WO2009113325A1 - エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 - Google Patents
エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 Download PDFInfo
- Publication number
- WO2009113325A1 WO2009113325A1 PCT/JP2009/050713 JP2009050713W WO2009113325A1 WO 2009113325 A1 WO2009113325 A1 WO 2009113325A1 JP 2009050713 W JP2009050713 W JP 2009050713W WO 2009113325 A1 WO2009113325 A1 WO 2009113325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yarn
- airbag
- base fabric
- dtex
- fabric
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/446—Yarns or threads for use in automotive applications
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/12—Vehicles
- D10B2505/124—Air bags
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2976—Longitudinally varying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/298—Physical dimension
Definitions
- the base fabric proposed in Patent Document 2 has a problem in terms of tear strength and the like, and as a means for solving such a problem, a base fabric for an air bag to which 0.8% by weight or more of an oil agent is attached. Is disclosed (for example, see Patent Document 3).
- the air permeability of the obtained base fabric by the JIS L-1096 8.27.1A method is 0.2 cm 3 / cm 2 / sec, which is satisfactory in the measurement by the high pressure method of 19.6 kPa that is usually used in recent years. It was not possible, and it did not guarantee a high degree of bag deployment that required more demand.
- the airbag fabric made of fine fibers as proposed in Patent Document 2 and Patent Document 3 is a fabric that improves the strength of the yarn by taking into account the decrease in the strength of the yarn due to the decrease in fineness.
- the base fabric for bags is inferior in mechanical properties.
- An annular cooling device in which the upper wind speed V U is lower than the lower wind speed V L , the V L / V U is 2 to 3, the V U is 10 to 30 m / min, and the V L is 40 to 80 m / min Using It is a more preferable condition that the water vapor blowing pressure is 100 to 600 Pa, and further excellent effects can be expected by applying these conditions.
- the improvement in the properties of the base fabric tended to be saturated when the single fiber fineness was reduced to about 3 to 4 dtex, and the single fiber fineness of 100 or more single fibers and 2 dtex or less. This is because it was extremely difficult to stably produce industrial-use polyamide fibers by direct spinning and drawing methods.
- the present inventors diligently studied a method for obtaining a polyamide fiber having a single fiber number of 100 or more and 2 dtex or less by the method described later, and the characteristics of an airbag fabric composed of the polyamide fiber.
- the airbag fabric of the present invention preferably has a sliding resistance in the vertical and horizontal directions of 500 to 1000 N, and more preferably 550 to 900 N. If it is 500 N or more, the air permeability becomes small, and the anti-missing property when the airbag is inflated and deployed to restrain the occupant, that is, the ability to suppress the misalignment of the sewing portion and maintain the inner pressure of the airbag becomes sufficient. preferable. On the other hand, the case of 1000 N or less is preferable because it is not necessary to weave the base fabric at a high machine density and the compactness at the time of storage is not deteriorated.
- the cover factor (CFw) of the warp yarn of the base fabric and the cover factor (CFf) of the weft yarn are values calculated from the total fineness of the yarn used for the warp yarn or the weft yarn and the base fabric density
- the warp yarn total fineness is Dw (dtex)
- the weft total yarn fineness is Df (dtex)
- the warp yarn base fabric density is Nw (main / 2.54 cm)
- Nf main / 2.54 cm
- CF is the sum of CFw and CFf.
- the above-described requirements produce a synergistic effect, and the high slipperiness, low air permeability, and storage compactness required as an airbag can be improved.
- the air flow rate (AP) exceeds 0.5 L / cm 2 ⁇ min, the inflated state of the airbag cannot be maintained due to the collision of the occupant, and the occupant restraint property is inferior.
- the product AP ⁇ CF of the air flow rate AP (L / cm 2 / min) and the cover factor CF of the base fabric is preferably 1100 L / cm 2 / min or less, more preferably 1000 L / cm. 2 / min or less, more preferably 900 L / cm 2 / min or less.
- the cover factor CF is increased, the normal air flow AP is decreased.
- the airbag base fabric of the present invention preferably has a packability measured according to ASTM D-6478-02 of 1500 or less, more preferably 1000 to 1400, and even more preferably 1100 to 1300. .
- the packability is improved and the work efficiency is improved.
- the folded bag can be made smaller, so buttons such as navigation and shift switches can be added to the steering wheel, contributing to improved functionality of the car. It becomes possible to do. If the packability exceeds 1500, the storage assembly workability may deteriorate and the work efficiency may decrease. In particular, as described above, buttons such as a navigation switch and a shift switch are added to the driver airbag, and the storage space is reduced. It is not preferable because the bag cannot be stored in a small handle.
- the strength of the polyamide multifilament constituting the airbag fabric of the present invention is preferably 7 to 10 cN / dtex from the standpoint of yarn production in order to satisfy the mechanical properties required for the airbag fabric. More preferably, it is 8 to 9 cN / dtex, and further preferably 8.3 to 8.7 cN / dtex.
- the elongation of the polyamide multifilament is preferably 20 to 30% in order to increase the toughness and work of breaking of the airbag fabric and from the viewpoint of improving the yarn-making property and weaving property, more preferably 20 to 30%. 25%, more preferably 21 to 24%.
- the fineness unevenness of the polyamide multifilament of the present invention is preferably 0.5 to 1.5%, more preferably 0.5 to 1.0%, still more preferably 0.5 to 0.8%. It is.
- the above-mentioned polyamide chip is supplied to an extruder-type spinning machine, arranged in a spinneret with a lightweight pump, and melt-spun at 290 to 300 ° C.
- the hole spec of the spinneret is preferably designed to have a back pressure of at least 60 kg / cm 2 or more in order to reduce the variation in single fiber fineness and suppress the occurrence of fuzz during weaving. / Cm 2 is more preferable.
- the discharge holes are arranged on concentric circles, and the number of rows is preferably 2 to 8 rows, more preferably 3 to 6 rows.
- the diameter when the discharge holes arranged on the outermost circumference are concentrically connected is made smaller than the inner diameter of the slow cooling cylinder (heating cylinder) or the annular cooling device, but is preferably 8 to 25 mm, more preferably 10 to 20 mm. Just make it smaller.
- the slow cooling cylinder is installed in order to prevent a decrease in the strength and elongation by slow cooling the yarn immediately after melt spinning.
- the in-cylinder ambient temperature before cooling is extruded in a molten state. Heated to raise the crystallization temperature of the warp yarn, or kept warm using a heat insulating material. Therefore, it is also called a heating cylinder or a heat insulating cylinder. If the position of the outermost hole is too close to the slow cooling tube (heating tube) or the annular cooling device, the yarn before solidification easily comes into contact with the device and the spinning becomes unstable. Insufficient cooling makes it difficult to obtain a polyamide multifilament with high strength and high elongation.
- water vapor it is preferable to apply water vapor to the spun yarn discharged from the base.
- polyamide fiber melt spinning it is common to retain an inert gas, particularly water vapor, immediately below the die, but it has been disclosed that the mechanical properties of industrial polyamide fibers are particularly changed by water vapor. Absent.
- water vapor has the effect of improving both strength and elongation and further reducing fineness spots.
- the water vapor blowout hole may be a known one having a diameter of 0.5 to 5 mm and a length of about 1 to 10 mm.
- the blowing pressure is preferably 100 to 600 Pa, more preferably 200 to 400 Pa. .
- the blowing pressure is a static pressure value, and the static pressure of the steam flowing into the hole may be measured with a static pressure measuring device.
- the yarn to which water vapor has been applied completes cooling and solidification by sequentially passing through a cylindrical slow cooling tube and a cylindrical annular cooling device.
