WO2010074686A1 - Système et procédé d'hydroxyde électrochimique à faible énergie - Google Patents
Système et procédé d'hydroxyde électrochimique à faible énergie Download PDFInfo
- Publication number
- WO2010074686A1 WO2010074686A1 PCT/US2008/088242 US2008088242W WO2010074686A1 WO 2010074686 A1 WO2010074686 A1 WO 2010074686A1 US 2008088242 W US2008088242 W US 2008088242W WO 2010074686 A1 WO2010074686 A1 WO 2010074686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- anode
- cathode
- exchange membrane
- volt
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 title claims description 24
- 239000003792 electrolyte Substances 0.000 claims abstract description 279
- -1 hydroxide ions Chemical class 0.000 claims abstract description 46
- 239000007789 gas Substances 0.000 claims abstract description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 47
- 239000000243 solution Substances 0.000 claims description 47
- 239000012528 membrane Substances 0.000 claims description 35
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 34
- 239000003014 ion exchange membrane Substances 0.000 claims description 33
- 239000003011 anion exchange membrane Substances 0.000 claims description 28
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 25
- 238000005341 cation exchange Methods 0.000 claims description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 17
- 239000011780 sodium chloride Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000013505 freshwater Substances 0.000 claims description 14
- 239000013535 sea water Substances 0.000 claims description 14
- 239000012267 brine Substances 0.000 claims description 13
- 229910001415 sodium ion Inorganic materials 0.000 claims description 13
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 13
- 150000001768 cations Chemical class 0.000 claims description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 5
- 150000002500 ions Chemical group 0.000 claims description 5
- 230000001376 precipitating effect Effects 0.000 claims description 5
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 238000002848 electrochemical method Methods 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 125000002091 cationic group Chemical group 0.000 claims description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims 5
- 229910001882 dioxygen Inorganic materials 0.000 claims 5
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 17
- 239000000460 chlorine Substances 0.000 abstract description 17
- 229910052801 chlorine Inorganic materials 0.000 abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 16
- 239000001301 oxygen Substances 0.000 abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 abstract description 16
- 239000008151 electrolyte solution Substances 0.000 description 64
- 229940021013 electrolyte solution Drugs 0.000 description 63
- 230000005012 migration Effects 0.000 description 11
- 238000013508 migration Methods 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000003929 acidic solution Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical class [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000003843 chloralkali process Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000011160 magnesium carbonates Nutrition 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/14—Alkali metal compounds
- C25B1/16—Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/326—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/402—Alkaline earth metal or magnesium compounds of magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- OH " hydroxide ions
- One way to obtain OH ' in a solution is to dissolve an alkali hydroxide such as sodium hydroxide or magnesium hydroxide in the solution.
- alkali hydroxide such as sodium hydroxide or magnesium hydroxide
- conventional processes for producing hydroxides are very energy intensive, e g , the chlor-alkali process, and they emit significant amounts of carbon dioxide and other greenhouse gases into the environment.
- the present invention pertains to a low energy electrochemical system and method of producing OH " utilizing an ion exchange membrane in an electrochemical cell
- the system in one embodiment comprises an anionic or cationic exchange membrane positioned between a first electrolyte and a second electrolyte, the first electrolyte contacting an anode and the second electrolyte contacting a cathode
- Suitable electrolytes comprise a saltwater including sodium chloride, seawater, brackish water or freshwater,
- OH " forms at the cathode and protons form at the anode without a gas, e.g., chlorine or oxygen, forming at the anode.
- a hydroxide solution e g, sodium hydroxide
- an acid e.g., hydrochloric acid
- OH forms when a volt of less than 0.1 V is applied across the electrodes.
- the system comprises an electrochemical cell in which an anion exchange membrane separates a first electrolyte from a third electrolyte; a cation exchange membrane separates the third electrolyte from a first electrolyte; an anode is in contact with the first electrolyte; and a cathode is in contact with the second electrolyte.
- OH forms at the cathode without a gas, e.g., chlorine or oxygen forming at the anode.
- a hydroxide solution e.g., sodium hydroxide
- an acid e.g., hydrochloric acid
- OH forms when a volt of less than 0.1 V is applied across the electrodes.
- the method comprises migrating ions across an ion exchange membrane that is situated between a first electrolyte and a second electrolyte, the first electrolyte contacting an anode and the second electrolyte contacting a cathode, by applying a voltage across the anode and cathode to form hydroxide ions at the cathode without forming a gas, e.g., chlorine or oxygen at the anode.
- a gas e.g., chlorine or oxygen at the anode.
- a hydroxide solution e.g., sodium hydroxide forms in the second electrolyte in contact with the cathode and an acid, e.g., hydrochloric acid forms in the first electrolyte in contact with the anode.
- an acid e.g., hydrochloric acid
- OH forms when a volt of less than 0.1 V is applied across the electrodes.
- the method comprises applying a voltage across an anode and cathode, wherein (i) the anode is in contact with a first electrolyte that is also in contact with an anion exchange membrane; (ii) the cathode is in contact with a second electrolyte that is also in contact with a cation exchange membrane; and (iii) a third electrolyte is situated between the anion exchange membrane and the cation exchange membrane to form hydroxide ions at the cathode without forming a gas e.g., chlorine or oxygen at the anode.
- a gas e.g., chlorine or oxygen
- OH " forms at the cathode in contact the second electrolyte without a gas e.g., chlorine or oxygen at the anode.
- a hydroxide solution e.g. sodium hydroxide
- an acid e.g., hydrochloric acid
- OH " forms when a volt of less than 0.1 V is applied across the electrodes.
- the system and method are adapted for batch, semi-batch or continuous flows.
- the system is adaptable to form OH " in solution, e.g., sodium hydroxide at the cathode, or an acidic solution, e.g., hydrochloric acid at the anode without forming a gas e.g., chlorine or oxygen at the anode.
- the solution comprising OH " can be used to sequester CO2 by contacting the solution with CO2 and precipitating alkaline earth metal carbonates, e.g., calcium and magnesium carbonates and bicarbonates from a solution comprising alkaline earth metal ions as described United States Provisional Patent Application Serial No.
- the precipitated carbonates in various embodiments, are useable as building products, e.g., cements, as described in United States Patent Applications herein incorporated by reference. Similarly, the system and method are adaptable for desalinating water as described in United States Patent Applications herein incorporated by reference.
- Fig. 1 is an illustration of an embodiment of the present system.
- Fig. 2 is an illustration of an embodiment of the present system.
- Fig. 3 is an illustration of an embodiment of the present system.
- Fig. 4 is an illustration of an embodiment of the present system.
- Fig. 5 is an illustration of an embodiment of the present system.
- Fig. 6 is an illustration of an embodiment of the present system.
- Fig. 7 is a flow chart of an embodiment of the present method.
- Fig. 8 is a flow chart of an embodiment of the present method.
- hydroxide may not be produced, e.g., in embodiments where the pH of the electrolyte solution in contact with the cathode, as described herein, is kept constant or even decreases, there is no net production of hydroxide ions and can even be a decrease in hydroxide ion production. This can occur, e.g., in embodiments in which CO2 is introduced into the second electrolyte solution, as described further herein.
- the present invention in various embodiments is directed to a low voltage electrochemical system and method for forming OH + in a solution, e.g., a saltwater solution, utilizing ion exchange membranes.
- a solution e.g., a saltwater solution
- ion exchange membranes On applying a voltage across a cathode and an anode, OH + forms in solution in the electrolyte contacted with the cathode, protons form in the solution contacted with the anode, and a gas e.g., chlorine or oxygen is not formed at the anode.
- Hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.8, 2.7, 2.5, 2.4, 2.3, 2.2, 2.1 , 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1 , 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1 V.
- hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.5 V without the formation of gas at the anode. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.2V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.0V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less thani .5 V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 1.0V.
- hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.8 V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.7V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.6V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.5V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.4V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.3V.
- hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.2V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.1V. . In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.05V. In various embodiments an acidic solution, e.g., hydrochloric acid is formed in the electrolyte in contact with the anode.
- the present system is adaptable for batch and continuous processes as described herein.
- the system comprises an electrochemical system including an ion exchange membrane (102, 124) separating a first electrolyte (104) from a second electrolyte (106), the first electrolyte contacting an anode (108) and the second electrolyte contacting a cathode (110).
- ion exchange membrane includes membranes that are selectively permeable to one ion, or one type of ion (e.g., anions, or monovalent anions, or cations, or monovalent cations). In the system as illustrated in Fig.
- first electrolyte (104) comprises an aqueous salt solution such as a saltwater, e.g., seawater, freshwater, brine, brackish water or the like.
- second electrolyte (106) comprises a concentrated solution of sodium chloride; in other embodiments, second electrolyte may comprise saltwater.
- first electrolyte (104) comprises a concentrated solution of sodium chloride
- second electrolyte (106) comprises an aqueous solution such as a saltwater, e.g., seawater, freshwater, brine, brackish water or the like.
- first electrolyte may comprise a saltwater.
- anion exchange membrane (102) and/or cation exchange membrane (124) are any ion exchange membranes suitable for use in an acidic and/or basic electrolytic solution temperatures in the range from about 0 0 C to about 100 0 C, such as conventional ion exchange membranes well-known in the art, or any suitable ion exchange membrane.
- Suitable anion exchange membranes are available from PCA GmbH of Germany, e.g., an anion exchange membrane identified as PCSA-250-250 can be used; similarly, a cation exchange membrane identified as PCSK 250-250 available from PCA GmbH can be used.
- the ion exchange membranes are positioned to prevent mixing of the first and second electrolytes.
- the electrochemical system (100, 200) includes first electrolyte inlet port (114) for inputting first electrolyte (104) into the system and second electrolyte inlet port (116) for inputting second electrolyte (106) into the system.
- the cell includes outlet port (118) for draining first electrolyte from the system, and outlet port (120) for draining second electrolyte from the system.
- the inlet and outlet ports are adaptable for various flow protocols including batch flow, semi-batch flow, or continuous flow.
- the system includes a conduit, e.g., a duct (122) for directing hydrogen gas to the anode; in various embodiments the gas comprises hydrogen formed at the cathode (110); other sources of hydrogen gas can be used.
- the first electrolyte (104) contacts the anode (108) and ion exchange membrane (102, 124) on a first side; and the second electrolyte contacts the cathode (106) and the ion exchange membrane at an opposed side to complete an electrical circuit that includes conventional voltage/current regulator (112).
- the current/voltage regulator is adaptable to increase or decrease the current or voltage across the cathode and anode as desired.
- second electrolyte (106) comprises sodium chloride
- chloride ions migrate into the first electrolyte (104) from the second electrolyte (106) through the anion exchange membrane (102), and protons form in the electrolyte in contact with the anode (108).
- second electrolyte (106) as hydroxide ions form in the electrolyte in contact with the cathode (110) and enter into the second electrolyte (106), and as chloride ions migrate from the second electrolyte into the first electrolyte (104), an aqueous solution of sodium hydroxide will form in second electrolyte (106).
- the pH of the second electrolyte is adjusted, e.g., increases, decreases or does not change.
- the pH of the first electrolyte will adjust depending on rate of introduction and/or removal of first electrolyte from the system. Also, as chloride ions migrate to the first electrolyte from the second electrolyte across the anion exchange membrane, hydrochloric acid will form in the first electrolyte. [0032] With reference to Fig.
- first electrolyte (104) comprises sodium chloride
- sodium ions migrate from the first electrolyte (104) to the second electrolyte (106) through the cation exchange membrane (124).
- second electrolyte (106) as hydroxide ions form in the electrolyte in contact with the cathode (110) and enter into solution and with the migration of sodium ions into the second electrolyte, an aqueous solution of sodium hydroxide will form in second electrolyte (106).
- the pH of the second electrolyte is adjusted, e.g., increases, decreases or does not change.
- the pH of the first electrolyte will adjust depending on rate of introduction and/or removal of first electrolyte from the system, i.e., the pH of the first electrolyte may increase, decrease or does not change. Also, as sodium ions migrate from the first electrolyte across the cation exchange membrane to the second electrolyte, hydrochloric acid will form in the first electrolyte due to the presence of protons and chloride ions in the first electrolyte. [0034] With reference to Figs. 1 and 2, depending the flow of electrolytes in the system and the electrolytes used, e.g.
- saltwater when a voltage is applied across the anode (108) and cathode (110) OH " will form in the in the second electrolyte (106), and consequently cause the pH of the second electrolyte to be adjusted. In one embodiment, when a voltage of about 0.1 V or less, 0.2 V or less.
