。3.0モル%以上であると、一般的にVdFとHFPの共重合体の結晶性が著しく低下し、その結果耐電解液膨潤性が低下する傾向がある。
上記VdF及びHFPと共重合し得る単量体としては、上記VdF/TFE共重合体について例示したVdF及びTFEと共重合し得る単量体と同様の単量体及びTFEを挙げることができる。
上記VdF/HFP共重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましくは100000~1500000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF/HFP共重合体は、数平均分子量(ポリスチレン換算)が35000~1400000であることが好ましい。より好ましくは40000~1300000であり、更に好ましくは50000~1200000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF/HFP共重合体を製造する方法としては、例えば、重合単位を形成するVdFおよびHFP等の単量体や、重合開始剤等の添加剤を適宜混合して、懸濁重合、乳化重合、溶液重合等を行う方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましい。
上記重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
上記VdF/CTFE共重合体は、VdFに基づく重合単位(VdF単位)及びCTFEに基づく重合単位(CTFE単位)からなる共重合体である。
上記VdF/CTFE共重合体は、VdF単位を、全重合単位に対して80~98モル%含むことが好ましい。VdF単位が80モル%未満でも98モル%より多くても電極合剤の粘度の経時変化が大きくなる。また、上記VdF/CTFE共重合体は、VdF単位を全重合単位に対して97.5モル%以下含むことがより好ましく、97モル%以下含むことが更に好ましい。
上記VdF/CTFE共重合体は、VdF単位を全重合単位に対して85モル%以上含むことが好ましく、90モル%以上含むことがより好ましい。
上記VdF/CTFE共重合体の組成は、NMR分析装置を用いて測定することができる。
上記VdF/CTFE共重合体は、VdF単位及びCTFE単位の他に、VdF及びCTFEと共重合し得る単量体に基づく重合単位を含むものであってもよい。本発明の効果を達成するためには、VdFとCTFEとの共重合体で充分であるが、さらに共重合体の優れた耐電解液膨潤性を損なわない程度にそれらと共重合しうる単量体を共重合させて接着性をさらに向上させることができる。
上記VdF及びCTFEと共重合し得る単量体に基づく重合単位の含有量は、上記VdF/CTFE共重合体の全重合単位に対して3.0モル%未満が好ましい。3.0モル%以上であると、一般的にVdFとCTFEの共重合体の結晶性が著しく低下し、その結果耐電解液膨潤性が低下する傾向がある。
上記VdF及びCTFEと共重合し得る単量体としては、上記VdF/TFE共重合体について例示したVdF及びTFEと共重合し得る単量体と同様の単量体、TFE及びHFPを挙げることができる。
上記VdF/CTFE共重合体は、重量平均分子量(ポリスチレン換算)が50000~2000000であることが好ましい。より好ましくは80000~1700000であり、更に好ましくは100000~1500000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF/CTFE共重合体は、数平均分子量(ポリスチレン換算)が35000~1400000であることが好ましい。より好ましくは40000~1300000であり、更に好ましくは50000~1200000である。
上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用い50℃で測定することができる。
上記VdF/CTFE共重合体を製造する方法としては、例えば、重合単位を形成するVdFおよびCTFE等の単量体や、重合開始剤等の添加剤を適宜混合して、懸濁重合、乳化重合、溶液重合等を行う方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましい。
上記重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
上記VdF重合体としては、上述した中でも、PVdF及びVdF/TFE共重合体が好ましく、PVdFがより好ましい。
上記含フッ素重合体と上記VdF重合体との質量比(含フッ素重合体)/(VdF重合体)は、90/10~10/90であることが好ましく、80/20~15/87がより好ましく、75/25~15/85が更に好ましい。
本発明の結着剤は、活物質、有機溶剤とともに電極合剤を構成することもできる。本発明の結着剤を適用する対象となる非水系電解液二次電池は、正極合剤が正極集電体に保持されてなる正極、負極合剤が負極集電体に保持されてなる負極、及び、非水系電解液を備えている。
以下に、本発明の結着剤を用いた、電池の電極製造用合剤の例について説明する。
リチウムイオン二次電池のような、電解液として有機ないし非水系電解液を使用した非水系電解液電池においては、非水系電解液の電導度の小さいことに由来する重負荷性能の低さを改良するため、活物質層を薄くし電極面積を大きくすることが行われている。
このための方法として、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等からなる集電体に、微粉末状の活物質、炭素等の導電剤及び結着剤からなる電極合剤形成用組成物を、塗布接着し、電極とすることが試みられている。結着剤の使用量は極力少なくする必要があり、少量でも活物質等をよく保持し、集電体への接着性に優れたものが要求される。また結着剤は通常電気絶縁性であるため、その使用量の増大は電池の内部抵抗を大きくする。この点からも結着剤は、できるだけ少ない使用量でその機能を果たすことが要求される。
通常、結着剤量は、極めて少量で、全電極合剤に対して30質量%以下とすることが好ましい。このような少ない結着剤量では、電極合剤の微粒子成分間又は微粒子成分と集電体間の空隙を、結着剤が完全に充填することはできない。顔料等の充填剤を含有する塗料、ライニング材等の場合は、結着剤が充填剤間等の空隙を完全に充填するに充分な多量の結着剤を使用するので充填剤の保持に関してはほとんど問題が生じない。しかし電極用の結着剤の場合は、上述のように使用量が極めて少量であり、少量でも活物質をよく保持し、集電体への接着性に優れたものが要求される。
本発明は、正極活物質、有機溶剤、及び、上記結着剤からなる正極合剤でもある。本発明はまた、負極活物質、有機溶剤、及び、上記結着剤からなる負極合剤でもある。なお、本明細書において、正極合剤と負極合剤とを合わせて電極合剤ということがある。
