WO2015022954A1 - 織物 - Google Patents
織物 Download PDFInfo
- Publication number
- WO2015022954A1 WO2015022954A1 PCT/JP2014/071273 JP2014071273W WO2015022954A1 WO 2015022954 A1 WO2015022954 A1 WO 2015022954A1 JP 2014071273 W JP2014071273 W JP 2014071273W WO 2015022954 A1 WO2015022954 A1 WO 2015022954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- woven fabric
- yarn
- fabric
- woven
- fabric according
- Prior art date
Links
- 239000002759 woven fabric Substances 0.000 title claims abstract description 81
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 18
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 18
- 239000004744 fabric Substances 0.000 claims description 57
- 238000009941 weaving Methods 0.000 claims description 43
- 230000035699 permeability Effects 0.000 claims description 41
- 239000000835 fiber Substances 0.000 claims description 20
- 239000000470 constituent Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 238000009991 scouring Methods 0.000 claims description 15
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 abstract description 22
- 230000008018 melting Effects 0.000 abstract description 22
- 238000000113 differential scanning calorimetry Methods 0.000 abstract description 6
- 230000000630 rising effect Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 230000032683 aging Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 229920002292 Nylon 6 Polymers 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 230000001629 suppression Effects 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000009958 sewing Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000003878 thermal aging Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920001007 Nylon 4 Polymers 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 230000005722 itchiness Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/02—Inflatable articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/30—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
- D03D15/37—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/44—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
- B60R2021/23504—Inflatable members characterised by their material characterised by material
- B60R2021/23509—Fabric
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/12—Vehicles
- D10B2505/124—Air bags
Definitions
- the present invention relates to a fabric suitable for use as an airbag used as a bag body of an airbag device that is an occupant protection device when a vehicle collides.
- the present invention relates to a woven fabric excellent in thermal stability suitable for an airbag use.
- airbags on vehicles are advancing as a device for mitigating the impact on human bodies in the event of a vehicle or other vehicle collision.
- airbags that inflate with gas and absorb and mitigate impact on the human body in the event of a collision Is being put into practical use for occupant protection.
- an airbag that is installed so as to be inflated outside the passenger compartment of a vehicle has been proposed for pedestrian protection.
- Patent Document 1 in an airbag fabric having a resin coating, the melting point by a differential scanning calorimeter is increased by applying a specific resin composition, so that damage at the time of high-temperature deployment of the airbag is avoided. It is shown.
- a method of providing a resin film on the fabric is effective, but a lightweight fabric without a resin film is advantageous for higher speed deployment.
- the present invention is intended to improve the thermal stability of a lightweight fabric without an elastomer or resin coating or impregnation, which is useful for airbag applications.
- the present inventor has found that a fabric excellent in thermal stability can be obtained by increasing the mutual binding force between the woven yarns of the fabric and increasing the melting behavior of the fabric by a differential scanning calorimeter to a higher temperature. It came to make. That is, the present invention provides the following inventions.
- the woven fabric of the present invention is a lightweight woven fabric without a resin coating, and when used in an airbag, it has excellent suppression of high-pressure air permeability after heat treatment, high damage avoidance at high temperature and high pressure deployment, etc. Has thermal stability.
- the woven fabric of the present invention is made of synthetic fibers, and the synthetic fibers constituting the woven fabric are fibers made of a thermoplastic resin, and can be selected from, for example, polyamide fibers and polyester fibers.
- Polyamide fibers constituting the woven fabric include polyamide 6, polyamide 6 ⁇ 6, polyamide 11, polyamide 12, polyamide 6 ⁇ 10, polyamide 6 ⁇ 12, polyamide 4 ⁇ 6, copolymers thereof, and mixtures thereof.
- the polyamide 6/6 fibers are preferably fibers mainly composed of polyhexamethylene adipamide resin.
- the polyhexamethylene adipamide resin refers to a polyamide resin having a melting point of 250 ° C.
- the resin may be a fiber made of a resin obtained by copolymerizing or blending polyhexamethylene adipamide with polyamide 6, polyamide 6 ⁇ I, polyamide 6 ⁇ 10, polyamide 6 ⁇ T or the like. .
- Such synthetic fibers may contain various additives usually used for improving the productivity or properties in the production process and processing process of the raw yarn.
- a heat stabilizer, an antioxidant, a light stabilizer, a smoothing agent, an antistatic agent, a plasticizer, a flame retardant, and the like can be contained.
- the synthetic fiber preferably has 100 or less fluffs per 10 8 m so that high-density weaving is possible without sizing during aging. Further, in order to obtain multifilament convergence, the air entanglement is preferably 5 to 30 times / m.
- the single yarn group is moderately focused in the woven fabric and contributes to the adhesion and strength of the resin film without excessively suppressing the penetration of the coated resin into the woven fabric. If the air entanglement is 5 times / m or more, it is possible to prevent a single yarn from being scattered in a high-density weaving process or a stop due to a single yarn breakage.
- the woven yarn made of synthetic fiber is preferably sent to the warping process without gluing, and after being subjected to rough winding, it is turned back into a warp beam for warp. Moreover, a part is supplied as weft and weaving is performed.
- the woven yarn yarn made of synthetic fibers used for weaving preferably has a tensile strength of 8.0 cN / dtex or more. More preferably, it is 8.5 cN / dtex or more.
- Synthetic fibers having high tensile strength are produced by high-temperature and high-stretching, and contribute to increasing the tan ⁇ peak temperature in the measurement of viscoelasticity of constituent yarns.
- the tensile strength of a woven yarn made of synthetic fiber is preferably 10.0 cN / dtex or less. If the tensile strength is 10.0 cN / dtex or less, it is easy to obtain fibers that have good fluff quality and can be woven.