- NaOH was produced in the second electrolyte (106), and HCI in the first electrolyte (104) at a low operating voltage across the electrodes; it will be appreciated by those of ordinary skill in the art that the voltages may be adjusted up or down from these exemplary voltages; the minimum theoretical voltage is 0 or very close to 0, but to achieve a useful rate of production of hydroxide, a practical lower limit may be in some embodiments 0.001V or 0.01V, or 0.1 V, depending on the desired time for hydroxide production and/or pH adjustment, volume of second electrolyte solution, and other factors apparent to those of ordinary skill; i.e., in some embodiments the systems and methods are capable of producing hydroxide at voltages as low as 0.001V, or 0.01 V, or 0.1V, and can also produce hydroxide at higher voltages if more rapid production is desired, e.g., at 0.2-2. OV; in some embodiments the hydroxide is produced with no gas formation at the anode, e.
- the system used included two 250 ml_ compartments separated by an anion exchange membrane in one embodiment, and a cation membrane in another embodiment.
- a 0.5M NaCI 18M ⁇ aqueous solutions 28 g/L of NaCI was solvated with de-ionized water
- Both the anode and cathode comprised a 10cm by 5cm 45 mesh Pt gauze.
- H 2 gas was sparged under the Pt electrode, and the two electrodes were held at a voltage bias as indicated in Table 1 e.g., 0.4, 0.6 V and 1.0 V, for 30 minutes.
- the pH of the electrolyte in contact with the anode before applying the voltage was 6.624.
- the cathode compartment where the hydroxide formation occurred was stirred at 600 rpm. As set forth in Table 1 , significant changes in the pH in the cathode and anode compartment were achieved.
- a pH difference of more than 0.5, 1 , 1 ,5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, or 12.0 pH units may be produced in a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membrane, when a voltage of 1.0V or less, or 0.9V or less, or 0.8V or less, or 0.7 or less, or 0.6V or less, or 0.5V or less, or 0.4V or less, or 0.3V or less, or 0.2V or less, or 0.1V or less, or 0.05V or less, is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 0.5 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.05V or less is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 1.0 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.1V or less is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 2.0 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.2V or less is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 4.0 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.4V or less is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 6 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.6V or less is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 8 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more exchange membranes, when a voltage of 0.8V or less is applied across the anode and cathode
- the invention provides a system that is capable of producing a pH difference of more than 8 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 1.0 V or less is applied across the anode and cathode.
- the invention provides a system that is capable of producing a pH difference of more than 10 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 1.2V or less is applied across the anode and cathode.
- the voltage need not be kept constant and that the voltage applied across the anode and the cathode may be very low, e.g., 0.05V or less, when the two electrolytes are the same pH or close in pH, and that the voltage may be increased as needed as the pH difference increases. In this way, the desired pH difference or production of hydroxide ions may be achieved with the minimum average voltage.
- the average voltage may be less than 80%, 70%, 60%, or less than 50% of the voltages given in the previous paragraph for particular embodiments.
- hydrogen gas formed at the cathode (110) is directed to the anode (108). Without being bound to any theory, it is believed that the gas is adsorbed and/or absorbed into the anode and subsequently forms protons at the anode.
- one or more of the electrolyte solutions is depleted in divalent cations, e.g., in magnesium or calcium, during parts of the process where the electrolyte is in contact with the ion exchange membrane (or membranes, see embodiments described below in which more than one membrane is used). This is done to prevent scaling of the membrane, if necessary for that particular membrane.
- divalent cations e.g., in magnesium or calcium
- the total concentration of divalent cations in the electrolyte solutions when they are in contact with the ion exchange membrane or membranes for any appreciable time is less than 0.06 mol/kg solution, or less than 0.06 mol/kg solution, or less than 0.04 mol/kg solution, or less than 0.02 mol/kg solution, or less than 0.01 mol/kg solution, or less than 0.005 mol/kg solution, or less than 0.001 mol/kg solution, or less than 0.0005 mol/kg solution, or less than 0.0001 mol/kg solution, or less than 0.00005 mol/kg solution.
- the present system (300) includes an electrolytic cell comprising an anode (108) contacting a first electrolyte (104); an anion exchange membrane (102) separating the first electrolyte from a third electrolyte (130); a second electrolyte contacting a cathode (110), and a cation exchange membrane (124) separating the second electrolyte from the third electrolyte.
- the ion exchange membranes are positioned in the system to prevent mixing of the first and second electrolytes.
- a current/voltage regulator (112) is adaptable to increase or decrease the current or voltage across the cathode and anode in the system as desired.
- the system of Fig. 3 is adaptable for batch, semi-batch and continuous operation.
- the first electrolyte (104), second electrolyte (106) and third electrolyte (130) in various embodiments comprise e.g., saltwater including seawater, freshwater, brine, or brackish water or the like.
- the third electrolyte (130) comprise substantially a solution of a sodium chloride.
- anion exchange membrane (102) and cation exchange membrane (124) of Fig. 3 are any suitable ion exchange membranes suitable for use in an acidic and/or basic solution at operating temperatures in an aqueous solution in the range from about 0 0 C to about 100 0 C, or higher depending on the pressure in the system such as conventional ion exchange membranes well- known in the art, or any suitable ion exchange membrane.
- Suitable anion exchange membranes are available from PCA GmbH of Germany, e.g., an anion membrane identified as PCSA-250-250 can be used; similarly, a cation membrane identified as PCSK 250-250 available from PCA GmbH can be used.
- the electrochemical cell includes first electrolyte inlet port (114) adaptable for inputting first electrolyte (104) into the system; second electrolyte inlet port (116) for inputting second electrolyte (106) into the system; and third inlet port (126) for inputting third electrolyte into the system. Additionally, the cell includes first outlet port (118) for draining first electrolyte; second outlet port (120) for draining second electrolyte; and third outlet port (128) for draining third electrolyte. As will be appreciated by one ordinarily skilled, the inlet and outlet ports are adaptable for various flow protocols including batch flow, semi-batch flow, or continuous flow.
- the system includes a conduit, e.g., a duct (122) for directing gas to the anode; in various embodiments the gas comprises hydrogen formed at the cathode (110).
- a conduit e.g., a duct (122) for directing gas to the anode; in various embodiments the gas comprises hydrogen formed at the cathode (110).
- third electrolyte (130) comprises sodium chloride
- chloride ions migrate into the first electrolyte (104) from the third electrolyte (130) through the anion exchange membrane (102); sodium ions migrate to the second electrolyte (106) from the third electrolyte (130); protons form at the anode (104); and hydrogen gas forms at the cathode (110).
- the pH of the second electrolyte solution is increased; in another embodiment, when a voltage of 0.01 to 2.5 V, or 0.01V to 2.0V, or 0.1 V to 2.0V, or 0.1V to 1.5V, or 0.1 V to 1.0V, or 0.1 V to 0.8V, or 0.1 V to 0.6V, or 0.1 V to 0.4V, or 0.1V to 0.2V, or 0.01V to 1.5V, or 0.01 V to 1.0V, or 0.01 V to 1.0V, or 0.01 V to 0.8V, or 0.1 V to 0.6V, or 0.1 V to 0.4V, or 0.1V to 0.2V, or 0.01V to 1.5V, or 0.01 V to 1.0V, or 0.01V to 1.0V, or 0.01V to 0.01V to 0.01V to
- a volt of about 0.6 volt or less is applied across the anode and cathode; in another embodiment, a volt of about 0.1 to 0.6 volt or less is applied across the anode and cathode; in yet another embodiment, a voltage of about 0.1 to 1 volt or less is applied across the anode and cathode.
- first electrolyte (104) as proton form in the electrolyte in contact with the anode (108) and enter into the solution concurrent with migration of chloride ions from the third electrolyte (130) to the first electrolyte (104), increasingly an acidic solution will form in first electrolyte (104).
- the pH of the solution will be adjusted as noted above.
- hydrogen gas formed at the cathode (110) is directed to the anode (108).
- hydrogen gas is adsorbed and/or absorbed into the anode and subsequently forms protons at the anode in contact with the first electrolyte (104).
- a gas such as oxygen or chlorine does not form at the anode (108). Accordingly, as can be appreciated, with the formation of protons at the anode and migration of chlorine into the first electrolyte, hydrochloric acid is obtained in the first electrolyte (104).
- a cation exchange membrane is in contact with the anode (108) on one surface, and in contact with the first electrolyte (104) at an opposed surface.
- H + formed at or near the anode will migrate into the first electrolyte through the cation exchange membrane to cause the pH of the first electrolyte to be adjusted as discussed with reference to the system of Fig. 3.
- an anion exchange membrane is in contact with the cathode (110) on one surface, and in contact with the second electrolyte (106) at an opposed surface.
- OH " formed at or near the anode will migrate into the first electrolyte to cause the pH of the second electrolyte to be adjusted as discussed with reference to the system of Fig. 3.
- the hydrogen gas formed at the cathode (110) can be redirected to the anode (108) without contacting the second (106) or first (104) electrolyte.
- Fig. 5 illustrates a variation of the invention where at least two of the systems of Fig. 4 are configured to operate together.
- hydroxide ions form at the cathode (110) and enter into second electrolyte (106) and with the migration of sodium ions into the second electrolyte from the third electrolyte (130), an aqueous solution of sodium hydroxide will from in second electrolyte (106).
- the pH of the second electrolyte is adjusted, e.g., increases, decreases or does not change. Also with reference to Fig.
- first electrolyte (104) as proton form at the anode (108) and enter into the solution concurrent with migration of chloride ions from the third electrolyte (130) to the first electrolyte (104), increasingly an acidic solution will form in first electrolyte (104).
- Fig. 6 illustrates a variation of the system of Fig. 3 arranged for continuous or semi-continuous flow.
- hydroxide ions form at the cathode (110)
- protons form at the anode and gas, e.g., chlorine or oxygen does not form at the anode (108).
- third electrolyte (130) comprises sodium chloride
- chloride ions migrate into the first electrolyte (104) from the third electrolyte (130) through the anion exchange membrane (102); sodium ions migrate to the second electrolyte (106) from the third electrolyte (130) through the cation exchange membrane (124); protons form at the anode (104); and hydrogen gas forms at the cathode (110).
- first electrolyte (104) as proton form at the anode (108) and enter into the solution concurrent with migration of chloride ions from the third electrolyte (130) to the first electrolyte (104), increasingly an acidic solution will form in first electrolyte (104).
- the pH of the solution will be adjusted.
- the present method in one embodiment (700) comprises a step (702) of migrating ions across an ion exchange membrane (102) that is situated between a first electrolyte (104) and a second electrolyte (106), the first electrolyte contacting an anode (108) and the second electrolyte contacting a cathode (110), by applying a voltage across the anode and cathode to form hydroxide ions at the cathode without forming a gas at the anode.
- a voltage across the anode and cathode to form hydroxide ions at the cathode without forming a gas at the anode.
- the present method (800) comprises a step (802) of applying a voltage across an anode (108) and cathode (110), wherein: (i) the anode is in contact with a first electrolyte (104) that is also in contact with an anion exchange membrane (102); (ii) the cathode is in contact with a second electrolyte (106) that is also in contact with a cation exchange membrane; and
- a third electrolyte (130) is situated between the anion exchange membrane and the cation exchange membrane to form hydroxide ions at the cathode without forming a gas at the anode.
- hydroxide ions from the cathode (110) and enter in to the second electrolyte (106) concurrent with migration of sodium ions into the second electrolyte from the third electrolyte, an aqueous solution of sodium hydroxide will form in second electrolyte (106). Consequently, depending on the voltage applied across the system and the flow rate of the second electrolyte (106) through the system, the pH of the second electrolyte is adjusted.
- CO2 is dissolved into the second electrolyte solution; as protons are removed from the second electrolyte solution more CO2 may be dissolved in the form of bicarbonate and/or carbonate ions; depending on the pH of the second electrolyte the balance is shifted toward bicarbonate or toward carbonate, as is well understood in the art.
- the pH of the second electrolyte solution may decrease, remain the same, or increase, depending on the rate of removal of protons compared to rate of introduction of CO2.
- hydroxide need form in these embodiments, or that hydroxide may not form during one period but form during another period.
- another electrochemical system as described herein may be used to produce concentrated hydroxide, which, when added to the second electrolyte containing the dissolved CO2, causes the formation of a precipitate of carbonate and/or bicarbonate compounds such as calcium carbonate or magnesium carbonate and/or their bicarbonates.
- divalent cations such as magnesium and/or calcium are present in certain solutions used in the process, and/or are added.
- the precipitated carbonate compound can be used as cements and building material as described in United States Patent Applications incorporated herein by reference.
- the acidified first electrolyte solution 104 is utilized to dissolve a calcium and/or magnesium rich mineral, such as mafic mineral including serpentine or olivine, for precipitating carbonates and bicarbonates as described above.
