[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010074686A1 - Système et procédé d'hydroxyde électrochimique à faible énergie - Google Patents

Système et procédé d'hydroxyde électrochimique à faible énergie Download PDF

Info

Publication number
WO2010074686A1
WO2010074686A1 PCT/US2008/088242 US2008088242W WO2010074686A1 WO 2010074686 A1 WO2010074686 A1 WO 2010074686A1 US 2008088242 W US2008088242 W US 2008088242W WO 2010074686 A1 WO2010074686 A1 WO 2010074686A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
anode
cathode
exchange membrane
volt
Prior art date
Application number
PCT/US2008/088242
Other languages
English (en)
Inventor
Donald W. Kirk
J. Douglas Way
Allen J. Bard
Ryan J. Gilliam
Kasra Farsad
Valentin Decker
Original Assignee
Calera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calera Corporation filed Critical Calera Corporation
Priority to US12/375,632 priority Critical patent/US7790012B2/en
Priority to CN200880118401XA priority patent/CN101878327A/zh
Priority to CA2666147A priority patent/CA2666147C/fr
Priority to BRPI0823394-2A priority patent/BRPI0823394A2/pt
Priority to GB0901413A priority patent/GB2467019B/en
Priority to PCT/US2008/088242 priority patent/WO2010074686A1/fr
Priority to EP08873036A priority patent/EP2291550A4/fr
Priority to US12/344,019 priority patent/US7887694B2/en
Priority to CA002652803A priority patent/CA2652803A1/fr
Priority to AU2008278301A priority patent/AU2008278301B2/en
Priority to CN200880023216.2A priority patent/CN101687648B/zh
Priority to EP08867440A priority patent/EP2118004A4/fr
Priority to EA201000896A priority patent/EA201000896A1/ru
Priority to JP2010540897A priority patent/JP2012513944A/ja
Priority to MX2010007197A priority patent/MX2010007197A/es
Priority to GB0901414A priority patent/GB2460910B8/en
Priority to BRPI0821515A priority patent/BRPI0821515A2/pt
Priority to KR1020107016361A priority patent/KR20100105860A/ko
Priority to PCT/US2008/088318 priority patent/WO2009086460A1/fr
Priority to TW097150781A priority patent/TW200946210A/zh
Priority to ARP080105752A priority patent/AR070056A1/es
Priority to US12/475,378 priority patent/US7753618B2/en
Priority to KR1020107027766A priority patent/KR20110033822A/ko
Priority to EP09716193A priority patent/EP2240257A1/fr
Priority to JP2011511869A priority patent/JP2011521879A/ja
Priority to MX2010012947A priority patent/MX2010012947A/es
Priority to GB0911440A priority patent/GB2461622B/en
Priority to PCT/US2009/045722 priority patent/WO2009146436A1/fr
Priority to CN200980101283.6A priority patent/CN101883736B/zh
Priority to CA2700715A priority patent/CA2700715A1/fr
Priority to BRPI0915192A priority patent/BRPI0915192A2/pt
Priority to EP09767687A priority patent/EP2207753A4/fr
Priority to US12/486,692 priority patent/US7754169B2/en
Priority to JP2011514787A priority patent/JP2011524253A/ja
Priority to AU2009260036A priority patent/AU2009260036B2/en
Priority to PCT/US2009/047711 priority patent/WO2009155378A1/fr
Priority to PCT/US2009/048511 priority patent/WO2010008896A1/fr
Priority to JP2011518768A priority patent/JP2011528405A/ja
Priority to EP09798527.9A priority patent/EP2212033A4/fr
Priority to AU2009271304A priority patent/AU2009271304B2/en
Priority to CA2700721A priority patent/CA2700721C/fr
Priority to US12/521,256 priority patent/US7875163B2/en
Priority to CN201410836715.0A priority patent/CN104722466A/zh
Priority to CN200980101611.2A priority patent/CN101984749B/zh
Priority to AU2009268397A priority patent/AU2009268397A1/en
Priority to BRPI0915447A priority patent/BRPI0915447A2/pt
Priority to US12/501,217 priority patent/US7749476B2/en
Priority to JP2011517648A priority patent/JP2011527664A/ja
Priority to KR1020117003141A priority patent/KR20110061546A/ko
Priority to CA2700765A priority patent/CA2700765A1/fr
Priority to CN2009801012200A priority patent/CN101878060A/zh
Priority to PCT/US2009/050223 priority patent/WO2010006242A1/fr
Priority to EP09795228A priority patent/EP2200732A4/fr
Priority to US12/503,557 priority patent/US8357270B2/en
Priority to KR1020117003467A priority patent/KR20110038691A/ko
Priority to EP09798723.4A priority patent/EP2245214B1/fr
Priority to CN2009801015529A priority patent/CN101910469A/zh
Priority to PCT/US2009/050756 priority patent/WO2010009273A1/fr
Priority to JP2011518896A priority patent/JP5373079B2/ja
Priority to AU2009270879A priority patent/AU2009270879B2/en
Priority to CA2700768A priority patent/CA2700768C/fr
Priority to US12/541,055 priority patent/US7993500B2/en
Priority to TW098144398A priority patent/TW201038773A/zh
Priority to ARP090105110A priority patent/AR075113A1/es
Priority to AU2010200225A priority patent/AU2010200225A1/en
Priority to US12/698,741 priority patent/US20100135882A1/en
Priority to US12/698,483 priority patent/US20100135865A1/en
Priority to US12/698,802 priority patent/US20100132556A1/en
Priority to GBGB1004571.4A priority patent/GB201004571D0/en
Priority to US12/788,255 priority patent/US20100313794A1/en
Priority to US12/794,198 priority patent/US7914685B2/en
Priority to HK10105950.5A priority patent/HK1139376A1/xx
Priority to IL206580A priority patent/IL206580A0/en
Priority to ZA2010/04552A priority patent/ZA201004552B/en
Publication of WO2010074686A1 publication Critical patent/WO2010074686A1/fr
Priority to US12/942,558 priority patent/US8333944B2/en
Priority to IL209365A priority patent/IL209365A0/en
Priority to US13/181,124 priority patent/US20110308964A1/en
Priority to US13/462,569 priority patent/US20120213688A1/en
Priority to US13/540,992 priority patent/US8894830B2/en
Priority to US13/887,986 priority patent/US9260314B2/en
Priority to JP2013192595A priority patent/JP5647314B2/ja
Priority to US14/534,559 priority patent/US20150083607A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • OH " hydroxide ions
  • One way to obtain OH ' in a solution is to dissolve an alkali hydroxide such as sodium hydroxide or magnesium hydroxide in the solution.
  • alkali hydroxide such as sodium hydroxide or magnesium hydroxide
  • conventional processes for producing hydroxides are very energy intensive, e g , the chlor-alkali process, and they emit significant amounts of carbon dioxide and other greenhouse gases into the environment.
  • the present invention pertains to a low energy electrochemical system and method of producing OH " utilizing an ion exchange membrane in an electrochemical cell
  • the system in one embodiment comprises an anionic or cationic exchange membrane positioned between a first electrolyte and a second electrolyte, the first electrolyte contacting an anode and the second electrolyte contacting a cathode
  • Suitable electrolytes comprise a saltwater including sodium chloride, seawater, brackish water or freshwater,
  • OH " forms at the cathode and protons form at the anode without a gas, e.g., chlorine or oxygen, forming at the anode.
  • a hydroxide solution e g, sodium hydroxide
  • an acid e.g., hydrochloric acid
  • OH forms when a volt of less than 0.1 V is applied across the electrodes.
  • the system comprises an electrochemical cell in which an anion exchange membrane separates a first electrolyte from a third electrolyte; a cation exchange membrane separates the third electrolyte from a first electrolyte; an anode is in contact with the first electrolyte; and a cathode is in contact with the second electrolyte.
  • OH forms at the cathode without a gas, e.g., chlorine or oxygen forming at the anode.
  • a hydroxide solution e.g., sodium hydroxide
  • an acid e.g., hydrochloric acid
  • OH forms when a volt of less than 0.1 V is applied across the electrodes.
  • the method comprises migrating ions across an ion exchange membrane that is situated between a first electrolyte and a second electrolyte, the first electrolyte contacting an anode and the second electrolyte contacting a cathode, by applying a voltage across the anode and cathode to form hydroxide ions at the cathode without forming a gas, e.g., chlorine or oxygen at the anode.
  • a gas e.g., chlorine or oxygen at the anode.
  • a hydroxide solution e.g., sodium hydroxide forms in the second electrolyte in contact with the cathode and an acid, e.g., hydrochloric acid forms in the first electrolyte in contact with the anode.
  • an acid e.g., hydrochloric acid
  • OH forms when a volt of less than 0.1 V is applied across the electrodes.
  • the method comprises applying a voltage across an anode and cathode, wherein (i) the anode is in contact with a first electrolyte that is also in contact with an anion exchange membrane; (ii) the cathode is in contact with a second electrolyte that is also in contact with a cation exchange membrane; and (iii) a third electrolyte is situated between the anion exchange membrane and the cation exchange membrane to form hydroxide ions at the cathode without forming a gas e.g., chlorine or oxygen at the anode.
  • a gas e.g., chlorine or oxygen
  • OH " forms at the cathode in contact the second electrolyte without a gas e.g., chlorine or oxygen at the anode.
  • a hydroxide solution e.g. sodium hydroxide
  • an acid e.g., hydrochloric acid
  • OH " forms when a volt of less than 0.1 V is applied across the electrodes.
  • the system and method are adapted for batch, semi-batch or continuous flows.
  • the system is adaptable to form OH " in solution, e.g., sodium hydroxide at the cathode, or an acidic solution, e.g., hydrochloric acid at the anode without forming a gas e.g., chlorine or oxygen at the anode.
  • the solution comprising OH " can be used to sequester CO2 by contacting the solution with CO2 and precipitating alkaline earth metal carbonates, e.g., calcium and magnesium carbonates and bicarbonates from a solution comprising alkaline earth metal ions as described United States Provisional Patent Application Serial No.
  • the precipitated carbonates in various embodiments, are useable as building products, e.g., cements, as described in United States Patent Applications herein incorporated by reference. Similarly, the system and method are adaptable for desalinating water as described in United States Patent Applications herein incorporated by reference.
  • Fig. 1 is an illustration of an embodiment of the present system.
  • Fig. 2 is an illustration of an embodiment of the present system.
  • Fig. 3 is an illustration of an embodiment of the present system.
  • Fig. 4 is an illustration of an embodiment of the present system.
  • Fig. 5 is an illustration of an embodiment of the present system.
  • Fig. 6 is an illustration of an embodiment of the present system.
  • Fig. 7 is a flow chart of an embodiment of the present method.
  • Fig. 8 is a flow chart of an embodiment of the present method.
  • hydroxide may not be produced, e.g., in embodiments where the pH of the electrolyte solution in contact with the cathode, as described herein, is kept constant or even decreases, there is no net production of hydroxide ions and can even be a decrease in hydroxide ion production. This can occur, e.g., in embodiments in which CO2 is introduced into the second electrolyte solution, as described further herein.
  • the present invention in various embodiments is directed to a low voltage electrochemical system and method for forming OH + in a solution, e.g., a saltwater solution, utilizing ion exchange membranes.
  • a solution e.g., a saltwater solution
  • ion exchange membranes On applying a voltage across a cathode and an anode, OH + forms in solution in the electrolyte contacted with the cathode, protons form in the solution contacted with the anode, and a gas e.g., chlorine or oxygen is not formed at the anode.
  • Hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.8, 2.7, 2.5, 2.4, 2.3, 2.2, 2.1 , 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1 , 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1 V.
  • hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.5 V without the formation of gas at the anode. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.2V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 2.0V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less thani .5 V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 1.0V.
  • hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.8 V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.7V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.6V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.5V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.4V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.3V.
  • hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.2V. In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.1V. . In certain embodiments hydroxide ions are formed where the voltage applied across the anode and cathode is less than 0.05V. In various embodiments an acidic solution, e.g., hydrochloric acid is formed in the electrolyte in contact with the anode.
  • the present system is adaptable for batch and continuous processes as described herein.
  • the system comprises an electrochemical system including an ion exchange membrane (102, 124) separating a first electrolyte (104) from a second electrolyte (106), the first electrolyte contacting an anode (108) and the second electrolyte contacting a cathode (110).
  • ion exchange membrane includes membranes that are selectively permeable to one ion, or one type of ion (e.g., anions, or monovalent anions, or cations, or monovalent cations). In the system as illustrated in Fig.
  • first electrolyte (104) comprises an aqueous salt solution such as a saltwater, e.g., seawater, freshwater, brine, brackish water or the like.
  • second electrolyte (106) comprises a concentrated solution of sodium chloride; in other embodiments, second electrolyte may comprise saltwater.
  • first electrolyte (104) comprises a concentrated solution of sodium chloride
  • second electrolyte (106) comprises an aqueous solution such as a saltwater, e.g., seawater, freshwater, brine, brackish water or the like.
  • first electrolyte may comprise a saltwater.
  • anion exchange membrane (102) and/or cation exchange membrane (124) are any ion exchange membranes suitable for use in an acidic and/or basic electrolytic solution temperatures in the range from about 0 0 C to about 100 0 C, such as conventional ion exchange membranes well-known in the art, or any suitable ion exchange membrane.
  • Suitable anion exchange membranes are available from PCA GmbH of Germany, e.g., an anion exchange membrane identified as PCSA-250-250 can be used; similarly, a cation exchange membrane identified as PCSK 250-250 available from PCA GmbH can be used.
  • the ion exchange membranes are positioned to prevent mixing of the first and second electrolytes.
  • the electrochemical system (100, 200) includes first electrolyte inlet port (114) for inputting first electrolyte (104) into the system and second electrolyte inlet port (116) for inputting second electrolyte (106) into the system.
  • the cell includes outlet port (118) for draining first electrolyte from the system, and outlet port (120) for draining second electrolyte from the system.
  • the inlet and outlet ports are adaptable for various flow protocols including batch flow, semi-batch flow, or continuous flow.
  • the system includes a conduit, e.g., a duct (122) for directing hydrogen gas to the anode; in various embodiments the gas comprises hydrogen formed at the cathode (110); other sources of hydrogen gas can be used.
  • the first electrolyte (104) contacts the anode (108) and ion exchange membrane (102, 124) on a first side; and the second electrolyte contacts the cathode (106) and the ion exchange membrane at an opposed side to complete an electrical circuit that includes conventional voltage/current regulator (112).
  • the current/voltage regulator is adaptable to increase or decrease the current or voltage across the cathode and anode as desired.
  • second electrolyte (106) comprises sodium chloride
  • chloride ions migrate into the first electrolyte (104) from the second electrolyte (106) through the anion exchange membrane (102), and protons form in the electrolyte in contact with the anode (108).
  • second electrolyte (106) as hydroxide ions form in the electrolyte in contact with the cathode (110) and enter into the second electrolyte (106), and as chloride ions migrate from the second electrolyte into the first electrolyte (104), an aqueous solution of sodium hydroxide will form in second electrolyte (106).
  • the pH of the second electrolyte is adjusted, e.g., increases, decreases or does not change.
  • the pH of the first electrolyte will adjust depending on rate of introduction and/or removal of first electrolyte from the system. Also, as chloride ions migrate to the first electrolyte from the second electrolyte across the anion exchange membrane, hydrochloric acid will form in the first electrolyte. [0032] With reference to Fig.
  • first electrolyte (104) comprises sodium chloride
  • sodium ions migrate from the first electrolyte (104) to the second electrolyte (106) through the cation exchange membrane (124).
  • second electrolyte (106) as hydroxide ions form in the electrolyte in contact with the cathode (110) and enter into solution and with the migration of sodium ions into the second electrolyte, an aqueous solution of sodium hydroxide will form in second electrolyte (106).
  • the pH of the second electrolyte is adjusted, e.g., increases, decreases or does not change.
