[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008072635A1 - 空燃比制御装置 - Google Patents

空燃比制御装置 Download PDF

Info

Publication number
WO2008072635A1
WO2008072635A1 PCT/JP2007/073880 JP2007073880W WO2008072635A1 WO 2008072635 A1 WO2008072635 A1 WO 2008072635A1 JP 2007073880 W JP2007073880 W JP 2007073880W WO 2008072635 A1 WO2008072635 A1 WO 2008072635A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
lift amount
learning
value
lift
Prior art date
Application number
PCT/JP2007/073880
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Iwahashi
Hiroshi Morita
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07859773.9A priority Critical patent/EP2090768B1/en
Priority to CN2007800449146A priority patent/CN101548087B/zh
Priority to US12/517,584 priority patent/US8302571B2/en
Publication of WO2008072635A1 publication Critical patent/WO2008072635A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an air-fuel ratio control apparatus that executes air-fuel ratio control, which is applied to an internal combustion engine that includes a lift amount change mechanism that changes a lift amount of an intake valve.
  • exhaust components are purified by an exhaust purification catalyst provided in the exhaust passage.
  • Purification of exhaust components by the exhaust purification catalyst is efficiently performed when the air-fuel ratio of the air-fuel mixture combusted in the internal combustion engine is within a predetermined range. Therefore, a sensor that outputs a signal corresponding to the oxygen concentration of the exhaust is provided in the exhaust passage, and the actual air-fuel ratio of the air-fuel mixture is detected based on the output signal from this sensor, and the detected actual air-fuel ratio becomes the target air-fuel ratio. In this way, air-fuel ratio control for feedback control of the fuel injection amount is performed.
  • This feedback control is executed when a predetermined execution condition is satisfied after the start of operation of the internal combustion engine, for example, the temperature of the internal combustion engine has become sufficiently high.
  • the prospective control is executed based on the operation state of the internal combustion engine, which is based on the output signal from the sensor, and the fuel injection amount is adjusted.
  • Patent Document 1 discloses an apparatus applied to an internal combustion engine having a lift amount changing mechanism that changes a lift amount (specifically, a maximum lift amount) of an intake valve.
  • the lift amount changing mechanism is controlled so that the desired lift amount and the actual lift amount match.
  • the intake valve is opened and closed so that the lift amount of the intake valve becomes a value suitable for the operating state of the engine at that time.
  • the passage area of the communication portion between the intake passage and the combustion chamber in the internal combustion engine is slightly different from the reference area. Further, when deposits adhere to the intake valve as the engine is operated, the passage area changes, and the difference between the passage area and its reference area increases. The difference between the passage area and the reference area contributes to a decrease in the adjustment accuracy of the intake air amount, that is, the adjustment accuracy of the air-fuel ratio of the air-fuel mixture.
  • An internal combustion engine in which the feedback control described above is executed In Seki, basically, the amount of change in the air-fuel ratio due to the difference of the passage area with respect to the reference area is compensated through the feedback control, so that a decrease in the adjustment accuracy of the air-fuel ratio is avoided.
  • the change in the air-fuel ratio due to the difference is the operation of the lift amount changing mechanism. It depends on the aspect. Therefore, when the operation mode of the lift amount changing mechanism is frequently changed so as to match the engine operating state at that time, the change in the air-fuel ratio also changes frequently with the change.
  • the feedback control is executed simply based on the sensor signal as in the device of the above-mentioned Patent Document 1, it is possible to follow the change of the operation mode of the lift amount changing mechanism with high frequency. It can be done. As a result, there is a possibility that the change in the air-fuel ratio accompanying the change in the operation mode of the lift amount changing mechanism cannot be compensated accurately.
  • Patent Document 1 JP 2001-263015 A
  • An object of the present invention is to provide an air-fuel ratio control apparatus capable of accurately controlling an air-fuel ratio of an air-fuel mixture to a desired value in an internal combustion engine having a lift amount changing mechanism.
  • an air-fuel ratio control apparatus for an internal combustion engine is provided according to an aspect of the present invention.
  • the engine includes a lift amount changing mechanism that changes the lift amount of the intake valve, and a sensor that outputs a signal corresponding to the oxygen concentration of the exhaust gas.
  • the control device sets the fuel injection amount command value through the prospective control based on the engine operating state when the execution condition is not satisfied after the engine operation is started. When the execution condition is satisfied, the control device sets the fuel injection amount command value through feedback control using a correction amount calculated based on the output value of the sensor.
  • the control device includes a learning unit, a correction unit, and a prohibition unit.
  • the learning unit When the execution condition is satisfied, the learning unit is in the first lift amount region used when the execution condition is not satisfied, and when the execution condition is satisfied.
  • the steady deviation amount between the correction amount and its reference value is learned as a deviation amount learning value separately for each when the second lift amount region is used only.
  • the learning unit obtains a relationship between the deviation amount and the lift amount based on the deviation amount learning value and stores the relationship.
  • the correction unit obtains a deviation amount correction value from the stored relationship based on the lift amount, and corrects the fuel injection amount command value using the deviation amount correction value.
  • the prohibition unit is configured such that when there is no history of learning of the deviation amount when the lift amount is in the first lift amount region, the lift amount is different from the first lift amount region to another lift amount.
  • FIG. 1 is a schematic configuration diagram of an air-fuel ratio control apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing the displacement of the lift amount of the intake valve based on the operation of the lift amount changing mechanism.
  • FIG. 3 is a diagram showing positions of an air-fuel ratio sensor and an oxygen sensor in an exhaust passage.
  • FIG. 4 is a flowchart showing a fuel injection control process according to the first embodiment.
  • FIG. 5 is a flowchart showing a fuel injection control process according to the first embodiment.
  • FIG. 6 is a graph showing the relationship between the lift amount of the intake valve and the passage area of the communicating portion.
  • FIG. 7 is a graph showing the relationship between the lift amount of the intake valve and the change in the air-fuel ratio.
  • FIG. 8 is a flowchart showing a learning process that is effective in the first embodiment.
  • FIG. 9 is a schematic diagram showing the relationship between the degree of deterioration and deviation of the exhaust purification catalyst.
  • FIG. 10 is a schematic diagram showing the relationship between the degree of deterioration of the exhaust purification catalyst and the deviation and the smoothing coefficient.
  • FIG. 11 is a graph showing the relationship between the force, the lift amount of the intake valve and the deviation amount correction value according to the first embodiment.
  • FIG. 12 is a schematic diagram showing the degree of exhaust contact with the air-fuel ratio sensor and the exhaust properties for each cylinder.
  • FIG. 13 is a flowchart showing a transition limiting process which is effective in the first embodiment.
  • FIG. 14 is a timing chart showing an example of a migration restriction process.
  • FIG. 15 is a graph showing the relationship between the force, the lift amount of the intake valve and the deviation amount learning value according to the second embodiment of the present invention.
  • FIG. 16 is a flowchart showing a learning process for the second embodiment.
  • FIG. 17 is a graph showing the relationship between the lift amount of the intake valve and the deviation amount correction value in another embodiment of the present invention.
  • FIG. 18 is a graph showing the relationship between the lift amount of the intake valve and the deviation amount correction value in another embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of an air-fuel ratio control apparatus that is effective in the present embodiment.
  • a throttle valve 14 is provided in the intake passage 12 of the internal combustion engine 10.
  • a throttle motor 16 is connected to the throttle valve 14. Then, the opening degree of the throttle valve 14 (throttle opening degree TA) is adjusted through the drive control of the throttle motor 16, and thereby the amount of air taken into the combustion chamber 18 through the intake passage 12 is adjusted.
  • the intake passage 12 is provided with a fuel injection valve 20.
  • the fuel injection valve 20 injects fuel into the intake passage 12.
  • an exhaust purification catalyst 34 is provided in the exhaust passage 28 of the internal combustion engine 10.
  • the intake passage 12 and the combustion chamber 18 are communicated or blocked by the opening / closing operation of the intake valve 30.
  • the intake valve 30 opens and closes with the rotation of the intake camshaft 32 to which the rotation of the crankshaft 26 is transmitted.
  • a lift amount changing mechanism 42 is provided between the intake valve 30 and the intake force shaft 32.
  • the lift amount changing mechanism 42 changes the lift amount VL (specifically, the maximum lift amount) of the intake valve 30 according to engine operating conditions, and is operated by an actuator 44 such as an electric motor.
  • the lift amount VL of the intake valve 30 changes in synchronization with the valve opening period, that is, the lift operation angle. For example, the lift amount decreases as the lift operation angle decreases. M / J, it will be short.
  • the apparatus of the present embodiment includes various sensors for detecting the operating state of the internal combustion engine 10 shown in FIG.
  • Such sensors include, for example, a crank sensor 52 for detecting the rotational speed of the crankshaft 26 (engine rotational speed NE) and an intake air for detecting the amount of intake air passing through the intake passage 12 (passage intake air amount GA).
  • pedal sensor 54 and pedal pedal sensor 56 for detecting AC pedal pedal amount AC.
  • various sensors include a throttle sensor 58 for detecting the throttle opening TA and a lift amount for detecting the lift amount VL of the intake valve 30 (more precisely, the operation amount of the lift amount changing mechanism 42). It includes a sensor 60 and a temperature sensor 62 for detecting the engine coolant temperature (coolant temperature THW).
  • various sensors are provided in the exhaust passage 28 upstream of the exhaust purification catalyst 34 in the exhaust flow direction, more specifically, an air-fuel ratio sensor 64 that is provided in the exhaust manifold and outputs a signal corresponding to the oxygen concentration of the exhaust.
  • the various sensors include an oxygen sensor 66 provided downstream of the exhaust purification catalyst 34 in the exhaust passage 28 in the exhaust flow direction and outputting a signal corresponding to the oxygen concentration of the exhaust.
  • the internal combustion engine 10 has first to fourth cylinders # 1, # 2, # 3, and # 4. A portion where the exhaust passages 28 extending from 1 to # 4 are joined, specifically, one exhaust manifold, is provided.
  • the air-fuel ratio sensor 64 is a known limiting current oxygen sensor.
  • This limiting current type oxygen sensor is a ceramic layer called a diffusion-controlled layer in the detection part of a concentration cell type oxygen sensor. Is a sensor that outputs a current corresponding to the oxygen concentration in the exhaust gas.
  • the output current from the air-fuel ratio sensor 64 becomes “0”.
  • the output current increases in the negative direction, and as the air-fuel ratio becomes leaner, the output current increases in the positive direction. Therefore, based on the output signal from the air-fuel ratio sensor 64, it is possible to detect the air-fuel ratio of the air / fuel mixture, its lean degree! /, And its rich degree.
  • the oxygen sensor 66 is a well-known concentration cell type oxygen sensor. This oxygen sensor 66 outputs a voltage of about 1 volt when the oxygen concentration of the exhaust gas is the concentration when the air-fuel ratio of the air-fuel mixture is richer than the stoichiometric air-fuel ratio. If the concentration is leaner than the theoretical air-fuel ratio, a voltage of about 0 volts is output. The output voltage from the oxygen sensor 66 changes greatly when the oxygen concentration of the exhaust gas is the concentration when the air-fuel ratio of the mixture is near the stoichiometric air-fuel ratio. Therefore, based on the output signal of the oxygen sensor 66, it is possible to detect whether the exhaust gas downstream from the exhaust purification catalyst 34 has a property corresponding to lean or a property corresponding to rich.
  • the oxygen sensor 66 is provided downstream of the exhaust purification catalyst 34 in order to monitor the state of the exhaust purification action of the exhaust purification catalyst 34. That is, when the reduction action of the exhaust purification catalyst 34 is promoted and oxygen is released into the exhaust, the output signal of the oxygen sensor 66 force becomes a value corresponding to lean. When the oxidation action in the exhaust purification catalyst 34 is promoted and oxygen in the exhaust gas is consumed, the value corresponds to the output signal force S rich from the oxygen sensor 66. Based on the detection result of the oxygen sensor 66, the state of the exhaust purification action is monitored.
  • the apparatus of the present embodiment includes an electronic control unit 50 configured to include, for example, a microcomputer.
  • the electronic control unit 50 captures detection signals from various sensors and performs various calculations. Based on the calculation results, the electronic control unit 50 controls the drive of the throttle motor 16 (throttle control) and the drive control of the fuel injection valve 20 (fuel injection control). ), Actuator 44 drive control (lift amount change control), etc. and! /, Various controls are executed.
  • the combustion chamber 18 is provided through cooperation between throttle control and lift amount change control.
  • the amount of inhaled air (in-cylinder air intake) is adjusted as follows. That is, the control target value (target in-cylinder intake air amount Tga) for the in-cylinder intake air amount is calculated based on the depression amount AC of the accelerator pedal 36 and the engine speed NE, and the target in-cylinder intake air amount Tga is Throttle control and lift amount change control are executed so that the in-cylinder intake amount at the time matches.
  • the lift amount VL is a large lift. It is fixed at the control limit lift amount (upper limit lift amount VLmax) on the quantity side, and the throttle opening TA is changed to adjust the in-cylinder intake amount.
  • the throttle opening TA and the lift amount VL are both changed to adjust the in-cylinder intake air amount.
  • an internal combustion engine in which the intake air amount is adjusted by changing the lift amount of the intake valve requires less intake air amount than an internal combustion engine in which the intake air amount is adjusted only by changing the throttle valve opening. It is possible to reduce the bombing loss at times, and the fuel consumption can be reduced accordingly.
  • the in-cylinder intake air amount that is basically suitable for the operating state of the internal combustion engine 10 (the estimated in-cylinder intake air amount Vga described later)
  • the fuel injection amount is adjusted according to the estimated in-cylinder intake air amount Vga through fuel injection control.
  • this fuel injection control will be described.
  • FIG. 4 and FIG. 5 are both flow charts showing the specific procedure of the process that focuses on the fuel injection control, and the series of processes shown in these flowcharts are executed by the electronic control unit 50 at predetermined intervals.
  • the estimated in-cylinder intake air amount Vga is calculated based on the passage intake air amount GA and the like, and the basic injection amount Qbse is calculated based on the estimated in-cylinder intake air amount Vga.
  • This basic injection amount Qbse is a value corresponding to the expected control amount in the fuel injection control.
  • the basic injection amount Qbse is the air-fuel ratio of the air-fuel mixture combusted in the combustion chamber 18 with respect to the estimated in-cylinder intake air amount Vga.
  • the amount of fuel injection that gives the stoichiometric air-fuel ratio is calculated. It is.
  • a deviation amount correction value Kvla is calculated based on the lift amount VL (step S 102).
  • the specific calculation mode of the deviation amount correction value Kvla and the operation by calculating the deviation amount correction value Kvla will be described later.
  • the target injection amount Tq is set through prospective control based on the engine operating condition.
  • the air-fuel ratio of the air-fuel mixture can be brought close to the stoichiometric air-fuel ratio by driving the fuel injection valve 20 so that a fuel equivalent to the target injection amount Tq is injected.
  • the air-fuel ratio sensor 64 detects the actual air-fuel ratio of the air-fuel mixture, and the actual air-fuel ratio and the target air-fuel ratio (
  • the basic correction amount ⁇ is calculated based on the deviation from the stoichiometric air-fuel ratio (step S 105). As the basic correction amount ⁇ , a larger amount is calculated as the deviation is larger.
  • the basic correction amount ⁇ is set as the main feedback correction amount MFB (step S107).
  • the value obtained by multiplying the basic correction amount ⁇ by “11.0” (one ⁇ ) is the main feedback correction amount. Set as MFB (step S108).
  • the execution condition of the sub-feed knock control (the target injection amount Tq feedback control based on the output value of the oxygen sensor 66) is It is determined whether or not it is established (step S109). Here, It is determined that the execution condition is satisfied when both of the above conditions are satisfied. • The exhaust purification catalyst 34 is fully activated.
  • the exhaust purification catalyst 34 purifies the exhaust by oxidizing HC and CO in the exhaust and reducing NOx in the exhaust in a state where combustion near the stoichiometric air-fuel ratio is performed! Has an effect.
  • the exhaust purification catalyst 34 efficiently purifies all major harmful components (HC, CO, NOx) in the exhaust gas, particularly in a narrow range (window) where the air-fuel ratio of the mixture is close to the stoichiometric air-fuel ratio. To do. For this reason, in order for the exhaust purification catalyst 34 to function effectively, it is necessary to strictly adjust the air-fuel ratio so that the air-fuel ratio of the air-fuel mixture is adjusted to the center of the window. At this time (NO in step S109), the fuel injection amount is adjusted through the main feedback control so that the actual air-fuel ratio matches the target air-fuel ratio.
  • the actual oxygen concentration of the exhaust gas detected by 66 and the reference concentration (the concentration when the air-fuel ratio of the mixture is the stoichiometric air-fuel ratio and the concentration when the output voltage of the oxygen sensor 64 is 0.5 V) Based on the deviation, a basic correction amount / 3 is calculated (step S111).
  • the basic correction amount ⁇ is larger as the deviation is larger.