- a calcium and/or magnesium rich mineral such as mafic mineral including serpentine or olivine
- the acidified stream can be employed to dissolve calcium and/or magnesium rich minerals such as serpentine and olivine to create the electrolyte solution that can be charged with bicarbonate ions and then made sufficiently basic to precipitate carbonate compounds.
- Such precipitation reactions and the use of the precipitates in cements are described in the United States Patent Applications incorporated by herein by reference.
- the carbonate and bicarbonate solution is disposed of in a location where it will be stable for extended periods of time.
- the carbonate/bicarbonate electrolyte solution can be pumped to an ocean depth where the temperature and pressure are sufficient to keep the solution stable over at least the time periods set forth above.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Priority Applications (82)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/375,632 US7790012B2 (en) | 2008-12-23 | 2008-12-23 | Low energy electrochemical hydroxide system and method |
CN200880118401XA CN101878327A (zh) | 2008-12-23 | 2008-12-23 | 低能电化学氢氧根系统和方法 |
CA2666147A CA2666147C (fr) | 2008-12-23 | 2008-12-23 | Methode et systeme electrochimiques peu energivores de production d'ions hydroxydes |
BRPI0823394-2A BRPI0823394A2 (pt) | 2008-12-23 | 2008-12-23 | Sistema e método eletroquímico de hidróxido de baixa energia |
GB0901413A GB2467019B (en) | 2008-12-23 | 2008-12-23 | Low-energy electrochemical hydroxide system and method |
PCT/US2008/088242 WO2010074686A1 (fr) | 2008-12-23 | 2008-12-23 | Système et procédé d'hydroxyde électrochimique à faible énergie |
EP08873036A EP2291550A4 (fr) | 2008-12-23 | 2008-12-23 | Système et procédé d'hydroxyde électrochimique à faible énergie |
US12/344,019 US7887694B2 (en) | 2007-12-28 | 2008-12-24 | Methods of sequestering CO2 |
CA002652803A CA2652803A1 (fr) | 2007-12-28 | 2008-12-24 | Procedes de sequestration du co2 |
AU2008278301A AU2008278301B2 (en) | 2007-12-28 | 2008-12-24 | Methods of sequestering CO2 |
CN200880023216.2A CN101687648B (zh) | 2007-12-28 | 2008-12-24 | 封存co2的方法 |
EP08867440A EP2118004A4 (fr) | 2007-12-28 | 2008-12-24 | Procédés de séquestration de co2 |
EA201000896A EA201000896A1 (ru) | 2007-12-28 | 2008-12-24 | Способы связывания co |
JP2010540897A JP2012513944A (ja) | 2007-12-28 | 2008-12-24 | Co2を捕捉する方法 |
MX2010007197A MX2010007197A (es) | 2007-12-28 | 2008-12-24 | Metodos de secuestro de dioxido de carbono. |
GB0901414A GB2460910B8 (en) | 2007-12-28 | 2008-12-24 | Methods of sequestering CO2. |
BRPI0821515A BRPI0821515A2 (pt) | 2007-12-28 | 2008-12-24 | métodos de captura de co2 |
KR1020107016361A KR20100105860A (ko) | 2007-12-28 | 2008-12-24 | Co2 분리 방법 |
PCT/US2008/088318 WO2009086460A1 (fr) | 2007-12-28 | 2008-12-24 | Procédés de séquestration de co2 |
TW097150781A TW200946210A (en) | 2007-12-28 | 2008-12-26 | Methods of sequestering CO2 |
ARP080105752A AR070056A1 (es) | 2007-12-28 | 2008-12-29 | Metodos para retirar co2 |
US12/475,378 US7753618B2 (en) | 2007-06-28 | 2009-05-29 | Rocks and aggregate, and methods of making and using the same |
KR1020107027766A KR20110033822A (ko) | 2008-05-29 | 2009-05-29 | 암석 및 골재, 및 이의 제조 방법 및 용도 |
EP09716193A EP2240257A1 (fr) | 2008-05-29 | 2009-05-29 | Roches et agrégats ainsi que leurs procédés de production et d utilisation |
JP2011511869A JP2011521879A (ja) | 2008-05-29 | 2009-05-29 | 岩石および骨材、ならびにそれらを作製し使用する方法 |
MX2010012947A MX2010012947A (es) | 2008-05-29 | 2009-05-29 | Rocas y agregados y metodos para obtener y usar los mismos. |
GB0911440A GB2461622B (en) | 2008-05-29 | 2009-05-29 | Rocks and aggregate, and methods of making and using the same |
PCT/US2009/045722 WO2009146436A1 (fr) | 2008-05-29 | 2009-05-29 | Roches et agrégats ainsi que leurs procédés de production et d’utilisation |
CN200980101283.6A CN101883736B (zh) | 2008-06-17 | 2009-06-17 | 利用金属氧化物废料源的方法和系统 |
CA2700715A CA2700715A1 (fr) | 2008-06-17 | 2009-06-17 | Procedes et systemes d'utilisation de sources de dechets d'oxydes metalliques |
BRPI0915192A BRPI0915192A2 (pt) | 2008-06-17 | 2009-06-17 | métodos e sistemas para utilização de fontes de resíduos de óxidos de metal |
EP09767687A EP2207753A4 (fr) | 2008-06-17 | 2009-06-17 | Procédés et systèmes d'utilisation de sources de déchets d'oxydes métalliques |
US12/486,692 US7754169B2 (en) | 2007-12-28 | 2009-06-17 | Methods and systems for utilizing waste sources of metal oxides |
JP2011514787A JP2011524253A (ja) | 2008-06-17 | 2009-06-17 | 金属酸化物の廃棄物源を利用するための方法およびシステム |
AU2009260036A AU2009260036B2 (en) | 2008-06-17 | 2009-06-17 | Methods and systems for utilizing waste sources of metal oxides |
PCT/US2009/047711 WO2009155378A1 (fr) | 2008-06-17 | 2009-06-17 | Procédés et systèmes d'utilisation de sources de déchets d'oxydes métalliques |
PCT/US2009/048511 WO2010008896A1 (fr) | 2008-07-16 | 2009-06-24 | Système électrochimique à 4 cellules basse énergie comportant du dioxyde de carbone gazeux |
JP2011518768A JP2011528405A (ja) | 2008-07-16 | 2009-06-24 | 二酸化炭素ガスを使用する低エネルギー4セル電気化学システム |
EP09798527.9A EP2212033A4 (fr) | 2008-07-16 | 2009-06-24 | Système électrochimique à 4 cellules basse énergie comportant du dioxyde de carbone gazeux |
AU2009271304A AU2009271304B2 (en) | 2008-07-16 | 2009-06-24 | Low-energy 4-cell electrochemical system with carbon dioxide gas |
CA2700721A CA2700721C (fr) | 2008-07-16 | 2009-06-24 | Systeme electrochimique a 4 cellules basse energie comportant du dioxyde de carbone gazeux |
US12/521,256 US7875163B2 (en) | 2008-07-16 | 2009-06-24 | Low energy 4-cell electrochemical system with carbon dioxide gas |
CN201410836715.0A CN104722466A (zh) | 2008-07-16 | 2009-06-24 | 使用二氧化碳气体的低能量4-电池电化学系统 |
CN200980101611.2A CN101984749B (zh) | 2008-07-16 | 2009-06-24 | 使用二氧化碳气体的低能量4-电池电化学系统 |
AU2009268397A AU2009268397A1 (en) | 2008-07-10 | 2009-07-10 | Production of carbonate-containing compositions from material comprising metal silicates |
BRPI0915447A BRPI0915447A2 (pt) | 2008-07-10 | 2009-07-10 | produção de composições contendo carbonato por meio de material compreendendo silicatos metálicos |
US12/501,217 US7749476B2 (en) | 2007-12-28 | 2009-07-10 | Production of carbonate-containing compositions from material comprising metal silicates |
JP2011517648A JP2011527664A (ja) | 2008-07-10 | 2009-07-10 | 含金属シリケート材料からの炭酸塩含有組成物の製造 |
KR1020117003141A KR20110061546A (ko) | 2008-07-10 | 2009-07-10 | 금속 실리케이트를 포함하는 물질로부터 탄산염 함유 조성물을 제조하는 방법 |
CA2700765A CA2700765A1 (fr) | 2008-07-10 | 2009-07-10 | Production de compositions contenant du carbonate a partir d'un materiau comportant des silicates metalliques |
CN2009801012200A CN101878060A (zh) | 2008-07-10 | 2009-07-10 | 从包含金属硅酸盐的材料中制备含碳酸盐的组合物 |
PCT/US2009/050223 WO2010006242A1 (fr) | 2008-07-10 | 2009-07-10 | Production de compositions contenant du carbonate à partir d'un matériau comportant des silicates métalliques |
EP09795228A EP2200732A4 (fr) | 2008-07-10 | 2009-07-10 | Production de compositions contenant du carbonate à partir d'un matériau comportant des silicates métalliques |
US12/503,557 US8357270B2 (en) | 2008-07-16 | 2009-07-15 | CO2 utilization in electrochemical systems |
KR1020117003467A KR20110038691A (ko) | 2008-07-16 | 2009-07-15 | 전기화학 시스템에서 co2를 사용하는 방법 |
EP09798723.4A EP2245214B1 (fr) | 2008-07-16 | 2009-07-15 | Système et méthode électrochimique pour utilisation du co2 |
CN2009801015529A CN101910469A (zh) | 2008-07-16 | 2009-07-15 | 电化学系统中的co2利用 |
PCT/US2009/050756 WO2010009273A1 (fr) | 2008-07-16 | 2009-07-15 | Utilisation du co<sb>2</sb> dans des systèmes électrochimiques |
JP2011518896A JP5373079B2 (ja) | 2008-07-16 | 2009-07-15 | 電気化学システム中でのco2の利用 |
AU2009270879A AU2009270879B2 (en) | 2008-07-16 | 2009-07-15 | CO2 utilization in electrochemical systems |
CA2700768A CA2700768C (fr) | 2008-07-16 | 2009-07-15 | Utilisation du co<sb>2</sb> dans des systemes electrochimiques |
US12/541,055 US7993500B2 (en) | 2008-07-16 | 2009-08-13 | Gas diffusion anode and CO2 cathode electrolyte system |
TW098144398A TW201038773A (en) | 2008-12-23 | 2009-12-23 | Low-energy electrochemical hydroxide system and method |
ARP090105110A AR075113A1 (es) | 2008-12-23 | 2009-12-23 | Metodo y sistema electroquimicos de hidroxidos, de baja energia |
AU2010200225A AU2010200225A1 (en) | 2007-12-28 | 2010-01-21 | Methods of sequestering CO2 |
US12/698,741 US20100135882A1 (en) | 2007-12-28 | 2010-02-02 | Methods of sequestering co2 |
US12/698,483 US20100135865A1 (en) | 2007-12-28 | 2010-02-02 | Electrochemical methods of sequestering co2 |
US12/698,802 US20100132556A1 (en) | 2007-12-28 | 2010-02-02 | Methods of sequestering co2 |
GBGB1004571.4A GB201004571D0 (en) | 2007-12-28 | 2010-03-19 | Methods of sequestering co2 |
US12/788,255 US20100313794A1 (en) | 2007-12-28 | 2010-05-26 | Production of carbonate-containing compositions from material comprising metal silicates |
US12/794,198 US7914685B2 (en) | 2007-06-28 | 2010-06-04 | Rocks and aggregate, and methods of making and using the same |
HK10105950.5A HK1139376A1 (en) | 2007-12-28 | 2010-06-14 | Methods of sequestering co2 |
IL206580A IL206580A0 (en) | 2007-12-28 | 2010-06-23 | Methods of sequestering co2 |
ZA2010/04552A ZA201004552B (en) | 2007-12-28 | 2010-06-28 | Methods of sequestering co2 |
US12/942,558 US8333944B2 (en) | 2007-12-28 | 2010-11-09 | Methods of sequestering CO2 |
IL209365A IL209365A0 (en) | 2008-05-29 | 2010-11-16 | Rocks and aggregate, and methods of making and using the same |
US13/181,124 US20110308964A1 (en) | 2008-12-23 | 2011-07-12 | Gas diffusion anode and co2 cathode electrolyte system |
US13/462,569 US20120213688A1 (en) | 2007-12-28 | 2012-05-02 | Methods of sequestering co2 |
US13/540,992 US8894830B2 (en) | 2008-07-16 | 2012-07-03 | CO2 utilization in electrochemical systems |
US13/887,986 US9260314B2 (en) | 2007-12-28 | 2013-05-06 | Methods and systems for utilizing waste sources of metal oxides |
JP2013192595A JP5647314B2 (ja) | 2008-07-16 | 2013-09-18 | 電気化学システム中でのco2の利用 |
US14/534,559 US20150083607A1 (en) | 2008-07-16 | 2014-11-06 | Co2 utilization in electrochemical systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2008/088242 WO2010074686A1 (fr) | 2008-12-23 | 2008-12-23 | Système et procédé d'hydroxyde électrochimique à faible énergie |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/163,205 Continuation-In-Part US7744761B2 (en) | 2007-06-28 | 2008-06-27 | Desalination methods and systems that include carbonate compound precipitation |
PCT/US2008/088246 Continuation-In-Part WO2010074687A1 (fr) | 2007-06-28 | 2008-12-23 | Système et procédé de transfert de protons électrochimique à faible énergie |
