WO2010090164A1 - 多孔質電極基材、その製造方法、膜-電極接合体、および固体高分子型燃料電池 - Google Patents
多孔質電極基材、その製造方法、膜-電極接合体、および固体高分子型燃料電池 Download PDFInfo
- Publication number
- WO2010090164A1 WO2010090164A1 PCT/JP2010/051380 JP2010051380W WO2010090164A1 WO 2010090164 A1 WO2010090164 A1 WO 2010090164A1 JP 2010051380 W JP2010051380 W JP 2010051380W WO 2010090164 A1 WO2010090164 A1 WO 2010090164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- porous electrode
- electrode substrate
- fibers
- short
- carbon
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4242—Carbon fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43838—Ultrafine fibres, e.g. microfibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/46—Non-siliceous fibres, e.g. from metal oxides
- D21H13/50—Carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H15/00—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
- D21H15/02—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- the present invention relates to a porous electrode substrate used in a polymer electrolyte fuel cell using gaseous fuel and liquid fuel, a membrane-electrode assembly using the same, and a polymer electrolyte fuel cell.
- a polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. .
- the polymer electrolyte fuel cell can be used as a power generator for a mobile body such as a private power generator or an automobile.
- Such a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). Further, this fuel cell has two gas diffusion electrodes each having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a gas diffusion electrode base material, with each catalyst layer side facing inward. It has a structure bonded to both surfaces of the molecular electrolyte membrane.
- MEA Membrane Electrode Assembly
- separators having gas flow paths for supplying fuel gas or oxidizing gas and for discharging generated gas and excess gas are installed on both outer sides of the MEA.
- the gas diffusion electrode substrate is fastened by a separator with a load of several MPa for the purpose of reducing electrical contact resistance and suppressing leakage of fuel gas or oxidizing gas supplied from the separator to the outside of the fuel cell. Therefore, mechanical strength is required.
- the gas diffusion electrode base material mainly needs to have the following three functions, it is usually a porous electrode base material having a porous structure.
- the first function required of the gas diffusion electrode base material is a function of supplying the fuel gas or the oxidizing gas uniformly to the noble metal catalyst in the catalyst layer from the gas flow path formed in the separator disposed on the outside thereof. is there.
- the second function is a function of discharging water generated by the reaction in the catalyst layer.
- the third function is a function of conducting electrons necessary for the reaction in the catalyst layer or electrons generated by the reaction in the catalyst layer to the separator. In order to provide these functions, it is generally effective to use a carbonaceous material for the gas diffusion electrode substrate.
- the thickness is 0.05 to 0.5 mm
- the bulk density is 0.3 to 0.8 g / cm 3
- the strain rate is 10 mm / min
- the distance between fulcrums is 2 cm
- the specimen width is 1 cm.
- a porous carbon electrode substrate for a fuel cell in which the bending strength is 10 MPa or more and the bending deflection is 1.5 mm or more.
- this porous electrode base material has the problems of high mechanical strength, small undulation, sufficient gas permeability and conductivity, and high manufacturing cost.
- the thickness is 0.15 to 1.0 mm
- the bulk density is 0.15 to 0.45 g / cm 3
- the carbon fiber content is 95% by mass or more
- the compression deformation rate is 10 to 35%
- the electric resistance value is 6 m ⁇ .
- a carbon fiber sheet having a texture of 5 to 70 g is disclosed.
- Patent Document 3 discloses a porous electrode base material obtained by carbonizing a sheet made of carbon fiber and acrylic pulp fiber. Although this porous electrode base material can be manufactured at low cost, there is a problem that there is little entanglement between the carbon fiber and the acrylic pulp fiber when forming the sheet, and it is difficult to handle the porous electrode base material.
- Acrylic pulp fibers have almost no polymer molecular orientation compared to ordinary fibrous materials, so the carbonization rate at the time of carbonization is low, and it is necessary to add many acrylic pulp fibers in order to improve handling properties. there were.
- the present invention overcomes the above-mentioned problems, has little breakage during pressurization, has good handleability, high thickness accuracy, low undulation, and sufficient gas permeability and conductivity. It is an object of the present invention to provide a porous electrode substrate and a method for manufacturing a porous electrode substrate whose manufacturing cost is low.
- the manufacturing method of the porous electrode base material which has the process (2) carbonized at temperature.
- the porous electrode substrate having the step (3) of heating and press-molding the precursor sheet at a temperature of less than 200 ° C.
- the porous electrode base material of the present invention has little breakage during compression, good handling properties, small undulation, and sufficient gas permeability and conductivity.
- the method for producing a porous electrode substrate of the present invention is low in cost because a resin binding step is unnecessary.
- the porous electrode substrate of the present invention can take a sheet shape, a spiral shape or the like.
- the basis weight of the porous electrode substrate in the form of a sheet is preferably about 15 to 100 g / m 2 .
- the thickness is preferably about 50 to 300 ⁇ m.
- the gas permeability is preferably about 500 ml / hr / cm 2 / mmAq or more.
- the penetration resistance (electric resistance in the thickness direction) is preferably 50 m ⁇ ⁇ cm 2 or less. In addition, the measuring method of gas permeability and penetration direction resistance is mentioned later.
- the short carbon fibers (A) constituting the porous electrode substrate are dispersed in a planar shape. “Dispersed in a planar manner” means that the short carbon fibers (A) are present in parallel or substantially parallel to the surface of the sheet-like electrode substrate. Since it is thus dispersed, short-circuiting by the short carbon fibers (A) and breakage of the short carbon fibers (A) can be prevented.
- the orientation direction of the short carbon fibers (A) in the plane may be substantially random, and the orientation in a specific direction may be high.
- the short carbon fibers (A) are present in a straight line.
- the short carbon fibers (A) are not directly bonded, but are joined by the reticulated carbon fibers (B).