- the woven yarn constituting the woven fabric preferably has a tan ⁇ peak temperature of 115 ° C. or higher at which the tan ⁇ of viscoelasticity measurement shows a peak. More preferably, it is 120 degreeC or more.
- the tan ⁇ peak temperature is a temperature at which a large number of molecular chains in the amorphous part of the polymer begin to move in heat. The higher this peak temperature, the higher the thermal aging stability. In the present invention, if the tan ⁇ peak temperature is 115 ° C. or higher, it contributes to the stability of the air permeability after heat aging, and the increase in air permeability is suppressed. From the viewpoint of economically available synthetic fibers, the tan ⁇ peak temperature is preferably 150 ° C. or lower.
- the fineness of the synthetic fiber constituting the woven fabric is preferably 200 to 800 dtex.
- the synthetic fiber constituting the woven fabric is a multifilament fiber composed of a large number of single yarns, and the fineness of the single yarn is preferably 1 to 8 dtex.
- the single yarn fineness is 8 dtex or less, and the smaller the yarn, the easier it is to take a woven form in which the woven yarns bite each other. If the single yarn fineness is 1 dtex or more, the filament will not be damaged during the processing step, and the mechanical properties of the fabric will not be impaired.
- the cross-sectional shape of the single yarn is preferably a substantially round cross section.
- the round cross section means that the ratio of the major axis to the minor axis (aspect ratio) of the cross section is 0.8 to 1.0.
- the woven fabric of the present invention has a high endothermic amount ratio exceeding 45% in the melting endothermic curve measured with a temperature rising DSC (differential scanning calorimeter). More preferably, it exceeds 50%. More preferably, it exceeds 55%.
- the fabric sample is heated from room temperature at 5 ° C / min and the endothermic curve due to melting is observed. This melting behavior is divided into the low temperature side melting and the high temperature side melting of the reference temperature, and the ratio of the endothermic amount of the high temperature side melting.
- the reference temperature is the maximum endothermic temperature when DSC observation is performed on the fabric constituent yarn obtained by disassembling the fabric under the same temperature rise conditions. This maximum endothermic temperature is usually observed as the melting point.
- the ratio of melting at a higher temperature than the melting point of the constituent yarns increases the airflow suppression and damage avoidance in the high-temperature deployment of the airbag.
- This high-temperature endothermic part has a large peak on the higher temperature side than the melting point peak exhibited by the woven fabric yarn, and the weaving yarn mutually restrains, so that the polymer chain of the weaving yarn absorbs heat due to orientation relaxation. It is thought that the crystal melted.
- the low-temperature endothermic portion often shows a finer peak at a lower temperature than the melting point peak indicated by the constituent yarns, which is thought to be due to thermal orientation relaxation and heat absorption without being constrained in the crimp structure of the fabric. If the endothermic amount at a temperature lower than the melting point of the constituent yarn is small, the change in the air permeability due to heat aging is small and the allowable air permeability range is not exceeded.
- the ratio of the high temperature side endothermic amount is preferably high and preferably 100%, there is a limit to weaving yarn restraint due to the woven structure, and it is up to about 80%.
- the ratio of the high-temperature side endotherm is high and the mutual restraint property of the woven yarn is high, the elongation of the woven fabric in the bias direction is suppressed.
- the tensile elongation of a fabric is larger in the bias direction than in the weaving direction, and gas leaks occur when stress is applied by gas deployment in the portion where the sewing line in the airbag runs in the bias direction instead of the weaving direction. There will be a lot of parts.
- the woven fabric having a high ratio of the high-temperature endothermic amount becomes an airbag in which gas leakage is suppressed. Furthermore, the portion where the sewing line extends along the bias direction becomes a stress concentration point of gas development due to concentration of the strain, but the fabric with a high ratio of heat absorption on the high temperature side is an air in which damage to the sewing portion due to stress concentration is suppressed. It becomes a bag.
- the bent form in which the weaving yarns are sufficiently meshed is formed by first setting the warp tension higher and creating effective punching conditions.
- the warp tension is preferably 0.20 to 0.65 cN / dtex.
- the warp tension is 0.20 cN / dtex or more, the contact angle increases.
- weaving inhibition such as warp breakage can be avoided. More preferably, it is 0.25 to 0.55 cN / dtex.
- the warp tension can be adjusted by measuring the warp tension between the warping beam and the back roller (tensioning roller).
- the bent form of the woven yarn formed by weaving should be maintained in the subsequent steps and not relaxed.
- a water jet loom, an air jet loom, a rapier loom, or the like can be used as the loom. Of these, the use of a water jet loom is preferable because the amount of oil adhesion can be controlled to be small without a subsequent scouring step.
- the cover factor of the fabric is preferably 2000 to 2600.
- the cover factor is the degree of fiber filling in the plane, and if it is 2000 or more, the static air permeability is suppressed. If the cover factor is 2600 or less, difficulties in the weaving process can be avoided.
- the woven structure of the woven fabric is preferably a plain woven fabric having basically the same fiber and a single fiber. In order to obtain a high-density plain woven fabric, the plain woven fabric may be obtained by weaving with two diagonal weaves.
- the woven yarns are constrained to each other by spreading any single yarn group in the history of the woven yarn constituting the woven fabric. That is, in the cross section of the woven fabric, the ratio of the single yarn spread in the fabric plane direction to the spread of the single yarn in the fabric thickness direction (plane direction / thickness direction) is determined as the degree of bundling of the single yarn of the woven yarn. Then, it is preferable that the larger one of the warp flatness and the weft flatness is 4.5 or less and 3.0 or more. More preferably, it is 3.5 or more.