PCT/US2009/032301 Continuation-In-Part WO2010087823A1 (fr) | 2008-07-16 | 2009-01-28 | Solution d'ions bicarbonates électrochimique à basse énergie |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/088246 Continuation-In-Part WO2010074687A1 (fr) | 2007-06-28 | 2008-12-23 | Système et procédé de transfert de protons électrochimique à faible énergie |
US12/344,019 Continuation-In-Part US7887694B2 (en) | 2007-06-28 | 2008-12-24 | Methods of sequestering CO2 |
PCT/US2009/032301 Continuation-In-Part WO2010087823A1 (fr) | 2008-07-16 | 2009-01-28 | Solution d'ions bicarbonates électrochimique à basse énergie |
PCT/US2009/048511 Continuation-In-Part WO2010008896A1 (fr) | 2008-07-16 | 2009-06-24 | Système électrochimique à 4 cellules basse énergie comportant du dioxyde de carbone gazeux |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010074686A1 true WO2010074686A1 (fr) | 2010-07-01 |
Family
ID=40469219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/088242 WO2010074686A1 (fr) | 2007-06-28 | 2008-12-23 | Système et procédé d'hydroxyde électrochimique à faible énergie |
Country Status (9)
Country | Link |
---|---|
US (1) | US7790012B2 (fr) |
EP (1) | EP2291550A4 (fr) |
CN (1) | CN101878327A (fr) |
AR (1) | AR075113A1 (fr) |
BR (1) | BRPI0823394A2 (fr) |
CA (1) | CA2666147C (fr) |
GB (1) | GB2467019B (fr) |
TW (1) | TW201038773A (fr) |
WO (1) | WO2010074686A1 (fr) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7906086B2 (en) | 2006-03-10 | 2011-03-15 | Comrie Douglas C | Carbon dioxide sequestration materials and processes |
US7993500B2 (en) | 2008-07-16 | 2011-08-09 | Calera Corporation | Gas diffusion anode and CO2 cathode electrolyte system |
US7993616B2 (en) | 2007-09-19 | 2011-08-09 | C-Quest Technologies LLC | Methods and devices for reducing hazardous air pollutants |
US8006446B2 (en) | 2008-09-30 | 2011-08-30 | Calera Corporation | CO2-sequestering formed building materials |
US8062418B2 (en) | 2009-12-31 | 2011-11-22 | Calera Corporation | Methods and compositions using calcium carbonate |
US8137444B2 (en) | 2009-03-10 | 2012-03-20 | Calera Corporation | Systems and methods for processing CO2 |
US8333944B2 (en) | 2007-12-28 | 2012-12-18 | Calera Corporation | Methods of sequestering CO2 |
US8357270B2 (en) | 2008-07-16 | 2013-01-22 | Calera Corporation | CO2 utilization in electrochemical systems |
US8470275B2 (en) | 2008-09-30 | 2013-06-25 | Calera Corporation | Reduced-carbon footprint concrete compositions |
US8491858B2 (en) | 2009-03-02 | 2013-07-23 | Calera Corporation | Gas stream multi-pollutants control systems and methods |
US8691175B2 (en) | 2011-04-28 | 2014-04-08 | Calera Corporation | Calcium sulfate and CO2 sequestration |
US8834688B2 (en) | 2009-02-10 | 2014-09-16 | Calera Corporation | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
US8857118B2 (en) | 2007-05-24 | 2014-10-14 | Calera Corporation | Hydraulic cements comprising carbonate compound compositions |
US8869477B2 (en) | 2008-09-30 | 2014-10-28 | Calera Corporation | Formed building materials |
US8906156B2 (en) | 2009-12-31 | 2014-12-09 | Calera Corporation | Cement and concrete with reinforced material |
US8936773B2 (en) | 2011-04-28 | 2015-01-20 | Calera Corporation | Methods and compositions using calcium carbonate and stabilizer |
US8999057B2 (en) | 2011-09-28 | 2015-04-07 | Calera Corporation | Cement and concrete with calcium aluminates |
US9061940B2 (en) | 2008-09-30 | 2015-06-23 | Calera Corporation | Concrete compositions and methods |
US9133581B2 (en) | 2008-10-31 | 2015-09-15 | Calera Corporation | Non-cementitious compositions comprising vaterite and methods thereof |
US9187834B2 (en) | 2011-05-19 | 2015-11-17 | Calera Corporation | Electrochemical hydroxide systems and methods using metal oxidation |
US9200375B2 (en) | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
US9260314B2 (en) | 2007-12-28 | 2016-02-16 | Calera Corporation | Methods and systems for utilizing waste sources of metal oxides |
US9828313B2 (en) | 2013-07-31 | 2017-11-28 | Calera Corporation | Systems and methods for separation and purification of products |
US9880124B2 (en) | 2014-11-10 | 2018-01-30 | Calera Corporation | Measurement of ion concentration in presence of organics |
US9902652B2 (en) | 2014-04-23 | 2018-02-27 | Calera Corporation | Methods and systems for utilizing carbide lime or slag |
US9957621B2 (en) | 2014-09-15 | 2018-05-01 | Calera Corporation | Electrochemical systems and methods using metal halide to form products |
US10161050B2 (en) | 2015-03-16 | 2018-12-25 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10236526B2 (en) | 2016-02-25 | 2019-03-19 | Calera Corporation | On-line monitoring of process/system |
US10266954B2 (en) | 2015-10-28 | 2019-04-23 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
US10556848B2 (en) | 2017-09-19 | 2020-02-11 | Calera Corporation | Systems and methods using lanthanide halide |
US10590054B2 (en) | 2018-05-30 | 2020-03-17 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid |
US10619254B2 (en) | 2016-10-28 | 2020-04-14 | Calera Corporation | Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide |
US10847844B2 (en) | 2016-04-26 | 2020-11-24 | Calera Corporation | Intermediate frame, electrochemical systems, and methods |
US11377363B2 (en) | 2020-06-30 | 2022-07-05 | Arelac, Inc. | Methods and systems for forming vaterite from calcined limestone using electric kiln |
US11577965B2 (en) | 2020-02-25 | 2023-02-14 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE476498T1 (de) | 2003-12-02 | 2010-08-15 | Pasteur Institut | Neuer mit sars verbunden coronavirus stamm und seine verwendungen |
WO2008018928A2 (fr) * | 2006-04-27 | 2008-02-14 | President And Fellows Of Harvard College | Capture de dioxyde de carbone et procédés associés |
EP2535314A1 (fr) * | 2006-08-29 | 2012-12-19 | Yeda Research & Development Company, Ltd. | Procédés et appareils permettant de réduire la concentration en CO2 d'un fluide |
GB2461356B (en) | 2007-06-28 | 2010-08-18 | Calera Corp | Desalination methods and systems that include carbonate compound precipitation |
US20100313794A1 (en) * | 2007-12-28 | 2010-12-16 | Constantz Brent R | Production of carbonate-containing compositions from material comprising metal silicates |
JP2011528405A (ja) * | 2008-07-16 | 2011-11-17 | カレラ コーポレイション | 二酸化炭素ガスを使用する低エネルギー4セル電気化学システム |
US7939336B2 (en) | 2008-09-30 | 2011-05-10 | Calera Corporation | Compositions and methods using substances containing carbon |
US7993511B2 (en) | 2009-07-15 | 2011-08-09 | Calera Corporation | Electrochemical production of an alkaline solution using CO2 |
US20110033239A1 (en) * | 2009-08-07 | 2011-02-10 | Brent Constantz | Utilizing salts for carbon capture and storage |
WO2011038076A1 (fr) * | 2009-09-24 | 2011-03-31 | Calera Corporation | Procédés et systèmes d'utilisation de hcl |
EP2590729B1 (fr) | 2010-07-08 | 2021-01-27 | Carbonfree Chemicals Holdings, LLC | Séquestrations de dioxyde de carbone entraînant des procédés thermolytiques à base de deux sels |
US9963790B2 (en) * | 2010-10-19 | 2018-05-08 | Matthew Silver | Bio-electrochemical systems |
WO2012075546A1 (fr) | 2010-12-10 | 2012-06-14 | University Of Wollongong | Dispositifs multicouches de craquage de l'eau |
US20130034489A1 (en) * | 2011-02-14 | 2013-02-07 | Gilliam Ryan J | Electrochemical hydroxide system and method using fine mesh cathode |
US8506914B2 (en) | 2011-03-28 | 2013-08-13 | Board Of Trustees Of The University Of Alabama | N-functionalized imidazole-containing systems and methods of use |
WO2013082230A1 (fr) | 2011-12-02 | 2013-06-06 | The Board Of Trustees Of The University Of Alabama | Sels imido-acides et procédés d'utilisation correspondants |
CA2860773C (fr) | 2012-01-13 | 2020-11-03 | Siluria Technologies, Inc. | Procede de separation de composes hydrocarbones |
CA2876236A1 (fr) | 2012-06-12 | 2013-12-19 | Monash University | Electrode permeable a l'air et procede pour l'utilisation dans la dissociation d'eau |
US9969660B2 (en) | 2012-07-09 | 2018-05-15 | Siluria Technologies, Inc. | Natural gas processing and systems |
US9623204B2 (en) | 2012-08-20 | 2017-04-18 | Hydro Healer, Llc | Electrolysis system and apparatus for collecting hydrogen gas |
GB2506393A (en) * | 2012-09-28 | 2014-04-02 | Ibm | Chemical reactor for enabling pairwise fluid contacts |
KR101360269B1 (ko) | 2012-11-30 | 2014-02-12 | 한국과학기술연구원 | 전기화학적 이산화탄소 전환용 콤팩트 반응기 |
WO2014089479A1 (fr) | 2012-12-07 | 2014-06-12 | Siluria Technologies, Inc. | Procédés et systèmes intégrés pour la conversion de méthane en de multiples produits hydrocarbonés supérieurs |
EP2935194A4 (fr) | 2012-12-21 | 2016-11-09 | Ee Terrabon Biofuels Llc | Systèmes et procédés pour obtenir des produits à partir d'une biomasse |
KR20160040612A (ko) | 2013-07-31 | 2016-04-14 | 아쿠아하이드렉스 프로프라이어터리 리미티드 | 복합체 3차원 전극 및 제조 방법 |
US9869797B2 (en) | 2013-08-23 | 2018-01-16 | Exxonmobil Upstream Research Company | Method for predicting occurrence of microquartz in a basin |
EP3074119B1 (fr) | 2013-11-27 | 2019-01-09 | Siluria Technologies, Inc. | Réacteurs et systèmes destinés au couplage oxydatif du méthane |
FR3016164A1 (fr) * | 2014-01-03 | 2015-07-10 | Vb2M | Procede et dispositif pour le traitement de saumures |
EP3092286A4 (fr) | 2014-01-08 | 2017-08-09 | Siluria Technologies, Inc. | Systèmes et procédés de conversion d'éthylène en liquides |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
AU2015204709B2 (en) | 2014-01-09 | 2019-08-15 | Lummus Technology Llc | Oxidative coupling of methane implementations for olefin production |
AR099387A1 (es) | 2014-01-17 | 2016-07-20 | Skyonic Corp | Sistemas y métodos para la remoción de gas ácido de una corriente gaseosa |
SG11201706866UA (en) | 2015-02-23 | 2017-09-28 | Skyonic Corp | Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US20160289143A1 (en) | 2015-04-01 | 2016-10-06 | Siluria Technologies, Inc. | Advanced oxidative coupling of methane |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
WO2017065947A1 (fr) | 2015-10-16 | 2017-04-20 | Siluria Technologies, Inc. | Procédés de séparation et systèmes de couplage oxydatif du méthane |
KR101854116B1 (ko) | 2016-02-19 | 2018-05-03 | 한국과학기술연구원 | 알칼리 이온을 함유하는 무기물로부터 고순도 탄산칼슘을 제조하는 방법 |
EP4071131A1 (fr) | 2016-04-13 | 2022-10-12 | Lummus Technology LLC | Appareil et procédé d'échange de chaleur |
US9915136B2 (en) * | 2016-05-26 | 2018-03-13 | X Development Llc | Hydrocarbon extraction through carbon dioxide production and injection into a hydrocarbon well |
EP3554672A4 (fr) | 2016-12-19 | 2020-08-12 | Siluria Technologies, Inc. | Procédés et systèmes pour effectuer des séparations chimiques |
PL3630707T3 (pl) | 2017-05-23 | 2024-02-19 | Lummus Technology Llc | Zintegrowanie sposobów utleniającego sprzęgania metanu |
EP3649097A4 (fr) | 2017-07-07 | 2021-03-24 | Lummus Technology LLC | Systèmes et procédés permettant le couplage oxydant de méthane |