本発明で使用される正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiTi12等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム含有遷移金属リン酸化合物の具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
特に、高電圧、高エネルギー密度、あるいは、充放電サイクル特性等の観点から、LiCoO、LiNiO、LiMn、LiNi0.82Co0.15Al0.03、LiNi1/3Co1/3Mn1/3、LiFePOが好ましい。
また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。
表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電剤との混合においても、均一に混合されやすいため好ましい。
正極活物質のタップ密度は、通常1.3g/cm以上、好ましくは1.5g/cm以上、更に好ましくは1.6g/cm以上、最も好ましくは1.7g/cm以上である。正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm以下、好ましくは2.4g/cm以下である。
正極活物質のタップ密度は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高嵩密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成すなわち活物質と導電剤やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることもできる。
なお、本発明におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、更に好ましくは0.08μm以上、最も好ましくは0.1μm以上で、通常3μm以下、好ましくは2μm以下、更に好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、0.2m/g以上、好ましくは0.3m/g以上、更に好ましくは0.4m/g以上で、4.0m/g以下、好ましくは2.5m/g以下、更に好ましくは1.5m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすい場合がある。
BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
なお、本発明において、正極活物質粉体は1種を単独で用いても良く、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用しても良い。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質;炭素質物質{例えば天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(例えば軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、更にアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクニロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物}を400から3200℃の範囲で一回以上熱処理された炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
正極活物質又は負極活物質の含有量は、得られる電極の容量を増やすために、電極合剤中40質量%以上が好ましい。
本発明の正極合剤及び負極合剤は、更に導電剤を含んでもよい。導電剤としては、例えばアセチレンブラック、ケッチェンブラック等のカーボンブラック類やグラファイト等の炭素材料、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン等が挙げられる。
電極合剤中の粉体成分(活物質及び導電剤)と上記含フッ素重合体の割合は、通常、重量比で80:20~99.5:0.5程度であり、粉体成分の保持、集電体への接着性、電極の導電性を考慮して決められる。
上述のような配合割合では、集電体上に形成される電極合剤層では、上記含フッ素重合体は粉体成分間の空隙を完全に充填することは出来ないが、溶媒として上記含フッ素重合体を良く溶解する溶剤を用いると、乾燥後の電極合剤層において、上記含フッ素重合体が均一に分散、編み目状になり、粉体成分をよく保持するので好ましい。
上記有機溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;更に、それらの混合溶剤等の低沸点の汎用有機溶剤を挙げることができる。
なかでも、上記有機溶剤としては、電極合剤の安定性、塗工性に優れている点から、N-メチル-2-ピロリドン、及び/又は、N,N-ジメチルアセトアミドであることが好ましい。
上記電極合剤中の有機溶剤の量は、集電体への塗布性、乾燥後の薄膜形成性等を考慮して決定される。通常、上記結着剤と有機溶剤との割合は、重量比で5:95~20:80が好ましい。
また、上記含フッ素重合体は、上記有機溶剤に対する速やかな溶解を可能とするために、平均粒径1000μm以下、特に50~350μmの、小粒径で使用に供することが望ましい。
上記電極合剤は、集電体との接着性を更に向上させるため、例えば、ポリメタクリレート、ポリメチルメタアクリレート等のアクリル系樹脂、ポリイミド、ポリアミド及びポリアミドイミド系樹脂等を更に含んでいてもよい。
本発明の結着剤を正極合剤及び/又は負極合剤中の結着剤として使用する場合、その配合割合は電極合剤の0.1~20質量%、好ましくは1~10質量%である。
上記結着剤を含む電極合剤を調製する方法としては、該結着剤を上記有機溶剤に溶解させた溶液に電極活物質等の電極材料を分散、混合させるといった方法が一般的である。そして、得られた電極合剤を、金属箔又は金属網等の集電体に均一に塗布、乾燥、必要に応じてプレスして集電体上へ薄い電極合剤層を形成し薄膜状電極とする。
そのほか、例えば結着剤粉末と電極活物質の粉末同士を先に混合した後、有機溶剤を添加し合剤を作製してもよい。また、結着剤と電極活物質の粉末同士を加熱溶融し、押出機で押し出して薄膜の合剤を作製しておき、導電性接着剤や汎用性有機溶剤を塗布した集電体上に貼り合わせて電極シートを作製することもできる。更に、予め予備成形した電極活物質に結着剤の溶液を塗布してもよい。このように、結着剤としての適用方法は特に限定されない。
