[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009101984A1 - 複合酸化物 - Google Patents

複合酸化物 Download PDF

Info

Publication number
WO2009101984A1
WO2009101984A1 PCT/JP2009/052321 JP2009052321W WO2009101984A1 WO 2009101984 A1 WO2009101984 A1 WO 2009101984A1 JP 2009052321 W JP2009052321 W JP 2009052321W WO 2009101984 A1 WO2009101984 A1 WO 2009101984A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
less
composite oxide
oxygen
content
Prior art date
Application number
PCT/JP2009/052321
Other languages
English (en)
French (fr)
Inventor
Tadatoshi Murota
Original Assignee
Santoku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corporation filed Critical Santoku Corporation
Priority to JP2009512086A priority Critical patent/JP4331792B1/ja
Priority to CN2009801127929A priority patent/CN101998933B/zh
Priority to US12/867,033 priority patent/US8389436B2/en
Priority to EP09709675.4A priority patent/EP2253591B1/en
Publication of WO2009101984A1 publication Critical patent/WO2009101984A1/ja
Priority to ZA2010/06470A priority patent/ZA201006470B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a composite oxide, particularly a composite oxide that can be suitably used as an auxiliary catalyst for an exhaust gas purification catalyst for purifying exhaust gas from an engine using gasoline or light oil as a fuel, and an oxygen reduction catalyst for a fuel cell.
  • Exhaust gas discharged from internal combustion engines such as automobiles contains hydrocarbons, carbon monoxide, and nitrogen oxides that are harmful to the human body and the environment.
  • so-called three-way catalysts that oxidize carbon monoxide and hydrocarbons to carbon dioxide and water and reduce nitrogen oxides to nitrogen and water are used as exhaust gas purification catalysts.
  • the three-way catalyst has, for example, a structure in which a noble metal such as Pt, Pd, and Rh as the main catalyst and an oxide or composite oxide containing cerium oxide as the cocatalyst is supported on a catalyst carrier such as alumina or cordierite. It has become.
  • the co-catalyst is said that Ce contained therein absorbs oxygen by changing the valence from trivalent to tetravalent in an oxidizing atmosphere and releases oxygen by changing the valence from tetravalent to trivalent in a reducing atmosphere. It has a characteristic, so-called oxygen absorption / release capability. With this oxygen absorption / release ability, the main catalyst can purify the exhaust gas with high efficiency by mitigating sudden changes in the atmosphere of the exhaust gas due to acceleration and deceleration of the engine.
  • complex oxides containing Ce and Zr are widely used. Currently used complex oxides containing Ce and Zr do not have sufficient oxygen absorption / release capability.
  • Patent Document 1 discloses a composite oxide containing cerium oxide, zirconium oxide, and hafnium oxide, having a ⁇ ′ phase as a crystal phase, and 400 to 700 A composite oxide having an oxygen absorption / release capacity of 100 ⁇ mol / g or more at 0 ° C. is described.
  • Patent Document 2 the compounding ratio of zirconium and cerium in terms of oxide is 51 to 95:49 to 5 by weight, and the specific surface area after firing at 500 to 1000 ° C.
  • Patent Document 3 discloses the use of a composite oxide having a large specific surface area of 10 m 2 / g or more, which is composed of praseodymium oxide and zirconium oxide, as a promoter. This composite oxide has a large oxygen releasing ability even at a low temperature of 200 ° C. or higher and 350 ° C. or lower.
  • Patent Document 4 discloses an exhaust gas purification catalyst in which a catalyst layer containing a Zr—Pr double oxide in which a noble metal is supported on a honeycomb-shaped carrier is formed. This exhaust gas purification catalyst is characterized by a low light-off temperature of hydrocarbons.
  • Patent Document 5 discloses the use of a complex oxide composed of Ce, Pr or Tb, and Zr as a promoter. This composite oxide exhibits a good oxidation-reduction ability even with respect to exhaust gas obtained by burning an air-fuel mixture in a lean state (a lean fuel state).
  • JP-A-8-109020 Japanese Patent Laid-Open No. 10-194742 JP 2001-113168 A JP 2006-68728 A JP 2000-72447 A
  • Patent Documents 1 to 5 are not yet sufficient in oxygen absorption / release capability.
  • the amount of oxygen absorbed and released at a low temperature of 400 ° C. or lower is small.
  • An object of the present invention is to provide a composite oxide having a large oxygen absorption / release amount in a wide temperature range, particularly an exhaust gas purification catalyst having a large oxygen absorption / release rate in a high temperature range of 700 ° C. or higher and / or a low temperature range of 400 ° C. or lower.
  • the object is to provide a composite oxide suitable for a promoter, an oxygen reduction catalyst of a fuel cell, and the like.
  • the content ratio of R when the total amount of elements other than oxygen, including oxygen, at least one selected from Ce and Pr, and Zr is 100 atomic% is 10%. Atom% or more and 90 atom% or less, and the content ratio of Zr is 10 atom% or more and 90 atom% or less, does not contain a tetragonal crystal phase derived from zirconium oxide, and has an electron diffraction pattern. A composite oxide exhibiting a diffractive spot is provided.
  • oxygen consisting of at least one selected from Ce and Pr, Zr, alkaline earth metals, rare earth elements other than R, rare earth elements and transition metal elements other than Zr, and halogen elements , B, C, Si, and S, and at least one element selected from M
  • the total content of elements other than oxygen is 100 atomic%
  • the R content is 10 atomic% or more
  • Zr content is 10 atomic% or more and less than 90 atomic%
  • M content ratio is larger than 0 atomic% and 20 atomic% or less
  • contains a tetragonal crystal phase derived from zirconium oxide a composite oxide is provided in which the electron diffraction pattern shows a point-like diffraction spot.
  • the composite oxide of the present invention Since the composite oxide of the present invention has the above-described configuration, it usually has a large oxygen absorption / release amount in a wide temperature range even if it does not have a large specific surface area that has been conventionally considered necessary in the field. In particular, it has a characteristic of having a large oxygen absorption / release amount in a high temperature region of 700 ° C. or higher and / or a low temperature region of 400 ° C. or lower. Therefore, the composite oxide of the present invention can be suitably used as a promoter for an exhaust gas purification catalyst, an oxygen reduction catalyst for a fuel cell, and the like.
  • 2 is a copy of a TEM image of the composite oxide prepared in Example 1.
  • 2 is a copy of an electron beam diffraction image of the composite oxide prepared in Example 1.
  • 2 is a copy of an electron beam diffraction image of a composite oxide prepared in Comparative Example 1.
  • the composite oxide of the present invention contains oxygen, at least one selected from Ce and Pr, and Zr as essential components, and excludes alkaline earth metals, rare earth elements excluding R, rare earth elements, and Zr.
  • M which consists of at least 1 sort (s) chosen from a transition metal element, a halogen element, B, C, Si, and S is included as an arbitrary component.
  • the content ratio of each component excluding oxygen is such that R is 10 atomic% or more and 90 atomic% or less, Zr is 10 atomic% or more, 90 atoms when the total amount of elements other than oxygen is 100 atomic%. % Or less.
  • M is included, the content ratio of R is 10 atomic% or more and 90 atomic% or less, and the content ratio of Zr is 10 atomic% or more and less than 90 atomic%, preferably 10 atomic% or more and 89.9 atomic% or less.
  • the content ratio of M is larger than 0 atomic% and 20 atomic% or less, preferably 0.1 atomic% or more and 20 atomic% or less.
  • R is an element that expresses the ability to absorb and release oxygen
  • Pr is mainly involved in the absorption and release of oxygen in a low temperature region of 400 ° C. or lower
  • Ce is mainly in a high temperature region of 700 ° C. or higher.
  • Zr increases the oxidation rate and reduction rate (utilization rate) of Pr and Ce, and affects the temperature range where oxygen absorption / release capability is exhibited.
  • a zirconium salt may contain several atomic percent of Hf. In such a case, Hf contained in zirconium used in the present invention is included in Zr. Therefore, H element is not included in the M element.
  • the contents of R and Zr, and the contents of Pr and Ce in R are from the above ranges depending on the temperature range in which the desired oxygen absorption / release capability is exhibited and the oxygen absorption / release amount in each temperature range. It can be determined as appropriate. For example, when a large oxygen absorption / release amount is obtained particularly in a low temperature region of 400 ° C. or less, specifically, when the oxygen release amount at 400 ° C. is 300 ⁇ mol / g or more, the total amount of elements other than oxygen is 100 atomic%.
  • Ce is 0 atomic% or more and 70 atomic% or less