- the inner diameter of the slow cooling cylinder is the same as the inner diameter of the annular cooling device to prevent turbulence of the air flow at the contact point between the slow cooling cylinder and the annular cooling device in the cylinder, preferably 30 to 150 mm, more preferably 50
- a slow cooling cylinder By using a slow cooling cylinder, it is possible to obtain a polyamide fiber having excellent toughness by increasing the heat retaining property of the base and making the deformation of the yarn gentle, but the length of the slow cooling cylinder is in the above range. And the thickness spot of the longitudinal direction of a polyamide fiber becomes more uniform. If the single fiber fineness is less than 1.5 dtex, install an annular cooling device without using a slow cooling cylinder, and start cooling the spun yarn faster, thereby causing unevenness in the longitudinal direction of the yarn.
- cooling air 10 to 50 ° C. so that the polyamide can be sufficiently cooled to the glass transition point.
- a basic configuration of the annular cooling device may be used.
- a cylindrical body is constituted by a porous member having a large number of capillary holes, and the cooling air sent into the cooling cylinder is blown out while being rectified from the cooling air blowing portion in the yarn direction. That's fine.
- Cooling air is blown out from the outer peripheral side of the discharge hole group to the center side.
- it is possible to supply cooling air sufficient to sufficiently cool the polyamide multifilament having a high degree of cooling difficulty as compared with the polyester type.
- the single fiber protrudes more than necessary, or an excessively long cooling facility is required. This is not preferable.
- the length of the cooling cylinder is considerably longer than that of the conventionally proposed annular cooling equipment, and the cooling air blowing length is preferably in the range of 600 to 1200 mm, more preferably 800 to 1000 mm. If it is 600 mm or more, the polyamide multifilament of the present invention can be sufficiently cooled, and good mechanical properties and fluff quality can be obtained. If it is 1200 mm or less, the equipment itself is not too long, which is preferable.
- the pressure difference between the cooling cylinder and the atmospheric pressure is preferably 500 to 1200 Pa, more preferably 600 to 1100 Pa, and still more preferably 800 to 1000 Pa, and the cooling air is preferably blown.
- the differential pressure is a value obtained by measuring the static pressure value of the gas flowing into the cooling cylinder with a static pressure measuring device.
- the fluff quality tends to deteriorate when the cooling air is weakened and the mechanical properties of the multifilament are lowered.
- an annular cooling device is used, the effect of the differential pressure on the physical properties of the polyamide multifilament of the present invention is small. For example, even if it is about 200 Pa, the mechanical properties can be adjusted only by adjusting the draw ratio.
- the cooling wind speed in the longitudinal direction of the apparatus is not uniform, the upper wind speed V U is 10-30 m / min, the lower wind speed V L is 40-80 m / min, V U is smaller than V L , V L / V U is preferably 2 to 3. More preferable ranges of V U and V L are 15 to 25 m / min and 50 to 70 m / min, respectively.
- the toughness of the fibers is improved, and the elongation when the strength is the same changes by about 2 to 5%.
- a donut-shaped porous member at a position where the ratio is to be changed between the outer cylinder of the cooling cylinder and the rectifying cylinder made of the porous member, the position is used as a boundary between the upper and lower parts of the cylinder.
- a means for changing the wind speed above and below by giving a differential pressure, and a means for adjusting the differential pressure between each cylinder and the atmospheric pressure with a two-stage cooling device itself can be considered. There is no problem.
- the obtained cooling yarn can be wound after applying an oil agent by a known method, taking it up by a take-up roll, stretching it, and then winding it.
- an oil agent a known oil agent can be used.
- the adhesion amount is preferably 0.3 to 1.5% by weight, more preferably 0.5 to 1%. 0.0% by weight.
- the spinning speed defined by the rotation speed of the take-up roll is preferably 500 to 1000 m / min, more preferably 700 to 900 m / min.
- the spinning speed is 500 m / min or more, the final production speed is sufficient, and polyamide fibers can be produced at low cost.
- the speed is 1000 m / min or less, yarn breakage and frequent occurrence of fluff can be prevented, which is preferable.
- the spun yarn obtained by these methods can be subjected to drawing, relaxation heat treatment, winding and the like using a known method, for example, multistage drawing heat treatment at 100 to 250 ° C. in 2 to 3 stages. After the application, relaxation heat treatment at 1 to 10% at 50 to 200 ° C. can be performed. Further, the entanglement imparted to the yarn can be appropriately selected according to the type of loom and the weaving speed. However, the method according to the present invention does not require excessive entanglement, and the number of entanglements of 15 to 30 pieces / m. What is necessary is just to change the kind and provision conditions of a confounding provision apparatus so that can be obtained. Even if it greatly falls below 15 pieces / m or exceeds 30 pieces / m, the high-order process passability tends to deteriorate. Similarly, the entanglement strength may be within a known range.
- the single yarn cross-sectional shape of the polyamide fiber of the present invention is not particularly limited, and a circular shape, a non-circular shape such as a Y shape, a V shape, a flat shape, etc., and a hollow portion can also be used.
- the shape is preferably circular.
- a polyamide multifilament suitable for an airbag having a total fineness of 200 to 700 dtex and a single fiber fineness of 1 to 2 dtex which could not be produced by the conventionally proposed method, preferably has a strength of 8 to 9 cN / dtex and an elongation of 20 to With 25% boiling water shrinkage of 4 to 10%, there is no yarn unevenness, and it can be obtained at low cost and with excellent yarn production and fluff quality. That is, by the direct spinning drawing method, the yarn can be efficiently produced using a multi-yarn simultaneous drawing method of 8 yarns or more at a spinning speed of 3000 m / min or more, more preferably 3500 m / min or more.
- the airbag fabric of the present invention is manufactured by the following method.
- warp yarn having the above-mentioned raw material, total fineness, and single fiber fineness is warped and applied to a loom, and a weft yarn is similarly prepared.
- a loom for example, a water jet room, an air jet room, a rapier room, and the like can be used.
- a water jet loom which is relatively easy to weave at high speed.
- the warp yarn tension is preferably adjusted to 75 to 230 cN / piece, more preferably 100 to 200 cN / piece.
- the warp yarn tension is preferably adjusted to 75 to 230 cN / piece, more preferably 100 to 200 cN / piece.
- the warp yarn tension is 75 cN / string or more
- the contact area of the warp yarn and the weft yarn in the base fabric can be increased, and the sliding resistance is improved.
- gap between single fibers becomes large, it becomes a low air permeable base fabric, and is preferable.
- it is 230 cN / piece or less, a warp thread will not fluff and weaving will become favorable.
- Specific methods for adjusting the warp yarn tension within the above range include adjusting the weft feed speed of the loom and adjusting the weft yarn driving speed. Whether the warp yarn tension is actually within the above range during weaving can be determined, for example, by measuring the tension applied to one warp yarn with a tension measuring instrument between the warp beam and the back roller while the loom is running. Can be confirmed.
- the tension of the upper thread and the tension of the lower thread at the warp thread opening for example, by setting the back roller at a higher position, the upper thread traveling line length and the lower thread traveling line length
- There is a way to make a difference for example, by placing a guide roll between the back roller and the reed and shifting the opening fulcrum upward or downward from the warp line with this guide roll, the running line length of one yarn is longer than the other when opening.
- the guide roll is preferably placed at a position of 20 to 50% from the back roller side with respect to the distance between the back roller and the wrinkles.
- the position of the opening fulcrum is preferably 5 cm or more away from the warp line.
- a cam drive system is adopted for the opening device, and the dwell angle on one side of the upper thread / lower thread is 100 degrees or more than the other. There is also a way to take large. The tension increases when the dwell angle is increased.
- a bar temple as the loom temple.
- the bar temple can be beaten while gripping the entire front of the weave, so that the gap between the synthetic fiber filaments can be reduced, and as a result, the low air flow rate and the resistance to misalignment are improved.