- the carbon short fibers (A) constituting the porous electrode substrate include carbon fibers such as polyacrylonitrile-based carbon fibers (hereinafter sometimes referred to as “PAN-based carbon fibers”), pitch-based carbon fibers, and rayon-based carbon fibers.
- disconnected to suitable length is mentioned.
- the fiber length is preferably about 2 to 12 mm from the viewpoint of dispersibility. From the viewpoint of the mechanical strength of the porous electrode substrate, PAN-based carbon fibers are preferred.
- the diameter of the short carbon fiber (A) is preferably 3 to 9 ⁇ m from the viewpoint of production cost and dispersibility of the short carbon fiber. From the viewpoint of reducing the waviness of the porous electrode substrate, it is more preferably 4 ⁇ m or more and 8 ⁇ m or less.
- the reticulated carbon fiber (B) having an average diameter of 4 ⁇ m or less is a precursor sheet in which carbon fiber precursor short fibers (b) (hereinafter sometimes referred to as fibers (b)) having an average diameter of 5 ⁇ m or less, which will be described later, are described later.
- fibers (b) carbon fiber precursor short fibers
- What is fused at the portion in contact with each other and further fused at the portion in contact with the short carbon fiber (A) forms a network structure by contraction of the fiber (b).
- the shape of B) is almost linear.
- the network carbon fiber (B) exists in a bent shape or a curved shape.
- the reticulated carbon fiber (B) has a mechanical strength of the porous electrode substrate of 25% by mass or more and 60% by mass or less in order to maintain sufficient mechanical strength. More preferably.
- the porous electrode substrate of the present invention can be produced, for example, by the above method.
- the first production method comprises a step (1) of producing a precursor sheet in which short carbon fibers (A) and short carbon fiber precursor fibers (b) having an average diameter of 5 ⁇ m or less are dispersed, and the precursor sheet is 1000
- the second production method is a method of sequentially performing step (1), step (3) and step (2) of heating and pressing the precursor sheet at a temperature of less than 200 ° C.
- the third production method includes steps (1), (3), a step (4) and a step (2) in which the precursor sheet formed by heating and pressing is oxidized at a temperature of 200 ° C. or higher and lower than 300 ° C. This is a sequential method.
- Fiber (b) is obtained by cutting long carbon fiber precursor fibers to an appropriate length.
- the fiber length of the fiber (b) is preferably about 2 to 20 mm from the viewpoint of dispersibility.
- the cross-sectional shape of the fiber (b) is not particularly limited, but a fiber having a high roundness is preferable from the viewpoint of mechanical strength after carbonization and production cost.
- the diameter of the fiber (b) is preferably 5 ⁇ m or less in order to suppress breakage due to shrinkage during carbonization. If it is 5 micrometers or less, many joint points with the carbon short fiber (A) after carbonization can also be ensured, and it is preferable.
- Such fibers (b) include polyacrylonitrile-based carbon fiber precursor short fibers (hereinafter sometimes referred to as “PAN-based carbon fiber precursor short fibers”), cellulose-based carbon fiber precursor short fibers, and phenol-based carbon fibers.
- PAN-based carbon fiber precursor short fibers polyacrylonitrile-based carbon fiber precursor short fibers
- cellulose-based carbon fiber precursor short fibers cellulose-based carbon fiber precursor short fibers
- phenol-based carbon fibers A precursor short fiber etc.
- a precursor short fiber etc. can be mentioned.
- PAN-based carbon fiber precursor short fibers are preferred.
- the mixing ratio with the short carbon fibers (A), and the presence or absence of oxidation treatment at 200 ° C. or more and 300 ° C. or less the net-like carbon fibers in the finally obtained porous electrode substrate
- the remaining ratio as (B) is different.
- the amount of the fiber (b) used relative to 100 parts by mass of the short carbon fiber (A) is preferably about 50 to 300 parts by mass.
- a wet method in which a short carbon fiber (A) and a fiber (b) are dispersed in a liquid medium for paper making, or a short carbon fiber (A) and a fiber (b) in air are used.
- a paper making method such as a dry method in which the particles are dispersed and deposited can be applied, but a wet method is preferred.
- an appropriate amount of fibers (b) is used and, if necessary, organic It is preferable to perform wet paper making using a polymer compound as a binder.
- the carbon short fiber (A), the fiber (b) and the organic polymer compound there are a method of stirring and dispersing in water and a method of directly mixing them. A method of diffusing and dispersing in water is preferred.
- the short carbon fiber (A) and the fiber (b), or if necessary, further organic polymer compounds are mixed to make a paper to produce a precursor sheet, whereby the strength of the precursor sheet is improved, and its production It is possible to prevent the short carbon fibers (A) from being peeled off from the precursor sheet and the orientation of the short carbon fibers (A) being changed.
- the precursor sheet can be produced by either a continuous method or a batch method, but it is preferably produced by a continuous method from the viewpoint of the productivity and mechanical strength of the precursor sheet.
- the basis weight of the precursor sheet is preferably about 10 to 200 g / m 2 .
- the thickness is preferably about 20 to 200 ⁇ m.
- the organic polymer compound has a role as a binder (glue) for connecting the components in the precursor sheet containing the short carbon fibers (A) and the fibers (b).
- a binder glue
- polyvinyl alcohol PVA
- polyvinyl acetate or the like can be used as the organic polymer compound.
- polyvinyl alcohol is preferable because it has excellent binding power in the paper making process, and the short carbon fibers do not fall off.
- the precursor sheet can be carbonized as it is, or can be carbonized after heat and pressure molding. Further, the precursor sheet after the heat and pressure molding can be oxidized and then carbonized.
- the short carbon fiber (A) is fused with the fiber (b), and the fiber (b) is carbonized to form a network carbon fiber (B) having an average diameter of 4 ⁇ m or less. Strength and conductivity can be expressed.
- the carbonization treatment is preferably performed in an inert gas in order to increase the conductivity of the porous electrode substrate.