  • the pH of the first electrolyte will adjust depending on rate of introduction and/or removal of first electrolyte from the system, i.e., the pH of the first electrolyte may increase, decrease or does not change. Also, as sodium ions migrate from the first electrolyte across the cation exchange membrane to the second electrolyte, hydrochloric acid will form in the first electrolyte due to the presence of protons and chloride ions in the first electrolyte. [0034] With reference to Figs. 1 and 2, depending the flow of electrolytes in the system and the electrolytes used, e.g.
  • saltwater when a voltage is applied across the anode (108) and cathode (110) OH " will form in the in the second electrolyte (106), and consequently cause the pH of the second electrolyte to be adjusted. In one embodiment, when a voltage of about 0.1 V or less, 0.2 V or less.
  • NaOH was produced in the second electrolyte (106), and HCI in the first electrolyte (104) at a low operating voltage across the electrodes; it will be appreciated by those of ordinary skill in the art that the voltages may be adjusted up or down from these exemplary voltages; the minimum theoretical voltage is 0 or very close to 0, but to achieve a useful rate of production of hydroxide, a practical lower limit may be in some embodiments 0.001V or 0.01V, or 0.1 V, depending on the desired time for hydroxide production and/or pH adjustment, volume of second electrolyte solution, and other factors apparent to those of ordinary skill; i.e., in some embodiments the systems and methods are capable of producing hydroxide at voltages as low as 0.001V, or 0.01 V, or 0.1V, and can also produce hydroxide at higher voltages if more rapid production is desired, e.g., at 0.2-2. OV; in some embodiments the hydroxide is produced with no gas formation at the anode, e.
  • the system used included two 250 ml_ compartments separated by an anion exchange membrane in one embodiment, and a cation membrane in another embodiment.
  • a 0.5M NaCI 18M ⁇ aqueous solutions 28 g/L of NaCI was solvated with de-ionized water
  • Both the anode and cathode comprised a 10cm by 5cm 45 mesh Pt gauze.
  • H 2 gas was sparged under the Pt electrode, and the two electrodes were held at a voltage bias as indicated in Table 1 e.g., 0.4, 0.6 V and 1.0 V, for 30 minutes.
  • the pH of the electrolyte in contact with the anode before applying the voltage was 6.624.
  • the cathode compartment where the hydroxide formation occurred was stirred at 600 rpm. As set forth in Table 1 , significant changes in the pH in the cathode and anode compartment were achieved.
  • a pH difference of more than 0.5, 1 , 1 ,5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, or 12.0 pH units may be produced in a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membrane, when a voltage of 1.0V or less, or 0.9V or less, or 0.8V or less, or 0.7 or less, or 0.6V or less, or 0.5V or less, or 0.4V or less, or 0.3V or less, or 0.2V or less, or 0.1V or less, or 0.05V or less, is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 0.5 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.05V or less is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 1.0 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.1V or less is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 2.0 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.2V or less is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 4.0 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.4V or less is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 6 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 0.6V or less is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 8 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more exchange membranes, when a voltage of 0.8V or less is applied across the anode and cathode
  • the invention provides a system that is capable of producing a pH difference of more than 8 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 1.0 V or less is applied across the anode and cathode.
  • the invention provides a system that is capable of producing a pH difference of more than 10 pH units between a first electrolyte solution and a second electrolyte solution where the first electrolyte solution contacts an anode and the second electrolyte solution contacts a cathode, and the two electrolyte solutions are separated, e.g., by one or more ion exchange membranes, when a voltage of 1.2V or less is applied across the anode and cathode.
  • the voltage need not be kept constant and that the voltage applied across the anode and the cathode may be very low, e.g., 0.05V or less, when the two electrolytes are the same pH or close in pH, and that the voltage may be increased as needed as the pH difference increases. In this way, the desired pH difference or production of hydroxide ions may be achieved with the minimum average voltage.
  • the average voltage may be less than 80%, 70%, 60%, or less than 50% of the voltages given in the previous paragraph for particular embodiments.
  • hydrogen gas formed at the cathode (110) is directed to the anode (108). Without being bound to any theory, it is believed that the gas is adsorbed and/or absorbed into the anode and subsequently forms protons at the anode.
  • one or more of the electrolyte solutions is depleted in divalent cations, e.g., in magnesium or calcium, during parts of the process where the electrolyte is in contact with the ion exchange membrane (or membranes, see embodiments described below in which more than one membrane is used). This is done to prevent scaling of the membrane, if necessary for that particular membrane.
  • divalent cations e.g., in magnesium or calcium
  • the total concentration of divalent cations in the electrolyte solutions when they are in contact with the ion exchange membrane or membranes for any appreciable time is less than 0.06 mol/kg solution, or less than 0.06 mol/kg solution, or less than 0.04 mol/kg solution, or less than 0.02 mol/kg solution, or less than 0.01 mol/kg solution, or less than 0.005 mol/kg solution, or less than 0.001 mol/kg solution, or less than 0.0005 mol/kg solution, or less than 0.0001 mol/kg solution, or less than 0.00005 mol/kg solution.
  • the present system (300) includes an electrolytic cell comprising an anode (108) contacting a first electrolyte (104); an anion exchange membrane (102) separating the first electrolyte from a third electrolyte (130); a second electrolyte contacting a cathode (110), and a cation exchange membrane (124) separating the second electrolyte from the third electrolyte.
  • the ion exchange membranes are positioned in the system to prevent mixing of the first and second electrolytes.
  • a current/voltage regulator (112) is adaptable to increase or decrease the current or voltage across the cathode and anode in the system as desired.
  • the system of Fig. 3 is adaptable for batch, semi-batch and continuous operation.
  • the first electrolyte (104), second electrolyte (106) and third electrolyte (130) in various embodiments comprise e.g., saltwater including seawater, freshwater, brine, or brackish water or the like.
  • the third electrolyte (130) comprise substantially a solution of a sodium chloride.
  • anion exchange membrane (102) and cation exchange membrane (124) of Fig. 3 are any suitable ion exchange membranes suitable for use in an acidic and/or basic solution at operating temperatures in an aqueous solution in the range from about 0 0 C to about 100 0 C, or higher depending on the pressure in the system such as conventional ion exchange membranes well- known in the art, or any suitable ion exchange membrane.
  • Suitable anion exchange membranes are available from PCA GmbH of Germany, e.g., an anion membrane identified as PCSA-250-250 can be used; similarly, a cation membrane identified as PCSK 250-250 available from PCA GmbH can be used.
  • the electrochemical cell includes first electrolyte inlet port (114) adaptable for inputting first electrolyte (104) into the system; second electrolyte inlet port (116) for inputting second electrolyte (106) into the system; and third inlet port (126) for inputting third electrolyte into the system. Additionally, the cell includes first outlet port (118) for draining first electrolyte; second outlet port (120) for draining second electrolyte; and third outlet port (128) for draining third electrolyte. As will be appreciated by one ordinarily skilled, the inlet and outlet ports are adaptable for various flow protocols including batch flow, semi-batch flow, or continuous flow.
  • the system includes a conduit, e.g., a duct (122) for directing gas to the anode; in various embodiments the gas comprises hydrogen formed at the cathode (110).
  • a conduit e.g., a duct (122) for directing gas to the anode; in various embodiments the gas comprises hydrogen formed at the cathode (110).
  • third electrolyte (130) comprises sodium chloride
  • chloride ions migrate into the first electrolyte (104) from the third electrolyte (130) through the anion exchange membrane (102); sodium ions migrate to the second electrolyte (106) from the third electrolyte (130); protons form at the anode (104); and hydrogen gas forms at the cathode (110).
  • the pH of the second electrolyte solution is increased; in another embodiment, when a voltage of 0.01 to 2.5 V, or 0.01V to 2.0V, or 0.1 V to 2.0V, or 0.1V to 1.5V, or 0.1 V to 1.0V, or 0.1 V to 0.8V, or 0.1 V to 0.6V, or 0.1 V to 0.4V, or 0.1V to 0.2V, or 0.01V to 1.5V, or 0.01 V to 1.0V, or 0.01 V to 1.0V, or 0.01 V to 0.8V, or 0.1 V to 0.6V, or 0.1 V to 0.4V, or 0.1V to 0.2V, or 0.01V to 1.5V, or 0.01 V to 1.0V, or 0.01V to 1.0V, or 0.01V to 0.01V to 0.01V to
  • a volt of about 0.6 volt or less is applied across the anode and cathode; in another embodiment, a volt of about 0.1 to 0.6 volt or less is applied across the anode and cathode; in yet another embodiment, a voltage of about 0.1 to 1 volt or less is applied across the anode and cathode.
  • first electrolyte (104) as proton form in the electrolyte in contact with the anode (108) and enter into the solution concurrent with migration of chloride ions from the third electrolyte (130) to the first electrolyte (104), increasingly an acidic solution will form in first electrolyte (104).
  • the pH of the solution will be adjusted as noted above.
  • hydrogen gas formed at the cathode (110) is directed to the anode (108).
  • hydrogen gas is adsorbed and/or absorbed into the anode and subsequently forms protons at the anode in contact with the first electrolyte (104).
  • a gas such as oxygen or chlorine does not form at the anode (108). Accordingly, as can be appreciated, with the formation of protons at the anode and migration of chlorine into the first electrolyte, hydrochloric acid is obtained in the first electrolyte (104).
  • a cation exchange membrane is in contact with the anode (108) on one surface, and in contact with the first electrolyte (104) at an opposed surface.
  • H + formed at or near the anode will migrate into the first electrolyte through the cation exchange membrane to cause the pH of the first electrolyte to be adjusted as discussed with reference to the system of Fig. 3.
  • an anion exchange membrane is in contact with the cathode (110) on one surface, and in contact with the second electrolyte (106) at an opposed surface.
  • OH " formed at or near the anode will migrate into the first electrolyte to cause the pH of the second electrolyte to be adjusted as discussed with reference to the system of Fig. 3.
  • the hydrogen gas formed at the cathode (110) can be redirected to the anode (108) without contacting the second (106) or first (104) electrolyte.
  • Fig. 5 illustrates a variation of the invention where at least two of the systems of Fig. 4 are configured to operate together.
  • hydroxide ions form at the cathode (110) and enter into second electrolyte (106) and with the migration of sodium ions into the second electrolyte from the third electrolyte (130), an aqueous solution of sodium hydroxide will from in second electrolyte (106).
  • the pH of the second electrolyte is adjusted, e.g., increases, decreases or does not change. Also with reference to Fig.
  • first electrolyte (104) as proton form at the anode (108) and enter into the solution concurrent with migration of chloride ions from the third electrolyte (130) to the first electrolyte (104), increasingly an acidic solution will form in first electrolyte (104).
  • Fig. 6 illustrates a variation of the system of Fig. 3 arranged for continuous or semi-continuous flow.
  • hydroxide ions form at the cathode (110)
  • protons form at the anode and gas, e.g., chlorine or oxygen does not form at the anode (108).
  • third electrolyte (130) comprises sodium chloride
  • chloride ions migrate into the first electrolyte (104) from the third electrolyte (130) through the anion exchange membrane (102); sodium ions migrate to the second electrolyte (106) from the third electrolyte (130) through the cation exchange membrane (124); protons form at the anode (104); and hydrogen gas forms at the cathode (110).
  • first electrolyte (104) as proton form at the anode (108) and enter into the solution concurrent with migration of chloride ions from the third electrolyte (130) to the first electrolyte (104), increasingly an acidic solution will form in first electrolyte (104).
  • the pH of the solution will be adjusted.
  • the present method in one embodiment (700) comprises a step (702) of migrating ions across an ion exchange membrane (102) that is situated between a first electrolyte (104) and a second electrolyte (106), the first electrolyte contacting an anode (108) and the second electrolyte contacting a cathode (110), by applying a voltage across the anode and cathode to form hydroxide ions at the cathode without forming a gas at the anode.
  • a voltage across the anode and cathode to form hydroxide ions at the cathode without forming a gas at the anode.
  • the present method (800) comprises a step (802) of applying a voltage across an anode (108) and cathode (110), wherein: (i) the anode is in contact with a first electrolyte (104) that is also in contact with an anion exchange membrane (102); (ii) the cathode is in contact with a second electrolyte (106) that is also in contact with a cation exchange membrane; and
  • a third electrolyte (130) is situated between the anion exchange membrane and the cation exchange membrane to form hydroxide ions at the cathode without forming a gas at the anode.
  • hydroxide ions from the cathode (110) and enter in to the second electrolyte (106) concurrent with migration of sodium ions into the second electrolyte from the third electrolyte, an aqueous solution of sodium hydroxide will form in second electrolyte (106). Consequently, depending on the voltage applied across the system and the flow rate of the second electrolyte (106) through the system, the pH of the second electrolyte is adjusted.
  • CO2 is dissolved into the second electrolyte solution; as protons are removed from the second electrolyte solution more CO2 may be dissolved in the form of bicarbonate and/or carbonate ions; depending on the pH of the second electrolyte the balance is shifted toward bicarbonate or toward carbonate, as is well understood in the art.
  • the pH of the second electrolyte solution may decrease, remain the same, or increase, depending on the rate of removal of protons compared to rate of introduction of CO2.
  • hydroxide need form in these embodiments, or that hydroxide may not form during one period but form during another period.
  • another electrochemical system as described herein may be used to produce concentrated hydroxide, which, when added to the second electrolyte containing the dissolved CO2, causes the formation of a precipitate of carbonate and/or bicarbonate compounds such as calcium carbonate or magnesium carbonate and/or their bicarbonates.
  • divalent cations such as magnesium and/or calcium are present in certain solutions used in the process, and/or are added.
  • the precipitated carbonate compound can be used as cements and building material as described in United States Patent Applications incorporated herein by reference.
  • the acidified first electrolyte solution 104 is utilized to dissolve a calcium and/or magnesium rich mineral, such as mafic mineral including serpentine or olivine, for precipitating carbonates and bicarbonates as described above.
  • a calcium and/or magnesium rich mineral such as mafic mineral including serpentine or olivine
  • the acidified stream can be employed to dissolve calcium and/or magnesium rich minerals such as serpentine and olivine to create the electrolyte solution that can be charged with bicarbonate ions and then made sufficiently basic to precipitate carbonate compounds.
  • Such precipitation reactions and the use of the precipitates in cements are described in the United States Patent Applications incorporated by herein by reference.
  • the carbonate and bicarbonate solution is disposed of in a location where it will be stable for extended periods of time.
  • the carbonate/bicarbonate electrolyte solution can be pumped to an ocean depth where the temperature and pressure are sufficient to keep the solution stable over at least the time periods set forth above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un procédé et un système à faible énergie servant à former des ions hydroxyde dans une cellule électrochimique. En appliquant une basse tension à travers l'anode et la cathode, des ions hydroxyde se forment dans l'électrolyte contenant la cathode, des protons se forment à l'anode mais un gaz, par ex. le chlore ou l'oxygène ne se forme pas à l'anode.
PCT/US2008/088242 2007-06-28 2008-12-23 Système et procédé d'hydroxyde électrochimique à faible énergie WO2010074686A1 (fr)