本発明は、正極集電体と、正極集電体上に形成された、正極活物質と上記結着剤とからなる正極活物質層とを有する正極でもある。また、本発明は、負極集電体と、負極集電体上に形成された、負極活物質と上記結着剤とからなる負極活物質層とを有する負極でもある。
正極集電体及び負極集電体としては、例えば、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等が挙げられる。中でも、正極集電体としては、アルミ箔等が好ましく、負極集電体としては銅箔等が好ましい。
本発明の正極及び負極は、例えば上述した方法によって製造することができる。
本発明は、本発明の正極、負極及び非水系電解液を備えるリチウムイオン二次電池でもある。また、本発明は、正極、本発明の負極及び非水系電解液を備えるリチウムイオン二次電池でもある。
本発明のリチウムイオン二次電池は、正極が上述した本発明の正極であるか、又は、負極が上述した本発明の負極である。本発明のリチウムイオン二次電池は、正極及び負極がそれぞれ本発明の正極及び本発明の負極であってもよい。
非水系電解液は特に限定されるものではないが、有機溶媒としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネートなどの公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種又は2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。更に本発明の正極合剤及び/又は負極合剤には、このほか集電体との接着性を更に向上させるため、例えばポリメタクリレート、ポリメチルメタアクリレート等のアクリル系樹脂、ポリイミド、ポリアミド及びポリアミドイミド系樹脂等を併用してもよい。
また、正極と負極との間にセパレータを介在させてもよい。セパレータとしては、従来公知のものを使用してよい。
本発明の結着剤は、非水系電解液二次電池用結着剤として、以上に説明した液状電解質を用いたリチウムイオン二次電池だけでなく、電解液や電解質を保持しセパレータの役割をも担うポリマー電解質(いわゆる高分子ゲル電解質)としてポリマー電解質リチウム二次電池にも有用である。また、電気二重層キャパシタ用結着剤としても有用である。
本発明の結着剤は、上述の構成よりなるものであるので、金属等の基材との密着性に優れるものである。該結着剤は、リチウムイオン二次電池等の非水系電解液二次電池の電極合剤に極めて好適に使用できる。
本発明を実施例により更に詳細に説明するが、本発明はこの実施例により限定されるものではない。
実施例1(含フッ素重合体Aの製造)
内容積4Lのオートクレーブに純水1.1kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン880gを仕込み、系内を45℃、攪拌速度580rpmに保った。その後、テトラフルオロエチレン(TFE)45g、1,1-ジフルオロエチレン(ビニリデンフルオライド、VdF)130g、N-t-ブチルアクリルアミド(TBAA)の10質量%メタノール溶液を2g仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/1,1-ジフルオロエチレン=33/67モル%の混合ガスを連続して供給し、系内圧力を1.5MPaGに保った。そして、N-t-ブチルアクリルアミドの10質量%メタノール溶液についても合計量3.1gを連続して仕込み、5時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Aの白色粉末50gを得た。
得られた含フッ素重合体Aは以下の組成及び物性を有していた。
VdF/TFE/TBAA=66.4/33.4/0.2(モル%)
5wt%NMP溶液粘度:493mPa・s(25℃)
重量平均分子量:610000
実施例2(含フッ素重合体Bの製造)
内容積6Lのオートクレーブに純水1.8kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、テトラフルオロエチレン82g、1,1-ジフルオロエチレン224g、N-t-ブチルアクリルアミドの10質量%メタノール溶液を5.7g仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1.7g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/1,1-ジフルオロエチレン=33/67モル%の混合ガスを連続して供給し、系内圧力を1.28MPaGに保った。そして、N-t-ブチルアクリルアミドの10質量%メタノール溶液についても合計量42.9gを連続して仕込み、6時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Bの白色粉末210gを得た。
得られた含フッ素重合体Bは以下の組成及び物性を有していた。
VdF/TFE/TBAA=66.3/33.2/0.5(モル%)
5wt%NMP溶液粘度:338mPa・s(25℃)
重量平均分子量:630000 
実施例3(含フッ素重合体Cの製造)
実施例2と同様の重合条件で、初期仕込みのN-t-ブチルアクリルアミドの10質量%メタノール溶液を3.8gに変更し、連続して追加するN-t-ブチルアクリルアミドの10質量%メタノール溶液の合計量を21.5gにて重合を行い、含フッ素重合体Cを得た。
得られた含フッ素重合体Cは以下の組成及び物性を有していた。
VdF/TFE/TBAA=66.4/33.3/0.3(モル%)
5wt%NMP溶液粘度:1021mPa・s(25℃)
重量平均分子量:900000
実施例7(含フッ素重合体Dの製造)
内容積6Lのオートクレーブに純水1.8kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、テトラフルオロエチレン82g、1,1-ジフルオロエチレン224g、N-ビニルアセトアミド(NVAA)の10質量%メタノール溶液を2.29g仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1.7g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/1,1-ジフルオロエチレン=33/67モル%の混合ガスを連続して供給し、系内圧力を1.28MPaGに保った。そして、N-ビニルアセトアミドの10質量%メタノール溶液についても合計量45.0gを連続して仕込み、12時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Dの白色粉末200gを得た。
得られた含フッ素重合体Dは以下の組成及び物性を有していた。
VdF/TFE/NVAA=66.8/32.9/0.3(モル%)
5wt%NMP溶液粘度:121mPa・s(25℃)