- a coated fabric may be formed by applying a resin or the like on the surface of the base fabric or attaching a film as necessary.
- the air bag base fabric of the present invention has improved low air permeability, mechanical properties and anti-displacement properties, as well as compactness at the time of storing an air bag that could not be improved simultaneously with these properties.
- the storage fabric is the same as conventional products, and the airbag fabric has significantly improved breathability and anti-displacement,
- the airbag fabric of the present invention can be suitably used for any airbag such as a driver seat, a passenger seat, a rear seat, and a side airbag.
- Fineness spots Half values were measured using a Worcester tester monitor C (USTER TESTER MONITOR C) manufactured by Zellweger Wooster. Using the INEAT mode, a measurement of 125 m was performed at a yarn speed of 25 m / min.
- Wind speed An anemono master manufactured by KANOMAX was closely attached to the cooling air outlet at each measurement point.
- the measuring points are 0, 50, 100 mm from the upper end of the cylinder constituting the cooling air outlet, and every 100 mm up to the lower end of the cylinder every 100 mm, changing the angle by 90 degrees in the circumferential direction.
- the wind speed average of these four points was taken as the wind speed at each distance from the upper end of the cooling air blowing section.
- the upper side and the lower side are drawn at the changed position, and when the intentional change of the wind speed ratio is not performed, the upper side and the lower side at a position 300 mm from the upper end. drawn to the side, it was determined respectively V U and V L by dividing the interval wind speed integrated by the effective cooling length.
- V U [50 (V 0 + 2V 50 + V 100) +100 (V 100 + V 200) +150 (V 200 + V 300)] / 2/350
- V L [150 (V 400 + V 500 ) +100 (V 500 + V 600 ) +...] / 2 / (L ⁇ 350) Note that... Means that the maximum measurement point is similarly calculated and added after 600 mm.
- the sample was placed on a flat table, and the number of warp yarns and weft yarns in a 2.54 cm section was counted at five different locations, excluding unnatural wrinkles and tension, and the average value was calculated.
- test method B strip method
- five test pieces are sampled, the threads are removed from both sides of the width to make a width of 30 mm, and are gripped with a constant-speed tension type testing machine.
- the test piece was pulled at an interval of 150 mm and a tensile speed of 200 mm / min until it was cut, the maximum load until cutting was measured, and an average value was calculated for each of the vertical and horizontal directions.
- Elongation at break JIS K 6404-3 In accordance with test method B (strip method), five test pieces were taken in each of the vertical and horizontal directions, and the thread was removed from both sides of the width to a width of 30 mm. Attach a wire, pull it with a constant-speed tension type tester at a gripping interval of 150 mm and a tensile speed of 200 mm / min until the specimen is cut, read the distance between the marked lines when cutting, and break according to the following formula The elongation was calculated, and the average value was calculated for each of the vertical and horizontal directions.
- E [(L-100) / 100] ⁇ 100
- E elongation at break (%)
- L distance between marked lines at the time of cutting (mm).
- test method B single tongue method
- test specimens with a long side of 200 mm and a short side of 76 mm were taken on the vertical and horizontal sides, respectively, and 5 specimens were collected respectively, and the test piece was perpendicular to the center of the short side.
- a 75 mm incision was made, and the specimen was torn with a constant speed tension type tester at a grip interval of 75 mm and a tensile speed of 200 mm / min until the specimen was pulled, and the tear load at that time was measured.
- From the obtained chart recording line of the tearing load three points were selected from the maximum points excluding the first peak in descending order, and the average value was taken. Finally, an average value was calculated for each of the vertical and horizontal directions.
- Aeration rate According to JIS L 1096: 1999 8.27.1 A method (Fragile type method), the aeration rate when tested at a test differential pressure of 19.6 kPa was measured. Samples of about 20cm x 20cm are collected from 5 different locations of the sample, attached to one end of a cylinder with a diameter of 100mm, fixed so that there is no air leakage from the mounting location, and a test differential pressure using a regulator. It adjusted to 19.6 kPa, the air quantity which passes a test piece at that time was measured with the flowmeter, and the average value about five test pieces was computed.
- the slip resistance force in the warp direction is measured by measuring the maximum load when a pin is stabbed along the weft thread and the weft thread is moved in the warp direction with that pin.
- the maximum load when the pin is stabbed along and the warp yarn is moved in the horizontal direction with the pin is measured.
- Examples 1 to 11 A nylon 66 chip obtained by liquid phase polymerization was mixed with a 5 wt% aqueous solution of copper acetate as an antioxidant and adsorbed by 68 ppm as copper with respect to the polymer weight. Next, a 50 wt% aqueous solution of potassium iodide and a 20 wt% aqueous solution of potassium bromide were added and adsorbed to 100 parts by weight of the polymer chip to 0.1 parts by weight as potassium, respectively, and a batch type solid state polymerization apparatus was used. Thus, solid phase polymerization was performed to obtain nylon 66 pellets having a relative viscosity of sulfuric acid of 3.8.
- the obtained nylon 66 pellets are supplied to an extruder, and the discharge amount is adjusted so as to obtain two yarns having a total fineness of Tables 1 and 2 by a metering pump and arranged in a spinneret, and melt spinning at 295 ° C. did.
- the relative viscosity of sulfuric acid is a value obtained by dissolving 2.5 g of a sample in 25 cc of 96% concentrated sulfuric acid and using an Ostwald viscometer at a constant temperature in a thermostatic bath at 25 ° C.
- Each spinneret has a number capable of obtaining two yarns having the number of single fibers shown in Tables 1 and 2, that is, discharge holes twice the number of single fibers shown in Tables 1 and 2 have a diameter of 0.22 mm.
- the diameter when the outermost discharge hole groups are concentrically connected is 4 mm smaller than the inner diameter of the heating cylinder and the cooling cylinder.
- water vapor heated to 260 ° C. from a circular water vapor blowing device having 12 holes having a diameter of 2 mm and a depth of 4 mm at regular intervals was applied to the yarn discharge surface at the pressures shown in Tables 1 and 2. Was blown in an oblique direction of 60 ° C. from a position of 50 mm below.
- a slow cooling cylinder having the length of Table 1 and Table 2 heated to 300 ° C. is provided immediately below the base, and a cylindrical annular cooling device having the cooling air blowing length of Table 1 and Table 2 is used.
- the cooling air was pressurized and blown so that the differential pressure between the inside of the cooling cylinder and the atmospheric pressure became the values shown in Tables 1 and 2, and the spun yarn was cooled and solidified.
- “Fujibon” manufactured by Fuji Filter which was formed into a cylinder by spirally winding a phenolic resin-impregnated cellulose ribbon having a thickness of 4.6 mm and a filtration accuracy of 40 ⁇ m as the cylinder constituting the cooling air blowing part of the cooling cylinder. Using.
- a punching plate having a donut shape and an aperture ratio of 22.7% was arranged at a position 350 mm from the upper end of the cooling air blowing portion of the cooling cylinder so as to change the speed of the cooling air in the upper and lower sides of the cylinder.
- a non-aqueous oil agent having a smoothing agent or the like was applied to the cooled and solidified yarn, and the yarn was wound around a spinning take-up roller to take up the spun yarn. Subsequently, the yarn was continuously supplied to the drawing / heat treatment zone, and nylon 66 fibers were produced by a direct spinning drawing method.
- the rotation speed of the drawing roller having the highest rotation speed (hereinafter referred to as the drawing speed) is set to a constant speed of 3600 m / min, and the overall drawing ratios represented by the take-off speed and the drawing speed ratio are shown in Tables 1 and 2.
- the rotation speed of the take-up roller was adjusted so as to be a value.