- the carbonization treatment is usually performed at a temperature of 1000 ° C. or higher. Carbonization treatment is preferably performed in a temperature range of 1000 to 3000 ° C, and more preferably in a temperature range of 1000 to 2200 ° C.
- the conductivity of the porous electrode substrate will be insufficient.
- pretreatment by firing in an inert atmosphere of about 300 to 800 ° C. can be performed prior to the carbonization treatment.
- the time for the carbonization treatment is, for example, about 10 minutes to 1 hour.
- the precursor sheet has a temperature of less than 200 ° C. before the carbonization treatment. It is preferable to heat and press mold. Any technique can be applied to the heat and pressure molding as long as the technique can uniformly heat and mold the precursor sheet. For example, a method in which a smooth rigid plate is applied to both surfaces of the precursor sheet and hot pressing, or a method using a continuous belt press apparatus may be mentioned.
- a method using a continuous belt press device is preferable when a continuously produced precursor sheet is heated and pressed. If the porous electrode base material is long, the productivity of the porous electrode base material becomes high, and the subsequent MEA manufacturing can be performed continuously, so that it is possible to reduce the manufacturing cost of the fuel cell. it can. In consideration of productivity and cost of the porous electrode substrate and the fuel cell, it is preferable that the long porous electrode substrate is continuously wound.
- a pressing method in a continuous belt press apparatus there are a method of applying pressure to a belt by a roll press by a linear pressure and a method of pressing by a surface pressure by a hydraulic head press, the latter being a smoother porous electrode substrate Is preferable in that it is obtained.
- the heating temperature in the heat and pressure molding is preferably less than 200 ° C. and more preferably 120 to 190 ° C. in order to effectively smooth the surface of the precursor sheet.
- the molding pressure is not particularly limited, but when the content ratio of the fiber (b) in the precursor sheet is large, the surface of the precursor sheet can be easily smoothed even if the molding pressure is low. If the press pressure is increased more than necessary at this time, there may be a problem that the short carbon fibers (A) are destroyed at the time of heat and pressure molding, a problem that the structure of the porous electrode substrate is too dense, or the like. is there.
- the molding pressure is preferably about 20 kPa to 10 MPa.
- the time for heat and pressure molding can be, for example, 30 seconds to 10 minutes.
- a release agent may be applied in advance to prevent fibers (b) from adhering to the rigid plate or belt.
- the release sheet is preferably sandwiched between the precursor sheet and the rigid plate or belt.
- the precursor sheet is heated and pressed to 200 ° C.
- the oxidation treatment is preferably performed at a temperature of 300 ° C. or lower.
- the oxidation treatment is more preferably performed at 240 to 270 ° C.
- Continuous oxidation treatment by direct pressure heating using a heated porous plate, or continuous oxidation treatment by intermittent direct pressure heating using a heating roll or the like is low in cost, and the carbon short fibers (A) and fibers (b) Is preferable in that it can be fused.
- the oxidation treatment time can be, for example, 1 minute to 2 hours.
- the carbonization treatment can be performed continuously, the productivity of the porous electrode substrate, the MEA, and the fuel cell can be improved, and the manufacturing cost can be reduced.
- the porous electrode substrate of the present invention can be suitably used for a membrane-electrode assembly.
- the membrane-electrode assembly using the porous electrode substrate of the present invention can be suitably used for a polymer electrolyte fuel cell.
- Through-direction resistance The electrical resistance in the thickness direction of the porous electrode base material (through-direction resistance) is 10 mA / cm 2 when the porous electrode base material is sandwiched between gold-plated copper plates and pressed from above and below the copper plate at 1 MPa.
- the resistance value when a current was passed at a current density of was measured from the following equation.
- Through-direction resistance (m ⁇ ⁇ cm 2 ) Measured resistance value (m ⁇ ) ⁇ Sample area (cm 2 )
- Average diameter of reticulated carbon fiber (B) The diameter of reticulated carbon fiber (B) at any 50 locations is measured from a scanning electron micrograph of the surface of the porous electrode substrate, and calculated from the average value. did.
- the swell of the porous electrode substrate is the maximum height of the porous electrode substrate when a porous electrode substrate having a length of 250 mm and a width of 250 mm is left on a flat plate. Calculated from the difference in minimum values.
- (7) Handling property of porous electrode base material When handling the porous electrode base material, if the shape can be maintained (when it is lifted, it will not break, break, break, break, etc.), it is judged that the handling property is good. did. On the other hand, when it corresponds to any of cracking, breaking, breaking, and tearing, it was judged that the handling property was bad.
- Example 1 As the carbon short fiber (A), a PAN-based carbon fiber having an average fiber diameter of 7 ⁇ m and an average fiber length of 3 mm was prepared. Moreover, as carbon fiber precursor short fibers (b) having an average diameter of 5 ⁇ m or less, acrylic short fibers (trade name: D122, manufactured by Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 4 ⁇ m and an average fiber length of 3 mm were prepared. Furthermore, polyvinyl alcohol (PVA) short fibers (Kuraray Co., Ltd., trade name: VBP105-1) having an average fiber length of 3 mm were prepared as organic polymer compounds.
- PVA polyvinyl alcohol
- the porous electrode base material had almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, and good gas permeability, thickness, and penetration direction resistance. Moreover, the average diameter of the mesh-like carbon fiber (B) was 3 ⁇ m, and the content rate was 32 mass%. A scanning electron micrograph of the surface of this porous electrode substrate is shown in FIG. It was confirmed that the dispersed short carbon fibers (A) were joined by the reticulated carbon fibers (B). The evaluation results are shown in Table 1.
- Examples 2 to 3, 11 to 13 A porous electrode substrate was obtained in the same manner as in Example 1 except that the amount of acrylic short fibers and PVA short fibers used and the basis weight of the precursor sheet were set to the values shown in Table 1.
- the porous electrode substrate had almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, and good gas permeability, thickness, and penetration direction resistance.