重量平均分子量:280000
実施例9(含フッ素重合体Iの製造)
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、テトラフルオロエチレン/1,1-ジフルオロエチレン=5/95モル%の混合ガス260g、酢酸エチル0.6g、N-t-ブチルアクリルアミド(TBAA)の10質量%メタノール溶液を5.7g仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を3.0g添加して重合を開始した。
重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/1,1-ジフルオロエチレン=15/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。そして、N-t-ブチルアクリルアミドの10質量%メタノール溶液についても合計量180gを連続して仕込み、36時間、攪拌を継続した。
そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Iの白色粉末900gを得た。
得られた含フッ素重合体Iは以下の組成及び物性を有していた。
VdF/TFE/TBAA=83.4/16.3/0.3(モル%)
5wt%NMP溶液粘度:400mPa・s(25℃)
重量平均分子量:830000
実施例10(含フッ素重合体Jの製造)
内容積6Lのオートクレーブに純水1.9kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.8kgを仕込み、系内を37℃、攪拌速度580rpmに保った。
その後、テトラフルオロエチレン/1,1-ジフルオロエチレン=5/95モル%の混合ガス260g、酢酸エチル0.6g、N-t-ブチルアクリルアミド(TBAA)の10質量%メタノール溶液を5.7g仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を2.6g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/1,1-ジフルオロエチレン=15/85モル%の混合ガスを連続して供給し、系内圧力を1.3MPaGに保った。そして、N-t-ブチルアクリルアミドの10質量%メタノール溶液についても合計量180gを連続して仕込み、26時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Jの白色粉末900gを得た。得られた含フッ素重合体Jは以下の組成及び物性を有していた。
VdF/TFE/TBAA=83.0/16.7/0.3(モル%)
5wt%NMP溶液粘度:600mPa・s(25℃)
重量平均分子量:1150000
比較例1(含フッ素重合体Zの製造)
内容積4Lのオートクレーブに純水1.3kgを投入し、充分に窒素置換を行った後、オクタフルオロシクロブタン1.3kgを仕込み、系内を37℃、攪拌速度580rpmに保った。その後、テトラフルオロエチレン55g、1,1-ジフルオロエチレン145g仕込み、その後にジ-n-プロピルパーオキシジカーボネートの50質量%メタノール溶液を1g添加して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/1,1-ジフルオロエチレン=32/68モル%の混合ガスを連続して供給し、系内圧力を1.28MPaGに保った。そして、8時間、攪拌を継続した。そして、放圧して大気圧に戻した後、反応生成物を水洗、乾燥して、含フッ素重合体Zの白色粉末190gを得た。
得られた含フッ素重合体Zは以下の組成及び物性を有していた。
VdF/TFE=66.5/33.5(モル%)
5wt%NMP溶液粘度:970mPa・s(25℃)
重量平均分子量:780000
比較例2(含フッ素重合体Y)
呉羽化学工業社製PVdFであるKF7200を用いた。
重量平均分子量:790000
比較例3(含フッ素重合体X)
呉羽化学工業社製PVdFであるKF9200を用いた。
重量平均分子量:650000
実施例4(含フッ素重合体Eの製造)
含フッ素重合体AのNMP溶液と含フッ素重合体YのNMP溶液をそれぞれ調製し、含フッ素重合体Aと含フッ素重合体Yの固形分の重量比率が50/50になるように溶液ブレンドすることにより製造した。
実施例5(含フッ素重合体Fの製造)
含フッ素重合体AのNMP溶液と含フッ素重合体YのNMP溶液をそれぞれ調製し、含フッ素重合体Aと含フッ素重合体Yの固形分の重量比率が30/70になるように溶液ブレンドすることにより製造した。
実施例6(含フッ素重合体Gの製造)
含フッ素重合体AのNMP溶液と含フッ素重合体XのNMP溶液をそれぞれ調製し、含フッ素重合体Aと含フッ素重合体Xの固形分の重量比率が30/70になるように溶液ブレンドすることにより製造した。
実施例8(含フッ素重合体Hの製造)
含フッ素重合体AのNMP溶液と含フッ素重合体XのNMP溶液をそれぞれ調製し、含フッ素重合体Aと含フッ素重合体Xの固形分の重量比率が20/80になるように溶液ブレンドすることにより製造した。
実施例11(含フッ素重合体Kの製造)
含フッ素重合体IのNMP溶液と含フッ素重合体YのNMP溶液をそれぞれ調製し、含フッ素重合体Iと含フッ素重合体Yの固形分の重量比率が20/80になるように溶液ブレンドすることにより製造した。
実施例12(含フッ素重合体Lの製造)
含フッ素重合体JのNMP溶液と含フッ素重合体YのNMP溶液をそれぞれ調製し、含フッ素重合体Jと含フッ素重合体Yの固形分の重量比率が20/80になるように溶液ブレンドすることにより製造した。
含フッ素重合体の各種物性の測定・評価方法は次のとおりである。
(ポリマー組成)
NMR分析装置(アジレント・テクノロジー株式会社製、VNS400MHz)を用いて、19F-NMR測定でポリマーのDMSO溶液状態にて測定した。
19F-NMR測定にて、下記のピークの面積(A、B、C、D)を求め、VdFとTFEの比率を計算した。
A:-86ppm~-98ppmのピークの面積
B:-105ppm~-118ppmのピークの面積
C:-119ppm~-122ppmのピークの面積
D:-122ppm~-126ppmのピークの面積
VdFの割合:(4A+2B)/(4A+3B+2C+2D)×100[mol%]
TFEの割合:(B+2C+2D)/(4A+3B+2C+2D)×100[mol%]
(重量平均分子量)
ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー株式会社製のAS-8010、CO-8020、カラム(GMHHR-Hを3本直列に接続)、および、株式会社島津製作所製RID-10Aを用い、溶媒としてジメチルホルムアミド(DMF)を流速1.0ml/分で流して測定したデータ(リファレンス:ポリスチレン)より算出する。