WO2019023414A1 (fr) * | 2017-07-26 | 2019-01-31 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Procédé cyclique utilisant des solutions alcalines créées à partir d'eau électrolytiquement décarboxylée en tant que collecteur de co2 atmosphérique suivi d'une récupération électrochimique de co2 répétée avec production simultanée de dihydrogène |
KR20210122260A (ko) | 2019-02-01 | 2021-10-08 | 아쿠아하이드렉스, 인크. | 제한된 전해질을 갖춘 전기화학적 시스템 |
CN111398403B (zh) * | 2020-05-13 | 2021-04-09 | 中国科学院地质与地球物理研究所 | 一种同时测定橄榄石中的镁橄榄石值和微量元素方法 |
US11717802B2 (en) | 2021-03-04 | 2023-08-08 | Energy And Environmental Research Center Foundation | Methods of treating metal carbonate salts |
US11858819B2 (en) | 2021-03-04 | 2024-01-02 | Energy And Environmental Research Center Foundation | Methods of producing a syngas composition |
KR20230046930A (ko) | 2021-09-30 | 2023-04-06 | 광주과학기술원 | 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 |
US11965254B2 (en) | 2021-09-30 | 2024-04-23 | Gwangju Institute Of Science And Technology | Manufacturing apparatus and manufacturing method for synthetic gas with controlled H2/CO ratio |
US11891468B1 (en) | 2022-07-29 | 2024-02-06 | Dioxycle | Polymers and membranes with acrylamide moiety |
US20240052116A1 (en) * | 2022-07-29 | 2024-02-15 | Dioxycle | Electrolysis using membrane with acrylamide moiety |
CN115477484B (zh) * | 2022-10-12 | 2023-04-28 | 清华大学 | 可再生氢能及纯氧燃烧的零碳排放水泥生产设备和工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217186A (en) * | 1978-09-14 | 1980-08-12 | Ionics Inc. | Process for chloro-alkali electrolysis cell |
US6080297A (en) * | 1996-12-06 | 2000-06-27 | Electron Transfer Technologies, Inc. | Method and apparatus for constant composition delivery of hydride gases for semiconductor processing |
US6129832A (en) * | 1995-11-14 | 2000-10-10 | Gunter Fuhr | Device and method for adjusting ion concentrations |
Family Cites Families (231)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1678345A (en) * | 1921-06-25 | 1928-07-24 | Keasbey & Mattison Company | Millboard product and process |
GB271852A (en) * | 1926-05-28 | 1927-11-10 | Ig Farbenindustrie Ag | Improvements in and means for the extraction of carbon dioxide from gaseous mixtures |
US1865833A (en) * | 1929-01-21 | 1932-07-05 | Heinz H Chesny | Process of forming sodium bicarbonate |
US2383674A (en) * | 1941-08-21 | 1945-08-28 | Hooker Electrochemical Co | Process for production of sodium bicarbonate |
US2606839A (en) * | 1951-03-21 | 1952-08-12 | Dow Chemical Co | Noncaking sea salt and method of producing the same |
US2967807A (en) * | 1952-01-23 | 1961-01-10 | Hooker Chemical Corp | Electrolytic decomposition of sodium chloride |
US2934419A (en) * | 1955-09-19 | 1960-04-26 | Dixie Chemical Company Inc | Method of treating sea water |
US3046152A (en) * | 1958-11-25 | 1962-07-24 | Shiraishi Tsuneyoshi | Method of preparing colloidal calcium magnesium silicate |
BE594986A (fr) * | 1959-09-28 | |||
NL278428A (fr) * | 1961-05-15 | 1900-01-01 | ||
NL282666A (fr) * | 1961-09-06 | |||
DE1233366B (de) * | 1963-06-28 | 1967-02-02 | Ceskoslovenska Akademie Ved | Elektrolyseur fuer die gleichzeitige Herstellung von Chlor und Alkalicarbonaten |
US3350292A (en) | 1964-05-14 | 1967-10-31 | American Cyanamid Co | Utilization of saline water |
DE1243165B (de) | 1964-12-31 | 1967-06-29 | Halomet Ag | Verfahren zur Gewinnung reiner Metallchloride |
US3463814A (en) * | 1967-03-24 | 1969-08-26 | Us Interior | Chemical cycle for evaporative water desalination plant |
US3511712A (en) | 1967-03-30 | 1970-05-12 | United Aircraft Corp | Process of removing carbon dioxide from gas streams using fuel cell |
US3511595A (en) * | 1967-05-18 | 1970-05-12 | Treadwell Corp The | Method of removing carbon dioxide and water vapor from air |
US3420775A (en) * | 1967-07-05 | 1969-01-07 | Edgar A Cadwallader | Prevention of scale in saline water evaporators using carbon dioxide under special conditions |
US3574530A (en) | 1967-10-02 | 1971-04-13 | Pullman Inc | Method of removing sulfur dioxide from waste gases |
US3525675A (en) | 1968-05-22 | 1970-08-25 | Orca Inc | Desalination distillation using barium carbonate as descaling agent |
US3627479A (en) | 1968-10-10 | 1971-12-14 | Atomic Energy Commission | Chemical-electro-chemical cycle for desalination of water |
US3917795A (en) | 1970-11-30 | 1975-11-04 | Black Sivalls & Bryson Inc | Method of treating coal refuse |
US3953568A (en) | 1971-07-22 | 1976-04-27 | Maomi Seko | Method of simultaneous concentration and dilution of isotopes |
US3725267A (en) * | 1972-02-14 | 1973-04-03 | Interior | Softening of sea water by addition of barium carbonate and co2 |
GB1426335A (en) | 1972-09-04 | 1976-02-25 | Woodall Duckham Ltd | Treatment of inorganic dust |
US3864236A (en) * | 1972-09-29 | 1975-02-04 | Hooker Chemicals Plastics Corp | Apparatus for the electrolytic production of alkali |
US3963592A (en) * | 1972-09-29 | 1976-06-15 | Hooker Chemicals & Plastics Corporation | Method for the electrolytic production of alkali |
US4147599A (en) * | 1977-07-19 | 1979-04-03 | Diamond Shamrock Corporation | Production of alkali metal carbonates in a cell having a carboxyl membrane |
US4264367A (en) * | 1974-08-01 | 1981-04-28 | Sika Chemical Corporation | Admixtures and method for accelerating the setting of portland cement compositions |
DE2450259B2 (de) | 1974-10-23 | 1979-03-29 | Bayer Ag, 5090 Leverkusen | Verfahren zur Reinigung von Elektrolysesole |
AR205953A1 (es) * | 1975-01-22 | 1976-06-15 | Diamond Shamrock Corp | Produccion de carbonatos de metales a calinos en una celula de membrana |
US4026716A (en) * | 1975-03-17 | 1977-05-31 | Woodville Lime And Chemical Company | Concrete composition |
US4036749A (en) | 1975-04-30 | 1977-07-19 | Anderson Donald R | Purification of saline water |
US4033848A (en) * | 1975-10-15 | 1977-07-05 | Diamond Shamrock Corporation | Wafer electrode for an electrolytic cell |
DE2626885C2 (de) | 1976-06-16 | 1978-05-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen | Verfahren zum Aufschluß von Alkali-Erdalkali-silicathaltigem Material zur Gewinnung von Alkalisilicat- oder Alkalicarbonatlösungen und Stoffen mit großer spezifischer Oberfläche |
DE2653649A1 (de) | 1976-11-25 | 1978-06-01 | Kraftwerk Union Ag | Anlage zur erzeugung von trinkwasser und rohstoffen aus meerwasser |
US4188291A (en) | 1978-04-06 | 1980-02-12 | Anderson Donald R | Treatment of industrial waste water |
US4246075A (en) * | 1979-03-19 | 1981-01-20 | Marine Resources Company | Mineral accretion of large surface structures, building components and elements |
US4242185A (en) | 1979-09-04 | 1980-12-30 | Ionics Inc. | Process and apparatus for controlling impurities and pollution from membrane chlor-alkali cells |
US4361475A (en) * | 1980-01-10 | 1982-11-30 | Innova, Inc. | Membrane block construction and electrochemical cell |
US4335788A (en) | 1980-01-24 | 1982-06-22 | Halliburton Company | Acid dissolvable cements and methods of using the same |
US4370307A (en) | 1980-02-29 | 1983-01-25 | Martin Marietta Corporation | Preparation of pure magnesian values |
US4377640A (en) | 1981-05-20 | 1983-03-22 | Texasgulf Inc. | Sulphur gas geochemical prospecting |
US4376101A (en) * | 1981-11-13 | 1983-03-08 | Exxon Research And Engineering Co. | Process for removing acid gases using a basic salt activated with a non-sterically hindered diamine |
DE3146326C2 (de) | 1981-11-23 | 1983-11-10 | Kraftwerk Union AG, 4330 Mülheim | Anlage zur Erzeugung von Trinkwasser aus Meerwasser |
US4410606A (en) * | 1982-04-21 | 1983-10-18 | Loutfy Raouf O | Low temperature thermally regenerative electrochemical system |
US4450009A (en) * | 1983-04-29 | 1984-05-22 | Halliburton Company | Method of preparing a light weight cement composition from sea water |
US4561945A (en) * | 1984-07-30 | 1985-12-31 | United Technologies Corporation | Electrolysis of alkali metal salts with hydrogen depolarized anodes |
GB8423642D0 (en) * | 1984-09-19 | 1984-10-24 | Ici Plc | Electrolysis of alkali metal chloride solution |
US5100633A (en) * | 1985-11-07 | 1992-03-31 | Passamaquoddy Technology Limited Partnership | Method for scrubbing pollutants from an exhaust gas stream |
US4716027A (en) | 1986-07-25 | 1987-12-29 | Passamaquoddy Tribe, A Sovereign Indian Tribe Recognized By The Government Of The United States Of America | Method for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom |
KR880700779A (ko) | 1986-01-07 | 1988-04-12 | 그래함 다글러스 힐 로버트 | 마그네슘 시멘트 |
DE3638317A1 (de) | 1986-01-21 | 1987-06-25 | Hermann Dr Rer Na Killesreiter | Thermo-elektrische solarzelle |
US4804449A (en) | 1986-02-25 | 1989-02-14 | Sweeney Charles T | Electrolytic cell |
US4818367A (en) | 1986-04-14 | 1989-04-04 | J. H. Diamond Company | Asphalt, copolymer and elastomer composition |
US4915914A (en) | 1986-07-25 | 1990-04-10 | Passamaquaddy Tribe | System for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom |
US4931264A (en) | 1986-11-07 | 1990-06-05 | Board Of Regents, The University Of Texas System | Process for removing sulfur from sulfur-containing gases |
US4899544A (en) * | 1987-08-13 | 1990-02-13 | Boyd Randall T | Cogeneration/CO2 production process and plant |
JP2648313B2 (ja) | 1987-11-30 | 1997-08-27 | 田中貴金属工業株式会社 | 電解方法 |
US5037286A (en) | 1988-06-24 | 1991-08-06 | Rolite, Inc. | Incineration residue treatment apparatus |
US6638413B1 (en) * | 1989-10-10 | 2003-10-28 | Lectro Press, Inc. | Methods and apparatus for electrolysis of water |
EP0429154B1 (fr) * | 1989-11-21 | 1994-12-21 | Mitsubishi Jukogyo Kabushiki Kaisha | Procédé pour la fixation de l anhydride carbonique et dispositif pour traiter de l anhydride carbonique |
CA2023733C (fr) * | 1990-08-21 | 1998-04-14 | Marek Lipsztajn | Production de dioxyde de chlore a partir de l'acide chlorique |
JPH04190831A (ja) | 1990-11-22 | 1992-07-09 | Hitachi Ltd | 炭酸ガス再資源化リサイクルシステム |
US5141620A (en) * | 1990-12-18 | 1992-08-25 | United Technologies Corporation | Device and method for separating and compressing carbon dioxide from a carbonate salt |
IT1248564B (it) * | 1991-06-27 | 1995-01-19 | Permelec Spa Nora | Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione. |
US5230734A (en) * | 1991-07-29 | 1993-07-27 | Okutama Kogyo Co., Ltd. | Calcium-magnesium carbonate composite and method for the preparation thereof |
US5246551A (en) * | 1992-02-11 | 1993-09-21 | Chemetics International Company Ltd. | Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine |
DE4208068A1 (de) | 1992-03-13 | 1993-09-16 | Solvay Barium Strontium Gmbh | Herstellung von granuliertem erdalkalimetallcarbonat unter gleichzeitiger erhitzung und granulation |
DE4207923A1 (de) | 1992-03-13 | 1993-09-16 | Solvay Barium Strontium Gmbh | Herstellung von granuliertem erdalkalimetallcarbonat |
DK49592D0 (da) | 1992-04-13 | 1992-04-13 | Aalborg Portland As | Cementkomposition |
US5282935A (en) * | 1992-04-13 | 1994-02-01 | Olin Corporation | Electrodialytic process for producing an alkali solution |
US5531865A (en) * | 1992-08-19 | 1996-07-02 | Cole; Leland G. | Electrolytic water purification process |
DE4311665C1 (de) * | 1993-04-08 | 1994-08-18 | Metallgesellschaft Ag | Verfahren zur Herstellung von Alkaliperoxid-Lösungen |
DK70693D0 (da) | 1993-06-14 | 1993-06-14 | Niels Ole Vesterager | Fremgangsmaade til fjernelse af uoenskede stoffer i en gasart |
US5855759A (en) * | 1993-11-22 | 1999-01-05 | E. I. Du Pont De Nemours And Company | Electrochemical cell and process for splitting a sulfate solution and producing a hyroxide solution sulfuric acid and a halogen gas |
US5470671A (en) | 1993-12-22 | 1995-11-28 | Ballard Power Systems Inc. | Electrochemical fuel cell employing ambient air as the oxidant and coolant |
US5846669A (en) | 1994-05-12 | 1998-12-08 | Illinois Institute Of Technology | Hybrid electrolyte system |
JP3632222B2 (ja) | 1994-09-13 | 2005-03-23 | 株式会社Inax | CaCO3の固化方法 |
US5624493A (en) | 1995-04-19 | 1997-04-29 | The United States Of America As Represented By The Department Of Energy | Quick-setting concrete and a method for making quick-setting concrete |
AU4421396A (en) | 1995-05-01 | 1996-11-21 | E.I. Du Pont De Nemours And Company | Electrochemical cell and process for splitting a sulfate sol ution and producing a hydroxide solution, sulfuric acid and a halogen gas |
WO1996038384A1 (fr) * | 1995-06-01 | 1996-12-05 | Upscale Technologies, Inc. | Procede et appareil pour eliminer les nitrates contenus dans l'eau |
DE19529246A1 (de) | 1995-08-09 | 1997-02-13 | Thomas Weimer | Verfahren zur Kohlendioxidabreinigung aus Gasgemischen |
US5531821A (en) * | 1995-08-24 | 1996-07-02 | Ecc International Inc. | Surface modified calcium carbonate composition and uses therefor |
US5785868A (en) | 1995-09-11 | 1998-07-28 | Board Of Regents, Univ. Of Texas System | Method for selective separation of products at hydrothermal conditions |
DE19631794A1 (de) | 1996-08-07 | 1997-08-07 | Peter Prof Pohl | Verfahren zur Beseitigung von CO¶2¶ aus Abgasen einer Verbrennungsmaschine |
US5925255A (en) | 1997-03-01 | 1999-07-20 | Mukhopadhyay; Debasish | Method and apparatus for high efficiency reverse osmosis operation |
US6537456B2 (en) | 1996-08-12 | 2003-03-25 | Debasish Mukhopadhyay | Method and apparatus for high efficiency reverse osmosis operation |
US6071336A (en) | 1996-09-05 | 2000-06-06 | Minerals Technologies Inc. | Acicular calcite and aragonite calcium carbonate |
CA2227398A1 (fr) * | 1997-01-23 | 1998-07-23 | K.N. Mani | Appareil et procede pour l'electrodialyse des sels |
US6294066B1 (en) * | 1997-01-23 | 2001-09-25 | Archer Daniels Midland Company | Apparatus and process for electrodialysis of salts |
US6180012B1 (en) * | 1997-03-19 | 2001-01-30 | Paul I. Rongved | Sea water desalination using CO2 gas from combustion exhaust |
US5766339A (en) * | 1997-05-07 | 1998-06-16 | Dravo Lime Company | Process for producing cement from a flue gas desulfurization process waste product |
AU7982498A (en) | 1997-06-19 | 1999-01-04 | Applied Specialties, Inc. | Water treatment process |
US5906722A (en) * | 1997-08-18 | 1999-05-25 | Ppg Industries, Inc. | Method of converting amine hydrohalide into free amine |
US5904829A (en) * | 1997-08-18 | 1999-05-18 | Ppg Industries, Inc. | Method of converting amine hydrohalide into free amine |
AU9087498A (en) | 1997-09-15 | 1999-04-05 | Den Norske Stats Oljeselskap A.S. | Installation for separation of co2 from gas turbine flue gas |
EP1024880A1 (fr) | 1997-09-15 | 2000-08-09 | Den Norske Stats Oljeselskap A.S. | Separation de gaz acides de melanges gazeux |
US6200543B1 (en) * | 1998-02-25 | 2001-03-13 | Mississippi Lime Company | Apparatus and methods for reducing carbon dioxide content of an air stream |
US6024848A (en) | 1998-04-15 | 2000-02-15 | International Fuel Cells, Corporation | Electrochemical cell with a porous support plate |
JP3859358B2 (ja) * | 1998-05-26 | 2006-12-20 | クロリンエンジニアズ株式会社 | 電解水製造装置 |
US6334895B1 (en) | 1998-07-20 | 2002-01-01 | The University Of Wyoming Research Corporation | System for producing manufactured materials from coal combustion ash |
WO2000010691A1 (fr) * | 1998-08-18 | 2000-03-02 | United States Department Of Energy | Procede et appareil permettant d'extraire et de sequestrer le dioxyde de carbone |
DE19844059A1 (de) | 1998-09-25 | 2000-03-30 | Degussa | Elektrolysezelle und deren Verwendung |
JP3248514B2 (ja) | 1998-10-29 | 2002-01-21 | 日本鋼管株式会社 | 排出炭酸ガスの削減方法 |
JP2000128612A (ja) | 1998-10-30 | 2000-05-09 | Jdc Corp | 重質炭酸カルシウムの水性スラリ−を含むコンクリ−ト |
US6841512B1 (en) * | 1999-04-12 | 2005-01-11 | Ovonic Battery Company, Inc. | Finely divided metal catalyst and method for making same |
US6475460B1 (en) | 1999-07-12 | 2002-11-05 | Marine Desalination Systems Llc | Desalination and concomitant carbon dioxide capture yielding liquid carbon dioxide |
US6251356B1 (en) * | 1999-07-21 | 2001-06-26 | G. R. International, Inc. | High speed manufacturing process for precipitated calcium carbonate employing sequential perssure carbonation |
US6375825B1 (en) * | 1999-10-28 | 2002-04-23 | Chemical Products Corporation | Process for the production of alkaline earth hydroxide |
CN1419523B (zh) * | 2000-01-27 | 2010-04-21 | 泰西可控股有限公司 | 含镁水泥 |
DE10004878A1 (de) * | 2000-02-04 | 2001-08-09 | Sgl Technik Gmbh | Verfahren und Vorrichtung zum gleichzeitigen Herstellen von Säure und Base hoher Reinheit |
US6602630B1 (en) * | 2000-03-14 | 2003-08-05 | The Electrosynthesis Company, Inc. | Membrane electrode assemblies for electrochemical cells |
US6352576B1 (en) * | 2000-03-30 | 2002-03-05 | The Regents Of The University Of California | Methods of selectively separating CO2 from a multicomponent gaseous stream using CO2 hydrate promoters |
US6623555B1 (en) | 2000-06-01 | 2003-09-23 | Jukka P. Haverinen | Composite precipitated calcium carbonate/silicon compound pigment and method of making same |
NO319666B1 (no) | 2000-06-16 | 2005-09-05 | Enpro As | Fremgangsmate til fjerning av salt fra saltholdig vann, samt anvendelse derav |
DE10030093C1 (de) * | 2000-06-19 | 2002-02-21 | Starck H C Gmbh | Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten |
IL137102A0 (en) | 2000-06-29 | 2001-06-14 | Israel Garden | A process and apparatus for brine reformation |
US6495013B2 (en) | 2000-07-13 | 2002-12-17 | The Electrosynthesis Company, Inc. | Bipolar membrane electrodialysis of multivalent metal salts whose corresponding base is insoluble |
GB0031413D0 (en) | 2000-12-21 | 2001-02-07 | Aea Technology Plc | Electrochemical processing |
US20020127474A1 (en) * | 2001-01-09 | 2002-09-12 | E.C.R.-Electro-Chemical Research Ltd. | Proton-selective conducting membranes |
CN1369576A (zh) * | 2001-02-16 | 2002-09-18 | 深圳市柯雷恩环境科技有限公司 | 反式双膜三室电解槽 |
ATE368015T1 (de) * | 2001-04-13 | 2007-08-15 | Co2 Solution Inc | Verfahren und vorrichtung zur herstellung von zementklinker |
CA2444576A1 (fr) | 2001-04-20 | 2002-10-31 | Shell Internationale Research Maatschappij B.V. | Procede de carbonatation minerale au moyen de dioxyde de carbone |
CN1166019C (zh) | 2001-05-25 | 2004-09-08 | 中国科学院长春应用化学研究所 | 质子交换膜燃料电池纳米电催化剂的制备方法 |
WO2007140544A1 (fr) | 2006-06-09 | 2007-12-13 | Gomez Rodolfo Antonio M | Activation électrolytique de l'eau |
US6712946B2 (en) * | 2001-06-18 | 2004-03-30 | The Electrosynthesis Company, Inc. | Electrodialysis of multivalent metal salts |
US6786963B2 (en) | 2001-06-27 | 2004-09-07 | Bj Services Company | Paving compositions and methods for their use |
WO2003008071A1 (fr) | 2001-07-17 | 2003-01-30 | Sigurd Fongen | Procede et dispositif pour l'absorption du co2 dans l'eau de mer |
US20030017088A1 (en) * | 2001-07-20 | 2003-01-23 | William Downs | Method for simultaneous removal and sequestration of CO2 in a highly energy efficient manner |
JP2003041388A (ja) | 2001-07-31 | 2003-02-13 | Association For The Progress Of New Chemistry | イオン交換膜電解槽および電解方法 |
US6607707B2 (en) * | 2001-08-15 | 2003-08-19 | Ovonic Battery Company, Inc. | Production of hydrogen from hydrocarbons and oxygenated hydrocarbons |
AU2002365135A1 (en) * | 2001-10-23 | 2003-07-09 | Anteon Corporation | Integrated oxygen generation and carbon dioxide absorption method, apparatus and systems |
US7459020B2 (en) | 2001-10-23 | 2008-12-02 | Denki Kagaku Kogyo Kabushiki Kaisha | Cement admixture, cement composition, and cement concrete made therefrom |
WO2003036034A1 (fr) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Sources de chaleur conductrices dans un conduit, presentant un materiau conducteur par voie electrique dans des morts-terrains |
US6776972B2 (en) * | 2001-10-29 | 2004-08-17 | Council Of Scientific And Industrial Research | Recovery of common salt and marine chemicals from brine |
US6648949B1 (en) | 2001-11-28 | 2003-11-18 | The United States Of America As Represented By The United States Department Of Energy | System for small particle and CO2 removal from flue gas using an improved chimney or stack |
US7055325B2 (en) | 2002-01-07 | 2006-06-06 | Wolken Myron B | Process and apparatus for generating power, producing fertilizer, and sequestering, carbon dioxide using renewable biomass |
KR100961298B1 (ko) * | 2002-02-13 | 2010-06-04 | 닛데츠 고교 가부시키가이샤 | 염기성 탄산마그네슘, 이의 제조방법 및 용도 |
NO317918B1 (no) | 2002-02-15 | 2005-01-03 | Sargas As | Fremgangsmate for fremstilling av ferskvann og rensing av karbondioksyd |
US6755905B2 (en) | 2002-02-15 | 2004-06-29 | Lafarge Canada Inc. | Use of high carbon coal ash |
US7108777B2 (en) | 2002-03-15 | 2006-09-19 | Millennium Cell, Inc. | Hydrogen-assisted electrolysis processes |
WO2003086973A1 (fr) | 2002-04-05 | 2003-10-23 | Bertshell Pty Ltd | Procede et appareil destine a etre utilise pour preparer une solution de bicarbonate de magnesium aqueuse |
US20060184445A1 (en) | 2002-07-20 | 2006-08-17 | Richard Sandor | Systems and methods for trading emission reductions |
US7214290B2 (en) * | 2002-09-04 | 2007-05-08 | Shaw Liquid Solutions Llc. | Treatment of spent caustic refinery effluents |
US7090868B2 (en) | 2002-09-13 | 2006-08-15 | University Of Florida | Materials and methods for drug delivery and uptake |
CA2405635A1 (fr) * | 2002-09-27 | 2004-03-27 | C02 Solution Inc. | Methode et usine de production de produits carbonates utiles et de recyclage des emissions de dioxyde de carbone produites par des centrales electriques |
US20040126293A1 (en) * | 2002-10-23 | 2004-07-01 | Geerlings Jacobus Johannes Cornelis | Process for removal of carbon dioxide from flue gases |
WO2004041731A1 (fr) | 2002-11-05 | 2004-05-21 | Geo-Processors Pty Limited | Procede et appareil de traitement d'eau saline |
US7440871B2 (en) | 2002-12-09 | 2008-10-21 | Verisae, Inc. | Method and system for tracking and reporting emissions |
US6964302B2 (en) | 2002-12-10 | 2005-11-15 | Halliburton Energy Services, Inc. | Zeolite-containing cement composition |