- the short carbon fibers (A) dispersed in a planar shape were joined via the reticulated carbon fibers (B). The evaluation results are shown in Table 1.
- Example 14 The porous electrode base material was obtained in the same manner as in Example 1 except that the amount of acrylic short fibers and PVA short fibers used and the basis weight of the precursor sheet were set to the values shown in Table 1 and were pressure-heat molded with one sheet. .
- the porous electrode substrate had almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, and good gas permeability, thickness, and penetration direction resistance.
- the short carbon fibers (A) dispersed in a planar shape were joined via the reticulated carbon fibers (B). The evaluation results are shown in Table 1.
- Example 6 The carbon fiber precursor short fibers (b) having an average diameter of 5 ⁇ m or less were used except that acrylic short fibers (Mitsubishi Rayon Co., Ltd., trade name: D125) having an average fiber diameter of 3 ⁇ m and an average fiber length of 3 mm were used.
- acrylic short fibers Mitsubishi Rayon Co., Ltd., trade name: D125
- a porous electrode substrate was obtained.
- the porous electrode substrate had almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, and good gas permeability, thickness, and penetration direction resistance.
- the short carbon fibers (A) dispersed in a planar shape were joined via the reticulated carbon fibers (B). The evaluation results are shown in Table 1.
- Example 7 A porous electrode substrate was obtained in the same manner as in Example 6 except that the amount of acrylic short fibers and PVA short fibers used and the basis weight of the precursor sheet were set to the values shown in Table 1.
- the porous electrode substrate had almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, and good gas permeability, thickness, and penetration direction resistance.
- the short carbon fibers (A) dispersed in a planar shape were joined via the reticulated carbon fibers (B).
- the evaluation results are shown in Table 1.
- Example 8 A porous electrode substrate was obtained in the same manner as in Example 1 except that the oxidation treatment was not performed.
- Example 9 A porous electrode substrate was obtained in the same manner as in Example 1 except that the heat and pressure treatment and the oxidation treatment were not performed. The structure and performance of the porous electrode substrate were as good as in Example 1. The evaluation results are shown in Table 1.
- Example 10 Production of membrane-electrode assembly (MEA) Two sets of porous electrode base materials obtained in Example 1 were prepared for a cathode and an anode. Further, a catalyst layer (catalyst layer area: 25 cm 2 , Pt adhesion) made of catalyst-supported carbon (catalyst: Pt, catalyst support amount: 50% by mass) on both sides of a perfluorosulfonic acid polymer electrolyte membrane (film thickness: 30 ⁇ m). An amount of 0.3 mg / cm 2 ) was prepared. This laminate was sandwiched between cathode and anode porous carbon electrode base materials and joined together to obtain an MEA.
- a catalyst layer catalyst layer area: 25 cm 2 , Pt adhesion
- catalyst-supported carbon catalyst: Pt, catalyst support amount: 50% by mass
- Example 1 A porous electrode substrate was obtained in the same manner as in Example 1 except that 133 parts of PVA short fibers were used without using acrylic short fibers, and the basis weight of the precursor sheet was 35 g / m 2 . In the porous electrode base material, since PVA hardly carbonizes, the short carbon fibers (A) are not joined, and the sheet-like structure cannot be maintained.
- Comparative Example 2 Porous in the same manner as in Example 2 except that the carbon short fiber (A) is not used, only 100 parts of acrylic short fibers and 16 parts of PVA short fibers are used, and the basis weight of the precursor sheet is 58 g / m 2. An electrode substrate was obtained. The porous electrode substrate could not maintain a sheet-like structure due to shrinkage when the acrylic short fibers were carbonized.
- Example 3 A porous electrode substrate was obtained in the same manner as in Example 1 except that acrylic short fibers having an average fiber diameter of 10 ⁇ m and an average fiber length of 10 mm were used as the carbon fiber precursor short fibers (b). In this porous electrode substrate, it was observed that the acrylic short fibers were broken at the binding portion with the carbon short fibers due to shrinkage during carbonization. Moreover, the network structure was not formed. The penetration direction resistance was larger than that of the porous electrode substrate of Example 1. The evaluation results are shown in Table 1. The fiber diameter of the short carbon fiber derived from acrylic short fiber in the porous electrode substrate was 7 ⁇ m, and the content was 26% by mass.
- a porous electrode substrate was obtained in the same manner as in Example 1 except that the amount of acrylic short fibers and PVA short fibers used and the basis weight of the precursor sheet were set to the values shown in Table 1.
- the porous electrode substrate has almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, gas permeability, thickness, and penetration direction resistance, respectively,
- the short carbon fibers (A) dispersed in a plane were joined by the network carbon fibers (B).
- the evaluation results are shown in Table 1.
- a porous electrode substrate was obtained in the same manner as in Example 6 except that the amount of acrylic short fibers and PVA short fibers used and the basis weight of the precursor sheet were set to the values shown in Table 1.
- the porous electrode substrate has almost no in-plane shrinkage during carbonization treatment, good handling properties, small swell of 2 mm or less, gas permeability, thickness, and penetration direction resistance, respectively.
- the carbon short fibers (A) dispersed in a plane were joined by the network carbon fibers (B), but compared to the porous electrode base material of Example 6, there were many breaks due to compression applied during MEA production. It was.