  • step S112 When the output signal of the oxygen sensor 66 is a value indicating lean (YES in step S112), a value obtained by adding the basic correction amount / 3 to the stored sub feedback correction amount SFB (SFB + / 3) Is set as a new sub feedback correction amount SFB (step S 113).
  • step S 113 When the output signal of the oxygen sensor 66 indicates a rich value (NO in step S112), a value obtained by subtracting the basic correction amount / 3 from the stored sub feedback correction amount SFB (SFB- / 3) is a new value.
  • the sub-feedback control is used to respond to the actual purification state of the exhaust purification catalyst 34.
  • the fuel injection amount is adjusted, and the purification action of the exhaust purification catalyst 34 is accurately exhibited.
  • step S116 Thereafter, after a learning process to be described later is executed (step S116), this process is temporarily terminated.
  • the learning process is executed for the following reason.
  • the communication between the intake passage 12 and the combustion chamber 18 is caused by individual differences in the lift amount changing mechanism 42, deterioration over time, assembly errors, or deposit adhesion to the intake valve 30.
  • the passage area and its reference area are different. Therefore, even if the lift amount VL of the intake valve 30 is adjusted in the same manner, the actual in-cylinder intake amount does not coincide with the in-cylinder intake amount when the above-described passage area is equal to the reference area.
  • the change in the in-cylinder intake amount due to such a difference in the passage area is compensated through the above-described adjustment of the air-fuel ratio.
  • FIG. 6 shows the relationship between the lift amount VL of the intake valve 30 and the passage area.
  • the solid line shows an example of the relationship between the passage area and the reference area, that is, the lift amount VL in the reference state and the passage area.
  • the alternate long and short dash line shows an example of the relationship between the lift amount VL and the passage area when the passage area is smaller than the reference area.
  • the alternate long and two short dashes line shows the relation between the passage area and the reference area. Bigger than In this case, an example of the relationship between the lift amount VL and the passage area is shown.
  • the in-cylinder intake air amount is adjusted by changing the lift amount VL of the intake valve 30. Therefore, the lift amount VL is reduced during low load operation of the internal combustion engine 10, such as during idle operation. It is set small, and the passage area becomes very small. As is clear from FIG. 6, the smaller the lift amount VL is set, the greater the ratio of the difference AS between the passage area and its reference area to the entire passage area. Therefore, when the passage area is different from the reference area, the effect becomes greater as the lift amount VL of the intake valve 30 is smaller. Specifically, as the lift amount VL of the intake valve 30 is smaller, the degree of change in the in-cylinder intake amount becomes larger. Therefore, as shown in FIG. 7, when the passage area is small (one point in the figure). The change in the air-fuel ratio increases both in the case of the chain line) and when the passage area is large (two-point difference line in the figure).
  • the steady deviation from the reference value (specifically “0”) of the sub feedback correction amount SFB is determined through the learning process (step S 116 in FIG. 5).
  • the relationship with the lift amount VL of the intake valve 30 is learned.
  • a deviation amount correction value Kvla is calculated from the learned relationship based on the lift amount VL (step S102 in FIG. 4), and the target injection amount Tq is corrected by the deviation amount correction value Kvla ( Step S104, steps S110 and S115 in FIG. 5).
  • this learning process corresponds to the process executed by the learning unit, and the process of steps S102 and S104 in FIG. 4 and the process of steps SS110 and S115 in FIG. 5 are executed by the correction unit. It corresponds to.
  • FIG. 8 is a flowchart showing a specific procedure of the learning process, and a series of processes shown in this flowchart is executed by the electronic control unit 50 at predetermined intervals.
  • step S201 it is determined whether or not a learning condition is satisfied.
  • the learning condition is satisfied when a stable engine operation state is continued for a predetermined period without sudden acceleration or deceleration.
  • step S202 it is determined whether or not the learning completion flag is set to ON (step S202).
  • the learning completion flag is set to ON when learning of the above deviation amount is completed when the upper limit lift amount is VLmax.
  • the learning completion flag is set to the initial value for each value stored in the electronic control unit 50, for example, when the power supply to the electronic control unit 50 is temporarily stopped due to battery replacement or a momentary power interruption. When it is reset, it is set off accordingly.
  • the upper limit lift amount VLmax corresponds to the first lift amount region and the first specific lift amount
  • the lower limit lift amount VLmin corresponds to the second lift amount region and the second specific lift amount.
  • a predetermined period A1 is set as an execution period A for executing the learning of the deviation amount.
  • a predetermined value N1 is set as a coefficient (smoothing coefficient N) for determining the change rate of the learning value (step S203).
  • a predetermined value N1 for example, “10” capable of achieving both the avoidance of erroneous learning and the early completion of learning.
  • a positive number larger than “1.0” is set as the smoothing coefficient N.
  • step S204 When the learning completion flag is set to OFF (NO in step S202), the difference ⁇ SFB between the sub-feedback correction amount SFB and its reference value (specifically, “0”) The execution period A and the smoothing coefficient N are set based on the absolute value of the back-back correction amount SFB) and the deterioration degree of the exhaust purification catalyst 34 (step S204).
  • the process of step S204 corresponds to the process executed by the setting unit.
  • the execution cycle A is the difference A SFB and the degree of deterioration of the exhaust purification catalyst 34. The larger the is, the shorter the period is set. In addition, as the execution cycle A at this time, a cycle shorter than the predetermined cycle A1 is set. As shown in FIG. 10, as the smoothing coefficient N, the value of the difference ⁇ SFB and the degree of deterioration of the exhaust purification catalyst 34 is increased, and the value is set smaller. In addition, as the smoothing coefficient N at this time, a value smaller than the predetermined value N1 is set.
  • the oxygen storage amount of the exhaust purification catalyst 34 is detected, and the oxygen storage amount is also reduced. Decrease the amount of exhaust gas purification catalyst 34! /, The greater the degree of deterioration! /
  • the oxygen storage amount of the exhaust purification catalyst 34 is determined when the internal combustion engine 10 is operated in a stable state with a relatively high load during the execution of the main feedback control and the sub feedback control. (For example, a state where the passage intake air amount GA is within a predetermined range is continued for a predetermined period) is detected and stored by executing the following processing. That is, first, the target injection amount Tq is set so that the output signals of the air-fuel ratio sensor 64 and the oxygen sensor 66 are both switched from the lean equivalent value to the rich equivalent value (or from the rich equivalent value to the lean equivalent value). A fixed amount is increased (or decreased).
  • step S205 After the execution cycle A and the smoothing coefficient N are set according to the operation state of the learning completion flag as described above, the learning timing is set for each execution cycle A (step in FIG. 8). YES in S205), processing for learning the divergence amount (steps S206 to S213) is executed
  • a deviation learning value GKlg is calculated from the following relational expression (step S207).
  • the difference between the divergence amount learning value GKlg (i) calculated this time and the divergence amount learning value GKlg (i-1) calculated at the previous execution of this process ⁇ A value obtained by subtracting G Klg (i) ⁇ GKlg (i ⁇ l) ⁇ from the sub feedback correction amount SFB is set as a new sub feedback correction amount SFB (step S208).
  • Step S210 After that, it is determined that there is a history of completion of learning of the deviation amount when the upper limit lift amount is VLmax. Deviation amount learning value If the number of learning of GKlg is less than the predetermined number (NO in step S209), the learning completion flag is kept off (the processing of step S210 is jumped), and the deviation amount learning value It is determined that there is no history of learning of the deviation amount when GKlg.
  • step S212 When the lift amount VL of the intake valve 30 is the lower limit lift amount VLmin (NO in step S206 and YES in step S211), the stored deviation amount learned value GKsm, sub-feedback correction amount SFB, and the above A deviation amount learning value GKsm is calculated based on the following coefficient N from the following relational expression (step S212).
  • the difference between the divergence amount learning value GKsm (i) calculated this time and the divergence amount learning value GKsm (i-1) calculated at the previous execution of this process ( A value obtained by subtracting GKsm (i) —GKsm (i—1)) from the sub feedback correction amount SFB is set as a new sub feedback correction amount SFB (step S213).
  • step S201 if the learning condition is not satisfied (NO in step S201), the learning timing is not satisfied. Even if it is not (NO in step S205), the learning of the deviation amount learning value GKlg and the deviation amount learning value GKsm is not executed.
  • step S102 in Fig. 4 The process of calculating the deviation amount correction value Kvla (step S102 in Fig. 4) described above is executed as follows based on the deviation amount learned value GKlg and the deviation amount learned value GKsm learned through the learning process. Is done.
  • FIG. 11 shows an example of the relationship among the lift amount VL, the deviation amount learned value GKlg, the deviation amount learned value GKsm, and the deviation amount correction value Kvla of the intake valve 30.
  • the deviation amount correction value Kvla is basically larger as the lift amount VL is smaller.
  • the deviation amount correction value Kvla is calculated as follows.
  • the deviation amount learning value GKsm is calculated as the deviation amount correction value Kvla.
  • the deviation amount correction value Kvla is calculated by interpolating from the deviation amount learning value GKlg and the deviation amount learning value GKsm. Specifically, a value satisfying the following relational expression is calculated as the deviation amount correction value Kvla through a preset conversion coefficient K1. As the conversion factor K1, a positive number less than “1.0” is set according to the lift amount VL.
  • Kvla GKlg + ⁇ (GKsm -GKlg)
  • the deviation amount learning value G Klg is calculated as the deviation amount correction value Kvla.
  • the deviation amount correction value Kvla is a value commensurate with the lift amount VL of the intake valve 30 at that time, specifically, the smaller the lift amount VL, the larger.
  • the deviation amount correction value Kvla is calculated.
  • the target injection amount Tq is corrected by the deviation amount correction value Kvla. Therefore, the target injection amount so as to anticipate the change in the air-fuel ratio due to the force S, which frequently changes the lift amount VL of the intake valve 30 through the lift amount change control, and to follow the change in the lift amount VL.
  • Tq is calculated.
  • the influence on the air-fuel ratio due to the change in the lift amount VL is accurately suppressed, and the air-fuel ratio of the air-fuel mixture can be accurately determined by adjusting the fuel injection amount through main feedback control, sub-feedback control, or prospective control. Controlled by ratio.
  • the sub-feedback correction amount SFB is increased or decreased by a predetermined amount / 3 according to the output signal of the oxygen sensor 66 for each calculation period.
  • the correction by the sub-feedback correction amount SFB is performed.
  • the fuel injection amount is increased or decreased so that the air-fuel ratio of the air-fuel mixture becomes a desired air-fuel ratio.
  • the fuel injection amount is increased or decreased according to the state of the purification action of the exhaust purification catalyst 34, and the purification action is effectively utilized.
  • the air-fuel ratio sensor 64 for detecting the air-fuel ratio of the mixture in each cylinder is a single one that is shared by all cylinders. The contact mode differs for each cylinder.
  • the target injection amount Tq is corrected to increase or decrease based on the output signal of the air-fuel ratio sensor 64, the above-described dispersion power of the air-fuel ratio between the cylinders.
  • the characteristic of the exhaust upstream of the exhaust purification catalyst 34 is theoretically calculated.
  • the adjustment accuracy when adjusting to a property corresponding to the ratio in the vicinity of the air-fuel ratio is lowered. Specifically, as shown by a solid line in FIG.
  • the apparatus indicates the degree of exhaust contact of each cylinder and the air-fuel ratio of the mixture when the contact manner of the exhaust of each cylinder matches the air-fuel ratio sensor 64. Les. Therefore, the apparatus according to the present embodiment has an output value of the oxygen sensor 66 provided downstream of the exhaust purification catalyst 34 and its reference value (exhaust oxygen concentration when the air-fuel ratio of the air-fuel mixture is the stoichiometric air-fuel ratio). And the change in the air-fuel ratio due to the change in the lift amount VL described above tends to be large. According to the present embodiment, in the apparatus applied to such a multi-cylinder internal combustion engine 10, the force S is used to accurately control the air-fuel ratio of the air-fuel mixture to a desired ratio.
  • the lift amount VL of the intake valve 30 the deviation amount learned value GKlg, the deviation amount learned value GKsm, the deviation amount correction value Kvla, and the function defined by the conversion coefficient K1
  • a linear function is set in advance so that the deviation correction value Kvla increases as the amount VL decreases (see Fig. 11).
  • the lift amount of the intake valve 30 and the above deviation amount are changed so that the slope of the function is changed according to the steady deviation amount when the lift amount VL is the lower limit lift amount VLmin or the upper limit lift amount V Lmax. The relationship is learned.
  • the basic injection amount Qbse is corrected for the deviation amount.
  • the value corrected by the value Kvla is calculated as the target injection amount Tq, and the prospective control based on the target injection amount Tq is executed.
  • FIG. 13 is a flowchart showing a process for restricting the shift of the lift amount VL (transition restriction process).
  • a series of processes shown in FIG. 13 is executed by the electronic control unit 50 at every predetermined period included in the process related to the lift amount change control.
  • this migration restriction process corresponds to a process executed by the prohibition unit.
  • step S301 when the learning completion flag is set to OFF (NO in step S301), the lift amount VL of the intake valve 30 is fixed at the upper limit lift amount VLmax. (Step S302). Thereafter, when this process is repeatedly executed and the learning completion flag is set to ON (YES in step S301), the lift amount VL of the intake valve 30 is shifted to a lift amount other than the upper limit lift amount VLmax. Is permitted (step S302).
  • FIG. 14 shows an example of the execution mode of the transition restriction process when the internal combustion engine 10 is cold-started in a situation where the learned relationship is unnecessarily reset by battery replacement or the like.
  • the coolant temperature THW becomes equal to or higher than the predetermined temperature, and the execution conditions (Fig. 14 (c)) of the main feedback control and the sub feedback control are satisfied, and these main feedback control and sub feedback control are established.
  • the execution of is started.
  • the learning completion flag (FIG. 14 (c)) is set to OFF, it is assumed that learning of the deviation amount when the upper limit lift amount is VLmax is not completed, and lift amounts other than the upper limit lift amount VLmax.
  • the lift amount VL of the intake valve 30 is maintained at the upper limit lift amount VLmax.
  • the apparatus of the comparative example in which the migration restriction process is not executed (indicated by a one-dot chain line in the figure) If the cooling water temperature THW exceeds the specified temperature and the execution conditions for the main feedback control and sub-feedback control are met, the lift amount VL matches the lift amount corresponding to the operating state of the internal combustion engine 10 (this example) Then, it is changed to the lower limit lift amount (VLmin).
  • the amount of deviation when the lift amount VLmax is the upper limit lift amount VLmax only at a very limited opportunity when the lift amount VL becomes the upper limit lift amount VLmax when the internal combustion engine 10 is operated at a high load. (Specifically, since learning of the deviation amount learning value GKlg) is executed, it takes a long time to complete the learning.
  • the lift amount VL of the intake valve 30 is fixed at the upper limit lift amount VLmax in such a case, whereby the deviation amount (specifically, when the upper limit lift amount is VLmax). Specifically, learning of the deviation amount learning value GKlg) is executed with the highest priority.
  • the lift amount VL of the intake valve 30 becomes the operating state of the internal combustion engine 10. It is changed to the appropriate lift amount (in this example, the lower limit lift amount VLmin).
  • the learning of the deviation amount at the upper limit lift amount VLmax is executed with the highest priority when the engine is operated immediately thereafter. To be completed. Therefore, the occurrence of the inconvenience due to the engine operation being stopped before the learning of the deviation amount is completed can be suppressed.
  • the learning amount of the deviation amount learning value GKlg is less than the predetermined number, it is determined that there is no history of learning of the deviation amount when the upper limit lift amount is VLmax.
  • a period during which learning of the deviation amount is repeated until the gradually changing deviation amount learning value GKlg coincides with the deviation amount, that is, when the internal combustion engine 10 is stopped, predictive control in the next operation is performed. At the time of execution, it is determined that there is no such history for a period during which exhaust properties may always be in a bad state.
  • the learning completion flag when the learning completion flag is set to off, when the upper limit lift amount is VLmax compared to when the flag is set to on.
  • the learning rate GKlg is set to be high. Therefore, learning of the deviation amount when the upper limit lift amount is VLmax can be completed earlier, and the occurrence of the inconvenience can be suitably suppressed.
  • the rate of change of the deviation amount learning value GKlg is simply increased, the deviation amount learning value GKlg with respect to the deviation amount becomes poor and the deviation amount learning value GKlg, or the target injection amount Tq is not good. May become stable.
  • the difference A SFB between the sub feedback correction amount SFB and its reference value is large, in other words, when the difference between the divergence amount and the divergence amount learning value GKlg is large, the divergence occurs.