Priority Applications (82)

Application Number Priority Date Filing Date Title
US12/375,632 US7790012B2 (en) 2008-12-23 2008-12-23 Low energy electrochemical hydroxide system and method
CN200880118401XA CN101878327A (zh) 2008-12-23 2008-12-23 低能电化学氢氧根系统和方法
CA2666147A CA2666147C (fr) 2008-12-23 2008-12-23 Methode et systeme electrochimiques peu energivores de production d'ions hydroxydes
BRPI0823394-2A BRPI0823394A2 (pt) 2008-12-23 2008-12-23 Sistema e método eletroquímico de hidróxido de baixa energia
GB0901413A GB2467019B (en) 2008-12-23 2008-12-23 Low-energy electrochemical hydroxide system and method
PCT/US2008/088242 WO2010074686A1 (fr) 2008-12-23 2008-12-23 Système et procédé d'hydroxyde électrochimique à faible énergie
EP08873036A EP2291550A4 (fr) 2008-12-23 2008-12-23 Système et procédé d'hydroxyde électrochimique à faible énergie
US12/344,019 US7887694B2 (en) 2007-12-28 2008-12-24 Methods of sequestering CO2
CA002652803A CA2652803A1 (fr) 2007-12-28 2008-12-24 Procedes de sequestration du co2
AU2008278301A AU2008278301B2 (en) 2007-12-28 2008-12-24 Methods of sequestering CO2
CN200880023216.2A CN101687648B (zh) 2007-12-28 2008-12-24 封存co2的方法
EP08867440A EP2118004A4 (fr) 2007-12-28 2008-12-24 Procédés de séquestration de co2
EA201000896A EA201000896A1 (ru) 2007-12-28 2008-12-24 Способы связывания co
JP2010540897A JP2012513944A (ja) 2007-12-28 2008-12-24 Co2を捕捉する方法
MX2010007197A MX2010007197A (es) 2007-12-28 2008-12-24 Metodos de secuestro de dioxido de carbono.
GB0901414A GB2460910B8 (en) 2007-12-28 2008-12-24 Methods of sequestering CO2.
BRPI0821515A BRPI0821515A2 (pt) 2007-12-28 2008-12-24 métodos de captura de co2
KR1020107016361A KR20100105860A (ko) 2007-12-28 2008-12-24 Co2 분리 방법
PCT/US2008/088318 WO2009086460A1 (fr) 2007-12-28 2008-12-24 Procédés de séquestration de co2
TW097150781A TW200946210A (en) 2007-12-28 2008-12-26 Methods of sequestering CO2
ARP080105752A AR070056A1 (es) 2007-12-28 2008-12-29 Metodos para retirar co2
US12/475,378 US7753618B2 (en) 2007-06-28 2009-05-29 Rocks and aggregate, and methods of making and using the same
KR1020107027766A KR20110033822A (ko) 2008-05-29 2009-05-29 암석 및 골재, 및 이의 제조 방법 및 용도
EP09716193A EP2240257A1 (fr) 2008-05-29 2009-05-29 Roches et agrégats ainsi que leurs procédés de production et d utilisation
JP2011511869A JP2011521879A (ja) 2008-05-29 2009-05-29 岩石および骨材、ならびにそれらを作製し使用する方法
MX2010012947A MX2010012947A (es) 2008-05-29 2009-05-29 Rocas y agregados y metodos para obtener y usar los mismos.
GB0911440A GB2461622B (en) 2008-05-29 2009-05-29 Rocks and aggregate, and methods of making and using the same
PCT/US2009/045722 WO2009146436A1 (fr) 2008-05-29 2009-05-29 Roches et agrégats ainsi que leurs procédés de production et d’utilisation
CN200980101283.6A CN101883736B (zh) 2008-06-17 2009-06-17 利用金属氧化物废料源的方法和系统
CA2700715A CA2700715A1 (fr) 2008-06-17 2009-06-17 Procedes et systemes d'utilisation de sources de dechets d'oxydes metalliques
BRPI0915192A BRPI0915192A2 (pt) 2008-06-17 2009-06-17 métodos e sistemas para utilização de fontes de resíduos de óxidos de metal
EP09767687A EP2207753A4 (fr) 2008-06-17 2009-06-17 Procédés et systèmes d'utilisation de sources de déchets d'oxydes métalliques
US12/486,692 US7754169B2 (en) 2007-12-28 2009-06-17 Methods and systems for utilizing waste sources of metal oxides
JP2011514787A JP2011524253A (ja) 2008-06-17 2009-06-17 金属酸化物の廃棄物源を利用するための方法およびシステム
AU2009260036A AU2009260036B2 (en) 2008-06-17 2009-06-17 Methods and systems for utilizing waste sources of metal oxides
PCT/US2009/047711 WO2009155378A1 (fr) 2008-06-17 2009-06-17 Procédés et systèmes d'utilisation de sources de déchets d'oxydes métalliques
PCT/US2009/048511 WO2010008896A1 (fr) 2008-07-16 2009-06-24 Système électrochimique à 4 cellules basse énergie comportant du dioxyde de carbone gazeux
JP2011518768A JP2011528405A (ja) 2008-07-16 2009-06-24 二酸化炭素ガスを使用する低エネルギー4セル電気化学システム
EP09798527.9A EP2212033A4 (fr) 2008-07-16 2009-06-24 Système électrochimique à 4 cellules basse énergie comportant du dioxyde de carbone gazeux
AU2009271304A AU2009271304B2 (en) 2008-07-16 2009-06-24 Low-energy 4-cell electrochemical system with carbon dioxide gas
CA2700721A CA2700721C (fr) 2008-07-16 2009-06-24 Systeme electrochimique a 4 cellules basse energie comportant du dioxyde de carbone gazeux
US12/521,256 US7875163B2 (en) 2008-07-16 2009-06-24 Low energy 4-cell electrochemical system with carbon dioxide gas
CN201410836715.0A CN104722466A (zh) 2008-07-16 2009-06-24 使用二氧化碳气体的低能量4-电池电化学系统
CN200980101611.2A CN101984749B (zh) 2008-07-16 2009-06-24 使用二氧化碳气体的低能量4-电池电化学系统
AU2009268397A AU2009268397A1 (en) 2008-07-10 2009-07-10 Production of carbonate-containing compositions from material comprising metal silicates
BRPI0915447A BRPI0915447A2 (pt) 2008-07-10 2009-07-10 produção de composições contendo carbonato por meio de material compreendendo silicatos metálicos
US12/501,217 US7749476B2 (en) 2007-12-28 2009-07-10 Production of carbonate-containing compositions from material comprising metal silicates
JP2011517648A JP2011527664A (ja) 2008-07-10 2009-07-10 含金属シリケート材料からの炭酸塩含有組成物の製造
KR1020117003141A KR20110061546A (ko) 2008-07-10 2009-07-10 금속 실리케이트를 포함하는 물질로부터 탄산염 함유 조성물을 제조하는 방법
CA2700765A CA2700765A1 (fr) 2008-07-10 2009-07-10 Production de compositions contenant du carbonate a partir d'un materiau comportant des silicates metalliques
CN2009801012200A CN101878060A (zh) 2008-07-10 2009-07-10 从包含金属硅酸盐的材料中制备含碳酸盐的组合物
PCT/US2009/050223 WO2010006242A1 (fr) 2008-07-10 2009-07-10 Production de compositions contenant du carbonate à partir d'un matériau comportant des silicates métalliques
EP09795228A EP2200732A4 (fr) 2008-07-10 2009-07-10 Production de compositions contenant du carbonate à partir d'un matériau comportant des silicates métalliques
US12/503,557 US8357270B2 (en) 2008-07-16 2009-07-15 CO2 utilization in electrochemical systems
KR1020117003467A KR20110038691A (ko) 2008-07-16 2009-07-15 전기화학 시스템에서 co2를 사용하는 방법
EP09798723.4A EP2245214B1 (fr) 2008-07-16 2009-07-15 Système et méthode électrochimique pour utilisation du co2
CN2009801015529A CN101910469A (zh) 2008-07-16 2009-07-15 电化学系统中的co2利用
PCT/US2009/050756 WO2010009273A1 (fr) 2008-07-16 2009-07-15 Utilisation du co<sb>2</sb> dans des systèmes électrochimiques
JP2011518896A JP5373079B2 (ja) 2008-07-16 2009-07-15 電気化学システム中でのco2の利用
AU2009270879A AU2009270879B2 (en) 2008-07-16 2009-07-15 CO2 utilization in electrochemical systems
CA2700768A CA2700768C (fr) 2008-07-16 2009-07-15 Utilisation du co<sb>2</sb> dans des systemes electrochimiques
US12/541,055 US7993500B2 (en) 2008-07-16 2009-08-13 Gas diffusion anode and CO2 cathode electrolyte system
TW098144398A TW201038773A (en) 2008-12-23 2009-12-23 Low-energy electrochemical hydroxide system and method
ARP090105110A AR075113A1 (es) 2008-12-23 2009-12-23 Metodo y sistema electroquimicos de hidroxidos, de baja energia
AU2010200225A AU2010200225A1 (en) 2007-12-28 2010-01-21 Methods of sequestering CO2
US12/698,741 US20100135882A1 (en) 2007-12-28 2010-02-02 Methods of sequestering co2
US12/698,483 US20100135865A1 (en) 2007-12-28 2010-02-02 Electrochemical methods of sequestering co2
US12/698,802 US20100132556A1 (en) 2007-12-28 2010-02-02 Methods of sequestering co2
GBGB1004571.4A GB201004571D0 (en) 2007-12-28 2010-03-19 Methods of sequestering co2
US12/788,255 US20100313794A1 (en) 2007-12-28 2010-05-26 Production of carbonate-containing compositions from material comprising metal silicates
US12/794,198 US7914685B2 (en) 2007-06-28 2010-06-04 Rocks and aggregate, and methods of making and using the same
HK10105950.5A HK1139376A1 (en) 2007-12-28 2010-06-14 Methods of sequestering co2
IL206580A IL206580A0 (en) 2007-12-28 2010-06-23 Methods of sequestering co2
ZA2010/04552A ZA201004552B (en) 2007-12-28 2010-06-28 Methods of sequestering co2
US12/942,558 US8333944B2 (en) 2007-12-28 2010-11-09 Methods of sequestering CO2
IL209365A IL209365A0 (en) 2008-05-29 2010-11-16 Rocks and aggregate, and methods of making and using the same
US13/181,124 US20110308964A1 (en) 2008-12-23 2011-07-12 Gas diffusion anode and co2 cathode electrolyte system
US13/462,569 US20120213688A1 (en) 2007-12-28 2012-05-02 Methods of sequestering co2
US13/540,992 US8894830B2 (en) 2008-07-16 2012-07-03 CO2 utilization in electrochemical systems
US13/887,986 US9260314B2 (en) 2007-12-28 2013-05-06 Methods and systems for utilizing waste sources of metal oxides
JP2013192595A JP5647314B2 (ja) 2008-07-16 2013-09-18 電気化学システム中でのco2の利用
US14/534,559 US20150083607A1 (en) 2008-07-16 2014-11-06 Co2 utilization in electrochemical systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/088242 WO2010074686A1 (fr) 2008-12-23 2008-12-23 Système et procédé d'hydroxyde électrochimique à faible énergie

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/163,205 Continuation-In-Part US7744761B2 (en) 2007-06-28 2008-06-27 Desalination methods and systems that include carbonate compound precipitation
PCT/US2008/088246 Continuation-In-Part WO2010074687A1 (fr) 2007-06-28 2008-12-23 Système et procédé de transfert de protons électrochimique à faible énergie
PCT/US2009/032301 Continuation-In-Part WO2010087823A1 (fr) 2008-07-16 2009-01-28 Solution d'ions bicarbonates électrochimique à basse énergie

Related Child Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2008/088246 Continuation-In-Part WO2010074687A1 (fr) 2007-06-28 2008-12-23 Système et procédé de transfert de protons électrochimique à faible énergie
US12/344,019 Continuation-In-Part US7887694B2 (en) 2007-06-28 2008-12-24 Methods of sequestering CO2
PCT/US2009/032301 Continuation-In-Part WO2010087823A1 (fr) 2008-07-16 2009-01-28 Solution d'ions bicarbonates électrochimique à basse énergie
PCT/US2009/048511 Continuation-In-Part WO2010008896A1 (fr) 2008-07-16 2009-06-24 Système électrochimique à 4 cellules basse énergie comportant du dioxyde de carbone gazeux

Publications (1)

Publication Number Publication Date
WO2010074686A1 true WO2010074686A1 (fr) 2010-07-01

Family

ID=40469219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/088242 WO2010074686A1 (fr) 2007-06-28 2008-12-23 Système et procédé d'hydroxyde électrochimique à faible énergie

Country Status (9)

Country Link
US (1) US7790012B2 (fr)
EP (1) EP2291550A4 (fr)
CN (1) CN101878327A (fr)
AR (1) AR075113A1 (fr)
BR (1) BRPI0823394A2 (fr)
CA (1) CA2666147C (fr)
GB (1) GB2467019B (fr)
TW (1) TW201038773A (fr)
WO (1) WO2010074686A1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906086B2 (en) 2006-03-10 2011-03-15 Comrie Douglas C Carbon dioxide sequestration materials and processes
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
US8006446B2 (en) 2008-09-30 2011-08-30 Calera Corporation CO2-sequestering formed building materials
US8062418B2 (en) 2009-12-31 2011-11-22 Calera Corporation Methods and compositions using calcium carbonate
US8137444B2 (en) 2009-03-10 2012-03-20 Calera Corporation Systems and methods for processing CO2
US8333944B2 (en) 2007-12-28 2012-12-18 Calera Corporation Methods of sequestering CO2
US8357270B2 (en) 2008-07-16 2013-01-22 Calera Corporation CO2 utilization in electrochemical systems
US8470275B2 (en) 2008-09-30 2013-06-25 Calera Corporation Reduced-carbon footprint concrete compositions
US8491858B2 (en) 2009-03-02 2013-07-23 Calera Corporation Gas stream multi-pollutants control systems and methods
US8691175B2 (en) 2011-04-28 2014-04-08 Calera Corporation Calcium sulfate and CO2 sequestration
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8857118B2 (en) 2007-05-24 2014-10-14 Calera Corporation Hydraulic cements comprising carbonate compound compositions
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US8906156B2 (en) 2009-12-31 2014-12-09 Calera Corporation Cement and concrete with reinforced material
US8936773B2 (en) 2011-04-28 2015-01-20 Calera Corporation Methods and compositions using calcium carbonate and stabilizer
US8999057B2 (en) 2011-09-28 2015-04-07 Calera Corporation Cement and concrete with calcium aluminates
US9061940B2 (en) 2008-09-30 2015-06-23 Calera Corporation Concrete compositions and methods
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US9187834B2 (en) 2011-05-19 2015-11-17 Calera Corporation Electrochemical hydroxide systems and methods using metal oxidation
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US9828313B2 (en) 2013-07-31 2017-11-28 Calera Corporation Systems and methods for separation and purification of products
US9880124B2 (en) 2014-11-10 2018-01-30 Calera Corporation Measurement of ion concentration in presence of organics
US9902652B2 (en) 2014-04-23 2018-02-27 Calera Corporation Methods and systems for utilizing carbide lime or slag
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
US10161050B2 (en) 2015-03-16 2018-12-25 Calera Corporation Ion exchange membranes, electrochemical systems, and methods
US10236526B2 (en) 2016-02-25 2019-03-19 Calera Corporation On-line monitoring of process/system
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
US10847844B2 (en) 2016-04-26 2020-11-24 Calera Corporation Intermediate frame, electrochemical systems, and methods
US11377363B2 (en) 2020-06-30 2022-07-05 Arelac, Inc. Methods and systems for forming vaterite from calcined limestone using electric kiln
US11577965B2 (en) 2020-02-25 2023-02-14 Arelac, Inc. Methods and systems for treatment of lime to form vaterite