- the weft flatness is 3.0 or more
- the single yarn group spreads well, and when the flatness of either the warp or the weft is 3.0 or more, the warp and the weft contribute to mutual restraint.
- it is effective to increase the warp tension during weaving. If the warp tension is increased, the flatness of the warp increases, and the mutual restraint between the wefts of the weft becomes stronger.
- the woven yarn is subjected to weaving without twisting and without glue.
- the converging property of the single yarn group becomes too good, for example, the flatness of the woven yarn is less than 2.5, and the restraint of the background does not become strong.
- care must be taken because the bent form in which the weaving yarn formed in the weaving process is sufficiently meshed tends to be eliminated by the shrinking action of the synthetic fiber in warm water.
- a scouring method should be used, preferably at a temperature of 80 ° C. or lower, more preferably 60 ° C. or lower, and even more preferably 50 ° C. or lower, while remaining in the widened state and not causing irritation such as itchiness. Most preferably, the scouring step is omitted.
- the drying treatment is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower. Drying may be performed in multiple stages. Moreover, you may dry using a cylinder dryer, a tenter apparatus, etc., and combining them further.
- the woven fabric of the present invention preferably has an oil content (oiling rate) extracted with cyclohexane of 0.05% to 0.20% by weight based on the weight of the woven fabric. More preferably, it is 0.05 to 0.15% by weight. More preferably, it is 0.05 to 0.10% by weight. If the cyclohexane extract oil content is 0.05% by weight or more, the surface of the woven fiber can be made low in friction and the tear strength of the woven fabric can be prevented from being lowered. Therefore, the bag resistance of the airbag can be improved.
- the content is 0.20% by weight or less, it is possible to prevent unraveling of the constituent yarns, and to avoid bag breakage due to leakage of airbag deployment gas or concentration of hot gas.
- the oil content is extracted to be 0.05 wt% or more and 0.20 wt% or less, the spinning oil derived from the weaving yarn manufacturing process or the warping oil content in the warping warping process of the weaving yarn.
- the water jet loom can be used for deoiling, the conditions in the scouring process after weaving can be selected as appropriate, and oil can be added to the woven fabric for finishing.
- the spinning oil and warping oil are adjusted to an appropriate oil amount by the water flow in the water jet loom process, and a separate scouring process is omitted.
- the air permeability of the woven fabric of the present invention is preferably 0.3 cc / cm 2 / s or less by the FRAZIER method at a differential pressure of 125 Pa, and it is preferable that air permeability is not detected as much as possible.
- the fabric air permeability is preferably less 0.5cc / cm 2 / s after a hot-air oven at 100 hours at 110 ° C., further more preferably not more than 0.3cc / cm 2 / s.
- the air permeability is not detected.
- the fabric of the present invention is suitable for use as an airbag by cutting and sewing as it is without resin processing.
- the sewing airbag made of the woven fabric of the present invention can be incorporated and used as an airbag module and an airbag device.
- tan ⁇ peak temperature Dynamic viscoelasticity measurement was performed using Leovibron DDV-01FP manufactured by Orientec. As a sample, a bundle obtained by taking out about 10 single yarns of constituent yarns obtained by disassembling a woven fabric was used. Tan ⁇ was measured at a distance between chucks of 30 mm, a frequency of 35 Hz, a heating rate of 5 ° C./min, and a temperature range of 40 ° C. to 200 ° C. The tan ⁇ peak temperature (° C.) was determined from the tan ⁇ -temperature curve.
- the average of the endothermic peak temperatures (melting points) of the warp and weft yarns of the woven fabric was used as the reference temperature.
- the endothermic curve of the woven fabric was divided into a low temperature side and a high temperature side of the reference temperature, and the high temperature side endothermic amount ratio (%) in the endothermic curve was determined.
- Fineness of constituent yarn JIS L1096: 2010 8.9.1.1a) 2) Measured by B method according to Appendix H (Method B).
- Flatness of the woven yarn The center of the woven yarn of the woven fabric was cut, and the converging outer shape of the single yarn bundle of the woven yarn was observed from the cross section to the background. The ratio of the spread of the single yarn in the fabric plane direction (plane direction / thickness direction) to the spread of the single yarn in the fabric thickness direction was defined as flatness.
- Frazier method air permeability JIS L1096: 2010 8.26.1 The air permeability was determined by the A method.
- Evaluation of air permeability over time The fabric sample was placed in an air oven at 110 ° C. and allowed to stand for 100 hours, and then the air permeability described in (9) above was evaluated.
- High-temperature deployment damage A model airbag having a diameter of 50 cm, which was sewn and formed into a shape as shown in FIG. As shown in b), it is wound into a roll shape with a diameter of 25 mm or less, tied with two 30 dtex monofilament yarns as shown in FIG. 5 (c), and attached to the gas injection device of the Microsys CGS system. It was. The bag portion was placed in a hot air oven and left at 105 ° C. for 30 minutes.
- He gas (6 MPa, 1 L) was introduced at a high speed from the gas insertion port, and the time (msec) from the inflow to the time when the internal pressure exceeded 50 kPa and reached the maximum pressure and then gas leaked to 20 kPa was measured.
- the holding time was set.
- Example 1 A fiber having a strength of 8.5 cN / dtex obtained by melt-spinning polyhexamethylene adipamide resin and hot drawing was used as a woven yarn.
- the fiber contained 50 ppm of copper added during resin polymerization and 1500 ppm of iodine. This fiber had a fineness of 470 dtex, a single yarn count of 136, a boiling water shrinkage of 7.5%, and a water immersion entanglement of 15 / m.
- the fibers were aligned with no twist and no glue for warp yarns to give a warp beam, and for wefts with no twist and no glue, they were supplied as they were from the winding package to the loom.