- the taken-up yarn is stretched by 5% between the take-up roller and the yarn feeding roller, and then the rotation speed ratio between the yarn feeding roller and the first drawing roller is 2 so that the rotational speed ratio is 2.
- the second stage of stretching was performed between the first stretching roller and the first stretching roller.
- a 6% relaxation heat treatment was performed between the second stretching roller and the relaxation roller, the yarn was entangled with the entanglement imparting device, and then wound with a winder.
- the surface temperature of each roller was set so that the take-up roller was normal temperature, the yarn feeding roller was 40 ° C., the first stretching roller was 140 ° C., the second stretching roller was 230 ° C., and the relaxation roller was 150 ° C.
- the application amount of the non-aqueous oil agent was adjusted so that the amount of oil adhering to the yarn became 1.0% by weight.
- the entanglement process was performed by injecting high-pressure air from the direction perpendicular to the running yarn in the entanglement imparting device.
- a guide for regulating the running yarn was provided before and after the entanglement imparting device, and the pressure of the air to be injected was constant at 0.35 MPa.
- Tables 1 and 2 show the fiber manufacturing conditions including the upper and lower average wind speed measurements in the cooling cylinder and the properties of the obtained nylon 66 fibers.
- Table 1 and Table 2 also show the results obtained by rewinding 50 kg of nylon 66 fibers produced using the above method at a speed of 500 m / min and examining the fluff present in the fiber package using a laser type fluff detector. Show.
- Nylon 66 fibers were produced in the same manner as in Example 1 except for the production conditions shown in Table 2.
- Table 2 shows the obtained fiber characteristics and fuzz evaluation results.
- Reference Examples 1 to 5 Except for the number of discharge holes of the spinneret, the same spinning equipment as in Comparative Example 1 was used, Reference Example 1 had a stretching speed of 3200 m / min, Reference Examples 2 to 5 had a stretching speed of 3600 m / min, and nylon 66 fibers under the conditions shown in Table 3 Manufactured.
- Example 13 The nylon 66 fiber of Example 1 was used as warp and weft, and the raw machine density of the warp yarn was 62.0 pieces / 2.54 cm, and the raw machine density of the warp yarn was 63.0 pieces / 2.54 cm without being twisted. Weaving the base fabric.
- the loom uses a water jet loom, a bar temple is installed between the hammering section and the friction roller to grip the base fabric, and no guide roll is arranged between the back roller and the scissors. .
- Example 15 Nylon 66 fiber of Example 8 was used as warp and weft, and the raw machinery density of warp yarn was 52.0 / 2.54 cm, and the raw machinery density of weft yarn was 53.5 / 2.54 cm with no twist.
- the loom uses a water jet loom, a bar temple is installed between the hammering section and the friction roller to grip the base fabric, and no guide roll is arranged between the back roller and the scissors. .
- the warp yarn tension during weaving was adjusted to 180 cN / line
- the upper thread tension when the loom was stopped was adjusted to 180 cN / line
- the lower thread tension was adjusted to 180 cN / line
- the loom rotation speed was 500 rpm. did.
- Table 4 shows the characteristics of the obtained airbag fabric. Since the obtained base fabric for an air bag exhibited an unexpectedly high value for slip-off resistance, the anti-missing property was improved. Furthermore, it had low air permeability and compactness when stored.
- Table 5 shows the characteristics of the obtained airbag fabric.
- the obtained airbag fabric was significantly inferior to the fabric of Example 14 in terms of sliding resistance, low air permeability, and compactness during storage.
- Table 6 shows the characteristics of the obtained airbag fabric.
- the obtained airbag fabric was significantly inferior to the fabric of Example 16 in terms of sliding resistance, low air permeability, and compactness during storage.
- the airbag base fabric according to the present invention is composed of unconventional high-strength airbag yarns having a single yarn fineness, and the sliding resistance required for the airbag fabric is greatly improved. It also has low air permeability and improved compactness during storage. Therefore, the airbag fabric of the present invention can be suitably used particularly for a driver seat, a passenger seat, a side airbag for side collision, and the like, but the application range is not limited thereto.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Air Bags (AREA)
- Woven Fabrics (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
前記基布のタテ方向とヨコ方向の滑脱抵抗力がともに500~1000Nであること、
試験差圧19.6kPaで測定したときの通気量が0.5L/cm2/min以下であること、
通気量AP(L/cm2/min)とカバーファクターCFとの積AP×CFが1100L/cm2/min以下であること、
前記基布のタテ糸のカバーファクターCFwがヨコ糸のカバーファクターCFfより50~200小さいこと、および