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE476498T1 (de) 2003-12-02 2010-08-15 Pasteur Institut Neuer mit sars verbunden coronavirus stamm und seine verwendungen
WO2008018928A2 (fr) * 2006-04-27 2008-02-14 President And Fellows Of Harvard College Capture de dioxyde de carbone et procédés associés
EP2535314A1 (fr) * 2006-08-29 2012-12-19 Yeda Research & Development Company, Ltd. Procédés et appareils permettant de réduire la concentration en CO2 d'un fluide
GB2461356B (en) 2007-06-28 2010-08-18 Calera Corp Desalination methods and systems that include carbonate compound precipitation
US20100313794A1 (en) * 2007-12-28 2010-12-16 Constantz Brent R Production of carbonate-containing compositions from material comprising metal silicates
JP2011528405A (ja) * 2008-07-16 2011-11-17 カレラ コーポレイション 二酸化炭素ガスを使用する低エネルギー4セル電気化学システム
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US20110033239A1 (en) * 2009-08-07 2011-02-10 Brent Constantz Utilizing salts for carbon capture and storage
WO2011038076A1 (fr) * 2009-09-24 2011-03-31 Calera Corporation Procédés et systèmes d'utilisation de hcl
EP2590729B1 (fr) 2010-07-08 2021-01-27 Carbonfree Chemicals Holdings, LLC Séquestrations de dioxyde de carbone entraînant des procédés thermolytiques à base de deux sels
US9963790B2 (en) * 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
WO2012075546A1 (fr) 2010-12-10 2012-06-14 University Of Wollongong Dispositifs multicouches de craquage de l'eau
US20130034489A1 (en) * 2011-02-14 2013-02-07 Gilliam Ryan J Electrochemical hydroxide system and method using fine mesh cathode
US8506914B2 (en) 2011-03-28 2013-08-13 Board Of Trustees Of The University Of Alabama N-functionalized imidazole-containing systems and methods of use
WO2013082230A1 (fr) 2011-12-02 2013-06-06 The Board Of Trustees Of The University Of Alabama Sels imido-acides et procédés d'utilisation correspondants
CA2860773C (fr) 2012-01-13 2020-11-03 Siluria Technologies, Inc. Procede de separation de composes hydrocarbones
CA2876236A1 (fr) 2012-06-12 2013-12-19 Monash University Electrode permeable a l'air et procede pour l'utilisation dans la dissociation d'eau
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US9623204B2 (en) 2012-08-20 2017-04-18 Hydro Healer, Llc Electrolysis system and apparatus for collecting hydrogen gas
GB2506393A (en) * 2012-09-28 2014-04-02 Ibm Chemical reactor for enabling pairwise fluid contacts
KR101360269B1 (ko) 2012-11-30 2014-02-12 한국과학기술연구원 전기화학적 이산화탄소 전환용 콤팩트 반응기
WO2014089479A1 (fr) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Procédés et systèmes intégrés pour la conversion de méthane en de multiples produits hydrocarbonés supérieurs
EP2935194A4 (fr) 2012-12-21 2016-11-09 Ee Terrabon Biofuels Llc Systèmes et procédés pour obtenir des produits à partir d'une biomasse
KR20160040612A (ko) 2013-07-31 2016-04-14 아쿠아하이드렉스 프로프라이어터리 리미티드 복합체 3차원 전극 및 제조 방법
US9869797B2 (en) 2013-08-23 2018-01-16 Exxonmobil Upstream Research Company Method for predicting occurrence of microquartz in a basin
EP3074119B1 (fr) 2013-11-27 2019-01-09 Siluria Technologies, Inc. Réacteurs et systèmes destinés au couplage oxydatif du méthane
FR3016164A1 (fr) * 2014-01-03 2015-07-10 Vb2M Procede et dispositif pour le traitement de saumures
EP3092286A4 (fr) 2014-01-08 2017-08-09 Siluria Technologies, Inc. Systèmes et procédés de conversion d'éthylène en liquides
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
AU2015204709B2 (en) 2014-01-09 2019-08-15 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
AR099387A1 (es) 2014-01-17 2016-07-20 Skyonic Corp Sistemas y métodos para la remoción de gas ácido de una corriente gaseosa
SG11201706866UA (en) 2015-02-23 2017-09-28 Skyonic Corp Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
WO2017065947A1 (fr) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Procédés de séparation et systèmes de couplage oxydatif du méthane
KR101854116B1 (ko) 2016-02-19 2018-05-03 한국과학기술연구원 알칼리 이온을 함유하는 무기물로부터 고순도 탄산칼슘을 제조하는 방법
EP4071131A1 (fr) 2016-04-13 2022-10-12 Lummus Technology LLC Appareil et procédé d'échange de chaleur
US9915136B2 (en) * 2016-05-26 2018-03-13 X Development Llc Hydrocarbon extraction through carbon dioxide production and injection into a hydrocarbon well
EP3554672A4 (fr) 2016-12-19 2020-08-12 Siluria Technologies, Inc. Procédés et systèmes pour effectuer des séparations chimiques
PL3630707T3 (pl) 2017-05-23 2024-02-19 Lummus Technology Llc Zintegrowanie sposobów utleniającego sprzęgania metanu
EP3649097A4 (fr) 2017-07-07 2021-03-24 Lummus Technology LLC Systèmes et procédés permettant le couplage oxydant de méthane
WO2019023414A1 (fr) * 2017-07-26 2019-01-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Procédé cyclique utilisant des solutions alcalines créées à partir d'eau électrolytiquement décarboxylée en tant que collecteur de co2 atmosphérique suivi d'une récupération électrochimique de co2 répétée avec production simultanée de dihydrogène
KR20210122260A (ko) 2019-02-01 2021-10-08 아쿠아하이드렉스, 인크. 제한된 전해질을 갖춘 전기화학적 시스템
CN111398403B (zh) * 2020-05-13 2021-04-09 中国科学院地质与地球物理研究所 一种同时测定橄榄石中的镁橄榄石值和微量元素方法
US11717802B2 (en) 2021-03-04 2023-08-08 Energy And Environmental Research Center Foundation Methods of treating metal carbonate salts
US11858819B2 (en) 2021-03-04 2024-01-02 Energy And Environmental Research Center Foundation Methods of producing a syngas composition
KR20230046930A (ko) 2021-09-30 2023-04-06 광주과학기술원 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법
US11965254B2 (en) 2021-09-30 2024-04-23 Gwangju Institute Of Science And Technology Manufacturing apparatus and manufacturing method for synthetic gas with controlled H2/CO ratio
US11891468B1 (en) 2022-07-29 2024-02-06 Dioxycle Polymers and membranes with acrylamide moiety
US20240052116A1 (en) * 2022-07-29 2024-02-15 Dioxycle Electrolysis using membrane with acrylamide moiety
CN115477484B (zh) * 2022-10-12 2023-04-28 清华大学 可再生氢能及纯氧燃烧的零碳排放水泥生产设备和工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217186A (en) * 1978-09-14 1980-08-12 Ionics Inc. Process for chloro-alkali electrolysis cell
US6080297A (en) * 1996-12-06 2000-06-27 Electron Transfer Technologies, Inc. Method and apparatus for constant composition delivery of hydride gases for semiconductor processing
US6129832A (en) * 1995-11-14 2000-10-10 Gunter Fuhr Device and method for adjusting ion concentrations