- a warp tension on the loom was set to 0.40 cN / dtex using a water jet loom, and a plain fabric was obtained at 400 rpm. Without scouring the resulting fabric, it was dried in four pairs of cylinders at 120 ° C. and then finished with a pin tenter for 30 seconds at 110 ° C., and the overfeed shrinkage of the warp was 0.5%, The tenter width was 0.5%. The on-machine density at the time of weaving was adjusted so that the finished fabric had a weave density of 53.0 / 2.54 cm. Table 1 shows the production conditions and evaluation results of the fabric.
- the oil rate of the woven fabric was 0.12% by weight, and it was appropriately deoiled with a water jet loom.
- the flatness of the single yarn group was higher in the warp yarn and was 4.0 (in Examples 2 to 5 and Comparative Examples 1 to 4 described later, the flatness of the fabric constituting yarn was warp) Was higher).
- the tan ⁇ peak temperature was 125 ° C.
- the melting point maximum endothermic temperature
- Example 2 The same procedure as in Example 1 was performed except that the warp tension during weaving was 0.30 cN / dtex. Table 1 shows the production conditions and evaluation results of the fabric. The air permeability after heat aging seems to increase, but the air permeability is sufficiently low. Excellent air permeability control by high temperature deployment.
- Example 3 After weaving, it was carried out in the same manner as in Example 1 except that a 1 minute scouring step was added with warm water at 50 ° C. Table 1 shows the production conditions and evaluation results of the fabric. The air permeability after heat aging seems to increase, but the air permeability is low. Excellent air permeability control by high temperature deployment.
- Example 4 This was carried out in the same manner as in Example 1 except that the strength of the woven yarn was set to 8.0 cN / dtex. Table 1 shows the production conditions and evaluation results of the fabric.
- the tan ⁇ peak temperature of the woven fabric yarn was 121 ° C.
- the air permeability after heat aging seems to increase, but the air permeability is sufficiently low. Excellent air permeability control by high temperature deployment.
- Example 5 A woven fabric was obtained in the same manner as in Example 1 except that the strength of the woven yarn was 8.0 cN / dtex and the boiling water shrinkage was 10.5%. Table 1 shows the production conditions and evaluation results of the fabric. The tan ⁇ peak temperature of the fabric constituting yarn was 115 ° C. The air permeability after heat aging seems to increase, but the air permeability is sufficiently low. Excellent air permeability control by high temperature deployment.
- Example 1 A woven fabric was obtained in the same manner as in Example 1 except that the warp tension during weaving was 0.25 cN / dtex, and a scouring step for 3 minutes with warm water at 90 ° C. was added after weaving. Table 1 shows the production conditions and evaluation results of the fabric. The air permeability after heat aging has increased. Air permeability suppression due to high temperature deployment is also impaired. In the DSC analysis of the woven fabric, the high-temperature side endothermic ratio is 36%. The melting endotherm curve of the constituent yarn was approximated, and a high temperature endothermic peak derived from weaving yarn restraint was not observed much.
- Example 2 A woven fabric was obtained in the same manner as in Comparative Example 1 except that scouring was not performed. Table 1 shows the production conditions and evaluation results of the fabric. The air permeability after heat aging has increased. Air permeability suppression due to high temperature deployment is also impaired.
- Comparative Example 3 A woven fabric was obtained in the same manner as in Example 1 except that the warp tension during weaving was 0.30 cN / dtex, and a scouring process for 3 minutes with 90 ° C. warm water was added after weaving. Table 1 shows the production conditions and evaluation results of the fabric. The air permeability after heat aging has increased. Air permeability suppression due to high temperature deployment is also impaired.
- Example 4 A woven fabric was obtained in the same manner as in Example 1 except that the strength of the woven yarn was 7.5 cN / dtex and the boiling water shrinkage was 11.0%. Table 1 shows the production conditions and evaluation results of the fabric. The tan ⁇ peak temperature of the woven fabric yarn was 110 ° C. The air permeability after heat aging has increased. Air permeability suppression due to high temperature deployment is also impaired.
- the fabric of the present invention is suitable as a fabric for an airbag.