パッカビリティーが1500以下であることがいずれも好ましい条件である。
総繊度が200~700dtex、単繊維繊度が1~2dtex、強度が7~10cN/dtex、伸度が20~30%であるポリアミドマルチフィラメントから構成されていること、
硫酸相対粘度3~4のポリアミドからなり、ポリアミドが、ポリヘキサメチレンアジパミドであること、
繊度斑が0.5~1.5%であること、
が好ましい条件であり、その製造方法として、
ポリアミドを溶融紡糸し、環状冷却装置を用いて冷却してから延伸すること、
溶融紡糸により紡糸口金から押し出された繊維に水蒸気を付与した後、徐冷筒を通過させること、
徐冷筒の長さが30~150mmであり、環状冷却装置の冷却風吹き出し長さが600~1200mmであること、
また、冷却筒内と大気圧との差圧が500~1200Paとなるように加圧して冷却風が送風される環状冷却装置を用いていること、および
装置長手方向に対する冷却風の風速が不均一であり、上部側風速VUが下部側風速VLより小さく、前記VL/VUが2~3、VUが10~30m/分、VLが40~80m/分である環状冷却装置を用いていること、
水蒸気の吹出し圧力が100~600Paであることが、より好ましい条件であり、これらの条件を適用することによってさらに優れた効果を期待することができる。
CFw=(Dw×0.9)1/2×Nw
CFf=(Df×0.9)1/2×Nf
また、糸条に付与する交絡は織機の種類や製織速度にあわせ適宜選択することができるが、本発明による方法であれば過度に交絡を施す必要はなく、15~30個/mの交絡数が得られるように、交絡付与装置の種類や付与条件を変更すればよい。15個/mを大きく下回っても30個/mを上回っても、高次工程通過性は悪化する傾向となる。同様に交絡の強度も公知の範囲のものを用いればよい。
まず、前記した素材および総繊度、単繊維繊度を有するタテ糸を整経して織機にかけ、同様にヨコ糸の準備をする。かかる織機としては例えば、ウォータージェットルーム、エアージェットルームおよびレピアルームなどが使用可能である。中でも生産性を高めるためには、高速製織が比較的容易なウォータージェットルームを用いるのが好ましい。
沸騰水収縮率=[(L0-L1)/L0]×100(%)
VU=[50(V0+2V50+V100)+100(V100+V200)+150(V200+V300)]/2/350
VL=[150(V400+V500)+100(V500+V600)+・・・]/2/(L-350)
なお、・・・は600mm以降で最大測定点まで同様に計算して足しあわせることを意味する。
JIS L 1096:1999 8.5に従って、試料の異なる5か所について厚さ測定機を用いて、23.5kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
JIS L 1096:1999 8.6.1に基づき測定した。
タテ糸およびヨコ糸の総繊度をそれぞれDw(dtex)、Df(dtex)、タテ糸およびヨコ糸の基布密度をそれぞれNw(本/2.54cm)、Nf(本/2.54cm)とし、下記の方法で算出した。
タテ糸カバーファクター:CFw=(Dw×0.9)1/2×Nw
ヨコ糸カバーファクター:CFf=(Df×0.9)1/2×Nf
総カバーファクター :CF=CFw+CFf
JIS L 1096:1999 8.4.2に従って、20cm×20cmの試験片を3枚採取し、それぞれの質量(g)を量り、その平均値を1m2当たりの質量(g/m2)で表した。
JIS K 6404-3 6.試験方法B(ストリップ法)に従って、タテ方向及びヨコ方向のそれぞれについて、試験片を5枚ずつ採取し、幅の両側から糸を取り除いて幅30mmとし、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るまでの最大荷重を測定し、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
JIS K 6404-3 6.試験方法B(ストリップ法)に従って、タテ方向及びヨコ方向のそれぞれについて、試験片を5枚ずつ採取し、幅の両側から糸を取り除いて幅30mmとし、これら試験片の中央部に100mm間隔の標線を付け、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るときの標線間の距離を読み取り、下記式によって、破断伸度を算出し、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
E=[(L-100)/100]×100
ここに、E:破断伸度(%)、L:切断時の標線間の距離(mm)。
JIS K 6404-4 6.試験方法B(シングルタング法)に準じ、長辺200mm、短辺76mmの試験片をタテ、ヨコ、両方にそれぞれ5個の試験片を採取し、試験片の短辺の中央に辺と直角に75mmの切込みを入れ、定速緊張型の試験機にてつかみ間隔75mm、引張速度200mm/minで試験片が引ききるまで引裂き、その時の引裂き荷重を測定した。得られた引裂き荷重のチャート記録線より、最初のピークを除いた極大点の中から大きい順に3点選び、その平均値をとった。最後にタテ方向及びヨコ方向のそれぞれについて、平均値を算出した。
JIS L 1096:1999 8.27.1 A法(フラジール形法)に準じて、試験差圧19.6kPaで試験したときの通気量を測定した。試料の異なる5か所から約20cm×20cmの試験片を採取し、口径100mmの円筒の一端に試験片を取り付け、取り付け箇所から空気の漏れが無いように固定し、レギュレーターを用いて試験差圧19.6kPaに調整し、そのときに試験片を通過する空気量を流量計で計測し、5枚の試験片についての平均値を算出した。
ASTM D6478-02に従って測定した。
ASTM D6479-02に従って、基布サンプルの端から5mmの位置に目印をつけ、該位置に正確に針を刺し、測定した。
金井工機(株)製チェックマスター(登録商標)(形式:CM-200FR)を用い、織機稼動中に経糸ビームとバックローラーの中央部分において、タテ糸一本当たりに加わる張力を測定した。
タテ糸が開口した状態で織機を停止させ、バックローラーと綜絞との間(バックローラーと綜絖との間にガイドロールを配している場合には、ガイドロールと綜絞との間)において、上側にあるタテ糸一本あたりに加わる張力を上記(17)で用いたのと同様の張力測定機にて、上糸の張力として測定した。また同様にして、下側にあるタテ糸一本あたりに加わる張力を下糸の張力として測定した。
液相重合で得られたナイロン66チップに酸化防止剤として酢酸銅の5重量%水溶液を添加して混合し、ポリマ重量に対し、銅として68ppm添加吸着させた。次に沃化カリウムの50重量%水溶液および臭化カリウムの20重量%水溶液をポリマチップ100重量部に対してそれぞれカリウムとして0.1重量部となるよう添加吸着させ、バッチ式固相重合装置を用いて固相重合させて硫酸相対粘度が3.8のナイロン66ペレットを得た。得られたナイロン66ペレットをエクストルーダーへ供給し、計量ポンプにより総繊度が表1および表2の糸条を2本得るように吐出量を調節して紡糸口金に配し、295℃で溶融紡糸した。ここで、硫酸相対粘度は試料2.5gを96%濃硫酸25ccに溶解し、25℃恒温槽の一定温度下において、オストワルド粘度計を用いて測定した値である。各紡糸口金は、表1および表2に示す単繊維数の糸条を2糸条得ることのできる数、即ち表1および表2に示す単繊維数の2倍の吐出孔が直径0.22mmで4つの同心円上に配置され、最外周の吐出孔群を同心円状に結んだときの直径は、加熱筒および冷却筒の内径より14mm小さいものを用いた。実施例6~11では、直径2mmで深度が4mmの孔を均等間隔に12個有する円状の水蒸気吹き出し装置から、260℃に加熱した水蒸気を、表1および表2の圧力で糸条吐出面の下方50mmの位置から斜め60℃方向に吹き出させた。さらに口金直下には300℃に加熱した表1および表2の長さの徐冷筒を設け、表1および表2の冷却風吹出し長さを有する円筒状の環状冷却装置を用いて、20℃の冷却風を冷却筒内と大気圧との差圧が表1および表2の値となるように加圧して送風し、紡出糸条を冷却固化せしめた。冷却筒の冷却風吹出部を構成する筒体としては、厚さ4.6mmで濾過精度40μmの孔を有するフェノール樹脂含浸セルロースリボンを螺旋状に巻き付け筒状に成形した富士フィルター製“フジボン”を用いた。また、冷却筒の冷却風吹出部の上端から350mmの位置に、筒内上下での冷却風の速度を変更させるようにドーナツ状で開口率22.7%のパンチングプレートを配置した。冷却固化された糸条には、次に平滑剤等を有する非水系油剤を付与し、紡糸引き取りローラに捲回し、紡出糸条を引き取った。引き続き、連続して糸条を延伸・熱処理ゾーンに供給し、直接紡糸延伸法によりナイロン66繊維を製造した。この際、最も回転速度の大きい延伸ローラの回転速度(以下、延伸速度)を3600m/分の一定速度とし、引取速度と延伸速度比で表される総合延伸倍率が表1および表2に示される値となるように引き取りローラの回転速度を調節した。
冷却筒内の上部側および下部側平均風速測定値を含む繊維製造条件と得られたナイロン66繊維の特性を表1および表2に示す。
1500mmの長さを有する横吹出し冷却装置から30m/分の冷却風を均一に吹き出させることによって、総繊度235dtexで単繊維数が136本の糸条を延伸速度が3000m/分で2糸条得ることができるようにしまた紡糸口金は、吐出孔間隔の最小値が7.5mmとなるように配列したものを用いて、表2の条件でナイロン66繊維の製造を試みた以外は実施例1と同様にして行った。
表2に示す製造条件以外は、実施例1と同様にしてナイロン66繊維を製造した。
冷却筒の冷却風吹出し長さを500mmとし、機械的な上下風速比率変更を行うことなく、表2に示す製造条件とした以外は、実施例1と同様にしてナイロン66繊維を製造した。この際、1つの口金から紡出される2糸条を引取ロール上で合糸することで1本の糸条として、一旦巻き取ることなく延伸・弛緩熱処理を行い、巻取機で巻き取った。
徐冷筒を用いず、表2に示す製造条件とした以外は、実施例1と同様にしてナイロン66繊維を製造した。
紡糸口金の吐出孔数以外は比較例1と同じ製糸設備を使用し、参考例1は延伸速度3200m/分、参考例2~5は延伸速度3600m/分で、表3の条件でナイロン66繊維を製造した。
実施例1のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が56本/2.54cm、ヨコ糸の生機密度が63本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間に、バックローラーから40cmの位置で、ワープラインから7cmタテ糸を持ち上げるようにガイドロールを取り付けた構成とした。
製織条件としては、製織時のタテ糸張力を147cN/本、織機停止時の上糸の張力を118cN/本、下糸の張力を167cN/本となるように調整し、織機回転数は500rpmとした。
実施例1のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が62.0本/2.54cm、ヨコ糸の生機密度が63.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を150cN/本、織機停止時の上糸の張力を150cN/本、下糸の張力を150cN/本となるように調整し、織機回転数は500rpmとした。