Family Cites Families (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1678345A (en) * 1921-06-25 1928-07-24 Keasbey & Mattison Company Millboard product and process
GB271852A (en) * 1926-05-28 1927-11-10 Ig Farbenindustrie Ag Improvements in and means for the extraction of carbon dioxide from gaseous mixtures
US1865833A (en) * 1929-01-21 1932-07-05 Heinz H Chesny Process of forming sodium bicarbonate
US2383674A (en) * 1941-08-21 1945-08-28 Hooker Electrochemical Co Process for production of sodium bicarbonate
US2606839A (en) * 1951-03-21 1952-08-12 Dow Chemical Co Noncaking sea salt and method of producing the same
US2967807A (en) * 1952-01-23 1961-01-10 Hooker Chemical Corp Electrolytic decomposition of sodium chloride
US2934419A (en) * 1955-09-19 1960-04-26 Dixie Chemical Company Inc Method of treating sea water
US3046152A (en) * 1958-11-25 1962-07-24 Shiraishi Tsuneyoshi Method of preparing colloidal calcium magnesium silicate
BE594986A (fr) * 1959-09-28
NL278428A (fr) * 1961-05-15 1900-01-01
NL282666A (fr) * 1961-09-06
DE1233366B (de) * 1963-06-28 1967-02-02 Ceskoslovenska Akademie Ved Elektrolyseur fuer die gleichzeitige Herstellung von Chlor und Alkalicarbonaten
US3350292A (en) 1964-05-14 1967-10-31 American Cyanamid Co Utilization of saline water
DE1243165B (de) 1964-12-31 1967-06-29 Halomet Ag Verfahren zur Gewinnung reiner Metallchloride
US3463814A (en) * 1967-03-24 1969-08-26 Us Interior Chemical cycle for evaporative water desalination plant
US3511712A (en) 1967-03-30 1970-05-12 United Aircraft Corp Process of removing carbon dioxide from gas streams using fuel cell
US3511595A (en) * 1967-05-18 1970-05-12 Treadwell Corp The Method of removing carbon dioxide and water vapor from air
US3420775A (en) * 1967-07-05 1969-01-07 Edgar A Cadwallader Prevention of scale in saline water evaporators using carbon dioxide under special conditions
US3574530A (en) 1967-10-02 1971-04-13 Pullman Inc Method of removing sulfur dioxide from waste gases
US3525675A (en) 1968-05-22 1970-08-25 Orca Inc Desalination distillation using barium carbonate as descaling agent
US3627479A (en) 1968-10-10 1971-12-14 Atomic Energy Commission Chemical-electro-chemical cycle for desalination of water
US3917795A (en) 1970-11-30 1975-11-04 Black Sivalls & Bryson Inc Method of treating coal refuse
US3953568A (en) 1971-07-22 1976-04-27 Maomi Seko Method of simultaneous concentration and dilution of isotopes
US3725267A (en) * 1972-02-14 1973-04-03 Interior Softening of sea water by addition of barium carbonate and co2
GB1426335A (en) 1972-09-04 1976-02-25 Woodall Duckham Ltd Treatment of inorganic dust
US3864236A (en) * 1972-09-29 1975-02-04 Hooker Chemicals Plastics Corp Apparatus for the electrolytic production of alkali
US3963592A (en) * 1972-09-29 1976-06-15 Hooker Chemicals & Plastics Corporation Method for the electrolytic production of alkali
US4147599A (en) * 1977-07-19 1979-04-03 Diamond Shamrock Corporation Production of alkali metal carbonates in a cell having a carboxyl membrane
US4264367A (en) * 1974-08-01 1981-04-28 Sika Chemical Corporation Admixtures and method for accelerating the setting of portland cement compositions
DE2450259B2 (de) 1974-10-23 1979-03-29 Bayer Ag, 5090 Leverkusen Verfahren zur Reinigung von Elektrolysesole
AR205953A1 (es) * 1975-01-22 1976-06-15 Diamond Shamrock Corp Produccion de carbonatos de metales a calinos en una celula de membrana
US4026716A (en) * 1975-03-17 1977-05-31 Woodville Lime And Chemical Company Concrete composition
US4036749A (en) 1975-04-30 1977-07-19 Anderson Donald R Purification of saline water
US4033848A (en) * 1975-10-15 1977-07-05 Diamond Shamrock Corporation Wafer electrode for an electrolytic cell
DE2626885C2 (de) 1976-06-16 1978-05-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen Verfahren zum Aufschluß von Alkali-Erdalkali-silicathaltigem Material zur Gewinnung von Alkalisilicat- oder Alkalicarbonatlösungen und Stoffen mit großer spezifischer Oberfläche
DE2653649A1 (de) 1976-11-25 1978-06-01 Kraftwerk Union Ag Anlage zur erzeugung von trinkwasser und rohstoffen aus meerwasser
US4188291A (en) 1978-04-06 1980-02-12 Anderson Donald R Treatment of industrial waste water
US4246075A (en) * 1979-03-19 1981-01-20 Marine Resources Company Mineral accretion of large surface structures, building components and elements
US4242185A (en) 1979-09-04 1980-12-30 Ionics Inc. Process and apparatus for controlling impurities and pollution from membrane chlor-alkali cells
US4361475A (en) * 1980-01-10 1982-11-30 Innova, Inc. Membrane block construction and electrochemical cell
US4335788A (en) 1980-01-24 1982-06-22 Halliburton Company Acid dissolvable cements and methods of using the same
US4370307A (en) 1980-02-29 1983-01-25 Martin Marietta Corporation Preparation of pure magnesian values
US4377640A (en) 1981-05-20 1983-03-22 Texasgulf Inc. Sulphur gas geochemical prospecting
US4376101A (en) * 1981-11-13 1983-03-08 Exxon Research And Engineering Co. Process for removing acid gases using a basic salt activated with a non-sterically hindered diamine
DE3146326C2 (de) 1981-11-23 1983-11-10 Kraftwerk Union AG, 4330 Mülheim Anlage zur Erzeugung von Trinkwasser aus Meerwasser
US4410606A (en) * 1982-04-21 1983-10-18 Loutfy Raouf O Low temperature thermally regenerative electrochemical system
US4450009A (en) * 1983-04-29 1984-05-22 Halliburton Company Method of preparing a light weight cement composition from sea water
US4561945A (en) * 1984-07-30 1985-12-31 United Technologies Corporation Electrolysis of alkali metal salts with hydrogen depolarized anodes
GB8423642D0 (en) * 1984-09-19 1984-10-24 Ici Plc Electrolysis of alkali metal chloride solution
US5100633A (en) * 1985-11-07 1992-03-31 Passamaquoddy Technology Limited Partnership Method for scrubbing pollutants from an exhaust gas stream
US4716027A (en) 1986-07-25 1987-12-29 Passamaquoddy Tribe, A Sovereign Indian Tribe Recognized By The Government Of The United States Of America Method for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom
KR880700779A (ko) 1986-01-07 1988-04-12 그래함 다글러스 힐 로버트 마그네슘 시멘트
DE3638317A1 (de) 1986-01-21 1987-06-25 Hermann Dr Rer Na Killesreiter Thermo-elektrische solarzelle
US4804449A (en) 1986-02-25 1989-02-14 Sweeney Charles T Electrolytic cell
US4818367A (en) 1986-04-14 1989-04-04 J. H. Diamond Company Asphalt, copolymer and elastomer composition
US4915914A (en) 1986-07-25 1990-04-10 Passamaquaddy Tribe System for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom
US4931264A (en) 1986-11-07 1990-06-05 Board Of Regents, The University Of Texas System Process for removing sulfur from sulfur-containing gases
US4899544A (en) * 1987-08-13 1990-02-13 Boyd Randall T Cogeneration/CO2 production process and plant
JP2648313B2 (ja) 1987-11-30 1997-08-27 田中貴金属工業株式会社 電解方法
US5037286A (en) 1988-06-24 1991-08-06 Rolite, Inc. Incineration residue treatment apparatus
US6638413B1 (en) * 1989-10-10 2003-10-28 Lectro Press, Inc. Methods and apparatus for electrolysis of water
EP0429154B1 (fr) * 1989-11-21 1994-12-21 Mitsubishi Jukogyo Kabushiki Kaisha Procédé pour la fixation de l anhydride carbonique et dispositif pour traiter de l anhydride carbonique
CA2023733C (fr) * 1990-08-21 1998-04-14 Marek Lipsztajn Production de dioxyde de chlore a partir de l'acide chlorique
JPH04190831A (ja) 1990-11-22 1992-07-09 Hitachi Ltd 炭酸ガス再資源化リサイクルシステム
US5141620A (en) * 1990-12-18 1992-08-25 United Technologies Corporation Device and method for separating and compressing carbon dioxide from a carbonate salt
IT1248564B (it) * 1991-06-27 1995-01-19 Permelec Spa Nora Processo di decomposizione elettrochimica di sali neutri senza co-produzione di alogeni o di acido e cella di elettrolisi adatta per la sua realizzazione.
US5230734A (en) * 1991-07-29 1993-07-27 Okutama Kogyo Co., Ltd. Calcium-magnesium carbonate composite and method for the preparation thereof
US5246551A (en) * 1992-02-11 1993-09-21 Chemetics International Company Ltd. Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
DE4208068A1 (de) 1992-03-13 1993-09-16 Solvay Barium Strontium Gmbh Herstellung von granuliertem erdalkalimetallcarbonat unter gleichzeitiger erhitzung und granulation
DE4207923A1 (de) 1992-03-13 1993-09-16 Solvay Barium Strontium Gmbh Herstellung von granuliertem erdalkalimetallcarbonat
DK49592D0 (da) 1992-04-13 1992-04-13 Aalborg Portland As Cementkomposition
US5282935A (en) * 1992-04-13 1994-02-01 Olin Corporation Electrodialytic process for producing an alkali solution
US5531865A (en) * 1992-08-19 1996-07-02 Cole; Leland G. Electrolytic water purification process
DE4311665C1 (de) * 1993-04-08 1994-08-18 Metallgesellschaft Ag Verfahren zur Herstellung von Alkaliperoxid-Lösungen
DK70693D0 (da) 1993-06-14 1993-06-14 Niels Ole Vesterager Fremgangsmaade til fjernelse af uoenskede stoffer i en gasart
US5855759A (en) * 1993-11-22 1999-01-05 E. I. Du Pont De Nemours And Company Electrochemical cell and process for splitting a sulfate solution and producing a hyroxide solution sulfuric acid and a halogen gas
US5470671A (en) 1993-12-22 1995-11-28 Ballard Power Systems Inc. Electrochemical fuel cell employing ambient air as the oxidant and coolant
US5846669A (en) 1994-05-12 1998-12-08 Illinois Institute Of Technology Hybrid electrolyte system
JP3632222B2 (ja) 1994-09-13 2005-03-23 株式会社Inax CaCO3の固化方法
US5624493A (en) 1995-04-19 1997-04-29 The United States Of America As Represented By The Department Of Energy Quick-setting concrete and a method for making quick-setting concrete
AU4421396A (en) 1995-05-01 1996-11-21 E.I. Du Pont De Nemours And Company Electrochemical cell and process for splitting a sulfate sol ution and producing a hydroxide solution, sulfuric acid and a halogen gas
WO1996038384A1 (fr) * 1995-06-01 1996-12-05 Upscale Technologies, Inc. Procede et appareil pour eliminer les nitrates contenus dans l'eau
DE19529246A1 (de) 1995-08-09 1997-02-13 Thomas Weimer Verfahren zur Kohlendioxidabreinigung aus Gasgemischen
US5531821A (en) * 1995-08-24 1996-07-02 Ecc International Inc. Surface modified calcium carbonate composition and uses therefor
US5785868A (en) 1995-09-11 1998-07-28 Board Of Regents, Univ. Of Texas System Method for selective separation of products at hydrothermal conditions
DE19631794A1 (de) 1996-08-07 1997-08-07 Peter Prof Pohl Verfahren zur Beseitigung von CO¶2¶ aus Abgasen einer Verbrennungsmaschine
US5925255A (en) 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US6071336A (en) 1996-09-05 2000-06-06 Minerals Technologies Inc. Acicular calcite and aragonite calcium carbonate
CA2227398A1 (fr) * 1997-01-23 1998-07-23 K.N. Mani Appareil et procede pour l'electrodialyse des sels
US6294066B1 (en) * 1997-01-23 2001-09-25 Archer Daniels Midland Company Apparatus and process for electrodialysis of salts
US6180012B1 (en) * 1997-03-19 2001-01-30 Paul I. Rongved Sea water desalination using CO2 gas from combustion exhaust
US5766339A (en) * 1997-05-07 1998-06-16 Dravo Lime Company Process for producing cement from a flue gas desulfurization process waste product
AU7982498A (en) 1997-06-19 1999-01-04 Applied Specialties, Inc. Water treatment process
US5906722A (en) * 1997-08-18 1999-05-25 Ppg Industries, Inc. Method of converting amine hydrohalide into free amine