  • Pr is 20 atomic% or more and 90 atomic% or less, or Ce is larger than 0 atomic% and 70 atomic% or less
  • Pr is 20 atomic% or more, 90 Less than atomic%
  • Zr is 10 atomic% or more and 80 atomic% or less, or Ce is 0 atomic% or more and 70 atomic% or less
  • Pr is 20 atomic% or more, 90 atomic% or less
  • Ce is 0 atom %, 70 atomic% or less
  • Pr is 20 atomic% or more and less than 90 atomic%
  • Zr is 10 atomic% or more and less than 80 atomic%, preferably 10 atomic% or more and 79.9 atomic% or less
  • M is 0 atoms Greater, 20 atomic% or less, preferably from 0.1 atomic% or more, 20 atomic% or less.
  • the content ratio of R is 20 atom% or more and 90 atom% or less, preferably
  • the total amount of elements other than oxygen is 100
  • Ce is 20 atomic% or more and 90 atomic% or less
  • Pr is 0 atomic% or more and 70 atomic% or less
  • Ce is 20 atomic% or more and less than 90 atomic%
  • Pr is larger than 0 atomic%.
  • the content ratio of R is 30 atom% or more and 90 atom% or less, preferably 60 atom% or more and 90 atom% or less.
  • the oxygen release amount at 400 ° C. is set to 300 ⁇ mol.
  • Ce is 20 atomic% or more and 90 atomic% or less, and Pr is 0 atomic% or more and 70 atomic% or less, or Ce is 20 atomic% or more and less than 90 atomic%, Pr is larger than 0 atomic% and 70 atomic% or less, and Zr is 10 atomic% or more and 60 atomic% or less.
  • Ce is 20 atomic% or more and 90 atomic% or less, Pr is 0 atomic% or more and 70 atomic% or less, or Ce is 20 atomic% or more and less than 90 atomic%, and Pr is larger than 0 atomic%.
  • Zr is 10 atomic% or more and less than 60 atomic%, preferably 10 atomic% or more and 59.9 atomic% or less
  • M is larger than 0 atomic% and 20 atomic% or less, preferably 0 .1 atomic% or more and 20 atomic% or less.
  • the content ratio of R is 40 atom% or more and 90 atom% or less, preferably 60 atom% or more and 90 atom% or less.
  • M is an alkaline earth metal such as Mg, Ca, Sr and Ba, a rare earth element excluding R such as Sc, Y, La, Nd and Tb, Ti, V, Nb, Ta and Cr. , Mo, W, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Zn, Al, Ga, In, Ge, Sn, Bi and other rare earth elements and transition metal elements excluding Zr, F, Cl, etc. And the halogen elements B, C, Si, and S.
  • the amount of absorbed and released oxygen is increased, which is preferable.
  • elements other than these may be included as inevitable impurities.
  • the complex oxide of the present invention shows a diffraction pattern in which the electron diffraction pattern has a dot shape.
  • the electron diffraction image was obtained by using a transmission electron microscope and using an electron diffraction image of a region having a diameter of 0.1 ⁇ m by the limited visual field method. Since the electron diffraction pattern is very sensitive to the crystallinity of the sample, it is used for analyzing the crystallinity and structure of various materials. A complex oxide exhibiting a point-like diffraction spot has a single crystal structure. Further, in the present invention, even when the electron diffraction pattern is streak-like, the range is a dot-like range.
  • the complex oxide has a polycrystalline structure.
  • the composite oxide in which the electron diffraction pattern of the present invention shows a point-like diffraction pattern is a material in which a conventional electron diffraction pattern shows a ring-like diffraction pattern.
  • the oxygen absorption and release amount is large in a specific temperature range.
  • the composite oxide of the present invention does not contain a tetragonal crystal phase derived from zirconium oxide.
  • the presence or absence of a tetragonal crystal phase derived from zirconium oxide can be determined by X-ray diffraction measurement.
  • the conditions for the X-ray diffraction measurement are as follows. Target: copper, tube voltage: 40 kV, tube current: 40 mA, divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.15 mm, operation mode: continuous, scan step: 0.01 °, scan speed: 5 ° / min.
  • a characteristic diffraction peak of a tetragonal crystal phase derived from zirconium oxide has a (101) plane peak appearing near 30 ° or a (002) plane peak appearing near 34 °. It is. From the measurement results, when these peaks cannot be confirmed at the same time, it means that no tetragonal crystal phase derived from zirconium oxide is contained. In particular, when it does not contain a tetragonal crystal phase derived from zirconium oxide and consists only of a CaF 2 structural phase and / or a CaF 2 similar structural phase, the amount of oxygen absorbed and released can be increased.
  • the CaF 2 -like structural phase means a crystal phase that can be indexed as a CaF 2 structural phase by X-ray diffraction measurement.
  • the specific surface area of the composite oxide of the present invention is preferably 2 m 2 / g or less, and the lower limit is usually about 0.1 m 2 / g.
  • the specific surface area is 2 m 2 / g or less, it is easy to control so that the electron diffraction pattern of the composite oxide has a dot-like diffraction pattern.
  • the specific surface area of the composite oxide is a value measured by a BET method by nitrogen gas adsorption.
  • the primary particle diameter of the composite oxide of the present invention is preferably 50 nm or more. In that case, it is easy to control so that the electron diffraction pattern of the complex oxide becomes a point-like diffraction pattern.
  • the primary particle diameter of the composite oxide of the present invention was determined by measuring the major axis of 20 particles randomly selected from a 75,000-fold transmission electron microscope image and using the average value.
  • the oxygen release amount at 400 ° C. of the composite oxide of the present invention is preferably 300 ⁇ mol / g or more. More preferably, it is 400 ⁇ mol / g or more.
  • the upper limit is not particularly defined, but is usually 1000 ⁇ mol / g or less.
  • the oxygen release amount at 700 ° C. of the composite oxide of the present invention is preferably 600 ⁇ mol / g or more. More preferably, it is 800 ⁇ mol / g or more.
  • the upper limit is not particularly defined, but is usually 1300 ⁇ mol / g or less.
  • the composite oxide of the present invention preferably has an oxygen release amount of 300 ⁇ mol / g or more at 400 ° C.
  • the oxygen release amount at 400 ° C. is 400 ⁇ mol / g or more
  • the oxygen release amount at 700 ° C. is 800 ⁇ mol / g or more.
  • the oxygen release amount of the composite oxide was measured by the following method using a gas adsorption device. First, while allowing hydrogen gas to flow at 0.07 MPa, the sample 50 mg is heated to a predetermined temperature over 1 hour and held for 10 minutes. Thereafter, a predetermined temperature is maintained until the measurement is completed. Next, hydrogen gas is flowed at 0.07 MPa for 15 minutes to reduce the sample, and then He gas is flowed to sufficiently replace the hydrogen gas. Next, 1 cc of oxygen accurately weighed in the measuring tube is introduced into the sample tube, and the sample is oxidized. At this time, the amount of consumed oxygen is quantified by TCD (thermal conductivity analyzer) to obtain an oxygen release amount ( ⁇ mol / g).
  • TCD thermal conductivity analyzer
  • a raw material aqueous solution and an alkaline aqueous solution containing R ions, Zr ions, and, if necessary, at least one selected from M ions are prepared.
  • the aqueous raw material solution is prepared by dissolving R, Zr, and M salts in water.
  • salts of R and Zr respective nitrates, sulfates, acetates and the like can be used.
  • salt of M a water-soluble salt can be appropriately selected and used.
  • the concentration of the raw material aqueous solution is preferably 0.1 to 5 mol / l in total of R, Zr, and M.
  • the alkaline aqueous solution can be prepared by dissolving ammonium, sodium hydroxide, potassium hydroxide, ammonium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate and the like in water.
  • the alkaline aqueous solution preferably contains 1.1 to 5 times the theoretical amount of alkali necessary for neutralizing and precipitating R ions, Zr ions, and M ions contained in the raw salt aqueous solution.
  • the raw material aqueous solution is added while stirring the alkaline aqueous solution with a stirrer to prepare a precursor.
  • the precursor is obtained in the form of a slurry with water.
  • a method of adding the raw material aqueous solution to the alkaline aqueous solution as described above is preferable.
  • the dispersibility (uniformity) of R, Zr, and M in the precursor can be enhanced.
  • Conditions such as the degree of stirring, the addition rate of the raw material aqueous solution, and the concentrations of the alkaline solution and the raw material aqueous solution can be appropriately determined as long as the object of increasing the dispersibility of the constituent elements is achieved.
  • the precursor may be uniform. it can.
  • Precursors with high dispersibility of the constituent elements tend to have a single crystal structure due to constant grain growth between the grains when fired in an oxidizing atmosphere, and are likely to have high crystallinity. That is, it becomes easy to control so that the electron diffraction pattern of the composite oxide does not contain a tetragonal crystal phase derived from zirconium oxide and shows a point-like diffraction pattern.