(溶液粘度)
含フッ素重合体の5質量%N-メチル-2-ピロリドン溶液を調製し、東機産業株式会社製B型粘度計TV-10Mを用いて25℃で粘度を測定した。結果を表1に示す。
(含フッ素重合体のキャストフィルムの作製)
得られた含フッ素重合体の溶液をPETフィルム上あるいはアルミ箔上にキャストコーティングする。塗布後、送風乾燥機またはホットプレートを用いて100~120℃で乾燥しながらNMPを完全に揮発させ、帯状のポリマーフィルムを作製する。
(含フッ素重合体の集電体との密着性の測定)
アルミ箔あるいは銅箔上に作製したポリマーフィルムを端部だけアルミ箔あるいは銅箔から剥がし、テンシロンにて180度剥離試験を行う。測定方法はASTM D-638(1999)に準拠した。密着強度および剥離挙動により、以下の2種類に分類した。結果を表1及び2に示す。
○:非常に強く密着しており、ポリマーフィルムがアルミ箔あるいは銅箔上から剥離する前に、ポリマーフィルムが切断する。
×:あまり密着しておらず、簡単にポリマーフィルムがアルミ箔あるいは銅箔上から剥離する。
(含フッ素重合体の弾性率の測定)
含フッ素重合体を溶融成形して得られた厚み2mmのシートを、ASTMV型ダンベルに打抜き、テンシロンにて引っ張り弾性率を測定した。結果を表1に示す。
また、含フッ素共重合体を用いて以下のように正極を作成し、評価した。結果を表1及び表2に示す。
(正極合剤用スラリーの調製)
目的とする各電極材料の割合をLiCoO(日本化学工業(株)製):含フッ素共重合体:アセチレンブラック(日本黒鉛(株)製)が質量比で92:5:3になるように秤量する。含フッ素共重合体を濃度が5質量%になるようにN-メチルピロリドン(NMP)に溶解させたのち、この結着剤のNMP溶液に所定量のLiCoOとアセチレンブラックを加え、撹拌機(プライミクス社製 T.K.HIVIS MIX)で40rpmで30分、固形分濃度が50質量%になるようにNMPを追加し、真空脱泡処理を施しながら、80rpmで30分攪拌を行い、正極合剤用スラリーを調製する。
(正極の作製)
調製した上記正極合剤用スラリーをNiメッシュ(200メッシュ)の篩を通してろ過して固形分の粒径を均一化する。つづいて、集電板である厚さ22μmのAl箔上(東洋アルミ社製)に正極合剤用スラリーをアプリケーターにより塗布(正極塗膜の乾燥質量が25mg/cmとなる量)を行う。塗布後、送風定温恒温器(ヤマト科学(株)製)を用いて100~120℃で乾燥しながらNMPを完全に揮発させ、正極を作製する。
(正極の密度の測定)
正極をギャップが75μmのロールプレスに70℃で2回通し、さらにギャップを35μmに変更して2回通した後、正極の面積/膜厚/重量を測定して密度(g/cm)を算出する。
(正極の折り曲げ試験)
作製した正極を縦3cm、横6cmに切り取った後、180°折り畳んだ後拡げて、正極の割れの有無を目視で確認した。割れが確認されない場合は○、割れが確認された場合は×と評価した。
(電極密着性評価(正極の剥離試験))
作製した正極/アルミ箔界面の剥離強度(N/m)をT字剥離試験にて測定した。
Figure JPOXMLDOC01-appb-T000007
表1に示す結果より、本技術を用いて作製された含フッ素重合体は集電体との密着性に優れるとともに、高い柔軟性を有していることが判った。また、柔軟性が高いため、そのポリマーをバインダーとして電極を作成すると電極密度を向上させやすいことも判った。
Figure JPOXMLDOC01-appb-T000008
表2に示す結果より、本技術を用いて作製された含フッ素重合体は他のポリマーとブレンドしても集電体との密着性に優れるとともに、電極密度を向上させやすいことも判った。

Claims (14)

  1. 含フッ素重合体を含む結着剤であって、
    前記含フッ素重合体は、ビニリデンフルオライドに基づく重合単位及びアミド基(-CO-NRR’(R及びR’は、同一又は異なって、夫々水素原子又は置換基を有してもよいアルキル基を表す。))又はアミド結合(-CO-NR”-(R”は、水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいフェニル基を表す。))を有する単量体に基づく重合単位を有し、溶液粘度が10~20,000mPa・sである
    ことを特徴とする結着剤。
  2. 含フッ素重合体は、アミド基又はアミド結合を有する単量体に基づく重合単位が全重合単位に対して0.01~3モル%である請求項1記載の結着剤。
  3. 含フッ素重合体は、更にテトラフルオロエチレンに基づく重合単位を有する請求項1又は2記載の結着剤。
  4. 含フッ素重合体は、全重合単位に対して、ビニリデンフルオライドに基づく重合単位が50~90モル%、テトラフルオロエチレンに基づく重合単位が9.9~49.9モル%である請求項3記載の結着剤。
  5. 含フッ素重合体は、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン及びプロピレンからなる群より選択される少なくとも1種の単量体に基づく重合単位を有する請求項1、2、3又は4記載の結着剤。
  6. 含フッ素重合体は、重量平均分子量が50000~2000000である請求項1、2、3、4又は5記載の結着剤。
  7. 更にフッ化ビニリデン〔VdF〕重合体を含み、含フッ素重合体とVdF重合体との質量比[(含フッ素重合体)/(VdF重合体)]が、90/10~10/90である請求項1、2、3、4、5又は6記載の結着剤。
  8. VdF重合体の重量平均分子量が50000~2000000である請求項7記載の結着剤。
  9. 正極活物質、有機溶剤、及び、請求項1、2、3、4、5、6、7又は8記載の結着剤からなる
    ことを特徴とする正極合剤。
  10. 負極活物質、有機溶剤、及び、請求項1、2、3、4、5、6、7又は8記載の結着剤からなる
    ことを特徴とする負極合剤。
  11. 正極集電体と、正極集電体上に形成された、正極活物質と請求項1、2、3、4、5、6、7又は8記載の結着剤とからなる正極活物質層とを有する正極。
  12. 負極集電体と、負極集電体上に形成された、負極活物質と請求項1、2、3、4、5、6、7又は8記載の結着剤とからなる負極活物質層とを有する負極。
  13. 請求項11記載の正極、負極及び非水系電解液を備えるリチウムイオン二次電池。
  14. 正極、請求項12記載の負極及び非水系電解液を備えるリチウムイオン二次電池。
PCT/JP2013/051468 2012-01-24 2013-01-24 結着剤、正極合剤及び負極合剤 WO2013111822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147021780A KR101599658B1 (ko) 2012-01-24 2013-01-24 결착제, 정극합제 및 부극합제