  • the quantity learning value GKlg can be changed relatively quickly to approach the above divergence amount, and learning of the divergence amount can be completed early.
  • the difference A SFB is small, in other words, when the difference between the divergence amount and the divergence amount learning value GKlg is small, the deviation amount learning value GKlg with respect to the divergence amount is suppressed by suppressing the change rate of the divergence amount learning value GKlg. Can be improved, and the instability of the target injection amount Tq can be suppressed.
  • the amount of oxygen that can be stored decreases as the exhaust purification catalyst 34 deteriorates. Therefore, the smaller the deterioration degree of the exhaust purification catalyst 34, the later the timing at which the change in the oxygen concentration of the exhaust gas flowing into the exhaust purification catalyst 34 appears in the change in the output signal of the oxygen sensor 66 tends to be delayed.
  • the amount of change in the feedback correction amount SFB tends to increase. Therefore, if the change rate of the deviation amount learned value GKlg is set high when the degree of deterioration of the exhaust purification catalyst 34 is small, the deviation amount learned value GKlg becomes difficult to stabilize.
  • the deviation amount learned value GKlg is set lower as the deterioration degree of the exhaust purification catalyst 34 is smaller.
  • the deviation amount can be learned.
  • the amount of influence on the air-fuel ratio due to the difference in the operation mode of the lift amount change mechanism 42 is suppressed through the correction by the deviation amount correction value Kvla, while the fuel injection amount is adjusted by main feedback control, sub-feedback control, or prospective control.
  • the air / fuel ratio of the mixture can be adjusted to the desired ratio.
  • the force S is used to accurately control the air-fuel ratio of the air-fuel mixture to a desired ratio.
  • the difference A SFB force S is small, in other words, when the difference between the deviation amount and the deviation amount learning value GKlg is small, the deviation amount learning value GKlg with respect to the deviation amount is suppressed by suppressing the change rate of the deviation amount learning value GKlg. Can be improved, and the instability of the target injection amount Tq can be suppressed.
  • Deviation amount learned value GKlg corresponding to upper limit lift amount VLmax and deviation amount learned value GKsm corresponding to lower limit lift amount VLmin are separately learned and stored, and upper limit lift amount VLmax and Based on the relationship between the lower limit lift amount VLmin and the lift amount VL, the deviation amount correction value Kvla is calculated by interpolation from the deviation amount learning values GKlg and GKsm. Therefore, compared to a device that sets the lift amount region with a high force and obtains the divergence amount for each region and sets this as a learning value, the steady divergence amount and the lift amount VL of the intake valve 30 The relationship can be learned over a wide lift range with a low learning frequency.
  • the air-fuel ratio control apparatus according to the present embodiment and the air-fuel ratio control apparatus according to the first embodiment differ in the manner of calculating the deviation amount correction value and the processing mode of the learning process.
  • the lift amount of intake valve 30 is divided into a plurality of learning regions (first region (VL> VL1), second region (VL1 ⁇ VL> VL2), third Regions (VL2 ⁇ VL> VL3) and fourth region (VL3 ⁇ VL)) are determined, and learning values GK (GKl, GK2, GK3, GK4) are set for each learning region.
  • first region including the upper limit lift amount VLmax corresponds to the first specific lift amount
  • the other second to fourth regions correspond to the second specific lift amount region.
  • the lift amount VL Based on the above, one of the plurality of learning regions (first to fourth regions) is selected, and a deviation amount learning value GK corresponding to the selected learning region is calculated as a deviation amount correction value Kvlb.
  • a process for calculating the target injection amount Tq (a process corresponding to step S104 in FIG. 4 and a process corresponding to steps S110 and S115 in FIG. 5) is executed based on the deviation amount correction value Kvlb.
  • FIG. 16 is a flowchart showing the learning process, and a series of steps shown in the flowchart.
  • the process is executed by the electronic control unit 50 as a process for each predetermined cycle.
  • this learning process corresponds to a process executed by the learning unit.
  • step S201 in FIG. 8 the execution period A and the spoofing coefficient N are set in accordance with the operation status of the learning completion flag (steps S202 to 204). Thereafter, the process of learning the deviation amount (steps S401 to S411 in FIG. 16) is executed on the condition that it is the learning timing for each execution cycle A (YES in step S205).
  • a learning region is selected based on the lift amount VL of the intake valve 30 (steps S401, S404, S407).
  • the deviation amount is calculated from the following relational expression based on the deviation amount learning value GK, the sub-feedback correction amount SFB, and the above-mentioned smoothing coefficient N that are stored as a straight line corresponding to the learning region selected here.
  • a learning value GK is calculated (steps S402, S405, S408, S410).
  • the divergence amount learning value GK (i) calculated this time and the divergence amount learning value GK (i-1) stored as the value corresponding to the current learning region
  • the value obtained by subtracting ⁇ GK (i) -GK (i- l) ⁇ from the sub feedback correction amount SFB is set as a new sub, feed knock correction amount SFB (Steps S403, S406, S409, S 411).
  • step S401 When the lift amount VL of the intake valve 30 is larger than the predetermined amount VL1 (YES in step S401), that is, when the first learning region is selected as the learning region, a process for calculating the deviation amount learning value GK1 ( After the step S402) and the processing for setting the sub feedback correction amount SFB (step S403) are executed, the processing for operating the learning completion flag is executed. Specifically, when learning of the deviation amount learning value GK1 is executed a predetermined number of times with the learning completion flag set to OFF (YES in step S412), the learning completion flag is set to ON (step S412). In S413), when the number of learning of the deviation amount learning value GK1 is less than the predetermined number (NO in Step S412), the learning completion flag is kept off. After this process, this process is temporarily terminated.
  • step S4 When the lift amount VL of the intake valve 30 is less than or equal to the predetermined amount VL1 (step S4 in FIG. 16). 01, NO), processing to calculate the deviation amount learning value GK (steps S405, S408, S411) and processing to set the sub feedback correction amount SFB (steps S406, S409, S412) force S The process is temporarily terminated.
  • the steady divergence amount and the intake air amount of the reference value of the sub feedback correction amount SFB The relationship with the lift amount VL of the valve 30 is learned, and the deviation amount correction value Kvlb is calculated from the learned relationship based on the lift amount VL.
  • the first to fourth learning regions are set for the lift amount VL of the intake valve 30, and the deviation amount learning value GK (GK;! To GK4) is learned and stored for each region. Then, one of the first to fourth regions is selected based on the lift amount VL, and the deviation amount learned value GK corresponding to the selected learning region is calculated as the deviation amount correction value Kvlb.
  • the deviation amount correction value Kvlb when the passage area of the communicating portion and its reference area are different, the smaller the lift amount VL, the more the steady deviation amount between the sub feedback correction amount SFB and its reference value. A value corresponding to a tendency such as a large value, specifically, a larger value is calculated as the lift amount VL is smaller. Then, the target injection amount Tq is corrected by the deviation amount correction value Kvlb.
  • the lift amount VL of the intake valve 30 is frequently changed through the lift amount change control, it seems that the change of the air-fuel ratio due to the change is anticipated so as to follow the change of the lift amount VL. Then, the target injection amount Tq is calculated. As a result, the effect on the air / fuel ratio due to the change in the lift amount VL can be accurately suppressed, and the air / fuel ratio of the air / fuel mixture can be accurately determined through adjustment of the fuel injection amount through main feedback control, sub-feedback control, or prospective control. The ratio is controlled.
  • the lift amount VL of the intake valve 30 is the upper limit lift amount VLm Set to ax.
  • the coolant temperature THW becomes equal to or higher than the predetermined temperature, the execution condition is satisfied, and the execution of the main feedback control and the sub feedback control is started.
  • the learning completion flag is set to OFF! /, It is assumed that learning of the divergence amount for the learning region including the upper limit lift amount VLmax (first learning region) has not been completed, and the upper limit lift amount VLmax The shift to other lift amounts is prohibited, and the lift amount VL of the intake valve 30 is maintained at the upper limit lift amount VLmax.
  • the lift amount VL of the intake valve 30 is fixed at the upper limit lift amount VLmax so that it does not change to the lift amount that matches the engine operating state, as in the device of the comparative example described above.
  • Learning of the divergence amount (specifically, the divergence amount learning value GK1) is executed with the highest priority.
  • the lift amount VL of the intake valve 30 corresponds to the operating state of the internal combustion engine 10. Changed to quantity.
  • the learning of the divergence amount in the first learning region has the highest priority when the engine is operated immediately after. Executed and completed. Therefore, it is possible to suppress the occurrence of inconvenience that the engine operation is stopped before the learning is completed and the exhaust property is always in a bad state when the prospective control is executed in the next operation.
  • the amount of influence on the air-fuel ratio due to the difference in the operation mode of the lift amount changing mechanism 42 is suppressed through the correction by the deviation amount correction value Kvlb, while the fuel injection amount is adjusted by the main feedback control, the sub feedback control, or the prospective control.
  • the air / fuel ratio of the mixture can be adjusted to the desired ratio.
  • the engine operation is stopped before the learning is completed, and when the prospective control is executed in the next operation. It is possible to suppress the occurrence of inconvenience that the exhaust properties are always in a bad state. Therefore, in the internal combustion engine 10 equipped with the lift amount changing mechanism 42, the air-fuel ratio of the air-fuel mixture is accurately controlled to a desired ratio. You can do it with the power s.
  • Deviation amount learning value When the number of learning of GK1 is less than the predetermined number, the learning completion flag is kept off, and the learning of the deviation amount in the first learning region is completed. Judged that there is no history. Therefore, a period during which learning of the deviation amount is repeated until the gradually changing deviation amount learning value GK1 coincides with the deviation amount, that is, when the internal combustion engine 10 is stopped, execution of the prospective control in the next operation is performed.
  • the power S can be used to determine that there is no such history for a period when the exhaust characteristics may always be poor.
  • the change rate of the deviation amount learning value GK1 when there is no history is set higher as the deterioration degree of the exhaust purification catalyst 34 is larger. Therefore, it is possible to learn the deviation amount in the first learning region while stabilizing the deviation amount learning value GK1.
  • the deviation amount correction value may be calculated as described in (A) and (B) below.
  • FIG. 17 shows an example of the relationship between the lift amount VL of the intake valve 30 and the deviation amount correction value Kvlc.
  • VLcl VLmax
  • VLc2, VLc3,..., VLcn VLmin
  • the divergence amount when it is a quantity is learned as a divergence amount learning value GKc (GKcl, GKc2, GKc3,..., G Ken).
  • FIG. 17 shows an example in which eight specific lift amounts VLc;!
  • the deviation amount learning value GKc corresponding to the specific lift amount is calculated as the deviation amount correction value Kvlc.
  • the lift amount VL is not one of a plurality of specific lift amounts, based on the relationship between the lift amount VL at that time and the specific lift amount sandwiching the same lift amount VL, both deviation amount learning values corresponding to these specific lift amounts
  • the linearity interpolation is used to calculate the deviation correction value Kvlc.
  • FIG. 18 shows an example of the relationship between the lift amount VL of the intake valve 30 and the deviation amount correction value Kvld.
  • the deviation amount learned value GKlg is calculated as the deviation amount correction value Kvld
  • the deviation amount learned value is calculated.
  • GKsm is calculated as the deviation correction value Kvld.
  • the first embodiment is a device in which a lift amount (specific lift amount) other than the upper limit lift amount VLmax and the lower limit lift amount VLmin is used at the time of executing the prospective control, and is used for main feedback control and sub-feedback.
  • the present invention can also be applied to a device having a low setting frequency of the specific lift amount at the time of execution of control after the configuration is appropriately changed.
  • the deviation amount when the specific lift amount is the same is learned, and when there is no history of completion of the learning, a change to a lift amount other than the specific lift amount is prohibited.
  • the change rate of the deviation amount learning value corresponding to the specific lift amount may be increased.
  • the deviation correction value may be calculated using the outer edge method as the method for the interpolation.
  • the deviation amount when the lower limit lift amount is VLmin is learned. Instead, the deviation amount when the lift amount is a lift amount (specific lift amount) other than the lower limit lift amount VLmin, such as a lift amount slightly larger than the lower limit lift amount VLmin, may be learned. In the same configuration, in a region where the lift amount VL is smaller than the specific lift amount, the deviation amount correction value may be calculated using the outer method as the method for the interpolation.
  • the deviation amount correction value is interpolated from each deviation amount learning value GKlg, GKsm.
  • a map that defines the relationship between the lift amount VL and the deviation amount correction value may be set in advance, and the deviation amount correction value may be calculated based on the lift amount VL from the map. In this case, it is possible to learn the relationship between the steady deviation amount and the lift amount VL by correcting the relationship stored in the map according to the deviation amount learned values GK1 g and GKsm. I'll do it.
  • five or more regions may be set as learning regions. It is also possible to set only three regions or only two regions as learning regions.
  • the second embodiment is a device in which a lift amount (specific lift amount) other than the upper limit lift amount VLmax and the lower limit lift amount VLmin is used at the time of execution of the prospective control, and includes main feedback control and sub-feedback.
  • the present invention can also be applied to a device having a low setting frequency of the specific lift amount at the time of execution of control after the configuration is appropriately changed.
  • the first lift amount region specifically learning region
  • there is no lift other than the specific lift amount it is only necessary to prohibit changes to the amount or increase the rate of change of the divergence amount learning value corresponding to a specific learning area.
  • the migration restriction process may be omitted.
  • the change amount learning value GK sm when the lower limit lift amount is VLmin or the first lift amount region. It is desirable not to change the change rate of the deviation amount learning value GK1 (second embodiment) when the shift amount region is other than the (first learning region).
  • main feedback control and sub-feedback control In the region where the effect on the air-fuel ratio due to the difference between the deviation amount learned value stored in the electronic control unit 50 and the value suitable for the actual situation is suppressed, the change rate of the deviation amount learned value is changed.
  • the learning can be suitably executed at a change speed suitable for learning the deviation amount that does not change.
  • the execution period A and the smoothing coefficient N may be set based on only one of the deterioration levels of the SFB and the exhaust purification catalyst 34! /.
  • the learning completion flag when the learning completion flag is set to OFF, it is possible to set a constant value as the execution period A and the smoothing coefficient N.
  • a cycle shorter than the predetermined cycle A1 is set as the execution cycle A, and a value smaller than the predetermined value N1 is set as the smoothing coefficient N! /.
  • the processing for setting the execution cycle A and the smoothing coefficient N (the processing of steps S202 to S204 in FIG. 8) according to the operation state of the learning completion flag is omitted and the execution cycle A A constant value may be set in advance as the annealing coefficient N.
  • the rate of change of the deviation amount learned value GKlg (first embodiment) or the rate of change of the deviation amount learned value GK1 (second embodiment) is constant regardless of the presence or absence of the history. Set to speed.
  • the learning of the divergence amount is completed, a state where the deviation between the output voltage of the oxygen sensor 66 and the reference voltage is small for a predetermined period of time, and the output of the oxygen sensor 66
  • the determination may be made based on the fact that the number of times the voltage has changed so as to cross the reference voltage is equal to or greater than a predetermined number.
  • the completion of warm-up of the internal combustion engine 10 means that the temperature that is an index of the temperature of the internal combustion engine 10 other than the coolant temperature THW, for example, the temperature of the internal combustion engine 10 is equal to or higher than a predetermined temperature. You may make it judge with it. It is also possible to determine the completion of warm-up when the directly detected temperature of the internal combustion engine 10 is equal to or higher than a predetermined temperature.
  • the configuration of the apparatus that learns the relationship between the steady deviation between the main feedback correction amount MFB and its reference value and the lift amount VL of the intake valve 30 is also appropriately set. It can be applied after changing. In this case, the processing related to the sub-feedback control and the oxygen sensor 66 can be omitted.
  • the present invention can be applied to an internal combustion engine having three cylinders or five or more cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 内燃機関の空燃比制御装置が提供される。制御装置は、学習部、補正部及び禁止部を備える。学習部は、実行条件が成立した場合において、吸気バルブのリフト量が、前記実行条件が未成立である場合に用いられる第1のリフト量領域にあるときと、前記実行条件が成立した場合にのみ用いられる第2のリフト量領域にあるときとにおいて各別に、補正量とその基準値との間の定常的な乖離量を乖離量学習値として学習する。学習部は、乖離量学習値に基づいて乖離量とリフト量との関係を求めて同関係を記憶する。補正部は、リフト量に基づいて、前記記憶した関係から乖離量補正値を求めるとともに、該乖離量補正値を用いて燃料噴射量指令値を補正する。禁止部は、リフト量が第1のリフト量領域にあるときの乖離量の学習が完了した履歴がないときに、リフト量が第1のリフト量領域から他のリフト量領域へ移行するのを禁止する。

Description

明 細 書
空燃比制御装置
技術分野
[0001] 本発明は、吸気バルブのリフト量を変更するリフト量変更機構を備えた内燃機関に 適用される、空燃比制御を実行する空燃比制御装置に関する。
背景技術
[0002] 通常、内燃機関では、その排気通路に設けられた排気浄化用の触媒によって排気 成分の浄化が行われる。この排気浄化触媒による排気成分の浄化は、内燃機関で 燃焼される混合気の空燃比が所定の範囲内にある場合に効率よく行われる。そこで 排気通路に排気の酸素濃度に応じた信号を出力するセンサを設け、このセンサから の出力信号に基づいて混合気の実空燃比を検出し、検出された実空燃比が目標空 燃比になるように燃料噴射量をフィードバック制御する空燃比制御が行われる。
[0003] このフィードバック制御は、内燃機関の運転開始後に、例えば同内燃機関の温度 が十分に高くなつたことなどといった所定の実行条件が成立した場合に実行される。 この実行条件が未成立の場合には、センサからの出力信号によることなぐ内燃機関 の運転状態に基づいて見込み制御が実行されて、燃料噴射量が調節される。
[0004] 特許文献 1には、吸気バルブのリフト量 (詳しくは、最大リフト量)を変更するリフト量 変更機構を備えた内燃機関に適用される装置が開示されている。こうした装置では、 所望のリフト量と実際のリフト量とがー致するようにリフト量変更機構が制御される。こ れにより、吸気バルブのリフト量がそのときどきの機関の運転状態に適した値となるよ うに吸気バルブが開閉される。
[0005] ところで、組み付け誤差等に起因して、吸気バルブのリフト量は機関毎に若干異な る。そのため、内燃機関における吸気通路と燃焼室との連通部分の通路面積がその 基準面積と若干異なる。また機関の運転に伴って吸気バルブにデポジットが付着す ると、上記通路面積が変化して、同通路面積とその基準面積との相違が大きくなる。 通路面積の基準面積に対する相違は、吸気量の調節精度、即ち混合気の空燃比の 調節精度を低下させる一因となる。前述したフィードバック制御が実行される内燃機 関では、基本的に、同フィードバック制御を通じて上記通路面積の基準面積に対す る相違に起因する空燃比の変化分が補償されて、空燃比の調節精度の低下が回避 される。
[0006] ただし、リフト量変更機構が設けられた内燃機関では、上記通路面積とその基準面 積とが相違した場合に、その相違に起因する空燃比の変化分が同リフト量変更機構 の作動態様によって異なる。そのため、リフト量変更機構の作動態様がそのときどき の機関運転状態に見合う態様になるように頻繁に変更される場合には、その変更に 伴って上記空燃比の変化分も頻繁に変化する。上記特許文献 1の装置のように、単 にセンサの信号に基づ!/、てフィードバック制御を実行した場合には、高頻度でのリフ ト量変更機構の作動態様の変更に追従することができなる。この結果、リフト量変更 機構の作動態様の変更に伴う空燃比の変化分を的確に補償することができなくなる おそれがある。
[0007] 特に、前記実行条件が未成立である場合にはフィードバック制御が実行されな!/、た めに、前記見込み制御を通じて調節される燃料噴射量が上記通路面積に対応した 量からずれた量である場合には、実空燃比が目標空燃比から乖離した状態になり、 排気性状が常に悪くなる。
[0008] こうした排気性状の悪化は、次のような学習処理を通じて抑えることが可能である。
すなわち、フィードバック制御の実行時には、実行条件が未成立である場合に用いら れるリフト量領域において設定される補正量とその基準値との定常的な乖離量を学 習値として学習する。そして、フィードバック制御が実行されていない時には、上記学 習値に基づく見込み制御を実行する。
[0009] しかしながら、バッテリ交換などによって学習値が不要にリセットされると、その後に おいて学習値が適切な値に更新されるまでの長期にわたって排気性状が悪化した 状態が続いてしまう。
特許文献 1 :特開 2001— 263015号公報
発明の開示
[0010] 本発明の目的は、リフト量変更機構を備えた内燃機関において混合気の空燃比を 精度良く所望の値に制御することのできる空燃比制御装置を提供することにある。 上記目的を達成するために、本発明の態様に従い、内燃機関の空燃比制御装置 が提供される。前記機関は、吸気バルブのリフト量を変更するリフト量変更機構と、排 気の酸素濃度に応じた信号を出力するセンサとを有する。前記制御装置は、機関の 運転が開始された後において、実行条件が未成立である場合には、機関の運転状 態に基づく見込み制御を通じて燃料噴射量指令値を設定する。前記制御装置は、 前記実行条件が成立した場合には、前記センサの出力値に基づき算出される補正 量を用いたフィードバック制御を通じて前記燃料噴射量指令値を設定する。前記制 御装置は、学習部、補正部及び禁止部を備える。学習部は、前記実行条件が成立し た場合において、前記リフト量が、前記実行条件が未成立である場合に用いられる 第 1のリフト量領域にあるときと、前記実行条件が成立した場合にのみ用いられる第 2 のリフト量領域にあるときとにおいて各別に、前記補正量とその基準値との間の定常 的な乖離量を乖離量学習値として学習する。前記学習部は、前記乖離量学習値に 基づいて前記乖離量と前記リフト量との関係を求めて同関係を記憶する。補正部は、 リフト量に基づいて、前記記憶した関係から乖離量補正値を求めるとともに、該乖離 量補正値を用いて前記燃料噴射量指令値を補正する。禁止部は、前記リフト量が前 記第 1のリフト量領域にあるときの前記乖離量の学習が完了した履歴がないときに、 前記リフト量が前記第 1のリフト量領域から他のリフト量領域へ移行するのを禁止する 図面の簡単な説明
[図 1]本発明の第 1の実施形態にかかる空燃比制御装置の概略構成図。
[図 2]リフト量変更機構の作動に基づく吸気バルブのリフト量の変位を示すグラフ。
[図 3]排気通路における空燃比センサおよび酸素センサの位置を示す図。
[図 4]第 1の実施の形態に力、かる燃料噴射制御処理を示すフローチャート。
[図 5]第 1の実施の形態に力、かる燃料噴射制御処理を示すフローチャート。
[図 6]吸気バルブのリフト量と連通部分の通路面積との関係を示すグラフ。
[図 7]吸気バルブのリフト量と空燃比の変化分との関係を示すグラフ。
[図 8]第 1の実施の形態に力、かる学習処理を示すフローチャート。
[図 9]排気浄化触媒の劣化度合いと偏差との関係を示す略図。 [図 10]排気浄化触媒の劣化度合いと偏差となまし係数との関係を示す略図。
[図 11]第 1の実施の形態に力、かる吸気バルブのリフト量と乖離量補正値との関係を示 すグラフ。
[図 12]空燃比センサへの排気の当接度合いと排気性状とを気筒毎に示す略図。
[図 13]第 1の実施の形態に力、かる移行制限処理を示すフローチャート。
[図 14]移行制限処理の一例を示すタイミングチャート。
[図 15]本発明の第 2の実施の形態に力、かる吸気バルブのリフト量と乖離量学習値と の関係を示すグラフ。
[図 16]第 2の実施の形態に力、かる学習処理を示すフローチャート。
[図 17]本発明の他の実施の形態における吸気バルブのリフト量と乖離量補正値との 関係を示すグラフ。
[図 18]本発明の他の実施の形態における吸気バルブのリフト量と乖離量補正値との 関係を示すグラフ。
発明を実施するための最良の形態
[0012] 以下、本発明を具体化した第 1の実施の形態について説明する。
図 1は、本実施の形態に力、かる空燃比制御装置の概略構成を示す。
図 1に示すように、内燃機関 10の吸気通路 12にはスロットルバルブ 14が設けられ ている。スロットルバルブ 14には、スロットルモータ 16が連結されている。そして、この スロットルモータ 16の駆動制御を通じてスロットルバルブ 14の開度(スロットル開度 T A)が調節され、これにより吸気通路 12を通じて燃焼室 18内に吸入される空気の量 が調節される。また、上記吸気通路 12には燃料噴射バルブ 20が設けられている。こ の燃料噴射バルブ 20は吸気通路 12内に燃料を噴射する。さらに、内燃機関 10の排 気通路 28には排気浄化触媒 34が設けられている。
[0013] 内燃機関 10の燃焼室 18においては、吸入空気と噴射燃料とからなる混合気に対 して点火プラグ 22による点火が行われる。この点火動作によって混合気が燃焼して ピストン 24が往復移動し、クランクシャフト 26が回転する。そして、燃焼後の混合気は 排気として燃焼室 18から排気通路 28に送り出され、該排気は上記排気浄化触媒 34 を通じて浄化された後に同排気通路 28外へ放出される。なお、図 1には、機関 10に 設けられた複数の気筒のうちの 1つが示されている。
[0014] 内燃機関 10において、吸気通路 12と燃焼室 18との間は吸気バルブ 30の開閉動 作によって連通又は遮断される。吸気バルブ 30はクランクシャフト 26の回転が伝達さ れる吸気カムシャフト 32の回転に伴って開閉動作する。吸気バルブ 30と吸気力ムシ ャフト 32との間にはリフト量変更機構 42が設けられている。このリフト量変更機構 42 は、吸気バルブ 30のリフト量 VL (詳しくは、最大リフト量)を機関運転条件に応じて変 更するものであり、電動モータ等のァクチユエータ 44によって作動させられる。図 2に 示すように、このリフト量変更機構 42の作動により、吸気バルブ 30のリフト量 VLは開 弁期間、即ちリフト作用角と同期して変化し、例えばリフト作用角が小さくなるほどリフ 卜量 も/ J、さくなる。
[0015] 本実施の形態の装置は、図 1に示す内燃機関 10の運転状態を検出するための各 種センサを備えている。そうした各種センサは、例えばクランクシャフト 26の回転速度 (機関回転速度 NE)を検出するためのクランクセンサ 52や、吸気通路 12を通過する 吸入空気の量(通路吸気量 GA)を検出するための吸気量センサ 54、アクセルぺダ ル 36の踏み込み量 ACを検出するためのペダル踏み込み量センサ 56を含む。また 、各種センサは、スロットル開度 TAを検出するためのスロットルセンサ 58や、吸気バ ルブ 30のリフト量 VL (正確には、リフト量変更機構 42の作動量)を検出するためのリ フト量センサ 60、機関冷却水の温度(冷却水温度 THW)を検出するための温度セン サ 62を含む。さらに、各種センサは、排気通路 28における上記排気浄化触媒 34より 排気流れ方向の上流の部分、詳しくは、排気マ二ホールドに設けられて排気の酸素 濃度に応じた信号を出力する空燃比センサ 64を含む。加えて、各種センサは、排気 通路 28における上記排気浄化触媒 34よりも排気流れ方向の下流に設けられて排気 の酸素濃度に応じた信号を出力する酸素センサ 66を含む。
[0016] なお図 3に示すように、内燃機関 10は第 1〜第 4の気筒 # 1 , # 2, # 3, # 4を有す るものであり、上記空燃比センサ 64はそれら気筒 # 1〜# 4から延びる排気通路 28 が合流された部分、詳しくは排気マ二ホールドに一つ設けられている。
[0017] 上記空燃比センサ 64は、周知の限界電流式酸素センサである。この限界電流式酸 素センサは、濃淡電池式酸素センサの検出部に拡散律速層と呼ばれるセラミック層 を備えることにより排気中の酸素濃度に応じた電流を出力するセンサである。排気中 の酸素濃度と密接な関係にある混合気の空燃比が理論空燃比である場合には、空 燃比センサ 64からの出力電流は「0」になる。また、混合気の空燃比がリッチになるに つれて出力電流は負の方向に大きくなり、同空燃比がリーンになるにつれて出力電 流は正の方向に大きくなる。したがって、この空燃比センサ 64からの出力信号に基 づき、混合気の空燃比につ!/、てそのリーン度合!/、やリッチ度合レ、を検出することがで きる。
[0018] 酸素センサ 66は、周知の濃淡電池式の酸素センサである。この酸素センサ 66は、 排気の酸素濃度が、混合気の空燃比が理論空燃比よりもリッチであるときの濃度であ る場合には 1ボルト程度の電圧を出力し、混合気の空燃比が理論空燃比よりもリーン であるときの濃度である場合には 0ボルト程度の電圧を出力する。酸素センサ 66から の出力電圧は、排気の酸素濃度が、混合気の空燃比が理論空燃比近傍であるとき の濃度であるときに大きく変化する。したがって、こうした酸素センサ 66の出力信号に 基づき、排気浄化触媒 34より下流にある排気がリーンに対応する性状である力、、或 いはリッチに対応する性状であるかを検出することができる。
[0019] この酸素センサ 66は、排気浄化触媒 34での排気浄化作用の状態を監視するため に同排気浄化触媒 34よりも下流に設けられている。すなわち、排気浄化触媒 34での 還元作用が促進されており排気中に酸素が放出されているときには、酸素センサ 66 力 の出力信号がリーンに対応する値となる。排気浄化触媒 34での酸化作用が促 進されており排気中の酸素が消費されているときには、酸素センサ 66からの出力信 号力 Sリッチに対応する値となる。こうした酸素センサ 66の検出結果に基づいて排気浄 化作用の状態が監視される。
[0020] 本実施の形態の装置は、例えばマイクロコンピュータを有して構成される電子制御 装置 50を備えている。この電子制御装置 50は、各種センサの検出信号を取り込むと ともに各種の演算を行い、その演算結果に基づいてスロットルモータ 16の駆動制御( スロットル制御)や燃料噴射バルブ 20の駆動制御 (燃料噴射制御)、ァクチユエータ 4 4の駆動制御(リフト量変更制御)等と!/、つた各種制御を実行する。
[0021] 本実施の形態では、スロットル制御とリフト量変更制御との協働を通じて、燃焼室 18 内に吸入される吸気の量 (筒内吸気量)が次のように調節される。すなわち、前記ァク セルペダル 36の踏み込み量 ACや機関回転速度 NEに基づいて筒内吸気量につい ての制御目標値(目標筒内吸気量 Tga)が算出され、その目標筒内吸気量 Tgaと実 際の筒内吸気量とがー致するようにスロットル制御およびリフト量変更制御が実行さ れる。
[0022] なお、このスロットル制御およびリフト量変更制御の実行に際し、内燃機関 10の暖 機が未完了であるときには(具体的には、冷却水温度 THWく所定温度)、リフト量 V Lが大リフト量側の制御限界リフト量(上限リフト量 VLmax)で固定されるとともに、ス ロットル開度 TAが変更されて筒内吸気量が調節される。
[0023] 内燃機関 10の暖機が完了したときには(具体的には、冷却水温≥所定温度)、スロ ットル開度 TAおよびリフト量 VLが共に変更されて筒内吸気量が調節される。ここで、 吸気バルブのリフト量の変更を通じて吸気量が調節される内燃機関は、スロットルバ ルブの開度の変更のみを通じて吸気量を調節する内燃機関と比べて、必要とされる 吸気量が少ないときにおけるボンビングロスの低減を図ることが可能であり、その分だ け燃料消費量を低減することができる。この点を踏まえて、本実施の形態では、内燃 機関 10の暖機が完了したときには基本的に、同内燃機関 10の運転状態に適した筒 内吸気量 (後述する推定筒内吸気量 Vga)が少ないときほど吸気バルブ 30のリフト量 VLおよびスロットル開度 TAが小さくなるように設定される。
[0024] また本実施の形態では、燃料噴射制御を通じて、上記推定筒内吸気量 Vgaに応じ て燃料噴射量が調節される。以下、この燃料噴射制御について説明する。
図 4および図 5はいずれも燃料噴射制御に力、かる処理の具体的な手順を示すフロ 一チャートであり、これらフローチャートに示される一連の処理は所定周期毎に、電子 制御装置 50により実行される。
[0025] 図 4に示すように、先ず、通路吸気量 GA等に基づいて上記推定筒内吸気量 Vga が算出されるとともに、同推定筒内吸気量 Vgaに基づいて基本噴射量 Qbseが算出 される(ステップ S101)。この基本噴射量 Qbseは燃料噴射制御における見込み制御 量に相当する値であり、基本噴射量 Qbseとしては、上記推定筒内吸気量 Vgaに対し 、燃焼室 18で燃焼される混合気の空燃比が理論空燃比になる燃料噴射量が算出さ れる。
[0026] リフト量 VLに基づいて乖離量補正値 Kvlaが算出される(ステップ S 102)。この乖離 量補正値 Kvlaの具体的な算出態様や、同乖離量補正値 Kvlaを算出することによる 作用につ!/、ては後に後述する。
[0027] 次に、メインフィードバック制御(前記空燃比センサ 64の出力値に基づく燃料噴射 量指令値のフィードバック制御)の実行条件が成立して!/、るか否かが判断される(ス テツプ S 103)。ここでは、以下の各条件が共に満たされることをもって上記実行条件 が成立していると判断される。
•内燃機関 10の暖機が完了していること。
•空燃比センサ 64が十分に活性化されていること。
[0028] 上記実行条件が未成立である場合には (ステップ S103で NO)、上記基本噴射量 Qbseに乖離量補正値 Kvlaを加算した値( = Qbse + Kvla)を燃料噴射量指令値( 目標噴射量 Tq)とし (ステップ S104)、その後、本処理は一旦終了する。この場合に は機関運転状態に基づく見込み制御を通じて目標噴射量 Tqが設定される。そして、 この目標噴射量 Tqと等しレ、量の燃料が噴射されるように燃料噴射バルブ 20を駆動 することにより、混合気の空燃比を理論空燃比に近づけることができる。
[0029] 上記実行条件が成立している場合には (ステップ S 103で YES)、上記空燃比セン サ 64によって混合気の実際の空燃比が検出され、この実際の空燃比と目標空燃比( ここでは理論空燃比)との偏差に基づいて基本補正量 αが算出される(ステップ S 10 5)。この基本補正量 αとしては、上記偏差が大きいときほど多い量が算出される。
[0030] 空燃比センサ 64によって検出される空燃比がリーンであるときには(ステップ S 106 で YES)、メインフィードバック補正量 MFBとして上記基本補正量 αが設定される(ス テツプ S 107)。空燃比センサ 64によって検出される空燃比力 Sリッチであるときには (ス テツプ S 106で NO)、上記基本補正量 αに「一 1. 0」を乗じた値(一 α )がメインフィ ードバック補正量 MFBとして設定される(ステップ S 108)。
[0031] メインフィードバック補正量 MFBが設定された後、図 5に示すように、サブフィード ノ ック制御(前記酸素センサ 66の出力値に基づく目標噴射量 Tqのフィードバック制 御)の実行条件が成立しているか否かが判断される(ステップ S109)。ここでは、以下 の各条件が共に満たされることをもって上記実行条件が成立していると判断される。 •排気浄化触媒 34が十分に活性化されていること。
•酸素センサ 66が十分に活性化されていること。
[0032] そして、上記実行条件が未成立である場合には (ステップ S109で NO)、基本噴射 量 Qbseに乖離量補正値 Kvlaとメインフィードバック補正量 MFBとを加算した値が目 標噴射量 Tq ( = Qbse + Kvla + MFB)として算出された後(ステップ S 110)、本処理 は一旦終了する。この場合には見込み制御およびメインフィードバック制御を通じて 目標噴射量 Tqが設定される。
[0033] 前記排気浄化触媒 34は、理論空燃比近傍での燃焼が行われる状態にお!/、て排気 中の HCや COを酸化するとともに同排気中の NOxを還元して排気を浄化する作用 を有している。前記排気浄化触媒 34は、特に混合気の空燃比が理論空燃比近傍の 比率となる狭い範囲(ウィンドウ)において排気中の主要有害成分(HC、 CO、 NOx) のすベてを効率的に浄化する。そのため排気浄化触媒 34を有効に機能させるには 、混合気の空燃比を上記ウィンドウの中心に合わせ込むベぐ同空燃比を厳密に調 節することが必要となる。このときには (ステップ S109で NO)、メインフィードバック制 御を通じて、実際の空燃比が目標空燃比と一致するように燃料噴射量が調節される
[0034] 上記実行条件が成立している場合には (ステップ S 109で YES)、前記酸素センサ
66によって検出される排気の実際の酸素濃度と基準濃度(混合気の空燃比が理論 空燃比であるときの濃度であり、酸素センサ 64の出力電圧が 0. 5Vであるときの濃度 )との偏差に基づレ、て基本補正量 /3が算出される (ステップ S 111)。この基本補正量 βは、上記偏差が大きいときほど大きい。
[0035] そして、酸素センサ 66の出力信号がリーンを示す値であるときには(ステップ S112 で YES)、記憶されているサブフィードバック補正量 SFBに基本補正量 /3を加算した 値(SFB+ /3 )が新たなサブフィードバック補正量 SFBとして設定される(ステップ S 1 13)。酸素センサ 66の出力信号がリッチを示す値であるときには (ステップ S 112で N O)、記憶されているサブフィードバック補正量 SFBから基本補正量 /3を減算した値( SFB- /3 )が新たなサブフィードバック補正量 SFBとして設定される(ステップ S 114) [0036] このようにサブフィードバック補正量 SFBが設定された後、乖離量補正値 Kvla、メイ ンフィードバック補正量 MFB、およびサブフィードバック補正量 SFBを基本噴射量 Q 36に加算した値が目標噴射量丁 ( = 0 36 + 1^1& + ^^8 + 3?8)として算出され る(ステップ S115)。したがって、この場合には (ステップ S 109で YES)、見込み制御 、メインフィードバック制御およびサブフィードバック制御を通じて目標噴射量 Tqが設 定される。これにより、メインフィードバック制御を通じて実際の空燃比が目標空燃比 と一致するように燃料噴射量が調節されることに加えて、サブフィードバック制御を通 じて排気浄化触媒 34の実際の浄化状態に応じて燃料噴射量が調節されて、同排気 浄化触媒 34の浄化作用が的確に発揮される。
[0037] その後、後述する学習処理が実行された後(ステップ S116)、本処理は一旦終了 する。
なお、上記学習処理は、以下のような理由により実行される。
[0038] 内燃機関 10にあっては、リフト量変更機構 42の個体差や経時劣化、組み付け誤差 、あるいは吸気バルブ 30へのデポジット付着等に起因して吸気通路 12および燃焼 室 18の連通部分の通路面積とその基準面積とが異なったものとなる。そのため吸気 バルブ 30のリフト量 VLを同一の態様で調節しても、実際の筒内吸気量は、上記通 路面積とその基準面積とが等しい場合の筒内吸気量と一致しない。本実施の形態で は基本的に、そうした通路面積の相違に起因する筒内吸気量の変化分が前述した 空燃比の調節を通じて補償される。
[0039] ここで上記通路面積と基準面積とが異なる場合、その相違に起因する筒内吸気量 の変化分はリフト量変更機構 42の作動態様 (リフト量 VL)に応じて大きく異なる。以 下、その理由を説明する。
[0040] 図 6に吸気バルブ 30のリフト量 VLと上記通路面積との関係を示す。図 6において、 実線は、上記通路面積と基準面積とがー致している状態、即ち基準状態でのリフト量 VLと上記通路面積との関係の一例を示している。図 6において、一点鎖線は、上記 通路面積がその基準面積よりも小さい場合における、リフト量 VLと上記通路面積との 関係の一例を示しており、二点鎖線は、上記通路面積がその基準面積よりも大きい 場合におけるリフト量 VLと上記通路面積との関係の一例を示している。
[0041] 本実施の形態では、吸気バルブ 30のリフト量 VLの変更を通じて筒内吸気量が調 節されるため、例えばそのアイドル運転時等、内燃機関 10の低負荷運転時において リフト量 VLが小さく設定されて上記通路面積がごく小さくなる。図 6から明らかなよう に、そのようにリフト量 VLが小さく設定されるときほど、上記通路面積とその基準面積 との差 A Sが通路面積全体に占める割合が大きくなる。したがって、上記通路面積が 基準面積と異なる場合には、その影響が、吸気バルブ 30のリフト量 VLが小さいとき ほど大きく現れる。具体的には、吸気バルブ 30のリフト量 VLが小さいときほど筒内吸 気量の変化度合いが大きくなるために、図 7に示すように、上記通路面積が小さいと き(同図中の一点鎖線)および同通路面積が大きいとき(同図中の二点差線)のいず れの場合にも上記空燃比の変化分が大きくなる。
[0042] 本実施の形態では、吸気バルブ 30のリフト量 VLがそのときどきの機関の運転状態 に応じて頻繁に変更されるために、その変更に伴って上記空燃比の変化分が頻繁 に変化する。そのため、単にメインフィードバック補正量 MFBに基づくメインフィード バック制御や、サブフィードバック補正量 SFBに基づくサブフィードバック制御を実行 しても、高頻度での空燃比変化分の変化に追従することができなくなって、同変化分 を的確に補償することができなくなるおそれがある。
[0043] そこで本実施の形態では、上記学習処理(図 5のステップ S 116)を通じて、前記サ ブフィードバック補正量 SFBの基準値 (具体的には「0」)からの定常的な乖離量と吸 気バルブ 30のリフト量 VLとの関係を学習するようにしている。そして、その学習した 関係からリフト量 VLに基づいて乖離量補正値 Kvlaを算出するとともに(図 4のステツ プ S102)、同乖離量補正値 Kvlaによって目標噴射量 Tqを補正するようにしている( ステップ S 104、図 5のステップ S110, S 115)。本実施の形態では、この学習処理が 学習部によって実行される処理に相当し、図 4のステップ S 102, S104の処理および 図 5のステップ SS 110, S115の処理が補正部によって実行される処理に相当する。
[0044] 以下、上記学習処理について具体的に説明する。
図 8は学習処理の具体的な手順を示すフローチャートであり、このフローチャートに 示される一連の処理は、所定周期毎に電子制御装置 50により実行される。 [0045] 同図 8に示すように、先ず、学習条件が成立しているか否かが判断される (ステップ S201)。ここでは、急加速や急減速が行われない、安定した機関運転状態が所定期 間継続されて!/、ることをもって、学習条件が成立してレ、ると判断される。
[0046] 学習条件が成立している場合には (ステップ S201で YES)、学習完了フラグがオン にセットされているか否かが判断される(ステップ S202)。本処理では、吸気バルブ 3 0のリフト量 VLが大リフト量側の制御限界リフト量(上限リフト量 VLmax)であるときと 小リフト量側の制御限界リフト量(下限リフト量 VLmin)であるときとにおいて前記乖離 量の学習が実行される。上記学習完了フラグは、上限リフト量 VLmaxであるときの上 記乖離量の学習が完了したときにオンにセットされる。学習完了フラグは、例えばバッ テリの交換や電線の瞬断によって電子制御装置 50への電力供給が一時的に停止さ れたときなど、電子制御装置 50に記憶されている各値が初期値にリセットされたとき に、これに併せてオフにセットされる。本実施の形態では、上限リフト量 VLmaxが第 1 のリフト量領域および第 1の特定リフト量に相当し、下限リフト量 VLminが第 2のリフト 量領域および第 2の特定リフト量に相当する。
[0047] 学習完了フラグがオンにセットされて!/、る場合には(ステップ S202で YES)、前記 乖離量の学習を実行する実行周期 Aとして所定周期 A1が設定されるとともに、同学 習における学習値の変化速度を定める係数 (なまし係数 N)として所定値 N1が設定 される(ステップ S203)。なお本実施の形態では、誤った学習の回避と学習の早期完 了との両立を図ることの可能な所定周期 A1 (例えば、燃料噴射回数 = 1000回)や 所定値 N1 (例えば、「10」)が実験結果などに基づき予め求められ、記憶されている 。また本実施の形態では、上記なまし係数 Nとして、「1. 0」よりも大きい正の数が設 定される。
[0048] 学習完了フラグがオフにセットされている場合には(ステップ S202で NO)、サブフ イードバック補正量 SFBとその基準値(具体的には、「0」 )との差 Δ SFB (サブフィー ドバック補正量 SFBの絶対値)、および排気浄化触媒 34の劣化度合いに基づいて、 上記実行周期 Aおよび上記なまし係数 Nが設定される(ステップ S204)。本実施の 形態では、このステップ S204の処理が設定部によって実行される処理に相当する。
[0049] 図 9に示すように、実行周期 Aは、上記差 A SFBや排気浄化触媒 34の劣化度合い が大きいほど短い期間に設定される。また、このときの実行周期 Aとしては、上記所定 周期 A1より短い周期が設定される。図 10に示すように、なまし係数 Nとしては、上記 差 Δ SFBや排気浄化触媒 34の劣化度合!/、が大きレ、ほど小さ!/、値が設定される。ま た、このときの上記なまし係数 Nとしては、上記所定値 N1より小さい値が設定される。
[0050] 本処理では、このように実行周期 Aやなまし係数 Nを設定することにより、学習完了 フラグがオフにセットされているときに、同フラグがオンにセットされているときと比較し て、上限リフト量 VLmaxであるときの乖離量学習値 GKlgの変化速度が高く設定され
[0051] 本実施の形態では、排気浄化触媒 34の劣化が進むほど吸蔵可能な酸素量が少な くなることに着目し、排気浄化触媒 34の酸素吸蔵量を検出するとともに、同酸素吸蔵 量が少な!/、ときほど排気浄化触媒 34の劣化度合!/、が大き!/、と判断するようにして!/、
[0052] 排気浄化触媒 34の酸素吸蔵量は、具体的には、メインフィードバック制御およびサ ブフィードバック制御の実行中において内燃機関 10が比較的高負荷の安定した状 態で運転されてレ、ること(例えば、通路吸気量 GAが所定範囲内である状態が所定期 間継続されていること)を条件に以下の処理を実行することによって検出され、記憶さ れている。すなわち、先ず、空燃比センサ 64および酸素センサ 66の出力信号が共 にリーン相当の値からリッチ相当の値(あるいはリッチ相当の値からリーン相当の値) に切り替わるように、 目標噴射量 Tqが所定量増量 (あるいは減量)される。そして、空 燃比センサ 64の出力信号が切り替わつてから酸素センサ 66の出力信号が切り替わ るまでに要する時間が検出されて、同時間が長いときほど排気浄化触媒 34の酸素吸 蔵量として少な!/、量が検出される。
[0053] 上記のように学習完了フラグの操作状況に応じて実行周期 Aやなまし係数 Nが設 定された後、上記実行周期 A毎の学習タイミングであることを条件に(図 8のステップ S205で YES)、前記乖離量を学習する処理 (ステップ S206〜S213)が実行される
[0054] 詳しくは、吸気バルブ 30のリフト量 VLが上限リフト量 VLmaxであるときには(ステツ プ S206で YES)、記憶されている乖離量学習値 GKlg、サブフィードバック補正量 S FB、および上記なまし係数 Nに基づいて以下の関係式から、乖離量学習値 GKlgが 算出される(ステップ S207)。
[0055] GKlg ― { (N- l) GKlg + SFB}/N
また、そうした乖離量学習値 GKlgの算出に併せて、今回算出された乖離量学習値 GKlg (i)と本処理の前回実行時に算出された乖離量学習値 GKlg (i— 1)との差 {G Klg (i) -GKlg (i- l) }をサブフィードバック補正量 SFBから減算した値が新たなサ ブフィードバック補正量 SFBとして設定される(ステップ S208)。
[0056] さらには、前記学習完了フラグがオフにセットされた状態で乖離量学習値 GKlgの 学習が所定回数実行された場合には (ステップ S209で YES)、前記学習完了フラグ がオンにセットされ (ステップ S210)、以後において上限リフト量 VLmaxであるときの 前記乖離量の学習が完了した履歴があると判断される。乖離量学習値 GKlgの学習 回数が所定回数未満である場合には (ステップ S209で NO)、学習完了フラグがオフ のまま維持されて(ステップ S210の処理がジャンプされて)、同乖離量学習値 GKlg であるときの前記乖離量の学習が完了した履歴がないと判断される。
[0057] 吸気バルブ 30のリフト量 VLが下限リフト量 VLminであるときには(ステップ S206で NO、且つステップ S211で YES)、記憶されている乖離量学習値 GKsm、サブフィ ードバック補正量 SFB、および上記なまし係数 Nに基づいて以下の関係式から、乖 離量学習値 GKsmが算出される(ステップ S212)。
[0058] GKsm ― { (N- 1) GKsm+ SFB}/N
また、そうした乖離量学習値 GKsmの算出に併せて、今回算出された乖離量学習 値 GKsm (i)と本処理の前回実行時に算出された乖離量学習値 GKsm (i— 1)との 差(GKsm (i)—GKsm (i— 1) )をサブフィードバック補正量 SFBから減算した値が新 たなサブフィードバック補正量 SFBとして設定される(ステップ S213)。
[0059] 吸気バルブ 30のリフト量 VLが上限リフト量 VLmaxおよび下限リフト量 VLminのい ずれでもないときには(ステップ S206で NO、且つステップ S211で NO)、ステップ S 207〜S213の処理が実行されない。すなわち、乖離量学習値 GKlgや乖離量学習 値 GKsmの学習が実行されない。
[0060] なお、学習条件が未成立である場合や (ステップ S201で NO)、学習タイミングでな い場合(ステップ S205で NO)にも、乖離量学習値 GKlgや乖離量学習値 GKsmの 学習は実行されない。
[0061] 前述した乖離量補正値 Kvlaを算出する処理(図 4のステップ S102)は、上記学習 処理を通じて学習される乖離量学習値 GKlgおよび乖離量学習値 GKsmに基づい て、以下のように実行される。
[0062] 図 11に、吸気バルブ 30のリフト量 VL、乖離量学習値 GKlg、乖離量学習値 GKsm 、および乖離量補正値 Kvlaの関係の一例を示す。同図 11に示すように、乖離量補 正値 Kvlaは、基本的には、リフト量 VLが小さいときほど大きい。乖離量補正値 Kvla は、具体的には以下のように算出される。
'リフト量 VLが下限リフト量 VLminであるときには(VL=Vmin)、乖離量学習値 GKs mが乖離量補正値 Kvlaとして算出される。
'リフト量 VLが上限リフト量 VLmaxより小さく下限リフト量 VLminより大きい領域では (VLmin<VL<VLmax)、上限リフト量 VLmaxおよび下限リフト量 VLminとリフト 量 VLとの関係に基づ!/、て、乖離量学習値 GKlgおよび乖離量学習値 GKsmから補 間して、乖離量補正値 Kvlaが算出される。この乖離量補正値 Kvlaとしては、具体的 には、予め設定された換算係数 K1を通じて以下の関係式を満たす値が算出される 。なお換算係数 K1としては、リフト量 VLに応じて「1. 0」以下の正の数が設定される
[0063] Kvla = GKlg + { (GKsm -GKlg)
X K1 (VL- VLmax) / (VLmin- VLmax) }
'リフト量 VLが上限リフト量 VLmaxであるときには(VL=VLmax)、乖離量学習値 G Klgが乖離量補正値 Kvlaとして算出される。
[0064] 以下、本実施の形態の燃料噴射制御処理について説明する。
本実施の形態の燃料噴射制御処理では、乖離量補正値 Kvlaは、そのときどきの吸 気バルブ 30のリフト量 VLに見合う値、具体的には、リフト量 VLが小さいほど大きい である。これにより、前記連通部分の通路面積とその基準面積とが異なる場合には、 リフト量 VLが小さいほどサブフィードバック補正量 SFBとその基準値との定常的な乖 離量が大きいといった傾向に応じて、乖離量補正値 Kvlaが算出される。そして、そう した乖離量補正値 Kvlaによって目標噴射量 Tqが補正される。そのため、リフト量変 更制御を通じて吸気バルブ 30のリフト量 VLが頻繁に変更される力 S、同リフト量 VLの 変更に追従するようにその変更による空燃比の変化分を見越すように目標噴射量 Tq が算出される。これによりリフト量 VLの変更に伴う空燃比への影響分が的確に抑えら れ、メインフィードバック制御やサブフィードバック制御、あるいは見込み制御による 燃料噴射量の調節を通じて混合気の空燃比が精度よく所望の比率に制御される。
[0065] し力、も、サブフィードバック補正量 SFBはその算出周期毎に酸素センサ 66の出力 信号に応じて所定量 /3ずつ増減される値であるために、同サブフィードバック補正量 SFBによる補正を通じて混合気の空燃比が所望の空燃比になるように燃料噴射量が 増減される。これにより、排気浄化触媒 34の浄化作用の状態に応じて燃料噴射量が 増減されて同浄化作用が有効に活用される。
[0066] 本実施の形態の内燃機関 10は多気筒のものであるため、燃料噴射バルブ 20の個 体差や吸気バルブ 30へのデポジット付着などに起因して、気筒間における混合気の 空燃比にばらつきが生じることが避けられない。また本実施の形態では、各気筒の混 合気の空燃比を検出するための空燃比センサ 64は全ての気筒に対し共用される単 一のものであるため、この空燃比センサ 64に対する排気の当接態様が気筒毎に異 なる。
[0067] そのため、そうした空燃比センサ 64の出力信号に基づいて目標噴射量 Tqが増減 補正されると、上述した気筒間における空燃比のばらつき力 排気浄化触媒 34より 上流側の排気の性状を理論空燃比近傍の比率に対応する性状に調節する際の調 節精度を低下させてしまう。具体的には、図 12に実線で示すように、例えば特定気 筒(同図に示す例では第 3気筒 # 3)の排気が他の気筒(第 1気筒 # 1、第 2気筒 # 2 及び第 4気筒 # 4)の排気と比較して空燃比センサ 64に当接し易い構造の内燃機関 にあって同特定気筒(第 3気筒 # 3)の排気がリーンに対応する性状である場合には 、過度に目標噴射量 Tqが増量補正されて混合気の空燃比の平均値力 Sリッチになつ てしまう。なお、図 12における一点鎖線は、比較例として、空燃比センサ 64に対する 各気筒の排気の当接態様が一致する場合における各気筒の排気の当接度合いと混 合気の空燃比とを示してレ、る。 [0068] したがって本実施の形態にかかる装置は、排気浄化触媒 34より下流に設けられた 酸素センサ 66の出力値とその基準値 (混合気の空燃比が理論空燃比である場合の 排気酸素濃度に対応する値)との差、ひいては上述したリフト量 VLの変更に伴う空 燃比の変化分が大きくなり易い。本実施の形態によれば、そうした多気筒の内燃機 関 10に適用される装置にあって、混合気の空燃比を精度よく所望の比率に制御する こと力 Sでさる。
[0069] また上記燃料噴射制御では、吸気バルブ 30のリフト量 VL、乖離量学習値 GKlg、 乖離量学習値 GKsm、乖離量補正値 Kvla、並びに換算係数 K1により規定される関 数として、同リフト量 VLが小さいほど乖離量補正値 Kvlaが大きくなる線形の関数が 予め設定されて!/、る(図 11参照)。リフト量 VLが下限リフト量 VLminや上限リフト量 V Lmaxであるときにおける前記定常的な乖離量に応じて前記関数の傾きを変更する ように、前述した吸気バルブ 30のリフト量と上記乖離量との関係が学習される。その ため、リフト量領域を細力べ設定するとともにそれら領域毎に上記乖離量を求めてこ れを乖離量学習値として設定する構成と比較して、低!/、学習頻度をもって広!/、リフト 量領域にわたり上記関係を学習することができる。
[0070] ところで、本実施の形態では、内燃機関 10の冷間運転時 (暖機未完了時)におい て、メインフィードバック制御およびサブフィードバック制御が共に実行されず、基本 噴射量 Qbseを乖離量補正値 Kvlaによって補正した値が前記目標噴射量 Tqとして 算出されて、同目標噴射量 Tqに基づく見込み制御が実行される。このように乖離量 補正値 Kvlaによって基本噴射量 Qbseを補正することにより、基本噴射量 Qbseが上 記通路面積に見合う燃料噴射量からずれた量になった場合であっても、見込み制御 の実行時において実空燃比が目標空燃比から乖離した状態になって排気性状が常 に悪くなるといった不都合の発生を抑えることが可能になる。
[0071] ただし、バッテリ交換などによって乖離量学習値 GKlg, GKsmが初期化されること により前述のように学習した関係が不要にリセットされると、内燃機関 10が始動された 場合に、その後においてメインフィードバック制御およびサブフィードバック制御の実 行が開始され、さらには前記関係が学習されて適切な関係となるまでの長期にわた つて上記不都合の発生が抑えられなくなる。 [0072] そのため本実施の形態では、見込み制御の実行時において用いられるリフト量(上 限リフト量 VLmax)であるときの前記乖離量の学習が完了した履歴がないときに、吸 気バルブ 30のリフト量 VLを、上限リフト量 VLmaxから他のリフト量に移行させること を禁止するようにしている。
[0073] 図 13は、そのようにリフト量 VLの移行を制限する処理 (移行制限処理)を示すフロ 一チャートである。図 13に示される一連の処理は、リフト量変更制御にかかる処理に 含まれる所定周期毎に、電子制御装置 50により実行される。本実施の形態では、こ の移行制限処理が禁止部によって実行される処理に相当する。
[0074] 図 13に示すように、この処理では、学習完了フラグがオフにセットされているときに は(ステップ S301で NO)、吸気バルブ 30のリフト量 VLが上限リフト量 VLmaxで固 定される(ステップ S302)。そして、その後において本処理が繰り返し実行されて、学 習完了フラグがオンにセットされると(ステップ S301で YES)、上限リフト量 VLmax以 外のリフト量への吸気バルブ 30のリフト量 VLの移行が許可される(ステップ S302)。
[0075] 以下、こうした移行制限処理について説明する。
図 14に、バッテリ交換などによって前記学習した関係が不要にリセットされた状況 で内燃機関 10が冷間始動された場合における移行制限処理の実行態様の一例を 示す。
[0076] 図 14に示すように、時刻 tlにおいて内燃機関 10が始動されると、このとき冷却水 温度 THW (図 14 (a) )が低いために、吸気バルブ 30のリフト量 VL (図 14 (b) )が上 限リフト量 VLmaxに設定される。
[0077] その後の時刻 t2において、冷却水温度 THWが所定温度以上になってメインフィー ドバック制御やサブフィードバック制御の実行条件(図 14 (c) )が成立し、それらメイン フィードバック制御やサブフィードバック制御の実行が開始される。このとき学習完了 フラグ(図 14 (c) )がオフにセットされているために、上限リフト量 VLmaxであるときの 前記乖離量の学習が完了していないとして、上限リフト量 VLmax以外のリフト量への 移行が禁止されて、吸気バルブ 30のリフト量 VLが上限リフト量 VLmaxのまま維持さ れる。
[0078] ここで、移行制限処理の実行されない比較例の装置(同図中に一点鎖線で示す) では、冷却水温度 THWが所定温度以上になってメインフィードバック制御やサブフ イードバック制御の実行条件が成立すると、これに合わせてリフト量 VLが内燃機関 1 0の運転状態に見合うリフト量 (本例では、下限リフト量 VLmin)に変更される。そして 、この比較例の装置では、内燃機関 10の高負荷運転時などのリフト量 VLが上限リフ ト量 VLmaxとなるごく限られた機会においてのみ、前記上限リフト量 VLmaxであると きの乖離量(具体的には、乖離量学習値 GKlg)の学習が実行されるために、その学 習が完了するまでに長い期間力かかってしまう。
[0079] これに対し、本実施の形態の装置では、そうした場合に吸気バルブ 30のリフト量 V Lを上限リフト量 VLmaxで固定することによって、上限リフト量 VLmaxであるときの前 記乖離量 (具体的には、乖離量学習値 GKlg)の学習が最優先で実行される。
[0080] そして、その後の時刻 t3において、乖離量学習値 GKlgの学習が完了して、学習完 了フラグがオンにセットされると、吸気バルブ 30のリフト量 VLが内燃機関 10の運転 状態に見合うリフト量 (本例では、下限リフト量 VLmin)に変更される。
[0081] このように本実施の形態では、前記学習した関係が不要にリセットされた場合に、直 後における機関の運転に際して、上限リフト量 VLmaxであるときの乖離量の学習が 最優先で実行されて完了される。そのため、同乖離量の学習が完了する前に機関の 運転が停止されることによる前記不都合の発生を抑えることができる。なお本実施の 形態では、乖離量学習値 GKlgの学習回数が所定回数未満であるときに、上限リフト 量 VLmaxであるときの前記乖離量の学習が完了した履歴がないと判断される。これ により、徐々に変化する乖離量学習値 GKlgが前記乖離量と一致するようになるまで 同乖離量の学習が繰り返される期間、すなわち、内燃機関 10が停止されると次回の 運転における見込み制御の実行時において排気性状が常に悪い状態になってしま うおそれのある期間、前記履歴がないと判断される。
[0082] また、本実施の形態にかかる学習処理では、学習完了フラグがオフにセットされて いるときに、同フラグがオンにセットされているときと比較して、上限リフト量 VLmaxで あるときの乖離量学習値 GKlgの変化速度が高く設定される。そのため、上限リフト量 VLmaxであるときの乖離量の学習をより早期に完了させることができ、前記不都合の 発生を好適に抑えることができる。 [0083] ここで、単に乖離量学習値 GKlgの変化速度を高くすると、乖離量に対する乖離量 学習値 GKlgの収束性が悪くなつて同乖離量学習値 GKlg、 、ては目標噴射量 Tq が不安定になるおそれがある。
[0084] この点、本実施の形態では、前記サブフィードバック補正量 SFBとその基準値との 差 A SFBが大きいとき、言い換えれば、上記乖離量と乖離量学習値 GKlgとの差が 大きいときには乖離量学習値 GKlgを比較的速く変化させて上記乖離量に近づける ことができ、同乖離量の学習の早期完了を図ることができる。しかも、上記差 A SFB が小さいとき、言い換えれば、上記乖離量と乖離量学習値 GKlgとの差が小さいとき には、乖離量学習値 GKlgの変化速度を抑えて乖離量に対する乖離量学習値 GKlg の収束性を高くすることができ、 目標噴射量 Tqの不安定化を抑えることができる。
[0085] また、前述したように排気浄化触媒 34は劣化が進むほど吸蔵可能な酸素量が少な くなる。そのため、排気浄化触媒 34の劣化度合いが小さいときほど、同排気浄化触 媒 34に流入する排気の酸素濃度の変化が酸素センサ 66の出力信号の変化に現れ るタイミングが遅くなり易ぐ且つ前記サブフィードバック補正量 SFBの変化幅が大き くなり易い。したがって、排気浄化触媒 34の劣化度合いが小さいときにおいて前記乖 離量学習値 GKlgの変化速度を高く設定すると、同乖離量学習値 GKlgが安定し難く なってしまう。
[0086] この点、本実施の形態では、そうした排気浄化触媒 34の劣化度合いが小さいとき ほど乖離量学習値 GKlgの変化速度が低く設定されるために、乖離量学習値 GKlg の安定を図りつつ前記乖離量を学習することができる。
[0087] 本実施の形態によれば、以下に記載する利点が得られるようになる。
(1)リフト量変更機構 42の作動態様の相違による空燃比への影響分を乖離量補正 値 Kvlaによる補正を通じて抑えつつ、メインフィードバック制御やサブフィードバック 制御、あるいは見込み制御による燃料噴射量の調節を通じて混合気の空燃比を所 望の比率に調節することができる。しかも、上限リフト量 VLmaxであるときの前記乖離 量の学習が完了した履歴がない場合に、同学習が完了する前に機関の運転が停止 されて次回の運転における見込み制御の実行時において排気性状が常に悪い状態 になってしまうといった不都合の発生を抑えることができる。したがって、リフト量変更 機構 42を備えた内燃機関 10にあって混合気の空燃比を精度よく所望の比率に制御 すること力 Sでさる。
[0088] (2)乖離量学習値 GKlgの学習回数が所定回数未満であるときに、学習完了フラグ をオフのまま維持して、上限リフト量 VLmaxであるときの前記乖離量の学習が完了し た履歴がないと判断するようにした。そのため、徐々に変化する乖離量学習値 GKlg が前記乖離量と一致するようになるまで同乖離量学習値 GKlgの学習が繰り返される 期間、すなわち、内燃機関 10が停止されると次回の運転における見込み制御の実 行時において排気性状が常に悪い状態になってしまうおそれのある期間、前記履歴 がな!/、と判断することができる。
[0089] (3)前記履歴がないときに、同履歴があるときと比較して、乖離量学習値 GKlgの変 化速度を高く設定するようにした。そのため、上記履歴がないときに、乖離量学習値 GKlgを速やかに変化させることによって上限リフト量 VLmaxであるときの前記乖離 量の学習を早期に完了させることができ、前記不都合の発生を好適に抑えることがで きる。
[0090] (4)前記履歴がないときの乖離量学習値 GKlgの変化速度を、サブフィードバック 補正量 SFBとその基準値との差 A SFBが大きいときほど高く設定するようにした。そ のため、上記差 A SFBが大きいとき、言い換えれば、前記乖離量と乖離量学習値 G Klgとの差が大きいときには同乖離量学習値 GKlgを比較的速く変化させて乖離量 に近づけること力 Sでき、同乖離量の学習の早期完了を図ることができる。しかも、上記 差 A SFB力 S小さいとき、言い換えれば、前記乖離量と乖離量学習値 GKlgとの差が 小さいときには、同乖離量学習値 GKlgの変化速度を抑えて乖離量に対する乖離量 学習値 GKlgの収束性を高くすることができ、 目標噴射量 Tqの不安定化を抑えること ができる。
[0091] (5)前記履歴がないときの乖離量学習値 GKlgの変化速度を、排劣化度合いが大 きいほど高く設定するようにした。そのため、乖離量学習値 GKlgの安定を図りつつ、 上限リフト量 VLmaxであるときの前記乖離量を学習することができる。
[0092] (6)上限リフト量 VLmaxに対応する乖離量学習値 GKlgと下限リフト量 VLminに対 応する乖離量学習値 GKsmとを各別に学習して記憶し、上限リフト量 VLmaxおよび 下限リフト量 VLminとリフト量 VLとの関係に基づいて乖離量学習値 GKlg, GKsmか ら補間して乖離量補正値 Kvlaを算出するようにした。そのため、リフト量領域を細力べ 設定するとともにそれら領域毎に乖離量を求めてこれを学習値として設定する装置と 比較して、前記定常的な乖離量と吸気バルブ 30のリフト量 VLとの関係を低い学習 頻度をもって広いリフト量領域にわたり学習することができるようになる。
[0093] 以下、本発明を具体化した第 2の実施の形態について、第 1の実施の形態との相 違点を中心に説明する。
本実施の形態に係る空燃比制御装置と第 1の実施の形態に係る空燃比制御装置 とは、乖離量補正値の算出態様と学習処理の処理態様とが異なる。
[0094] 本実施の形態では、図 15に示すように、吸気バルブ 30のリフト量について複数の 学習領域(第 1領域 (VL〉VL1) ,第 2領域 (VL1≥VL〉VL2) ,第 3領域 (VL2≥ VL >VL3) ,第 4領域 (VL3≥VL) )が定められ、それら学習領域毎に学習値 GK ( GKl , GK2, GK3, GK4)が設定されている。なお本実施の形態では、上限リフト量 VLmaxを含む上記第 1領域が第 1の特定リフト量に相当し、他の第 2〜第 4領域が 第 2の特定リフト量領域に相当する。
[0095] そして、本実施の形態に力、かる燃料噴射制御処理にお!/、て、乖離量補正値 Kvlb を算出する処理(図 4のステップ S 102に対応する処理)では、リフト量 VLに基づいて 上記複数の学習領域 (第 1〜第 4領域)のいずれかが一つが選択されるとともに、選 択された学習領域に対応する乖離量学習値 GKを乖離量補正値 Kvlbとして算出す
[0096] また、前記目標噴射量 Tqを算出する処理(図 4のステップ S104に対応する処理、 図 5のステップ S110, S115に対応する処理)が、上記乖離量補正値 Kvlbに基づい て実行される。
[0097] なお、本実施の形態に力、かる燃料噴射制御処理にお!/、て、それら乖離量補正値 K vlbを算出する処理および前記目標噴射量 Tqを算出する処理以外の処理について は、第 1の実施の形態にかかる燃料噴射制御処理と同様の処理が実行される。
[0098] 本実施の形態に力、かる学習処理は、以下のように実行される。
図 16は、学習処理を示すフローチャートであり、同フローチャートに示される一連の 処理は、所定周期毎の処理として、電子制御装置 50により実行される。本実施の形 態では、この学習処理が学習部によって実行される処理に相当する。
[0099] 図 16に示すように、この処理では先ず、前記学習条件が成立していることを条件に
(図 8のステップ S201で YES)、学習完了フラグの操作状況に応じて、前記実行周 期 Aとなまし係数 Nとが設定される(ステップ S202〜204)。その後、上記実行周期 A 毎の学習タイミングであることを条件に(ステップ S205で YES)、前記乖離量を学習 する処理(図 16のステップ S401〜S411)が実行される。
[0100] すなわち先ず、吸気バルブ 30のリフト量 VLによって学習領域が選択される(ステツ プ S401 , S404, S407)。そして、ここで選択された学習領域に対応するィ直として記 憶されている乖離量学習値 GK、前記サブフィードバック補正量 SFB、および上記な まし係数 Nに基づいて以下の関係式から、乖離量学習値 GKが算出される(ステップ S402, S405, S408, S410)。
[0101] GK ― { (N- 1) GK+ SFB}/N
また、そうした乖離量学習値 GKの算出に併せて、今回算出された乖離量学習値 G K (i)と今回の学習領域に対応する値として記憶されていた乖離量学習値 GK (i— 1) との差 {GK (i) -GK (i- l) }をサブフィードバック補正量 SFBから減算した値が新た なサブ、フィードノ ックネ甫正量 SFBとして設定される(ステップ S403, S406, S409, S 411)。
[0102] 吸気バルブ 30のリフト量 VLが所定量 VL1より大きい場合(ステップ S401で YES) 、すなわち学習領域として第 1学習領域が選択された場合には、乖離量学習値 GK1 を算出する処理 (ステップ S402)およびサブフィードバック補正量 SFBを設定する処 理 (ステップ S403)が実行された後に、学習完了フラグを操作する処理が実行される 。具体的には、学習完了フラグがオフにセットされた状態で乖離量学習値 GK1の学 習が所定回数実行された場合には (ステップ S412で YES)、学習完了フラグがオン にセットされ (ステップ S413)、乖離量学習値 GK1の学習回数が所定回数未満であ る場合には (ステップ S412で NO)、学習完了フラグがオフのまま維持される。この処 理の後、本処理は一旦終了される。
[0103] 吸気バルブ 30のリフト量 VLが所定量 VL1以下であるときには(図 16のステップ S4 01で NO)、乖離量学習値 GKを算出する処理(ステップ S405, S408, S411)およ びサブフィードバック補正量 SFBを設定する処理(ステップ S406, S409, S412)力 S 実行された後、本処理は一旦終了される。
[0104] 以下、こうした学習処理を含む本実施の形態の燃料噴射制御処理について説明す 本実施の形態の燃料噴射制御では、サブフィードバック補正量 SFBのその基準値 力もの定常的な乖離量と吸気バルブ 30のリフト量 VLとの関係が学習され、その学習 した関係からリフト量 VLに基づいて乖離量補正値 Kvlbが算出される。具体的には、 吸気バルブ 30のリフト量 VLについて第 1〜第 4学習領域が設定されてそれら領域毎 に乖離量学習値 GK (GK;!〜 GK4)が学習されるとともに記憶される。そして、リフト 量 VLに基づいて第 1〜第 4領域のいずれかが選択されるとともに、その選択された 学習領域に対応する乖離量学習値 GKが乖離量補正値 Kvlbとして算出される。
[0105] そのため乖離量補正値 Kvlbとして、前記連通部分の通路面積とその基準面積とが 異なる場合にはリフト量 VLが小さいほどサブフィードバック補正量 SFBとその基準値 との定常的な乖離量が大きいといった傾向に応じた値、具体的には、リフト量 VLが 小さいほど大きい値が算出される。そして、そうした乖離量補正値 Kvlbによって目標 噴射量 Tqが補正される。
[0106] したがって、リフト量変更制御を通じて吸気バルブ 30のリフト量 VLが頻繁に変更さ れるとはいえ、同リフト量 VLの変更に追従するようにその変更による空燃比の変化分 を見越したように目標噴射量 Tqが算出される。これにより、リフト量 VLの変更に伴う 空燃比への影響分が的確に抑えられ、メインフィードバック制御やサブフィードバック 制御、あるいは見込み制御による燃料噴射量の調節を通じて混合気の空燃比が精 度よく所望の比率に制御される。
[0107] 次に、前述した移行制限処理(図 13参照)を実行することによる作用について説明 する。
ノ ッテリ交換などによって乖離量学習値 GKが初期化されることにより前述のように 学習した関係が不要にリセットされた状況で内燃機関 10が冷間始動されると、このと き冷却水温度 THWが低いために、吸気バルブ 30のリフト量 VLが上限リフト量 VLm axに設定される。
[0108] その後において冷却水温度 THWが所定温度以上になって実行条件が成立し、メ インフィードバック制御やサブフィードバック制御の実行が開始される。このとき学習 完了フラグはオフにセットされて!/、るために、上限リフト量 VLmaxを含む学習領域( 第 1学習領域)についての前記乖離量の学習が完了していないとして、上限リフト量 VLmax以外のリフト量への移行が禁止されて、吸気バルブ 30のリフト量 VLが上限リ フト量 VLmaxのまま維持される。これにより、前述した比較例の装置のように吸気バ ルブ 30のリフト量 VLが機関の運転状態に見合うリフト量に変更されることなぐ上限リ フト量 VLmaxで固定されて、上記第 1学習領域であるときの乖離量(具体的には、乖 離量学習値 GK1)の学習が最優先で実行される。
[0109] そして、その後において第 1学習領域における乖離量の学習が完了して、学習完 了フラグがオンにセットされると、吸気バルブ 30のリフト量 VLが内燃機関 10の運転 状態に見合うリフト量に変更される。
[0110] このように本実施の形態では、前記学習した関係が不要にリセットされた場合に、直 後における機関の運転に際して、上記第 1学習領域であるときの乖離量の学習が最 優先で実行されて完了される。そのため、同学習が完了する前に機関の運転が停止 されて次回の運転における見込み制御の実行時において排気性状が常に悪い状態 になってしまうといった不都合の発生を抑えることができる。
[0111] 本実施の形態によれば、前記(1)〜(5)に準じた利点、詳しくは以下の(7)〜(; 11) に記載する利点が得られるようになる。
(7)リフト量変更機構 42の作動態様の相違による空燃比への影響分を乖離量補正 値 Kvlbによる補正を通じて抑えつつ、メインフィードバック制御やサブフィードバック 制御、あるいは見込み制御による燃料噴射量の調節を通じて混合気の空燃比を所 望の比率に調節することができる。しかも、上記第 1学習領域であるときの前記乖離 量の学習が完了した履歴がない場合に、同学習が完了する前に機関の運転が停止 されて、次回の運転における見込み制御の実行時において排気性状が常に悪い状 態になってしまうといった不都合の発生を抑えることができる。したがって、リフト量変 更機構 42を備えた内燃機関 10にあって混合気の空燃比を精度よく所望の比率に制 徒 Pすること力 sでさる。
[0112] (8)乖離量学習値 GK1の学習回数が所定回数未満であるときに、学習完了フラグ をオフのまま維持して、上記第 1学習領域であるときの前記乖離量の学習が完了した 履歴がないと判断するようにした。そのため、徐々に変化する乖離量学習値 GK1が 前記乖離量と一致するようになるまで同乖離量の学習が繰り返される期間、すなわち 、内燃機関 10が停止されると次回の運転における見込み制御の実行時において排 気性状が常に悪い状態になってしまうおそれのある期間、前記履歴がないと判断す ること力 Sでさる。
[0113] (9)前記履歴がないときに、同履歴があるときと比較して、第 1学習領域であるとき の乖離量学習値 GK1の変化速度を高く設定するようにした。そのため、上記履歴が ないときに、乖離量学習値 GK1を速やかに変化させることによって第 1学習領域であ るときの前記乖離量の学習を早期に完了させることができ、前記不都合の発生を好 適に ί卬えることができる。
[0114] (10)前記履歴がないときの乖離量学習値 GK1の変化速度を、サブフィードバック 補正量 SFBとその基準値との差 A SFBが大きいときほど高く設定するようにした。そ のため、上記差 A SFBが大きいとき、言い換えれば、前記乖離量と乖離量学習値 G K1との差が大きいときには同乖離量学習値 GK1を比較的速く変化させて乖離量に 近づけること力 Sでき、同乖離量の学習の早期完了を図ることができる。しかも、上記差 A SFBが小さいとき、言い換えれば、前記乖離量と乖離量学習値 GK1との差が小さ いときには、同乖離量学習値 GK1の変化速度を抑えて乖離量に対する乖離量学習 値 GK1の収束性を高くすることができ、 目標噴射量 Tqの不安定化を抑えることがで きる。
[0115] (11)前記履歴がないときの乖離量学習値 GK1の変化速度を、排気浄化触媒 34 の劣化度合いが大きいほど高く設定するようにした。そのため、乖離量学習値 GK1 の安定を図りつつ、第 1学習領域であるときの前記乖離量を学習することができる。
[0116] なお、上記各実施の形態は、以下のように変更して実施してもよい。
第 1の実施の形態において、以下の (A)、(B)に記載するように乖離量補正値を算 出してもよい。 [0117] (A)図 17に、吸気バルブ 30のリフト量 VLと乖離量補正値 Kvlcとの関係の一例を 示す。図 17に示すように、先ず複数の特定リフト量 (VLcl (=VLmax) , VLc2, VL c3, · · · , VLcn (=VLmin) )について各別に、吸気バルブ 30のリフト量 VLが特定リ フト量であるときの前記乖離量を乖離量学習値 GKc (GKcl , GKc2, GKc3, · · · , G Ken)として学習する。なお図 17には 8つの特定リフト量 VLc;!〜 VLc8を設定した例 を示している。そして、リフト量 VLが複数の特定リフト量のいずれかであるときには、 その特定リフト量に対応する乖離量学習値 GKcが乖離量補正値 Kvlcとして算出さ れる。リフト量 VLが複数の特定リフト量のいずれでもないときには、そのときどきのリフ ト量 VLと同リフト量 VLを挟む特定リフト量との関係に基づいてそれら特定リフト量に 対応する両乖離量学習値から線形補間して、乖離量補正値 Kvlcを算出する。
[0118] (B)図 18に、吸気バルブ 30のリフト量 VLと乖離量補正値 Kvldとの関係の一例を 示す。図 18に示すように、先ずリフト量 VLが上限リフト量 VLmaxであるときには乖離 量学習値 GKlgを乖離量補正値 Kvldとして算出し、リフト量 VLが下限リフト量 VLmi nであるときには乖離量学習値 GKsmを乖離量補正値 Kvldとして算出する。リフト量 VLが上限リフト量 VLmaxおよび下限リフト量 VLminのいずれでもないときには、そ のときどきのリフト量 VL、上限リフト量 VLmaxおよび下限リフト量 VLminの関係に基 づいて乖離量学習値 GKlg, GKsmから線形補間して、乖離量補正値 Kvldを算出 する。
[0119] 第 1の実施の形態は、見込み制御の実行時において上限リフト量 VLmaxおよび下 限リフト量 VLmin以外のリフト量(特定リフト量)が用いられる装置であって、メインフィ ードバック制御やサブフィードバック制御の実行時における上記特定リフト量の設定 頻度が低い装置にも、その構成を適宜変更した上で適用することができる。同構成に あっては、上記特定リフト量であるときの前記乖離量を学習するとともに、同学習が完 了した履歴がないときに、上記特定リフト量以外のリフト量への変更を禁止したり、特 定リフト量に対応する乖離量学習値の変化速度を高くしたりすればよい。リフト量 VL が特定リフト量よりも大きい領域にあっては、前記補間にかかる方法として外揷法を 用いて乖離補正値を算出するようにすればよい。
[0120] 第 1の実施の形態において、下限リフト量 VLminであるときの前記乖離量を学習す ることに代えて、例えば下限リフト量 VLminよりも若干大きいリフト量など、下限リフト 量 VLmin以外のリフト量 (特定リフト量)であるときの前記乖離量を学習するようにし てもよい。なお同構成にあって、リフト量 VLが上記特定リフト量よりも小さい領域では 、前記補間にかかる方法として外揷法を用いて乖離量補正値を算出するようにすれ ばよい。
[0121] 第 1の実施の形態では、上限リフト量 VLmaxおよび下限リフト量 VLminとリフト量 V Lとの関係に基づ!/、て各乖離量学習値 GKlg, GKsmから補間して乖離量補正値を 算出するようにした。これに代えて、リフト量 VLと乖離量補正値との関係を定めたマツ プを予め設定し、同マップからリフト量 VLに基づいて乖離量補正値を算出するように してもよい。この場合には、同マップに記憶されている上記関係を乖離量学習値 GK1 g, GKsmに応じて補正することにより、前記定常的な乖離量とリフト量 VLとの関係を 学習すること力 Sでさる。
[0122] 第 2の実施の形態において、学習領域として 5つ以上の領域を設定するようにして もよい。また学習領域として 3つの領域のみ、あるいは 2つの領域のみを設定すること も可能である。
[0123] 第 2の実施の形態は、見込み制御の実行時において上限リフト量 VLmaxおよび下 限リフト量 VLmin以外のリフト量(特定リフト量)が用いられる装置であって、メインフィ ードバック制御やサブフィードバック制御の実行時における上記特定リフト量の設定 頻度が低い装置にも、その構成を適宜変更した上で適用することができる。同構成に あっては、上記特定リフト量を含む第 1のリフト量領域 (特定の学習領域)であるときの 前記乖離量の学習が完了した履歴がないときに、上記特定リフト量以外のリフト量へ の変更を禁止したり、特定の学習領域に対応する乖離量学習値の変化速度を高くし たりすればよい。
[0124] 各実施の形態において、移行制限処理を省略してもよい。なお、同構成にあっては 、前記履歴の有無にかかわらず、下限リフト量 VLminであるときの乖離量学習値 GK sm (第 1の実施の形態)の変化速度や、第 1のリフト量領域 (第 1学習領域)以外のリ フト量領域であるときの乖離量学習値 GK1 (第 2の実施の形態)の変化速度を変更し ないことが望ましい。これにより、メインフィードバック制御やサブフィードバック制御が 実行されることから電子制御装置 50に記憶されている乖離量学習値と実情に見合う 値との差による空燃比への影響が小さく抑えられる領域にあっては、乖離量学習値 の変化速度を変更することなぐ乖離量の学習に適した変更速度をもって同学習を 好適に実行することができる。
[0125] 各実施の形態において、学習完了フラグがオフにセットされているときに、前記差
A SFBおよび排気浄化触媒 34の劣化度合いのうちの一方のみに基づいて、実行周 期 Aおよびなまし係数 Nを設定するようにしてもよ!/、。
[0126] 各実施の形態において、学習完了フラグがオフにセットされているときに、実行周 期 Aやなまし係数 Nとして一定値を設定することが可能である。この場合、実行周期 Aとしては前記所定周期 A1より短い周期を設定し、なまし係数 Nとしては前記所定値 N1より小さ!/、値を設定するようにすればよ!/、。
[0127] 各実施の形態において、学習完了フラグの操作状況に応じて実行周期 Aおよびな まし係数 Nを設定する処理(図 8のステップ S202〜S204の処理)を省略するとともに 、それら実行周期 Aおよびなまし係数 Nとして一定値を予め設定するようにしてもよい 。同構成では、前記履歴の有無にかかわらず、乖離量学習値 GKlg (第 1の実施の形 態)の変化速度、または乖離量学習値 GK1 (第 2の実施の形態)の変化速度が一定 の速度に設定される。
[0128] 各実施の形態において、前記乖離量の学習が完了したことを、酸素センサ 66の出 力電圧と基準電圧との偏差が小さい状態が所定期間継続されたことや、酸素センサ 66の出力電圧が基準電圧を跨ぐように変化した回数が所定回数以上であることなど をもって判断するようにしてもよい。
[0129] 各実施の形態において、内燃機関 10の暖機が完了したことは、冷却水温度 THW 以外の例えば潤滑オイルの温度など、内燃機関 10の温度の指標となる温度が所定 温度以上であることをもって判断するようにしてもよい。また、直接検出した内燃機関 10の温度が所定温度以上であることをもって、暖機完了を判断することも可能である
[0130] 各実施の形態は、メインフィードバック補正量 MFBとその基準値との定常的な乖離 量、および吸気バルブ 30のリフト量 VLの関係を学習する装置にも、その構成を適宜 変更した上で適用することができる。この場合には、サブフィードバック制御にかかる 処理および酸素センサ 66を省略することもできる。
本発明は、;!〜 3つの気筒を有する内燃機関や 5つ以上の気筒を有する内燃機関 にあ適用することカでさる。

Claims

請求の範囲
[1] 内燃機関の空燃比制御装置であって、前記機関は、吸気バルブのリフト量を変更す るリフト量変更機構と、排気の酸素濃度に応じた信号を出力するセンサとを有し、前 記制御装置は、機関の運転が開始された後において、実行条件が未成立である場 合には、機関の運転状態に基づく見込み制御を通じて燃料噴射量指令値を設定し、 前記実行条件が成立した場合には、前記センサの出力値に基づき算出される補正 量を用いたフィードバック制御を通じて前記燃料噴射量指令値を設定し、前記制御 装置は、
前記実行条件が成立した場合において、前記リフト量が、前記実行条件が未成立 である場合に用いられる第 1のリフト量領域にあるときと、前記実行条件が成立した場 合にのみ用いられる第 2のリフト量領域にあるときとにおいて各別に、前記補正量とそ の基準値との間の定常的な乖離量を乖離量学習値として学習する学習部であって、 該学習部は、前記乖離量学習値に基づいて前記乖離量と前記リフト量との関係を求 めて同関係を記憶することと、
前記リフト量に基づいて、前記記憶した関係から乖離量補正値を求めるとともに、該 乖離量補正値を用いて前記燃料噴射量指令値を補正する補正部と、
前記リフト量が前記第 1のリフト量領域にあるときの前記乖離量の学習が完了した履 歴がないときに、前記リフト量が前記第 1のリフト量領域から他のリフト量領域へ移行 するのを禁止する禁止部と
を備える制御装置。
[2] 前記内燃機関は、前記排気を機関から排出させる排気通路を備え、該排気通路に は排気浄化触媒が設けられ、
前記センサは、前記排気通路において、前記排気浄化触媒より排気流れ方向の下 流に設けられて!/、る請求項 1に記載の制御装置。
[3] 前記学習部は、所定期間おきに、前記乖離量を徐々に変化させた値を前記乖離量 学習値として学習し、
前記禁止部は、前記乖離量学習値を学習する回数が所定回数未満である場合に 前記履歴がないと判断する請求項 1または 2に記載の制御装置。
[4] 前記学習部は、前記乖離量を徐々に変化させた値を前記乖離量学習値として学習 し、
前記御装置は更に、前記履歴がないときに、同履歴があるときと比較して、前記リフ ト量が前記第 1のリフト量領域にあるときの前記乖離量学習値の変化速度を高く設定 する設定部を備える請求項 1に記載の制御装置。
[5] 内燃機関の空燃比制御装置であって、前記機関は、吸気バルブのリフト量を変更す るリフト量変更機構と、排気の酸素濃度に応じた信号を出力するセンサとを有し、前 記制御装置は、機関の運転が開始された後において、実行条件が未成立である場 合には、機関の運転状態に基づく見込み制御を通じて燃料噴射量指令値を設定し、 前記実行条件が成立した場合には、前記センサの出力値に基づき算出される補正 量を用いたフィードバック制御を通じて前記燃料噴射量指令値を設定し、前記制御 装置は、
前記実行条件が成立した場合において、前記リフト量が、前記実行条件が未成立 である場合に用いられる第 1のリフト量領域にあるときと、前記実行条件が成立した場 合にのみ用いられる第 2のリフト量領域にあるときとにおいて各別に、前記補正量とそ の基準値との定常的な乖離量を徐々に変化させた値を乖離量学習値として学習す る学習部であって、該学習部は前記乖離量学習値に基づ!/、て前記乖離量と前記リ フト量との関係を求めて同関係を記憶することと、
前記リフト量に基づいて、前記記憶した関係から乖離量補正値を求めるとともに、該 乖離量補正値を用いて前記燃料噴射量指令値を補正する補正部と、
前記リフト量が前記第 1のリフト量領域にあるときの前記乖離量の学習が完了した履 歴がないときに、同履歴があるときと比較して、前記リフト量が前記第 1のリフト量領域 にあるときの前記乖離量学習値の変化速度を高く設定する設定部と
を備える制御装置。
[6] 前記設定部は、前記補正量とその基準値との偏差が大きいときほど前記変化速度を 高く設定する請求項 4または 5に記載の制御装置。
[7] 前記学習部は、所定期間おきに前記乖離量学習値を学習する請求項 4〜6のいず れか一項に記載の制御装置。
[8] 前記設定部は、前記所定期間を短くすることによって前記変化速度を高く設定する 請求項 7に記載の制御装置。
[9] 前記設定部は、前記所定期間毎の前記乖離量学習値の変化量を大きくすることによ つて前記変化速度を高く設定する請求項 7または 8に記載の制御装置。
[10] 前記乖離量学習値の学習回数が所定回数未満である場合に、前記履歴がないと判 断される請求項 7〜9のいずれか一項に記載の制御装置。
[11] 前記内燃機関は、前記排気を機関から排出させる排気通路を備え、該排気通路に は排気浄化触媒が設けられ、
前記センサは、前記排気通路において、前記排気浄化触媒より排気流れ方向の下 流に設けられている請求項 4〜; 10のいずれか一項に記載の制御装置。
[12] 前記排気浄化触媒の劣化度合いを検出する検出部を更に備え、
前記設定部は、前記検出した劣化度合!/、が大き!/、ほど前記変化速度を高く設定す る請求項 11に記載の制御装置。
[13] 前記センサは第 1センサであり、前記排気通路における前記排気浄化触媒より排気 流れ方向の上流には、排気の酸素濃度に応じた信号を出力する第 2センサが設けら れ、
前記制御装置は、前記実行条件が成立した場合に、前記フィードバック制御の実 行に併せて、前記第 2センサの出力値に基づく前記燃料噴射量指令値の補正を実 行する請求項 2、 11または 12に記載の制御装置。
[14] 前記内燃機関は複数の気筒を有し、前記第 2センサは、全ての気筒に対し共用され る単一のものである請求項 13に記載の制御装置。
[15] 前記設定部は、前記履歴の有無にかかわらず、前記リフト量が前記第 2のリフト量領 域にあるときの前記乖離量学習値の変化速度を変更しない請求項 4〜; 14のいずれ か一項に記載の制御装置。
[16] 前記第 1のリフト量領域は第 1の特定リフト量であり、前記第 2のリフト量領域は第 2の 特定リフト量であり、
前記補正部は、前記第 1および第 2の特定リフト量と前記リフト量との関係に基づい て、前記第 1および第 2の特定リフト量について各別に学習した乖離量学習値から前 記乖離量補正値を補間演算する請求項 1〜; 15のいずれか一項に記載の制御装置。
[17] 前記内燃機関は、空気を機関へ導入させる吸気通路と、吸気通路の通路断面積を 変更するスロットルバルブとを更に有し、該スロットルバルブの開度制御と前記吸気 バルブのリフト量の変更制御との協働を通じて吸気量が調節され、
前記第 1の特定リフト量は、上限リフト量である請求項 16に記載の制御装置。
[18] 前記学習部は、前記第 1のリフト量領域および前記第 2のリフト量領域を含む予め設 定された前記リフト量についての複数の領域毎に、前記乖離量学習値を学習して該 乖離量学習値を記憶し、
前記補正部は、前記リフト量に基づ!/、て前記複数の領域の!/、ずれかを選択すると ともに該選択した領域に対応する乖離量学習値を前記乖離量補正値として求める請 求項 1〜; 15のいずれか一項に記載の制御装置。
[19] 前記内燃機関は、空気を機関へ導入させる吸気通路と、吸気通路の通路断面積を 変更するスロットルバルブとを更に有し、該スロットルバルブの開度制御と前記吸気 バルブのリフト量の変更制御との協働を通じて吸気量が調節され、
前記第 1のリフト量領域は、上限リフト量を含む領域である請求項 18に記載の空燃 比制御装置。
[20] 前記実行条件は、前記内燃機関の温度が所定温度以上であることを判断するため の条件を含む請求項;!〜 19の!/、ずれか一項に記載の制御装置。
PCT/JP2007/073880 2006-12-12 2007-12-11 空燃比制御装置 WO2008072635A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07859773.9A EP2090768B1 (en) 2006-12-12 2007-12-11 Air to fuel ratio control device
CN2007800449146A CN101548087B (zh) 2006-12-12 2007-12-11 空燃比控制装置
US12/517,584 US8302571B2 (en) 2006-12-12 2007-12-11 Air to fuel ratio control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-334748 2006-12-12
JP2006334748A JP4643550B2 (ja) 2006-12-12 2006-12-12 空燃比制御装置

Publications (1)

Publication Number Publication Date
WO2008072635A1 true WO2008072635A1 (ja) 2008-06-19

Family

ID=39511656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073880 WO2008072635A1 (ja) 2006-12-12 2007-12-11 空燃比制御装置

Country Status (5)

Country Link
US (1) US8302571B2 (ja)
EP (1) EP2090768B1 (ja)
JP (1) JP4643550B2 (ja)
CN (1) CN101548087B (ja)
WO (1) WO2008072635A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315196B2 (ja) * 2006-12-21 2009-08-19 トヨタ自動車株式会社 内燃機関の制御装置
JP4429336B2 (ja) * 2007-06-15 2010-03-10 トヨタ自動車株式会社 空燃比制御装置
JP4915526B2 (ja) * 2007-07-31 2012-04-11 株式会社デンソー 内燃機関の空燃比制御装置
US8682569B2 (en) * 2009-12-17 2014-03-25 GM Global Technology Operations LLC Systems and methods for diagnosing valve lift mechanisms and oil control valves of camshaft lift systems
US8620565B2 (en) * 2009-12-21 2013-12-31 International Engine Intellectual Property Company, Llc. Control system and method for limiting engine torque based on engine oil pressure and engine oil temperature data
JP5110205B2 (ja) * 2010-11-17 2012-12-26 トヨタ自動車株式会社 内燃機関の制御装置
KR101795378B1 (ko) * 2012-08-07 2017-11-09 현대자동차 주식회사 차량 하중에 기초하여 엔진 토크를 보정하는 방법 및 장치
US9824505B2 (en) * 2014-02-25 2017-11-21 Ford Global Technologies, Llc Method for triggering a vehicle system monitor
US9874549B2 (en) * 2014-10-17 2018-01-23 Ford Global Technologies, Llc Methods and systems for operating a variable voltage oxygen sensor
JP6350431B2 (ja) * 2015-07-28 2018-07-04 トヨタ自動車株式会社 内燃機関の制御装置
JP6512167B2 (ja) * 2016-05-06 2019-05-15 株式会社デンソー 燃料噴射制御装置
FR3086004B1 (fr) 2018-09-18 2020-09-11 Psa Automobiles Sa Procede d’apprentissage d’une correction de richesse d’un moteur froid
FR3088965B1 (fr) * 2018-11-27 2024-01-19 Psa Automobiles Sa Procede de correction de commande d’un moteur thermique
JP7207290B2 (ja) * 2019-12-23 2023-01-18 トヨタ自動車株式会社 車両用制御装置、車両用制御システム、車両用学習装置、および車両用学習方法
CN111412074B (zh) * 2020-03-31 2021-08-13 东风汽车集团有限公司 一种汽油机长期燃油修正的自学习方法
JP7367614B2 (ja) * 2020-05-28 2023-10-24 株式会社デンソー 噴射制御装置
CN112628004B (zh) * 2020-12-08 2022-11-01 浙江吉利控股集团有限公司 一种过量空气系数的修正方法、装置、车辆及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210158A (ja) * 1995-02-06 1996-08-20 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP2569999B2 (ja) * 1991-06-07 1997-01-08 トヨタ自動車株式会社 可変バルブタイミング装置のフェイルセーフシステム
JPH09287493A (ja) * 1996-04-22 1997-11-04 Honda Motor Co Ltd 内燃機関の制御装置
JP2900890B2 (ja) * 1996-08-09 1999-06-02 トヨタ自動車株式会社 内燃機関の触媒劣化判別装置
JP2001263015A (ja) 2000-03-21 2001-09-26 Toyota Motor Corp 内燃機関の可変動弁機構および吸気量制御装置
JP2002295290A (ja) * 2001-03-30 2002-10-09 Honda Motor Co Ltd カム位相可変機構付き内燃機関の空燃比フィードバック制御システム
JP2004011435A (ja) * 2002-06-03 2004-01-15 Toyota Motor Corp 多気筒内燃機関の空燃比制御装置
JP2005207286A (ja) * 2004-01-21 2005-08-04 Toyota Motor Corp 触媒劣化判定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850815A (en) * 1996-04-17 1998-12-22 Honda Giken Kogyo Kabushiki Kaisha Control system and control process in internal combustion engine
JP3852303B2 (ja) * 2001-02-05 2006-11-29 トヨタ自動車株式会社 多気筒内燃機関の制御装置
JP3712661B2 (ja) * 2001-12-06 2005-11-02 本田技研工業株式会社 内燃機関の制御装置
JP2004132314A (ja) * 2002-10-11 2004-04-30 Toyota Motor Corp 内燃機関の制御装置
DE10259846B3 (de) * 2002-12-20 2004-06-03 Bayerische Motoren Werke Ag Verfahren zur Zylindergleichstellung
US7013852B2 (en) * 2003-03-06 2006-03-21 Denso Corporation Control apparatus for an internal combustion engine
JP4007255B2 (ja) 2003-06-02 2007-11-14 ヤマハ株式会社 アレースピーカーシステム
JP4103759B2 (ja) * 2003-09-26 2008-06-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4251109B2 (ja) * 2004-04-27 2009-04-08 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4455956B2 (ja) * 2004-08-26 2010-04-21 トヨタ自動車株式会社 内燃機関のアイドル回転速度制御装置
JP2006083734A (ja) * 2004-09-15 2006-03-30 Toyota Motor Corp ハイブリッド車用エンジンの学習制御装置
JP4832068B2 (ja) * 2005-12-05 2011-12-07 トヨタ自動車株式会社 空燃比制御装置
JP4207961B2 (ja) * 2006-01-12 2009-01-14 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569999B2 (ja) * 1991-06-07 1997-01-08 トヨタ自動車株式会社 可変バルブタイミング装置のフェイルセーフシステム
JPH08210158A (ja) * 1995-02-06 1996-08-20 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JPH09287493A (ja) * 1996-04-22 1997-11-04 Honda Motor Co Ltd 内燃機関の制御装置
JP2900890B2 (ja) * 1996-08-09 1999-06-02 トヨタ自動車株式会社 内燃機関の触媒劣化判別装置
JP2001263015A (ja) 2000-03-21 2001-09-26 Toyota Motor Corp 内燃機関の可変動弁機構および吸気量制御装置
JP2002295290A (ja) * 2001-03-30 2002-10-09 Honda Motor Co Ltd カム位相可変機構付き内燃機関の空燃比フィードバック制御システム
JP2004011435A (ja) * 2002-06-03 2004-01-15 Toyota Motor Corp 多気筒内燃機関の空燃比制御装置
JP2005207286A (ja) * 2004-01-21 2005-08-04 Toyota Motor Corp 触媒劣化判定装置

Also Published As

Publication number Publication date
JP4643550B2 (ja) 2011-03-02
CN101548087B (zh) 2012-12-26
EP2090768B1 (en) 2020-11-11
JP2008144706A (ja) 2008-06-26
US20100070159A1 (en) 2010-03-18
EP2090768A4 (en) 2018-01-03
EP2090768A1 (en) 2009-08-19
CN101548087A (zh) 2009-09-30
US8302571B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
WO2008072635A1 (ja) 空燃比制御装置
US7472697B2 (en) Air-fuel ratio control apparatus
JP4957559B2 (ja) 内燃機関の空燃比制御装置
US8718902B2 (en) Control apparatus and control method of multiple cylinder
JP2005048730A (ja) 内燃機関の空燃比制御装置
US6901906B2 (en) Apparatus and method for controlling air-fuel ratio in direct-injection internal combustion engine
JP4429336B2 (ja) 空燃比制御装置
JP2019183733A (ja) 空燃比制御装置
JP5018556B2 (ja) 空燃比制御装置
JP5295177B2 (ja) エンジンの制御装置
JP4947019B2 (ja) 内燃機関の空燃比制御装置
JP4396678B2 (ja) 内燃機関の制御装置
JP4419950B2 (ja) 内燃機関の制御装置
JP5178634B2 (ja) 内燃機関の空燃比制御方法
JP2001073845A (ja) 内燃機関の燃焼制御装置
JP2007187119A (ja) 内燃機関の空燃比制御方法
JPH11229930A (ja) 内燃機関の制御装置
JP2017115802A (ja) 内燃機関の空燃比制御装置
JP2012189058A (ja) 多気筒内燃機関の燃料噴射制御装置
JP4858493B2 (ja) 排気浄化触媒の劣化判定装置
JP2004036393A (ja) 筒内噴射式内燃機関の空燃比制御装置
JP2006083795A (ja) 内燃機関の空燃比制御装置
JP2008031929A (ja) 内燃機関の空燃比制御装置及び内燃機関の燃料噴射量制御装置
JP2008309119A (ja) 内燃機関の空燃比制御装置
JP2001003789A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044914.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859773

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007859773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12517584

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)