CA2414949C (fr) | 2002-12-20 | 2010-04-13 | Imperial Oil Resources Limited | Procede integre de traitement de l'eau et de desulfuration de gaz effluents |
CN1232465C (zh) | 2002-12-24 | 2005-12-21 | 清华大学 | 凝石二元化湿水泥及其用途 |
JP2004261658A (ja) | 2003-02-26 | 2004-09-24 | Tokyo Electric Power Co Inc:The | 燃焼排ガス中の二酸化炭素の吸収固定化方法 |
US7754176B2 (en) * | 2003-02-27 | 2010-07-13 | Okutama Kogyo Co., Ltd. | Spherical calcium carbonate and method for producing thereof |
US20040213705A1 (en) * | 2003-04-23 | 2004-10-28 | Blencoe James G. | Carbonation of metal silicates for long-term CO2 sequestration |
EP1618335A1 (fr) * | 2003-04-29 | 2006-01-25 | Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources | Capture in situ de dioxyde de carbone et de dioxyde de soufre dans un dispositif de combustion en lit fluidise |
US7132090B2 (en) | 2003-05-02 | 2006-11-07 | General Motors Corporation | Sequestration of carbon dioxide |
US7604787B2 (en) | 2003-05-02 | 2009-10-20 | The Penn State Research Foundation | Process for sequestering carbon dioxide and sulfur dioxide |
US20040259231A1 (en) | 2003-06-18 | 2004-12-23 | Bhattacharya Sanjoy K. | Enzyme facilitated solubilization of carbon dioxide from emission streams in novel attachable reactors/devices |
JP2005008478A (ja) * | 2003-06-18 | 2005-01-13 | Toshiba Corp | 排ガス中の二酸化炭素回収システムおよび二酸化炭素回収方法 |
US7135604B2 (en) | 2003-06-25 | 2006-11-14 | Exxonmobil Chemical Patents Inc. | Process for separating carbon dioxide from an oxygenate-to-olefin effluent stream |
US20050011770A1 (en) * | 2003-07-18 | 2005-01-20 | Tatenuma Katsuyoshi | Reduction method of atmospheric carbon dioxide, recovery and removal method of carbonate contained in seawater, and disposal method of the recovered carbonate |
CA2478516C (fr) * | 2003-09-30 | 2007-12-11 | Jaguar Nickel Inc. | Un procede de recuperation de metaux precieux des minerais contenant des sulfures de metaux de base |
FR2861494B1 (fr) | 2003-10-28 | 2005-12-23 | Commissariat Energie Atomique | Utilisation de carbonates mixtes frittes pour le confinement de carbone radioactif. |
US7198722B2 (en) | 2003-11-11 | 2007-04-03 | Mohammed Azam Hussain | Process for pre-treating and desalinating sea water |
EP1702380A4 (fr) | 2003-11-14 | 2008-12-31 | Univ Akron | Pile a combustible a base de carbone |
AU2003304535A1 (en) * | 2003-11-14 | 2004-06-06 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources | Pre-treatment of lime-based sorbents using hydration |
US7722842B2 (en) * | 2003-12-31 | 2010-05-25 | The Ohio State University | Carbon dioxide sequestration using alkaline earth metal-bearing minerals |
DE102004004689B4 (de) | 2004-01-29 | 2006-10-05 | Clauser, Christoph, Prof. Dr. | Verfahren und eine Anordnung zur Speicherung und dauerhaften Fixierung von in Wasser gelöstem CO2 in geologischen Formationen |
US20070163443A1 (en) * | 2004-01-30 | 2007-07-19 | Hideshige Moriyama | System and method for recovering carbon dioxide in exhaust gas |
DE102004006915B4 (de) | 2004-02-12 | 2005-11-24 | Mayer, Günter, Dipl.-Ing. | Brennstoffzelle und Verfahren zur Abreicherung von Kohlendioxid |
US20050238563A1 (en) * | 2004-03-08 | 2005-10-27 | Eighmy T T | Method for sequestering carbon dioxide |
WO2005108297A2 (fr) | 2004-05-04 | 2005-11-17 | The Trustees Of Columbia University In The City Of New York | Capture du dioxyde de carbone et reduction des emissions de dioxyde de carbone |
WO2006009600A2 (fr) | 2004-05-04 | 2006-01-26 | The Trustees Of Columbia University In The City Of New York | Systemes et procedes pour l'extraction de dioxyde de carbone dans de l'air |
US7699909B2 (en) * | 2004-05-04 | 2010-04-20 | The Trustees Of Columbia University In The City Of New York | Systems and methods for extraction of carbon dioxide from air |
WO2006008242A1 (fr) * | 2004-07-19 | 2006-01-26 | Shell Internationale Research Maatschappij B.V. | Procede de production de caco3 ou mgco3 |
AU2005290082B2 (en) | 2004-08-20 | 2011-03-24 | Kilimanjaro Energy, Inc. | Removal of carbon dioxide from air |
US20060051274A1 (en) * | 2004-08-23 | 2006-03-09 | Wright Allen B | Removal of carbon dioxide from air |
ES2382091T3 (es) | 2004-09-13 | 2012-06-05 | University Of South Carolina | Procedimiento de desalinización de agua y aparato para el mismo |
US7727374B2 (en) * | 2004-09-23 | 2010-06-01 | Skyonic Corporation | Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals |
US7261912B2 (en) * | 2004-11-18 | 2007-08-28 | Arthur William Zeigler | Method of producing useful products from seawater and similar microflora containing brines |
USH2241H1 (en) | 2004-12-03 | 2010-06-01 | Kevin M Colbow | Fuel cell electric power generating system |
US7390444B2 (en) | 2005-02-24 | 2008-06-24 | Wisconsin Electric Power Company | Carbon dioxide sequestration in foamed controlled low strength materials |
US9028607B2 (en) | 2005-02-24 | 2015-05-12 | Wisconsin Electric Power Company | Carbon dioxide sequestration in foamed controlled low strength materials |
WO2006134080A1 (fr) | 2005-06-15 | 2006-12-21 | Solvay (Société Anonyme) | Utilisation de particules de carbonate de calcium dans la production de materiaux de construction |
CN101252982B (zh) | 2005-07-05 | 2014-06-25 | 澳大利亚格林索斯股份有限公司 | 阳离子卤化物的制备和用途以及二氧化碳的吸纳 |
US20070187247A1 (en) | 2005-07-20 | 2007-08-16 | Lackner Klaus S | Electrochemical methods and processes for carbon dioxide recovery from alkaline solvents for carbon dioxide capture from air |
CN102160957A (zh) | 2005-07-28 | 2011-08-24 | 乞力马扎罗能量公司 | 从空气中除去二氧化碳 |
JP2009511740A (ja) * | 2005-10-13 | 2009-03-19 | マントラ エナジー オールターナティヴス リミテッド | 二酸化炭素の連続並流電気化学還元 |
CN101312784B (zh) | 2005-11-23 | 2011-06-22 | 国际壳牌研究有限公司 | 通过矿物碳酸盐化隔离二氧化碳的方法 |
DE602006016988D1 (de) | 2005-12-20 | 2010-10-28 | Shell Int Research | Verfahren zur sequestrierung von kohlendioxid |
NO20060807L (no) | 2006-02-17 | 2007-08-20 | Omar Chaalal | Fremgangsmate til rensing av saltvann |
GB0603443D0 (en) | 2006-02-21 | 2006-04-05 | Hills Colin D | Production of secondary aggregates |
CN102600707B (zh) | 2006-03-10 | 2015-11-11 | C-广思技术国际有限公司 | 二氧化碳分离材料和方法 |
WO2007106883A2 (fr) | 2006-03-15 | 2007-09-20 | Carbon Trap Technologies, L.P. | Procédés et systèmes de capture du dioxyde de carbone en utilisant des courants effluents |
US7572318B2 (en) | 2006-04-18 | 2009-08-11 | Gas Technology Institute | High-temperature membrane for CO2 and/or H2S separation |
US7670139B2 (en) | 2006-04-19 | 2010-03-02 | Wells Products Group, Inc. | Method and apparatus for reduced emissions fuel combustion |
WO2008018928A2 (fr) | 2006-04-27 | 2008-02-14 | President And Fellows Of Harvard College | Capture de dioxyde de carbone et procédés associés |
NO20062465L (no) | 2006-05-30 | 2007-12-03 | Omar Chaalal | Method and for cleaning of gases and uses thereof |
WO2008021256A2 (fr) * | 2006-08-11 | 2008-02-21 | Aqua Resources Corporation | Hydroxydes métalliques nanoplaquettaires et leurs méthodes d'élaboration |
EP2535314A1 (fr) | 2006-08-29 | 2012-12-19 | Yeda Research & Development Company, Ltd. | Procédés et appareils permettant de réduire la concentration en CO2 d'un fluide |
EP1900688A1 (fr) | 2006-09-14 | 2008-03-19 | SOLVAY (Société Anonyme) | Procédé pour obtenir des cristaux de carbonate de sodium |
JP5031336B2 (ja) * | 2006-11-21 | 2012-09-19 | ペルメレック電極株式会社 | 食塩電解用酸素ガス拡散陰極 |
MX2009005386A (es) | 2006-11-22 | 2009-06-26 | Orica Explosives Tech Pty Ltd | Proceso quimico integrado. |
WO2008068322A1 (fr) | 2006-12-08 | 2008-06-12 | Solvay (Société Anonyme) | Particules de carbonate de métal alcalino-terreux revêtues, utilisation de telles particules dans la production de matériaux de construction et compositions de matériaux de construction contenant de telles particules |
JP5690486B2 (ja) | 2007-01-31 | 2015-03-25 | ノボザイムス アクティーゼルスカブ | 熱安定性炭酸脱水酵素及びその用途 |
WO2008101293A1 (fr) | 2007-02-20 | 2008-08-28 | Hunwick Richard J | Système, appareil et procédé de séquestration de dioxyde de carbone |
GB2452169A (en) * | 2007-02-25 | 2009-02-25 | Puregeneration | Carbon dioxide sequestering fuel synthesis system and use thereof |
AU2007100157A4 (en) | 2007-02-28 | 2007-04-19 | Green, Kenneth Mr | Improved method of sequestering carbon dioxide as calcium carbonate |
NO332158B1 (no) | 2007-03-05 | 2012-07-09 | Aker Clean Carbon As | Fremgangsmåte for fjerning av CO2 fra en eksosgass |
US20090081096A1 (en) | 2007-03-28 | 2009-03-26 | Pellegrin Roy J | Method and means for capture and long-term sequestration of carbon dioxide |
CN101280926A (zh) * | 2007-04-02 | 2008-10-08 | 卢冠均 | 废气净化装置及其净化方法 |
AU2008237264B2 (en) * | 2007-04-03 | 2012-09-20 | Sulfurcycle Intellectual Property Holding Company Llc | Electrochemical system, apparatus, and method to generate renewable hydrogen and sequester carbon dioxide |
AU2008209322B2 (en) | 2007-04-20 | 2012-10-25 | Rodolfo Antonio M. Gomez | Carbon dioxide sequestration and capture |
US20080277319A1 (en) | 2007-05-11 | 2008-11-13 | Wyrsta Michael D | Fine particle carbon dioxide transformation and sequestration |
CA2687620A1 (fr) | 2007-05-21 | 2008-11-27 | Shell Internationale Research Maatschappij B.V. | Procede de preparation d'une matiere minerale activee |
US20080289495A1 (en) | 2007-05-21 | 2008-11-27 | Peter Eisenberger | System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same |
CA2687618A1 (fr) | 2007-05-21 | 2008-11-27 | Shell Internationale Research Maatschappij B.V. | Procede de sequestration de dioxyde de carbone par carbonatation minerale |
WO2008151060A1 (fr) | 2007-05-30 | 2008-12-11 | New Sky Energy, Inc. | Utilisation de la dissociation photoélectrochimique de l'eau pour produire des matériaux destinés à la séquestration du dioxyde de carbone |
US7753618B2 (en) * | 2007-06-28 | 2010-07-13 | Calera Corporation | Rocks and aggregate, and methods of making and using the same |
GB2461356B (en) | 2007-06-28 | 2010-08-18 | Calera Corp | Desalination methods and systems that include carbonate compound precipitation |
GB0716360D0 (en) | 2007-08-22 | 2007-10-03 | Univ Greenwich | Production of secondary aggregates |
US7993616B2 (en) | 2007-09-19 | 2011-08-09 | C-Quest Technologies LLC | Methods and devices for reducing hazardous air pollutants |
US8551340B2 (en) | 2007-09-26 | 2013-10-08 | Bioteq Environmental Technologies Inc. | Method for selective sulphate removal by exclusive anion exchange from hard water waste streams |
US7655202B2 (en) | 2007-10-09 | 2010-02-02 | Ceramatec, Inc. | Coal fired flue gas treatment and process |
EA027716B1 (ru) | 2007-11-15 | 2017-08-31 | Ратджерс, Те Стейт Юниверсити Оф Нью Джерси | Способ фиксации парникового газа (варианты), монолитный компакт, получаемый этим способом, и способ получения керамики |
WO2009070273A1 (fr) | 2007-11-27 | 2009-06-04 | Peletex, Inc. | Procédé et moyens pour la capture et la séquestration longue durée de dioxyde de carbone |