- it is suitable as an airbag fabric used for an uncoated airbag having excellent thermal stability.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Woven Fabrics (AREA)
- Air Bags (AREA)
Abstract
Description
すなわち、本発明は下記の発明を提供する。
(2)織物構成糸の粘弾性のtanδピーク温度が115℃以上であることを特徴とする上記1項に記載の織物。
(3)油付率が0.05重量%以上0.20重量%以下であることを特徴とする上記1または2項に記載の織物。
(4)織物を構成する経糸と緯糸の扁平度(平面方向の単糸の広がり/厚み方向の単糸の広がり)のうち大きいほうが3.0以上であることを特徴とする上記1~3項のいずれか一項に記載の織物。
(5)合成繊維がポリアミド66繊維であることを特徴とする上記1~4項のいずれか一項に記載の織物。
(6)織物構成糸の単糸断面が丸断面であることを特徴とする上記1~5のいずれか一項に記載の織物。
(7)110℃の環境に100時間暴露後のフラジール通気度が0.5cc/cm2/sec以下であることを特徴とする上記1~6のいずれか一項に記載の織物。
(8)製織に用いる織糸原糸の強度が8.0cN/dtex以上であることを特徴とする上記1~7のいずれか一項に記載の織物。
(9)製織時の経糸張力が0.20~0.65cN/dtexであることを特徴とする上記1~8のいずれか一項に記載の織物。
(10)ウォータージェット織機で製織し、引き続き精練せず、または、80℃以下の精練を経て、続いて乾燥仕上をして製造されることを特徴とする上記1~9のいずれか一項に記載の織物。
(11)製織後の乾燥仕上が140℃以下で行なわれることを特徴とする上記1~10のいずれか一項に記載の織物。
(12)樹脂被覆されていないことを特徴とする上記1~11のいずれか一項に記載の織物。
(13)上記1~12のいずれか一項に記載の織物を用いたエアバッグ。
本発明の織物は合成繊維からなり、織物を構成する合成繊維は、熱可塑性樹脂からなる繊維であって、例えば、ポリアミド繊維、ポリエステル繊維などから選ぶことができる。
織物を構成するポリアミド繊維としては、ポリアミド6、ポリアミド6・6、ポリアミド11、ポリアミド12、ポリアミド6・10、ポリアミド6・12、ポリアミド4・6、それらの共重合体およびそれらの混合物の樹脂からなる繊維が挙げられる。特にポリアミド6・6繊維としては、主としてポリヘキサメチレンアジパミド樹脂からなる繊維である事が好ましい。ポリヘキサメチレンアジパミド樹脂とは100%のヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド樹脂を指すが、本発明で用いられるポリアミド6・6樹脂からなる繊維は、樹脂の融点が250℃未満とならない範囲で、ポリヘキサメチレンアジパミドにポリアミド6、ポリアミド6・I、ポリアミド6・10、ポリアミド6・Tなどを共重合、あるいはブレンドした樹脂からなる繊維でもよい。
合成繊維は、整経時に糊付けせずに高密度製織が可能となるように、フィラメント切れによる毛羽が108mあたりに100個以下であることが好ましい。また、マルチフィラメントの集束性を得るためにエア交絡が5から30回/mであることが好ましい。エア交絡が30回/m以下であれば、織物中での単糸群の集束が適度で、塗布樹脂の織物への浸透を抑制しすぎることなく、樹脂被膜の接着や強さに寄与する。エア交絡が5回/m以上であれば、高密度製織工程での単糸ばらけや単糸切れによる停台などが防げる。
合成繊維からなる織糸は、好ましくは糊付けすること無しに整経工程に送られ、荒巻を経たのち、経糸用として整経ビームに捲返される。また、一部は緯糸として供給され、製織が実施される。
製織に用いられる合成繊維からなる織糸原糸は、引張強度が8.0cN/dtex以上が好ましい。より好ましくは、8.5cN/dtex以上である。引張強度が大きい合成繊維は高温高延伸で製造され、構成糸の粘弾性測定のtanδピーク温度を高めることに寄与する。一方、合成繊維からなる織糸原糸の引張強度は、10.0cN/dtex以下が好ましい。引張強度が10.0cN/dtex以下であれば、毛羽品位が良好で製織可能な繊維の入手が容易である。
高温側吸熱量の比率が高く、織糸の相互拘束性が高いと、織物のバイアス方向の伸びが抑制される。通常、織物の引張伸度は、織糸方向よりもバイアス方向の伸びが大きく、エアバッグにおける縫製ラインが織糸方向ではなくバイアス方向に走る部分においては、ガス展開で応力が掛かった場合にガスリークが多い部分になる。したがって、高温側吸熱量の比率が高い織物は、ガス漏洩が抑制されたエアバッグとなる。さらに、縫製ラインがバイアス方向に沿った部分は、歪が集中してガス展開の応力集中点になるが、高温側吸熱量の比率が高い織物は、応力集中による縫製部損傷が抑制されたエアバッグとなる。
CF=経糸密度(本/2.54cm)× √経糸繊度(dtex)+
緯糸密度(本/2.54cm)× √緯糸繊度(dtex)
カバーファクタは、平面における繊維の充填度合いであり、2000以上であれば、静的通気度が抑制されている。カバーファクタが2600以下であれば、製織工程での困難が回避できる。
織物の織組織は、基本的に経緯とも同一繊維で単一繊維による平織物が好ましい。高密度の平織物を得るために、経緯とも2本の斜子織で織って平織物を得ても良い。
製織後の精練工程では、製織工程で形成された織糸が十分に噛み合った屈曲形態が、温水中の合成繊維の収縮作用で解消される傾向があるため注意が必要である。好ましくは80℃以下、より好ましくは60℃以下、さらに好ましくは50℃以下の温度で、拡幅状態のままで、揉みなどの刺激を与えない精練方法を用いるべきである。最も好ましいのは精練工程を省略することである。
また、織物は110℃で100時間の熱風オーブン処理後に通気度が0.5cc/cm2/s以下が好ましく、さらには、0.3cc/cm2/s以下がより好ましい。通気度が検出されないことが好ましい。
本発明の織物からなる縫製エアバッグを組み込んで、エアバッグモジュール、エアバッグ装置として用いることができる。
(1)織物試料の準備:JIS L0105:2006の標準状態に調整して、各種測定および評価に供した。
(5)織密度:JIS L1096:2010 8.6.1b)B法で附属書FAにより計測した。
(6)油付率:織物試料をシクロヘキサン溶媒にて8時間のソックスレー抽出をした。得られた抽出液から揮発分を留去した後、抽出分を秤量し、抽出前の織物重量に対する抽出油分重量を油付率(重量%)とした。
(8)織物構成糸の扁平度:織物の織糸中心を切断し、断面から経緯それぞれにつき織糸の単糸束の集束外形を観察した。織物厚み方向の単糸の広がりに対して、織物平面方向の単糸の広がりの比率(平面方向/厚み方向)を扁平度とした。
(9)フラジール法通気度:JIS L1096:2010 8.26.1 A法で通気度を求めた。
(10)通気度の熱経時評価:織物試料を110℃のエアオーブン中に置き、100時間放置した後、上記(9)に記載の通気度を評価した。
ポリヘキサメチレンアジパミド樹脂を溶融紡糸し、熱延伸して得られた強度8.5cN/dtexの繊維を織糸として用いた。繊維には樹脂重合時に添加した銅が50ppm含有され、沃素が1500ppm含有されていた。この繊維は、繊度が470dtex、単糸数が136本、沸水収縮率が7.5%であり、水浸法の交絡数は15個/mであった。この繊維を経糸用に無撚無糊で引き揃え、整経ビームとし、緯糸用には無撚無糊で巻取りパッケージからそのまま織機に供給した。ウォータージェット織機にて織機上での経糸張力を0.40cN/dtex設定し、400回転/分で平織物を得た。得られた織物を精練すること無しに、120℃の4対のシリンダーで乾燥し、次いで、ピンテンターを用いて110℃の30秒滞留で仕上げて、経のオーバーフィード縮み分が0.5%、幅出し分が0.5%とした。製織時の機上密度を調整して、仕上がり織物の織密度が経緯とも53.0本/2.54cmになるようにした。織物の製造条件と評価結果を表1に示す。