US5904829A (en) * 1997-08-18 1999-05-18 Ppg Industries, Inc. Method of converting amine hydrohalide into free amine
AU9087498A (en) 1997-09-15 1999-04-05 Den Norske Stats Oljeselskap A.S. Installation for separation of co2 from gas turbine flue gas
EP1024880A1 (fr) 1997-09-15 2000-08-09 Den Norske Stats Oljeselskap A.S. Separation de gaz acides de melanges gazeux
US6200543B1 (en) * 1998-02-25 2001-03-13 Mississippi Lime Company Apparatus and methods for reducing carbon dioxide content of an air stream
US6024848A (en) 1998-04-15 2000-02-15 International Fuel Cells, Corporation Electrochemical cell with a porous support plate
JP3859358B2 (ja) * 1998-05-26 2006-12-20 クロリンエンジニアズ株式会社 電解水製造装置
US6334895B1 (en) 1998-07-20 2002-01-01 The University Of Wyoming Research Corporation System for producing manufactured materials from coal combustion ash
WO2000010691A1 (fr) * 1998-08-18 2000-03-02 United States Department Of Energy Procede et appareil permettant d'extraire et de sequestrer le dioxyde de carbone
DE19844059A1 (de) 1998-09-25 2000-03-30 Degussa Elektrolysezelle und deren Verwendung
JP3248514B2 (ja) 1998-10-29 2002-01-21 日本鋼管株式会社 排出炭酸ガスの削減方法
JP2000128612A (ja) 1998-10-30 2000-05-09 Jdc Corp 重質炭酸カルシウムの水性スラリ−を含むコンクリ−ト
US6841512B1 (en) * 1999-04-12 2005-01-11 Ovonic Battery Company, Inc. Finely divided metal catalyst and method for making same
US6475460B1 (en) 1999-07-12 2002-11-05 Marine Desalination Systems Llc Desalination and concomitant carbon dioxide capture yielding liquid carbon dioxide
US6251356B1 (en) * 1999-07-21 2001-06-26 G. R. International, Inc. High speed manufacturing process for precipitated calcium carbonate employing sequential perssure carbonation
US6375825B1 (en) * 1999-10-28 2002-04-23 Chemical Products Corporation Process for the production of alkaline earth hydroxide
CN1419523B (zh) * 2000-01-27 2010-04-21 泰西可控股有限公司 含镁水泥
DE10004878A1 (de) * 2000-02-04 2001-08-09 Sgl Technik Gmbh Verfahren und Vorrichtung zum gleichzeitigen Herstellen von Säure und Base hoher Reinheit
US6602630B1 (en) * 2000-03-14 2003-08-05 The Electrosynthesis Company, Inc. Membrane electrode assemblies for electrochemical cells
US6352576B1 (en) * 2000-03-30 2002-03-05 The Regents Of The University Of California Methods of selectively separating CO2 from a multicomponent gaseous stream using CO2 hydrate promoters
US6623555B1 (en) 2000-06-01 2003-09-23 Jukka P. Haverinen Composite precipitated calcium carbonate/silicon compound pigment and method of making same
NO319666B1 (no) 2000-06-16 2005-09-05 Enpro As Fremgangsmate til fjerning av salt fra saltholdig vann, samt anvendelse derav
DE10030093C1 (de) * 2000-06-19 2002-02-21 Starck H C Gmbh Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
IL137102A0 (en) 2000-06-29 2001-06-14 Israel Garden A process and apparatus for brine reformation
US6495013B2 (en) 2000-07-13 2002-12-17 The Electrosynthesis Company, Inc. Bipolar membrane electrodialysis of multivalent metal salts whose corresponding base is insoluble
GB0031413D0 (en) 2000-12-21 2001-02-07 Aea Technology Plc Electrochemical processing
US20020127474A1 (en) * 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
CN1369576A (zh) * 2001-02-16 2002-09-18 深圳市柯雷恩环境科技有限公司 反式双膜三室电解槽
ATE368015T1 (de) * 2001-04-13 2007-08-15 Co2 Solution Inc Verfahren und vorrichtung zur herstellung von zementklinker
CA2444576A1 (fr) 2001-04-20 2002-10-31 Shell Internationale Research Maatschappij B.V. Procede de carbonatation minerale au moyen de dioxyde de carbone
CN1166019C (zh) 2001-05-25 2004-09-08 中国科学院长春应用化学研究所 质子交换膜燃料电池纳米电催化剂的制备方法
WO2007140544A1 (fr) 2006-06-09 2007-12-13 Gomez Rodolfo Antonio M Activation électrolytique de l'eau
US6712946B2 (en) * 2001-06-18 2004-03-30 The Electrosynthesis Company, Inc. Electrodialysis of multivalent metal salts
US6786963B2 (en) 2001-06-27 2004-09-07 Bj Services Company Paving compositions and methods for their use
WO2003008071A1 (fr) 2001-07-17 2003-01-30 Sigurd Fongen Procede et dispositif pour l'absorption du co2 dans l'eau de mer
US20030017088A1 (en) * 2001-07-20 2003-01-23 William Downs Method for simultaneous removal and sequestration of CO2 in a highly energy efficient manner
JP2003041388A (ja) 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
US6607707B2 (en) * 2001-08-15 2003-08-19 Ovonic Battery Company, Inc. Production of hydrogen from hydrocarbons and oxygenated hydrocarbons
AU2002365135A1 (en) * 2001-10-23 2003-07-09 Anteon Corporation Integrated oxygen generation and carbon dioxide absorption method, apparatus and systems
US7459020B2 (en) 2001-10-23 2008-12-02 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture, cement composition, and cement concrete made therefrom
WO2003036034A1 (fr) 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. Sources de chaleur conductrices dans un conduit, presentant un materiau conducteur par voie electrique dans des morts-terrains
US6776972B2 (en) * 2001-10-29 2004-08-17 Council Of Scientific And Industrial Research Recovery of common salt and marine chemicals from brine
US6648949B1 (en) 2001-11-28 2003-11-18 The United States Of America As Represented By The United States Department Of Energy System for small particle and CO2 removal from flue gas using an improved chimney or stack
US7055325B2 (en) 2002-01-07 2006-06-06 Wolken Myron B Process and apparatus for generating power, producing fertilizer, and sequestering, carbon dioxide using renewable biomass
KR100961298B1 (ko) * 2002-02-13 2010-06-04 닛데츠 고교 가부시키가이샤 염기성 탄산마그네슘, 이의 제조방법 및 용도
NO317918B1 (no) 2002-02-15 2005-01-03 Sargas As Fremgangsmate for fremstilling av ferskvann og rensing av karbondioksyd
US6755905B2 (en) 2002-02-15 2004-06-29 Lafarge Canada Inc. Use of high carbon coal ash
US7108777B2 (en) 2002-03-15 2006-09-19 Millennium Cell, Inc. Hydrogen-assisted electrolysis processes
WO2003086973A1 (fr) 2002-04-05 2003-10-23 Bertshell Pty Ltd Procede et appareil destine a etre utilise pour preparer une solution de bicarbonate de magnesium aqueuse
US20060184445A1 (en) 2002-07-20 2006-08-17 Richard Sandor Systems and methods for trading emission reductions
US7214290B2 (en) * 2002-09-04 2007-05-08 Shaw Liquid Solutions Llc. Treatment of spent caustic refinery effluents
US7090868B2 (en) 2002-09-13 2006-08-15 University Of Florida Materials and methods for drug delivery and uptake
CA2405635A1 (fr) * 2002-09-27 2004-03-27 C02 Solution Inc. Methode et usine de production de produits carbonates utiles et de recyclage des emissions de dioxyde de carbone produites par des centrales electriques
US20040126293A1 (en) * 2002-10-23 2004-07-01 Geerlings Jacobus Johannes Cornelis Process for removal of carbon dioxide from flue gases
WO2004041731A1 (fr) 2002-11-05 2004-05-21 Geo-Processors Pty Limited Procede et appareil de traitement d'eau saline
US7440871B2 (en) 2002-12-09 2008-10-21 Verisae, Inc. Method and system for tracking and reporting emissions
US6964302B2 (en) 2002-12-10 2005-11-15 Halliburton Energy Services, Inc. Zeolite-containing cement composition
CA2414949C (fr) 2002-12-20 2010-04-13 Imperial Oil Resources Limited Procede integre de traitement de l'eau et de desulfuration de gaz effluents
CN1232465C (zh) 2002-12-24 2005-12-21 清华大学 凝石二元化湿水泥及其用途
JP2004261658A (ja) 2003-02-26 2004-09-24 Tokyo Electric Power Co Inc:The 燃焼排ガス中の二酸化炭素の吸収固定化方法
US7754176B2 (en) * 2003-02-27 2010-07-13 Okutama Kogyo Co., Ltd. Spherical calcium carbonate and method for producing thereof
US20040213705A1 (en) * 2003-04-23 2004-10-28 Blencoe James G. Carbonation of metal silicates for long-term CO2 sequestration
EP1618335A1 (fr) * 2003-04-29 2006-01-25 Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources Capture in situ de dioxyde de carbone et de dioxyde de soufre dans un dispositif de combustion en lit fluidise
US7132090B2 (en) 2003-05-02 2006-11-07 General Motors Corporation Sequestration of carbon dioxide
US7604787B2 (en) 2003-05-02 2009-10-20 The Penn State Research Foundation Process for sequestering carbon dioxide and sulfur dioxide
US20040259231A1 (en) 2003-06-18 2004-12-23 Bhattacharya Sanjoy K. Enzyme facilitated solubilization of carbon dioxide from emission streams in novel attachable reactors/devices
JP2005008478A (ja) * 2003-06-18 2005-01-13 Toshiba Corp 排ガス中の二酸化炭素回収システムおよび二酸化炭素回収方法
US7135604B2 (en) 2003-06-25 2006-11-14 Exxonmobil Chemical Patents Inc. Process for separating carbon dioxide from an oxygenate-to-olefin effluent stream
US20050011770A1 (en) * 2003-07-18 2005-01-20 Tatenuma Katsuyoshi Reduction method of atmospheric carbon dioxide, recovery and removal method of carbonate contained in seawater, and disposal method of the recovered carbonate
CA2478516C (fr) * 2003-09-30 2007-12-11 Jaguar Nickel Inc. Un procede de recuperation de metaux precieux des minerais contenant des sulfures de metaux de base
FR2861494B1 (fr) 2003-10-28 2005-12-23 Commissariat Energie Atomique Utilisation de carbonates mixtes frittes pour le confinement de carbone radioactif.
US7198722B2 (en) 2003-11-11 2007-04-03 Mohammed Azam Hussain Process for pre-treating and desalinating sea water
EP1702380A4 (fr) 2003-11-14 2008-12-31 Univ Akron Pile a combustible a base de carbone
AU2003304535A1 (en) * 2003-11-14 2004-06-06 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Pre-treatment of lime-based sorbents using hydration
US7722842B2 (en) * 2003-12-31 2010-05-25 The Ohio State University Carbon dioxide sequestration using alkaline earth metal-bearing minerals
DE102004004689B4 (de) 2004-01-29 2006-10-05 Clauser, Christoph, Prof. Dr. Verfahren und eine Anordnung zur Speicherung und dauerhaften Fixierung von in Wasser gelöstem CO2 in geologischen Formationen
US20070163443A1 (en) * 2004-01-30 2007-07-19 Hideshige Moriyama System and method for recovering carbon dioxide in exhaust gas
DE102004006915B4 (de) 2004-02-12 2005-11-24 Mayer, Günter, Dipl.-Ing. Brennstoffzelle und Verfahren zur Abreicherung von Kohlendioxid
US20050238563A1 (en) * 2004-03-08 2005-10-27 Eighmy T T Method for sequestering carbon dioxide
WO2005108297A2 (fr) 2004-05-04 2005-11-17 The Trustees Of Columbia University In The City Of New York Capture du dioxyde de carbone et reduction des emissions de dioxyde de carbone
WO2006009600A2 (fr) 2004-05-04 2006-01-26 The Trustees Of Columbia University In The City Of New York Systemes et procedes pour l'extraction de dioxyde de carbone dans de l'air
US7699909B2 (en) * 2004-05-04 2010-04-20 The Trustees Of Columbia University In The City Of New York Systems and methods for extraction of carbon dioxide from air
WO2006008242A1 (fr) * 2004-07-19 2006-01-26 Shell Internationale Research Maatschappij B.V. Procede de production de caco3 ou mgco3
AU2005290082B2 (en) 2004-08-20 2011-03-24 Kilimanjaro Energy, Inc. Removal of carbon dioxide from air
US20060051274A1 (en) * 2004-08-23 2006-03-09 Wright Allen B Removal of carbon dioxide from air
ES2382091T3 (es) 2004-09-13 2012-06-05 University Of South Carolina Procedimiento de desalinización de agua y aparato para el mismo
US7727374B2 (en) * 2004-09-23 2010-06-01 Skyonic Corporation Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
US7261912B2 (en) * 2004-11-18 2007-08-28 Arthur William Zeigler Method of producing useful products from seawater and similar microflora containing brines
USH2241H1 (en) 2004-12-03 2010-06-01 Kevin M Colbow Fuel cell electric power generating system