  • the precursor can be subjected to hydrothermal treatment.
  • the slurry of the precursor and water may be accommodated in an autoclave as it is, and the hydrothermal treatment may be performed, but the salt dissolved in the slurry by discharging the supernatant or diluting with water.
  • the concentration can be adjusted appropriately, or the pH can be adjusted with acid or alkali.
  • Hydrothermal treatment can usually be performed at 80 ° C. or higher and 300 ° C. or lower.
  • the precursor is recovered from the slurry.
  • the recovery can be performed by filtering with, for example, Nutsche, filter press, centrifugation, or the like.
  • the precursor is preferably washed. Washing can be performed by a known method such as decantation.
  • the recovered precursor may be dried before firing. Moreover, the dried precursor can also be obtained directly from the slurry by spray drying.
  • the recovered precursor is fired in an oxidizing atmosphere to obtain a composite oxide.
  • the firing conditions are not particularly limited as long as the precursor is decomposed and oxidized to form a composite oxide, and the electron diffraction pattern shows a dot-like diffraction pattern, but usually 1000 ° C. or more and 1200 ° C. or less. And conditions of 0.5 hours or more and 24 hours or less. Although it depends on the properties of the precursor, when it is preferably carried out at 1050 ° C. or higher, more preferably 1100 ° C. or higher, a constant grain growth occurs between the grains, resulting in a single crystal structure and high crystallinity.
  • two-stage firing can be performed.
  • the precursor is performed at a temperature of 200 ° C. or higher and 500 ° C. or lower for 0.5 hours or longer and 24 hours or shorter.
  • the second baking step can be performed at a temperature of 1000 ° C. or higher and 1200 ° C. or lower and 0.5 hours or longer and 24 hours or shorter.
  • the composite oxide of the present invention can be obtained by firing in the above oxidizing atmosphere, but can also be produced by firing in a reducing atmosphere after firing in an oxidizing atmosphere. Firing in a reducing atmosphere is usually performed at a temperature of 800 ° C. or higher, preferably 1000 ° C. or higher and 1200 ° C. or lower, and 0.5 hours or longer and 24 hours or shorter. Moreover, it can carry out in two steps similarly to the baking in the above-mentioned oxidizing atmosphere. Firing in a reducing atmosphere can be performed in a reducing atmosphere containing hydrogen or carbon monoxide or an inert gas atmosphere such as argon or helium.
  • M may be added by any method.
  • the above-described coprecipitation method a solid phase method in which a precursor or composite oxide containing R or Zr is mixed with a compound of M and firing, or a precursor or composite oxide containing R or Zr
  • An impregnation method in which a solution of M is impregnated and fired.
  • the impregnation method is preferable.
  • the present invention is not limited to these.
  • the composition of the obtained composite oxide was measured with an ICP emission spectroscopic analyzer, and all were the same as the raw material composition.
  • the presence or absence of a tetragonal crystal phase derived from zirconium oxide, the oxygen release amount, and the specific surface area were measured by the above-described methods.
  • Example 1 When a cerium nitrate aqueous solution (manufactured by Rhodia Electronics and Catalysis) and a zirconyl nitrate aqueous solution (manufactured by Santoku Co., Ltd.) are used, the total amount of Ce and Zr is 100 atomic%, so that Ce atomic ratio is 20 atomic% and Zr is 80 atomic%.
  • the mixture was further diluted with pure water to prepare a raw material aqueous solution having a total amount of Ce and Zr of 0.5 mol / l.
  • 4 mol / l ammonia aqueous solution was prepared as alkaline aqueous solution.
  • FIG. 2 shows a copy of the electron diffraction pattern of the region having a diameter of 0.1 ⁇ m obtained by the limited visual field method with the arrow portion in FIG. 1 as the center.
  • FIG. 2 shows that the diffraction image has a point-like diffraction spot.
  • the oxygen release amount of the obtained composite oxide was measured, the oxygen release amount at 200 ° C. was 0 ⁇ mol / g, the oxygen release amount at 400 ° C. was 103 ⁇ mol / g, and the oxygen release amount at 700 ° C. was 350 ⁇ mol / g. Met.
  • the specific surface area of the obtained composite oxide was measured, it was 0.5 m 2 / g.
  • Examples 2 to 11 A composite oxide was obtained in the same manner as in Example 1 except that the composition of the raw material aqueous solution was changed so that the composition shown in Table 1 was obtained.
  • a cobalt nitrate aqueous solution, an iron nitrate aqueous solution, a nickel nitrate aqueous solution, and a copper nitrate aqueous solution (all produced using a salt made by Wako Pure Chemical Industries, Ltd.) were used.
  • the obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Example 12 The composite oxide 10g obtained in Example 1 was baked at 1100 ° C. for 1 hour while flowing hydrogen at a flow rate of 2 l / min, and then baked in the atmosphere at 700 ° C. for 5 hours. Got. The obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Examples 13-22 The composite oxides obtained in Examples 2 to 11 were further reduced and oxidized in the same manner as in Example 12 to obtain composite oxides. The obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Example 23 When a cerium nitrate aqueous solution (manufactured by Rhodia Electronics and Catalysis) and a zirconyl nitrate aqueous solution (manufactured by Santoku Co., Ltd.) are used, the total amount of Ce and Zr is 100 atomic%, so that Ce 50 atomic% and Zr 48 atomic% are obtained.
  • the mixture was further diluted with pure water to prepare a raw material aqueous solution having a total amount of Ce and Zr of 0.5 mol / l.
  • 4 mol / l ammonia aqueous solution was prepared as alkaline aqueous solution.
  • Examples 24-28 A raw material aqueous solution of Ce and / or Pr and Zr was blended so as to have the composition shown in Table 1, and a composite oxide was obtained in the same manner as in Example 23.
  • the solution which immerses an oxide used the cobalt nitrate aqueous solution, the iron nitrate aqueous solution, the nickel nitrate aqueous solution, or the copper nitrate aqueous solution (all created using the salt made from Wako Purechemical) according to the composition of Table 1. .
  • the obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Examples 29-35 A composite oxide was obtained in the same manner as in Example 1 except that the composition of the raw material aqueous solution was changed so that the composition shown in Table 1 was obtained.
  • sources of Nd, Y, Mg, Al, Mn, Bi, and Tb respectively, neodymium nitrate aqueous solution, yttrium nitrate aqueous solution, magnesium nitrate aqueous solution, aluminum nitrate aqueous solution, manganese nitrate aqueous solution, bismuth nitrate aqueous solution, and terbium nitrate aqueous solution (all of which are Wako Pure Chemicals) Made using a salt made by the company).
  • each of the obtained composite oxides was baked at 1100 ° C. for 1 hour while flowing hydrogen at a flow rate of 2 l / min in the same manner as in Example 12, and then baked in the atmosphere at 700 ° C. for 5 hours. As a result, a composite oxide was obtained.
  • the obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 A composite oxide was obtained in the same manner as in Example 2 except that firing performed at 1200 ° C. for 2 hours was performed at 800 ° C. for 3 hours. A copy of the electron diffraction pattern of the obtained complex oxide is shown in FIG. The diffraction image was ring-shaped. Moreover, the same measurement as Example 1 was performed about the obtained complex oxide. The results are shown in Table 2.
  • Comparative Examples 3-5 A composite oxide was obtained in the same manner as in Examples 6 to 8, except that calcination performed at 1200 ° C. for 2 hours was performed at 800 ° C. for 3 hours. The obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 2.
  • Comparative Examples 6 and 7 A composite oxide was obtained in the same manner as in Comparative Example 2 except that the formulation of the raw material aqueous solution was changed as shown in Table 2. The obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 2.
  • Comparative Examples 8-14 The composite oxide 10g obtained in Comparative Examples 1 to 7 was fired at 800 ° C. for 1 hour while flowing hydrogen at a flow rate of 2 l / min, and then fired in the atmosphere at 700 ° C. for 5 hours. An oxide was obtained. The obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 2.
  • Comparative Examples 15-17 A composite oxide was obtained in the same manner as in Comparative Examples 2, 6, and 7 except that the baking performed at 800 ° C. for 2 hours was performed at 1200 ° C. for 2 hours. The obtained composite oxide was subjected to the same measurement as in Example 1. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compounds Of Iron (AREA)