この織物は、通気度が低く、熱経時後も低いままであった。また、この織物からなるエアバッグは、高温展開による通気度抑制に優れており、熱安定性の良いエアバッグとなっていた。
製織時の経糸張力を0.30cN/dtexとしたことを除いて、実施例1と同様にして実施した。織物の製造条件と評価結果を表1に示す。熱経時後の通気度が増加気味だが、十分低通気度である。高温展開による通気度抑制も優れている。
[実施例3]
製織後に、50℃の温水で1分間の精練工程を追加したことを除いて、実施例1と同様にして実施した。織物の製造条件と評価結果を表1に示す。熱経時後の通気度が増加気味だが、低通気度である。高温展開による通気度抑制も優れている。
織糸原糸の強度を8.0cN/dtexにしたことを除いて、実施例1と同様にして実施した。織物の製造条件と評価結果を表1に示す。織物構成糸のtanδピーク温度は121℃であった。熱経時後の通気度が増加気味だが、十分低通気度である。高温展開による通気度抑制も優れている。
織糸原糸の強度を8.0cN/dtexに、沸水収縮率を10.5%にしたことを除いて、実施例1と同様にして織物を得た。織物の製造条件と評価結果を表1に示す。織物構成糸のtanδピーク温度は115℃であった。熱経時後の通気度が増加気味だが、十分低通気度である。高温展開による通気度抑制も優れている。
製織時の経糸張力を0.25cN/dtexとし、製織後に90℃の温水で3分間の精練工程を追加したことを除いて、実施例1と同様にして織物を得た。織物の製造条件と評価結果を表1に示す。熱経時後の通気度が増加してしまっている。高温展開による通気度抑制も損なわれている。織物のDSC解析では、高温側吸熱量比率は36%である。構成糸の溶融吸熱曲線に近似してきて、織糸拘束に由来する高温側の吸熱ピークがあまり観測されなかった。
精練を行なわなかったことを除いて、比較例1と同様にして織物を得た。織物の製造条件と評価結果を表1に示す。熱経時後の通気度は増加してしまっている。高温展開による通気度抑制も損なわれている。
[比較例3]
製織時の経糸張力を0.30cN/dtexとし、製織後に90℃の温水で3分間の精練工程を追加したことを除いて、実施例1と同様にして織物を得た。織物の製造条件と評価結果を表1に示す。熱経時後の通気度が増加してしまっている。高温展開による通気度抑制も損なわれている。
織糸原糸の強度を7.5cN/dtexに、沸水収縮率を11.0%にしたことを除いて、実施例1と同様にして織物を得た。織物の製造条件と評価結果を表1に示す。織物構成糸のtanδピーク温度は110℃であった。熱経時後の通気度が増加してしまっている。高温展開による通気度抑制も損なわれている。
Claims (13)
- 合成繊維からなる織物であって、その織物の昇温DSC吸熱曲線において、織物構成糸の昇温DSC吸熱曲線の溶融吸熱極大温度に対して高温度側の吸熱量の全体の吸熱量に対する比率が45%を超えることを特徴とする織物。
- 織物構成糸の粘弾性のtanδピーク温度が115℃以上であることを特徴とする請求項1に記載の織物。
- 油付率が0.05重量%以上0.20重量%以下であることを特徴とする請求項1または2に記載の織物。
- 織物を構成する経糸と緯糸の扁平度(平面方向の単糸の広がり/厚み方向の単糸の広がり)のうち大きいほうが3.0以上であることを特徴とする請求項1~3のいずれか一項に記載の織物。
- 合成繊維がポリアミド66繊維であることを特徴とする請求項1~4のいずれか一項に記載の織物。
- 織物構成糸の単糸断面が丸断面であることを特徴とする請求項1~5のいずれか一項に記載の織物。
- 110℃の環境に100時間暴露後のフラジール通気度が0.5cc/cm2/sec以下であることを特徴とする請求項1~6のいずれか一項に記載の織物。
- 製織に用いる織糸原糸の強度が8.0cN/dtex上であることを特徴とする請求項1~7のいずれか一項に記載の織物。
- 製織時の経糸張力が0.20~0.65cN/dtexであることを特徴とする請求項1~8のいずれか一項に記載の織物。
- ウォータージェット織機で製織し、引き続き精練せず、または、80℃以下の精練を経て、続いて乾燥仕上をして製造されることを特徴とする請求項1~9のいずれか一項に記載の織物。
- 製織後の乾燥仕上が140℃以下で行なわれることを特徴とする請求項1~10のいずれか一項に記載の織物。
- 樹脂被覆されていないことを特徴とする請求項1~11のいずれか一項に記載の織物。
- 請求項1~12のいずれか一項に記載の織物を用いたエアバッグ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/911,908 US10385482B2 (en) | 2013-08-13 | 2014-08-12 | Woven fabric |
CN201480044853.3A CN105452552B (zh) | 2013-08-13 | 2014-08-12 | 织物 |
KR1020167002609A KR101902660B1 (ko) | 2013-08-13 | 2014-08-12 | 직물 |
JP2015515749A JP5848855B2 (ja) | 2013-08-13 | 2014-08-12 | 織物及びその製造方法 |
MX2016001984A MX368238B (es) | 2013-08-13 | 2014-08-12 | Tela tejida. |
EP14836923.4A EP3034663B1 (en) | 2013-08-13 | 2014-08-12 | Woven fabric |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013168134 | 2013-08-13 | ||
JP2013-168134 | 2013-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022954A1 true WO2015022954A1 (ja) | 2015-02-19 |
Family
ID=52468339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071273 WO2015022954A1 (ja) | 2013-08-13 | 2014-08-12 | 織物 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10385482B2 (ja) |
EP (1) | EP3034663B1 (ja) |
JP (1) | JP5848855B2 (ja) |
KR (1) | KR101902660B1 (ja) |
CN (2) | CN107529565B (ja) |
MX (1) | MX368238B (ja) |
TR (1) | TR201905967T4 (ja) |
WO (1) | WO2015022954A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105216735A (zh) * | 2015-10-21 | 2016-01-06 | 芜湖金鹏汽车部件有限公司 | 一种防高温汽车安全气囊 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3530787B1 (en) * | 2016-10-21 | 2021-12-01 | Jiaxing Deyong Textiles Co., Ltd. | Loom, method for producing textile, and textile produced therewith |