実施例1のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が58.0本/2.54cm、ヨコ糸の生機密度が59.5本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を150cN/本、織機停止時の上糸の張力を150cN/本、下糸の張力を150cN/本となるように調整し、織機回転数は500rpmとした。
実施例8のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が52.0本/2.54cm、ヨコ糸の生機密度が53.5本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を180cN/本、織機停止時の上糸の張力を180cN/本、下糸の張力を180cN/本となるように調整し、織機回転数は500rpmとした。
実施例8のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が48.0本/2.54cm、ヨコ糸の生機密度が48.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を180cN/本、織機停止時の上糸の張力を180cN/本、下糸の張力を180cN/本となるように調整し、織機回転数は500rpmとした。
実施例2のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が71.5本/2.54cm、ヨコ糸の生機密度が71.5本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはリングテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を80cN/本、織機停止時の上糸の張力を80cN/本、下糸の張力を80cN/本となるように調整し、織機回転数は500rpmとした。
参考例1のナイロン66繊維をタテ糸およびヨコ糸として用い、表5に示す条件とした以外は実施例12と同様にしてエアバッグ用基布を製造した。
参考例2のナイロン66繊維をタテ糸およびヨコ糸として用い、織機としてウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはリングテンプルを設置して基布を把持する構成とし、ガイドロールを取り付けず、表5に示す条件とした以外は実施例12と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表5に示した。得られたエアバッグ用基布は、実施例12の基布に比べ、抗目ズレ性、低通気性、収納時のコンパクト性のいずれも大きく劣るものであった。
参考例1のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が62本/2.54cm、ヨコ糸の生機密度が61.5本/2.54cmとした以外は実施例13と同様にしてエアバッグ用基布を製造した。
参考例2のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が62.5本/2.54cm、ヨコ糸の生機密度が62.5本/2.54cmとした以外は実施例13と同様にしてエアバッグ用基布を製造した。
参考例2のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が58.5本/2.54cm、ヨコ糸の生機密度が58.5本/2.54cmとした以外は実施例14と同様にしてエアバッグ用基布を製造した。
参考例3のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が52.0本/2.54cm、ヨコ糸の生機密度が52.5本/2.54cmとした以外は実施例15と同様にしてエアバッグ用基布を製造した。
参考例3のナイロン66繊維をタテ糸およびヨコ糸として用いた以外は実施例16と同様にしてエアバッグ用基布を製造した。
参考例4のナイロン66繊維をタテ糸およびヨコ糸として用いた以外は実施例17と同様にしてエアバッグ用基布を製造した。
参考例5のナイロン66繊維をタテ糸およびヨコ糸として用いた以外は実施例17と同様にしてエアバッグ用基布を製造した。
Claims (15)
- 総繊度が200~700dtex、単繊維繊度が1~2dtexであるポリアミドマルチフィラメントをタテ糸およびヨコ糸として構成された基布であり、該基布のカバーファクター(CF)が1800~2300であり、かつ、タテ方向の滑脱抵抗力ECwと単繊維繊度Mtwとの比ECw/Mtwとヨコ方向の滑脱抵抗力ECfと単繊維繊度Mtfとの比ECf/Mtfがともに250~1000N/dtexであることを特徴とするエアバッグ用基布。
- 該基布のタテ方向とヨコ方向の滑脱抵抗力がともに500~1000Nであることを特徴とする請求項1記載のエアバッグ用基布。
- 試験差圧19.6kPaで測定したときの通気量(AP)が0.5L/cm2/min以下であることを特徴とする請求項1または2記載のエアバッグ用基布。
- 通気量AP(L/cm2/min)と基布のカバーファクターCFとの積AP×CFが1100L/cm2/min以下であることを特徴とする請求項1~3のいずれか1項記載のエアバッグ用基布。
- タテ糸のカバーファクターCFwがヨコ糸のカバーファクターCFfより、50~200小さいことを特徴とする請求項1~4のいずれか1項記載のエアバッグ用基布。
- パッカビリティーが1500以下であることを特徴とする請求項1~5のいずれか1項記載のエアバッグ用基布。
- 総繊度が200~700dtex、単繊維繊度が1~2dtex、強度が7~10cN/dtex、伸度が20~30%であるポリアミドマルチフィラメントから構成されていることを特徴とするエアバッグ用原糸。
- ポリアミドがポリヘキサメチレンアジパミドであって、かつ硫酸相対粘度が3~4であることを特徴とする請求項7記載のエアバッグ用原糸。
- 繊度斑が0.5~1.5%であることを特徴とする請求項7または8記載のエアバッグ用原糸。
- 請求項7~9のいずれか1項記載のエアバッグ用原糸の製造方法であって、ポリアミドを溶融紡糸し、環状冷却装置を用いて冷却してから延伸することを特徴とするエアバッグ用原糸の製造方法。
- 溶融紡糸により紡糸口金から押し出された繊維に水蒸気を付与した後、徐冷筒を通過させることを特徴とする請求項10記載のエアバッグ用原糸の製造方法。
- 徐冷筒の長さが30~150mmであり、環状冷却装置の冷却風吹出し長さが600~1200mmであることを特徴とする請求項11記載のエアバッグ用原糸の製造方法。
- 環状冷却装置の冷却筒内と大気圧との差圧が500~1200Paであることを特徴とする請求項10~12のいずれか1項記載のエアバッグ用原糸の製造方法。
- 環状冷却装置長手方向に対する冷却風の風速が不均一であり、上部側風速VUが下部側風速VLより小さく、VL/VUが2~3であり、VUが10~30m/分、VLが40~80m/分であることを特徴とする請求項10~13のいずれか1項記載のエアバッグ用原糸の製造方法。
- 水蒸気の吹出し圧力が100~600Paであることを特徴とする請求項11~14のいずれか1項記載のエアバッグ用原糸の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09720462.2A EP2264235B1 (en) | 2008-03-10 | 2009-01-20 | Base cloth for air bag |
EP19166560.3A EP3524718B1 (en) | 2008-03-10 | 2009-01-20 | Raw yarn for air bag, and method for produce of the raw yarn |
CN200980116638.9A CN102016143B (zh) | 2008-03-10 | 2009-01-20 | 气囊用基布以及气囊用原纱和其制造方法 |
BRPI0910390-2A BRPI0910390B1 (pt) | 2008-03-10 | 2009-01-20 | Tecido de bolsa de ar |
US12/920,945 US8261779B2 (en) | 2008-03-10 | 2009-01-20 | Base cloth for air bag, raw yarn for air bag, and method for producing the raw yarn |
US13/477,178 US20120231273A1 (en) | 2008-03-10 | 2012-05-22 | Raw yarn for air bag and method for producing the raw yarn |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-059831 | 2008-03-10 | ||
JP2008059831 | 2008-03-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/477,178 Division US20120231273A1 (en) | 2008-03-10 | 2012-05-22 | Raw yarn for air bag and method for producing the raw yarn |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113325A1 true WO2009113325A1 (ja) | 2009-09-17 |
Family
ID=41064998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050713 WO2009113325A1 (ja) | 2008-03-10 | 2009-01-20 | エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US8261779B2 (ja) |
EP (2) | EP3524718B1 (ja) |
JP (2) | JP4492750B2 (ja) |
CN (1) | CN102016143B (ja) |
BR (1) | BRPI0910390B1 (ja) |
WO (1) | WO2009113325A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013189744A (ja) * | 2013-07-05 | 2013-09-26 | Toray Ind Inc | エアバッグ用原糸、エアバッグ用基布およびエアバッグ用原糸の製造方法 |
JPWO2013084326A1 (ja) * | 2011-12-07 | 2015-04-27 | 旭化成せんい株式会社 | ポリアミド繊維およびエアバッグ用織物 |
WO2017010458A1 (ja) * | 2015-07-13 | 2017-01-19 | 東レ株式会社 | エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法 |
JP2018508663A (ja) * | 2015-02-23 | 2018-03-29 | ディーエスエム アイピー アセッツ ビー.ブイ. | 高強度ポリアミドヤーン |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009113325A1 (ja) * | 2008-03-10 | 2009-09-17 | 東レ株式会社 | エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 |