US7390444B2 (en) 2005-02-24 2008-06-24 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US9028607B2 (en) 2005-02-24 2015-05-12 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
WO2006134080A1 (fr) 2005-06-15 2006-12-21 Solvay (Société Anonyme) Utilisation de particules de carbonate de calcium dans la production de materiaux de construction
CN101252982B (zh) 2005-07-05 2014-06-25 澳大利亚格林索斯股份有限公司 阳离子卤化物的制备和用途以及二氧化碳的吸纳
US20070187247A1 (en) 2005-07-20 2007-08-16 Lackner Klaus S Electrochemical methods and processes for carbon dioxide recovery from alkaline solvents for carbon dioxide capture from air
CN102160957A (zh) 2005-07-28 2011-08-24 乞力马扎罗能量公司 从空气中除去二氧化碳
JP2009511740A (ja) * 2005-10-13 2009-03-19 マントラ エナジー オールターナティヴス リミテッド 二酸化炭素の連続並流電気化学還元
CN101312784B (zh) 2005-11-23 2011-06-22 国际壳牌研究有限公司 通过矿物碳酸盐化隔离二氧化碳的方法
DE602006016988D1 (de) 2005-12-20 2010-10-28 Shell Int Research Verfahren zur sequestrierung von kohlendioxid
NO20060807L (no) 2006-02-17 2007-08-20 Omar Chaalal Fremgangsmate til rensing av saltvann
GB0603443D0 (en) 2006-02-21 2006-04-05 Hills Colin D Production of secondary aggregates
CN102600707B (zh) 2006-03-10 2015-11-11 C-广思技术国际有限公司 二氧化碳分离材料和方法
WO2007106883A2 (fr) 2006-03-15 2007-09-20 Carbon Trap Technologies, L.P. Procédés et systèmes de capture du dioxyde de carbone en utilisant des courants effluents
US7572318B2 (en) 2006-04-18 2009-08-11 Gas Technology Institute High-temperature membrane for CO2 and/or H2S separation
US7670139B2 (en) 2006-04-19 2010-03-02 Wells Products Group, Inc. Method and apparatus for reduced emissions fuel combustion
WO2008018928A2 (fr) 2006-04-27 2008-02-14 President And Fellows Of Harvard College Capture de dioxyde de carbone et procédés associés
NO20062465L (no) 2006-05-30 2007-12-03 Omar Chaalal Method and for cleaning of gases and uses thereof
WO2008021256A2 (fr) * 2006-08-11 2008-02-21 Aqua Resources Corporation Hydroxydes métalliques nanoplaquettaires et leurs méthodes d'élaboration
EP2535314A1 (fr) 2006-08-29 2012-12-19 Yeda Research & Development Company, Ltd. Procédés et appareils permettant de réduire la concentration en CO2 d'un fluide
EP1900688A1 (fr) 2006-09-14 2008-03-19 SOLVAY (Société Anonyme) Procédé pour obtenir des cristaux de carbonate de sodium
JP5031336B2 (ja) * 2006-11-21 2012-09-19 ペルメレック電極株式会社 食塩電解用酸素ガス拡散陰極
MX2009005386A (es) 2006-11-22 2009-06-26 Orica Explosives Tech Pty Ltd Proceso quimico integrado.
WO2008068322A1 (fr) 2006-12-08 2008-06-12 Solvay (Société Anonyme) Particules de carbonate de métal alcalino-terreux revêtues, utilisation de telles particules dans la production de matériaux de construction et compositions de matériaux de construction contenant de telles particules
JP5690486B2 (ja) 2007-01-31 2015-03-25 ノボザイムス アクティーゼルスカブ 熱安定性炭酸脱水酵素及びその用途
WO2008101293A1 (fr) 2007-02-20 2008-08-28 Hunwick Richard J Système, appareil et procédé de séquestration de dioxyde de carbone
GB2452169A (en) * 2007-02-25 2009-02-25 Puregeneration Carbon dioxide sequestering fuel synthesis system and use thereof
AU2007100157A4 (en) 2007-02-28 2007-04-19 Green, Kenneth Mr Improved method of sequestering carbon dioxide as calcium carbonate
NO332158B1 (no) 2007-03-05 2012-07-09 Aker Clean Carbon As Fremgangsmåte for fjerning av CO2 fra en eksosgass
US20090081096A1 (en) 2007-03-28 2009-03-26 Pellegrin Roy J Method and means for capture and long-term sequestration of carbon dioxide
CN101280926A (zh) * 2007-04-02 2008-10-08 卢冠均 废气净化装置及其净化方法
AU2008237264B2 (en) * 2007-04-03 2012-09-20 Sulfurcycle Intellectual Property Holding Company Llc Electrochemical system, apparatus, and method to generate renewable hydrogen and sequester carbon dioxide
AU2008209322B2 (en) 2007-04-20 2012-10-25 Rodolfo Antonio M. Gomez Carbon dioxide sequestration and capture
US20080277319A1 (en) 2007-05-11 2008-11-13 Wyrsta Michael D Fine particle carbon dioxide transformation and sequestration
CA2687620A1 (fr) 2007-05-21 2008-11-27 Shell Internationale Research Maatschappij B.V. Procede de preparation d'une matiere minerale activee
US20080289495A1 (en) 2007-05-21 2008-11-27 Peter Eisenberger System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same
CA2687618A1 (fr) 2007-05-21 2008-11-27 Shell Internationale Research Maatschappij B.V. Procede de sequestration de dioxyde de carbone par carbonatation minerale
WO2008151060A1 (fr) 2007-05-30 2008-12-11 New Sky Energy, Inc. Utilisation de la dissociation photoélectrochimique de l'eau pour produire des matériaux destinés à la séquestration du dioxyde de carbone
US7753618B2 (en) * 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
GB2461356B (en) 2007-06-28 2010-08-18 Calera Corp Desalination methods and systems that include carbonate compound precipitation
GB0716360D0 (en) 2007-08-22 2007-10-03 Univ Greenwich Production of secondary aggregates
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
US8551340B2 (en) 2007-09-26 2013-10-08 Bioteq Environmental Technologies Inc. Method for selective sulphate removal by exclusive anion exchange from hard water waste streams
US7655202B2 (en) 2007-10-09 2010-02-02 Ceramatec, Inc. Coal fired flue gas treatment and process
EA027716B1 (ru) 2007-11-15 2017-08-31 Ратджерс, Те Стейт Юниверсити Оф Нью Джерси Способ фиксации парникового газа (варианты), монолитный компакт, получаемый этим способом, и способ получения керамики
WO2009070273A1 (fr) 2007-11-27 2009-06-04 Peletex, Inc. Procédé et moyens pour la capture et la séquestration longue durée de dioxyde de carbone
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
CA2652803A1 (fr) 2007-12-28 2009-06-28 Calera Corporation Procedes de sequestration du co2
CN102335553A (zh) * 2010-07-21 2012-02-01 中国石油化工股份有限公司 一种钠基烟气脱硫液的再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217186A (en) * 1978-09-14 1980-08-12 Ionics Inc. Process for chloro-alkali electrolysis cell
US6129832A (en) * 1995-11-14 2000-10-10 Gunter Fuhr Device and method for adjusting ion concentrations
US6080297A (en) * 1996-12-06 2000-06-27 Electron Transfer Technologies, Inc. Method and apparatus for constant composition delivery of hydride gases for semiconductor processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2291550A4 *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906086B2 (en) 2006-03-10 2011-03-15 Comrie Douglas C Carbon dioxide sequestration materials and processes
US8857118B2 (en) 2007-05-24 2014-10-14 Calera Corporation Hydraulic cements comprising carbonate compound compositions
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
US8333944B2 (en) 2007-12-28 2012-12-18 Calera Corporation Methods of sequestering CO2
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US8357270B2 (en) 2008-07-16 2013-01-22 Calera Corporation CO2 utilization in electrochemical systems
US8894830B2 (en) 2008-07-16 2014-11-25 Celera Corporation CO2 utilization in electrochemical systems
US8006446B2 (en) 2008-09-30 2011-08-30 Calera Corporation CO2-sequestering formed building materials
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US9061940B2 (en) 2008-09-30 2015-06-23 Calera Corporation Concrete compositions and methods
US8431100B2 (en) 2008-09-30 2013-04-30 Calera Corporation CO2-sequestering formed building materials
US8470275B2 (en) 2008-09-30 2013-06-25 Calera Corporation Reduced-carbon footprint concrete compositions
US8603424B2 (en) 2008-09-30 2013-12-10 Calera Corporation CO2-sequestering formed building materials
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US9267211B2 (en) 2009-02-10 2016-02-23 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8491858B2 (en) 2009-03-02 2013-07-23 Calera Corporation Gas stream multi-pollutants control systems and methods
US8883104B2 (en) 2009-03-02 2014-11-11 Calera Corporation Gas stream multi-pollutants control systems and methods
US8137444B2 (en) 2009-03-10 2012-03-20 Calera Corporation Systems and methods for processing CO2
US8906156B2 (en) 2009-12-31 2014-12-09 Calera Corporation Cement and concrete with reinforced material
US8177909B2 (en) 2009-12-31 2012-05-15 Calera Corporation Methods and compositions using calcium carbonate
US8932400B2 (en) 2009-12-31 2015-01-13 Calera Corporation Methods and compositions using calcium carbonate
US8062418B2 (en) 2009-12-31 2011-11-22 Calera Corporation Methods and compositions using calcium carbonate
US8114214B2 (en) 2009-12-31 2012-02-14 Calera Corporation Methods and compositions using calcium carbonate
US9056790B2 (en) 2009-12-31 2015-06-16 Calera Corporation Methods and compositions using calcium carbonate
US8137455B1 (en) 2009-12-31 2012-03-20 Calera Corporation Methods and compositions using calcium carbonate
US9139472B2 (en) 2011-04-28 2015-09-22 Calera Corporation Methods and compositions using calcium carbonate and stabilizer
US8936773B2 (en) 2011-04-28 2015-01-20 Calera Corporation Methods and compositions using calcium carbonate and stabilizer
US8691175B2 (en) 2011-04-28 2014-04-08 Calera Corporation Calcium sulfate and CO2 sequestration
US9187834B2 (en) 2011-05-19 2015-11-17 Calera Corporation Electrochemical hydroxide systems and methods using metal oxidation
US9187835B2 (en) 2011-05-19 2015-11-17 Calera Corporation Electrochemical systems and methods using metal and ligand
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
US9957623B2 (en) 2011-05-19 2018-05-01 Calera Corporation Systems and methods for preparation and separation of products
US8999057B2 (en) 2011-09-28 2015-04-07 Calera Corporation Cement and concrete with calcium aluminates
US10287223B2 (en) 2013-07-31 2019-05-14 Calera Corporation Systems and methods for separation and purification of products
US9828313B2 (en) 2013-07-31 2017-11-28 Calera Corporation Systems and methods for separation and purification of products
US9902652B2 (en) 2014-04-23 2018-02-27 Calera Corporation Methods and systems for utilizing carbide lime or slag
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
US9880124B2 (en) 2014-11-10 2018-01-30 Calera Corporation Measurement of ion concentration in presence of organics
US10480085B2 (en) 2015-03-16 2019-11-19 Calera Corporation Ion exchange membranes, electrochemical systems, and methods
US10801117B2 (en) 2015-03-16 2020-10-13 Calera Corporation Ion exchange membranes, electrochemical systems, and methods
US10161050B2 (en) 2015-03-16 2018-12-25 Calera Corporation Ion exchange membranes, electrochemical systems, and methods
US10844496B2 (en) 2015-10-28 2020-11-24 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10236526B2 (en) 2016-02-25 2019-03-19 Calera Corporation On-line monitoring of process/system
US10847844B2 (en) 2016-04-26 2020-11-24 Calera Corporation Intermediate frame, electrochemical systems, and methods
US11239503B2 (en) 2016-04-26 2022-02-01 Calera Corporation Intermediate frame, electrochemical systems, and methods
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
US10807927B2 (en) 2018-05-30 2020-10-20 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using lewis acid
US11577965B2 (en) 2020-02-25 2023-02-14 Arelac, Inc. Methods and systems for treatment of lime to form vaterite
US12077447B2 (en) 2020-02-25 2024-09-03 Arelac, Inc. Methods and systems for treatment of lime to form vaterite
US11377363B2 (en) 2020-06-30 2022-07-05 Arelac, Inc. Methods and systems for forming vaterite from calcined limestone using electric kiln