- the evaluation results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Textile Engineering (AREA)
- Inorganic Chemistry (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
- Fuel Cell (AREA)
Abstract
Description
〔1〕炭素短繊維(A)が、平均径4μm以下の網目状炭素繊維(B)によって接合されてなる多孔質電極基材。
〔2〕炭素短繊維(A)と平均径5μm以下の炭素繊維前駆体短繊維(b)とが分散した前駆体シートを製造する工程(1)、及び、この前駆体シートを1000℃以上の温度で炭素化処理する工程(2)を有する多孔質電極基材の製造方法。
〔3〕前記〔2〕の方法において、工程(1)と工程(2)の間に前記前駆体シートを200℃未満の温度で加熱加圧成型する工程(3)を有する多孔質電極基材の製造方法。
〔4〕前記〔3〕の方法において、工程(3)と工程(2)の間に、加熱加圧成型した前記前駆体シートを200℃以上300℃未満の温度で酸化処理する工程(4)を有する多孔質電極基材の製造方法。
〔5〕前記〔1〕に記載の多孔質電極基材を用いた膜-電極接合体。
〔6〕前記〔5〕に記載の膜-電極接合体を用いた固体高分子型燃料電池。
また、炭素短繊維(A)との接合部においては網目状炭素繊維(B)は屈曲状または湾曲状で存在している。多孔質電極基材を100質量%としたときに、網目状炭素繊維(B)は、多孔質電極基材の機械的強度を十分なものに保つため、25質量%以上、60質量%以下であることがより好ましい。
JIS規格P-8117に準拠し、ガーレーデンソメーターを使用して200mLの空気が透過するのにかかった時間を測定し、ガス透気度(ml/hr/cm2/mmAq)を算出した。
(2)厚み
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ((株)ミツトヨ製、商品名:7321)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、金メッキした銅板に多孔質電極基材を挟み、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通方向抵抗(mΩ・cm2)=測定抵抗値(mΩ)×試料面積(cm2)
多孔質電極基材の表面の走査型電子顕微鏡写真から任意の50箇所における網目状炭素繊維(B)の直径を測定し、その平均値より算出した。
網目状炭素繊維(B)の含有率は、得られた多孔質電極基材の目付と使用した炭素短繊維(A)の目付から次式より算出した。
網目状炭素繊維(B)の含有率(%)=[多孔質電極基材の目付(g/m2)-炭素短繊維(A)の目付(g/m2)]÷多孔質電極基材の目付(g/m2)×100
多孔質電極基材のうねりは、平板上に縦250mm横250mmの多孔質電極基材を静置した際の多孔質電極基材の高さの最大値と最小値の差から算出した。
(7)多孔質電極基材のハンドリング性
多孔質電極基材を取り扱う際に、形状が維持できる(持ち上げた際に、割れる、折れる、壊れる、破れるなどしない)場合、ハンドリング性は、良好と判断した。一方、割れる、折れる、壊れる、破れるなどのいずれかに該当する場合、ハンドリング性は、悪いと判断した。
炭素短繊維(A)として、平均繊維径が7μm、平均繊維長が3mmのPAN系炭素繊維を用意した。また、平均径5μm以下の炭素繊維前駆体短繊維(b)として、平均繊維径が4μm、平均繊維長が3mmのアクリル短繊維(三菱レイヨン(株)製、商品名:D122)を用意した。さらに、有機高分子化合物として、平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VBP105-1)を用意した。
アクリル短繊維とPVA短繊維の使用量並びに前駆体シートの目付けを表1に示す値としたこと以外は、実施例1と同様にして多孔質電極基材を得た。多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ハンドリング性は良好で、うねりは2mm以下と小さく、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、平面状に分散した炭素短繊維(A)が、網目状炭素繊維(B)を介して接合されていた。評価結果を表1に示した。
アクリル短繊維とPVA短繊維の使用量並びに前駆体シートの目付けを表1に示す値とし、1枚で加圧加熱成型したこと以外は実施例1と同様にして多孔質電極基材を得た。多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ハンドリング性は良好で、うねりは2mm以下と小さく、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、平面状に分散した炭素短繊維(A)が、網目状炭素繊維(B)を介して接合されていた。評価結果を表1に示した。
(実施例6)
平均径5μm以下の炭素繊維前駆体短繊維(b)として、平均繊維径が3μm、平均繊維長が3mmのアクリル短繊維(三菱レイヨン(株)製、商品名:D125)を用いたこと以外は、実施例1と同様にして多孔質電極基材を得た。多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ハンドリング性は良好で、うねりは2mm以下と小さく、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、平面状に分散した炭素短繊維(A)が、網目状炭素繊維(B)を介して接合されていた。評価結果を表1に示した。
アクリル短繊維とPVA短繊維の使用量並びに前駆体シートの目付けを表1に示す値としたこと以外は、実施例6と同様にして多孔質電極基材を得た。多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ハンドリング性は良好で、うねりは2mm以下と小さく、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、平面状に分散した炭素短繊維(A)が、網目状炭素繊維(B)を介して接合されていた。評価結果を表1に示した。
(実施例8)
酸化処理を実施しなかったこと以外は、実施例1と同様にして多孔質電極基材を得た。多孔質電極基材の構造と性能は実施例1の場合と同様に良好であった。評価結果を表1に示した。
(実施例9)
加熱加圧処理と酸化処理を実施しなかったこと以外は、実施例1と同様にして多孔質電極基材を得た。多孔質電極基材の構造と性能は実施例1の場合と同様に良好であった。評価結果を表1に示した。
(1)膜-電極接合体(MEA)の製造
実施例1で得られた多孔質電極基材2組をカソード用、アノード用として用意した。またパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)の両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm2、Pt付着量:0.3mg/cm2)を形成した積層体を用意した。この積層体を、カソード用、アノード用の多孔質炭素電極基材で挟持し、これらを接合してMEAを得た。
(2)MEAの燃料電池特性評価
前記MEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。この単セルの電流密度-電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。単セルの温度を80℃、燃料ガス利用率を60%、酸化ガス利用率を40%とした。また、燃料ガスと酸化ガスへの加湿は80℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。その結果、電流密度が0.8A/cm2のときの燃料電池セルのセル電圧が0.639V、セルの内部抵抗が3.3mΩであり、良好な特性を示した。
アクリル短繊維を用いず、PVA短繊維133部を用い、前駆体シートの目付けを35g/m2としたこと以外は、実施例1と同様にして多孔質電極基材を得た。多孔質電極基材は、PVAがほとんど炭素化しないため、炭素短繊維(A)が接合されておらず、シート状の構造を維持することができなかった。
(比較例2)
炭素短繊維(A)を用いず、アクリル短繊維100部とPVA短繊維16部のみを用い、前駆体シートの目付けを58g/m2としたこと以外は、実施例2と同様にして多孔質電極基材を得た。多孔質電極基材は、アクリル短繊維が炭素化する際の収縮により、シート状の構造を維持することができなかった。
炭素繊維前駆体短繊維(b)として、平均繊維径が10μm、平均繊維長が10mmのアクリル短繊維を用いたこと以外は、実施例1と同様にして多孔質電極基材を得た。この多孔質電極基材においては、炭素化時の収縮によりアクリル短繊維が炭素短繊維との結着部で破断していることが観察された。また、網目構造は形成されなかった。貫通方向抵抗は実施例1の多孔質電極基材と比較し大きい値を示した。評価結果を表1に示した。多孔質電極基材における、アクリル短繊維由来の炭素繊維の繊維径は7μm、含有率は26質量%であった。
(比較例4、5)
アクリル短繊維とPVA短繊維の使用量並びに前駆体シートの目付けを表1に示す値としたこと以外は、実施例1と同様にして多孔質電極基材を得た。多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ハンドリング性は良好で、うねりは2mm以下と小さく、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であり、また、平面状に分散した炭素短繊維(A)が、網目状炭素繊維(B)によって接合されていたが、実施例1の多孔質電極基材と比較してMEA製造時にかかる圧縮による破壊が多かった。評価結果を表1に示した。
(比較例6、7)
アクリル短繊維とPVA短繊維の使用量並びに前駆体シートの目付けを表1に示す値としたこと以外は、実施例6と同様にして多孔質電極基材を得た。多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ハンドリング性は良好で、うねりは2mm以下と小さく、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であり、また、平面状に分散した炭素短繊維(A)が、網目状炭素繊維(B)によって接合されていたが、実施例6の多孔質電極基材と比較してMEA製造時にかかる圧縮による破壊が多かった。評価結果を表1に示した。
Claims (6)
- 炭素短繊維(A)が、平均径4μm以下の網目状炭素繊維(B)を介して接合されてなる多孔質電極基材。
- 炭素短繊維(A)と平均径5μm以下の炭素繊維前駆体短繊維(b)とが分散した前駆体シートを製造する工程(1)、及び、この前駆体シートを1000℃以上の温度で炭素化処理する工程(2)を有する多孔質電極基材の製造方法。
- 請求項2の方法において、工程(1)と工程(2)の間に前記前駆体シートを200℃未満の温度で加熱加圧成型する工程(3)を有する多孔質電極基材の製造方法。
- 請求項3の方法において、工程(3)と工程(2)の間に、加熱加圧成型した前記前駆体シートを200℃以上300℃未満の温度で酸化処理する工程(4)を有する多孔質電極基材の製造方法。
- 請求項1に記載の多孔質電極基材を用いた膜-電極接合体。
- 請求項5に記載の膜-電極接合体を用いた固体高分子型燃料電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010506747A JP5404609B2 (ja) | 2009-02-04 | 2010-02-02 | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 |
KR1020117020495A KR101701529B1 (ko) | 2009-02-04 | 2010-02-02 | 다공질 전극 기재, 그 제조 방법, 막-전극 접합체, 및 고체 고분자형 연료전지 |
EP10738496A EP2395585A4 (en) | 2009-02-04 | 2010-02-02 | POROUS ELECTRODE SUBSTRATE, METHOD FOR MANUFACTURING SAME, MEMBRANE-ELECTRODE ASSEMBLY, AND SOLID POLYMER TYPE FUEL CELL |
US13/147,814 US8986907B2 (en) | 2009-02-04 | 2010-02-02 | Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell |
CA2751292A CA2751292C (en) | 2009-02-04 | 2010-02-02 | Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell |
CN201080005894.3A CN102301509B (zh) | 2009-02-04 | 2010-02-02 | 多孔质电极基材、其制造方法、膜-电极接合体以及固体高分子型燃料电池 |
US13/892,561 US8927173B2 (en) | 2009-02-04 | 2013-05-13 | Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-023890 | 2009-02-04 | ||
JP2009023890 | 2009-02-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/892,561 Division US8927173B2 (en) | 2009-02-04 | 2013-05-13 | Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010090164A1 true WO2010090164A1 (ja) | 2010-08-12 |
Family
ID=42542058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051380 WO2010090164A1 (ja) | 2009-02-04 | 2010-02-02 | 多孔質電極基材、その製造方法、膜-電極接合体、および固体高分子型燃料電池 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8986907B2 (ja) |
EP (1) | EP2395585A4 (ja) |
JP (1) | JP5404609B2 (ja) |
KR (1) | KR101701529B1 (ja) |
CN (1) | CN102301509B (ja) |
CA (1) | CA2751292C (ja) |
WO (1) | WO2010090164A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102290582A (zh) * | 2011-06-20 | 2011-12-21 | 华南理工大学 | 一种用于燃料电池双极板的不锈钢纤维毡及其制造方法 |
US20120115063A1 (en) * | 2009-11-24 | 2012-05-10 | Mitsubishi Rayon Co., Ltd. | Porous electrode substrate and method for producing the same |
JP2012162835A (ja) * | 2011-02-09 | 2012-08-30 | Mitsubishi Rayon Co Ltd | 炭素繊維含有不織布の製造方法 |
CN103181011A (zh) * | 2010-11-01 | 2013-06-26 | 三菱丽阳株式会社 | 多孔电极基材及其制法、多孔电极基材前体片、膜-电极接合体、以及固体高分子型燃料电池 |
US9181134B1 (en) * | 2011-04-27 | 2015-11-10 | Israzion Ltd. | Process of converting textile solid waste into graphite simple or complex shaped manufacture |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101701529B1 (ko) | 2009-02-04 | 2017-02-01 | 미츠비시 레이온 가부시키가이샤 | 다공질 전극 기재, 그 제조 방법, 막-전극 접합체, 및 고체 고분자형 연료전지 |
JP5585450B2 (ja) | 2009-07-08 | 2014-09-10 | 三菱レイヨン株式会社 | 多孔質電極基材及びその製造方法 |
WO2011065327A1 (ja) | 2009-11-24 | 2011-06-03 | 三菱レイヨン株式会社 | 多孔質電極基材、その製法、前駆体シート、膜-電極接合体、および固体高分子型燃料電池 |
CA2825294A1 (en) | 2011-01-21 | 2012-07-26 | Mitsubishi Rayon Co., Ltd. | Method for manufacturing porous electrode substrate and membrane electrode assembly |
TWI513087B (zh) * | 2011-01-27 | 2015-12-11 | Mitsubishi Rayon Co | 多孔質電極基材、其製造方法、前驅體片、膜-電極接合體以及固態高分子型燃料電池 |
ITRM20120118A1 (it) * | 2012-03-26 | 2013-09-27 | Agenzia Naz Per Le Nuove Tecn Ologie L Ener | Metodo per la realizzazione di feltri da fibre di carbonio di riciclo. |
KR20140141607A (ko) * | 2012-03-30 | 2014-12-10 | 미쯔비시 레이온 가부시끼가이샤 | 다공질 전극 기재, 그의 제조 방법 및 전구체 시트 |
KR101392227B1 (ko) * | 2013-03-21 | 2014-05-27 | 한국에너지기술연구원 | 고분자 나노섬유를 포함하는 탄소섬유 웹 |
DE102015212417B4 (de) * | 2015-07-02 | 2020-02-20 | Sgl Carbon Se | Verwendung von dünnen Carbonfaservliesen hergestellt durch einen Horizontalspaltprozess |
KR102259398B1 (ko) * | 2016-06-21 | 2021-05-31 | 코오롱인더스트리 주식회사 | 연료전지용 가스확산층용 탄소 종이의 제조방법 |
TWI610882B (zh) * | 2017-03-07 | 2018-01-11 | 國立清華大學 | 電極薄膜及其製造方法 |
CN113355951B (zh) * | 2021-06-03 | 2022-09-06 | 成都硕屋科技有限公司 | 一种无石棉的复合硅酸盐保温毡生产系统及其方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63222078A (ja) * | 1987-03-10 | 1988-09-14 | 東レ株式会社 | 炭素繊維多孔体の製造方法 |
JPH06123050A (ja) * | 1992-02-19 | 1994-05-06 | Mitsubishi Rayon Co Ltd | 炭素繊維フェルトおよびその製造方法 |
WO2001056103A1 (fr) | 2000-01-27 | 2001-08-02 | Mitsubishi Rayon Co., Ltd. | Materiau d'electrode a base de carbone poreux, son procede de fabrication, et papier a fibres de carbone |
WO2002042534A1 (fr) | 2000-11-24 | 2002-05-30 | Toho Tenax Co., Ltd. | Feuille de fibres de carbone et son procede de production |
JP2002270191A (ja) * | 2001-03-08 | 2002-09-20 | Mitsubishi Rayon Co Ltd | 炭素電極基材及びその製造方法 |
JP2006004858A (ja) * | 2004-06-21 | 2006-01-05 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
WO2006003950A1 (ja) * | 2004-07-06 | 2006-01-12 | Bridgestone Corporation | 複合体、触媒構造体、固体高分子型燃料電池用電極及びその製造方法、並びに固体高分子型燃料電池 |
JP2006040885A (ja) * | 2004-06-21 | 2006-02-09 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
JP2006040886A (ja) * | 2004-06-21 | 2006-02-09 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
JP2007273466A (ja) | 2006-03-20 | 2007-10-18 | Gm Global Technology Operations Inc | 燃料電池用ガス拡散媒体としてのアクリル繊維結合炭素繊維紙 |
JP2008503043A (ja) * | 2004-06-15 | 2008-01-31 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | ガス拡散基材 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651452A1 (en) * | 1993-11-01 | 1995-05-03 | Osaka Gas Co., Ltd. | Porous carbonaceous material and a method for producing the same |
WO2005124907A1 (ja) | 2004-06-21 | 2005-12-29 | Mitsubishi Rayon Co., Ltd. | 多孔質電極基材およびその製造方法 |
CN100527496C (zh) * | 2004-06-21 | 2009-08-12 | 三菱丽阳株式会社 | 多孔质电极基材及其制造方法 |
KR101701529B1 (ko) | 2009-02-04 | 2017-02-01 | 미츠비시 레이온 가부시키가이샤 | 다공질 전극 기재, 그 제조 방법, 막-전극 접합체, 및 고체 고분자형 연료전지 |
JP5585450B2 (ja) | 2009-07-08 | 2014-09-10 | 三菱レイヨン株式会社 | 多孔質電極基材及びその製造方法 |
CN102422471B (zh) | 2009-11-24 | 2014-10-22 | 三菱丽阳株式会社 | 多孔质电极基材及其制造方法 |
WO2011065327A1 (ja) | 2009-11-24 | 2011-06-03 | 三菱レイヨン株式会社 | 多孔質電極基材、その製法、前駆体シート、膜-電極接合体、および固体高分子型燃料電池 |
-
2010
- 2010-02-02 KR KR1020117020495A patent/KR101701529B1/ko active IP Right Grant
- 2010-02-02 CA CA2751292A patent/CA2751292C/en not_active Expired - Fee Related
- 2010-02-02 CN CN201080005894.3A patent/CN102301509B/zh not_active Expired - Fee Related
- 2010-02-02 WO PCT/JP2010/051380 patent/WO2010090164A1/ja active Application Filing
- 2010-02-02 US US13/147,814 patent/US8986907B2/en not_active Expired - Fee Related
- 2010-02-02 JP JP2010506747A patent/JP5404609B2/ja not_active Expired - Fee Related
- 2010-02-02 EP EP10738496A patent/EP2395585A4/en not_active Withdrawn
-
2013
- 2013-05-13 US US13/892,561 patent/US8927173B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63222078A (ja) * | 1987-03-10 | 1988-09-14 | 東レ株式会社 | 炭素繊維多孔体の製造方法 |
JPH06123050A (ja) * | 1992-02-19 | 1994-05-06 | Mitsubishi Rayon Co Ltd | 炭素繊維フェルトおよびその製造方法 |
WO2001056103A1 (fr) | 2000-01-27 | 2001-08-02 | Mitsubishi Rayon Co., Ltd. | Materiau d'electrode a base de carbone poreux, son procede de fabrication, et papier a fibres de carbone |
WO2002042534A1 (fr) | 2000-11-24 | 2002-05-30 | Toho Tenax Co., Ltd. | Feuille de fibres de carbone et son procede de production |
JP2002270191A (ja) * | 2001-03-08 | 2002-09-20 | Mitsubishi Rayon Co Ltd | 炭素電極基材及びその製造方法 |
JP2008503043A (ja) * | 2004-06-15 | 2008-01-31 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | ガス拡散基材 |
JP2006004858A (ja) * | 2004-06-21 | 2006-01-05 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
JP2006040885A (ja) * | 2004-06-21 | 2006-02-09 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
JP2006040886A (ja) * | 2004-06-21 | 2006-02-09 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
WO2006003950A1 (ja) * | 2004-07-06 | 2006-01-12 | Bridgestone Corporation | 複合体、触媒構造体、固体高分子型燃料電池用電極及びその製造方法、並びに固体高分子型燃料電池 |
JP2007273466A (ja) | 2006-03-20 | 2007-10-18 | Gm Global Technology Operations Inc | 燃料電池用ガス拡散媒体としてのアクリル繊維結合炭素繊維紙 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2395585A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120115063A1 (en) * | 2009-11-24 | 2012-05-10 | Mitsubishi Rayon Co., Ltd. | Porous electrode substrate and method for producing the same |
CN103181011A (zh) * | 2010-11-01 | 2013-06-26 | 三菱丽阳株式会社 | 多孔电极基材及其制法、多孔电极基材前体片、膜-电极接合体、以及固体高分子型燃料电池 |
KR101536835B1 (ko) * | 2010-11-01 | 2015-07-14 | 미쯔비시 레이온 가부시끼가이샤 | 다공질 전극 기재, 그의 제조 방법, 다공질 전극 기재 전구체 시트, 막-전극 접합체 및 고체 고분자형 연료 전지 |
JP2012162835A (ja) * | 2011-02-09 | 2012-08-30 | Mitsubishi Rayon Co Ltd | 炭素繊維含有不織布の製造方法 |
US9181134B1 (en) * | 2011-04-27 | 2015-11-10 | Israzion Ltd. | Process of converting textile solid waste into graphite simple or complex shaped manufacture |
CN102290582A (zh) * | 2011-06-20 | 2011-12-21 | 华南理工大学 | 一种用于燃料电池双极板的不锈钢纤维毡及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US8927173B2 (en) | 2015-01-06 |
EP2395585A1 (en) | 2011-12-14 |
JPWO2010090164A1 (ja) | 2012-08-09 |
CN102301509B (zh) | 2015-11-25 |
CA2751292A1 (en) | 2010-08-12 |
JP5404609B2 (ja) | 2014-02-05 |
US20130273454A1 (en) | 2013-10-17 |
CN102301509A (zh) | 2011-12-28 |
KR20110117214A (ko) | 2011-10-26 |
EP2395585A4 (en) | 2012-09-26 |
US8986907B2 (en) | 2015-03-24 |
KR101701529B1 (ko) | 2017-02-01 |
CA2751292C (en) | 2016-09-06 |
US20110294036A1 (en) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5404609B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP5433147B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
WO2011065327A1 (ja) | 多孔質電極基材、その製法、前駆体シート、膜-電極接合体、および固体高分子型燃料電池 | |
JP2013020940A (ja) | 燃料電池用微細多孔質層シート及びその製造方法 | |
JP2010015908A (ja) | ガス拡散電極用基材、その製造方法、および膜−電極接合体 | |
JP5311538B2 (ja) | 多孔質炭素電極基材の製造方法 | |
JP2005100748A (ja) | 電解質膜電極接合体及びその製造方法並びに固体高分子型燃料電池 | |
JP5484777B2 (ja) | 多孔質電極基材およびその製造方法 | |
JP5336804B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP5336911B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および燃料電池 | |
JP4559767B2 (ja) | 炭素電極基材の製造方法 | |
JP5260948B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2006222024A (ja) | 固体高分子型燃料電池、膜−電極接合体およびガス拡散電極基材 | |
JP4781016B2 (ja) | 燃料電池用ガス拡散電極の製造方法 | |
JP5322213B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2011049179A (ja) | 固体高分子型燃料電池用膜−電極接合体およびガス拡散電極基材 | |
JP6183065B2 (ja) | 多孔質炭素電極とその製造方法 | |
JP5433146B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP5322212B2 (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2006351492A (ja) | 燃料電池用ガス拡散層とその製造方法ならびにそれを用いた燃料電池 | |
JP5336912B2 (ja) | 多孔質電極基材の製造方法、それを用いた膜−電極接合体、および燃料電池 | |
JP2014531118A (ja) | ガス拡散基材 | |
JP2017087142A (ja) | 炭化水素改質触媒構造体及びその製造方法、並びに該炭化水素改質触媒構造体を用いた集電体及び固体酸化物形燃料電池 | |
JP2009117325A (ja) | 多孔質電極基材及びそれを用いた燃料電池 | |
JP2008226579A (ja) | 多孔質炭素シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005894.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010506747 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10738496 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2751292 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13147814 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010738496 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6199/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117020495 Country of ref document: KR Kind code of ref document: A |