JP5359714B2 (ja) * | 2009-09-09 | 2013-12-04 | 東レ株式会社 | エアバッグ用基布 |
JP5646860B2 (ja) * | 2010-02-18 | 2014-12-24 | 旭化成せんい株式会社 | ポリアミド繊維およびエアバッグ用織物 |
JP6013710B2 (ja) * | 2010-08-02 | 2016-10-25 | 旭化成株式会社 | エアバッグ用織物およびエアバッグ |
CN102650087B (zh) * | 2011-02-24 | 2015-01-28 | 东丽纤维研究所(中国)有限公司 | 一种安全气囊用织物及其生产方法 |
JP5093374B2 (ja) * | 2011-03-10 | 2012-12-12 | 東洋紡株式会社 | エアバッグ |
EP2796600B8 (en) * | 2011-12-21 | 2019-07-10 | Kolon Industries, Inc. | Airbag for vehicle including an aramid fabric |
JP5440967B1 (ja) * | 2012-05-11 | 2014-03-12 | 東洋紡株式会社 | ノンコートエアバッグ用織物 |
MX349384B (es) | 2012-12-17 | 2017-07-26 | Asahi Kasei Kk * | Tela para bolsa de aire. |
WO2015022954A1 (ja) | 2013-08-13 | 2015-02-19 | 旭化成せんい株式会社 | 織物 |
JP2015110857A (ja) * | 2013-11-11 | 2015-06-18 | 旭化成せんい株式会社 | エアバッグ基布 |
JP6405849B2 (ja) * | 2014-09-30 | 2018-10-17 | 豊田合成株式会社 | 縫製エアバッグ及びその製造方法 |
JP6497950B2 (ja) * | 2015-02-02 | 2019-04-10 | セーレン株式会社 | 土壌被覆シート |
KR20170120652A (ko) * | 2015-02-23 | 2017-10-31 | 디에스엠 아이피 어셋츠 비.브이. | 고강도 폴리아마이드 얀 |
WO2016158858A1 (ja) * | 2015-03-30 | 2016-10-06 | 東レ株式会社 | エアバッグ用コート基布、エアバッグおよびエアバッグ用コート基布の製造方法 |
JP6699381B2 (ja) * | 2016-06-14 | 2020-05-27 | 東レ株式会社 | ポリアミドマルチフィラメント、その製造方法、エアバッグ用基布およびエアバッグ |
CN106149138A (zh) * | 2016-08-26 | 2016-11-23 | 山东合信科技股份有限公司 | 一种耐热性好的环锭纺弹力纬纱及其生产工艺 |
CN106120001A (zh) * | 2016-08-26 | 2016-11-16 | 山东合信科技股份有限公司 | 一种高强力耐热pa66未拉伸丝及其生产工艺 |
CN106119999A (zh) * | 2016-08-26 | 2016-11-16 | 山东合信科技股份有限公司 | 一种用于高支弹力纬纱纱芯的pa66未拉伸丝及其生产工艺 |
CN106120000A (zh) * | 2016-08-26 | 2016-11-16 | 山东合信科技股份有限公司 | 一种耐热性好的pa66未拉伸丝及其生产工艺 |
CN106120061A (zh) * | 2016-08-26 | 2016-11-16 | 山东合信科技股份有限公司 | 一种环锭纺高强力弹力纬纱及其生产工艺 |
CN110997995B (zh) * | 2017-08-21 | 2022-05-31 | 东洋纺株式会社 | 安全气囊用织物、安全气囊用涂层织物和使用其的安全气囊 |
EP4119705A1 (en) * | 2020-03-13 | 2023-01-18 | Toray Industries, Inc. | Polyamide multifilament |
US20230144245A1 (en) * | 2020-03-31 | 2023-05-11 | Seiren Co., Ltd. | Non-coated air bag fabric and air bag |
WO2021256510A1 (ja) * | 2020-06-16 | 2021-12-23 | 旭化成株式会社 | エアバッグ用当て布 |
GB202202878D0 (en) * | 2022-01-28 | 2022-04-13 | Inv Performance Mat Llc | Airbag fabrics with improved seam performance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306728A (ja) * | 1993-04-21 | 1994-11-01 | Toray Ind Inc | エアバッグ用基布 |
WO1999022967A1 (fr) | 1997-10-31 | 1999-05-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Airbag |
WO2001009416A1 (fr) | 1999-08-02 | 2001-02-08 | Asahi Kasei Kabushiki Kaisha | Textile de base pour coussin gonflable de securite |
JP2002266161A (ja) * | 2001-02-28 | 2002-09-18 | Toray Ind Inc | エアバッグ用原糸およびエアバッグ用布帛 |
JP2006016707A (ja) | 2004-06-30 | 2006-01-19 | Toray Ind Inc | エアバッグ用基布およびエアバッグならびにその製造方法 |
JP2007247118A (ja) * | 2006-03-20 | 2007-09-27 | Toray Ind Inc | 合成繊維の溶融紡糸装置および合成繊維の製造方法 |
JP2008025089A (ja) | 2006-06-23 | 2008-02-07 | Toray Ind Inc | エアバッグ用織物、エアバッグおよびエアバッグ用織物の製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991249A (en) * | 1975-01-17 | 1976-11-09 | Toray Industries, Inc. | Fabric material for producing woven air bags utilized for protecting riders in vehicles |
CA2141768A1 (en) * | 1994-02-07 | 1995-08-08 | Tatsuro Mizuki | High-strength ultra-fine fiber construction, method for producing the same and high-strength conjugate fiber |
DE69625013T2 (de) * | 1995-09-18 | 2003-08-21 | Toray Industries, Inc. | Grundgewebe für Airbags, sein Herstellungsverfahren und dieses Gewebe enthaltender Airbag |
ID23400A (id) * | 1998-04-07 | 2000-04-20 | Toray Industries | Suatu kemas pemintalan leleh dan suatu metoda untuk memproduksi serat-serat sintesis |
JP4172089B2 (ja) * | 1999-05-17 | 2008-10-29 | 東レ株式会社 | ノンコートエアバッグ用基布およびその製造方法 |
JP3850234B2 (ja) * | 2000-06-13 | 2006-11-29 | 旭化成ケミカルズ株式会社 | エアバッグ用基布およびエアバッグ |
TWI230213B (en) * | 2000-08-17 | 2005-04-01 | Toray Industries | Base fabric for non-coated air bags, and fibers for air bags |
JP2002138339A (ja) * | 2000-10-27 | 2002-05-14 | Toray Ind Inc | エアバッグ用基布の製造方法 |
US6832633B2 (en) * | 2001-01-17 | 2004-12-21 | Toyo Boseki Kabushiki Kaisha | High density fabric for air bag and method for manufacturing high density fabric |
JP2003293241A (ja) * | 2002-03-29 | 2003-10-15 | Toray Ind Inc | エアバッグ用基布 |
JP3797486B2 (ja) * | 2003-07-29 | 2006-07-19 | 東洋紡績株式会社 | 織物およびその製造方法 |
CA2450103C (en) * | 2003-10-22 | 2008-09-16 | Hyosung Corporation | Low shrinkage polyamide fiber and uncoated fabric for airbags made of the same |
US7687413B2 (en) * | 2004-08-20 | 2010-03-30 | Invista North America S.A.R.L. | Edgecomb resistance polyester |
CN100567619C (zh) * | 2004-10-19 | 2009-12-09 | 东丽株式会社 | 约束装置用布帛及其制造方法 |
JP4007994B2 (ja) * | 2005-03-10 | 2007-11-14 | ジャパンゴアテックス株式会社 | 繊維製品 |
WO2007118675A1 (de) * | 2006-04-12 | 2007-10-25 | Itg Automotive Safety Textiles Gmbh | Airbaggewebe |
WO2007148791A1 (ja) * | 2006-06-23 | 2007-12-27 | Toray Industries, Inc. | エアバッグ用織物、エアバッグおよびエアバッグ用織物の製造方法 |
JP2008025090A (ja) * | 2006-06-23 | 2008-02-07 | Toray Ind Inc | エアバッグ用織物、エアバッグおよびエアバッグ用織物の製造方法 |