CN112512871B (zh) * | 2018-08-08 | 2023-03-14 | 旭化成株式会社 | 气囊用多层膜和气囊 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0811660A (ja) * | 1994-06-29 | 1996-01-16 | Teijin Ltd | ノンコートサイドエアーバッグ用織物 |
JP2004149992A (ja) | 2002-11-01 | 2004-05-27 | Asahi Kasei Fibers Corp | エアバック用基布 |
JP2004156166A (ja) * | 2002-11-06 | 2004-06-03 | Toray Ind Inc | 布帛とその製造方法 |
JP2006306312A (ja) * | 2005-04-28 | 2006-11-09 | Takata Corp | エアバッグ用基布及びエアバッグ装置 |
JP2013523524A (ja) * | 2010-04-09 | 2013-06-17 | オートリブ ディベロップメント エービー | 膨張式エアーバッグおよびその作製方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5098125A (en) * | 1990-06-08 | 1992-03-24 | Stern & Stern Industries, Inc. | Tube, airbag, and method of making the same |
EP0649921B1 (en) | 1993-02-23 | 2000-05-17 | Toray Industries, Inc. | High-strength polyamide fiber |
DE59601852D1 (de) * | 1995-04-22 | 1999-06-17 | Akzo Nobel Nv | Getangeltes Synthesefilamentgarn für die Herstellung von technischen Geweben |
FR2751980B1 (fr) * | 1996-08-02 | 1999-02-05 | Rhone Poulenc Chimie | Composition silicone pour l'enduction de substrats en matiere textile |
US6022817A (en) * | 1997-06-06 | 2000-02-08 | E. I. Du Pont De Nemours And Company | Fabric for airbag |
EP1033292B1 (en) * | 1997-11-28 | 2009-03-25 | Asahi Kasei Fibers Corporation | Lightweight air bag |
AU755986B2 (en) | 1998-07-27 | 2003-01-02 | Toyo Boseki Kabushiki Kaisha | Uncoated woven fabric for air bags |
JP3716768B2 (ja) | 1998-07-27 | 2005-11-16 | 東洋紡績株式会社 | ノンコートエアバッグ用織物及びその製造方法 |
JP3871103B2 (ja) * | 1999-02-15 | 2007-01-24 | 東レ株式会社 | エアバッグ用基布およびエアバッグ |
US6429155B1 (en) * | 1999-06-17 | 2002-08-06 | Milliken & Company | Low permeability airbag cushions having film coatings of extremely low thickness |
JP4106067B2 (ja) | 2000-04-07 | 2008-06-25 | 旭化成ケミカルズ株式会社 | コーティング布帛およびエアバッグ |
WO2001077435A1 (fr) | 2000-04-07 | 2001-10-18 | Asahi Kasei Kabushiki Kaisha | Tissu enduit et coussin de securite gonflable |
TWI230213B (en) * | 2000-08-17 | 2005-04-01 | Toray Industries | Base fabric for non-coated air bags, and fibers for air bags |
JP4711378B2 (ja) | 2001-12-10 | 2011-06-29 | 東レ株式会社 | エアバッグ基布およびエアバッグ |
JP2002363836A (ja) | 2002-04-05 | 2002-12-18 | Toray Ind Inc | ノンコートエアバッグ用基布 |
JP2006183205A (ja) | 2004-12-28 | 2006-07-13 | Toray Ind Inc | エアバッグ用基布 |
JP2006299411A (ja) | 2005-03-25 | 2006-11-02 | Toyota Motor Corp | 制振複合材料 |
JP2007310227A (ja) | 2006-05-19 | 2007-11-29 | Kyocera Mita Corp | レーザ照射タイミング制御回路、光走査装置、画像形成装置及びbd信号変換回路 |
JP5088013B2 (ja) | 2006-06-23 | 2012-12-05 | 東レ株式会社 | エアバッグ用織物、エアバッグおよびエアバッグ用織物の製造方法 |
EP2042628B1 (en) | 2006-06-23 | 2013-10-02 | Toray Industries, Inc. | Woven fabric for air bags, air bags and process for production of the woven fabric |
WO2009113325A1 (ja) | 2008-03-10 | 2009-09-17 | 東レ株式会社 | エアバッグ用基布ならびにエアバッグ用原糸およびその製造方法 |
JP5365272B2 (ja) * | 2008-03-21 | 2013-12-11 | 東レ株式会社 | エアバッグ用織物およびエアバッグ用織物の製造方法 |
JP4952846B2 (ja) * | 2008-03-26 | 2012-06-13 | 東レ株式会社 | ポリアミド56フィラメント、およびそれを含有する繊維構造体、ならびにエアバッグ用基布 |
JP5359714B2 (ja) * | 2009-09-09 | 2013-12-04 | 東レ株式会社 | エアバッグ用基布 |
CN102471954B (zh) | 2009-11-09 | 2013-07-31 | 旭化成纤维株式会社 | 气囊用织物及气囊 |
JP2011158743A (ja) | 2010-02-02 | 2011-08-18 | Konica Minolta Business Technologies Inc | 画像形成装置、画像形成装置の制御方法、及び画像形成装置の制御プログラム |
EP2610377B9 (en) | 2010-08-23 | 2017-08-02 | Asahi Kasei Kabushiki Kaisha | Base fabric for airbag |