US7749476B2 (en) | 2007-12-28 | 2010-07-06 | Calera Corporation | Production of carbonate-containing compositions from material comprising metal silicates |
CA2652803A1 (fr) | 2007-12-28 | 2009-06-28 | Calera Corporation | Procedes de sequestration du co2 |
CN102335553A (zh) * | 2010-07-21 | 2012-02-01 | 中国石油化工股份有限公司 | 一种钠基烟气脱硫液的再生方法 |
-
2008
- 2008-12-23 WO PCT/US2008/088242 patent/WO2010074686A1/fr active Application Filing
- 2008-12-23 CA CA2666147A patent/CA2666147C/fr active Active
- 2008-12-23 GB GB0901413A patent/GB2467019B/en active Active
- 2008-12-23 BR BRPI0823394-2A patent/BRPI0823394A2/pt not_active IP Right Cessation
- 2008-12-23 EP EP08873036A patent/EP2291550A4/fr not_active Withdrawn
- 2008-12-23 CN CN200880118401XA patent/CN101878327A/zh active Pending
- 2008-12-23 US US12/375,632 patent/US7790012B2/en active Active
-
2009
- 2009-12-23 TW TW098144398A patent/TW201038773A/zh unknown
- 2009-12-23 AR ARP090105110A patent/AR075113A1/es unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217186A (en) * | 1978-09-14 | 1980-08-12 | Ionics Inc. | Process for chloro-alkali electrolysis cell |
US6129832A (en) * | 1995-11-14 | 2000-10-10 | Gunter Fuhr | Device and method for adjusting ion concentrations |
US6080297A (en) * | 1996-12-06 | 2000-06-27 | Electron Transfer Technologies, Inc. | Method and apparatus for constant composition delivery of hydride gases for semiconductor processing |
Non-Patent Citations (1)
Title |
---|
See also references of EP2291550A4 * |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7906086B2 (en) | 2006-03-10 | 2011-03-15 | Comrie Douglas C | Carbon dioxide sequestration materials and processes |
US8857118B2 (en) | 2007-05-24 | 2014-10-14 | Calera Corporation | Hydraulic cements comprising carbonate compound compositions |
US7993616B2 (en) | 2007-09-19 | 2011-08-09 | C-Quest Technologies LLC | Methods and devices for reducing hazardous air pollutants |
US8333944B2 (en) | 2007-12-28 | 2012-12-18 | Calera Corporation | Methods of sequestering CO2 |
US9260314B2 (en) | 2007-12-28 | 2016-02-16 | Calera Corporation | Methods and systems for utilizing waste sources of metal oxides |
US7993500B2 (en) | 2008-07-16 | 2011-08-09 | Calera Corporation | Gas diffusion anode and CO2 cathode electrolyte system |
US8357270B2 (en) | 2008-07-16 | 2013-01-22 | Calera Corporation | CO2 utilization in electrochemical systems |
US8894830B2 (en) | 2008-07-16 | 2014-11-25 | Celera Corporation | CO2 utilization in electrochemical systems |
US8006446B2 (en) | 2008-09-30 | 2011-08-30 | Calera Corporation | CO2-sequestering formed building materials |
US8869477B2 (en) | 2008-09-30 | 2014-10-28 | Calera Corporation | Formed building materials |
US9061940B2 (en) | 2008-09-30 | 2015-06-23 | Calera Corporation | Concrete compositions and methods |
US8431100B2 (en) | 2008-09-30 | 2013-04-30 | Calera Corporation | CO2-sequestering formed building materials |
US8470275B2 (en) | 2008-09-30 | 2013-06-25 | Calera Corporation | Reduced-carbon footprint concrete compositions |
US8603424B2 (en) | 2008-09-30 | 2013-12-10 | Calera Corporation | CO2-sequestering formed building materials |
US9133581B2 (en) | 2008-10-31 | 2015-09-15 | Calera Corporation | Non-cementitious compositions comprising vaterite and methods thereof |
US8834688B2 (en) | 2009-02-10 | 2014-09-16 | Calera Corporation | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
US9267211B2 (en) | 2009-02-10 | 2016-02-23 | Calera Corporation | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
US8491858B2 (en) | 2009-03-02 | 2013-07-23 | Calera Corporation | Gas stream multi-pollutants control systems and methods |
US8883104B2 (en) | 2009-03-02 | 2014-11-11 | Calera Corporation | Gas stream multi-pollutants control systems and methods |
US8137444B2 (en) | 2009-03-10 | 2012-03-20 | Calera Corporation | Systems and methods for processing CO2 |
US8906156B2 (en) | 2009-12-31 | 2014-12-09 | Calera Corporation | Cement and concrete with reinforced material |
US8177909B2 (en) | 2009-12-31 | 2012-05-15 | Calera Corporation | Methods and compositions using calcium carbonate |
US8932400B2 (en) | 2009-12-31 | 2015-01-13 | Calera Corporation | Methods and compositions using calcium carbonate |
US8062418B2 (en) | 2009-12-31 | 2011-11-22 | Calera Corporation | Methods and compositions using calcium carbonate |
US8114214B2 (en) | 2009-12-31 | 2012-02-14 | Calera Corporation | Methods and compositions using calcium carbonate |
US9056790B2 (en) | 2009-12-31 | 2015-06-16 | Calera Corporation | Methods and compositions using calcium carbonate |
US8137455B1 (en) | 2009-12-31 | 2012-03-20 | Calera Corporation | Methods and compositions using calcium carbonate |
US9139472B2 (en) | 2011-04-28 | 2015-09-22 | Calera Corporation | Methods and compositions using calcium carbonate and stabilizer |
US8936773B2 (en) | 2011-04-28 | 2015-01-20 | Calera Corporation | Methods and compositions using calcium carbonate and stabilizer |
US8691175B2 (en) | 2011-04-28 | 2014-04-08 | Calera Corporation | Calcium sulfate and CO2 sequestration |
US9187834B2 (en) | 2011-05-19 | 2015-11-17 | Calera Corporation | Electrochemical hydroxide systems and methods using metal oxidation |
US9187835B2 (en) | 2011-05-19 | 2015-11-17 | Calera Corporation | Electrochemical systems and methods using metal and ligand |
US9200375B2 (en) | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
US9957623B2 (en) | 2011-05-19 | 2018-05-01 | Calera Corporation | Systems and methods for preparation and separation of products |
US8999057B2 (en) | 2011-09-28 | 2015-04-07 | Calera Corporation | Cement and concrete with calcium aluminates |
US10287223B2 (en) | 2013-07-31 | 2019-05-14 | Calera Corporation | Systems and methods for separation and purification of products |
US9828313B2 (en) | 2013-07-31 | 2017-11-28 | Calera Corporation | Systems and methods for separation and purification of products |
US9902652B2 (en) | 2014-04-23 | 2018-02-27 | Calera Corporation | Methods and systems for utilizing carbide lime or slag |
US9957621B2 (en) | 2014-09-15 | 2018-05-01 | Calera Corporation | Electrochemical systems and methods using metal halide to form products |
US9880124B2 (en) | 2014-11-10 | 2018-01-30 | Calera Corporation | Measurement of ion concentration in presence of organics |
US10480085B2 (en) | 2015-03-16 | 2019-11-19 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10801117B2 (en) | 2015-03-16 | 2020-10-13 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10161050B2 (en) | 2015-03-16 | 2018-12-25 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10844496B2 (en) | 2015-10-28 | 2020-11-24 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
US10266954B2 (en) | 2015-10-28 | 2019-04-23 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
US10236526B2 (en) | 2016-02-25 | 2019-03-19 | Calera Corporation | On-line monitoring of process/system |
US10847844B2 (en) | 2016-04-26 | 2020-11-24 | Calera Corporation | Intermediate frame, electrochemical systems, and methods |
US11239503B2 (en) | 2016-04-26 | 2022-02-01 | Calera Corporation | Intermediate frame, electrochemical systems, and methods |
US10619254B2 (en) | 2016-10-28 | 2020-04-14 | Calera Corporation | Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide |
US10556848B2 (en) | 2017-09-19 | 2020-02-11 | Calera Corporation | Systems and methods using lanthanide halide |
US10590054B2 (en) | 2018-05-30 | 2020-03-17 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid |
US10807927B2 (en) | 2018-05-30 | 2020-10-20 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using lewis acid |
US11577965B2 (en) | 2020-02-25 | 2023-02-14 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
US12077447B2 (en) | 2020-02-25 | 2024-09-03 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
US11377363B2 (en) | 2020-06-30 | 2022-07-05 | Arelac, Inc. | Methods and systems for forming vaterite from calcined limestone using electric kiln |
Also Published As
Publication number | Publication date |
---|---|
GB2467019A (en) | 2010-07-21 |
TW201038773A (en) | 2010-11-01 |
CN101878327A (zh) | 2010-11-03 |
EP2291550A1 (fr) | 2011-03-09 |
CA2666147C (fr) | 2011-05-24 |
GB2467019B (en) | 2011-04-27 |
EP2291550A4 (fr) | 2011-03-09 |
BRPI0823394A2 (pt) | 2015-06-16 |
GB0901413D0 (en) | 2009-03-11 |
CA2666147A1 (fr) | 2010-02-02 |
US7790012B2 (en) | 2010-09-07 |
AR075113A1 (es) | 2011-03-09 |
US20100155258A1 (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2666147C (fr) | Methode et systeme electrochimiques peu energivores de production d'ions hydroxydes | |
US20100224503A1 (en) | Low-energy electrochemical hydroxide system and method | |
AU2009271304B2 (en) | Low-energy 4-cell electrochemical system with carbon dioxide gas | |
JP5373079B2 (ja) | 電気化学システム中でのco2の利用 | |
AU2010201006B2 (en) | Low-voltage alkaline production from brines | |
US20110036728A1 (en) | Low-energy electrochemical proton transfer system and method | |
US20110083968A1 (en) | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes | |
WO2011097468A2 (fr) | Séparation d'acide par rétention d'acide sur une résine échangeuse d'ions dans un système électrochimique | |
WO2011066293A1 (fr) | Production d'une solution alcaline à l'aide d'une anode à diffusion gazeuse avec une pression hydrostatique | |
EP2240629A1 (fr) | Solution d'ions bicarbonates électrochimique à basse énergie | |
WO2011008223A1 (fr) | Production électrochimique dune solution alcaline à laide de co2 | |
KR20160023434A (ko) | 탄산염의 제조 방법 | |
AU2008278300B1 (en) | Low energy electromechanical hydroxide system and method | |
CA2696086C (fr) | Production electrochimique d'une solution alcaline au moyen de co2 | |
CA2694978C (fr) | Production alcaline a basse tension a partir de saumures | |
KR20180133688A (ko) | 이산화탄소의 분리 방법 및 이산화탄소 분리 시스템 | |
AU2008361261A1 (en) | Low-energy electrochemical proton transfer system and method | |
CA2696096A1 (fr) | Production alcaline a basse tension au moyen d'hydrogene et d'electrodes electrocatalytiques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880118401.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 0901413 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20081223 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0901413.5 Country of ref document: GB Ref document number: 2666147 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12375632 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008873036 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2559/CHENP/2010 Country of ref document: IN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08873036 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011542099 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI0823394 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI0823394 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110624 |