US7985702B2 (en) * | 2007-12-07 | 2011-07-26 | Toyo Boseki Kabushiki Kaisha | Woven fabric for airbag |
KR101492303B1 (ko) * | 2007-12-07 | 2015-02-11 | 도요보 가부시키가이샤 | 에어백용 포백 |
JP2009209497A (ja) * | 2008-03-06 | 2009-09-17 | Toray Ind Inc | エアバッグ用基布 |
WO2009113325A1 (ja) * | 2008-03-10 | 2009-09-17 | 東レ株式会社 | エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 |
JP2009235593A (ja) * | 2008-03-26 | 2009-10-15 | Toray Ind Inc | ノンコートエアバッグ用基布 |
EP2423360B1 (en) * | 2009-04-23 | 2014-05-07 | Kolon Industries Inc. | Polyester fabric for an airbag, and method for manufacturing same |
-
2009
- 2009-01-20 WO PCT/JP2009/050713 patent/WO2009113325A1/ja active Application Filing
- 2009-01-20 JP JP2009009985A patent/JP4492750B2/ja active Active
- 2009-01-20 EP EP19166560.3A patent/EP3524718B1/en active Active
- 2009-01-20 US US12/920,945 patent/US8261779B2/en active Active
- 2009-01-20 CN CN200980116638.9A patent/CN102016143B/zh active Active
- 2009-01-20 BR BRPI0910390-2A patent/BRPI0910390B1/pt not_active IP Right Cessation
- 2009-01-20 EP EP09720462.2A patent/EP2264235B1/en active Active
-
2010
- 2010-02-08 JP JP2010025051A patent/JP4618391B2/ja active Active
-
2012
- 2012-05-22 US US13/477,178 patent/US20120231273A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306728A (ja) * | 1993-04-21 | 1994-11-01 | Toray Ind Inc | エアバッグ用基布 |
WO1999022967A1 (fr) | 1997-10-31 | 1999-05-14 | Asahi Kasei Kogyo Kabushiki Kaisha | Airbag |
WO2001009416A1 (fr) | 1999-08-02 | 2001-02-08 | Asahi Kasei Kabushiki Kaisha | Textile de base pour coussin gonflable de securite |
JP2002266161A (ja) * | 2001-02-28 | 2002-09-18 | Toray Ind Inc | エアバッグ用原糸およびエアバッグ用布帛 |
JP2006016707A (ja) | 2004-06-30 | 2006-01-19 | Toray Ind Inc | エアバッグ用基布およびエアバッグならびにその製造方法 |
JP2007247118A (ja) * | 2006-03-20 | 2007-09-27 | Toray Ind Inc | 合成繊維の溶融紡糸装置および合成繊維の製造方法 |
JP2008025089A (ja) | 2006-06-23 | 2008-02-07 | Toray Ind Inc | エアバッグ用織物、エアバッグおよびエアバッグ用織物の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2264235A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013084326A1 (ja) * | 2011-12-07 | 2015-04-27 | 旭化成せんい株式会社 | ポリアミド繊維およびエアバッグ用織物 |
US9765449B2 (en) | 2011-12-07 | 2017-09-19 | Asahi Kasei Fibers Corporation | Polyamide fiber and airbag fabric |
JP2013189744A (ja) * | 2013-07-05 | 2013-09-26 | Toray Ind Inc | エアバッグ用原糸、エアバッグ用基布およびエアバッグ用原糸の製造方法 |
JP2018508663A (ja) * | 2015-02-23 | 2018-03-29 | ディーエスエム アイピー アセッツ ビー.ブイ. | 高強度ポリアミドヤーン |
WO2017010458A1 (ja) * | 2015-07-13 | 2017-01-19 | 東レ株式会社 | エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法 |
CN107709641A (zh) * | 2015-07-13 | 2018-02-16 | 东丽株式会社 | 安全气囊用基布、安全气囊及安全气囊用基布的制造方法 |
JPWO2017010458A1 (ja) * | 2015-07-13 | 2018-04-19 | 東レ株式会社 | エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法 |
US10286870B2 (en) | 2015-07-13 | 2019-05-14 | Toray Industries, Inc. | Airbag base fabric, airbag and method of manufacturing airbag base fabric |
Also Published As
Publication number | Publication date |
---|---|
US20110036447A1 (en) | 2011-02-17 |
JP4492750B2 (ja) | 2010-06-30 |
BRPI0910390A2 (pt) | 2021-04-13 |
EP2264235A1 (en) | 2010-12-22 |
EP3524718A1 (en) | 2019-08-14 |
BRPI0910390B1 (pt) | 2021-11-16 |
JP2009243030A (ja) | 2009-10-22 |
EP2264235B1 (en) | 2021-06-09 |
EP2264235A4 (en) | 2013-05-29 |
JP2010100988A (ja) | 2010-05-06 |
CN102016143B (zh) | 2014-09-03 |
US8261779B2 (en) | 2012-09-11 |
US20120231273A1 (en) | 2012-09-13 |
CN102016143A (zh) | 2011-04-13 |
EP3524718B1 (en) | 2023-07-12 |
JP4618391B2 (ja) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4492750B2 (ja) | エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 | |
JP5365272B2 (ja) | エアバッグ用織物およびエアバッグ用織物の製造方法 | |
JP5359714B2 (ja) | エアバッグ用基布 | |
EP2752510B1 (en) | Synthetic fiber | |
EP1316633B1 (en) | Base fabric for non-coated air-bags | |
EP2554722B1 (en) | Polyester yarn and method for manufacturing same | |
MX2014005031A (es) | Fibra de poliamida y tela para bolsa de aire. | |
JP2010174390A (ja) | エアバッグ用織物およびエアバッグ用織物の製造方法 | |
JP5646860B2 (ja) | ポリアミド繊維およびエアバッグ用織物 | |
JP5564780B2 (ja) | ノンコートエアバッグ用織物 | |
JP2003055861A (ja) | ノンコートエアバッグ用基布およびエアバッグ用繊維 | |
JP2009242958A (ja) | 極細繊維マルチフィラメントおよびそれを用いた産業資材用繊維製品 | |
JP5741639B2 (ja) | エアバッグ用原糸およびエアバッグ用原糸の製造方法 | |
JP5157346B2 (ja) | シートベルト用ポリエステル繊維 | |
JP2011058132A (ja) | エアバッグ用基布およびその製造方法 | |
JP4770152B2 (ja) | エアバック用原糸パッケージ、それを用いたエアバック用基布およびエアバック用原糸パッケージの製造方法 | |
WO2022039033A1 (ja) | ポリアミドマルチフィラメントおよびその製造方法 | |
JP6699381B2 (ja) | ポリアミドマルチフィラメント、その製造方法、エアバッグ用基布およびエアバッグ | |
JP2008106419A (ja) | シートベルト用ポリエステル繊維の製造方法 | |
JP2011042898A (ja) | エアバッグ用コーティング織物 | |
JP2000264162A (ja) | シートベルト用合成繊維およびシートベルトウェビング |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980116638.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09720462 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009720462 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6313/CHENP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12920945 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0910390 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100910 |