Abstract

 幅広い温度領域で大きい酸素吸収放出量を有し、特に700°C以上の高温領域及び/又は400°C以下の低温領域で大きい酸素吸収放出量を有する複合酸化物を提供する。該複合酸化物は、酸素と、Ce、Prの少なくとも1種からなるRと、Zrとを特定割合で含み、任意でアルカリ土類金属等から選ばれる少なくとも1種からなるMを特定割合で含み、酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、且つ電子線回折像が点状の回折スポットを示し、排ガス浄化触媒の助触媒、燃料電池の酸素還元触媒に利用できる。

Description

複合酸化物
 本発明は、複合酸化物、特にガソリンや軽油を燃料としたエンジンからの排ガスを浄化する排ガス浄化触媒の助触媒、燃料電池の酸素還元触媒に好適に用いることができる複合酸化物に関する。
 自動車などの内燃機関の排出する排ガスには、人体又は環境に有害である炭化水素、一酸化炭素、窒素酸化物が含まれている。現在、一酸化炭素及び炭化水素を炭酸ガスと水に酸化し、窒素酸化物を窒素と水に還元する、いわゆる三元触媒が排ガス浄化触媒として使用されている。三元触媒は、例えば、主触媒であるPt、Pd、Rhの貴金属と、助触媒である酸化セリウムを含有する酸化物又は複合酸化物がアルミナ、コージェライト等の触媒担体に担持された構成となっている。助触媒は、含有されるCeが、酸化雰囲気下で3価から4価に価数を変えて酸素を吸収し、還元雰囲気下で4価から3価に価数を変えて酸素を放出するという特性、いわゆる酸素吸収放出能を有する。この酸素吸収放出能により、エンジンの加速、減速による排ガスの急激な雰囲気変化を緩和して、主触媒は高い効率で排ガスを浄化することができる。助触媒としては、CeとZrを含有する複合酸化物が広く使用されている。現在使用されているCeとZrを含有する複合酸化物は、未だ酸素吸収放出能が十分でない。特に400℃以下の低温下における酸素吸収放出量が小さい為、エンジン始動時のようにエンジンの温度が低いときは、上述した雰囲気変化を緩和する効果が無く、主触媒の排ガス浄化効率は低い。
 また、現在、固体高分子型燃料電池(PEFC)の開発が進んでいるが、アノード、カソード両極で使用する白金触媒が高コストであることが実用化、普及の妨げになっている。特に、カソードでの1/2O2+2H++2e-→H2Oの酸素還元反応には大量の白金触媒が用いられている。そこで、白金触媒を代替、またはその使用量を低減する触媒材料の開発が活発に行われている。
 触媒材料に利用できる複合酸化物として、例えば、特許文献1には、酸化セリウム、酸化ジルコニウム及び酸化ハフニウムを含有する複合酸化物であって、結晶相としてφ'相を有し、且つ400~700℃において100μmol/g以上の酸素吸収・放出能を有する複合酸化物が記載されている。
 特許文献2には、酸化物換算でジルコニウム及びセリウムの配合比率が、重量比で51~95:49~5であり、500~1000℃で焼成した後の比表面積が少なくとも50m2/g以上、かつ1100℃で6時間加熱後において少なくとも20m2/g以上の比表面積を維持するジルコニウム-セリウム系複合酸化物が記載されている。
 特許文献3には、助触媒として、酸化プラセオジムと酸化ジルコニウムとで構成される比表面積が10m2/g以上という大きな比表面積を有する複合酸化物を用いることが開示されている。この複合酸化物は、200℃以上、350℃以下という低温でも大きな酸素放出能を有する。
 特許文献4には、ハニカム状担体に貴金属が担持されたZr-Pr複酸化物を含有する触媒層が形成されている排ガス浄化触媒が開示されている。この排ガス浄化触媒は、炭化水素のライトオフ温度が低い特徴を有する。
 特許文献5には、助触媒として、Ceと、PrまたはTbと、Zrとからなる複合酸化物を用いることが開示されている。この複合酸化物は、リーン状態(燃料が希薄な状態)の混合気を燃焼した排ガスに対しても良好に酸化還元能を発揮する。
特開平8-109020号公報 特開平10-194742号公報 特開2001-113168号公報 特開2006-68728号公報 特開2000-72447号公報
 しかしながら、特許文献1~5に開示されている複合酸化物は、酸素吸収放出能が未だ十分でない。特に400℃以下の低温下における酸素吸収放出量が小さいのが現状である。
 本発明の課題は、幅広い温度領域で大きい酸素吸収放出量を有する複合酸化物、特に700℃以上の高温領域及び/又は400℃以下の低温領域で大きい酸素吸収放出量を有する、排ガス浄化触媒の助触媒、燃料電池の酸素還元触媒等に好適な複合酸化物を提供することにある。
 本発明によれば、酸素と、Ce及びPrから選ばれる少なくとも1種からなるRと、Zrとを含み、酸素以外の元素の合計量を100原子%としたときの、Rの含有割合が10原子%以上、90原子%以下、及びZrの含有割合が10原子%以上、90原子%以下であり、酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、且つ電子線回折像が点状の回折スポットを示す複合酸化物が提供される。
 また本発明によれば、酸素と、Ce及びPrから選ばれる少なくとも1種からなるRと、Zrと、アルカリ土類金属、Rを除く希土類元素、希土類元素及びZrを除く遷移金属元素、ハロゲン元素、B、C、Si、及びSから選ばれる少なくとも1種からなるMとを含み、酸素以外の元素の合計量を100原子%としたときの、Rの含有割合が10原子%以上、90原子%以下、Zrの含有割合が10原子%以上、90原子%未満、及びMの含有割合が0原子%より大きく、20原子%以下であり、酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、且つ電子線回折像が点状の回折スポットを示す複合酸化物が提供される。
 本発明の複合酸化物は、上記構成を有するので、通常、当該分野において従来必要と考えられていた大きな比表面積を有していなくても、幅広い温度領域で大きい酸素吸収放出量を有し、特に700℃以上の高温領域及び/又は400℃以下の低温領域で大きい酸素吸収放出量を有するという特性を示す。従って、本発明の複合酸化物は、排ガス浄化触媒の助触媒、燃料電池の酸素還元触媒等に好適に使用することができる。
実施例1で調製した複合酸化物のTEM像の写しである。 実施例1で調製した複合酸化物の電子線回折像の写しである。 比較例1で調製した複合酸化物の電子線回折像の写しである。
 以下本発明について詳細に説明する。
 本発明の複合酸化物は、酸素と、Ce及びPrから選ばれる少なくとも1種からなるRと、Zrとを必須成分として含み、アルカリ土類金属、Rを除く希土類元素、希土類元素及びZrを除く遷移金属元素、ハロゲン元素、B、C、Si、及びSから選ばれる少なくとも1種からなるMを任意成分として含む。
 本発明において、酸素を除く各成分の含有割合は、酸素以外の元素の合計量を100原子%としたとき、Rが10原子%以上、90原子%以下、Zrが10原子%以上、90原子%以下である。Mを含む場合には、Rの含有割合が10原子%以上、90原子%以下、Zrの含有割合が10原子%以上、90原子%未満、好ましくは10原子%以上、89.9原子%以下、及びMの含有割合が0原子%より大きく、20原子%以下、好ましくは0.1原子%以上、20原子%以下である。
 Rは、酸素吸収放出能を発現する元素であって、Prは主に400℃以下の低温領域、Ceは主に700℃以上の高温領域における酸素の吸収、放出に関与する。
 Zrは、Pr、Ceの酸化率および還元率(利用率)を高くし、酸素吸収放出能を発揮する温度領域に影響を与える。工業的にはジルコニウム塩は数原子%のHfを含有している場合があり、このような場合、本発明に用いるジルコニウムに含まれるHfはZrに含めて取り扱う。従って、M元素には、Hfは含まれない。
 RとしてCeとPrの両方を含有する場合、上述の低温領域と高温領域の双方で大きな酸素吸収能を得ることも可能である。
 本発明において、RとZrの含有量、R中のPrとCeの含有量は、所望する酸素吸収放出能を発揮する温度領域、各温度領域での酸素吸収放出量に応じて、上記範囲から適宜決定することができる。
 例えば、特に400℃以下の低温領域で大きな酸素吸収放出量を得る場合、具体的には、400℃における酸素放出量を300μmol/g以上とする場合、酸素以外の元素の合計量を100原子%としたとき、Ceを0原子%以上、70原子%以下、Prを20原子%以上、90原子%以下、もしくはCeを0原子%より大きく、70原子%以下、Prを20原子%以上、90原子%未満とし、Zrを10原子%以上、80原子%以下とするか、又はCeを0原子%以上、70原子%以下、Prを20原子%以上、90原子%以下、もしくはCeを0原子%より大きく、70原子%以下、Prを20原子%以上、90原子%未満とし、Zrを10原子%以上、80原子%未満、好ましくは10原子%以上、79.9原子%以下、Mを0原子%より大きく、20原子%以下、好ましくは0.1原子%以上、20原子%以下とすることができる。これらいずれの場合もRの含有割合は20原子%以上、90原子%以下であり、好ましくは60原子%以上、90原子%以下である。
 また、例えば、特に700℃以上の高温領域で大きな酸素吸収放出量を得る場合、具体的には、700℃における酸素放出量を600μmol/g以上とする場合、酸素以外の元素の合計量を100原子%としたとき、Ceを20原子%以上、90原子%以下、Prを0原子%以上、70原子%以下、もしくはCeを20原子%以上、90原子%未満、Prを0原子%より大きく、70原子%以下とし、Zrを10原子%以上、70原子%以下とするか、又はCeを20原子%以上、90原子%以下、Prを0原子%以上、70原子%以下、もしくはCeを20原子%以上、90原子%未満、Prを0原子%より大きく、70原子%以下とし、Zrを10原子%以上、70原子%未満、好ましくは10原子%以上、69.9原子%以下、Mを0原子%より大きく、20原子%以下、好ましくは0.1原子%以上、20原子%以下とすることができる。これらいずれの場合もRの含有割合は30原子%以上、90原子%以下であり、好ましくは60原子%以上、90原子%以下である。