CN104160086B (zh) * | 2012-03-09 | 2016-12-28 | 旭化成株式会社 | 气囊用基布 |
US9868413B2 (en) * | 2012-12-17 | 2018-01-16 | Asahi Kasei Kabushiki Kaisha | Fabric for an air bag that maintains air permeability during high-pressure deployment at high speed |
WO2015022981A1 (ja) | 2013-08-13 | 2015-02-19 | 旭化成せんい株式会社 | コーティング織物 |
-
2014
- 2014-08-12 MX MX2016001984A patent/MX368238B/es active IP Right Grant
- 2014-08-12 KR KR1020167002609A patent/KR101902660B1/ko active Active
- 2014-08-12 US US14/911,908 patent/US10385482B2/en active Active
- 2014-08-12 CN CN201710684995.1A patent/CN107529565B/zh active Active
- 2014-08-12 WO PCT/JP2014/071273 patent/WO2015022954A1/ja active Application Filing
- 2014-08-12 TR TR2019/05967T patent/TR201905967T4/tr unknown
- 2014-08-12 JP JP2015515749A patent/JP5848855B2/ja active Active
- 2014-08-12 EP EP14836923.4A patent/EP3034663B1/en active Active
- 2014-08-12 CN CN201480044853.3A patent/CN105452552B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0811660A (ja) * | 1994-06-29 | 1996-01-16 | Teijin Ltd | ノンコートサイドエアーバッグ用織物 |
JP2004149992A (ja) | 2002-11-01 | 2004-05-27 | Asahi Kasei Fibers Corp | エアバック用基布 |
JP2004156166A (ja) * | 2002-11-06 | 2004-06-03 | Toray Ind Inc | 布帛とその製造方法 |
JP2006306312A (ja) * | 2005-04-28 | 2006-11-09 | Takata Corp | エアバッグ用基布及びエアバッグ装置 |
JP2013523524A (ja) * | 2010-04-09 | 2013-06-17 | オートリブ ディベロップメント エービー | 膨張式エアーバッグおよびその作製方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3034663A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105216735A (zh) * | 2015-10-21 | 2016-01-06 | 芜湖金鹏汽车部件有限公司 | 一种防高温汽车安全气囊 |
Also Published As
Publication number | Publication date |
---|---|
MX368238B (es) | 2019-09-25 |
JPWO2015022954A1 (ja) | 2017-03-02 |
CN107529565A (zh) | 2018-01-02 |
CN107529565B (zh) | 2020-04-14 |
US20160194790A1 (en) | 2016-07-07 |
CN105452552B (zh) | 2018-01-30 |
KR101902660B1 (ko) | 2018-10-01 |
US10385482B2 (en) | 2019-08-20 |
MX2016001984A (es) | 2016-05-18 |
KR20160027112A (ko) | 2016-03-09 |
TR201905967T4 (tr) | 2019-05-21 |
EP3034663A4 (en) | 2016-08-24 |
EP3034663A1 (en) | 2016-06-22 |
CN105452552A (zh) | 2016-03-30 |
JP5848855B2 (ja) | 2016-01-27 |
EP3034663B1 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8962499B2 (en) | Base woven fabric for airbag | |
US10543803B2 (en) | Airbag base fabric and manufacturing method therefor | |
US9834167B2 (en) | Airbag fabric and airbag | |
JP6013710B2 (ja) | エアバッグ用織物およびエアバッグ | |
WO2017010458A1 (ja) | エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法 | |
MX2014005031A (es) | Fibra de poliamida y tela para bolsa de aire. | |
WO2019167820A1 (ja) | エアバッグ用ノンコート基布、エアバッグ用コーティング基布およびそれを用いたエアバッグ | |
JP5848855B2 (ja) | 織物及びその製造方法 | |
CN113330150B (zh) | 气囊用涂布基布和包括该气囊用涂布基布的气囊 | |
JP6105192B2 (ja) | エアバッグ織物 | |
JP7188393B2 (ja) | エアバッグ基布およびそれを含むエアバッグ | |
JP5848856B2 (ja) | コーティング織物及びその製造方法 | |
WO2021132575A1 (ja) | エアバッグ用ポリエステル基布 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480044853.3 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2015515749 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14836923 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167002609 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014836923 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14911908 Country of ref document: US Ref document number: MX/A/2016/001984 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |