[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009051271A1 - 光触媒膜、光触媒膜の製造方法、物品および親水化方法 - Google Patents

光触媒膜、光触媒膜の製造方法、物品および親水化方法 Download PDF

Info

Publication number
WO2009051271A1
WO2009051271A1 PCT/JP2008/069174 JP2008069174W WO2009051271A1 WO 2009051271 A1 WO2009051271 A1 WO 2009051271A1 JP 2008069174 W JP2008069174 W JP 2008069174W WO 2009051271 A1 WO2009051271 A1 WO 2009051271A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
film
photocatalytic film
photocatalyst
photocatalytic
Prior art date
Application number
PCT/JP2008/069174
Other languages
English (en)
French (fr)
Inventor
Naoki Tanaka
Takeshi Kitagawa
Daisuke Suematsu
Kazuyuki Takami
Original Assignee
Ube Nitto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co., Ltd. filed Critical Ube Nitto Kasei Co., Ltd.
Priority to US12/738,364 priority Critical patent/US20100298120A1/en
Priority to CN2008801212698A priority patent/CN101903102A/zh
Priority to EP20080840097 priority patent/EP2202000A1/en
Publication of WO2009051271A1 publication Critical patent/WO2009051271A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • Photocatalyst film photocatalyst film production method, article and hydrophilization method
  • the present invention relates to a photocatalyst film, a method for producing a photocatalyst film, an article, and a hydrophilization method. More specifically, the present invention provides a novel photocatalytic film that exhibits photoexcited superhydrophilicity under the irradiation of a solar light source but exhibits almost no decomposition activity without requiring any special treatment on the surface of titanium oxide. In particular, the present invention relates to an article having a photocatalyst film on its surface and a hydrophilization method using the article. Background art
  • photocatalytic functions for example, deodorization, antifouling, antibacterial, sterilization, and decomposition / removal of various substances that cause environmental pollution in wastewater and waste gas are being studied. Yes.
  • the photocatalyst when the photocatalyst is photoexcited, the surface of the photocatalyst film is contacted with water, as disclosed in, for example, International Patent Publication No. 9 6/2 9 3 75. It is also known to exhibit superhydrophilicity that becomes 10 degrees or less.
  • photocatalysts for example, to provide antifogging, drip-proofing, antifouling, anti-frosting, and snow-sliding properties, for example, noise barriers on highways, road reflectors .
  • Various reflectors, street lights, automobiles and other vehicle body coats, side mirrors or films for windows, building materials including window glass, road signs, roadside signs, frozen / refrigerated showcases, various lenses and sensors The use of photocatalytic membranes is being studied.
  • titanium oxide is one of the typical examples.
  • Anata There are three typical crystal systems: Ze-type, Rutile-type, and Brookite-type. These three crystal systems show photocatalytic activity, and are famous for their super-hydrophilicity in addition to the resolution of organic matter. In particular, it is generally known that the anatase type shows the highest activity.
  • the anatase-type titanium oxide is usually obtained from a hydrolysis condensate obtained by a sol-gel method using an organic titanium compound such as titanium alkoxide as a starting material, or a hydrated oxide of an inorganic titanium compound salt such as titanium tetrachloride or titanyl sulfate. It can be obtained by subjecting the obtained amorphous titanium oxide to a heat treatment. However, these usually require heat treatment at a high temperature of 400 ° C. or higher, which inevitably increases the cost, and it is difficult to form a film on a substrate having poor heat resistance. There are many problems.
  • a gel film containing a composite metal oxide or hydroxide in which a titanium compound and silicon alkoxide are blended at a predetermined molar ratio is formed from a solution containing silicon alkoxide and a hydrolyzable titanium compound. Then, a method for precipitating titania microcrystals belonging to anatase having a crystal diameter of about several 10 to 100 nm by contacting with hot water of 100 ° C. or less (for example, JP, 2 0 0 2-9 7 0 1 3).
  • anatase-type titanium oxide film directly on a material having low heat resistance, such as a plastic substrate, and then to form anatase type titanium oxide through a low-temperature heat treatment step.
  • a material having low heat resistance such as a plastic substrate
  • anatase type titanium oxide through a low-temperature heat treatment step.
  • the anatase-type titanium oxide obtained by these methods exhibits a high organic substance decomposing activity in addition to the expression of photoexcited super-hydrophilicity as well as general anatase-type titanium oxide.
  • the surface energy of anatase-type titanium oxide fine particles is modified by modifying the anatase-type titanium oxide surface with a fluorine-based silane coupling agent.
  • a self-grading photocatalytic coating agent that floats (segregates) on the surface of the coating film by lowering and weakening the interaction with one component of the binder is known (Japanese Patent Laid-Open No. 20 0 5- 1 3 1 6 4 0 No. publication).
  • a photocatalyst material having a mask-medium shape has been proposed by coating the surface of titanium oxide with an inert inorganic material as a photocatalyst and providing numerous pores (Patent No. 3 4 8 4 4 7 0). No. gazette).
  • the present invention does not require any special treatment on the surface of titanium oxide, and it is not necessary to provide a special intermediate layer with the substrate.
  • the present invention aims to provide a novel photocatalytic film that exhibits the properties but has reduced decomposition activity on organic substances.
  • Another object of the present invention is to provide a method for efficiently producing the photocatalyst film, an article having the photocatalyst film on the surface, and a hydrophilization method using the article.
  • Means for Solving the Problems '' As a result of extensive studies by the inventors of the present invention in order to achieve the above object, the acid-sodium decomposition function and the photoexcited superhydrophilic phenomenon in the photocatalyst film are recognized in all optical semiconductors. It ’s a common phenomenon I found that there are necessary conditions that must be met.
  • the valence band has sufficient oxidizing power to decompose organic substances
  • the conductive band has sufficient reducing power to reduce air, water, etc.
  • the photocatalyst constituting the film has an appropriate band gap (from this difference in band gap, the oxidative decomposition characteristics in titanium dioxide are The type becomes highly active and the rutile type becomes less active).
  • the reason why the photocatalyst film has photoexcited superhydrophilicity is not necessarily clear, holes generated by light absorption are trapped by lattice oxygen on the surface of the optical semiconductor and break the bond between metal atoms and oxygen atoms.
  • the valence band is formed by the electron orbit of the oxygen atom, and the oxidation is sufficient to decompose air, water, or some organic matter. It is necessary to have a high energy ranking, and the conductive band must have sufficient reducing power to reduce air, water, etc. In order to have this redox power, the photocatalyst constituting the film is appropriate. It is considered necessary to have a band gap.
  • the oxidative decomposability of the photocatalyst film is improved in proportion to the amount of light (number of photons). It was found that this can be achieved by irradiating (number of photons).
  • the wavelength range of sunlight that exhibits photoexcited super-hydrophilicity but has a light amount with reduced decomposition activity on organic substances was selected.
  • a photocatalyst having a bandgap whose energy value matches the energy value of the longest wavelength light in the selected wavelength range the ability to exhibit photoexcited superhydrophilicity under the irradiation of a solar light source was suppressed.
  • a novel photocatalytic film could be obtained.
  • the present inventors have found that in order to achieve the object, the main when the optical semiconductor particles contained in at least one major surface and exposed to half-width 1 5 n m or less of the light after the dark holding hydrophilization speed of the surface is, in the wavelength region of more than 3 7 0 nm of the irradiation light, 2 (1 / deg / min / 1 0 5) below, and the wavelength of the irradiated light is 3 0 0 ⁇ 3 6 0 nm in at least some areas, 2 (1 / deg / min / 1 0 5) or by a photocatalyst film, crystal diameter as the optical semiconductor crystallizate is a crystalline titanium oxide is in the range of.
  • Photocatalyst film contained on one main surface, or optical semiconductor with tube thickness in the range of 1 to 10 nm as crystallized optical semiconductor It has been found that a photocatalyst film containing carbon nanotubes on at least one main surface exhibits photoexcited superhydrophilicity under irradiation of a solar light source, but exhibits almost no decomposition activity on organic matter. Has been completed.
  • the hydrophilization rate when irradiated with light with a half-value width of 15 nm or less after holding in a dark place is less than 2 (1 / deg / min / 10 5 ) in the region where the wavelength of the irradiated light is 370 nm or more, and irradiation
  • a photocatalyst film characterized in that it contains at least one main surface as a photo-semiconductor crystallized photo-semiconductor particle having a crystal diameter in the range of 1 to 10 nm hereinafter referred to as photo-catalyst film II of the present invention II.
  • the titanium alkoxide is hydrolyzed and condensed with an organic polymer compound to form a complex whose content continuously changes from the surface in the depth direction.
  • a photocatalyst film (hereinafter referred to as the present photocatalyst film) characterized in that it contains at least one main surface as a photo-semiconductor crystallized photo-semiconductor nano tube having a tube thickness in the range of 1 to 10 nm Akira Photocatalyst Film II),
  • the titanium oxide surface is not subjected to special treatment, and it is not necessary to provide a special intermediate layer with the base material.
  • a novel photocatalyst film in which the decomposition activity against the above is suppressed, a method for efficiently producing the photocatalyst film, an article having the photocatalyst film on the surface, and a hydrophilization method using the article.
  • Figure 1 shows the power function approximation line obtained from the hydrophilization rate obtained by irradiating each photocatalyst film with light having a wavelength of 300 nm or more and measuring the hydrophilization rate.
  • FIG. 2 shows a transmission electron micrograph and a limited field diffraction image of the sample obtained in Example 1.
  • FIG. 3 is a graph showing the hydrophilization behavior of the sample obtained in Example 1 accompanying ultraviolet irradiation.
  • FIG. 4 is a graph showing the hydrophilization behavior of the sample obtained in Example 1 accompanying ultraviolet irradiation.
  • FIG. 5 is a graph showing the hydrophilization behavior of the sample obtained in Example 1 accompanying ultraviolet irradiation.
  • FIG. 6 is a graph showing the hydrophilization behavior of the sample obtained in Example 1 accompanying ultraviolet irradiation.
  • FIG. 7 is a graph showing the hydrophilization behavior of the sample obtained in Example 1 accompanying ultraviolet irradiation.
  • FIG. 8 is a view showing a transmission electron micrograph and a limited-field diffraction image of Sampu Nore obtained in Example 2.
  • FIG. 9 is a graph showing the hydrophilization behavior of the sample obtained in Example 2 with ultraviolet irradiation.
  • FIG. 10 is a graph showing the hydrophilization behavior of the sample obtained in Example 2 with ultraviolet irradiation.
  • FIG. 11 is a graph showing the hydrophilization behavior of the sample obtained in Example 2 with ultraviolet irradiation.
  • FIG. 12 is a graph showing the hydrophilization behavior of the sample obtained in Example 2 with ultraviolet irradiation.
  • FIG. 13 is a diagram showing a transmission electron micrograph and a limited-field diffraction image of the sample obtained in Example 3.
  • FIG. 14 is a graph showing the hydrophilization behavior of the sample obtained in Example 3 with ultraviolet irradiation.
  • FIG. 15 is a diagram showing a transmission electron micrograph and a limited-field diffraction image of the sample obtained in Example 4.
  • FIG. 16 is a graph showing the hydrophilization behavior of the sample obtained in Example 4 with ultraviolet irradiation.
  • FIG. 17 is a graph showing the hydrophilization behavior of the sample obtained in Example 4 with ultraviolet irradiation.
  • Figure 18 is a graph showing the hydrophilization behavior of the sump / re obtained in Comparative Example 1 with UV irradiation. is there.
  • Figure 19 is a graph showing the hydrophilization behavior of the sample obtained in Comparative Example 1 with UV irradiation.
  • FIG. 20 shows a transmission electron micrograph and a limited field diffraction image of the sample obtained in Example 5.
  • FIG. 21 is a graph showing the hydrophilization behavior of the sample obtained in Example 5 accompanying ultraviolet irradiation.
  • FIG. 22 is a graph showing the hydrophilization behavior of the sample obtained in Example 5 accompanying ultraviolet irradiation.
  • FIG. 23 is a graph showing the hydrophilization behavior of the sample obtained in Example 5 accompanying ultraviolet irradiation.
  • FIG. 24 is a graph showing the XPS depth profile results obtained in Example 5.
  • FIG. 25 is a graph showing the hydrophilization behavior of the sample obtained in Comparative Example 2 with ultraviolet irradiation.
  • FIG. 26 is a graph showing the hydrophilization behavior of the sample obtained in Comparative Example 2 with ultraviolet irradiation. ⁇ '
  • FIG. 27 is a graph showing the hydrophilization behavior of the sample obtained in Comparative Example 3 accompanying ultraviolet irradiation.
  • FIG. 28 is a graph showing the change with time of the contact angle of pure water accompanying the artificial sun lamp irradiation with respect to the thin film obtained in Example 6.
  • the photocatalyst film of the present invention is a photocatalyst film containing a photo-semiconductor crystallized substance on at least one main surface, wherein the main surface is hydrophilized by light irradiation, and irradiated with light having a half-value width of 15 nm or less.
  • the hydrophilization rate is less than 2 (l / degZm in / 10 5 ) in the region where the wavelength of the irradiated light is 370 nm or more, and at least one of the regions where the wavelength of the irradiated light is 300 to 360 nm.
  • Section 2 is characterized by being 2 (lZd egZm in / 10 5 ) or more.
  • the photocatalyst film of the present invention contains an optical semiconductor crystallized substance on at least one main surface, and is irradiated with light. By doing so, the main surface becomes hydrophilic. And it is designed to respond to only a specific range of wavelengths from the short wavelength end where the relative irradiance of all sunlight is small among the sunlight reaching the ground, and to develop hydrophilicity. Is.
  • the region where the hydrophilization rate is less than 2 (1 / deg / min / 10 5 ) is preferably 370 nm or more, and preferably 365 nm or more. Those are more preferred.
  • the region where the hydrophilization rate is 2 (1 / deg / min / 10 5 ) or more is preferably from 300 to 360 nm, more preferably from 300 to 355 nm.
  • the hydrophilization rate is calculated by calculating the number of photons (photons) at an irradiation dominant wavelength (maximum emission wavelength) for light of any specific wavelength with a half-width of 15 nm or less. 3.7 X 1 0 15 (quanta / cm 2 / s) This is the value obtained when irradiating with illuminance (approximately 2 mW / cm 2 when the main irradiation wavelength is 365 nm).
  • the photo-semiconductor particles constituting the photocatalytic film of the present invention have a hydrophilization rate of less than 2 (1 / deg / min / 10 5 ) in the region where the irradiation light wavelength is 370 nm or more, and light having a wavelength of 370 nm or more. It has a low responsiveness to organic substances, so it can suppress the decomposition activity on organic substances, and the hydrophilization rate is 2 (1 / deg / min / 10) in at least part of the region where the irradiation wavelength is 300 to 360 nm. 5 ) As described above, because of the high responsiveness to light with a wavelength of 300 to 360 nm, it is possible to effectively capture the wavelength at which hydrophilization occurs in sunlight reaching the ground (300 nm or more). . .
  • the photo-semiconductor crystallized material contained in the photocatalyst film of the present invention is such that the decomposition activity for organic matter at wavelengths of 300 to 360 does not cause a problem in practice, and the upper limit of the above wavelength region is the extent of this decomposition activity. Although it tends to be smaller as the wavelength becomes shorter, the hydrophilization rate is similarly slowed. Therefore, it is preferable to design the upper limit wavelength that responds to light to an optimum wavelength according to the application.
  • the hydrophilization rate was measured by irradiating light with a wavelength of 300 nm or more with a half-value width of 15 nm or less, and in the power function approximation line of the obtained hydrophilization rate and the irradiation main wavelength
  • a photocatalytic film containing commercially available anatase-type titanium oxide corresponding to the photocatalytic film obtained in Comparative Example 2 described later
  • Photocatalytic film containing yopiruruyl-type titanium oxide corresponding to the photocatalytic film obtained in Comparative Example 3 described later
  • the above wavelengths were around 376 nm and 405 nm, respectively. These are almost consistent with the generally known absorption edge.
  • the photocatalytic film indicated by A in FIG. 1 corresponding to the photocatalytic film of S WM 900 h obtained in Example 5 described later
  • FIG. The photocatalytic film indicated by B has a hydrophilization rate of 2 (1 / deg / min / 10 5 ). Since the wavelengths are 341 ⁇ and 365 nm, respectively, and there is no or very little absorption (response) to light with a wavelength of 370 nm or more, it does not exhibit organic photolysis activity, which is one of the photocatalytic properties in this region.
  • these photocatalytic films have a region in which the hydrophilization speed is 2 (1 / deg / min / 10 5 ) or more at a wavelength of 300 to 360 nm, and therefore it can be understood that these photocatalytic films exhibit sufficient hydrophilicity. it can.
  • the commercially available anatase-type titanium oxide and rutile-type titanium oxide exhibit light absorption in the wavelength region of 370 nm or more has a higher relative radiation intensity in sunlight compared to the case of less than 370 nm.
  • the above-mentioned anatase-type titanium oxide and rutile-type titanium oxide are considered to have a hydrophilic property and are likely to exhibit photodegradability.
  • the hydrophilization speed is 2 (1 / deg / min / 10 5 ) or more in the wavelength range of 300 to 360 nm. It is considered that the photodegradability of organic substances can be suppressed while exhibiting photoexcited super hydrophilicity (at 300 nm or more).
  • the photocatalyst film I of the present invention preferably has the characteristics of a photocatalyst film II, a photocatalyst film III or a photocatalyst film IV described below.
  • the photocatalyst film II of the present invention is characterized in that it contains, as a photo semiconductor crystallized product, photo semiconductor particles having a crystal diameter in the range of 1 to 1 O nm on at least one surface.
  • the optical semiconductor materials used at this time are titanium oxide, tungsten oxide, zinc oxide, and other optical semiconductors with a bandgap of 3.4 eV or less.
  • the bandgap valence band is formed by oxygen orbitals.
  • the bandgap conduction band is preferably a semiconductor having a sufficient reducing power that can reduce air, water, etc. while having an energy level sufficient to decompose air, water, or some organic matter. .
  • titanium oxide is an example of a preferable optical semiconductor material.
  • the crystallization titers contained in the photocatalyst film II of the present invention are those having a crystal diameter in the range of 1 to 10 nm, particularly those having a crystal diameter in the range of 3 to 10 nm. Is preferred.
  • titanium dioxide having a small average particle diameter of about 20 nm is known as an optical semiconductor, and such an optical semiconductor made of titanium dioxide has the ability to decompose and remove various substances.
  • an optical semiconductor made of titanium dioxide has the ability to decompose and remove various substances.
  • super-hydrophilic performance was excellent, as described above, these general optical semiconductors have excellent decomposition performance under the irradiation of a solar light source, when applied directly to an organic base material. There was a technical problem of eroding organic base materials.
  • the present invention has been completed by finding that it exhibits photoexcited superhydrophilicity under irradiation with a solar light source but exhibits almost no decomposition activity.
  • the wavelength of the ultraviolet rays of sunlight reaching the earth's surface is about 300 or more. Therefore, as a result of examination under the assumption of solar light source irradiation such as outdoor use, the lower limit of the crystal diameter of crystalline titanium oxide that can respond with ultraviolet rays in the short wavelength region of 300 or more is about 1 nm. It was also found.
  • photoexcited superhydrophilicity is a phenomenon that occurs in the outermost layer of the optical semiconductor.
  • holes generated by light absorption are trapped in lattice oxygen on the surface of the optical semiconductor and the Ti-O bond It is thought that it is expressed by inducing the coordination of the hydroxyl group by cutting off. Therefore, the present inventors have found that photoexcited superhydrophilicity is a phenomenon that occurs when water in the air is adsorbed in multiple layers on the reformed portion if there is enough light to modify only the surface of the optical semiconductor. Therefore, we thought that a smaller amount of light may be used than when decomposing activity is exhibited.
  • the amount of light in sunlight that falls on the surface of the earth rather than the absorption region of the UV-responsive photocatalytic substance that is commonly seen is dared.
  • the use of an optical semiconductor that does not respond to force in the wavelength region of light leads to the idea that a photocatalytic substance that does not exhibit decomposition activity and exhibits only super hydrophilicity can be obtained under sunlight irradiation. I got it.
  • the photocatalytic film II of the present invention was completed by combining the above-mentioned knowledge about the relationship between the crystal diameter and the response wavelength to light.
  • the photocatalytic film II of the present invention preferably has the properties of the photocatalytic film I of the present invention.
  • the photocatalytic film II of the present invention is preferably such that the photo-semiconductor crystallized material contains crystalline titanium oxide.
  • the crystalline titanium oxide may be any of anatase type, rutile type, brookite type crystalline titanium oxide, or the above crystalline titanium oxide containing crystal defects and crystal distortions. A combination of two or more of these crystalline titanium oxides may be used.
  • the crystal diameter in the total crystalline oxytitanium contained in the photocatalytic film II of the present invention is 1 to 1.
  • the proportion of crystalline titanium oxide in the range of 0 is preferably 90% or more, 1
  • the crystal diameter means the maximum length of the lattice fringes of the crystal grains when the cross section of the crystalline titanium oxide is observed with a transmission electron microscope, and the crystal diameter is 1 ⁇ 1
  • the content of crystalline titanium oxide in the range of 0 nm is the ratio of the number of crystals with a crystal diameter in the range of 1 to 10 nm when the cross section of the photocatalyst film is observed with a transmission electron microscope. Is obtained by calculating.
  • the content of crystalline titanium oxide having a crystal diameter in the range of 1 to 10 nm on at least one main surface is preferably 3% or more, and 5% or more. It is more preferable.
  • the photocatalyst film II of the present invention preferably has at least 5 crystal grains by cross-sectional observation in the range of 50 nm ⁇ 50 nm of the photocatalyst film by a transmission electron microscope. More preferably, there are 0 or more. When the number of crystal grains in the above observation range is 5 or more, a photocatalytic film having a function of imparting superhydrophilicity but having suppressed decomposition activity can be obtained.
  • the photocatalyst film II of the present invention is preferably one in which crystalline titanium oxide is dispersed in amorphous titanium oxide.
  • amorphous titanium oxide for example, when observed with a transmission electron microscope, amorphous It is preferable that crystallized titanium particles are scattered in an island shape in the sea of titanium oxide.
  • the photocatalytic film II of the present invention may contain crystalline titanium oxide as a main component on both main surfaces of the film, but only one main surface contains crystalline titanium oxide as a main component. Moyo.
  • a surface containing crystalline titanium oxide as a main component can be used as a photocatalyst film by using it as an exposed surface.
  • the photocatalytic film II of the present invention is a non-crystalline titanium oxide dispersed in the case where cracks are caused due to a difference in linear expansion coefficient between the substrate and the coating film or poor adhesion when applied to an organic substrate.
  • a film containing crystalline titanium oxide preferably a film having a component gradient in which the content of amorphous titanium oxide changes in the thickness direction of the film.
  • the surface containing crystalline titanium oxide as the main component is used as an exposed surface to the outside, and the main surface on the opposite side is used as an organic component as a main component, thereby adhering to various organic substrates.
  • the strain in the film caused by the difference in linear expansion coefficient and the like can be reduced, and a film that is stable for a long period of time can be formed even on an organic substrate.
  • the enormous thickness of the photocatalytic film II is not particularly limited, but is preferably 1 / m or less, more preferably 0.01 to 1 ⁇ , and 0.03 to 0.5 m. Is more preferable, and 0.05 to 0.3 ⁇ is particularly preferable.
  • the photocatalyst film II of the present invention preferably has a limit contact angle with water of less than 20 °, more preferably 10 ° or less, when exposed to sunlight.
  • the photocatalytic film II of the present invention has a methylene blue decomposition rate at the time of 3 mW / cm 2 artificial sunlight irradiation, a rate of decrease in absorbance at the maximum absorption wavelength of the applied methylene blue (decomposition activity) AABS Zmin in 0 1 or less is preferable, 0.05 or less is more preferable, 0.01 or less is more preferable, and 0.01 or less is more preferable.
  • the contact angle with water and the decomposition rate of methylene blue can be controlled, for example, by adjusting the crystal diameter of crystalline titanium oxide.
  • the photo-semiconductor crystallized product is hydrolytic condensation of titanium alkoxide.
  • the titanium alkoxide is hydrolyzed and condensed with the organic polymer compound to form a complex whose content continuously changes from the surface in the depth direction. preferable.
  • titanium alkoxide examples include titanium tetraalkoxide described below
  • organic compound examples include an organic polymer compound having a hydrolyzable metal-containing group described below.
  • the photocatalytic film II of the present invention preferably further comprises metal compound-based fine particles other than the photo-semiconductor crystallized product, and specific examples of the metal compound-based fine particles other than the photo-semiconductor particles are as described later. However, silica-based fine particles are particularly preferable.
  • the photocatalytic film II of the present invention preferably further comprises at least one metal compound selected from inorganic metal salts, organic metal salts, and alkoxides of metals other than titanium and silicon.
  • the metal compound are as described later, and aluminum nitrate is particularly preferable.
  • the photocatalytic film II of the present invention is preferably produced by the method for producing a photocatalytic film of the present invention described below.
  • the method for producing a photocatalytic film of the present invention is characterized in that an amorphous titanium oxide film is heat-treated at a temperature of 10 ° C. or lower in the presence of moisture.
  • the photocatalyst is preferably produced in an environment of a temperature of 100 ° C. or lower and a relative humidity of 5% or higher.
  • the temperature is 30 to 60 ° C and the relative humidity is 50 to 80% while irradiating under the condition of irradiance 5 to 40 OW / m 2. It is mentioned as one of the suitable manufacturing conditions.
  • It has a wavelength in an arbitrary region selected from a wavelength range of 2500 to 1200 nm, and light including ultraviolet light includes at least a wavelength of 2500 to 2600 nm, 290 to 315 nm, 3 5 0 is preferably one to 1 including the light 2 0 0 nm wavelength region of, be irradiated under the conditions of irradiance 2 0 0 ⁇ 4 0 0 WZm 2, further preferred.
  • it is preferable to spray water at least once.
  • the power of various equipment that can provide a constant temperature and humidity environment ⁇ Carbon arc type sunshine weather meter, xenon weather meter Examples include a metering weather meter and a dew panel weather meter.
  • the titanium oxide compound of the present invention can be produced in the same manner by exposure in an outdoor environment where the same conditions as above can be obtained.
  • the titanium tetraalkoxide used as a raw material is a titanium tetraalkoxide having about 1 to 4 carbon atoms in the alkoxyl group. Used.
  • the four alkoxyl groups may be the same or different, but the same one is preferably used from the viewpoint of easy availability.
  • titanium tetraalkoxide examples include titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide, titanium tetra-n-butoxide, titanium tetraisobutoxide, titanium tetra-sec-butoxide and titanium tetra-ter t-ptoxide.
  • titanium tetramethoxide titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide, titanium tetra-n-butoxide, titanium tetraisobutoxide, titanium tetra-sec-butoxide and titanium tetra-ter t-ptoxide.
  • titanium tetraalkoxide examples include titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide,
  • the titanium tetraalkoxide is hydrolyzed and condensed to prepare a titania sol solution.
  • This hydrolysis and monocondensation reaction of titanium tetraalkoxide is preferably carried out by using alcohols having an ether-based oxygen having 3 or more carbon atoms as a solvent and allowing water to act on titanium tetraalkoxide in the presence of an acidic catalyst.
  • Examples of the alcohols having an etheric oxygen having 3 or more carbon atoms include solvents having an interaction with titanium tetraalkoxide, such as ethylene dallicol monomethyl ether, ethylene glycol monomethenoate ethere, ethylene glyconole.
  • Cellosolve solvents such as monopropynoleatenole, ethylene glycol monoptyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethylenoatenore, diethylene glycol monopropyl ether, diethylene glycol noremonobutinore 1 tenor, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene Or the like can be mentioned Nguriko over mono Petit ether.
  • a cellosolve solvent having a strong interaction with titanium tetraoxide is particularly preferable. These solvents may be used alone or in combination of two or more.
  • the tita-ter sol solution obtained by the hydrolysis-one-condensation reaction of titanium tetraalkoxide can be stabilized. It is difficult for gelation and particle formation to occur even if the process is continued.
  • Hydrolytic monocondensation reaction of titanium tetraalkoxide is about 4 to 20 times mol, preferably 5 to 12 times mol of the above alcohols, and 0.5 to mol and less than 4 times mol of titanium tetraalkoxide.
  • an acidic catalyst such as hydrochloric acid, sulfuric acid, nitric acid, etc.
  • the acidic catalyst is usually used in an amount of 0.1 to 1.0 times mol, preferably 0.2 to 0.7 times mol, with respect to titanium tetraalkoxide.
  • the amorphous titanium oxide film is formed of a coating agent containing titanium tetraalkoxide and an organic polymer compound,
  • a material having a component gradient structure in which the alkoxide is hydrolytically condensed with the organic polymer compound and the content continuously changes in the thickness direction from the film surface may be used.
  • the amorphous titanium oxide film is coated with a coating agent containing a complex formed by hydrolytic condensation of titanium alkoxide and an organic polymer compound, so that the hydrolysis condensate of titanium alkoxide can be obtained. You may use what changes a content rate continuously toward the depth direction from the surface.
  • the amorphous titanium oxide film having the above-described component gradient structure it is possible to obtain a photocatalytic film in which only one main surface contains crystalline titanium oxide as a main component.
  • the amorphous titanium oxide film having the above-described component gradient structure includes, for example, (A) a titania sol obtained by hydrolytic condensation of titanium tetraoxide, and (B) a metal-containing substance capable of binding to titanium oxide by hydrolysis in the molecule. It can be formed using a coating agent containing an organic polymer compound having a group (sometimes referred to as a hydrolyzable metal-containing group).
  • the organic polymer compound having a hydrolyzable metal-containing group as the component (B) includes, for example, (a) an ethylenically unsaturated monomer having a hydrolyzable metal-containing group, and (b) ethylene containing no metal It can be obtained by copolymerizing a polymerizable unsaturated monomer.
  • the ethylenically unsaturated monomer having a hydrolyzable metal-containing group as the component (B) (a) is represented by the general formula (I)
  • R 1 is a hydrogen atom or a methyl group
  • A is an alkylene group, preferably an alkylene group having 1 to 4 carbon atoms
  • R 2 is a hydrolyzable group or a non-hydrolyzable group.
  • the first is hydrolysis also, (a) must be a component hydrolyzable group capable of chemically bonding, and when R 2 is plural, each R 2 are each a same M 1 may be a metal atom such as silicon, titanium, zirconium, indium, tin, and aluminum, and k is the valence of the metal atom M 1 .
  • the hydrolyzable group that can be chemically bonded to the component (A) by hydrolysis of R 2 includes, for example, halo such as an alkoxyl group, an isocyanate group, and a chlorine atom.
  • a non-hydrolyzable group that does not chemically bond to the component (A) is preferably a lower alkyl group, for example.
  • Examples of the metal-containing group represented by 1 ! ⁇ in the general formula (I) include trimethoxysilyl group, triethoxysilyl group, tri-n-propoxysilyl group, triisopropoxysilyl group, tri-n-butoxy group.
  • Silyl group triisobutoxysilyl group, trie sec monobutoxysilyl group, trie tert-butoxysilyl group, trichlorosilyl group, dimethylmethoxysilyl group, methyldimethyloxysilyl group, dimethylchlorosilyl group, methyldichlorosilyl group, triisocyanatosilyl group , Methyl diisocyanatosilyl group, trimethoxytitanium group, triethoxytitanium group, tri-n-propoxytitanium group, triisopropoxytitanium group, tri-n-butoxytitanium group, triisobutoxytitanium group, trie sec-Butoxytitanium group, Tri-tert-Butoxytitanium group, Trichloro-titanium group, Trimethoxyzinoleconium group, Triatoxizirconium group, Trie ⁇ -Propoxyzirconium group, Tri
  • One kind of the ethylenically unsaturated monomer of component (a) may be used, or two or more kinds may be used in combination.
  • examples of the ethylenically unsaturated monomer that does not contain a metal as the component (b) include: ... (! I).
  • R 3 is a hydrogen atom or a methyl group
  • X is a monovalent organic group.
  • R 3 is the same as described above, and R 4 represents a hydrocarbon group.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an epoxy group, a halogen atom or a hydrocarbon group having an ether bond.
  • a linear or branched alkyl group having 1 to 10 carbon atoms Preferred examples include a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 10 carbon atoms.
  • alkyl groups having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, and various butyl, pentyl, hexyl, octyl, and decyl groups. Can be mentioned.
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, and a cyclohexyl group
  • examples of the aryl group having 6 to 10 carbon atoms include a phenyl group.
  • examples of the aralkyl group having 7 to 10 carbon atoms include benzyl group, methylbenzyl group, phenethylyl group, naphthylmethyl group, etc. .
  • Examples of ethylenically unsaturated monomers represented by the general formula (II—a) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, Examples include hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and the like. These may be used alone or in combination of two or more You may use it in combination.
  • the epoxy group represented by R 6 , the halogen atom, or the hydrocarbon group having an ether bond may have 1 to 10 carbon atoms.
  • Preferred examples include linear or branched alkyl groups, cycloalkyl groups having 3 to 10 carbon atoms, aryl groups having 6 to 10 carbon atoms, and aralkyl groups having 7 to 10 carbon atoms.
  • a chlorine atom and a bromine atom are preferable.
  • Specific examples of the hydrocarbon group include the same groups as those exemplified in the description of R 4 in the above general formula (II 1a).
  • Examples of the ethylenically unsaturated monomer represented by the general formula ( ⁇ —b) include glycidyl (meth) acrylate, 3-glycidoxypropyl (meth) acrylate, 2- (3, 4 Preferred examples include oxycyclohexyl) ethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-bromoethyl (meth) acrylate, and the like.
  • the ethylenically unsaturated monomer represented by the general formula (II) includes styrene, ⁇ -methyl / restyrene, ⁇ -acetoxystyrene, m-, o-mono or p-bromo.
  • Stabilizers for polymerizable polymers having ethylenically unsaturated groups such as styrene, m-, o- or p-chlorostyrene, m-, o- or p-vinino-renoenol, 1 or 2-bur naphthalene
  • an antioxidant, an ultraviolet absorber and a light stabilizer having an ethylenically unsaturated group can be used. These may be used alone or in combination of two or more.
  • the former ethylenic monomer When the ethylenically unsaturated monomer represented by the general formula (II-1a) and the ethylenically unsaturated monomer represented by the general formula (II-1b) are used in combination, the former ethylenic monomer
  • the latter ethylenically unsaturated monomer is preferably used in an amount of 1 to 100 mol% with respect to the unsaturated monomer.
  • an organic polymer compound having a hydrolyzable metal-containing group as component (B) can be obtained.
  • a coating liquid can be obtained by adjusting the viscosity to be suitable for coating. At this time, if necessary, water and / or an acidic catalyst may be added to the coating solution.
  • the coating agent used for forming the film may contain metal compound-based fine particles other than optical semiconductor particles, preferably silica fine particles. it can.
  • the resulting photocatalytic film contains silica fine particles in the above-mentioned component gradient film, as well as the effect of adjusting the refractive index and maintaining super hydrophilicity even in the dark. Has the effect of sustaining.
  • silica fine particles colloidal silica is preferred.
  • the colloidal silica is high-purity silicon dioxide (S I_ ⁇ 2) a product that is colloidally dispersed in water or an alcohol solvent, the average particle size is usually l to 2 0 0 nm, preferably The range is 5 to 50 u na.
  • S I_ ⁇ 2 high-purity silicon dioxide
  • the reaction is not terminated, so it is easily eluted with water, and the photocatalyst film containing it is inferior in water resistance.
  • colloidal Siri force is a reaction-terminated fine particle, so it is difficult to elute with water, and a photocatalyst film containing it has good water resistance.
  • the coating agent used for forming the amorphous titanium oxide film having the above-described component gradient structure includes inorganic metal salts, organic metal salts, titanium and silicon as substances that adjust the crystal formation of amorphous titanium oxide. It is possible to contain at least one metal compound selected from alkoxides of other metals.
  • aluminum nitrate, aluminum acetate, anoleum sulfate, aluminum chloride salt, zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium chloride and other salts, and hydrates of these inorganic salts aluminum Aluminum chelates such as triacetyl acetonate, metal alkoxides such as tetra-n-propoxyzinolecoumum, tetraethoxysilane, pheny / ret. Lithoxysilane, and hydrolysates or condensates of these compounds Can be mentioned. Of these, aluminum nitrate and hydrates thereof are particularly preferable. As the crystal formation regulating substance, one kind may be used alone, or two or more kinds may be used in combination.
  • the microcrystal formation behavior of the titanium oxide in the photocatalyst film to be formed (for example, crystal formation rate, crystal growth rate, etc.) Can be adjusted.
  • the coating liquid obtained as described above on the organic base material has a dry coating thickness of usually 0.01 to 1 ⁇ , preferably 0.00.
  • Dip coating method, spin coating method, spray coating method, bar coating method, knife coating method, roll coating method, blade coating method, die coating method, gravure coating method, etc. so that it is in the range of 0 3 to 0.3 ⁇ It is preferable to apply by a known means and volatilize the solvent to form a coating film.
  • the organic base material examples include talyl resins such as polymethyl methacrylate, styrene resins such as polystyrene and ABS resins, polyolefin resins such as polyethylene and polypropylene, and polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
  • talyl resins such as polymethyl methacrylate
  • styrene resins such as polystyrene and ABS resins
  • polyolefin resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
  • 6 Polyamide resin such as Nylon and 6, 6-Nylon, Polychlorinated Bull resin, Polycarbonate resin, Polyphenylene sulfide resin, Polyphenylene sulfide resin, Polyimide resin, Cellulose acetate
  • examples thereof include a base material made of a cellulose-based resin.
  • These organic base materials can be subjected to a surface treatment by an oxidation method, a concavo-convex method or the like, if desired, in order to further improve the adhesion with the component gradient film according to the present invention.
  • oxidation method include corona discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone 'ultraviolet irradiation treatment, and the like.
  • unevenness method include sand blast method, solvent treatment, and the like. Law.
  • an organic coating film is formed on the surface of a substrate made of a material other than an organic material, for example, a metal material, glass or a ceramic material, or other various inorganic or metal materials. The thing which has is included.
  • the coating film thus formed is usually subjected to heat treatment at a temperature of 0 to 200 ° C., preferably 15 to 150 ° C. It is preferable to form a crystalline titanium oxide film.
  • the obtained film surface is scraped and scraped, and the carbon and titanium atom content on the film surface over time is determined by X
  • the structure can be confirmed by measuring with line photoelectron spectroscopy. Next, the photocatalyst III of the present invention will be described.
  • the photocatalytic film III of the present invention is characterized in that it contains, as an optical semiconductor crystallized product, an optical semiconductor nanotube having a tube thickness in the range of 1 to 10 nm on at least one main surface.
  • the photo-semiconductor nanotubes included in the photocatalyst film III of the present invention mean a nano-sized tube-like material made of a photo-semiconductor material, and examples of such photo-semiconductor nanotubes include, for example, Japanese Patent Laid-Open No. 10-1552.
  • the titanium oxide nanotubes described in No. 23 are known.
  • the photo-semiconductor nanotubes included in the photocatalyst film III of the present invention have a tube thickness in the range of 1 to 10 nm, and those having a tube thickness in the range of 3 to 6 nm are particularly preferable.
  • the tube diameter (diameter of the entire vertical cross section including the void) and tube length (length in the longitudinal direction of the tube) are not particularly limited, but the tube diameter is 5 to 80 ⁇ ⁇ , tube length Is preferably about 5 to 100 nm.
  • the tube thickness, tube diameter, and tube length mean the average values of the thickness, diameter, and length in the crystal portion when the optical semiconductor nanotube is observed with a transmission electron microscope.
  • the constituent material of photo-semiconductor nanotubes is an optical semiconductor with a band gap of 3.4 eV or less, and in particular, the band gap valence band is formed by oxygen electron orbits, and air, water, or something.
  • the bandgap conduction band contains a semiconductor with sufficient reducing power that can reduce air, water, etc., even though it has an energy level sufficient to decompose the organic matter. preferable.
  • optical semiconductor material examples include those containing crystalline titanium oxide, crystalline tungsten oxide, crystalline zinc oxide, and the like, and among these, those containing crystalline titanium oxide. preferable.
  • the crystalline titanium oxide may be any of anatase type, rutile type, brookite type crystalline titanium oxide, or the above crystalline titanium oxide containing crystal defects and crystal distortions. A combination of two or more of these crystalline titanium oxides may be used.
  • the atomic arrangement of titanium oxide nanotubes basically has a periodic structure similar to the anatase type.
  • the tube thickness is 3-5 atomic layer level (about 3-5 nm) and it is only in one direction, but less than 5 nm. have.
  • the content ratio of the photo-semiconductor nanotubes having a tube thickness in the range of 1 to 10 ntn on at least one main surface is preferably 3% or more, and 5% or more. Is more preferred! /.
  • the photocatalyst film III of the present invention may further contain a binder component.
  • a binder component when the photocatalyst-containing liquid is applied to an organic substrate, it is preferably mixed with a binder having good weather resistance. .
  • binders with good weather resistance examples include acrylic resins, acrylic silicone resins, and partial hydrolysis / polycondensates of alkyl metal alkoxides. It is also possible to use various organic / inorganic binders with improved weather resistance by containing a UV absorber or a radical scavenger.
  • the photocatalytic film III of the present invention may contain a photo-semiconductor nanotube as a main component on both main surfaces of the film, but only one main surface may contain a photo-semiconductor nanotube as a main component. .
  • the photocatalyst film III of the present invention may further comprise metal compound-based fine particles other than the photo-semiconductor crystallized product, and the metal compound-based fine particles other than the photo-semiconductor crystallized product are preferably silli force-based fine particles.
  • the photocatalyst film III of the present invention contains silica-based fine particles, in addition to the effect of improving the strength and hardness of the coating film, the effect of adjusting the refractive index is also maintained in super hydrophilicity even when held in place. It has the effect of sustaining and is suitable.
  • the silica-based fine particles, colloidal silica is preferred, the colloidal silica, be one obtained by the colloidal and high-purity silicon dioxide (S io 2) are dispersed in water or an alcohol-based solvent, an average particle diameter, Usually, it is in the range of 1 to 200 nm, preferably 5 to 50 nm.
  • the film thickness of the photocatalyst film ⁇ is not particularly limited, but is preferably 50 nm or more, more preferably 100 nm or more, and 10 00 ⁇ ! More preferably, it is ⁇ 10 ⁇ m or less.
  • the photocatalytic film III of the present invention preferably has the properties of the photocatalytic film I of the present invention.
  • the photocatalyst film III of the present invention preferably has a limit contact angle with water of less than 20 degrees during sunlight irradiation, more preferably 10 degrees or less.
  • the photocatalytic film of the present invention has a methylene blue decomposition rate when irradiated with artificial sunlight of 3 mW / cm 2 , and a rate of decrease in absorbance at the maximum absorption wavelength of the applied methylene blue (decomposition activity) :: 83 111 3 ⁇ 4 [11 is preferably 0.1 or less, more preferably 0.05 or less, more preferably 0.0 1 or less, and 0.0 0 15 or less Is more preferable.
  • the contact angle with water and the decomposition rate of methylene blue can be controlled, for example, by adjusting the length and content ratio of the photosemiconductor nanotube crystal made of crystalline titanium oxide or the like.
  • the method for evaluating the contact angle with water and the decomposition activity of methylene blue is the same as that of the photocatalyst film II of the present invention, and details of the method will be described later.
  • a method for producing the photo-semiconductor nanotube constituting the photocatalyst film III of the present invention there can be mentioned a method for producing crystalline titanium oxide powder by subjecting the crystalline titanium oxide powder to a high pressure and high pressure for a predetermined time.
  • the crystalline titanium oxide constituting the crystalline titanium oxide powder used as a raw material may be composed of any one of anatase type, rutile type and brucite type, or a mixed phase containing two or more of these. It may consist of. Efficient small tube structure
  • the crystalline titanium oxide powder is preferably composed of a mixed phase of a rutile crystal and an anatase crystal, and a volume ratio (rutile It is more preferable that the anatase type is in the range of 20 80 to 80 Z 20.
  • the particle size of the crystalline oxytitanium powder is preferably 20 rim or more. Although depending on the manufacturing method, it is difficult to form a suitable tube shape in the obtained optical semiconductor nanotube when the particle diameter is less than 20 nm.
  • the alkali treatment of the crystalline titanium oxide powder is preferably performed while being heated in a temperature of about 100 ° C. to 180 ° C. for a predetermined time in a state of being enclosed in a sealed container.
  • the alkaline solution used for the alkali treatment examples include an aqueous NaOH solution.
  • the concentration is preferably about 1 N to 20 N.
  • nano-rod-shaped titanium oxide that does not have a hollow part may be formed.
  • Nanorod-shaped titanium oxide has a panda gap of 3.4 e. Since it is less than V, the desired hydrophilic property cannot be obtained.
  • the heating temperature is less than 100 ° C., the generation efficiency of the photo-semiconductor nanotubes is deteriorated, and there is a problem that appropriate adjustment of the heating time is required.
  • the heating time varies depending on the raw material and the heating temperature, it cannot be specified unconditionally. However, for example, in the case of processing at 180 ° C., it is preferable that the heating time greatly exceeds 20 hours.
  • reaction solution after the alkali treatment is then preferably neutralized with an acid, further exposed to an acidic region for fibrillation treatment, and then neutralized again with a dispersant.
  • a tetra (n- butyl) ammonium hydroxide can be mentioned.
  • the optical semiconductor nanotube constituting the photocatalytic film III of the present invention can be obtained.
  • the tube diameter and the tube length of the obtained optical semiconductor nanotube can be adjusted by the raw material and the processing method, but the tube length can also be adjusted to be shorter by ultrasonic treatment or the like.
  • the ultrasonic treatment is preferably performed after the alkali treatment step and before the defibration treatment step.
  • the optical semiconductor film obtained as described above is used.
  • a coating liquid can be obtained by adjusting a mixed liquid obtained by mixing a notube dispersion liquid with a binder having better weather resistance to a viscosity suitable for coating.
  • binders with good weather resistance examples include acrylic resins, acrylic silicone resins, and partial hydrolysis / polycondensates of alkyl metal alkoxides.
  • various organic / inorganic binders containing a UV absorbing agent and a radical scavenger to improve the weather resistance can also be used.
  • the coating solution may contain various additives, fillers, pigments and the like as required, as long as the object of the present invention is not impaired.
  • the additive include metal compound-based fine particles.
  • the metal compound-based fine particles silica-based fine particles are preferable.
  • the silica-based fine particles colloidal silica is preferable.
  • the colloidal silica is a high purity silicon dioxide (S I_ ⁇ 2) be one dispersed in water or an alcohol-based solvent was colloidal, average particle diameter, usually 1 to 2 0 0 nm, preferably It is in the range of 5 to 50 nm.
  • Silica fine particles may be hydrolyzed condensate of silicon alkoxide, but the hydrolyzed condensate of silicon alkoxide may not finish the reaction, in which case it is easily eluted with water and contains it.
  • the photocatalytic film has poor water resistance.
  • colloidal silica is a reaction-terminated fine particle, it is difficult to elute with water, and a photocatalyst film containing it has good water resistance.
  • the solvent is stripped to form a coating film.
  • Examples of the base material to which the coating liquid is applied include organic base materials, inorganic base materials made of glass or ceramic materials, metal base materials, and the like.
  • organic base materials include acrylic resins such as polymethyl methacrylate, polystyrene resins such as ABS resins, olefin resins such as polyethylene and polypropylene, and polyester resins such as polyethylene terephthalate and polyethylene naphthalate. Fatty, polyamide resin such as 6-nylon and 6, 6-nylon, polyvinyl chloride resin, polycarbonate resin, polyphenylene sulfide resin, polyphenylene ether resin, polyimide resin, cellulose such as cellulose acetate Made of resin A substrate can be mentioned.
  • inorganic base materials include silica-based glass materials, ceramic materials, tiles, and other metal oxide-based sintered materials.
  • the metal substrate include aluminum, silver, copper, steel, and alloy materials such as stainless steel.
  • these organic base materials, inorganic base materials, and metal base materials are subjected to surface treatment in advance by an oxidation method, a ⁇ convexing method, or the like, if desired. May be applied.
  • the oxidation method include corona discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, and ozone / ultraviolet irradiation treatment.
  • the unevenness method include a sandblast method and a solvent treatment. Law.
  • the coating liquid can be applied to the substrate by the dip coating method, spin coating method, spray coating method, per coating method, knife coating method, roll coating method, blade coating method, die coat method, gravure coating method, flow coating method.
  • One coat, brush coating, etc. can be mentioned.
  • the coating solution is preferably applied so that the coating thickness after drying is 50 nm or more, more preferably applied so that it is more than lOOnm, and it is applied so that it is lOOrar ⁇ lO / ⁇ m. This is more preferable.
  • the drying conditions for volatilizing the solvent after applying the coating solution are not particularly limited.
  • the drying is carried out by heating at room temperature to 500 ° C. for 10 seconds to several days.
  • the effect of maintaining the superhydrophilic property can be obtained when it is kept in a dark place.
  • the oxidation method include corona discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, and ozone 'ultraviolet irradiation treatment. These surface treatment methods are appropriately selected according to the type of substrate. In particular, when a partial hydrolysis / polycondensation product of alkyl silicon alkoxide is selected as the binder, the surface treatment is also effective when holding the B sound place, as in the case of adding colloidal shear force. The effect of maintaining the superhydrophilic property can be obtained.
  • the photocatalyst film IV contains, as an optical semiconductor crystallized product, a metal ion or metal complex-supported optical semiconductor nanosheet having a sheet thickness in the range of 0.5 to 2. O nm on at least one main surface.
  • the optical semiconductor nanosheet constituting the metal ion- or metal complex-supported optical semiconductor nanosheet means a sheet-like material having a thickness of an optical semiconductor material, and as such an optical semiconductor nanosheet, for example, Titanium oxide nanosheets and the like described in JP-A 2 0 0 1-2 7 0 02 2 are known.
  • the metal ion or metal complex-supported optical semiconductor nanosheet is obtained by supporting a metal ion or metal complex on this optical semiconductor nanosheet, and preferably has a sheet thickness in the range of 0.5 to 2.0 nm.
  • the sheet thickness means an average value of the thickness in the crystal portion when the optical semiconductor nanosheet is observed with a transmission electron microscope.
  • the optical semiconductor composing the optical semiconductor nanosheet carrying a metal ion or metal complex has a band gap valence band formed by oxygen orbitals and is sufficient to decompose air, water, or some organic matter.
  • this metal ion or metal complex functions as a reduction site by supporting the metal ion or metal complex on its surface.
  • An oxidation-reduction order in which the difference between the energy rank at the top of the valence band of the optical semiconductor and the energy rank for the reduction of metal or metal complex water or air is 3.4 to 3.5 eV.
  • Such an optical semiconductor material examples include those containing crystalline titanium oxide, crystalline tungsten oxide, crystalline zinc oxide, and the like, and among these, those containing crystalline titanium oxide.
  • the crystalline titanium oxide may be any of anatase type, rutile type, brookite type crystalline titanium oxide, or the above crystalline titanium oxide may contain crystal defects or crystal distortion. A combination of two or more of these crystalline titanium oxides may be used.
  • Examples of the metal ions or metal complexes supported on the optical semiconductor nanosheet include copper ions.
  • the atomic arrangement of the titanium oxide nanosheet basically has a periodic structure similar to the anatase type, the sheet thickness is one atomic layer level (about 1 nm), the particle size of the photocatalyst film II of the present invention and the photocatalyst III Similar to the tube thickness, it is nm size.
  • the titanium oxide nanosheet has a thinner sheet thickness of about 1 nm. Therefore, for example, it exhibits photoexcited hydrophilicity under irradiation with germicidal lamps (approximately 25 4 nm), but it is not always possible to express sufficient photoexcited superhydrophilicity under irradiation with solar light (3 OO nm or more). Yes.
  • the present inventors have shifted the absorption wavelength of the above-mentioned optical semiconductor nanosheet to a longer wavelength side (lead shift), and show photoexcited superhydrophilicity under irradiation of a solar light source, but have a novel activity in which decomposition activity on organic substances is suppressed.
  • a metal ion or metal complex is doped into the optical semiconductor nanosheet, and the oxidation-reduction order of the metal is close to the conduction band rather than the valence band of crystalline titanium oxide.
  • a method of doping nitrogen or sulfur into an oxygen site of crystalline titanium oxide is also conceivable, but in this method, the uppermost part of the bandgap valence band is made of an element other than oxygen.
  • crystalline titanium oxide nanosheets grow into giant crystals due to the production method.
  • a method of supporting Pt complex on crystalline titanium oxide is also conceivable, but the redox potential of Pt complex is closer to the valence band than the conduction band of crystalline titanium oxide.
  • the content ratio of the metal ion- or metal complex-supported optical semiconductor nanosheet is preferably 3% or more, and more preferably 5% or more.
  • the photocatalyst film IV of the present invention may further contain a binder component.
  • a binder component when the photocatalyst-containing liquid is applied to an organic substrate, it is preferably formed by mixing with a binder having good weather resistance. .
  • binder having good weather resistance examples include acryl resin, allyl silicone resin, partial hydrolysis / polycondensate of alkyl metal alkoxide, and the like.
  • various organic / inorganic binders containing a UV absorbing agent and a radical scavenger to improve the weather resistance can also be used.
  • Photocatalyst film IV is mainly composed of metal ion-supporting photo-semiconductor nanosheets on both main surfaces of the film. Although it may contain as a component, only one main surface may contain a metal ion carrying
  • the photocatalyst film IV may contain various additives, boilers, pigments and the like as required, as long as the object of the present invention is not impaired.
  • the additive include metal-based fine particles.
  • the metal compound-based fine particles silli force-based fine particles are preferable.
  • Siri-powered fine particles in addition to the effect of improving the strength and hardness of the coating film, the effect of adjusting the refractive index can also be maintained to maintain the superhydrophilicity maintenance performance even when held in place. Is preferred.
  • silica-based fine particles colloidal shear force is preferable.
  • This colloidal shear force is obtained by dispersing high-purity carbon dioxide (Sio 2 ) in water or an alcohol-based solvent to form a colloidal shape.
  • the diameter is usually in the range of 1 to 200 nm, preferably 5 to 50 nm.
  • the film thickness of the photocatalytic film IV is not particularly limited, but is preferably 50 nm or more, more preferably 10 O nm or more, and 10 0 ⁇ ! It is even more preferred to be ⁇ 10 m.
  • the photocatalyst film IV preferably has the properties of the photocatalyst film I of the present invention.
  • the photocatalyst film IV preferably has a critical contact angle with water of less than 20 degrees during sunlight irradiation, more preferably 10 degrees or less.
  • Photocatalytic membrane IV has a methylene blue decomposition rate when irradiated with artificial sunlight of 3 mW / cm 2. Decrease rate of absorbance at the maximum absorption wavelength of coated methylene blue (decomposition activity) ⁇ ABS / min 0.1 or less Is preferably 0.05 or less, more preferably 0.01 or less, and even more preferably 0.015 or less.
  • the contact angle with water and the decomposition rate of methylene blue can be controlled, for example, by adjusting the length and content of the optical semiconductor nanosheet crystal made of crystalline titanium oxide or the like.
  • the method for evaluating the contact angle with water and the decomposition activity of methylene blue is the same as that of the photocatalyst film II of the present invention, and details of the method will be described later.
  • the article of the present invention is characterized by having the photocatalyst film of the present invention or the photocatalyst film obtained by the method of the present invention on the surface of a substrate.
  • the article of the present invention can further be provided with a functional film having a thickness of 50 Onm or less on the surface of the photocatalyst film as long as the function of the photocatalyst film of the present invention is not impaired.
  • Examples of the function of the functional film include hydrophilicity retention at B sound station, conductivity, charging property, hard coat property, reflection property control, and refractive index control. Further, specific constituents of the functional film include metal oxide compounds such as silica, alumina, zirco-a, ⁇ ⁇ , and zinc oxide. In particular, it is preferable to contain silica for the purpose of maintaining hydrophilicity at night when sunlight is not applied.
  • the photocatalytic film of the present invention provided on the surface has a function of imparting superhydrophilicity under irradiation of a solar light source, but has a function of suppressing decomposition of organic substances, and thus requires an active blocking layer that has been conventionally required. And can be provided directly on the organic substrate.
  • an article of the present invention for example, for the purpose of imparting antifogging properties, dripproofing properties, antifouling properties, frostproofing properties, and snow sliding properties, for example, acrylic resins such as polymethyl methacrylate, polystyrene and ABS resins, etc. Styrenic resin, polyolefin resin such as polyethylene and polypropylene.
  • Polyester resin such as polyethylene terephthalate and polyethylene naphthalate, polyamide resin such as nylon 6 and nylon nylon 6, polyvinyl chloride resin
  • a base material made of a cellulose resin such as a polycarbonate-based resin, a polyphenylene sulfide-based resin, a polyphenylene ether-based resin, a polyimide-based resin, and a cellulose acetate.
  • These organic base materials can be subjected to a surface treatment by an oxidation method, a concavo-convex method or the like, if desired, in order to further improve the adhesion to the film according to the present invention.
  • the oxidation method include corona discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone and ultraviolet irradiation treatment
  • examples of the four-convex method include a sand plast method, a solvent, and the like. Treatment methods. These surface treatment methods are appropriately selected according to the type of substrate.
  • an organic coating film is applied to the surface of a substrate made of a material other than an organic material, for example, a metal material, glass or a ceramic material, or other various inorganic or metal materials. The thing which has is also included.
  • materials other than organic materials such as metal materials, glass and ceramic materials, Needless to say, it is also provided on the surface of a substrate made of various other inorganic or metal materials.
  • An example of the article of the present invention is an agricultural film.
  • Agricultural films have recently been actively used for cultivation of rice, mice and tunnels, and in such cultivation, when agricultural films are used for spreading, the cloudiness caused by water droplets adheres to them.
  • a drip-proofing agent anti-fogging agent
  • this drip-proofing agent lost its drip-proof effect in a short period of time. It was.
  • the agricultural film having the photocatalytic film of the present invention on its surface can maintain hydrophilicity for a long period of time, so that it is possible to continue farming work without the need for recoating.
  • the hydrophilization method of the present invention is characterized by using the article of the present invention under sunlight irradiation.
  • this Rakumei article has a superhydrophilicity-providing function, but has a photocatalytic film in which decomposition activity is suppressed, so that the surface of the article can be removed without eroding the organic base material. It becomes possible to make it hydrophilic.
  • Sample preparation in the case of resin substrate: Cut out to an appropriate size, embed it in resin, cut out an ultrathin section with a microtome using a diamond knife, and to a Cu mesh with a microgrid A TEM sample was placed.
  • Microtome Leicca "Ultramicrotome ULTRACUT U CTJ
  • Knife “Diamond” “Diamond Knife”
  • Sample preparation in the case of a glass substrate: A sample is cut out, bonded to a dummy substrate and a catching ring using epoxy resin, polished and dipped, and finally Ar ion milled to obtain a TEM sample. .
  • Cross-sectional TEM photograph (magnification: 4 million times, observation area: 2500 nm 2 ) Calculates the ratio of the number of crystals within the range of 1 to 10 i m of crystal diameter with respect to the total number of crystals observed.
  • Cross-sectional TEM photograph (magnification: 4 million times, observation area: 2500 nm 2 ) Calculates the cross-sectional area ratio of crystalline titanium oxide with a crystal diameter in the range of 1 to 10 nm.
  • the germicidal lamp and mercury lamp used had an irradiation light spectrum with a half-value width of 15 nm or less, and ultraviolet light with a predetermined wavelength was extracted through an appropriate bandpass filter.
  • various bandpass filters with a half-value width of 15 nm or less were interposed in the xenon light source, and ultraviolet light with a predetermined wavelength with a half-value width of 15 nm or less was extracted.
  • Each illuminance was set so that the number of photons at each irradiation wavelength was almost the same (approximately 3.7 X 10 15 quanta / cm 2 / s).
  • Light source and wavelength type used for ultraviolet irradiation of each wavelength (partially used in combination with a Pand pass filter) and respective illuminance:
  • Table 1 below shows the light source, wavelength type (partially used in combination with a band-pass filter) and the illuminance for each wavelength.
  • a power function approximation line is obtained from the relationship between the irradiation main wavelength and the approximate approximation.
  • the wavelength at which the hydrophilization rate is 2 (1 / deg / min / 10 5 ) in the line was determined.
  • the hydrophilization rate 2 (1 / deg / min / 10 5 ) is a value determined from the various measured results to be the lowest value at which the change in contact angle is clearly observed with time.
  • the significant figures of the hydrophilization rate values used to determine the wavelength were 6 digits, and the values below were rounded off.
  • the sample for 1 hour in a methylene blue aqueous solution prepared at a ratio of 10 OmL of pure water to 0.1267 g of methylene blue.
  • a methylene blue aqueous solution prepared at a ratio of 10 OmL of pure water to 0.1267 g of methylene blue.
  • the net ⁇ ABS at each measurement point is then plotted against the light exposure time and plotted linearly.
  • the methylene blue decomposition rate was determined by taking the slope of the range in which the temperature changes.
  • Photometry mode Absorbance, Measurement wavelength: 500 nm to 700 nm, Scan speed: Fast, Slit width: 2 nm, Sampling pitch: 2 nm, Baseline: A ir (9) AFM measurement
  • Average roughness R a Average roughness for the average surface
  • S 1- is the theoretical surface area S of the smooth surface, and the ratio of the real surface area S to the theoretical surface area S
  • the photocatalytic reaction is a surface reaction, in general, a larger surface area works better for the decomposition activity.
  • UV-absorbing coating agent in which a hindered amine light stabilizer ( ⁇ ALS) is hybridized on one side of a polyethylene terephthalate (PET) film (made by Teijin Dubon Film: HB-3, thickness 50 ⁇ ) kneaded with an ultraviolet absorber Made of Nippon Shokubai Co., Ltd., Udable Series UV-G 301) 100 parts by mass of an isocyanate-based curing agent (Sumitomo Bayer Lethan Co., Ltd., Desmodur ⁇ 3200) mixed at a ratio of 12 parts by mass After coating with a Meyer bar so that the thickness of the dry film was 6 ⁇ , it was thermally crosslinked to produce a PET film (E) with a weathering primer.
  • Example 1 Thin film composed of hydrolyzate of titanium alkoxide (film thickness 50 nm)
  • the titanium alkoxide hydrolysis-condensation liquid (C) obtained in Synthesis Example 1 was diluted twice by mass with an ethyl acetate sorb to obtain a titanium alkoxide hydrolysis-condensation liquid (L).
  • Titanium alkoxide hydrolytic condensate (L) was applied onto 3 mm thick soda lime glass that had been thoroughly degreased and washed with acetone and methanol, and then applied using a spin coater to a dry thickness of 50 nm. A test sample was obtained.
  • the hydrolysis condensate of titanium alkoxide is theoretically calculated to have a coating of 0.13 g per lm 2 (calculated with a specific gravity of 2.6 of the hydrolysis condensate of titanium alkoxide).
  • the ratio of the number of crystals with a crystal diameter in the range of 1 to 10 nm to the number of fine titanium oxides was 100%.
  • the content of crystalline titanium oxide having a crystal diameter in the range of 1 to 10 nm on the main surface of the photocatalyst film was 4%.
  • hydrophilization rate was 2 (1 / deg / min / l 0 5 ) and However, it was estimated from the measurement results that it was below 330 nm.
  • the sample when the sample was made hydrophobic by storing it in a dark place and then irradiated with an artificial solar illuminating lamp, the water contact angle gradually decreased due to irradiation as shown in Fig. 4.
  • the hydrophilization rate was determined to be 0.00020 (1 / degree) Zm i n.
  • the sample of AFM measurement by a surface roughness (R a) and surface area (; im 2) are each 0. 34 nm and 900. 080 ⁇ m 2, specific surface area S r was 1. 0000.9. Table 2 shows these physical property values.
  • the hydrophilization rate obtained in the same manner as above was 2 (1 / de Table 2 shows the wavelengths of g / min / 10 5 ). Furthermore, in the same way as in (3) above, the hydrophilization behavior of each sample when the light source and irradiation time are changed is shown in Figs. 4 to 7, and the hydrophilization rate (1Z degree) / "h Table 2 shows the measurement results of methylene blue decomposition rate (AAB SZ), surface roughness (R a), and specific surface area S r.
  • the crystalline titanium oxide of the present invention responds on a shorter wavelength side than a general anatase-type titanium oxide. It is clear that it is a photocatalyst that shows photoexcited superhydrophilicity under the irradiation of a solar light source, but has reduced decomposition activity on organic substances, without requiring treatment.
  • Example 2 Thin film composed of hydrolyzate of titanium alkoxide (film thickness 2 ⁇ 0 nm)
  • Example 1 (1) A test sample was obtained in the same manner as in Example 1 (1) except that a thin film made of a hydrolyzate of titanium alkoxide was formed so as to have a dry thickness of 200 nm.
  • the hydrolysis condensate of titanium alkoxide is theoretically calculated to have 0.52 g applied per lm 2 (calculated based on the specific gravity of 2.6 of titanium alkoxide hydrolysis condensate).
  • Figure 8 shows a transmission electron micrograph of SWM after repeated exposure for 150 cycles (300 hours). From FIG. 8, microcrystals (crystalline titanium oxide particles) having a diameter of 2 to 5 nm were confirmed in amorphous titanium oxide.
  • the major lattice planes (101, 004, 200, 211) of anatase-type titanium oxide is 65, and the ratio of the number of crystals in the range of 1 to 10 nm in the crystal diameter in the total number of crystalline titanium oxides on the observation plane is 100%.
  • the content of crystalline titanium oxide having a crystal diameter in the range of 1 to 10 nm on the main surface of the photocatalyst film was 33%.
  • the wavelength at which the hydrophilization rate was 2 (1 / deg / min / 10 5 ) was determined from the relationship between the hydrophilicity rate when irradiated with ultraviolet light of 300 nm or more and the main irradiation wavelength, and was found to be 328 nm. It was. Further, the hydrophilization rate was 2 (1 / deg / minZ 10 5 ) or more over the entire wavelength range of 300 to 328 nm.
  • the sample when the sample was made hydrophobic by storing it in a certain place and then irradiated with an artificial solar illuminator, the water contact angle gradually decreased as a result of irradiation as shown in Fig. 10. .
  • the hydrophilization rate was determined to be 0.00045 (1 / degree) / m i ⁇ .
  • the surface roughness (Ra) and surface area (m 2 ) of the sample measured by AFM were 0.27 nm and 900.049 ⁇ m 2 , respectively, and the specific surface area S r was 1.00005. Table 2 shows these physical property values.
  • Table 2 shows the wavelengths at which the rate of hydrophilization was 2 (lZd eg / min / 10 5 ), obtained using the sample after exposure in the same manner as described above.
  • the hydrophilization rate was 2 (l / deg no min 0 5 ) or more in at least part of the wavelength range of 300 to 360 nm.
  • a test sample was prepared in the same manner as in Example 1 (1) except that a thin film composed of a hydrolyzate of titanium alkoxide was applied on the PET film with a weathering primer obtained in Synthesis Example 2. Obtained. In this case, it is calculated that the hydrolysis condensate of titanium alkoxide is theoretically applied at 0.1 3 g / m 2 per lm 2 (the specific gravity of titanium alkoxide hydrolysis 5 compound is 2.6). Calculation).
  • the surface roughness (R a) and surface area (/ zm 2 ) of the sample by A FM measurement are 3.5 5 nm and 90 1. 294 ⁇ m 2 , respectively, and the specific surface area S r is 1. 00 1 44 Met. Table 2 shows these physical property values.
  • the crystalline titanium oxide of the present invention responds on the shorter wavelength side than general anatase-type titanium oxide from its crystal diameter. It does not require any special treatment on the titanium surface and shows photoexcited superhydrophilicity under solar light source irradiation, but it is clear that the photocatalyst has reduced decomposition activity on organic substances.
  • Example 4 Thin alkoxide hydrolyzate thin film (film thickness 50 nm))
  • the titanium alkoxide hydrolysis-condensation liquid (C) obtained in Synthesis Example 1 was diluted 2 times by mass ratio with a Tilce mouth solve to obtain a titanium alkoxide hydrolysis-condensation liquid (L).
  • Titanium alkoxide hydrolytic condensate (L) was applied to 3 mm thick soda lime glass that had been thoroughly degreased and washed with acetone and methanol, and then the dry thickness was reduced to 50 nm.
  • a test sample was obtained by applying using a spin coater.
  • the hydrolysis condensate of titanium alkoxide is theoretically calculated to be 0.13 g per 1 m 2 (calculated based on the specific gravity of 2.6 of titanium alkoxide hydrolysis condensate). ).
  • Figure 15 shows a transmission micrograph when treated in a constant temperature and humidity chamber under conditions of 43 ° C and 50% RH for 120 hours under constant temperature and humidity conditions.
  • microcrystals crystalline titanium oxide particles
  • a diameter of 2 to 6 nm were confirmed in amorphous titanium oxide.
  • the major lattice planes 101, 004, 200, 2 1 1
  • the number of microcrystalline grains on the observation plane (2500 nm 2 ) is 47, and the number of crystals in the total crystalline titanium oxide count on the observation plane is within the range of 1 to 1 On xn. The percentage was 100%.
  • the content of crystalline titanium oxide having a crystal diameter in the range of 1 to 10 nm on the main surface of the photocatalyst film was 24%.
  • the wavelength at which the hydrophilization rate was 2 (1 / deg / min / 10 5 ) was determined from the relationship between the hydrophilicity rate when irradiated with ultraviolet light of 300 nm or more and the main irradiation wavelength, and was found to be 352 nm. It was. Also, hydrophilization speed in the entire wavelength 300-352 nm was at 2 (1 / deg / min / 1 0 5) or more.
  • anatase-type titanium oxide dispersion manufactured by Titanium Industry Co., Ltd., “PC-201”, TEM particle size: 20 nm, concentration: 20.7 mass /.
  • an anatase-type titanium oxide-containing coating liquid M
  • Table 3 shows the mass ratio and volume fraction of the solid components contained in the coating liquid (M).
  • the specific gravity of the hydrolysis condensate of titanium alkoxide was 2.6, and the specific gravity of anatase-type titanium oxide was 3.9.
  • anatase-type titanium oxide is theoretically calculated to be 0.13 g per lm 2 .
  • the wavelength at which the hydrophilization speed is 2 (1 / degZm in / 10 5 ) was determined from the relationship between the hydrophilization speed when irradiated with ultraviolet light of 300 nm or more and the main irradiation wavelength. It was.
  • the sample was hydrophobized by storing it in the B sound station and then irradiated with an artificial solar illuminating lamp, the water contact angle gradually increased due to irradiation as shown in Fig. 19. Declined.
  • the hydrophilization speed was determined, it was 0.00507 (1 / degree) / min.
  • the photocatalytic film containing a titanium oxide compound having a crystal diameter in the range of 1 to 10 nm as a main component on the main surface, and the crystal diameter in Comparative Example 1 is 10
  • the titanium oxide compounds of Examples 1 to 4 exhibit photoexcited superhydrophilicity under irradiation of a solar light source, but they are resistant to organic matter. It can be seen that the decomposition activity is suppressed and the effect of excellent transparency is exhibited.
  • the gradient coating liquid (H) to a colorless transparent acrylic plate (Mitsubishi Rayon, acrylic light L) with a thickness of about 10 tm using a spin coat on a 2 mm thick colorless transparent acrylic plate, and a dry thickness of 100 nm. It applied so that it might become.
  • the specific gravity of the gradient coating liquid (H) is 0.87, and the total solid component concentration is 2.78% by mass. Of the total solid content, the weight ratio of pressurized hydrolysis condensation product of titanium alkoxide is 2% 28. in terms of T i 0 2, theoretically, a titanium alkoxide microcrystalline can form biohydrolyzable condensate will calculations lm 2 per 0. 068 g is applied.
  • Figure 20 shows a transmission electron micrograph. From Fig. 20, fine crystals with a diameter of 2 to 3 nm (crystalline titanium oxide particles) were confirmed in the amorphous titanium oxide. On the other hand, since a clear diffraction ring could not be confirmed from the limited field diffraction image, the microcrystal could not be identified. This is thought to be due to the low concentration of microcrystals. As shown in Example 1, it was confirmed that in the thin film composed of a hydrolyzate of titanium alkoxide exposed by the same number of cyclores, microcrystals having the same crystal diameter were formed to be indexable.
  • the rate of crystallite formation can be adjusted by adding aluminum nitrate.
  • the ratio of the number of crystals with a crystal diameter in the range of 1 to 10 nm to the total number of crystalline titanium oxides on the observation surface was 100%.
  • the content of crystalline titanium oxide having a crystal diameter in the range of 1 to 10 nm on the main surface of the photocatalyst film was 3%.
  • the hydrophilization speed when irradiated with ultraviolet light of 300 nm or more was determined to be 325 nm. Also, hydrophilization speed in the entire wavelength 300-325 nm is was 2 (l / deg / min / 1 0 5) or more.
  • the sample when the sample was made hydrophobic by storing it in a dark place and then irradiated with an artificial solar illuminator, the water contact angle gradually decreased due to irradiation as shown in FIG.
  • the hydrophilization rate was determined to be 0.00011 (1Z degree) in.
  • Table 2 shows the wavelengths at which the rate of hydrophilization was 2 (l / deg / min / 1 O 5 ) obtained using the sample after exposure in the same manner as described above. Furthermore, the hydrophilization behavior of each sample when the light source and irradiation wavelength are changed by the same method as in (3) above is shown in Figs. 22 and 23, and the hydrophilization rate (1 / degree) / h, Table 2 shows the measurement results of methylene blue decomposition rate (AABS / min), surface roughness (R a), and specific surface area S r.
  • AABS / min methylene blue decomposition rate
  • R a surface roughness
  • S r specific surface area
  • the crystalline titanium oxide of the present invention also responds to a general anatase type titanium oxide on the short wavelength side. It is clear that it is a photocatalyst that exhibits photoexcited superhydrophilicity under irradiation with a solar light source but has reduced decomposition activity on organic substances without requiring any special treatment.
  • Figure 24 shows the XP S depth profile results for this sample. As shown in Fig. 24, the sample has S i 0 2 positioned on the outermost surface, T i is positioned below it, and C derived from organic components is positioned below it, and the components are tilted. I understand. Comparative Example 2 Physical Properties of Anatase Type Titanium Oxide Containing Film
  • a coating liquid containing anatase-type titanium oxide in the same proportion as the content (volume fraction) of the titanium oxide compound contained in the gradient film coating liquid (H) of Example 5 was prepared as follows.
  • Table 4 shows the mass ratio and volume fraction of the solid components contained in the gradient coating solution (H).
  • the specific gravity of the hydrolysis product of titanium alkoxide was 2.6, and the specific gravity of the organic component was 1.19.
  • the volume fraction of the hydrolysis condensate of titanium alkoxide was calculated to be 21%. Therefore, a coating solution (I) with a volume fraction of anatase-type titanium oxide of 21% was prepared as follows.
  • the coating liquid (I) also contains a hydrolysis condensate of titanium alkoxide. However, it does not exhibit photocatalytic activity in this state because it exists in an amorphous state immediately after film formation.
  • this coating solution (I) to a colorless transparent acrylic plate (Mitsubishi Rayon, Atarilite L) with a thickness of about 16 ⁇ on a 2 mm thick colorless transparent acrylic plate, resulting in a dry thickness of 100 nm. It was applied as follows.
  • the specific gravity of the gradient coating liquid (I) is 0.86, and the total solid component concentration is 1% by mass. Since the mass ratio of anatase-type titanium oxide is 30% of the total solid content, theoretically, it is calculated that 0.04 lg of anatase-type titanium oxide is applied.
  • Table 2 shows the wavelengths at which the hydrophilization rate was 2 (1 deg / min / 10 5 ), obtained in the same manner as described above, using the sample after light irradiation.
  • the sample when the sample was made hydrophobic by storing it in a dark place and then irradiated with an artificial solar illuminator, the water contact angle gradually decreased due to irradiation as shown in FIG.
  • the hydrophilization rate was determined, it was 0.00063 (lZ degree) Zm i n.
  • the surface roughness (Ra) and surface area (m 2 ) of the sample measured by A FM were 14.7 nm and 900. 134 ⁇ m 2 respectively , and the specific surface area S r was 1.00015. These physical properties are shown in Table 2.
  • Table 6 shows the mass ratio and volume fraction of the solid components contained in the coating liquid (N).
  • the specific gravity of the hydrolysis condensate of titanium alkoxide was 2.6, and the specific gravity of rutile-type titanium oxide was 4.2.
  • rutile-type titanium oxide is theoretically calculated to be 0.13 g per lm 2 .
  • the wavelength at which the hydrophilization rate is 2 (1 / deg / min / 10 5 ) was determined from the relationship between the hydrophilicity rate when irradiated with ultraviolet light of 300 nm or more and the irradiation main wavelength. It was.
  • the surface roughness (Ra) and surface area (/ ⁇ m 2 ) of the sample by AFM were 18.7 nm and 900.57 m 2 , respectively, and the specific surface area S r was 1.0 000063.
  • Binder aqueous solution (concentration 2%), which is a mixture of water-soluble acryl silicone resin (manufactured by DIC Corporation, WS-910) and its curing agent (manufactured by DIC Corporation, WS-950), which is a binder component )
  • concentration 2% a mixture of water-soluble acryl silicone resin
  • WS-950 a curing agent
  • the slurry obtained in (1) above was slowly added to 50 mL and stirred well to obtain a coating solution.
  • a 2.5 mm film was formed on a 2 mm thick colorless transparent acrylic plate (manufactured by Mitsubishi Rayon Co., Ltd., Acrylite L) by spin coating for 2.5 minutes.
  • a thin film having a thickness of 500 nm was formed by drying at 70 ° C. for 10 hours.
  • the photocatalyst film of the present invention exhibits a photoexcited superhydrophilic property as a photocatalyst under irradiation of a solar light source, but has a property that decomposition activity is suppressed. Therefore, when the photocatalyst film of the present invention is assumed to be used in an outdoor environment, it is directly provided on the organic substrate without an active blocking layer, for example, antifogging, dripproofing, antifouling, and antifouling.
  • acrylic resin such as polymethyl methacrylate, styrene resin such as polystyrene and ABS resin, polyolefin resin such as polyethylene and polypropylene, polyethylene terephthalate and poly ethylene naphthalate Polyester resins such as 6-nylon and 6, 6-nylon polyamide resins, polychlorinated bur resins, polycarbonate resins, polyphenylene sulfide resins, polyphenylene ether resins, polyimide resins Those provided on a substrate made of cellulose resin such as cellulose acetate are preferred. Appropriately used.
  • an organic coating film is applied to the surface of a substrate made of a material other than an organic material, for example, a metal material, glass or a ceramic material, or other various inorganic or metal materials. The thing which has is also included.
  • a substrate made of a material other than an organic material, for example, a metal material, glass or a ceramic material, or other various inorganic or metal materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

光半導体粒子を少なくとも一方の主表面に含有し、光照射によって前記主表面が親水化する光触媒膜であって、暗所保持後に半値幅15nm以下の光を照射した場合の親水化速度が、照射光の波長が370nm以上の領域では、2(1/deg/min/105)未満であり、かつ照射光の波長が300~360nmの領域の少なくとも一部では、2(1/deg/min/105)以上であることを特徴とする光触媒膜である。

Description

明細書
光触媒膜、 光触媒膜の製造方法、 物品および親水化方法 技術分野
本発明は、 光触媒膜、 光触媒膜の製造方法、 物品および親水化方法に関する。 さらに詳 しくは、 本発明は、 酸化チタン表面に特段の処理を必要とせずに、 太陽光源照射下におい て光励起超親水性を示すが、 分解活性をほとんど示さない新規な光触媒膜、 該光触媒膜を 効率よく製造する方法、 上記光触媒膜を表面に有する物品および該物品を用いた親水化方 法に関するものである。 背景技術
光触媒は、 一般にそのパンドギャップ以上のエネルギーの光を照射すると、 伝導帯に電 子が励起され、 価電子帯に正孔が生じる。 そして、 励起されて生じた電子は表面酸素を還 元してスーパーオキサイドァニオン (' ο 2一) を生成すると共に、 正孔は表面水酸基を酸 化して水酸ラジカル ( · ΟΗ) を生成し、 これらの反応性活性酸素種が強い酸化分解機能 を発揮し、 光触媒からなる膜の表面に付着している有機物質を高効率で分解することが知 られている。
このような光触媒の機能を応用して、 例えば脱臭、 防汚、 抗菌、 殺菌、 さらには廃水中 や廃ガス中の環境汚染上の問題となっている各種物質の分解 ·除去などが検討されている。 また、 光触媒のもう 1つの機能として、 該光触媒が光励起されると、 例えば国際特許公 開 9 6 / 2 9 3 7 5号パンフレツトに開示されているように、 光触媒膜表面は、 水と接触 角が 1 0度以下となる超親水化を発現することも知られている。 このような光触媒の超親 水化機能を応用して、 例えば、 防曇性、 防滴性、 防汚性、 防霜性、 滑雪性付与を目的とし て、 高速道路の防音壁、 道路反射鏡、 各種反射体、 街路灯、 自動車をはじめとする車両の ボディーコートやサイドミラーあるいはウィンド用フィルム、 窓ガラスを含む建材、 道路 標識、 ロードサイド看板、 冷凍'冷蔵用ショーケース、 各種レンズ類やセンサー類などに 光触媒膜を用いることが検討されている。
このような光触媒については、 これまで数多く知られており、 中でも酸化チタンは代表 的なものの一つに挙げられる。 酸化チタンには無定形のアモルファス型のほか、 アナター ゼ型、 ルチル型、 ブルッカイト型の 3つの代表的な結晶系が存在し、 これら 3つの結晶系 で光触媒活性を示し、 有機物の分解能のほか、 超親水性を発現することで有名である。 特 にアナターゼ型が最も高レ、活性を示すことが一般に知られている。
当該アナターゼ型酸化チタンは、 通常、 チタンアルコキシドなどの有機チタン化合物を 出発原料としゾルゲル法により得た加水分解縮合物や、 四塩化チタンゃ硫酸チタニルなど の無機チタン化合物塩の水和酸化物などから得た無定形酸化チタンから熱処理を経るこ とによって得ることができる。 し力 しながら、 これらは通常、 4 0 0 °C以上の高温下での 熱処理が必要であるため、 コスト高となることを避けられず、 耐熱性の乏しい基板に成膜 することが困難であるなど多くの問題を伴うものである。
したがって、 従来、 特に活性の高いアナターゼ型酸化チタンを比較的低温で得る方法が 種々試みられており、 また開示されている。
例えば、 スパッタリングゃ真空蒸着などの物理的成膜手法によって基板上に酸化チタン 膜を生成させる際に、 水蒸気を導入させ無定形酸ィヒチタン内に水酸基を多く含有させるこ とによって、 酸化チタン骨格中の原子の移動度を上昇せしめ、 その後の熱処理よる結晶化 を容易にする方法が提案されている(例えば、特開 2 0 0 0— 3 4 5 3 2 0号公報参照)。 これによれば、 結晶化温度を 2 0 0 °C程度にまで下げることが可能である。
また、 シリコンアルコキシドと加水分解性を有するチタン化合物を含む溶液から、 チタ ン化合物とシリコンアルコキシドが所定のモル比で配合されている複合金属酸化物ある いは水酸化物を含むゲル膜を形成し、 次いで、 1 0 0 °C以下の温水を接触させることによ つて、 結晶径が数 1 0〜1 0 0 n m程度のアナターゼに帰属きれるチタニア微結晶を析出 させる方法が開示されている (例えば、 特開 2 0 0 2— 9 7 0 1 3号公報参照)。
確かに上記の方法によれば、 プラスチック基板など耐熱性の低レ、材料にも直接無定形酸 化チタンを成膜し、 その後、 低温の熱処理工程を経てアナターゼ型酸化チタンを形成する ことができると考えられる。 しかしながら、 これらの方法で得られるアナターゼ型酸化チ タンは、 その公報中でも明示されているように、 一般的なアナターゼ型酸化チタンと同様 に光励起超親水性の発現のほか高い有機物分解活性も示すため、 プラスチック基材などに 直接形成させた場合には、 その高い有機物分解活性により基材が短期間のうちに侵食され、 基材物性が低下したり光触媒膜の脱落により光触媒機能が低下したりすることなどが容 易に推察される。 このため、 上記各方法は、 アナターゼ型酸化チタン膜とともに、 別途活 性遮断層を設けることを必要とし、 例えば、 アナターゼ型酸化チタン微粒子を無機系のバ ィンダ一に分散させて作られる常温で硬化が可能な光触媒コーティング剤を塗布する方 法と比べて、 明確な優位性が見出せないものであった。
—方、 アナターゼ型酸化チタンをプラスチックなどの有機基材上に直接付与させる方法 として、 例えば、 フッ素系のシランカップリング剤でアナターゼ型酸化チタン表面を修飾 し、 アナターゼ型酸化チタン微粒子の表面エネルギーを低下させバインダ一成分との相互 作用を弱めることによって、 塗膜表面に浮上 (偏析) させた自己傾斜型光触媒コーティン グ剤が知られている (特開 2 0 0 5— 1 3 1 6 4 0号公報参照)。 また、 酸化チタン表面 を光触媒として不活性な無機材料で覆い、 かつ無数に細孔を設ける処方によってマスクメ 口ン型形状を有する光触媒材料などが提案されている (特許第 3 4 8 4 4 7 0号公報参 照)。
これらはアナターゼ型酸化チタンが有機基材と直接接触することを回避できること力 ら、 有機基材に直接塗布可能と考えられる。 し力 し、 これらは全てアナターゼ型酸化チタ ンの高い酸化力の影響が基材に及ぶことを防ぐ為に、 複雑な表面処理をする必要があり、 さらに、 これらは酸化チタンの表面偏析の為に厚みがミクロンオーダー必要であることや、 酸化チタン粒子そのものが数ミクロン径のものでしか作成できないなど、 多くの制約を伴 うものである。 発明の開示
発明が解決しようとする課題
本発明は、 このような事情のもとで、 酸化チタン表面に特段の処理をせずに、 また基材 との間に特別な中間層を設ける必要がなく、 太陽光源照射下で光励起超親水性を示すが、 有機物に対する分解活性が抑制された新規な光触媒膜を提供することを目的とする。 また、 本発明は、 上記光触媒膜を効率よく製造する方法、 上記光触媒膜を表面に有する物品、 該 物品を用いた親水化方法を提供することを目 0勺とする。 課題を解決するための手段 ' 本件発明者等が、 前記目的を達成するために鋭意検討を重ねた結果、 光触媒膜における 酸ィ匕分解機能や光励起超親水化現象は、 全ての光半導体で認められる共通の現象というわ けではなく、 それぞれで満たすべき必要な条件があることを見出した。
すなわち、 光触媒膜が酸化分解機能を有するためには、 価電子帯が有機物を分解するに 足る十分な酸化力を有しながら、 導電帯が空気や水などを還元するに足る十分な還元力を 有する必要があり、 この酸化還元力を有するために、 膜を構成する光触媒が適切なバンド ギャップを有することが必要になる (このバンドギャップの違いから、 二酸化チタンにお ける酸化分解特性は、 アナターゼ型が高活性となり、 ルチル型が低活性となる)。
一方、 光触媒膜が光励起超親水性を有する理由は必ずしも明らかではないものの、 光の 吸収によって発生した正孔が光半導体表面の格子酸素にトラップされ金属原子一酸素原 子間の結合を切断するとともに、 水酸基の配位を誘引することにより発現すると考えられ、 そのためには、 価電子帯が酸素原子の電子軌道で形成されているとともに、 空気、 水ある いは何かしらの有機物を分解するに足る酸化力を有するエネルギー順位を有し、 かつ導電 帯が空気や水などを還元できる充分な還元力を有する必要があり、 この酸化還元力を有す るためにも、 膜を構成する光触媒が適切なバンドギャップを有することが必要になると考 えられる。
このような知見の下で、 本発明者等がさらに検討を加えたところ、 光触媒膜の酸化分解 性は光量(光子数) に比例して向上する力 光誘起超親水性は一定量以上の光量(光子数) を照射すれば実現されることを見出した。
これらの知見に基づいて、 本件発明者等が検討を重ねた結果、 太陽光の波長域のうち、 光励起超親水性を示すが、 有機物に対する分解活性が抑制された光量を有する波長域を選 択し、 選択した波長域の最長波長光のもつエネルギー値とエネルギー値が一致するバンド ギヤップを有する光触媒を用いることにより、 太陽光源照射下で光励起超親水性を示す力 有機物に対する分解活性が抑制された新規な光触媒膜を得ることができると考えた。
そして、 本発明者らは、 前記目的を達成するためには、 光半導体粒子を少なくとも一方 の主表面に含有し、 暗所保持後に半値幅 1 5 n m以下の光を照射した場合の前記主表面の 親水化速度が、 照射光の波長が 3 7 0 n m以上の領域では、 2 ( 1 / d e g /m i n / 1 0 5)未満、かつ照射光の波長が 3 0 0〜3 6 0 n mの領域の少なくとも一部では、 2 ( 1 / d e g /m i n / 1 0 5) 以上である光触媒膜、 光半導体結晶化物として結晶径が 1〜 • 1 0 n mの範囲内にある結晶質酸化チタンを少なくとも一方の主表面に含有する光触媒 膜、 または、 光半導体結晶化物としてチューブ厚みが 1〜1 0 n mの範囲内にある光半導 体ナノチューブを少なくとも一方の主表面に含有する光触媒膜が、 太陽光源照射下で光励 起超親水性を示すが、 有機物に対する分解活性をほとんど示さないことを見出し、 この知 見に基づいて本発明を完成するに至つた。
すなわち、 本発明は、
(1) 光半導体結晶化物を少なくとも一方の主表面に含有し、 光照射によって前記主表面 が親水化する光触媒膜であつて、
暗所保持後に半値幅 15 nm以下の光を照射した場合の親水化速度が、 照射光の波長が 370 nm以上の領域では、 2 ( 1 / d e g /m i n/ 105) 未満であり、 かつ照射光 の波長が 300〜360 の領域の少なくとも一部では、 2 (l/d Θ g/m i n/1 o5) 以上であることを特徴とする光触媒膜
(以下、 本宪明の光触媒膜 Iという)、
( 2 ) 光半導体結晶化物として結晶径が 1〜 10 n mの範囲内にある光半導体粒子を少な くとも一方の主表面に含有することを特徵とする光触媒膜 (以下、 本発明の光触媒膜 II という)、
(3) 前記光半導体結晶化物が結晶質酸ィヒチタンを含んでなるものである上記 (1) また は (2) に記載の光触媒膜、
(4) 全結晶質酸ィヒチタンに占める結晶径が 1〜10 nmの範囲内にある結晶質酸化チタ ンの割合が 90%以上である上記 (3) に記載の光触媒膜、
(5) 全結晶質酸化チタンに占める結晶径が 1〜10 nmの範囲内にある結晶質酸化チタ ンの割合が 100%である上記 (3) または (4) に記載の光触媒膜、
(6) 少なくとも一方の主表面における結晶径が 1〜 10 nmの範囲内にある結晶質酸化 チタンの含有割合が 3%以上である上記 (3) 〜 (5) のいずれかに記載の光触媒膜、
(7) 少なくとも一方の主表面における結晶径が 1〜10 nmの範囲内にある結晶質酸化 チタンの含有割合が 5%以上である上記 (3) 〜 (5) のいずれかに記載の光触媒膜、 (8) 透過型電子顕微鏡による光触媒膜の 50 nmX 50 nmの範囲における断面観察に よって、 少なくとも結晶粒が 5個以上存在する部分を有する上記 (3) 〜 (7) のいずれ かに記載の光触媒膜、
(9) 少なくとも一方の主表面において、 結晶質酸化チタンとともに非晶質酸化チタンが 存在してなる上記 (3) 〜 (8) のいずれかに記載の光触媒膜、 (1 0) 前記結晶質酸化チタンが非晶質酸化チタン中に分散してなる上記 (3) 〜 ( 9 ) のいずれかに記載の光触媒膜、
(1 1) 厚みが 1 m以下である上記 (1) 〜 (1 0) のいずれかに記載の光触媒膜、
(1 2) 前記主表面の太陽光照射時における水に対する接触角が 20度未満である上記 (1) 〜 (: L 1) のいずれかに記載の光触媒膜、
(1 3) 3 mWZ cm2の人工太陽光照射時におけるメチレンブルーの分解速度が、 塗布 したメチレンプル一の最大吸収波長における吸光度の低下速度 AAB SZm i nで 0. 1 以下である上記 (1) 〜 (1 2) のいずれかに記載の光触媒膜、
(14) 前記光半導体結晶化物がチタンアルコキシドの加水分解縮合物中に存在するとと もに、
前記チタンアルコキシドが有機高分子化合物と加水分解縮合してその含有率が表面か ら深さ方向に向かって連続的に変化する複合体を形成してなる上記 (1) 〜 (1 3) のい ずれかに記載の光触媒膜、
(1 5)光半導体結晶化物以外の金属化合物系微粒子をさらに含んでなる上記( 1 )〜( 1 4) のいずれかに記載の光触媒膜、
(1 6)光半導体結晶化物以外の金属化合物系微粒子がシリカ系微粒子である上記(1 5) に記載の光触媒膜、
(1 7) 無機金属塩、 有機金属塩ならびにチタンおょぴ珪素以外の金属のアルコキシドの 中から選ばれる少なくとも 1種類の金属系化合物をさらに含んでなる上記(1) 〜 (1 6) のいずれかに記載の光触媒膜、
(1 8) 金属系化合物が、 硝酸アルミニウムである上記 (1 7) に記載の光触媒膜、
(1 9) 非晶質酸化チタン膜に対して、 水分存在下で、 1 00°C以下の温度で加熱処理す ることを特徴とする上記 (3) 〜 (1 8) のいずれかに記載の光触媒膜の製造方法、
(20) 前記非晶質酸化チタン膜が、 チタンアルコキシドと有機高分子化合物とが加水分 解縮合してなる複合体を含むコーティング剤を 1回のみ塗布することによって、 チタンァ ルコキシドの加水分解縮合物の含有率を表面から深さ方向に向かって連続的に変化させ てなるものである上記 (1 9) に記載の方法、
(2 1) 光半導体結晶化物としてチューブ厚みが 1〜 1 0 nmの範囲内にある光半導体ナ ノチューブを少なくとも一方の主表面に含有することを特徴とする光触媒膜 (以下、 本発 明の光触媒膜 IIという)、
(22) 前記光半導体結晶化物が結晶質酸化チタンナノチューブを含んでなるものである 上記 (1) または (21) に記載の光触媒膜、
(23) バインダー成分をさらに含んでなる上記 (21) または (22) に記載の光触媒 膜、 .
(24) 基材の表面に、 上記 (1) 〜 (18) および (21) 〜 (23) のいずれかに記 載の光触媒膜または上記 (19) および (20) のいずれかに記載の方法により得られた 光触媒膜を有することを特徴とする物品、
(25) 前記基材が有機基材である上記 (24) に記載の物品、
(26)表面に厚みが 500 nm以下である機能膜をさらに有する上記(24)または(2 5) に記載の物品、
(27) 前記機能膜がシリカを含んでなる上記 (26) に記載の物品、 および
(28) 上記 (24) 〜 (27) のいずれかに記載の物品を太陽光照射下で使用すること を特徴とする親水化方法
を提供するものである。 発明の効果
本発明によれば、 酸化チタン表面に特段の処理を施さずに、 また基材との間に特別な中 間層を設ける必要がない、 太陽光源照射下で光励起超親水性を示すが、 有機物に対する分 解活性が抑制された新規な光触媒膜、 上記光触媒膜を効率よく製造する方法、 上記光触媒 膜を表面に有する物品、 該物品を用いた親水化方法を提供することができる。 図面の簡単な説明
図 1は各光触媒膜に対し、 波長 300 nm以上の光を照射して親水化速度を測定し、 得 られた親水化速度と照射主波長から得た累乗関数近似線を示す図である。
図 2は実施例 1で得られたサンプルの透過型電子顕微鏡写真と制限視野回折像を示す 図である。
図 3は実施例 1で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフであ る。 図 4は実施例 1で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフであ る。
図 5は実施例 1で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフであ る。
図 6は実施例 1で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフであ る。
図 7は実施例 1で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフであ る。
図 8は実施例 2で得られたサンプノレの透過型電子顕微鏡写真と制限視野回折像を示す 図である。
図 9は実施例 2で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフであ る。
図 1 0は実施例 2で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 1は実施例 2で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 2は実施例 2で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 3は実施例 3で得られたサンプルの透過型電子顕微鏡写真と制限視野回折像を示 す図である。
図 1 4は、 実施例 3で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 5は実施例 4で得られたサンプルの透過型電子顕微鏡写真と制限視野回折像を示 す図である。
図 1 6は実施例 4で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 7は実施例 4で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 8は比較例 1で得られたサンプ^/レの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 1 9は比較例 1で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで める。
図 20は実施例 5で得られたサンプルの透過型電子顕微鏡写真と制限視野回折像を示 す図である。
図 21は実施例 5で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 22は実施例 5で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 23は実施例 5で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 24は実施例 5で得られた X P Sデプスプロフアイル結果を示すグラフである。 図 25は比較例 2で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 26は比較例 2で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。 ■'
図 27は比較例 3で得られたサンプルの紫外線照射に伴う親水化挙動を示すグラフで ある。
図 28は実施例 6で得られた薄膜に対する、 人工太陽灯照射に伴う純水の接触角の経時 変化を示すグラフである。 発明を実施するための最良の形態
先ず、 本発明の光触媒膜 Iについて説明する。
本発明の光触媒膜は、 光半導体結晶化物を少なくとも一方の主表面に含有し、 光照射に よつて前記主表面が親水化する光触媒膜であって、 半値幅 1 5 n m以下の光を照射した場 合の親水化速度が、 照射光の波長が 370 nm以上の領域では、 2 (l/d e gZm i n /105) 未満であり、 かつ照射光の波長が 300〜 360 n mの領域の少なくとも一部 では、 2 (lZd e gZm i n/105) 以上であることを特徴とするものである。 本発明の光触媒膜は、 光半導体結晶化物を少なくとも一方の主表面に含有し、 光を照射 することによって前記主表面が親水化するものである。 そして、 地上に到達する太陽光の 内、 全太陽光に対する相対放射照度が小さい短波長端からの特定範囲の波長のみに応答し、 親水化を発現するように設計されていることを特徴とするものである。
本発明の光触媒膜を構成する光半導体結晶化物は、 上記親水化速度が 2 (1/d e g/ m i n/105) 未満となる領域が、 370 nm以上であるものが好ましく、 365 nm 以上であるものがより好ましい。 また、 上記親水化速度が 2 (1/d e g/m i n/10 5) 以上となる領域が、 300〜360 nmであるものが好ましく、 300〜355 nm であるものがより好ましい。
前記親水化速度とは、 半値幅 1 5 nm以下の任意の特定波長の光を、 照射主波長 (最大 放射波長) のフォトン (光子) 数で計算して 3. 7 X 1 015 (q u a n t a/cm2/ s) となる照度 (照射主波長が 36 5 n mの場合、 概ね 2 mW/ cm2) を照射した場合に得 られる値を指す。
本発明の光触媒膜を構成する光半導体粒子は、 照射光波長が 370 nm以上の領域で上 記親水化速度が 2 (1/d e g/m i n/105) 未満であり、 波長 370 nm以上の光 に対する応答性が低いために、 有機物に対する分解活性を抑制することができ、 また、 照 射光波長が 300〜 360 n mの領域の少なくとも一部で上記親水化速度が 2 (1/d e g/m i n/105) 以上であり、 波長 300〜360 nmの光に対する応答性が高いた めに、 地上に到達する太陽光 (300 nm以上) のうち、 親水化を発現する波長を効果的 に捉えることができる。 .
本発明の光触媒膜に含まれる光半導体結晶化物は、 波長 300〜 360 における有 機物に対する分解活性が実用上問題にならない程度のものであり、 この分解活性の程度は、 上記波長域の上限が短波長側になればなるほど小さくなる傾向があるが、 親水化速度も同 様に遅くなるため、 光に応答する上限の波長は、 用途などに応じて適宜最適な波長に設計 することが好ましい。
図 1に示す様に、 半値幅が 1 5 nm以下である波長 300 n m以上の光を照射して親水 化速度を測定し、 得られた親水化速度と照射主波長との累乗関数近似線において親水化速 度が 2 (1/d e g/m i n/105) となる波長を求めた場合、 市販アナターゼ型酸化 チタンを含む光触媒膜 (後述する比較例 2で得られた光触媒膜に対応する) およぴルチル 型酸化チタンを含む光触媒膜 (後述する比較例 3で得られた光触媒膜に対応する) におい ては、 上記波長がそれぞれ、 376 nm、 405 nm付近であった。 これらは、 一般的に 知られている吸収端とほぼ合致する。
一方、 図 1に示す様に、 本発明の光触媒膜に対応する、 図 1に Aで示す光触媒膜 (後述 する実施例 5で得られた S WM 900 hの光触媒膜に対応する) および図 1に Bで示す光 触媒膜 (後述する実施例 2で得られた SWM 9ひ 0 hの光触媒膜に対応する) は、 上記親 水化速度が 2 (1/d e g/m i n/105) となる波長が、 それぞれ、 341 ηηιおよ び 365 nmであり、 波長 370 n m以上の光に対する吸収 (応答) がないか極めて小さ いため、 この領域においては光触媒性のひとつである有機物の分解活性を発現しないと解 することができる。 また、 これらの光触媒膜は、 波長 300〜360 nmにおいて、 親水 化速度が 2 (1/d e g/m i n/105) 以上となる領域を有することから、 十分な親 水性を示すと解することができる。
このように、 市販のアナターゼ型酸化チタンや、 ルチル型酸化チタンが光吸収性を示す 370 nm以上の波長域は、 370 n m未満の場合と比較すると太陽光中での相対放射照 度が多く、 かつ太陽光が有する光波長域をより広く利用できることから、 上記アナターゼ 型酸化チタンやルチル型酸化チタンは親水性とともに光分解性を示しやすいと考えられ る力 本発明の光触媒膜は、 37011 m以上の波長域においてほとんど光吸収性を示さず、 かつ波長 300〜360 nmの波長域において、 親水化速度が 2 (1/d e g/m i n/ 105) 以上であることから、 地上に到達する太陽光 (300 nm以上) において、 光励 起超親水性を示しつつ、 有機物に対する光分解性が抑制され得ると考えられる。
本発明の光触媒膜 Iは、 以下に説明する光触媒膜 II、 光触媒膜 III あるいは光触媒膜 IVの特性を有するものであることが好ましい。
本発明の光触媒膜 II は、 光半導体結晶化物として結晶径が 1〜1 O nmの範囲内にあ る光半導体粒子を少なくとも一方のま表面に含有することを特徴とするものである。 この時に用いられる光半導体材料は、 酸化チタン、 酸化タングステン、 酸化亜鉛など、 バンドギヤップが 3.4eV以下の光半導体の中で、 特にバンドギヤップの価電子帯が酸素 の電子軌道で形成されており、 かつ空気、 水あるいは何かしらの有機物を分解するに足る 酸化力を有し得るエネルギー順位にありながら、 バンドギヤップの導電帯が空気や水など を還元できる充分な還元力を持つ半導体であることが好ましい。 この様な光半導体群の中 でもつとも好ましい光半導体材料として酸化チタンが挙げられる。 本発明の光触媒膜 II に含まれる結晶化チタ-ァとしては、 結晶径が 1〜1 0 n mの範 囲內にあるものであり、 特に結晶径が 3〜1 0 n mの範囲内にあるものが好ましい。
従来より、 光半導体としては、 平均粒径が小さいものでも 2 0 n m前後である二酸化チ タンが知られており、 このような二酸化チタンからなる光半導体は、 各種物質の分解-除 去性能や超親水化性能に優れることが知られていたが、 上述したように、 これら一般的な 光半導体は、 太陽光源照射下において、 分解性能に優れるために、 有機系基材に直接塗布 した場合に有機系基材をも浸食してしまうという技術課題を有していた。
この技術課題を解決するために本発明者等が鋭意検討したところ、 結晶径が 1〜: ί 0 n mの範囲内にある結晶質酸化チタンを少なくとも一方の主表面に主成分として含有する 光触媒膜が、 上述したような、 太陽光源照射下で光励起超親水性を示すが、 分解活性をほ とんど示さないことを見出して、 本発明を完成するに至ったものである。
本発明者等の検討によって、 結晶質酸ィ匕チタンの結晶径が小さいものほどより短波長側 の紫外線で応答することを確認するとともに、 前記の従来の二型酸化チタンよりも短波長 領域で応答させるためには、 結晶径が 1 0 n m以下である結晶質酸化チタンにすればよい ことも見出された。
また、 地表に到達する太陽光の紫外線の波長はおよそ 3 0 0 以上である。 そこで、 屋外使用など太陽光源照射下を想定して検討した結果、 3 0 0 以上の短波長領域の紫 外線で応答することが可能な結晶質酸化チタンの結晶径の下限は、 およそ 1 n mであるこ とも見出された。
ところで、光励起超親水化は、それが光半導体の最表層で起こる現象であることに加え、 光の吸収によって発生した正孔が光半導体表面の格子酸素にトラップされ T i -O間の結 合を切ることによって、 水酸基の配位を誘引することにより発現すると考えられる。 そこで、 本発明者等は、 光励起超親水化は、 光半導体の表面のみを改質するだけの光量 があればその改質部分に空気中の水が複層吸着する事によって発現する現象であるため、 分解活性を発現させるよりも少ない光量でよいのではないかと考えた。
つまり、 本発明では、 超親水化に必要な光は僅かで良いという認識の下、 あえて、 一般 に見られる紫外応答型光触媒物質の吸収領域よりも、 地表に降り注ぐ太陽光中の極僅かな 光の波長領域し力応答しない光半導体を用いることで、 太陽光照射下において、 分解活性 を示さず超親水性のみを示す光触媒物質を得ることができるのではないかとの考えに至 つた。
そして、 前記結晶径と光への応答波長との関係についての知見とを組み合わせて、 本発 明の光触媒膜 IIの完成に至ったものである。
本発明の光触媒膜 II は、 本発明の光触媒膜 Iの性質を有するものであることが好まし い。 - 本発明の光触媒膜 II は光半導体結晶化物が結晶質酸化チタンを含んでなるものである ことが好ましい。
結晶質酸化チタンとしては、 アナターゼ型、 ルチル型、 ブルッカイト型の何れの結晶質 酸化チタンであってもよく、 あるいは、 上記結晶質酸化チタンであって結晶欠陥や結晶歪 みを内包するものでもよく、 これ等の結晶質酸化チタンを 2種以上組み合わせたものであ つてもよい。
また、 本発明の光触媒膜 II に含まれる、 全結晶質酸ィヒチタンに占める結晶径が 1〜 1
0 の範囲内にある結晶質酸化チタンの割合は、 9 0 %以上であることが好ましく、 1
0 0 %であることがより好ましい。
なお、 本発明の光触媒膜 II において、 結晶径とは、 透過型電子顕微鏡で結晶質酸化チ タンの断面を観察したときの結晶粒の格子縞の最大長さを意味し、 また、 結晶径が 1〜 1
0 n mの範囲にある結晶質酸化チタンの含有割合は、 光触媒膜の断面を透過型電子顕微鏡 で観察したときの、 全結晶数に対する結晶径が 1〜 1 0 n mの範囲にある結晶数の割合を 算出することによって求められる。
また、 本発明の光触媒膜 II は、 少なくとも一方の主表面における結晶径が 1〜 1 0 n mの範囲にある結晶質酸化チタンの含有割合が 3 %以上であることが好ましく、 5 %以上 であることがより好ましい。
本発明の光触媒膜 II は、 透過型電子顕微鏡による光触媒膜の 5 0 n m X 5 0 n mの範 囲における断面観察によって、 少なくとも結晶粒が 5個以上存在するものであることが好 ましく、 1 0個以上存在するものであることがより好ましい。 上記観察範囲における結晶 粒数が 5個以上であることにより、 超親水性付与機能を有するが、 分解活性が抑制された 光触媒膜を得ることができる。
本発明の光触媒膜 II は、 結晶質酸ィ匕チタンが非晶質酸化チタン中に分散してなるもの であることが好ましい。 この場合、 例えば、 透過型電子顕微鏡で観察したときに、 非晶質 酸化チタンの海の中に結晶化チタン粒子が島状に点在してなるものが好ましい。
本発明の光触媒膜 II は、 その膜の両主表面において、,結晶質酸化チタンを主成分とし て含有してもよいが、 一方の主表面のみが結晶質酸化チタンを主成分として含有してもよ レ、。
この場合、 結晶質酸化チタンを主成分として含有する面を外部への露出面として使用す ることにより、 光触媒膜として利用することが可能となる。
本発明の光触媒膜 II は、 有機基材に塗布する場合に基板と塗膜の線膨張係数差や密着 性の乏しさなどに起因するクラックが生じる場合などにおいて、 結晶質酸化チタンが分散 した非晶質酸化チタンを含む膜であって、 その非晶質酸化チタンの含有量が膜の厚さ方向 に変化する成分傾斜性を有する膜であることが好ましい。 この場合、 結晶質酸化チタンを 主成分として含有する面を外部への露出面として使用するとともに、 反対側の主表面を有 機成分を主成分とすることにより、 各種有機系基材への接着性を向上させることができる とともに、 線膨張係数差などに起因して発生する膜中の歪みを緩和し、 有機基材上でも長 期間安定な膜を形成することができる。
光触媒膜 II の莫厚は、 特に制限されないが、 1 / m以下であることが好ましく、 0 . 0 1〜1 μ ιηであることがより好ましく、 0 . 0 3〜0 . 5 mであることがさらに好ま しく、 0 . 0 5〜0 . 3 μ πιであることが特に好ましい。
本発明の光触媒膜 II は、 太陽光照射時における水に対する限界接触角が 2 0度未満で あるものが好ましく、 1 0度以下であるものがさらに好ましい。
また、 本発明の光触媒膜 IIは、 3 mW/ c m2の人工太陽光照射時におけるメチレンブ ルーの分解速度が、 塗布したメチレンブルーの最大吸収波長における吸光度の低下速度 (分解活性) A A B S Zm i nで 0 . 1以下であるものが好ましく、 0 . 0 5以下である ものがより好ましく、 0 . 0 1以下であるものがさらに好ましく、 0 . 0 0 1 5以下であ るものがさらに好ましい。
上記水に対する接触角、 メチレンブルーの分解速度は、 例えば、 結晶質酸化チタンの結 晶径ゃ含有割合を調整することにより制御することができる。
なお上記水に対する接触角、 メチレンブルーの分解活性の評価方法については後で詳述 する。
本発明の光触媒膜 II は、 前記光半導体結晶化物がチタンアルコキシドの加水分解縮合 物中に存在するとともに、 前記チタンアルコキシドが有機高分子化合物と加水分解縮合し てその含有率が表面から深さ方向に向かつて連続的に変化する複合体を形成してなるも のであることが好ましい。
チタンアルコキシドの具体例としては、 後述するチタンテトラアルコキシドを挙げるこ とができ、 また、 有機化合物の具体例としては、 後述する加水分解性金属含有基を有する 有機高分子化合物を挙げることができる。
また、 本発明の光触媒膜 II は、 光半導体結晶化物以外の金属化合物系微粒子をさらに 含んでなるものであることが好ましく、 光半導体粒子以外の金属化合物系微粒子の具体例 は後述するとおりであるが、 特にシリカ系微粒子が好ましい。
また、 本発明の光触媒膜 II は、 無機金属塩、 有機金属塩ならびにチタンおよび珪素以 外の金属のアルコキシドの中から選ばれる少なくとも 1種類の金属系化合物をさらに含 んでなるものであることが好ましく、 上記金属系化合物の具体例は、 後述するとおりであ るが、 特に硝酸アルミニウムが好ましい。
本発明の光触媒膜 II は、 以下に説明する本発明の光触媒膜の製造方法により、 製造す ることが好ましい。
次に、 本発明の光触媒膜 IIの製造方法について説明する。
本発明の光触媒膜の製造方法は、非晶質酸化チタン膜に対して、水分存在下で、 1 0 o°c 以下の温度で加熱処理することを特徴とするものである。
本発明の製造方法においては、 温度 1 0 0 °C以下、 相対湿度 5 %以上の環境下で光触媒 を製造することが好ましい。
また、 本発明の光触媒膜 II の製造方法においては、 上記環境下において、 さらに 2 5 0〜 1 2 0 0 n mの波長域から選ばれる任意領域の波長を有するとともに、 紫外光を含む 光の存在下で製造することが好ましく、 その場合は、 放射照度 5〜4 0 OW/m 2の条件 で照射しつつ、 上記温度が 3 0〜 6 0 °C、 相対湿度が 5 0〜 8 0 %とすることが好適な製 造条件の一つに挙げられる。
2 5 0〜 1 2 0 0 n mの波長域から選ばれる任意領域の波長を有するとともに、 紫外光 を含む光としては、 少なくとも、 波長 2 5 0〜2 6 0 n m、 2 9 0〜3 1 5 n m、 3 5 0 〜1 2 0 0 n mの波長域の光を含むものであることが好ましく、 放射照度 2 0 0〜4 0 0 WZm 2の条件下で照射することが、 さらに好ましい。 本発明の光触媒膜 IIの製造方法においては、 少なくとも 1回以上、 水を噴霧すること が好ましい。 本発明の製造方法に用いられる設備や装置に関する制約は特にないが、 代表 的には、 恒温恒湿環境が得られる各種設備のほ力 \ カーボンアーク式サンシャインゥェザ 一メーター、 キセノンウエザーメータ一、 メタリングウエザーメータ一、 デューパネルゥ ェザーメーターなどが例示できる。
なお、 上記と同等の条件が得られる屋外環境下における暴露によっても同様に本発明の 酸化チタン化合物を製造することが可能である。
本発明の製造方法において、 本発明の光触媒膜 IIを得る方法としては、
( I ) (A) チタンテトラアルコキシドを加水分解縮合させて得られるチタニアゾルを含 むコーティング剤により膜を形成させて、 その形成させた膜に対して前述の製造条件で処 理する方法、
(II) (A) チタンテトラアルコキシドを加水分解縮合させて得られるチタニアゾルを乾 固させて非晶質酸化チタンからなる粉末を形成させた後、 当該粉末を無機系および/また は有機系のパインダ一に混練することにより膜を形成させてその形成させた膜に対して 前述の製造条件で処理する方法、
(III) (A) チタンテトラアルコキシドを加水分解縮合させて得られるチタニアゾルを乾 固させて非晶質酸ィヒチタンからなる粉末を形成させたのち、 その粉末に対して前述の製造 条件で処理することによって本発明の結晶質酸化チタンを含む粉末を形成させたのち、 当 該粉末を無機系および/または有機系のバインダ一に混練することにより膜を形成させ る方法、
などを挙げることができる。
(A) 成分であるチタンテトラアルコキシドを加水分解縮合させて得られるチタ-ァゾ ルの調製において、 原料となるチタンテトラアルコキシドとしては、 アルコキシル基の炭 素数が 1〜 4程度のチタンテトラアルコキシドが用いられる。 このチタンテトラアルコキ シドにおいては、 4つのアルコキシル基は、 たがいに同一でも異なっていてもよいが、 入 手の容易さなどの点から、 同一のものが好ましく用いられる。 上記チタンテトラアルコキ シドとしては、 チタンテトラメトキシド、 チタンテトラエトキシド、 チタンテトラー n— プロポキシド、 チタンテトライソプロポキシド、 チタンテトラー n—ブトキシド、 チタン テトライソブトキシド、 チタンテトラー s e c—ブトキシドおよびチタンテトラ一 t e r tープトキシドが挙げられる。 これらは 1種を単独で用いてもよいし、 2種以上を組み合 わせて用いてもよい。
上記チタンテトラアルコキシドを加水分解一縮合させて、 チタニアゾル溶液を調製する。 このチタンテトラアルコキシドの加水分解一縮合反応は、 好ましくは炭素数 3以上のエー テル系酸素を有するアルコール類を溶媒として用い、 酸性触媒の存在下でチタンテトラァ ルコキシドに水を作用させることにより行われる。
上記炭素数 3以上のエーテル系酸素を有するアルコール類としては、 チタンテトラアル コキシドに対して相互作用を有する溶剤、,例えばエチレンダリコールモノメチルエーテル、 エチレングリコーノレモノェチノレエーテノレ、 エチレングリコーノレモノプロピノレエーテノレ、 ェ チレングリコールモノプチルエーテル、 エチレングリコールモノ t—ブチルェ一テルなど のセロソルブ系溶剤、 ジエチレングリコールモノメチルエーテル、 ジエチレングリコール モノエチノレエーテノレ、 ジエチレングリコールモノプロピルエーテル、 ジエチレングリコー ノレモノブチノレエ一テノレ、 プロピレングリコールモノメチルエーテル、 プロピレングリコー ルモノェチルエーテル、 プロピレングリコールモノプロピルエーテル、 プロピレングリコ ールモノプチルエーテルなどを挙げることができる。 これらの中で、 特にチタンテトラァ ルコキシドに対する相互作用が強いセロソルブ系溶剤が好ましい。 これらの溶剤は 1種を 単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。
このようなチタンテトラアルコキシドに対して相互作用を有する溶剤を溶媒として用 いることにより、 チタンテトラアルコキシドの加水分解一縮合反応により得られたチタ- 了ゾル溶液を安定化させることができ、 縮合反応を進行させてもゲル化や粒子化が生じに くくなる。
チタンテトラアルコキシドの加水分解一縮合反応は、 チタンテトラアルコキシドに対し、 4〜 2 0倍モル程度、 好ましくは 5〜 1 2倍モルの上記アルコール類と、 0 . 5倍モル以 上 4倍モル未満程度、 好ましくは 1 ~ 3 . 0倍モルの水を用い、 塩酸、 硫酸、 硝酸などの 酸性触媒の存在下、 通常 0〜 7 0 °C、'好ましくは 2 0〜 5 0 °Cの範囲の温度にお 、て行わ れる。 酸性触媒は、 チタンテトラアルコキシドに対し、 通常 0 . 1〜1 . 0倍モル、 好ま しくは 0 . 2〜0 . 7倍モルの範囲で用いられる。
本発明の製造方法においては、 上記非晶質酸化チタン膜として、 チタンテトラアルコキ シドと有機高分子化合物とを含むコーティング剤により形成されてなり、 上記チタンテト ラアルコキシドが有機高分子化合物と加水分解縮合して、 その含有率が、 膜表面から厚さ 方向に連続的に変化する成分傾斜構造を有するものを用いてもよい。
また、 上記非晶質酸化チタン膜が、 チタンアルコキシドと有機高分子化合物とが加水分 解縮合してなる複合体を含むコーティング剤を 1回のみ塗布することによって、 チタンァ ルコキシドの加水分解縮合物の含有率を表面から深さ方向に向かって連続的に変化させ てなるものを用いてもよい。
上記成分傾斜構造を有する非晶質酸化チタン膜を用いることにより、 一方の主表面のみ が結晶質酸化チタンを主成分として含有する光触媒膜を得ることができる。
上記成分傾斜構造を有する非晶質酸化チタン膜は、 例えば、 上記 (A) チタンテトラァ ルコキシドを加水分解縮合させて得られるチタニアゾルと共に、 (B ) 分子中に加水分解 により酸化チタンと結合し得る金属含有基 (加水分解性金属含有基と称することがある。) を有する有機高分子化合物を含むコーティング剤を用いて形成することができる。
上記 (B ) 成分の加水分解性金属含有基を有する有機高分子化合物は、 例えば (a ) 加 水分解性金属含有基を有するエチレン性不飽和単量体と、 (b ) 金属を含まないエチレン 性不飽和単量体を共重合させることにより、 得ることができる。
上記 (B ) ( a ) 成分である加水分解性金属含有基を有するエチレン性不飽和単量体と しては、 一般式 (I )
Figure imgf000019_0001
(式中、 R 1は水素原子またはメチル基、 Aはアルキレン基、 好ましくは炭素数 1〜4 のアルキレン基、 R 2は加水分解性基または非加水分解性基であるが、 その中の少なくと も 1つは加水分解により、 ( A) 成分と化学結合しうる加水分解性基であることが必要で あり、 また、 R 2が複数の場合には、 各 R 2はたがいに同一であってもよいし、 異なってい てもよく、 M1はケィ素、 チタン、 ジルコニウム、 インジウム、 スズ、 アルミニウムなど の金属原子、 kは金属原子 M1の価数である。)
で表されるものを挙げることができる。
上記一般式 (I ) において、 R 2のうちの加水分解により (A) 成分と化学結合しうる 加水分解性基としては、 例えばアルコキシル基、 イソシァネート基、 塩素原子などのハロ ゲン原子、 ォキシハロゲン基、 ァセチルァセトネート基、 水酸基などが挙げられ、 一方、 (A) 成分と化学結合しない非加水分解性基としては、 例えば低級アルキル基などが好ま しく挙げられる。
一般式 (I ) における一 Μ 1 !^ ^^で表される金属含有基としては、 例えば、 トリメ ト キシシリル基、 トリエトキシシリル基、 トリー n—プロポキシシリル基、 トリイソプロボ キシシリル基、 トリー n—ブトキシシリル基、 トリイソブトキシシリル基、 トリー s e c 一ブトキシシリル基、 トリー t e r t—ブトキシシリル基、 トリクロロシリル基、 ジメチ ルメ トキシシリル基、 メチルジメ トキシシリル基、 ジメチルクロロシリル基、 メチルジク ロロシリル基、 トリイソシアナトシリル基、 メチルジイソシアナトシリル基など、 トリメ トキシチタニウム基、 トリエトキシチタニウム基、 トリー n—プロポキシチタニウム基、 トリイソプロポキシチタニウム基、 トリ一 n—ブトキシチタニウム基、 トリイソブトキシ チタニウム基、 トリー s e c—ブトキシチタニウム基、 トリー t e r t—ブトキシチタ- ゥム基、 トリクロ口チタニウム基、 さらには、 トリメ トキシジノレコニゥム基、 トリエトキ シジルコニウム基、 トリー η—プロポキシジルコニウム基、 トリイソプロポキシジルコ- ゥム基、 トリー η—ブトキシジルコニウム基、 トリイソブトキシジルコニウム基、 トリー s e c—プトキシジノレコニゥム基、 トリー t e r t—プトキシジノレコニゥム基、 トリクロ 口ジルコニウム基、 またさらには、 ジメ トキシアルミニウム基、 ジェトキシアルミニウム 基、 ジー n—プロポキシアルミニウム基、 ジイソプロポキシアルミニウム基、 ジー n—ブ トキシアルミニウム基、 ジイソブトキシアルミニウム基、 ジー s e c—ブトキシアルミ- ゥム基、 ジー t e r t—ブトキシアルミニウム基、 トリクロ口アルミニウム基などが挙げ られる。
この (a ) 成分のエチレン性不飽和単量体は 1種用いてもよいし、 2種以上を組み合わ せて用いてもよい。
一方、 上記 ( b ) 成分である金属を含まないエチレン性不飽和単量体としては、 例えば —般式 (II)
Figure imgf000020_0001
…(! I).
(式中、 R 3は水素原子またはメチル基、 Xは一価の有機基である。) で表されるエチレン性不飽和単量体、 好ましくは一般式 (Π— a )
Figure imgf000021_0001
(式中、 R 3は前記と同じであり、 R 4は炭化水素基を示す。)
で表されるエチレン性不飽和単量体、 あるいは上記一般式 (II一 a ) で表されるエチレン 性不飽和単量体と、 必要に応じて添加される密着性向上剤としての一般式 (II一 b )
Figure imgf000021_0002
(式中、 R 5は水素原子またはメチル基、 R 6はエポキシ基、 ハロゲン原子若しくはエーテ ル結合を有する炭化水素基を示す。)
で表されるエチレン性不飽和単量体との混合物を挙げることができる。
上記一般式 (II— a ) で表されるエチレン性不飽和単量体において、 R 4で示される炭 化水素基としては、 炭素数 1〜 1 0の直鎖状若しくは分岐状のアルキル基、 炭素数 3〜 1 0のシクロアルキル基、 炭素数 6〜 1 0のァリール基、 炭素数 7〜 1 0のァラルキル基を 好ましく挙げることができる。 炭素数 1〜 1 0のアルキル基の例としては、 メチル基、 ェ チル基、 n—プロピル基、 イソプロピル基、 および各種のブチル基、 ペンチル基、 へキシ ル基、 ォクチル基、 デシル基などが挙げられる。 炭素数 3〜 1 0のシクロアルキル基の例 としては、 シクロペンチル基、 シクロへキシル基、 メチルシクロへキシル基、 シクロォク チル基などが、 炭素数 6〜 1 0のァリール基の例としては、 フエニル基、 トリル基、 キシ リル基、 ナフチル基、 メチルナフチル基などが、 炭素数 7〜 1 0のァラルキル基の例とし ては、 ベンジル基、 メチルベンジル基、 フエネチチル基、 ナフチルメチル基などが挙げら れる。
この一般式 (II— a ) で表されるエチレン性不飽和単量体の例としては、 メチル (メタ) ァクリレート、 ェチル (メタ) ァクリレート、 プロピル (メタ) ァクリレート、 ブチル(メ タ) アタリレート、 へキシル (メタ) ァクリレート、 2—ェチルへキシル (メタ) アタリ レート、 シクロへキシル (メタ) アタリレート、 フエニル (メタ) アタリレート、 ベンジ ル (メタ) ァクリレートなどが挙げられる。 これらは単独で用いてもよいし、 2種以上を 組み合わせて用いてもよい。
上記一般式 (II一 b ) で表されるエチレン性不飽和単量体において、 R 6で示されるェ ポキシ基、 ハロゲン原子若しくはエーテル結合を有する炭化水素基としては、 炭素数 1〜 1 0の直鎖状若しくは分岐状のアルキル基、 炭素数 3〜1 0のシクロアルキル基、 炭素数 6〜1 0のァリール基、 炭素数 7〜1 0のァラルキル基を好ましく挙げることができる。 上記置換基のハロゲン原子としては、 塩素原子および臭素原子がよい。 上記炭化水素基 の具体例としては、 前述の一般式 (II一 a ) における R 4の説明において例示した基と同 じものを挙げることができる。
上記一般式(Π— b )で表されるエチレン性不飽和単量体の例としては、グリシジル(メ タ) ァクリ レート、 3—グリシドキシプロピル (メタ) アタリレート、 2— ( 3 , 4ーェ ポキシシクロへキシル) ェチル (メタ) ァクリ レート、 2—クロ口ェチル (メタ) アタリ レート、 2—ブロモェチル (メタ) アタリレートなどを好ましく挙げることができる。 また、 上記一般式 (I I) で表されるエチレン性不飽和単量体としては、 これら以外にも スチレン、 α—メチ/レスチレン、 αーァセトキシスチレン、 m—、 o一または p—ブロモ スチレン、 m—、 o—または p—クロロスチレン、 m—、 o—または p—ビニノレフエノー ノレ、 1一または 2—ビュルナフタレンなど、 さらにはエチレン性不飽和基を有する重合性 高分子用安定剤、 例えばエチレン性不飽和基を有する、 酸化防止剤、 紫外線吸収剤および 光安定剤なども用いることができる。 これらは単独で用いてもよいし、 2種以上を組み合 わせて用いてもよい。
また、 一般式 (I I一 a ) で表されるエチレン性不飽和単量体と一般式 (II一 b ) で表さ れるエチレン性不飽和単量体とを併用する場合は、 前者のエチレン性不飽和単量体に対し、 後者のエチレン性不飽和単量体を 1〜 1 0 0モル%の割合で用いるのが好ましい。
上記 (a ) 成分の加水分解性金属含有基を有するエチレン性不飽和単量体と (b ) 成分 の金属を含まないエチレン性不飽和単量体とを、 ラジカル重合開始剤の存在下、 ラジカル 共重合させることにより、 (B ) 成分である加水分解性金属含有基を有する有機高分子化 合物が得られる。
本発明の製造方法においては、 上記のようにして得られた (A) 成分であるチタ-ァゾ ルの溶液、 または (A) 成分であるチタ-ァゾルの溶液と (B ) 成分である加水分解性金 属含有基を有する有機高分子化合物を適当な極性溶剤中に溶解させた溶液との混合液を、 塗布に適した粘度に調整することによって塗工液を得ることができる。 この際、 必要なら ば、 上記塗工液に水および/または酸性触媒を添カ卩してもよい。
上記非晶質酸化チタン膜が成分傾斜構造を有するものである場合、 膜の形成に用いられ るコーティング剤には、 光半導体粒子以外の金属化合物系微粒子、 好ましくはシリカ微粒 子を含有させることができる。
上記成分傾斜膜にシリカ微粒子が含まれることにより、 得られる光触媒膜が、 塗膜の強 度や硬度を向上させる作用の他、 屈折率の調整効果や暗所保持時においても超親水性維持 性能を持続させる効果を奏する。 当該シリカ微粒子としては、 コロイダルシリカが好まし レ、。
このコロイダルシリカは、 高純度の二酸化ケイ素 (S i〇2) を水またはアルコール系 溶剤に分散させてコロイド状にした製品であって、 平均粒子径は、 通常 l〜 2 0 0 n m、 好ましくは 5〜 5 0 u naの範囲である。 シリコンアルコキシドの加水分解縮合物では、 反 応が終結していないので、 水で溶出されやすく、 それを含む光触媒膜は耐水性に劣る。 一 方、 コロイダルシリ力は、 反応終結微粒子であるため、 水で溶出されにくく、 それを含む 光触媒膜は、 耐水性が良好なものとなる。
さらに、 上記成分傾斜構造を有する非晶質酸化チタン膜の形成に用いられるコーティン グ剤には、 アモルファス状酸化チタンの結晶生成を調整する物質として、 無機金属塩、 有 機金属塩並びにチタンおよび珪素以外の金属のアルコキシドの中から選ばれる少なくと も 1種の金属系化合物を含有させることができる。 具体的には、 硝酸アルミニウム、 酢酸 アルミニウム、 硫酸ァノレミニゥム、 塩ィ匕アルミニウムや、 硝酸ジルコニウム、 酢酸ジルコ 二ゥム、 硫酸ジルコニウム、 塩化ジルコニウム等の各塩類、 ならびに、 これら無機塩類の 水和物、 アルミニウムトリァセチルァセトナートなどのアルミニウムキレート類、 テトラ 一 n—プロポキシジノレコユウム、 テトラエトキシシラン、 フエ二/レト.リメ トキシシランな どの金属アルコキシド類、 ならびにこれら化合物の加水分解物、 あるいは、 その縮合物を 挙げることができる。 これらの中で、 特に硝酸アルミニウムならびにその水和物が好適で ある。 前記結晶生成調整物質は、 1種を単独で用いてもよく、 2種以上を組み合わせて用 いてもよい。
このように、 コーティング剤中に結晶生成調整物質を含有させることにより、 形成され る光触媒膜中の酸化チタンの微結晶生成挙動(例えば、結晶生成速度や結晶成長速度など) を調節することができる。 また、 使用される環境や要求される性能に応じて、 超親水性発 現までの時間をコントロールすることなどが可能であり、 さらに収縮に伴う亀裂発生抑制 など膜の安定性の調節に寄与することもできる。
本発明の製造方法においては、 有機基材上に、 上述のようにして得られた塗工液を、 乾 燥塗膜の厚さが、 通常 0 . 0 1〜1 μ πι、 好ましくは 0 . 0 3〜0 . 3 μ ιηの範囲になる ように、 ディップコート法、 スピンコート法、 スプレーコート法、 バーコート法、 ナイフ コート法、 ロールコート法、 ブレードコート法、 ダイコート法、 グラビアコート法などの 公知の手段により塗布し、 溶媒を揮散させて塗膜を形成させることが好ましい。
上記有機基材としては、 例えばポリメチルメタクリレートなどのアタリル樹脂、 ポリス チレンや A B S樹脂などのスチレン系樹脂、 ポリエチレンやポリプロピレンなどのォレフ ィン系樹脂、 ポリエチレンテレフタレートゃポリエチレンナフタレートなどのポリエステ ル系樹脂、 6一ナイロンや 6, 6—ナイロンなどのポリアミド系榭脂、 ポリ塩化ビュル系 樹脂、 ポリカーボネート系樹脂、 ポリフエ二レンサルファイ ド系樹脂、 ポリフエ二レンェ 一テル系榭脂、 ポリイミド系樹脂、 セルロースアセテートなどのセルロース系樹脂などか らなる基材を挙げることができる。
これらの有機基材は、 本発明に係る成分傾斜膜との密着性をさらに向上させるために、 所望により、 酸化法や凹凸化法などにより表面処理を施すことができる。 上記酸化法とし ては、 例えばコロナ放電処理、 クロム酸処理 (湿式)、 火炎処理、 熱風処理、 オゾン'紫 外線照射処理などが挙げられ、 また、 凹凸化法としては、 例えばサンドブラスト法、 溶剤 処理法などが挙げられる。 これらの表面処理法は基材の種類に応じて適宜選ばれる。
なお、本発明において、有機基材としては、有機系材料以外の材料、例えば金属系材料、 ガラスやセラミックス系材料、 その他各種無機系または金属系材料からなる基材の表面に、 有機系塗膜を有するものも包含する。
本発明の製造方法においては、 このようにして形成された塗膜に、 通常 0〜2 0 0 °C、 好ましくは 1 5〜1 5 0 °Cの温度にて加熱処理を施すことにより、 非晶質酸化チタン膜を 形成することが好ましい。
成分傾斜構造を有する非晶質酸化チタン膜を作製する場合、 例えば得られた膜表面にス パッタリングを施して削っていき、 経時的に膜表面の炭素原子とチタン原子の含有率を、 X線光電子分光法などにより測定することによって、 その構造を確認することができる。 次に、 本発明の光触媒 IIIについて説明する。
本発明の光触媒膜 IIIは、 光半導体結晶化物としてチューブ厚みが 1〜 1 0 n mの範囲 内にある光半導体ナノチューブを少なくとも一方の主表面に含有することを特徴とする ものである。
本発明の光触媒膜 IIIに含まれる光半導体ナノチューブとは、 光半導体材料からなるナ ノサイズのチューブ状物を意味し、 このような光半導体ナノチューブとしては、 例えば、 特開平 1 0— 1 5 2 3 2 3号公報に記載されている酸化チタンナノチューブ等が知られ ている。
本発明の光触媒膜 IIIに含まれる光半導体ナノチューブは、 チューブ厚みが 1〜 1 0 n mの範囲内にあるものであり、 特にチューブ厚みが 3〜 6 n mの範囲内にあるものが好ま しい。 また、 チューブ径 (空隙部を含むチューブ垂直断面全体の径)、 チューブ長さ (チ ユーブの長手方向の長さ) は特に制限はないが、 チューブ径が 5〜 8 0 η πι、 チューブ長 さが 5〜 1 0 0 0 n m程度であることが好ましい。
なお、 本発明において、 チューブ厚み、 チューブ径、 チューブ長は、 透過型電子顕微鏡 で光半導体ナノチューブを観察したときの、 結晶部分における厚み、 径、 長さの平均値を 意味する。
光半導体ナノチューブの構成材料は、 バンドギャップが 3 . 4 e V以下の光半導体の中 で、 特にバンドギャップの価電子帯が酸素の電子軌道で形成されており、 かつ空気、 水あ るいは何かしらの有機物を分解するに足る酸化力を有し得るエネルギー順位にありなが ら、 バンドギヤップの導電帯が空気や水などを還元できる充分な還元力を持つ半導体を含 んでなるものであることが好ましい。
この様な光半導体材料としては、 結晶質酸化チタン、 結晶質酸化タングステン、 結晶質 酸化亜鉛などを含んでなるものを挙げることができ、 これらの中で、 結晶質酸化チタンを 含んでなるものが好ましい。
結晶質酸化チタンとしては、 アナターゼ型、 ルチル型、 ブルッカイト型の何れの結晶質 酸化チタンであってもよく、 あるいは、 上記結晶質酸化チタンであって結晶欠陥や結晶歪 みを内包するものでもよく、 これ等の結晶質酸化チタンを 2種以上糸且み合わせたものであ つてもよい。
酸化チタンナノチューブの原子配列は基本的にはアナターゼ型に類する周期構造を有 しており、 チューブの厚みが 3〜 5原子層レベル (3〜5 n m程度) と、 一方向のみでは あるが 5 n m未満という、 本発明の光触媒膜 I Iの粒径と同程度の微小なサイズを有して いる。
そこで発明者等は、 分光光学的な手法を用い、 親水化挙動の波長依存性を詳細に調査し た結果、 驚くべきことに、 これらの材料が、 光触媒膜 II を構成する 5 n m程度の微小な ナノ酸化チタン結晶と同程度の親水化特性を示すことを見出した。すなわち、光触媒膜 II に含有される光半導体粒子のように、 結晶のあらゆる方向に対して 1〜1 O n mの微小な 構造が必要なわけではなく、 1部 (チューブの厚み) のみでも 1 0 n m以下の微小なサイ ズ構造が存在すれば、 その他のサイズ (チューブの直径や長手方向長さ) は巨大であって も所望の親水化特性を示すことを見出し、 本知見に基づいて、 本発明の光触媒 IIIを完成 させたものである。
本発明の光触媒膜 IIIは、 少なくとも一方の主表面におけるチューブ厚みが 1〜 1 0 n tnの範囲内にある光半導体ナノチューブの含有割合が 3 %以上であることが好ましく、 5 %以上であることがより好まし!/、。
本発明の光触媒膜 IIIは、 バインダ一成分をさらに含んでもよく、具体的には、 光触媒 含有液を有機基材に塗布する場合に、 耐候性の良いバインダーと混合して成膜することが 好ましい。
耐候性の良いバインダーとしては、 例えばアクリル樹脂、 アクリルシリコーン樹脂、 ァ ルキル金属アルコキシドの部分加水分解 ·重縮合物等を挙げることができる。 また U V吸 収剤ゃラジカル補足剤などを含有させて耐候性を向上させた各種有機系 ·無機系バインダ 一も使用することが可能である。
本発明の光触媒膜 IIIは、 その膜の両主表面において、 光半導体ナノチューブを主成分 として含有してもよいが、 一方の主表面のみが光半導体ナノチューブを主成分として含有 してもよレ、。 この場合、 光半導体ナノチューブを主成分として含有する面を外部への露出 面として使用することにより、 光触媒膜として利用することが可能となる。
本発明の光触媒膜 IIIは、 光半導体結晶化物以外の金属化合物系微粒子をさらに含んで なるものであってもよく、 光半導体結晶化物以外の金属化合物系微粒子としては、 シリ力 系微粒子が好ましい。 本発明の光触媒膜 IIIがシリカ系微粒子を含む場合、 塗膜の強度や 硬度を向上させる作用の他、 屈折率の調整効果ゃ喑所保持時においても超親水性維持性能 を持続させる効果を奏し、 好適である。
シリカ系微粒子としては、 コロイダルシリカが好ましく、 このコロイダルシリカは、 高 純度の二酸化ケイ素 (S i o 2) を水またはアルコール系溶剤に分散させてコロイド状に したものであって、 平均粒子径が、 通常 l〜2 0 0 n m、 好ましくは 5〜 5 0 n mの範囲 にあるものである。
光触媒膜 ΙΠの膜厚は、 特に制限されないが、 5 0 n m以上であることが好ましく、 1 0 0 n m以上であることがより好ましく、 1 0 0 η π!〜 1 0 μ m以下であることがさらに 好ましい。
本発明の光触媒膜 IIIは、 本発明の光触媒膜 Iの性質を有するものであることが好まし い。
本発明の光触媒膜 IIIは、 太陽光照射時における水に対する限界接触角が 2 0度未満で あるものが好ましく、 1 0度以下であるものがさらに好ましい。
また、 本発明の光触媒膜は、 3 mW/ c m2の人工太陽光照射時におけるメチレンブル 一の分解速度が、 塗布したメチレンブルーの最大吸収波長における吸光度の低下速度 (分 解活性) 厶 :8 3ズ111 ¾[ 11で0 . 1以下であるものが好ましく、 0 . 0 5以下であるもの がより好ましく、 0 . 0 1以下であるものがさらに好ましく、 0 . 0 0 1 5以下であるも のがさらに好ましい。
上記水に対する接触角、 メチレンブルーの分解速度は、 例えば、 結晶質酸化チタン等か らなる光半導体ナノチューブ結晶の長さや含有割合を調整することにより制御すること ができる。
なお上記水に対する接触角、 メチレンブルーの分解活性の評価方法は、 本発明の光触媒 膜 I Iと同様であり、 同法の詳細については後述する。
次に、 本発明の光触媒膜 IIIを製造する方法について説明する。
本発明の光触媒膜 IIIを構成する光半導体ナノチューブを製造する方法としては、 結晶 性酸化チタン粉末を高温 ·高圧下で所定時間アル力リ処理することによって製造する方法 を挙げることができる。
原料として用いられる結晶性酸化チタン粉末を構成する結晶性酸化チタンは、 アナター ゼ型、 ルチル型またはブルツカイト型のいずれか単相からなるのものであってもよいし、 これらを 2種以上含む混相からなるものであってもよい。 小径なチューブ構造を効率よく 製造するためには、 結晶性酸化チタン粉末として、 ルチル型結晶とアナターゼ型結晶の混 相からなるものが好ましく、 ルチル型結晶とアナターゼ型結晶の混相からなるものとして は、 体積比 (ルチル型ノアナターゼ型) が 2 0ノ8 0〜8 0 Z 2 0の範囲にあるものがよ り好ましい。
結晶性酸ィヒチタン粉末の粒径は 2 0 ri m以上が好ましい。 製造方法にもよるが、 粒径が 2 0 n m未満では得られる光半導体ナノチューブにおいて好適なチューブ形状を形成し にくいためである。
結晶性酸化チタン粉末のアルカリ処理は、 密閉容器中に封入しこ状態で、 所定時間、 1 0 0 °C〜 1 8 0 °C程度の温度に加熱しつつ行うことが好ましい。
アルカリ処理に用いるアルカリ溶液としては、 N a〇H水溶液等を挙げることができる。 アルカリ溶液として N a OH水溶液を用いる場合、 その濃度は 1 N〜 2 0 N程度であるこ とが好ましい。
加熱温度が 1 8 0 °C超であると、 中空部を有さないナノ口ッド形状の酸化チタンが形成 されることがあり、 ナノロッド形状の酸化チタンは、 そのパンドギャップが 3 . 4 e V未 満になるため、 所望の親水化特性を得ることができなくなる。 また、 加熱温度が 1 0 0 °C 未満であると、 光半導体ナノチューブの生成効率が悪化し、 加熱時間の適切な調整が必要 になる等の問題が生じる。
加熱時間は、 原料や加熱温度によつて変化するため一概に規定することはできないが、 例えば 1 8 0 °Cで処理する場合であれば、 2 0時間を大きく超えることが好ましい。
上記アルカリ処理後の反応液は、 次いで、 酸で中和し、 さらに酸性領域下に曝して解繊 処理した後に、 分散剤と共に再び中和することが好ましい。
上記分散剤として好適なものとしては、特に限定はないが、例えばテトラ (n—プチル) アンモ-ゥム水酸化物を挙げることができる。 また解繊しやすいようにチューブの長さを 適切な長さにすることが好ましい。
このようにして、 本発明の光触媒膜 IIIを構成する光半導体ナノチューブを得ることが できる。 得られる光半導体ナノチューブのチューブ径ゃチューブ長さは、 原料や処理方法 によって調整できるが、 さらに超音波処理などによって、 チューブ長さを短く調整するこ ともできる。 超音波処理は、 アルカリ処理工程後、 解繊処理工程前に行うのが好ましい。 本発明の光触媒膜 IIIを製造する方法においては、 上記に様にして得られた光半導体ナ ノチューブ分散液に、 さらに耐候性の良いバインダーを混合した混合液を、 塗布に適した 粘度に調整することによって塗工液を得ることができる。
耐候性の良いバインダーとしては、 例えばアクリル樹脂、 アクリルシリコーン樹脂、 ァ ルキル金属アルコキシドの部分加水分解 ·重縮合物等を挙げることができる。 また U V吸 収剤ゃラジカル補足剤などを含有させて耐候性を向上させた各種有機系 ·無機系バインダ 一も使用することができる。
また上記塗工液は、 本発明の目的を阻害しない範囲で、 必要に応じて各種添加剤、 フィ ラー、 顔料等を含んでもよい。 上記添加剤としては、 例えば、 金属化合物系微粒子をあげ ることができる。 金属化合物系微粒子としては、 シリカ系微粒子が好ましい。 塗工液中に シリカ系微粒子が含まれることにより、 得られる光触媒膜の強度や硬度を向上させる作用 の他に、 屈折率の調整効果や暗所保持時においても超親水性維持性能を持続させる効果を 奏する。 当該シリカ系微粒子としては、 コロイダルシリカが好ましい。
このコロイダルシリカは、 高純度の二酸化ケイ素 (S i〇2) を水またはアルコール系 溶剤に分散させてコロイド状にしたものであって、 平均粒子径が、 通常 1〜2 0 0 n m、 好ましくは 5〜5 0 n mの範囲にあるものである。 シリカ系微粒子としては、 シリコンァ ルコキシドの加水分解縮合物も考えられるが、 シリコンアルコキシドの加水分解縮合物で は、 反応が終結していない場合があり、 その場合、 水で溶出されやすく、 それを含む光触 媒膜は耐水性が劣ってしまう。 一方、 コロイダルシリカは、 反応終結微粒子であるため、 水で溶出されにくく、 それを含む光触媒膜は、 耐水性が良好なものとなる。
本発明の光触媒膜 IIIを製造する方法においては、 上述のようにして得られた塗工液を 基材上に塗布した後、 溶媒を揮散させて塗膜を形成させることが好ましい。
塗工液を塗布する基材としては、 有機基材、 ガラスやセラミックス系材料等からなる無 機基材、 金属基材等を挙げることができる。
有機基材としては、 例えばポリメチルメタタリレートなどのアクリル榭脂、 ポリスチレ ンゃ A B S樹脂などのスチレン系榭脂、 ポリエチレンやポリプロピレンなどのォレフィン 系樹脂、 ポリエチレンテレフタレートゃポリエチレンナフタレートなどのボリエステル系 榭脂、 6—ナイロンや 6 , 6—ナイロンなどのポリアミド系樹脂、ポリ塩化ビニル系樹脂、 ポリカーボネート系樹脂、 ポリフエ二レンサルファイド系樹脂、 ポリフエ-レンエーテル 系樹脂、 ポリイミド系樹脂、 セルロースアセテートなどのセルロース系樹脂などからなる 基材を挙げることができる。 無機基材としては、 シリカ系.ガラス材料、 陶磁器材料、 タイ ル、 その他金属酸化物系焼結物などからなる基材を挙げることができる。 また、 金属基材 としては、 アルミ、 銀、 銅、 鉄鋼物や、 ステンレスなどの合金材料などからなる基材を挙 げることができる。
これらの有機基材、 無機基材、 金属基材には、 本発明に係る光触媒膜との密着性をさら に向上させるために、 所望により、 酸化法や ω凸化法などにより予め表面処理を施しても よい。 上記酸化法としては、 例えばコロナ放電処理、 クロム酸処理 (湿式)、 火炎処理、 熱風処理、 オゾン ·紫外線照射処理などが挙げられ、 また、 凹凸化法としては、 例えばサ ンドブラスト法、 溶剤処理法などが挙げられる。 これらの表面処理法は基材の種類に応じ て適宜選ばれる。
塗工液を基材に塗布する方法としては、 ディップコート法、 スピンコート法、 スプレー コート法、 パーコート法、 ナイフコート法、 ロールコート法、 ブレードコート法、 ダイコ —ト法、 グラビアコート法、 フロ一コート、 刷毛塗り等を挙げることができる。
塗工液は、 乾燥後の塗膜厚さが 50nm以上になるように塗布することが好ましく、 lOOnm 以上になるように塗布することがより好ましく、 lOOrar^lO /^ mになるように塗布するこ とがさらに好ましい。
塗工液を塗布した後、 溶媒を揮散する乾燥条件は特に制限されないが、 例えば、 常温〜 5 0 0 °Cで 1 0秒〜数日間加熱処理することにより行われる。
得られた塗膜表面には、 さらに酸化法による表面処理を施すことで、 暗所保持時にぉレヽ て超親水性維持性能を持続させる効果を奏することができる。 上記酸化法としては、 例え ばコロナ放電処理、 クロム酸処理 (湿式)、 火炎処理、 熱風処理、 オゾン '紫外線照射処 理などが挙げられる。 これらの表面処理法は基材の種類に応じて適宜選ばれる。 特にバイ ンダ一にアルキルシリコンアルコキシドの部分加水分解 ·重縮合物を選択した場合におい ては、 上記表面処理によっても、 コロイダルシリ力を添加した場合と同様に、 B音所保持時 において高レ、超親水性維持性能を持続させる効果が得られる。
次に、 本発明の光触媒膜の別態様 (以下、 光触媒膜 IVという) について説明する。 光触媒膜 IVは、 光半導体結晶化物として、 シート厚みが 0 . 5〜2 . O n mの範囲内 にある金属イオンまたは金属錯体担持光半導体ナノシートを少なくとも一方の主表面に 含有することを特徴とするものである。 光触媒膜 IV において、 金属イオンまたは金属錯体担持光半導体ナノシートを構成する 光半導体ナノシートとは、 光半導体材料からなる厚みがナノサイズのシート状物を意味し、 このような光半導体ナノシートとしては、 例えば、 特開 2 0 0 1 - 2 7 0 0 2 2号公報に 記載されている酸化チタンナノシート等が知られている。 金属イオンまたは金属錯体担持 光半導体ナノシートは、 この光半導体ナノシートに金属イオンまたは金属錯体を担持させ たもので、 シート厚みが 0 . 5〜2 . 0 n mの範囲内にあるものが好ましい。
なお、 本発明において、 シート厚みとは、 透過型電子顕微鏡で光半導体ナノシートを観 察したときの、 結晶部分における厚みの平均値を意味する。
金属イオンまたは金属錯体担持光半導体ナノシートを構成する光半導体としては、 バン ドギャップの価電子帯が酸素の電子軌道で形成されており、 かつ空気、 水あるいは何かし らの有機物を分解するに足る酸化力を有し得るエネルギー順位にある、 バンドギャップが 3 . 5 eV以上の光半導体の中で、その表面に金属イオンまたは金属錯体を担持させること によってこの金属イオンまたは金属錯体を還元サイトとして機能させるものであって、 光 半導体の価電子帯上端のエネルギー順位と金属イオンまたは金属錯体の水、 あるいは空気 の還元に関するエネルギー順位との差を 3 . 4〜3 . 5 eVとした、酸化還元順位が光半導 体の価電子帯よりもむしろ導電帯に近レ、位置にあるものが好ましい。
この様な光半導体材料としては、 結晶質酸化チタン、 結晶質酸化タングステン、 結晶質 酸化亜鉛などを含んでなるものを挙げることができ、 これらの中で、 結晶質酸化チタンを 含んでなるものが好ましい。 結晶質酸化チタンとしては、 アナターゼ型、 ルチル型、 ブル ッカイト型の何れの結晶質酸化チタンであってもよく、 あるいは、 上記結晶質酸化チタン であつて結晶欠陥や結晶歪みを内包するものでもよく、 これ等の結晶質酸化チタンを 2種 以上組み合わせたものであってもよい。
また、 光半導体ナノシートに担持する金属イオンあるいは金属錯体としては、 銅イオン 等を挙げることができる。
酸化チタンナノシートの原子配列は基本的にはアナターゼ型に類する周期構造を有し ており、 シート厚みが 1原子層レベル (l n m程度) であって、 本発明の光触媒膜 II の 粒径や光触媒 IIIのチューブ厚みと同様に n mサイズである。
し力 しながら、 本発明者等が分光光学的な手法を用い、 親水化挙動の波長依存性を詳細 に調査した結果、 酸化チタンナノシートでは、 シート厚みが 1 n m程度とより薄いもので あるため、 例えば殺菌灯 (約 2 5 4 n m) 照射下では光励起親水化性を発現するが、 太陽 光 (3 O O n m以上) 照射下では十分な光励起超親水化性を発現するとは必ずしも言い難 い。
そこで本発明者等は、 上記光半導体ナノシートの吸収波長をより長波長側にシフト (レ ッドシフト) させ、 太陽光源照射下で光励起超親水性を示すが、 有機物に対する分解活性 が抑制された新規な光触媒膜を得るために種々検討したところ、 光半導体ナノシートに金 属イオンまたは金属錯体をドープして、 その酸化還元順位が結晶質酸化チタンの価電子帯 よりもむしろ導電帯に近い位置にある金属イオンまたは金属錯体を光半導体に担持させ ることにより、 所望の太陽光波長域において、 光励起超親水性を示すが、 有機物に対する 分解活性が抑制された新規な光触媒膜 IVを提供し得ることを見出した。
上記レッドシフトさせる方法としては、 例えば、 結晶質酸化チタンの酸素のサイトに窒 素や硫黄をドープする方法も考えられるが、 この方法ではバンドギヤップの価電子帯の最 上部が酸素以外の元素の電子軌道で形成されることとなり、 光応答性が低下することに加 え、 その製法上、 結晶質酸化チタンナノシートが巨大な結晶に成長してしまう。 また、 P t錯体を結晶質酸化チタンに担持する方法も考えられるが、 P t錯体の酸化還元電位は結 晶質酸化チタンの導電帯よりもむしろ価電子帯に近い位置にあり、 P t錯体を担持した結 晶質酸化チタンでは、 光励起した P t錯体から結晶質酸化チタンの導電帯に電子励起する 光励起機構が発現するようになり、バシドギヤップの価電子帯が酸素の電子軌道で形成さ れないことになるため、 光励起超親水化現象が起きにくくなると考えられる。
光触媒膜 IVは、 金属ィオンまたは金属錯体担持光半導体ナノシートの含有割合が 3 % 以上であることが好ましく、 5 %以上であることがより好ましい。
本発明の光触媒膜 IVは、 さらにバインダ一成分を含んでもよく、 具体的には、 光触媒 含有液を有機基材に塗布する場合に、 耐候性の良いバインダーと混合して成膜することが 好ましい。
耐候性の良いバインダーとしては、 例えばァクリル樹脂、 アタリルシリコーン樹脂、 ァ ルキル金属アルコキシドの部分加水分解 ·重縮合物等を挙げることができる。 また U V吸 収剤ゃラジカル補足剤などを含有させて耐候性を向上させた各種有機系 ·無機系バインダ 一も使用することができる。
光触媒膜 IV は、 その膜の両主表面において、 金属イオン担持光半導体ナノシートを主 成分として含有してもよいが、 一方の主表面のみが金属イオン担持光半導体ナノシートを 主成分として含有してもよい。 この場合、 金属ィオン担持光半導体ナノシートを主成分と して含有する面を外部への露出面として使用することにより、 光触媒膜として利用するこ とが可能となる。
光触媒膜 IVは、 本発明の目的を阻害しない範囲で、 必要に応じて各種添加剤、 ブイラ 一、顔料等を含ませてもよレ、。添加剤としては、例えば金属系微粒子を挙げることができ、 金属化合物系微粒子としてはシリ力系微粒子が好ましい。 光触媒膜 IV がシリ力系微粒子 を含む場合、 塗膜の強度や硬度を向上させる作用の他、 屈折率の調整効果ゃ喑所保持時に おいても超親水性維持性能を持続させる効果を奏するため、 好適である。 シリカ系微粒子 としては、 コロイダルシリ力が好ましく、 このコロイダルシリ力は、 高純度の二酸化ケィ 素(S i o 2)を水またはアルコール系溶剤に分散させてコロイド状にしたものであって、 平均粒子径が、 通常 l〜2 0 0 n m、 好ましくは 5〜 5 0 n mの範囲にあるものである。 光触媒膜 IVの膜厚は、 特に制限されないが、 5 0 n m以上であることが好ましく、 1 0 O n m以上であることがより好ましく、 1 0 Ο η π!〜 1 0 mであることがさらに好ま しレヽ。
光触媒膜 IVは、 本発明の光触媒膜 Iの性質を有するものであることが好ましい。
光触媒膜 IVは、 太陽光照射時における水に対する限界接触角が 2 0度未満であるもの が好ましく、 1 0度以下であるものがさらに好ましい。
また、 光触媒膜 IVは、 3 mW/ c m2の人工太陽光照射時におけるメチレンブルーの分 解速度力 塗布したメチレンブルーの最大吸収波長における吸光度の低下速度(分解活性) 厶 A B S /m i nで 0 . 1以下であるものが好ましく、 0 . 0 5以下であるものがより好 ましく、 0 . 0 1以下であるものがさらに好ましぐ、 0 . 0 0 1 5以下であるものがさら に好ましい。
上記水に対する接触角、 メチレンブルーの分解速度は、 例えば、 結晶質酸化チタン等か らなる光半導体ナノシート結晶の長さや含有割合を調整することにより制御することが できる。
なお上記水に対する接触角、 メチレンブルーの分解活性の評価方法は、 本発明の光触媒 膜 I Iと同様であり、 同法の詳細については後述する。
次に、 本発明の物品について説明する。 本発明の物品は、 基材の表面に、 本発明の光触媒膜または本発明の方法により得られた 光触媒膜を有することを特徴とするものである。
さらに、 本発明の物品は、 本発明の光触媒膜の機能を害さない範囲で、 前記光触媒膜の 表面に、 厚みが 5 0 O n m以下である機能膜をさらに設けることができる。
上記機能膜の機能としては、 B音所での親水保持性、 導電性、 帯電性、 ハードコート性、 反射特性制御、 屈折率制御などが挙げられる。 また、 上記機能膜の具体的な構成成分とし ては シリカ、 アルミナ、 ジルコ -ァ、 ι το、 酸化亜鉛などの金属酸化物系化合物が挙 げられる。 特に、 太陽光が当たらない夜間において、 親水性を保持するためなどを目的と して、 シリカを含んでなるものであることが好ましい。
表面に設けられる本発明の光触媒膜は、 太陽光源照射下において、 超親水性付与機能を 有するが、 有機物に対する分解活性が抑制されたものであるため、 従来必要とされていた 活性遮断層を必要とすることなく、 直接有機基材上に設けることができる。
このため、 本発明の物品としては、 例えば、 防曇性、 防滴性、 防汚性、 防霜性、 滑雪性 付与を目的し、 例えばポリメチルメタクリレートなどのアクリル樹脂、 ポリスチレンや A B S樹脂などのスチレン系榭脂、 ポリエチレンやポリプロピレンなどのォレフィン系榭脂. ポリエチレンテレフタレートゃポリエチレンナフタレートなどのボリエステル系樹脂、 6 一ナイロンや 6, 6一ナイ口ンなどのポリアミド系榭脂、 ポリ塩化ビニル系樹脂、 ポリ力 ーボネート系榭脂、ポリフエ二レンサルフアイド系榭脂、ポリフエ二レンエーテル系樹脂、 ポリイミド系榭脂、 セルロースアセテートなどのセルロース系樹脂などからなる基材に設 けたものを挙げることができる。
これらの有機基材は、 本発明に係る膜との密着性をさらに向上させるために、 所望によ り、 酸化法や凹凸化法などにより表面処理を施すことができる。 上記酸化法としては、 例 えばコロナ放電処理、 クロム酸処理 (湿式)、 火炎処理、 熱風処理、 オゾン .紫外線照射 処理などが挙げられ、 また、 四凸化法としては、 例えばサンドプラスト法、 溶剤処理法な どが挙げられる。 これらの表面処理法は基材の種類に応じて適宜選ばれる。
また、本発明において、有機基材としては、有機系材料以外の材料、例えば金属系材料、 ガラスやセラミックス系材料、 その他各種無機系または金属系材料からなる基材の表面に 有機系塗膜を有するものも包含する。
なお、 有機系材料以外の材枓、 例えば金属系材料、 ガラスやセラミックス系材料、 その 他各種無機系または金属系材料からなる基材表面にも設けられることは言うまでもなレ、。 具体的には、 高速道路の防音壁、 道路反射鏡、 各種反射体、 街路灯、 自動車をはじめと する車両のボディ一コートやサイドミラーあるいはウィンド用フィルム、 窓ガラスを含む 建材、 道路標識、 ロードサイド看板、 冷凍 · 令蔵用ショーケース、 各種レンズ類やセンサ 一類などを挙げることができる。
また、 本発明の物品としては、 農業用フィルムを挙げることもできる。 農業用フィルム は、 近年、 ノ、ウス栽培やトンネル栽培に盛んに用いられるようになつてきたものであり、 このような栽培においては、 農業用フィルムを展張使用する際、 水滴付着による生じる曇 りを防止するために、 展張後に、 防滴剤 (防曇剤) を內面にスプレーしていたが、 この防 滴剤 (防曇剤) は、 短期間で防滴効果が失われるものであった。 これに対して、 本発明の 光触媒膜を表面に有する農業用フィルムは、 長期間親水性を維持し得るものであるため、 再塗布を必要とせずに農作業を継続することが可能となる。
次に、 本発明の親水化方法について説明する。
本発明の親水化方法は、 本発明の物品を太陽光照射下で使用することを特徴とするもの である。
上述したように、 本楽明の物品は、 超親水性付与機能を有するが、 分解活性が抑制され た光触媒膜を有するものであるため、 有機系基材を浸食することなく、 物品の表面を親水 化することが可能になる。 実施例
次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 これらの例によつ てなんら限定されるものではない。
なお、 各種の評価 ·測定方法を以下に示す。
( 1 ) カーボンアーク式サンシャインウエザーメーター (SWM) 条件
装置名 :スガ試験機 (株) 製 「サンシャインウエザーメーター S 3 0 0」、 設定条件:照度 2 5 5 ± 5 5 W/m 2、 照射光波長域 2 5 0〜: L 2 0 0 n m、
サイクル:照射 1 0 2分間、 照射 +降雨 1 8分間の 2時間 1サイクル、
ブラックパネル温度: 6 3 ± 3 °C、
相対湿度: 5 5 ± 5 %R H (2) 恒温恒湿処理
装置名 :ャマト科学 (株) 製 「 I G— 42MJ
(3) 透過型電子顕微鏡 (TEM) 観察
( i) 試料作成 (樹脂基板の場合) :適当な大きさに切出し、 樹脂に包埋した後、 ダイァ モンドナイフを用いてミクロトームにより断面の超薄切片を切出し、 マイクログリッド付 き C uメッシュへ載せて TEM試料とした。
使用装置: ミクロトーム: Le i c a製 「ウルトラミクロトーム ULTRACUT U CTJ
ナイフ : D i ATONE製 「ダイヤモンドナイフ」
(ii) 試料作成 (ガラス基板の場合) :試料を切り出し、 エポキシ榭脂を用いてダミー基 板および捕強リングと接着、研磨、ディンプリングし、最後に Arイオンミリングを行い、 TEM試料とした。
TEM: 日本電子製 「 JEM— 2010型 透過型電子顕微鏡」 加速電圧 200 k V
( 4 ) 結晶径が 1〜 1◦ n mの範囲内にある結晶の数およぴ存在割合測定
<結晶数〉
断面 TEM写真 (倍率: 400万倍、 観察面積: 2500 nm2) 中に存在する結晶径 が 1〜10 nmの範囲内にある結晶の数を算出。
<存在割合〉
断面 TEM写真 (倍率: 400万倍、 観察面積: 2500 nm2) 中に観察される全結 晶数に対する結晶径が 1〜 10 ii mの範囲内にある結晶数の割合を算出。
( 5 ) 表面における結晶径が 1〜 10 n mの範囲内にある結晶質酸化チタンの含有割合測 定
断面 TEM写真 (倍率: 400万倍、 観察面積 : 2500 nm2) 中に存在する結晶径 が 1〜 10 nmの範囲内にある結晶質酸化チタンの断面積割合を算出。
(6) 制限視野回折 (SAD) 測定
TEM (日本電子製 「 J EM— 2010型 透過型電子顕微鏡」 加速電圧 200 k V) を使用し、 カメラ長 50 cm、 分析領域 65〜150 ηπιψで測定。
( 7 ) 親水化特性および親水化速度が 2 (1/d e g/m i n/l 05) となる波長の求 め方 暗所保持下で十分に疎水下させたサンプルについて、 各種光源を使用し、 所定波長の紫 外線を照射したのち、 接触角計 (エルマ販売 (株) 製 「G— 1— 1000」) で純水に対 する接触角の経時変化を追跡した。 親水化速度は、 光照射時間(m i n)に対して水接触角 値の逆数をプロットし、 その直線近似線の傾きを取ることによって求めた。
なお、 殺菌灯及び水銀ランプは、 その照射光スぺク トルの半値幅が 1 5 nm以下のもの を使用し、 適当なバンドパスフィルターを介して、 所定の波長の紫外光を取り出した。 ま たキセノン光源には、 半値幅が 15 nm以下の各種バンドパスフィルターを介在させるこ とにより、 半値幅 1 5 nm以下の所定の波長の紫外光を取り出した。 - それぞれの照度は、 各照射主波長のフォトン数が概ね同一 (およそ 3. 7 X 1015 q u a n t a/cm 2/s) となるように設定した。
各波長の紫外線照射に用いた光源と波長の種類 (一部、 パンドパスフィルターと組み合 わせて使用) とそれぞれの照度:
各波長の紫外線照射に用レ、た光源と波長の種類 (一部、 バンドパスフィルターと組み合 わせて使用) とそれぞれの照度を以下の表 1に示す。
上記の様にして取り出した所定波長の紫外光のうち、 300n m以上の波長の紫外光を 照射して得られた親水化速度と照射主波長の関係から累乗関数近似線を求め、 当概近似線 において親水化速度が 2 (1/d e g/m i n/105) となる波長を求めた。 なお、 親 水化速度 2 (1/d e g/m i n/105) は、 種々の実測結果から、 明確に接触角低下 の経時変化が認められる最下限の値と判断した値であり、 また、 上記波長を求めるために 採用した親水化速度の値の有効数字は 6桁とし、 それ以下の値は四捨五入した。
表 1
(1) 殺菌灯、 水銀ランプおよび人工太陽照明灯の組み合わせ
Figure imgf000038_0001
(* 1) 束芝ライテック㈱製 「GL— 20J (* 2) 林時計工業脚製 FLA-200UVJ
(* 3) セリック㈱製 「XC— 10 OB S SJ (* 4) 林時計工業㈱製 「KUVB— 30— 1J
(* 5) 林時計工業㈱製 rKUVB- 32- 1J (* 6) 林時計工業㈱製 「KUVB— 3 7— 1J (* 7) トプコン㈱製照度計 1"UVR— 2/UD— 25J で測定
(* 8) 照射主波長- 36 5 nmの場合の測定照度を基準とし、 ランプから放射される各波長のスぺクトル 強度の比とバンドパスフィルターの透過率比から計算した値
(* 9) トプコン㈱製照度計 「UVR— 2/UD— 36」 で測定 ' (* 10) トプコン㈱製照度計 「UVR— 2/UD— 40j で測定
(2) キセノン光源おょぴ人口太陽照明灯の組み合わせ
Figure imgf000038_0002
(* 1) 朝日分光㈱製 ΓΜΑΧ— 302」 (* 2) セリック㈱製 ("XC— 100 B S SJ
(* 3) 朝日分光㈱製 「HQBP 3 1 0— UV」 (* 4) 朝日分光㈱製 ΓΗΟΒΡ 320-UVJ (* 5) 朝日分光㈱製 「HQBP 334-UVj (* 6) 朝日分光㈱製 l"HQBP 350-UVj (* 7) 朝日分光㈱製 ΓΗΟΒΡ 36 5-UVJ
(* 8) 照射主波 ¾= 365 nmの場合の測定照度を基準とし、 ランプから放射される各波長のスぺク トル 強度の比とパンドパスフィルターの透過率比から計算した値
(* 9) トプコン (销製照度計 「UVR— 2/UD— 3.6J で測定
(* 10) 朝日分光㈱製 「HQB P 380-UVJ ( 8 ) メチレンブルー分解活性評価
くサンプル調製 >
メチレンブルー 0. 1267 gに対し 10 OmLの純水の割合で作成したメチレンブル 一水溶液に、 サンプルを 1時間浸漬させる。 この時、 サンプル表面にメチレンブルーが均 質に付着するために、 サンプル表面は 10° 以下程度に親水化させておくのが好ましレ、。 親水化していない場合は、 B LBあるいは殺菌灯ランプなどの適当な光源を用い紫外線 を照射し超親水化させておけばよい。
その後、 サンプルを素早くキムタオル上に引き上げ、 サンプル表面が乾いたら、 裏面に 付着したメチレンブルーを水およびメタノールを使用してきれいに拭き取る (以上の操作 は、 出来る限り遮光下で行うのが好ましい)。
その後、 遮光下で 2時間真空乾燥させておく。
<評価方法〉
(a) メチレンブルーを吸着させたサンプルを紫外可視分光光度計にセットし、 光照射前 の吸収スぺクトルを測定する。 この時、 メチレンブルーの吸収スペクトルのピークトップ (通常 585〜61 5 nm) の吸光度は 0. 15±0. 10前後のほぼ同等の値を示す様 にしておく。
(b) その後、 人工太陽照明灯でトプコン (株) 製照度計 「UVR— 2ZUD— 36」 で 照度を測定したときの値が 3 mW/ c m 2の値を示す条件にて紫外線を含む光を 30秒間 照射する。
(c) (b) の操作を、 紫外線照射の累積時間が、 1分後、 2分後、 3分後、 5分後、 7 分後、 10分後、 15分後、 20分後ごとに繰り返す。
(d) 各測定点ごとに吸収スぺクトルのピークトップ (通常 585〜61 5 nm) の吸光 度を読み取る。
(e)各測定点のピークトップの吸光度と光照射前の吸光度との差 (ATABS) を求め、 力 、結晶質酸化チタンを生成させる以前のサンプル(ブランク)も併せて用意しておき、 ブランクの AB Sの減衰 (ABLAB S) を自然退色分とみなし、 結晶質酸化チタンが生成 したサンプルの ATAB S力 ら当該 ABLAB Sを差し引いた値 厶 AB Sを正味の光触媒 反応による MBの分解とする。
その後、各測定点の正味の Δ AB Sを光照射時間に対してプロットし、直線的にプロッ トが変化している範囲の傾きを取り、 メチレンブルー分解速度とした。
<紫外可視分光光度計 >島津製作所製 「UV— 2 1 0 0」
<測定条件 >測光モード:吸光度、 測定波長: 5 0 0 n m〜 7 0 0 n m、 スキャン速度: F a s t、 スリット幅: 2 nm、 サンプリングピッチ: 2 nm, ベースライン: A i r (9) AFM測定
使用装置: (株) キーエンス製 ナノスケールハイプリッド顕微鏡 「VN— 8 0 1 0」 測定条件: タッピングモード (DMF) スキヤンサイズ 3 0 X 3 0 μ m サンプリ ング数 5 1 2
測定した表面粗さパラメーターの具体的な説明は以下の通り。
平均粗さ R a :平均面に対する平均粗さ
表面積 S 3 0 μ m角視野 (みかけの表面積は 9 0 0 m2)
比表面積 S r : S/9 0 0
一般に、 粗い表面では、 以下のウェンツェル式で表記されるように、 その水接触角が見 かけ上低くなることが報告されている。
COS 0 = S r X CO S 0。
(但し、 0。は平滑面の水接触角、 S 1-は理論上の平滑面の表面積 S。に対する実表面積 S の比)
また、 光触媒反応は表面反応であることから、 一般に表面積が大きい方が分解活性に有 利に働く。
平滑な表面 (概ね S r = l . 1以下) を有する光触媒膜で観測される親水化現象や分解 活性は、 純粋に光触媒膜自身の性能を示す値が得られると考えられる。
(1 0) 傾斜性評価
アルバックフアイ (株) 製、 X P S装置 「PH I— 5 6 0 0」 を用い、 アルゴンスパッ タリング ( 4 k V) を 3分間隔で施して膜を削り、 膜表面の炭素原子と金属原子の含有率 を X線光電子分光法により測定した。 合成例 1
チタンアルコキシドの加水分解縮合液の合成
ェチルセ口ソルブ 1 4 9 gに、 チタンテトライソプロポキシド (商品名: A 曹達 (株) 製) 75. 7 gを攪拌しながら滴下し、 溶液 (A) を得た。 この溶液 (A) に ェチルセ口ソルブ 58. 3 g、 蒸留水 4. 55 g、 60質量%濃硝酸 12. 6 gの混合溶 液を攪拌しながら滴下し溶液 (B) を得た。 溶液 (B) をその後、 30°Cで 4時間攪拌す ることによってチタンアルコキシドの加水分解縮合液 ( C) を得た。 合成例 2
耐候プライマー付 P E Tフィルムの作成
紫外線吸収剤を練り込んだポリエチレンテレフタレート (PET) フィルム (帝人デュ ボンフィルム製: HB— 3、 厚み 50μΐη) の片面に、 ヒンダードアミン系光安定剤 (Η ALS) がハイブリッドされた紫外線吸収性コーティング剤 (日本触媒 (株) 製、 ユーダ ブルシリーズ UV— G 301) 100質量部とィソシァネート系硬化剤 (住友バイエルゥ レタン (株) 製、 デスモジュール Ν 3200) を 12質量部の割合で混合した酢酸ェチル 溶液をドライ膜の厚みが 6 μπιになるようにマイヤーバーで塗布したのち、 熱架橋させて 耐候プライマー付 PETフィルム (E) を作成した。 実施例 1 (チタンアルコキシドの加水分解物から成る薄膜 (膜厚 50 nm))
(1) 合成例 1で得たチタンアルコキシドの加水分解縮合液 (C) をェチルセ口ソルブで 質量比で 2倍に希釈し、 チタンアルコキシドの加水分解縮合液 (L) を得た。
チタンアルコキシドの加水分解縮合液 (L) をアセトンならびにメタノールで十分に脱 脂 ·洗浄した 3 mm厚のソーダライムガラス上に塗布したのち、 ドライ厚みが 50 nmに なるようにスピンコーターを用いて塗布して試験サンプルを得た。 なお、 この場合、 チタ ンアルコキシドの加水分解縮合物は、 理論上 lm2当たり 0. 13 gが塗布されている計 算になる (チタンアルコキシドの加水分解縮合物の比重 2. 6で計算)。
(2) その後、 カーボンアーク式サンシャインウエザーメーター (SWM) 条件により、 60サイクル (120時間) 繰り返して暴露した。 透過型電子顕微鏡写真を図 2に示す。 図 2より膜中に 2〜 3 n m径の微結晶 (結晶質酸化チタン粒子) が非晶質酸化チタン中 に確認された。 また、 制限視野回折像から、 アナターゼ型酸化チタンの主要な格子面 (1 01、 200) で指数付けすることができた。 このとき、 観察面 (50 nmX 5· 0 nm = 2500 nm2) における微結晶粒の数は 24個であった。 また、 観察面における全結晶 質酸化チタン数に占める結晶径が 1〜1 0 nmの範囲内にある結晶数の割合は 1 0 0% であった。 また、 光触媒膜主表面における晶径が 1〜1 0 nmの範囲内にある結晶質酸化 チタンの含有割合は 4 %であつた。
(3) 暴露後のサンプルを用い、 各種光源を使用して、 紫外線照射に伴う親水化挙動を追 跡した。 図 3に示す様に、 照射主波長が 254 n m、 3 1 3 nmの場合は徐々に水接触角 が低下したが、 3 34 n m、 3 6 5 n mではほとんど変化は見られなかった。 親水化速度 を求めたところ、 短波長側からそれぞれ 0. 00 1 7 6、 0. 00005、 0. 0000 0、 0. 00000 (1Z度) / m i nであった。
なお、 300 ηπα以上の紫外光を照射した時の親水化速度と照射主波長の関係は、 1点 のみしか得られなかったため、 親水化速度が 2 (1/d e g/m i n/l 05) となる波 長を求めることができなかったが、 その測定結果から、 3 30 nm以下にあると推定され た。
また、 同サンプルを使用して、 暗所に保管することにより疎水化させたのち、 人工太陽 照明灯を照射したところ、 図 4に示す様に、 照射によって徐々に水接触角が低下した。 親 水化速度を求めたところ、 0. 00020 ( 1/度) Zm i nであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 AAB SZm i r iO. 000 20であった。
当該サンプルの AFM測定による表面粗さ (R a) と表面積 (; im2) はそれぞれ 0. 34 nmならびに 900. 080 μ m2であり、比表面積 S rは 1. 0000.9であった。 これらの物性値を、 表 2に示す。
(4) また、 上記 (1) で得たものと同様の試験サンプルを (2) において、 SWMで、 1 50サイクゾレ (300時間)、 450サイクル (900時間)、 750サイクル (1 50 0時間) それぞれ繰り返して暴露したときの各試験サンプルの透過型電子顕微錄写真より、 それぞれ、 2〜3 nm (1 50サイクル) 2〜5 nm (4 50サイクル)、 2〜8 nm (7 50サイクル) の径を有する微結晶 (結晶質酸化チタン粒子) が確認された。 それぞれ、 指数付けできた格子面、 観察面 (5 0 nmX 5 0 nm= 2 500 n m2) における微結晶 粒の数と観察面における全結晶数に対する結晶径が 1〜 1 0 nmの範囲内にある結晶数 の割合を表 2に示す。
また、 暴露後のサンプルを用い、 上記と同様にして求めた、 親水化速度が 2 (1/d e g/m i n/105) となる波長を表 2に示す。 さらに、 上記 (3) と同様の方法で、 光 源や照射時間を変化させたときの各サンプルにおける親水化挙動を図 4〜図 7に示すと ともに、 親水化速度 (1Z度) /"h、 メチレンブルー分解速度 (AAB SZ分)、 表面粗 さ (R a )、 比表面積 S rを測定した結果を表 2に示す。
このように、 後述する比較例 1と対比して、 本発明の結晶質酸化チタンは、 一般的なァ ナターゼ型酸化チタンよりも短波長側で応答することが明らかであり、 酸化チタン表面に 特段の処理を必要とせず、 太陽光源照射下において光励起超親水性を示すが、 有機物に対 する分解活性が抑制された光触媒体であることが明らかである。 実施例 2 (チタンアルコキシドの加水分解物から成る薄膜 (膜厚 2◦ 0 nm))
(1) チタンアルコキシドの加水分解物からなる薄膜をドライ厚みが 200 nmになるよ うに形成した以外は、 実施例 1 (1) と同様に処理して、 試験サンプルを得た。 なお、 こ の場合、 チタンアルコキシドの加水分解縮合物は、 理論上 lm2当たり 0. 52 gが塗布 されている計算になる (チタンアルコキシドの加水分解縮合物の比重 2. 6で計算)。 (2) その後、 SWMで、 1 50サイクル (300時間) 繰り返して暴露したときの透過 型電子顕微鏡写真を図 8に示す。 図 8より、 2〜5 n mの径を有する微結晶 .(結晶質酸化 チタン粒子) が非晶質酸化チタン中に確認された。 また、 制限視野回折像から、 アナター ゼ型酸化チタンの主要な格子面 (101、 004、 200、 211) で指数付けすること ができた。 このとき、 観察面 (2500 nm2) における微結晶粒の数は 65個で、 観察 面における全結晶質酸化チタン数に占める結晶径が 1〜1 0 nmの範囲內にある結晶数 の割合は 100 %であった。 また、 光触媒膜主表面における結晶径が 1〜 10 nmの範囲 内にある結晶質酸化チタンの含有割合は 33 %であった。
(3) また、 暴露後のサンプルを用い、 各種光源を使用して、 紫外線照射に伴う親水化挙 動を追跡した。 図 9に示す様に、 照射主波長が 254 n m、 31 3 nmの場合は徐々に水 接触角が低下したが、 334 n m、 365 n mではほとんど変化は見られなかった。 親水 化速度を求めたところ、 短波長側からそれぞれ 0. 00078、 0. 00018、 0. 0 0001、 0. 00000 (1Z度) /m i nであった。
300 nm以上の紫外光を照射した時の親水化速度と照射主波長の関係から、 親水化速 度が 2 (1/d e g/m i n/105) となる波長を求めたところ、 328 nmであった。 また、 波長 300〜328 nm全域にわたって、 親水化速度が 2 (1/d e g/m i nZ 105) 以上であった。
また、 同サンプルを使用して、 喑所に保管することにより疎水化させたのち、 人工太陽 照明灯を照射したところ、 図 10に示す様に、 照射によつて徐々に水接触角が低下した。 親水化速度を求めたところ、 0. 00045 (1/度) / m i ηであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 AABSZm i i O. 00331であった。
当該サンプルの AFM測定による表面粗さ (Ra) と表面積 ( m2) はそれぞれ 0. 27 nmならびに 900. 049 μ m2であり、比表面積 S rは 1. 00005であった。 これらの物性値を、 表 2に示す。
(4) また、 上記 (1) で得たものと同様の試験サンプルを (2) において、 SWMで、 450サイクル (900時間) および 750サイクル (1 500時間) それぞれ繰り返し て暴露したときの各試験サンプルの透過型電子顕微鏡写真より、 いずれも 2〜 8 nmの径 を有する微結晶 (結晶質酸化チタン粒子) が確認された。 それぞれ、 指数付けできた格子 面、 及び、 観察面 (50 nmX 50 nm= 2500 nm2) における微結晶粒の数と、 観 察面における全結晶質酸化チタン数に占める結晶径が 1〜 10 nmの範囲'内にある結晶 数の割合を表 2に示す。
また、 暴露後のサンプルを用い、 上記と同様にして求めた、 親水化速度が 2 (lZd e g/m i n/105) となる波長を表 2に示す。 各サンプルにおいては、 波長 300〜 3 60 nmの少なくとも一部において親水化速度が 2 (l/d e gノ m i n l 05) 以上 であった。
さらに、 上記 (3) と同様の方法で、 光源や照射時間を変化させたときの各サンプルに おける親水化挙動を図 10〜図 12に示すとともに、 親水化速度 (1/度) /h、 メチレ ンブルー分解速度 (AAB SZ分)、 表面粗さ (Ra)、 比表面積 S rを測定した結果を表 2に示す。 実施例 3 (チタンアルコキシドの加水分解物から成る薄膜 (膜厚 50 nm))
( 1 ) チタンアルコキシドの加水分解物からなる薄膜を合成例 2で得た耐候プライマー付 PETフィルム上に塗布した以外は、 実施例 1 (1) と同様に処理して、 試験サンプルを 得た。 なお、 この場合、チタンアルコキシドの加水分解縮合物は、理論上 lm2当たり 0. 1 3 g/m2が塗布されている計算になる (チタンアルコキシドの加水分解 5 合物の比重 2. 6で計算)。
(2) その後、 SWMで、 1 50サイクル (300時間) 繰り返して暴露したときの透過 型電子顕微鏡写真を図 1 3に示す。 図 1 3より、 膜中に 2〜 3 n m径の微結晶 (結晶質酸 化チタン粒子) が非晶質酸化チタン中に確認された。 また、 制限視野回折像から、 アナタ ーゼ型酸化チタンの主要な格子面 (1 0 1、 200) で指数付けすることができた。 この とき、 観察面 (50 nmX 50 nm= 2 50 0 nm2) における微結晶粒の数は 23個、 また、 観察面における全結晶質酸化チタン数に占める結晶径が 1〜1 O nmの範囲内にあ る結晶数の割合は 100%であった。 また、 光触媒膜主表面における全結晶質酸化チタン の含有割合は 4 %であった。
(3) 暴露後のサンプルを使用して、 暗所に保管することにより疎水化させたのち、 人工 太陽照明灯を照射したところ、 図 14に示す様に、 照射によって徐々に水接触角が低下し た。 親水化速度を求めたところ、 0. 000 1 9 (1Z度) / m i nであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 AAB S/m i i^iO. 0002 6であった。
当該サンプルの A FM測定による表面粗さ (R a) と表面積 (/zm2) はそれぞれ 3. 5 5 n mならびに 90 1. 294 μ: m 2であり、比表面積 S rは 1. 00 1 44であった。 これらの物性値を、 表 2に示す。
このように、 後述する比較例 1と対比して、 本発明の結晶質酸化チタンは、 その結晶径 から、 一般的なアナターゼ型酸化チタンよりも短波長側で応答することが明らかであり、 酸化チタン表面に特段の処理を必要とせず、 太陽光源照射下において光励起超親水性を示 すが、 有機物に対する分解活性が抑制された光触媒体であることが明らかである。 実施例 4 (チタンアルコキシドの加水分解物から成る薄膜 (膜厚 50 nm))
(1) 合成例 1で得たチタンアルコキシドの加水分解縮合液 (C) をヱチルセ口ソルブで 質量比で 2倍に希釈し、 チタンアルコキシドの加水分解縮合液 (L) を得た。
チタンアルコキシドの加水分解縮合液 (L) をアセトンならびにメタノールで十分に脱 脂 ·洗浄した 3mm厚のソーダライムガラス上に塗布したのち、 ドライ厚みが 50 nmに なるようにスピンコーターを用いて塗布して試験サンプルを得た。 なお、 この場合、 チタ ンアルコキシドの加水分解縮合物は、 理論上 1 m2当たり 0. 1 3 gが塗布されている計 算になる (チタンアルコキシドの加水分解縮合物の比重 2. 6で計算)。
.(2) その後、 恒温恒湿処理条件により、 恒温恒湿チャンバ一で 43 °C · 50%RHの条 件で 120時間処理したときの透過型顕微鏡写真を図 15に示す。 図 15より、 2〜6 n m径の微結晶 (結晶質酸化チタン粒子) が非晶質酸化チタン中に確認された。 また、 制限 視野回折像から、 アナターゼ型酸化チタンの主要な格子面 (101、 004、 200、 2 1 1) で指数付けすることができた。 このとき、 観察面 (2500 nm2) における微結 晶粒の数は 47個で、 観察面における全結晶質酸化チタン数に占める結晶径が 1〜1 O n xnの範囲内にある結晶数の割合は 100 %であった。 また、 光触媒膜主表面における結晶 径が 1〜 10 nmの範囲内にある結晶質酸化チタンの含有割合は 24 %であった。
また、 上記恒温恒湿処理後に、 各種光源を使用して、 紫外線照射に伴う親水化挙動を追 跡したところ、 図 16に示す様に、 照射主波長が 254nm、 313 nmの場合は徐々に 水接触角が低下したが、 334n m、 365 nmではほとんど変化は見られなかった。 親 水化速度を求めたところ、 短波長側からそれぞれ 0. 001 5 9、 0. 0003 1、 0. 00006、 0. 00001 (1 度) Zm i nであった。
300 nm以上の紫外光を照射した時の親水化速度と照射主波長の関係から、 親水化速 度が 2 (1/d e g/m i n/105) となる波長を求めたところ、 352 nmであった。 また、 波長 300〜352 nmの全域において親水化速度が 2 ( 1 / d e g/m i n/1 05) 以上であった。
(3) 処理後のサンプルを使用して、 暗所に保管することにより疎水化させたのち、 人工 太陽照明灯を照射したところ、 図 17に示す様に、 照射によつて徐々に水接触角が低下し た。 親水化速度を求めたところ、 0. 00033 (1/度) /m i nであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 AABS/m i
Figure imgf000046_0001
00140であった。
この結果から、 実施例 1〜3と同様に、 加湿加熱処理によっても、 一般的なアナターゼ 型酸化チタンよりも短波長側で応答する酸化チタン化合物が生成していることが明らか である。
(4) 当該サンプルの AFM測定による表面粗さ (Ra) と表面積 ( m2) はそれぞれ 0. 20nmならびに 900. 55 m2であり、 比表面積 S rは 1. 00006であつ た。 これらの物性値を表 2に示す。 比較例 1 アナターゼ型酸化チタン含有光触媒膜の製造例
( 1 )ェチルセ口ソルブ 168. 3 gとノルマルプロパノール 180. 0 の混合溶液に、 合成例 1のチタンアルコキシドの部分加水分解縮合液(C) 1 6. 9 gを添カ卩し、その後、 純水 1 1. 25 gと 60質量%硝酸 0. 48 gとを混合した溶液をそこに滴下した。
続いて、 アナターゼ型酸化チタン分散液 (チタン工業 (株) 製、 「PC— 201」、 TE M粒径: 20 nm、 濃度: 20. 7質量。/。) を 23. 19 g滴下したのち、 30 °Cで 1時 間半攪拌して、 アナタ一ゼ型酸化チタン含有コーティング液 (M) を作製した。 コーティ ング液 (M) に含まれる固形成分の質量比と体積分率を表 3に示す。 チタンアルコキシド の加水分解縮合物の比重は 2. 6とし、 アナターゼ型酸化チタンの比重は 3. 9とした。 コーティング液 (M) をアセトンならびにメタノールで十分に脱脂'洗浄した 3 mm厚 の石英ガラス上に塗布したのち、 ドライ厚みが 45 nmになるようにスピンコーターを用 いて塗布してアナターゼ型酸化チタン含有膜を得た。 この場合、 アナターゼ型酸化チタン は、 理論上 lm2当たり 0. 1 3 gが塗布されている計算になる。
( 2)成膜後のサンプルを用レ、、一度、ブラックライト灯にて超親水化状態まで到達させ、 その後、 B音所に保管することにより疎水化させたのち、 各種光源を使用して、 紫外線照射 に伴う親水化挙動を追跡した。 図 18に示す様に、 照射主波長が 334 nm、 365 nm の場合でも徐々に水接触角が低下した。 405 nmの照射主波長では、 ほとんど応答が見 られなかった。 親水化速度を求めたところ、 短波長側からそれぞれ 0. 00238、 0. 00030、 0. 00001 (1/度) /m i nであった。
300 nm以上の紫外光を照射した時の親水化速度と照射主波長の関係から、 親水化速 度が 2 (1/d e gZm i n/105) となる波長を求めたところ、 386 nmであった。 また、 同サンプルを使用して、 B音所に保管することにより疎水化させたのち、 人工太陽 照明灯を照射したところ、 図 1 9に示す様に、 照射によつて徐々に水接触角が低下した。 親水化速度を求めたところ、 0. 00507 (1/度) / m i nであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 Δ AB S/m i nは 0. 01007であった。 当該サンプルの A FM測定による表面粗さ (Ra) と表面積 ( m2) はそれぞれ 1. 78 nmならびに 900. 49 μ m2であり、 比表面積 S rは 1. 00054であった。 これらの物性値を表 2に示す。
以上、 実施例 1〜 4およぴ比較例 1における物性値をまとめて、 表 2に示す。
Figure imgf000049_0001
1 人工太陽照明灯照射
2 アナタ-セ'型あるいは ル型酸化チタンの a
3 推定値 表 3
Figure imgf000050_0001
表 2より、 実施例 1〜実施例 4における、 結晶径が 1〜 10 nmの範囲内にある酸化チ タン化合物を主表面に主成分として含有する光触媒膜と、 比較例 1における結晶径が 10 nmを超える酸化チタン化合物を主表面に主成分として含有する光触媒膜とを対比する と、 実施例 1〜実施例 4の酸化チタン化合物は、 太陽光源照射下において光励起超親水性 を示すが有機物に対する分解活性が抑制されており、 透明性に優れるという効果を示すこ とが分かる。 ' 合成例 3 有機成分の合成 '
2 Lセパラブルフラスコに窒素雰囲気下でメチルイソブチルケトン 700 g、 メタタリ ル酸メチル 337. 4 g、 メタタリロキシプロピルトリメ トキシシラン 42. 8 gを添加 し、 60 °Cまで昇温した。 この混合溶液にァゾビスイソブチロニトリル 3. 32 gを溶か したメチルイソブチルケトン 116. 6 gを滴下して重合反応を開始し、 30時間攪拌し て有機成分溶液 (D) を得た。 実施例 5 コロイダルシリカと硝酸アルミニゥムを混合したチタンアルコキシドの加水 分解物と有機成分との傾斜膜 (厚み 100 n m)
(1) ェチルセ口ソルブ 42. 9 gに硝酸アルミニウム .九水和物 (純度 99%、 和光純 薬工業脾製) 6. 12 gを溶解させ、 続いて合成例 1で作成したチタンアルコキシドの加 水分解縮合液 (C) を 55. 2 g加えてよく攪拌し溶液 (G) を得た。 続いて、 合成例 2 で作成した有機成分溶液 (D) 7. 30 g、 メチルイソブチルケトン 235. 8 g、 ェチ ルセ口ソルブ 138. 9 g、 上記記載の溶液 (G) 104. 22 g、 およびコロイダルシ リ力 (商品名 :スノーテックス I PA— ST、 日産化学工業㈱製) 13. 9 gの順番で混 合し、 その後、 32 °Cの温浴で 24時間攪拌して、 コロイダルシリカと硝酸アルミニウム を混合したチタンアルコキシドの加水分解物と有機成分との傾斜膜塗工液 (H) を作成し た。 傾斜膜塗工液 (H) を 2 mm厚の無色透明アクリル板 (三菱レーヨン製、 ァクリライ ト L) にスピンコートを使用して、 約 10 tmのウエット厚みで塗布し、 ドライ厚みが 1 00 nmになるように塗布した。 なお、 傾斜膜塗工液 (H) の比重は 0. 87であり、 全 固形成分濃度は 2. 78質量%である。 全固形成分濃度のうち、 チタンアルコキシドの加 水分解縮合物の質量比は T i 02に換算して 28. 2%であるので、 理論上、 微結晶を生 成しうるチタンアルコキシドの加水分解縮合物は lm2当たり 0. 068 gが塗布されて いる計算になる。
(2) その後、 カーボンアーク式サンシャインウエザーメーター (SWM) 条件により、 1 50サイクル (300時間) 繰り返して暴露した。 透過型電子顕微鏡写真を図 20に示 す。 図 20より膜中に 2〜 3 n m径の微結晶 (結晶質酸化チタン粒子) が非晶質酸化チタ ン中に確認、された。 一方、 制限視野回折像からは明確な回折リングが確認できなかったた め、 微結晶を同定することはできなかった。 これは、 微結晶の濃度が低いことに起因する と考えられる。 実施例 1に例示されているように同じサイクノレ数だけ暴露したチタンアル コキシドの加水分解物からなる薄膜では、 同等の結晶径を有する微結晶が指数付けできる ほどに生成していることが確認されているが、 これは結晶化阻害剤として使用している硝 酸アルミニウムが含有されていないことに起因すると考えられる。 つまり、 硝酸アルミ- ゥムの添加により、 少なくとも微結晶生成の速度を調節可能であることを示唆している。 なお、 このとき、 観察面 (50 nmX 50 nm= 2500 nm2) における微結晶粒の数 は 17個であった。 また、 観察面における全結晶質酸化チタン数に占める結晶径が 1〜1 0 nmの範囲内にある結晶数の割合は 100%であった。 また、 光触媒膜主表面における 結晶径が 1〜 10 nmの範囲内にある結晶質酸化チタンの含有割合は 3 %であった。
(3) さらに、 暴露後のサンプルを用い、 各種光源を使用して、 紫外線照射に伴う親水化 挙動を追跡した。 図 21に示す様に、 照射主波長が 310 nm、 320 nmの場合は徐々 に水接触角が低下したが、 334 nm以上ではほとんど変化は見られなかった。 親水化速 度を求めたところ、 短波長側からそれぞれ 0. 00008、 0. 00003、 0. 000 0 1、 0. 00000 (1/度) Zm i ηであった。
300 nm以上の紫外光を照射した時の親水化速度と照射主波長の関係から、 親水化速 度が 2 (1/d e g/m i nノ 105) となる波長を求めたところ、 325 nmであった。 また、 波長 300〜325 nmの全域において親水化速度が 2 (l/d e g/m i n/1 05) 以上であった。
また、 同サンプルを使用して、 暗所に保管することにより疎水化させたのち、 人工太陽 照明灯を照射したところ、 図 22に示す様に、 照射によって徐々に水接触角が低下した。 親水化速度を求めたところ、 0. 00011 (1Z度) i nであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 AAB S/m i diO. 00004であった。
当該サンプルの AFM測定による表面粗さ (Ra) と表面積 (μπι2) はそれぞれ 4. 78 nmならびに 900. 852 μ m2であり、比表面積 S rは 1. 00095であった。 これらの物' ¾値を、 表 2に示す。
(4) 上記 (1) で得たものと同様の試験サンプルを (2) において、 SWMで、 450 サイクル (900時間) 繰り返して暴露したときの試験サンプルの透過型電子顕微鏡写真 より、 2〜5 nmの径を有する微結晶 (結晶質酸化チタン粒子) が確認された。 指数付け できた格子面、 及び、 観察面 (50 nmX 50 nm= 2500 nm2) における微結晶の 数と観察面における全結晶数に対する結晶径が 1〜 1 0 nmの範囲内にある結晶数の割 合を表 2に示す。
また、 暴露後のサンプルを用い、 上記と同様にして求めた、 親水化速度が 2 (l/d e g/m i n/1 O5) となる波長を表 2に示す。 さらに、 上記 (3) と同様の方法で、 光 源や照射波長を変化させたときの各サンプルにおける親水化挙動を図 22、 図 23に示す とともに、 親水化速度 (1/度) /h、 メチレンブルー分解速度 (AABS/分)、 表面 粗さ (R a )、 比表面積 S rを測定した結果を表 2に示す。
このように、 後述する比較例 2と対比して、 本発明の結晶質酸化チタンは、 一般的なァ ナタ一ゼ型酸化チタンょりも短波長側で応答することが明らかであり、 酸化チタン表面に 特段の処理を必要とせず、 太陽光源照射下において光励起超親水性を示すが、 有機物に対 する分解活性が抑制された光触媒体であることが明らかである。
(5) 図 24には、 当該サンプルの XP Sデプスプロファイル結果を示す。 図 24に示す 様に、 当該サンプルは最表面に S i 02が位置し、 その下部に T iが配置され、 さらにそ の下部に有機成分由来の Cが配置し、 成分傾斜している様子が判る。 比較例 2 アナターゼ型酸化チタン含有膜の物性
(1) 実施例 5の傾斜膜塗工液 (H) に含まれる酸化チタン化合物の含有率 (体積分率) と同じ割合のアナターゼ型酸化チタンを含むコーティング液を次のように作製した。 傾斜 膜塗工液 (H) に含まれる固形成分の質量比と体積分率を表 4に示す。 なお、 チタンアル コキシドの加水分解縮合物の比重は 2. 6とし、 有機成分の比重は 1. 19とした。 表 4 に示すように、 チタンアルコキシドの加水分解縮合物の体積分率は 21 %と算出された。 そこで、 アナターゼ型酸化チタンの体積分率が 21%となるコーティング液 (I) を以下 の様にして作成した。
ェチルセ口ソルブ 35. 99 gとノルマルプロパノール 40. 3 gの混合溶液に、 合成 例 1のチタンアルコキシドの部分加水分解縮合液 (C) 6. 211 gを添加し、 その後、 純水 5. 447 gと 60質量%硝酸 0. 145 gとを混合した溶液をそこに滴下した。 続 いて、 アナターゼ型酸化チタン分散液 (チタン工業 (株) 製、 「PC— 201」。 濃度: 2 0. 7質量。/。。) を 1. 304 g滴下したのち、 最後にコロイダルシリカ (日産化学工業 (株) 製、 スノーテックス I PA—ST。 濃度: 30質量0 /。) を 0. 63 g滴下し、 33 °Cで 30分間攪拌して、 アナターゼ型酸化チタン含有コーティング液 (I) を作製した。 なお、 当該コーティング液 (I) に含まれる固形成分の質量比と体積分率は表 5のように なる。 なお、 コーティング液 (I) 中にもチタンアルコキシドの加水分解縮合物を含有す るが、 成膜した直後の段階では完全にアモルファス状態で存在するため、 この状態では光 触媒活性を示さない。
当概コーティング液 (I) を 2 mm厚の無色透明アクリル板 (三菱レーヨン製、 アタリ ライト L) にスピンコートを使用して、 約 16 μΐηのウエット厚みで塗布し、 ドライ厚み が 100 n mになるように塗布した。 なお、 傾斜膜塗工液 ( I ) の比重は 0. 86であり 、 全固形成分濃度は 1質量%である。 全固形分濃度のうち、 アナターゼ型酸化チタンの質 量比は、 30%であるので、 理論上、 アナターゼ型酸化チタンが、 0. 04 l g塗布され ている計算になる。
( 2)成膜後のサンプルを用レ、、一度、ブラックライト灯にて超親水化状態まで到達させ、 その後、 暗所に保管することにより疎水化させたのち、 各種光源を使用して、 紫外線照射 に伴う親水化挙動を追跡した。 図 25に示す様に、 照射主波長が 365 nmの場合でも 徐々に水接触角が低下した。 親水化速度を求めたところ、 短波長側からそれぞれ 0. 00 089、 0. 00044、 0. 00010、 0. 00007、 0. 00006 (1 /度) m i nであった。
また、 光照射後のサンプルを用い、 上記と同様にして求めた、 親水化速度が 2 (1 d e g/m i n/105) となる波長を表 2に示す。
また、 同サンプルを使用して、 暗所に保管することにより疎水化させたのち、 人工太陽 照明灯を照射したところ、 図 26に示す様に、 照射によって徐々に水接触角が低下した。 親水化速度を求めたところ、 0. 00063 (lZ度) Zm i nであった。
さらに、 同サンプルを使用して、 人工太陽照明灯を使用してメチレンブルー分解速度を 測定したところ、 AABSZmi
Figure imgf000054_0001
00678であった。
当該サンプルの A FM測定による表面粗さ (Ra) と表面積( m2) はそれぞれ 14. 7 nmならびに 900. 134 μ m2であり、 比表面積 S rは 1.00015であった。 こ れらの物性値を表 2に示す。
表 4
Figure imgf000054_0002
表 5
Figure imgf000054_0003
比較例 3 ルチル型酸化チタン含有膜の製造例
( 1 ) ェチルセ口ソルブ 167. 4 gとノルマルプロパノール 179. 0 gの混合溶液に 、 合成例 1のチタンアルコキシドの部分加水分解縮合液 (C) 16. 9 gを添加し、 その 後、 純水 4. 55 gと 60質量%硝酸 0. 17 gとを混合した溶液をそこに滴下した。 続 いて、 ルチル型酸化チタン分散液 (シーアィ化成㈱製、 「RT I P A— 1 5WT%— GO 2」。 濃度: 1 5質量%。) を 32. O g滴下したのち、 30°Cで 1時間半攪拌して、 ルチ ル型酸化チタン含有コーティング液 (N) を作製した。
コーティング液 (N) に含まれる固形成分の質量比と体積分率を表 6に示す。 チタンァ ルコキシドの加水分解縮合物の比重は 2. 6とし、 ルチル型酸化チタンの比重は 4. 2と した。
コーティング液 (N) をアセトンならびにメタノールで十分に脱脂.洗浄した 3 mm厚 の石英ガラス上に塗布したのち、 ドライ厚みが 45 nmになるようにスピンコータ一を用 いて塗布してルチル型酸化チタン含有膜を得た。 この場合、 ルチル型酸化チタンは、 理論 上 lm2当たり 0. 13 gが塗布されている計算になる。
(2)成膜後のサンプルを用い、一度、 'ブラックライト灯にて超親水化状態まで到達させ、 その後、 暗所に保管することにより疎水化させたのち、 各種光源を使用して、 紫外線照射 に伴う親水化挙動を追跡した。図 27に示す様に、照射主波長が 310 n m、 320 n m、 334 nm、 350 nm、 365 nm, 380 n mのいずれの場合でも徐々に水接触角が 低下した。 親水化速度を求めたところ、 短波長側からそれぞれ 0. 00060、 0. 00 045、 0. 00021、 0. 0001 1、 0. 00008、 0. 00006 (1 /度) m i nでめった。
300 nm以上の紫外光を照射した時の親水化速度と照射主波長の関係から、 親水化速 度が 2 (1/d e g/m i n/105) となる波長を求めたところ、 405 nmであった。 当該サンプルの AFM測定による表面粗さ (Ra) と表面積(/^m2) はそれぞれ 18. 7 nmならびに 900. 57 m2であり、 比表面積 S rは 1. 00063であった。 こ れらの物性値を表 2に示す。 表 6
Figure imgf000056_0001
実施例 6 酸化チタンナノチューブを含有する光触媒膜の製造例
(1) l OMNaOH (108 g、 = 8 OmL) 水溶液が入ったテフロン容器に、 アナ ターゼ'ルチル混相型二酸化チタン (日本ァエロジル (株)製 P— 25) l gを加え、 スタ 一ラーで 30分間撹拌した。 次にオートクレーブ容器に移して密閉し、 1 20DCオーブン に入れ、 40時間加熱した。 加熱後、 室温まで冷却してから内容物を取り出し、 5000 r pmで 1 5m i η遠心分離して、 上清を除去した。 得られた白色沈殿を 0. 1M ΗΝ 03水溶液で中和し、 次いで蒸留水で洗浄した後、 1M HN03水溶液を加えて 5 OmL までメスアップし、室温にて 15時間処理して、二酸化チタン反応物含有スラリーを得た。 上記方法と同様の方法で得たスラリー力 ら、 所定量の試料を採取して透過型電子顕微鏡 (日立製作所 (株)製 H- 9000 UHR) で観察したところ、 チューブ厚みが 3 n m、 チュー ブ径が 10 nm、 チューブ長さが 1 μιη以上 (視野以上につき特定不能) である酸化チタ ンナノチューブが生成していることを確認できた。
(2) バインダ一成分である水溶性ァクリルシリコーン樹脂 (D I C (株)製、 WS— 91 0) とその硬化剤 (D I C (株) 製、 WS— 950) を混合したバインダー水溶液 (濃度 2%) 50mLに、 上記 (1) で得たスラリーをゆっくりと加え、 よく攪拌することによ り塗工液を得た。
得られた塗工液を用いて、 スピンコート法により、 2 mm厚の無色透明アクリル板 (三 菱レーヨン(株)製、ァクリライト L)上に 500 r pxnで 2. 5分間成膜した後、 70°C で 10時間乾燥させて厚み 500 nmの薄膜を形成した。
次に得られた薄膜の表面にコロナ放電処理 (1000 k J/m2) を施し、 ァクリルシリ コーン表面の一部をシリカに改質した。 得られた薄膜をその後清浄な暗所下にて保管し、 機能薄膜を得た。 得られた薄膜の全光線透過率は 94%であった。 この薄膜に人工太陽灯下 (3 mW/ c m 2) で光照射し、 純水の接触角の経時変化を接触 角計 (エルマ販売 (株)製 「G—1— 1 0 0 0」) により測定した結果を図 2 8に示す。 図 2 8に示されているように、 初期 WC A (水接触角) が 3 0。 であったのに対し、 3 0時 間後に 2 0 ° まで、 6 6時間後に 1 0 ° まで減少し、 親水化することを確認できた。 産業上の利用可能性
本発明の光触媒膜は、 光触媒体として太陽光源照射下において光励起超親水性を示すが、 分解活性が抑制されているという特性を有している。 したがって、 本発明の光触媒膜を、 屋外環境下での使用を想定した場合、 有機基材に活性遮断層を介すことなく直接設け、 例 えば防曇性、 防滴性、 防汚性、 防霜性、 滑雪性付与を目的として、 例えばポリメチルメタ クリレートなどのアクリル樹脂、 ポリスチレンや A B S榭脂などのスチレン系樹脂、 ポリ エチレンやポリプロピレンなどのォレフィン系樹旨、 ポリエチレンテレフタレ一トゃポリ エチレンナフタレートなどのポリエステル系樹脂、 6—ナイロンや 6, 6—ナイロンなど のポリアミド系樹脂、 ポリ塩化ビュル系樹脂、 ポリカーボネート系樹脂、 ポリフエ二レン サルフアイド系榭脂、 ポリフエ二レンエーテル系樹脂、 ポリイミド系榭脂、 セルロースァ セテートなどのセルロース系樹脂などからなる基材に設けたものが好適に用いられる。 また、本発明において、有機基材としては、有機系材料以外の材料、例えば金属系材料、 ガラスやセラミックス系材料、 その他各種無機系または金属系材料からなる基材の表面に 有機系塗膜を有するものも包含する。
なお、 有機系材料以外の材料、 例えば金属系材料、 ガラスやセラミックス系材料、 その 他各種無機系または金属系材料からなる基材表面にも設けられることは言うまでもない。

Claims

請求の範囲
1. 光半導体結晶化物を少なくとも一方の主表面に含有し、 光照射によって前記主表面 が親水化する光触媒膜であって、 B音所保持後に半値幅 1 5 nm以下の光を照射した場合の 親水化速度が、 照射光の波長が 370 n m以上の領域では、 2 (l/d e g /m i n/1 05)未満であり、かつ照射光の波長が 300〜 360 n mの領域の少なくとも一部では、 2 (l/d e g/m i n/10 s) 以上であることを特徴とする光触媒膜。
2. 光半導体結晶化物として結晶径が 1〜 10 nmの範囲内にある光半導体粒子を少な くとも一方の主表面に含有することを特徴とする光触媒膜。
3. 前記光半導体結晶化物が結晶質酸化チタンを含んでなるものである請求項 1または 請求項 2に記載の光触媒膜。
4. 全結晶質酸化チタンに占める結晶径が 1〜10 nmの範囲内にある結晶質酸化チタ ンの割合が 90 %以上である請求項 3に記載の光触媒膜。 ,
5. 全結晶質酸化チタンに占める結晶径が 1〜 1 0 nmの範囲内にある結晶質酸化チタ ンの割合が 100 %である請求項 3または請求項 4に記載の光触媒膜。
6. 少なくとも一方の主表面における結晶径が 1〜 10 nmの範囲内にある結晶質酸化 チタンの含有割合が 3 %以上である請求項 3〜請求項 5のいずれかに記載の光触媒膜。
7. 少なくとも一方の主表面における結晶径が 1〜 10 nmの範囲内にある結晶質酸化 チタンの含有割合が 5 %以上である請求項 3〜請求項 5のいずれかに記載の光触媒膜。
8. 透過型電子顕微鏡による光触媒膜の 50 nmX 5 O nmの範囲における断面観察に よって、 少なくとも結晶粒が 5個以上存在する部分を有する請求項 3〜請求項 7のいずれ かに記載の光触媒膜。
9. 少なくとも一方の主表面において、 結晶質酸化チタンとともに非晶質酸化チタンが 存在してなる請求項 3〜請求項 8のいずれかに記載の光触媒膜。
1 0 . 前記結晶質酸化チタンが非晶質酸化チタン中に分散してなる請求項 3〜請求項 9 のいずれかに記載の光触媒膜。
1 1 . 厚みが 1 μ m以下である請求項 1〜請求項 1 0のいずれかに記載の光触媒膜。
1 2 . 前記主表面の太陽光照射時における水に対する接触角が 2 0度未満である請求項 1〜請求項 1 1のいずれかに記載の光触媒 S莫。
1 3 . 3 mW/ c m 2の人工太陽光照射時におけるメチレンブルーの分解速度が、 塗布し たメチレンブルーの最大吸収波長における吸光度の低下速度 Δ Α Β S /m i nで 0 . 1以 下である請求項 1〜請求項 1 2のいずれかに記載の光触媒膜。
1 4 . 前記光半導体結晶化物がチタンアルコキシドの加水分解縮合物中に存在するとと もに、 前記チタンアルコキシドが有機高分子化合物と加水分解縮合してその含有率が表面 から深さ方向に向かって連続的に変化する複合体を形成してなる請求項 1〜請求項 1 3 のいずれかに記載の光触媒膜。
1 5 . 光半導体結晶化物以外の金属化合物系微粒子をさらに含んでなる請求項 1〜請求項 1 4のいずれかに記載の光触媒膜。
1 6 . 光半導体結晶化物以外の金属化合物系微粒子がシリカ系微粒子である請求項 1 5に記 載の光触媒膜。
1 7 . 無機金属塩、 有機金属塩ならぴにチタンおよび珪素以外の金属のアルコキシドの中か ら選ばれる少なくとも 1種類の金属系化合物をさらに含んでなる請求項 1〜1 6のいずれか に記載の光触媒膜。
1 8 . 金属系化合物が、 硝酸アルミニゥムである請求項 1 7に記載の光触媒膜。
1 9 . 非晶質酸化チタン膜に対して、 水分存在下で、 1 0 0 °C以下の温度で加熱処理す ることを特徴とする請求項 3〜請求項 1 8のいずれかに記載の光触媒膜の製造方法。
2 0 . 前記非晶質酸化チタン膜が、 チタンアルコキシドと有機高分子化合物とが加水分解縮 合してなる複合体を含むコーティング剤を 1回のみ塗布することによって、 チタンアルコキシ ドの加水分解縮合物の含有率を表面から深さ方向に向かつて連続的に変化させてなるもので ある請求項 1 9に記載の方法。
2 1 . 光半導体結晶化物としてチューブ厚みが 1〜1 0 n mの範囲内にある光半導体ナ ノチューブを少なくとも一方の主表面に含有することを特徴とする光触媒膜。 · 2 2 . 前記光半導体結晶化物が結晶質酸化チタンナノチューブを含んでなるものである 請求項 1または請求項 2 1に記載の光触媒膜。
2 3 . バインダ一成分をさらに含んでなる請求項 2 1または請求項 2 2に記載の光触媒膜。
2 4 . 基材の表面に、 請求項 1〜請求項 1 8および請求項 2 1〜請求項 2 3の V、ずれか に記載の光触媒膜または請求項 1 9および請求項 2 0のいずれかに記載の方法により得 られた光触媒膜を有することを特徴とする物品。
2 5 . 前記基材が有機基材である請求項 2 4に記載の物品。 .
2 6 . 表面に厚みが 5 0 0 n m以下である機能膜をさらに有する請求項 2 4または請求 項 2 5に記載の物品。
2 7 . 前記機能膜がシリカを含んでなる請求項 2 6に記載の物品。
2 8 . 請求項 2 4〜請求項 2 7のいずれかに記載の物品を太陽光照射下で使用すること を特徴とする親水化方法。
PCT/JP2008/069174 2007-10-16 2008-10-16 光触媒膜、光触媒膜の製造方法、物品および親水化方法 WO2009051271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/738,364 US20100298120A1 (en) 2007-10-16 2008-10-16 Photocatalyst film, process for producing photocatalyst film, article and method for hydrophilization
CN2008801212698A CN101903102A (zh) 2007-10-16 2008-10-16 光催化膜、光催化膜的制造方法、物品和亲水化方法
EP20080840097 EP2202000A1 (en) 2007-10-16 2008-10-16 Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-269518 2007-10-16
JP2007269518 2007-10-16
JP2008-024479 2008-02-04
JP2008024479 2008-02-04
JP2008178845A JP5511159B2 (ja) 2007-10-16 2008-07-09 光触媒膜、光触媒膜の製造方法、物品および親水化方法
JP2008-178845 2008-07-09

Publications (1)

Publication Number Publication Date
WO2009051271A1 true WO2009051271A1 (ja) 2009-04-23

Family

ID=40567526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069174 WO2009051271A1 (ja) 2007-10-16 2008-10-16 光触媒膜、光触媒膜の製造方法、物品および親水化方法

Country Status (5)

Country Link
US (1) US20100298120A1 (ja)
EP (1) EP2202000A1 (ja)
JP (1) JP5511159B2 (ja)
CN (1) CN101903102A (ja)
WO (1) WO2009051271A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115874A (ja) * 2008-11-13 2010-05-27 Ube Nitto Kasei Co Ltd ガラス窓外張りフィルム
CN115282983A (zh) * 2022-07-14 2022-11-04 金陵科技学院 一种硫化铟锌负载贵金属的光催化剂及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096536B2 (ja) * 2013-03-07 2017-03-15 宇部エクシモ株式会社 光触媒複合粒子及びその製造方法
US10301477B2 (en) 2013-03-15 2019-05-28 Behr Process Corporation Superhydrophilic coating composition
JP6105998B2 (ja) * 2013-03-26 2017-03-29 パナホーム株式会社 光触媒組成物の製造方法および光触媒体の製造方法
US20150072171A1 (en) * 2013-09-12 2015-03-12 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Hydrophobic surface treatment compositions comprising titanium precursors
KR101891369B1 (ko) * 2014-08-06 2018-08-27 (주)엘지하우시스 광촉매 기능성 필름 및 이의 제조방법
WO2018036662A1 (de) * 2016-08-23 2018-03-01 Linde Aktiengesellschaft Transportbehälter sowie verfahren zum wiegen eines derartigen transportbehälters
JP7069814B2 (ja) * 2018-02-22 2022-05-18 富士フイルムビジネスイノベーション株式会社 構造体
WO2019198483A1 (ja) * 2018-04-12 2019-10-17 信越化学工業株式会社 光触媒転写フィルム及びその製造方法
US20210098724A1 (en) * 2019-10-01 2021-04-01 Industry-University Cooperation Foundation Hanyang University Thin film transistor
CN111437803A (zh) * 2020-04-07 2020-07-24 合肥宝发动力技术股份有限公司 小于10nm粒径纳米TiO2的涂层结构制备方法
JP6956968B1 (ja) * 2020-06-23 2021-11-02 国立大学法人弘前大学 燃料電池用触媒、電極触媒層、膜電極接合体、固体高分子形燃料電池、および、燃料電池用触媒の製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029375A1 (fr) 1995-03-20 1996-09-26 Toto Ltd. Procede photocatalytique pour rendre la surface de base d'un materiau ultrahydrophile, materiau de base ayant une surface ultrahydrophile et photocatalytique, et procede pour produire ce materiau
WO1998003607A1 (fr) * 1996-07-19 1998-01-29 Toto Ltd. Composition de revetement hydrophile photocatalytique
JPH10152323A (ja) 1996-09-30 1998-06-09 Chubu Electric Power Co Inc 結晶チタニア及びその製造方法
JP2000129176A (ja) * 1998-10-29 2000-05-09 Jsr Corp コーティング用組成物
JP2000345320A (ja) 1999-06-02 2000-12-12 Toyota Central Res & Dev Lab Inc 薄膜構造体及びその製造方法
JP2001219496A (ja) * 1999-12-01 2001-08-14 Toto Ltd 窓ガラス貼着用フィルム
JP2001262007A (ja) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc チタニア塗布液及びその製造方法、並びにチタニア膜及びその形成方法
JP2001270022A (ja) 2000-03-24 2001-10-02 National Institute For Materials Science チタニア超薄膜およびその製造方法
JP2002097013A (ja) 2000-09-22 2002-04-02 Japan Science & Technology Corp 透明薄膜とその製造方法
JP2003261330A (ja) * 2002-03-07 2003-09-16 Hitachi Chem Co Ltd 酸化チタン膜形成用液体、酸化チタン膜の形成法、酸化チタン膜及び光触媒性部材
JP3484470B2 (ja) 2000-07-24 2004-01-06 独立行政法人産業技術総合研究所 光触媒機能を有するフィルム素材
JP2004091263A (ja) * 2002-08-30 2004-03-25 Nihon University アナターゼ型チタニア膜、アナターゼ型チタニアゾルの製造方法およびアナターゼ型チタニア膜の製造方法
JP2005131640A (ja) 1998-11-20 2005-05-26 Asahi Kasei Chemicals Corp 自己傾斜型光触媒組成物
JP2007001088A (ja) * 2005-06-22 2007-01-11 Ube Nitto Kasei Co Ltd 防汚性印刷用基材およびそれを用いた印刷物、印刷体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165256A (en) * 1996-07-19 2000-12-26 Toto Ltd. Photocatalytically hydrophilifiable coating composition
US6027775A (en) * 1996-09-30 2000-02-22 Chubu Electric Power Co., Inc. Crystalline titania and process for producing the same
JP3781888B2 (ja) * 1998-02-13 2006-05-31 日産自動車株式会社 親水性基材およびその製造方法
US6479141B1 (en) * 1999-09-30 2002-11-12 Showa Denko K.K. Photocatalytic coating composition and product having photocatalytic thin film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029375A1 (fr) 1995-03-20 1996-09-26 Toto Ltd. Procede photocatalytique pour rendre la surface de base d'un materiau ultrahydrophile, materiau de base ayant une surface ultrahydrophile et photocatalytique, et procede pour produire ce materiau
WO1998003607A1 (fr) * 1996-07-19 1998-01-29 Toto Ltd. Composition de revetement hydrophile photocatalytique
JPH10152323A (ja) 1996-09-30 1998-06-09 Chubu Electric Power Co Inc 結晶チタニア及びその製造方法
JP2000129176A (ja) * 1998-10-29 2000-05-09 Jsr Corp コーティング用組成物
JP2005131640A (ja) 1998-11-20 2005-05-26 Asahi Kasei Chemicals Corp 自己傾斜型光触媒組成物
JP2000345320A (ja) 1999-06-02 2000-12-12 Toyota Central Res & Dev Lab Inc 薄膜構造体及びその製造方法
JP2001219496A (ja) * 1999-12-01 2001-08-14 Toto Ltd 窓ガラス貼着用フィルム
JP2001262007A (ja) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc チタニア塗布液及びその製造方法、並びにチタニア膜及びその形成方法
JP2001270022A (ja) 2000-03-24 2001-10-02 National Institute For Materials Science チタニア超薄膜およびその製造方法
JP3484470B2 (ja) 2000-07-24 2004-01-06 独立行政法人産業技術総合研究所 光触媒機能を有するフィルム素材
JP2002097013A (ja) 2000-09-22 2002-04-02 Japan Science & Technology Corp 透明薄膜とその製造方法
JP2003261330A (ja) * 2002-03-07 2003-09-16 Hitachi Chem Co Ltd 酸化チタン膜形成用液体、酸化チタン膜の形成法、酸化チタン膜及び光触媒性部材
JP2004091263A (ja) * 2002-08-30 2004-03-25 Nihon University アナターゼ型チタニア膜、アナターゼ型チタニアゾルの製造方法およびアナターゼ型チタニア膜の製造方法
JP2007001088A (ja) * 2005-06-22 2007-01-11 Ube Nitto Kasei Co Ltd 防汚性印刷用基材およびそれを用いた印刷物、印刷体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115874A (ja) * 2008-11-13 2010-05-27 Ube Nitto Kasei Co Ltd ガラス窓外張りフィルム
CN115282983A (zh) * 2022-07-14 2022-11-04 金陵科技学院 一种硫化铟锌负载贵金属的光催化剂及其制备方法和应用
CN115282983B (zh) * 2022-07-14 2023-08-22 金陵科技学院 一种硫化铟锌负载贵金属的光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN101903102A (zh) 2010-12-01
JP2009208062A (ja) 2009-09-17
JP5511159B2 (ja) 2014-06-04
US20100298120A1 (en) 2010-11-25
EP2202000A1 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP5511159B2 (ja) 光触媒膜、光触媒膜の製造方法、物品および親水化方法
JP4974459B2 (ja) 光触媒性TiO2層を含む支持体
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
JP2000336281A (ja) 有機−無機複合傾斜材料、その製造方法及びその用途
WO2004096935A1 (ja) 光触媒塗工液、光触媒膜および光触媒部材
JP2012140621A (ja) コーティング組成物およびその使用
Smitha et al. UV curable hydrophobic inorganic–organic hybrid coating on solar cell covers for photocatalytic self cleaning application
Yadav et al. Fabrication of SiO 2/TiO 2 double layer thin films with self-cleaning and photocatalytic properties
EP1543949A1 (en) High durable photocatalyst film and structure having surface exhibiting photocatalytic function
JP2002346393A (ja) 光触媒体およびその製造方法
JP4738736B2 (ja) 光触媒複合体、光触媒層形成用塗布液及び光触媒担持構造体
US10442906B2 (en) Method for preparing an oxide film on a polymeric substrate
JP4869578B2 (ja) 滑雪用塗膜形成コーティング組成物、滑雪用塗膜および滑雪用部材
JP4971608B2 (ja) 光触媒担持構造体
JP2009039687A (ja) 光触媒層形成用組成物
Fateh et al. Self-cleaning coatings on polymeric substrates
JP2010101919A (ja) カメラ用レンズ
Chi et al. Photoirradiation Caused Controllable Wettability Switching of Sputtered Highly Aligned c‐Axis‐Oriented Zinc Oxide Columnar Films
JP2010116504A (ja) 高透明性光触媒膜およびそれを有する物品
JP5097682B2 (ja) 光触媒膜およびそれを有する物品
Heera et al. Hydrophilic-amorphous versus hydrophobic-crystalline Sb2S3: The battle for higher photocatalytic efficiency
JP4108405B2 (ja) 光触媒積層体
JP4118060B2 (ja) 光触媒フィルム
JP2010101920A (ja) カメラ
WO2024209090A1 (en) Titanium-oxo-cores, a coating composition containing the titanium-oxo-cores, an object having on a surface thereof a titanium oxide coating formed from the coating composition, and methods for their preparation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121269.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08840097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008840097

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12738364

Country of ref document: US