Also Published As

Publication number Publication date
GB2467019A (en) 2010-07-21
TW201038773A (en) 2010-11-01
CN101878327A (zh) 2010-11-03
EP2291550A1 (fr) 2011-03-09
CA2666147C (fr) 2011-05-24
GB2467019B (en) 2011-04-27
EP2291550A4 (fr) 2011-03-09
BRPI0823394A2 (pt) 2015-06-16
GB0901413D0 (en) 2009-03-11
CA2666147A1 (fr) 2010-02-02
US7790012B2 (en) 2010-09-07
AR075113A1 (es) 2011-03-09
US20100155258A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
CA2666147C (fr) Methode et systeme electrochimiques peu energivores de production d&#39;ions hydroxydes
US20100224503A1 (en) Low-energy electrochemical hydroxide system and method
AU2009271304B2 (en) Low-energy 4-cell electrochemical system with carbon dioxide gas
JP5373079B2 (ja) 電気化学システム中でのco2の利用
AU2010201006B2 (en) Low-voltage alkaline production from brines
US20110036728A1 (en) Low-energy electrochemical proton transfer system and method
US20110083968A1 (en) Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
WO2011097468A2 (fr) Séparation d&#39;acide par rétention d&#39;acide sur une résine échangeuse d&#39;ions dans un système électrochimique
WO2011066293A1 (fr) Production d&#39;une solution alcaline à l&#39;aide d&#39;une anode à diffusion gazeuse avec une pression hydrostatique
EP2240629A1 (fr) Solution d&#39;ions bicarbonates électrochimique à basse énergie
WO2011008223A1 (fr) Production électrochimique d’une solution alcaline à l’aide de co2
KR20160023434A (ko) 탄산염의 제조 방법
AU2008278300B1 (en) Low energy electromechanical hydroxide system and method
CA2696086C (fr) Production electrochimique d&#39;une solution alcaline au moyen de co2
CA2694978C (fr) Production alcaline a basse tension a partir de saumures
KR20180133688A (ko) 이산화탄소의 분리 방법 및 이산화탄소 분리 시스템
AU2008361261A1 (en) Low-energy electrochemical proton transfer system and method
CA2696096A1 (fr) Production alcaline a basse tension au moyen d&#39;hydrogene et d&#39;electrodes electrocatalytiques

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118401.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 0901413

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20081223

WWE Wipo information: entry into national phase

Ref document number: 0901413.5

Country of ref document: GB

Ref document number: 2666147

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12375632

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008873036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2559/CHENP/2010

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011542099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0823394

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0823394

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110624