CN201380005826.0A CN104053687B (zh) 2012-01-24 2013-01-24 接合剂、正极合剂和负极合剂
US14/374,003 US9343744B2 (en) 2012-01-24 2013-01-24 Binder, cathode mixture and anode mixture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012012066 2012-01-24
JP2012-059149 2012-03-15
JP2012059149 2012-03-15
JP2012-012066 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013111822A1 true WO2013111822A1 (ja) 2013-08-01

Family

ID=48873534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051468 WO2013111822A1 (ja) 2012-01-24 2013-01-24 結着剤、正極合剤及び負極合剤

Country Status (5)

Country Link
US (1) US9343744B2 (ja)
JP (2) JP5573980B2 (ja)
KR (1) KR101599658B1 (ja)
CN (1) CN104053687B (ja)
WO (1) WO2013111822A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478667A (zh) * 2016-07-11 2019-03-15 Agc株式会社 电解质材料、包含其的液体组合物及其用途
US11643484B2 (en) * 2015-03-16 2023-05-09 Arkema Inc. Modified fluoropolymers

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056686B1 (en) 2020-06-09 2021-07-06 Enevate Corporation Method and system for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes
JP5949915B2 (ja) * 2012-05-21 2016-07-13 ダイキン工業株式会社 電極合剤
KR20150022837A (ko) * 2012-05-21 2015-03-04 다이킨 고교 가부시키가이샤 전극 합제
JP2014222601A (ja) * 2013-05-13 2014-11-27 三菱レイヨン株式会社 非水二次電池負極用バインダー樹脂、非水二次電池負極用スラリー組成物、非水二次電池用負極、および非水二次電池
WO2015079549A1 (ja) * 2013-11-29 2015-06-04 株式会社日立製作所 リチウムイオン二次電池およびその製造方法、リチウムイオン二次電池用結着剤溶液
CN113067103A (zh) * 2013-12-06 2021-07-02 大金工业株式会社 二次电池用隔膜和二次电池
KR102005870B1 (ko) * 2016-01-15 2019-07-31 삼성에스디아이 주식회사 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
EP3219771B1 (en) * 2016-03-14 2019-02-06 3M Innovative Properties Company Fluoropolymer compositions with high content of inorganic material
WO2018056083A1 (ja) * 2016-09-20 2018-03-29 日本ゼオン株式会社 非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
US10847800B2 (en) * 2016-10-07 2020-11-24 Daikin Industries, Ltd. Binder for secondary batteries and electrode mixture for secondary batteries
JP6688206B2 (ja) * 2016-11-22 2020-04-28 本田技研工業株式会社 電極合剤層
CN106803590B (zh) * 2016-11-28 2019-08-02 德阳九鼎智远知识产权运营有限公司 一种锂离子电池负极材料粘接剂及负极材料及锂电池
JP6933478B2 (ja) * 2017-03-21 2021-09-08 株式会社クレハ ゲル状電解質
JP2018154802A (ja) 2017-03-21 2018-10-04 株式会社クレハ 樹脂組成物、二次電池のセパレータ、および二次電池
CN108666523B (zh) * 2017-03-30 2021-01-15 宁德时代新能源科技股份有限公司 阳极浆料用悬浮剂、阳极片以及储能装置
CN109461935B (zh) * 2017-09-06 2020-11-06 宁德时代新能源科技股份有限公司 电极片及电化学储能装置
CN109585896A (zh) 2017-09-29 2019-04-05 辉能科技股份有限公司 可挠电池
TWI664253B (zh) * 2017-09-29 2019-07-01 輝能科技股份有限公司 可撓電池
JP6863470B2 (ja) * 2017-10-30 2021-04-21 ダイキン工業株式会社 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
JP6673375B2 (ja) * 2018-01-31 2020-03-25 ダイキン工業株式会社 空気調和装置の室外機
US20200407543A1 (en) * 2018-03-02 2020-12-31 Arkema Inc. Fluoropolymer dispersion for separator coating
FR3079834B1 (fr) * 2018-04-10 2021-09-10 Arkema Inc Fluoropolymeres fonctionnels
WO2019208791A1 (ja) * 2018-04-27 2019-10-31 株式会社村田製作所 電池、電池パック、電子機器、電動車両および蓄電システム