 更に、例えば、特に400℃以下の低温領域で大きな酸素吸収放出量を得、かつ700℃以上の高温領域で大きな酸素吸収放出量を得る場合、具体的には、400℃における酸素放出量を300μmol/g以上とし、かつ700℃における酸素放出量を600μmol/g以上とする場合、酸素以外の元素の合計量を100原子%としたとき、Ceを20原子%以上、90原子%以下、Prを0原子%以上、70原子%以下、もしくはCeを20原子%以上、90原子%未満、Prを0原子%より大きく、70原子%以下とし、Zrを10原子%以上、60原子%以下とするか、又はCeを20原子%以上、90原子%以下、Prを0原子%以上、70原子%以下、もしくはCeを20原子%以上、90原子%未満、Prを0原子%より大きく、70原子%以下とし、Zrを10原子%以上、60原子%未満、好ましくは10原子%以上、59.9原子%以下、Mを0原子%より大きく、20原子%以下、好ましくは0.1原子%以上、20原子%以下とすることができる。これらいずれの場合もRの含有割合は40原子%以上、90原子%以下、好ましくは60原子%以上、90原子%以下である。
 本発明の複合酸化物においてMは、Mg、Ca、Sr、Ba等のアルカリ土類金属、Sc、Y、La、Nd、Tb等のRを除く希土類元素、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pd、Pt、Cu、Ag、Zn、Al、Ga、In、Ge、Sn、Bi等の希土類元素及びZrを除く遷移金属元素、F、Cl等のハロゲン元素、B、C、Si、Sが挙げられる。特に、Fe、Co、Ni、Cu、Mn、Ti又はSnを含有する場合、酸素吸収放出量が大きくなるため好ましい。また、これら以外の元素を不可避不純分として含んでいても良い。
 本発明の複合酸化物は、電子線回折像が点状の回折パターンを示す。
 本発明において、電子線回折像は、透過電子顕微鏡を用い、制限視野法にて直径0.1μmの領域の電子線回折像を用いた。該電子線回折像は、試料の結晶性に非常に敏感なため、種々の材料の結晶性、構造の解析に用いられている。点状の回折スポットを示す複合酸化物は、単結晶構造である。また、本発明においては、電子線回折像がストリーク状の場合も点状の範囲とする。
 一方、電子線回折像がリング状の回折パターンを示す場合、複合酸化物は多結晶構造である。例えば、複合酸化物の組成が同じであっても、本発明の電子線回折像が点状の回折パターンを示す複合酸化物は、従来の電子線回折像がリング状の回折パターンを示す材料と比較して、特定の温度領域で酸素吸収放出量が大きい。
 本発明の複合酸化物は、酸化ジルコニウムに由来する正方晶系の結晶相を含有しない。酸化ジルコニウムに由来する正方晶系の結晶相の有無は、X線回折測定により決定することができる。X線回折測定の条件は次の通りである。
 ターゲット:銅、管電圧:40kV、管電流:40mA、発散スリット:1°、散乱スリット:1°、受光スリット:0.15mm、操作モード:連続、スキャンステップ:0.01°、スキャンスピード:5°/分。
 この条件で測定した場合に、酸化ジルコニウムに由来する正方晶系の結晶相の特徴的な回折ピークは、30°付近に現れる(101)面のピークまたは34°付近に現れる(002)面のピークである。測定結果より、これらのピークが同時に確認できない場合、酸化ジルコニウムに由来する正方晶系の結晶相を含有しないことを意味する。特に、酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、CaF2構造相および/またはCaF2類似構造相のみからなる場合、酸素吸収放出量を大きくすることができる。CaF2類似構造相とは、X線回折測定によりCaF2構造相として指数付できる結晶相を意味する。
 従来の材料は、反応面積を大きくすること、すなわち、多結晶構造として比表面積を大きくすることで酸素吸収放出量を大きくしてきた。しかしながら、本発明者らの研究により、電子線回折像が点状の回折パターンを示す複合酸化物は、比表面積が小さい場合にも酸素吸収放出量が大きいことがわかった。その理由については定かではないが、本発明の複合酸化物は、結晶性が高いため、通常は吸収放出に関与しない複合酸化物内部の酸素が、スムーズに移動すると考えられる。したがって、本発明の複合酸化物は、従来のように比表面積を大きくすることに制限されることなく、幅広い組成範囲において大きな酸素吸収放出量を得ることができると考えられる。特に、酸素の拡散速度の遅い400℃以下の低温領域において、従来の材料に比べて優れた効果を発揮する。
 本発明の複合酸化物の比表面積は、2m2/g以下であることが好ましく、その下限値は、通常、0.1m2/g程度である。比表面積が2m2/g以下である場合、複合酸化物の電子線回折像が点状の回折パターンとなるように制御し易い。
 本発明において、複合酸化物の比表面積は、窒素ガス吸着によるBET法で測定した値である。
 本発明の複合酸化物の1次粒子径は、50nm以上であることが好ましい。その場合、複合酸化物の電子線回折像が点状の回折パターンとなるように制御し易い。
 本発明の複合酸化物の1次粒子径は、75000倍の透過電子顕微鏡像よりランダムに選択した20個の粒子の長径を計測し、その平均値を用いた。
 本発明の複合酸化物の400℃における酸素放出量は、300μmol/g以上であることが好ましい。さらに好ましくは400μmol/g以上である。上限は特に定めないが、通常、1000μmol/g以下である。
 本発明の複合酸化物の700℃における酸素放出量は、600μmol/g以上であることが好ましい。さらに好ましくは800μmol/g以上である。上限は特に定めないが、通常、1300μmol/g以下である。
 本発明の複合酸化物は、400℃における酸素放出量が300μmol/g以上であり、かつ700℃における酸素放出量が600μmol/g以上であることが好ましい。さらに好ましくは400℃における酸素放出量が400μmol/g以上であり、かつ700℃における酸素放出量が800μmol/g以上である。
 本発明において複合酸化物の酸素放出量は、ガス吸着装置を用いて、以下の方法により測定した。まず、水素ガスを0.07MPaでフローさせながら、試料50mgを1時間かけて所定の温度まで昇温し、そのままの状態で10分間保持する。その後、計測が終わるまで、所定の温度を保持する。次いで、水素ガスを0.07MPaで15分間フローさせて試料を還元し、その後、Heガスをフローして水素ガスを十分に置換する。次いで、計量管にて正確に秤量した酸素1ccをサンプル管に導入し、試料を酸化する。この際、消費された酸素量をTCD(熱伝導型分析計)により定量して、酸素放出量(μmol/g)とする。
 本発明の複合酸化物の製造方法は特に限定されないが、湿式で調製した前駆体を、熱処理する方法等で行われる。一例を以下に示す。
 初めにRのイオンと、Zrイオンと、必要に応じて、Mのイオンから選択される少なくとも1種以上とを含有する原料水溶液、及びアルカリ性水溶液を準備する。原料水溶液は、R、Zr、Mの塩を水に溶解して調製する。R、Zrの塩としては、それぞれの硝酸塩、硫酸塩、酢酸塩等が使用できる。Mの塩としては、水溶性の塩を適宜選択して使用することができる。原料水溶液の濃度は、R、Zr、Mの合計で0.1~5mol/lとすることが好ましい。
 アルカリ性水溶液は、アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等を水に溶解して調製できる。アルカリ性水溶液は、原料塩水溶液に含有されるRのイオン、Zrのイオン、Mのイオンを中和、沈殿するに必要な理論量の1.1~5倍のアルカリを含有することが好ましい。
 次いで、撹拌機によりアルカリ性水溶液を撹拌しながら、原料水溶液を添加して前駆体を調製する。前駆体は、水とのスラリーの状態で得られる。本発明の複合酸化物を得るには、このようにアルカリ性水溶液に原料水溶液を添加する方法が好ましい。いわゆる逆添加法で行うことにより、前駆体中のR、Zr、さらにはMの分散性(均一性)を高めることができる。撹拌の度合い、原料水溶液の添加速度、アルカリ性溶液および原料水溶液の濃度等の条件は、構成元素の分散性を高くするという目的が達成される範囲で、適宜決定することができる。通常、撹拌は大きなせん断力を与える方が、原料水溶液の添加速度は遅い方が、アルカリ性溶液の濃度は濃い方が、原料水溶液の濃度は薄い方が、前駆体を均一なものとすることができる。構成元素の分散性の高い前駆体は、酸化雰囲気で焼成した場合に、粒子間で一定の粒成長が生じて単結晶構造となり、結晶性が高くなりやすい。つまり、酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、複合酸化物の電子線回折像が点状の回折パターンを示すように制御することが容易となる。
 前駆体には、水熱処理を施すことができる。水熱処理に際し、前述の前駆体と水とのスラリーをそのままオートクレーブに収容して水熱処理を行ってもよいが、上澄みを排出したり、水で希釈したりしてスラリー中に溶解している塩の濃度を調整したり、酸やアルカリでpHを調整する等適宜調整して行うことができる。水熱処理は、通常、80℃以上、300℃以下で行うことができる。
 次いで、スラリーから前駆体を回収する。回収は、例えば、ヌッチェ、フィルタープレス、遠心分離等で、ろ過することにより行うことができる。回収の際、前駆体は洗浄することが好ましい。洗浄はデカンテーション等の公知の方法で行うことができる。回収した前駆体は焼成前に乾燥を行ってもよい。また、スプレードライ法によりスラリーから直接、乾燥させた前駆体を得ることもできる。
 次に、回収した前駆体を酸化雰囲気下において焼成することにより複合酸化物が得られる。焼成条件は、前駆体が分解・酸化されて複合酸化物となり、その電子線回折像が点状の回折パターンを示すような条件であれば特に限定されないが、通常、1000℃以上、1200℃以下で、0.5時間以上24時間以下の条件が挙げられる。前駆体の性状にもよるが、好ましくは1050℃以上、さらに好ましくは1100℃以上で行うと粒子間で一定の粒成長が生じて単結晶構造となり、結晶性が高くなりやすい。つまり、複合酸化物の電子線回折像が点状の回折パターンを示すように制御することが容易となる。
 また、2段階の焼成を行うことができる。例えば、第1焼成工程では、前駆体を200℃以上、500℃以下の温度で0.5時間以上、24時間以下の条件で行い。次いで第2焼成工程は、1000℃以上、1200℃以下で、0.5時間以上、24時間以下の条件で行うことができる。
 本発明の複合酸化物は、上記酸化雰囲気下における焼成により得ることができるが、更に、酸化雰囲気下の焼成後、還元雰囲気下において焼成することによっても製造することができる。
 還元雰囲気下の焼成は、通常、800℃以上で、好ましくは1000℃以上、1200℃以下で、0.5時間以上、24時間以下の条件により行うことができる。また、前述の酸化雰囲気下での焼成と同様に2段階で行うことができる。
 還元雰囲気下の焼成は、水素または一酸化炭素を含有する還元雰囲気もしくはアルゴン、ヘリウム等の不活性ガス雰囲気で行なうことができる。不活性ガスと水素の混合ガスの雰囲気で行うことがコスト面で好ましい。この還元雰囲気下の焼成により、結晶性を高めることができる。その結果、酸素吸収放出量が大きくなる。その効果は特にRとしてCeを含有する場合に大きい。
 さらに、還元雰囲気下において焼成後、再度、酸化雰囲気下で焼成することができる。ここでの焼成は、前述の前駆体の焼成と同様に行うことができる。その後も同様に、還元雰囲気下の焼成、酸化雰囲気下での焼成を適宜行うことができる。
 本発明の複合酸化物がMを含む場合、Mはいかなる方法で添加してもよい。例えば、上述のような共沈法や、R、Zrを含有する前駆体または複合酸化物とMの化合物を混合し、焼成する固相法や、R、Zrを含有する前駆体または複合酸化物にMの溶液を含侵し、焼成する含浸法が挙げられる。
 M元素として、Fe、Co、Ni、Cu、Mn、Ti又はSnの少なくとも1種を用いる場合、含浸法で行うことが好ましい。定かな理由はわからないがこれらの元素は複合酸化物の表層部分に存在し、特に低温での酸素の移動をスムーズにし、200℃以下においても酸素吸収放出能を発揮させることができる場合がある。
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらに限定されない。
 尚、以下の例において、得られた複合酸化物の組成は、ICP発光分光分析装置で測定したところ、何れも原料組成と同様であった。
 また、酸化ジルコニウムに由来する正方晶系の結晶相の有無、酸素放出量、及び比表面積は、上述の方法により測定した。
 実施例1
 硝酸セリウム水溶液(Rhodia Electronics and Catalysis社製)と、硝酸ジルコニール水溶液(株式会社三徳製)とを、CeとZrの合計量を100原子%としたとき、Ce20原子%、Zr80原子%となるように混合し、さらに純水で希釈してCeとZrの合計量で0.5mol/lの原料水溶液を調製した。また、アルカリ性水溶液として、4mol/lのアンモニア水溶液を調製した。2.7lのアルカリ性水溶液を撹拌しながら、1lの原料水溶液を10分間で添加し、前駆体を調製した。その後、ヌッチェろ過、デカンテーション洗浄を5回繰り返した。得られた前駆体は、大気中にて400℃、5時間焼成を行った後、一旦、自動乳鉢により粉砕し、さらに大気中にて1200℃、2時間焼成を行い、再度、自動乳鉢により粉砕して複合酸化物を得た。
 得られた複合酸化物を、透過電子線回折装置を用いて観察した。75000倍のTEM像の写しを図1に示す。図1の矢印部分を中心に制限視野法にて得られた直径0.1μmの領域の電子線回折像の写しを図2に示す。図2より、回折像は点状の回折スポットを有することがわかる。また、得られた複合酸化物の酸素の放出量を測定したところ、200℃における酸素放出量は0μmol/g、400℃における酸素放出量は103μmol/g、700℃における酸素放出量は350μmol/gであった。得られた複合酸化物の比表面積を測定したところ、0.5m2/gであった。これらの結果は、酸化ジルコニウムに由来する正方晶系の結晶相の有無の結果と合わせて表1に示す。
 実施例2~11
 表1の組成となるように原料水溶液の配合を変えた以外は、実施例1と同様にして複合酸化物を得た。原料水溶液に加えるCo、Fe、Ni、Cu源としては、それぞれ硝酸コバルト水溶液、硝酸鉄水溶液、硝酸ニッケル水溶液、硝酸銅水溶液(いずれも和光純薬製の塩を使用して作成)を用いた。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表1に示す。
 実施例12
 実施例1で得られた複合酸化物10gについて、水素を2l/分の流量でフローしながら1100℃、1時間焼成を行い、次いで、大気中にて700℃、5時間焼成し、複合酸化物を得た。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表1に示す。
 実施例13~22
 実施例2~11で得られた複合酸化物について、実施例12と同様にさらに還元・酸化を行い、複合酸化物を得た。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表1に示す。
 実施例23
 硝酸セリウム水溶液(Rhodia Electronics and Catalysis社製)と、硝酸ジルコニール水溶液(株式会社三徳製)とを、CeとZrの合計量を100原子%としたとき、Ce50原子%、Zr48原子%となるように混合し、さらに純水で希釈してCeとZrの合計量で0.5mol/lの原料水溶液を調製した。また、アルカリ性水溶液として、4mol/lのアンモニア水溶液を調製した。2.7lのアルカリ性水溶液を撹拌しながら、1lの原料水溶液を10分間で添加し、前駆体を調製した。その後、ヌッチェろ過、デカンテーション洗浄を5回繰り返した。
 得られた前駆体を、大気中にて400℃、5時間焼成した後、自動乳鉢により粉砕した。得られたCe、Zrを含有する酸化物20gを0.5mol/lの硝酸コバルト水溶液に浸漬し、攪拌しながら、加熱して水分を蒸発させた。次いで、大気中にて400℃、5時間焼成した後、自動乳鉢により粉砕した。さらに1200℃、2時間焼成を行い、自動乳鉢により粉砕した。続いて、得られた酸化物10gについて、水素を2l/分の流量でフローしながら1100℃、1時間焼成を行い、次いで、大気中にて700℃、5時間焼成し、複合酸化物を得た。
 得られた複合酸化物の組成は、Ce50原子%、Zr48原子%、Co2原子%であった。この複合酸化物について、実施例1と同様な測定を行った。結果を表1に示す。
 実施例24~28
 Ce及び/又はPrと、Zrの原料水溶液を、表1の組成となるように配合し、実施例23と同様にして複合酸化物を得た。尚、酸化物を浸漬する溶液は、表1の組成に従って、硝酸コバルト水溶液、硝酸鉄水溶液、硝酸ニッケル水溶液、又は硝酸銅水溶液(いずれも和光純薬製の塩を使用して作成)を用いた。
 得られた複合酸化物について、実施例1と同様な測定を行った。結果を表1に示す。
 実施例29~35
 表1の組成となるように原料水溶液の配合を変えた以外は、実施例1と同様にして複合酸化物を得た。Nd、Y、Mg、Al、Mn、Bi、Tb源として、それぞれ硝酸ネオジム水溶液、硝酸イットリウム水溶液、硝酸マグネシウム水溶液、硝酸アルミニウム水溶液、硝酸マンガン水溶液、硝酸ビスマス水溶液、硝酸テルビウム水溶液(いずれも和光純薬製の塩を使用して作成)を用いた。次いで、それぞれ得られた複合酸化物について、実施例12と同様にして水素を2l/分の流量でフローしながら1100℃、1時間焼成を行い、次いで、大気中にて700℃、5時間焼成し、複合酸化物を得た。
 得られた複合酸化物について、実施例1と同様な測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1
 1200℃、2時間行った焼成を、800℃、3時間行った以外は、実施例2と同様にして複合酸化物を得た。得られた複合酸化物の電子線回折像の写しを図3に示す。回折像は、リング状であった。また、得られた複合酸化物について、実施例1と同様な測定を行った。結果を表2に示す。
 比較例2
 硝酸セリウム水溶液(Rhodia Electronics and Catalysis社製)と、硝酸ジルコニール水溶液(株式会社三徳製)とを、CeとZrの合計量を100原子%としたとき、Ce80原子%、Zr20原子%となるように混合し、さらに純水で希釈してCeとZrの合計量で0.5mol/lの原料水溶液を調製した。また、アルカリ性水溶液として、1mol/lのアンモニア水溶液を調整した。1lの原料水溶液を撹拌しながら、2.7lのアルカリ性水溶液を10分間で添加し、前駆体を作製した。得られた前駆体を、大気中にて400℃、5時間焼成を行った後、一旦、自動乳鉢により粉砕し、さらに大気中にて800℃、2時間焼成を行い、再度、自動乳鉢により粉砕して複合酸化物を得た。
 得られた複合酸化物について、実施例1と同様な測定を行った。結果を表2に示す。
 比較例3~5
 1200℃、2時間行った焼成を、800℃、3時間行った以外は、実施例6~8と同様にして複合酸化物を得た。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表2に示す。
 比較例6、7
 原料水溶液の配合を表2に示すとおり変えた以外は、比較例2と同様にして、複合酸化物を得た。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表2に示す。
 比較例8~14
 比較例1~7で得られた複合酸化物10gについて、水素を2l/分の流量でフローしながら800℃、1時間焼成を行い、次いで、大気中にて700℃、5時間焼成し、複合酸化物を得た。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表2に示す。
 比較例15~17
 800℃、2時間行った焼成を、1200℃、2時間行った以外は、比較例2、6、7と同様にして複合酸化物を得た。得られた複合酸化物について、実施例1と同様な測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

Claims (15)

  1.  酸素と、Ce及びPrから選ばれる少なくとも1種からなるRと、Zrとを含み、
     酸素以外の元素の合計量を100原子%としたときの、Rの含有割合が10原子%以上、90原子%以下、及びZrの含有割合が10原子%以上、90原子%以下であり、
     酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、且つ電子線回折像が点状の回折スポットを示す複合酸化物。
  2.  酸素と、Ce及びPrから選ばれる少なくとも1種からなるRと、Zrと、アルカリ土類金属、Rを除く希土類元素、希土類元素及びZrを除く遷移金属元素、ハロゲン元素、B、C、Si、及びSから選ばれる少なくとも1種からなるMとを含み、
     酸素以外の元素の合計量を100原子%としたときの、Rの含有割合が10原子%以上、90原子%以下、Zrの含有割合が10原子%以上、90原子%未満、及びMの含有割合が0原子%より大きく、20原子%以下であり、
     酸化ジルコニウムに由来する正方晶系の結晶相を含有せず、且つ電子線回折像が点状の回折スポットを示す複合酸化物。
  3.  比表面積が2m2/g以下である請求項1又は2記載の複合酸化物。
  4.  400℃における酸素放出量が300μmol/g以上である請求項1記載の複合酸化物。
  5.  酸素以外の元素の合計量を100原子%としたときの、Ceの含有割合が0原子%以上、70原子%以下、Prの含有割合が20原子%以上、90原子%以下、並びにZrの含有割合が10原子%以上、80原子%以下であり、かつRの含有割合が20原子%以上、90原子%以下である請求項4記載の複合酸化物。
  6.  400℃における酸素放出量が300μmol/g以上である請求項2記載の複合酸化物。
  7.  酸素以外の元素の合計量を100原子%としたときの、Ceの含有割合が0原子%以上、70原子%以下、Prの含有割合が20原子%以上、90原子%以下、Zrの含有割合が10原子%以上、80原子%未満、並びにMの含有割合が0原子%より大きく、20原子%以下であり、かつRの含有割合が20原子%以上、90原子%以下である請求項6記載の複合酸化物。
  8.  700℃における酸素放出量が600μmol/g以上である請求項1記載の複合酸化物。
  9.  酸素以外の元素の合計量を100原子%としたときの、Ceの含有割合が20原子%以上、90原子%以下、Prの含有割合が0原子%以上、70原子%以下、並びにZrの含有割合が10原子%以上、70原子%以下であり、かつRの含有割合が30原子%以上、90原子%以下である請求項8記載の複合酸化物。
  10.  700℃における酸素放出量が600μmol/g以上である請求項2記載の複合酸化物。
  11.  酸素以外の元素の合計量を100原子%としたときの、Ceの含有割合が20原子%以上、90原子%以下、Prの含有割合が0原子%以上、70原子%以下、Zrの含有割合が10原子%以上、70原子%未満、並びにMの含有割合が0原子%より大きく、20原子%以下であり、かつRの含有割合が30原子%以上、90原子%以下である請求項10記載の複合酸化物。
  12.  400℃における酸素放出量が300μmol/g以上であり、かつ700℃における酸素放出量が600μmol/g以上である請求項1記載の複合酸化物。
  13.  酸素以外の元素の合計量を100原子%としたときの、Ceの含有割合が20原子%以上、90原子%以下、Prの含有割合が0原子%以上、70原子%以下、並びにZrの含有割合が10原子%以上、60原子%以下であり、かつRの含有割合が40原子%以上、90原子%以下である請求項12記載の複合酸化物。
  14.  400℃における酸素放出量が300μmol/g以上であり、かつ700℃における酸素放出量が600μmol/g以上である請求項2記載の複合酸化物。
  15.  酸素以外の元素の合計量を100原子%としたときの、Ceの含有割合が20原子%以上、90原子%以下、Prの含有割合が0原子%以上、70原子%以下、Zrの含有割合が10原子%以上、60原子%未満、並びにMの含有割合が0原子%より大きく、20原子%以下であり、かつRの含有割合が40原子%以上、90原子%以下である請求項14記載の複合酸化物。
PCT/JP2009/052321 2008-02-12 2009-02-12 複合酸化物 WO2009101984A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009512086A JP4331792B1 (ja) 2008-02-12 2009-02-12 複合酸化物
CN2009801127929A CN101998933B (zh) 2008-02-12 2009-02-12 复合氧化物
US12/867,033 US8389436B2 (en) 2008-02-12 2009-02-12 Composite oxide
EP09709675.4A EP2253591B1 (en) 2008-02-12 2009-02-12 Composite oxide
ZA2010/06470A ZA201006470B (en) 2008-02-12 2010-09-09 Composite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-061824 2008-02-12
JP2008061824 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009101984A1 true WO2009101984A1 (ja) 2009-08-20

Family

ID=40957015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052321 WO2009101984A1 (ja) 2008-02-12 2009-02-12 複合酸化物

Country Status (7)

Country Link
US (1) US8389436B2 (ja)
EP (1) EP2253591B1 (ja)
JP (1) JP4331792B1 (ja)
KR (1) KR101593683B1 (ja)
CN (1) CN101998933B (ja)
WO (1) WO2009101984A1 (ja)
ZA (1) ZA201006470B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120225367A1 (en) * 2009-11-27 2012-09-06 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2013073381A1 (ja) 2011-11-16 2013-05-23 株式会社三徳 複合酸化物
JP2017052683A (ja) * 2015-09-11 2017-03-16 第一稀元素化学工業株式会社 プラセオジム−ジルコニウム系複合酸化物およびその製造方法
JP2022042981A (ja) * 2020-09-03 2022-03-15 インディアン オイル コーポレイション リミテッド 酸化還元バッファー金属酸化物を含む二機能性空気電極用の電極触媒組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150067253A (ko) * 2012-10-08 2015-06-17 가부시키가이샤 산도쿠 복합 산화물의 제조 방법 및 복합 산화물 촉매
RU2698108C2 (ru) 2014-11-06 2019-08-22 Басф Се Композит на основе смешанных оксидов металлов для накопления кислорода
US20230090959A1 (en) * 2020-01-28 2023-03-23 Pacific Industrial Development Corporation Cerium-zirconium oxide-based oxygen ion conductor (czoic) materials with high oxygen mobility
CN112916018B (zh) * 2021-01-27 2022-06-28 成都理工大学 一种乙酸自热重整制氢的镨锆复合氧化物钴基催化剂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109020A (ja) 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物
JPH09278444A (ja) * 1996-04-05 1997-10-28 Santoku Kinzoku Kogyo Kk 酸素吸収放出能を有する複合酸化物及びその製造法
JPH10194742A (ja) 1996-12-27 1998-07-28 Anan Kasei Kk ジルコニウム−セリウム系複合酸化物及びその製造方法
JP2000072447A (ja) 1998-08-28 2000-03-07 Daihatsu Motor Co Ltd 酸素吸蔵性セリウム系複合酸化物
JP2001113168A (ja) 1999-10-20 2001-04-24 Shin Etsu Chem Co Ltd 酸化プラセオジムを含有する酸化物及びその製造方法
JP2004344878A (ja) * 2003-04-30 2004-12-09 Nikkei Meru Kk ジルコニウム基酸化物触媒及びその製造方法
JP2004345942A (ja) * 2003-04-30 2004-12-09 Nikkei Meru Kk ジルコニウム基複合酸化物及びその製造方法
JP2006068728A (ja) 2004-08-03 2006-03-16 Mazda Motor Corp 排気ガス浄化触媒

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699524B1 (fr) * 1992-12-21 1995-02-10 Rhone Poulenc Chimie Composition à base d'un oxyde mixte de cérium et de zirconium, préparation et utilisation.
FR2701471B1 (fr) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Procédé de synthèse de compositions à base d'oxydes mixtes de zirconium et de cérium, compositions ainsi obtenues et utilisations de ces dernières.
FR2701472B1 (fr) * 1993-02-10 1995-05-24 Rhone Poulenc Chimie Procédé de préparation de compositions à base d'oxydes mixtes de zirconium et de cérium.
JP3386594B2 (ja) * 1994-10-05 2003-03-17 株式会社三徳 酸素吸収・放出能を有する複合酸化物の製造法
FR2714370B1 (fr) * 1993-12-24 1996-03-08 Rhone Poulenc Chimie Précurseur d'une composition et composition à base d'un oxyde mixte de cérium et de zirconium, procédé de préparation et utilisation.
FR2720296B1 (fr) * 1994-05-27 1996-07-12 Rhone Poulenc Chimie Composés à base d'alumine, d'oxyde de cérium et d'oxyde de zirconium à réductibilité élevée, leur procédé de préparation et leur utilisation dans la préparation de catalyseurs.
US5837642A (en) * 1995-12-26 1998-11-17 Daihatsu Motor Co., Ltd. Heat-resistant oxide
US6248688B1 (en) * 1996-09-27 2001-06-19 Engelhard Corporation Catalyst composition containing oxygen storage components
US5898014A (en) * 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
US6107240A (en) * 1997-03-26 2000-08-22 Engelhard Corporation Catalyst composition containing an intimately mixed oxide of cerium and praseodymium
US5888464A (en) * 1997-04-08 1999-03-30 Engelhard Corporation Catalyst composition containing an intimately combined cerium-zirconium oxide
EP1035074B1 (en) * 1999-03-05 2007-02-14 Daiichi Kigenso Kagaku Co., Ltd. Zirconium- and cerium-based mixed oxide, method of production thereof, catalyst material comprising the mixed oxide and use of the catalyst in exhaust gas purification
JP4443685B2 (ja) * 1999-09-10 2010-03-31 三井金属鉱業株式会社 排気ガス浄化用助触媒の製造方法
US6458741B1 (en) * 1999-12-20 2002-10-01 Eltron Research, Inc. Catalysts for low-temperature destruction of volatile organic compounds in air
US6387338B1 (en) * 2000-03-15 2002-05-14 Delphi Technologies, Inc. Preparation of multi-component Ce, Zr, Mox high oxygen-ion-conduct/oxygen-storage-capacity materials
US6468941B1 (en) * 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
US6764665B2 (en) * 2001-10-26 2004-07-20 Engelhard Corporation Layered catalyst composite
CN1369460A (zh) * 2002-03-18 2002-09-18 内蒙古工业大学 一种铈锆基复合氧化物的制备方法
JP3758601B2 (ja) * 2002-05-15 2006-03-22 トヨタ自動車株式会社 吸蔵還元型NOx浄化用触媒
CN1206028C (zh) * 2003-04-28 2005-06-15 华东理工大学 一种纳米铈锆基复合氧化物及其制备方法
JP4217576B2 (ja) * 2003-09-30 2009-02-04 東京濾器株式会社 排気ガス浄化用触媒
CN1264606C (zh) * 2003-12-12 2006-07-19 天津化工研究设计院 一种铈基稀土复合氧化物材料的制法及用途
EP1632288B1 (en) * 2004-09-03 2012-06-20 Mazda Motor Corporation Exhaust gas purification catalyst and oxygen storage component for the same
GB0428555D0 (en) * 2004-12-30 2005-02-09 Magnesium Elektron Ltd Composite material for automotive catalyst applications and method of manufacturing
US7943104B2 (en) * 2006-04-13 2011-05-17 Umicore Ag & Co. Kg CE-ZR based solid solutions and methods for making and using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109020A (ja) 1994-10-05 1996-04-30 Santoku Kinzoku Kogyo Kk 酸素吸収・放出能を有する複合酸化物
JPH09278444A (ja) * 1996-04-05 1997-10-28 Santoku Kinzoku Kogyo Kk 酸素吸収放出能を有する複合酸化物及びその製造法
JPH10194742A (ja) 1996-12-27 1998-07-28 Anan Kasei Kk ジルコニウム−セリウム系複合酸化物及びその製造方法
JP2000072447A (ja) 1998-08-28 2000-03-07 Daihatsu Motor Co Ltd 酸素吸蔵性セリウム系複合酸化物
JP2001113168A (ja) 1999-10-20 2001-04-24 Shin Etsu Chem Co Ltd 酸化プラセオジムを含有する酸化物及びその製造方法
JP2004344878A (ja) * 2003-04-30 2004-12-09 Nikkei Meru Kk ジルコニウム基酸化物触媒及びその製造方法
JP2004345942A (ja) * 2003-04-30 2004-12-09 Nikkei Meru Kk ジルコニウム基複合酸化物及びその製造方法
JP2006068728A (ja) 2004-08-03 2006-03-16 Mazda Motor Corp 排気ガス浄化触媒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI MATSUI ET AL.: "Sanka Cerium-Sanka Zirconium Kagobutsu no Suiso Gus ni yoru Kangen Hanno", JAPANESE CONFERENCE ON CALORIMETRY AND THERMAL ANALYSIS, vol. 29, 15 October 1993 (1993-10-15), pages 132 - 133, XP008140682 *
See also references of EP2253591A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120225367A1 (en) * 2009-11-27 2012-09-06 Toyota Jidosha Kabushiki Kaisha Fuel cell
US9397349B2 (en) * 2009-11-27 2016-07-19 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2013073381A1 (ja) 2011-11-16 2013-05-23 株式会社三徳 複合酸化物
KR20140093269A (ko) 2011-11-16 2014-07-25 가부시키가이샤 산도쿠 복합 산화물
US10258964B2 (en) 2011-11-16 2019-04-16 Santoku Corporation Composite oxide
JP2017052683A (ja) * 2015-09-11 2017-03-16 第一稀元素化学工業株式会社 プラセオジム−ジルコニウム系複合酸化物およびその製造方法
JP2022042981A (ja) * 2020-09-03 2022-03-15 インディアン オイル コーポレイション リミテッド 酸化還元バッファー金属酸化物を含む二機能性空気電極用の電極触媒組成物
JP7317904B2 (ja) 2020-09-03 2023-07-31 インディアン オイル コーポレイション リミテッド 酸化還元バッファー金属酸化物を含む二機能性空気電極用の電極触媒組成物

Also Published As

Publication number Publication date
EP2253591A1 (en) 2010-11-24
EP2253591B1 (en) 2014-06-04
US8389436B2 (en) 2013-03-05
ZA201006470B (en) 2011-05-25
JP4331792B1 (ja) 2009-09-16
KR101593683B1 (ko) 2016-02-12
US20110064639A1 (en) 2011-03-17
CN101998933B (zh) 2013-04-03
KR20100116646A (ko) 2010-11-01
JPWO2009101984A1 (ja) 2011-06-09
EP2253591A4 (en) 2013-04-17
CN101998933A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4331792B1 (ja) 複合酸化物
JP4006976B2 (ja) 複合酸化物粉末とその製造方法及び触媒
EP2050497A1 (en) Exhaust gas purifying catalyst
US10258964B2 (en) Composite oxide
US20200399139A1 (en) Alumina-based composite oxide and production method for same
JP4432588B2 (ja) 触媒及び触媒の製造方法
JP4697284B2 (ja) 排気ガス浄化用触媒
JP2006043634A (ja) 排ガス浄化用触媒及び排ガス浄化用触媒の製造方法
JP4867794B2 (ja) 排ガス浄化用触媒及びその製造方法
US20180193819A1 (en) Exhaust gas purification catalyst and production method thereof
JP4979900B2 (ja) 排ガス浄化用触媒
JP2017189761A (ja) 排ガス浄化用触媒の製造方法
JP4655436B2 (ja) 排ガス浄化用触媒の処理方法
JP4483348B2 (ja) 触媒
JP2017132663A (ja) アルミナ系複合酸化物及びその製造方法
JP2007105632A (ja) 排ガス浄化触媒
CN114984969B (zh) 三效催化剂及其制备方法和应用
JP5332492B2 (ja) 排気ガス浄化用複合酸化物及びその製造方法
EP3560576B1 (en) Use of a nitrogen oxide storage material and exhaust gas purification method
EP2177258A1 (en) Exhaust gas purification catalyst
CN117504842A (zh) 排气净化用催化剂
JP2019188389A (ja) 窒素酸化物吸蔵材及び排ガス浄化方法
JP2018103093A (ja) 排ガス浄化触媒
JP2012245429A (ja) 貴金属担持触媒
JP2012217936A (ja) Nox浄化用触媒および触媒装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112792.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009512086

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107019286

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009709675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12867033

Country of ref document: US