KR20210013153A (ko) 2018-06-12 2021-02-03 가부시끼가이샤 구레하 바인더 조성물, 전극 합제, 전극 구조체, 전극 구조체의 제조방법 및 이차 전지
CN111615761B (zh) * 2018-09-12 2022-10-28 株式会社Lg化学 电化学装置用隔膜及其制造方法
US12021233B2 (en) 2018-10-03 2024-06-25 Daikin Industries, Ltd. Positive electrode structure and secondary battery
JP7160696B2 (ja) * 2019-01-11 2022-10-25 カーリットホールディングス株式会社 非水電解質二次電池用電極
WO2021015229A1 (ja) * 2019-07-25 2021-01-28 ダイキン工業株式会社 結着剤、固体電池用スラリー、固体電池用電極及び二次固体電池
EP3916842A1 (en) * 2020-05-29 2021-12-01 Arkema Inc. Electrode binder composition for lithium ion electrical storage devices
US20230197963A1 (en) * 2020-06-02 2023-06-22 Arkema Inc. Method of making battery electrodes with improved characteristics
US11233230B2 (en) 2020-06-09 2022-01-25 Enevate Corporation Method and system for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes
US12113200B2 (en) 2020-06-09 2024-10-08 Enevate Corporation Method and system for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes
JP7212291B2 (ja) 2020-08-20 2023-01-25 ダイキン工業株式会社 電池用結着剤、電極合剤、電極および二次電池
CN112054262A (zh) 2020-08-28 2020-12-08 甘肃电气装备集团生物科技工程有限公司 适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法
JP7481649B2 (ja) 2020-09-09 2024-05-13 ダイキン工業株式会社 固体二次電池用結着剤、固体二次電池用スラリー、固体二次電池用層形成方法及び固体二次電池
EP4411897A1 (en) * 2021-09-30 2024-08-07 Daikin Industries, Ltd. Polytetrafluoroethylene powder, electrode binder, electrode mixture, electrode, and secondary battery
TW202333410A (zh) * 2021-09-30 2023-08-16 日商大金工業股份有限公司 聚四氟乙烯粉末、電極用黏合劑、電極合劑、電極、及二次電池
JP7303468B2 (ja) * 2021-09-30 2023-07-05 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
EP4428208A1 (en) * 2022-06-16 2024-09-11 Contemporary Amperex Technology Co., Limited Binder composition, positive electrode plate, secondary battery, and electric apparatus
EP4421140A1 (en) * 2022-06-16 2024-08-28 Contemporary Amperex Technology Co., Limited Binder composition, positive electrode plate, secondary battery and electric device
CN114891146B (zh) * 2022-06-21 2023-09-19 万华化学(四川)电池材料科技有限公司 一种高耐热的偏氟乙烯共聚物及其制备方法和应用
CN118476115A (zh) * 2022-07-05 2024-08-09 宁德时代新能源科技股份有限公司 聚合物改性多孔材料、膜电极、二次电池和用电装置
CN115286730B (zh) * 2022-08-16 2023-05-26 乳源东阳光氟树脂有限公司 一种偏氟乙烯共聚物及其制备方法与应用
CN115133035B (zh) * 2022-08-30 2023-03-10 宁德时代新能源科技股份有限公司 正极浆料及其制备方法、二次电池、电池模块、电池包和用电装置
CN117638072A (zh) * 2022-08-30 2024-03-01 宁德时代新能源科技股份有限公司 含氟聚合物、其制备方法和用途,粘结剂组合物、二次电池、电池模块、电池包及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320311A (ja) * 1989-04-28 1991-01-29 Soc Atochem 硬化性のフッ素化共重合体、その製造法ならびにワニスおよびペイントにおけるその使用
JPH10233217A (ja) * 1996-12-16 1998-09-02 Daikin Ind Ltd 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JPH10302799A (ja) * 1997-04-25 1998-11-13 Jsr Corp 非水系電池電極用バインダー
JP2003263987A (ja) * 2002-03-08 2003-09-19 Mitsubishi Materials Corp リチウムイオンポリマー二次電池用結着剤
WO2007088979A1 (ja) * 2006-02-02 2007-08-09 Jsr Corporation 重合体組成物、二次電池電極用ペースト、及び二次電池電極
JP2011192620A (ja) * 2010-03-17 2011-09-29 Toyo Ink Sc Holdings Co Ltd リチウムイオン二次電池電極用カーボンブラック分散体の製造方法
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019421B2 (ja) 1990-12-28 2000-03-13 ソニー株式会社 非水電解質二次電池
JP3121943B2 (ja) 1992-12-02 2001-01-09 呉羽化学工業株式会社 フッ化ビニリデン系共重合体
EP0824120A4 (en) * 1995-05-02 1998-12-02 Du Pont FLUORELASTOMER
EP0964464B1 (en) 1996-12-16 2010-08-25 Daikin Industries, Ltd. Binder for rechargeable battery with nonaqueous electrolyte and battery electrode depolarizing mix prepared using the same
US20040072072A1 (en) * 2001-11-20 2004-04-15 Tadashi Suzuki Electrode active material electrode lithium-ion secondary battery method of making electrode active material and method of making lithium-ion secondary battery
US6846880B2 (en) * 2002-10-11 2005-01-25 3M Innovative Properties Company Fluoropolymer compositions
JP5283383B2 (ja) * 2005-09-28 2013-09-04 東レバッテリーセパレータフィルム株式会社 ポリエチレン微多孔膜の製造方法及び電池用セパレータ
EP2010388A2 (en) * 2006-04-21 2009-01-07 Arkema France Multilayer structure having a grafted polyvinylidene fluoride blend layer
US20080172750A1 (en) * 2007-01-16 2008-07-17 Keithley Craig J Self validation of user authentication requests

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320311A (ja) * 1989-04-28 1991-01-29 Soc Atochem 硬化性のフッ素化共重合体、その製造法ならびにワニスおよびペイントにおけるその使用
JPH10233217A (ja) * 1996-12-16 1998-09-02 Daikin Ind Ltd 非水電解液二次電池用結着剤およびそれを用いた電池電極合剤
JPH10302799A (ja) * 1997-04-25 1998-11-13 Jsr Corp 非水系電池電極用バインダー
JP2003263987A (ja) * 2002-03-08 2003-09-19 Mitsubishi Materials Corp リチウムイオンポリマー二次電池用結着剤
WO2007088979A1 (ja) * 2006-02-02 2007-08-09 Jsr Corporation 重合体組成物、二次電池電極用ペースト、及び二次電池電極
JP2011192620A (ja) * 2010-03-17 2011-09-29 Toyo Ink Sc Holdings Co Ltd リチウムイオン二次電池電極用カーボンブラック分散体の製造方法
JP2011228073A (ja) * 2010-04-19 2011-11-10 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643484B2 (en) * 2015-03-16 2023-05-09 Arkema Inc. Modified fluoropolymers
CN109478667A (zh) * 2016-07-11 2019-03-15 Agc株式会社 电解质材料、包含其的液体组合物及其用途
CN109478667B (zh) * 2016-07-11 2023-03-24 Agc株式会社 电解质材料、包含其的液体组合物及其用途

Also Published As

Publication number Publication date
US20150017532A1 (en) 2015-01-15
JP2013219016A (ja) 2013-10-24
JP2013229337A (ja) 2013-11-07
US9343744B2 (en) 2016-05-17
KR20140112538A (ko) 2014-09-23
KR101599658B1 (ko) 2016-03-03
CN104053687A (zh) 2014-09-17
JP5573980B2 (ja) 2014-08-20
CN104053687B (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5573980B2 (ja) 結着剤、正極合剤及び負極合剤
JP6863470B2 (ja) 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
JP6269890B1 (ja) 二次電池用結着剤及び二次電池用電極合剤
JP5949915B2 (ja) 電極合剤
JP5949914B2 (ja) 電極合剤
JP7212291B2 (ja) 電池用結着剤、電極合剤、電極および二次電池
JP2018063932A (ja) 二次電池用結着剤及び二次電池用電極合剤
JP2018060745A (ja) 二次電池用結着剤及び二次電池用電極合剤
JP2024026579A (ja) ポリビニリデンフルオライド、結着剤、電極合剤、電極および二次電池
US20240088392A1 (en) Electrode mixture, secondary battery, and composition
WO2021172586A1 (ja) 組成物、結着剤、電極合剤、電極および二次電池
WO2023277055A1 (ja) 電極形成用組成物、電極および二次電池
JP2023104894A (ja) 電気化学デバイス用組成物、電極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147021780

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13741169

Country of ref document: EP

Kind code of ref document: A1