[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007034877A1 - 半導体ナノ粒子分散ガラス微粒子及びその作製方法 - Google Patents

半導体ナノ粒子分散ガラス微粒子及びその作製方法 Download PDF

Info

Publication number
WO2007034877A1
WO2007034877A1 PCT/JP2006/318748 JP2006318748W WO2007034877A1 WO 2007034877 A1 WO2007034877 A1 WO 2007034877A1 JP 2006318748 W JP2006318748 W JP 2006318748W WO 2007034877 A1 WO2007034877 A1 WO 2007034877A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersed
glass
nanoparticles
semiconductor
solution
Prior art date
Application number
PCT/JP2006/318748
Other languages
English (en)
French (fr)
Inventor
Masanori Ando
Norio Murase
Chunliang Li
Ping Yang
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US11/992,403 priority Critical patent/US8585927B2/en
Priority to JP2007536555A priority patent/JP4840823B2/ja
Publication of WO2007034877A1 publication Critical patent/WO2007034877A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors

Definitions

  • the present invention relates to glass fine particles containing semiconductor nanoparticles, and more particularly to glass fine particles containing semiconductor nanoparticles that emit fluorescence (photoluminescence) in a dispersed manner and a method for producing the same.
  • Semiconductors that serve as such phosphors are mainly II-VI group semiconductors (cadmium sulfide (CdS), zinc selenide (ZnSe), cadmium selenide (CdSe), zinc telluride (ZnTe), Cadmium telluride (CdTe), etc., and these semiconductors exhibit direct transition, with a light-emission lifetime of about 10 nanoseconds and many of the conventional forbidden transition properties, using rare earth ions and transition metal ions.
  • the absorption and emission of excitation light which is about 5 orders of magnitude shorter than conventional phosphors, can be repeated extremely rapidly, resulting in much brighter fluorescence.
  • the short emission lifetime means that the response to excitation light ON and OF F is fast.
  • semiconductor nanoparticles Is much less susceptible to degradation.
  • Examples of solid matrices for holding nanoparticles include glass and transparent organic polymer materials. Glass is more transparent than organic polymers and is resistant to UV rays. In addition, it is difficult for moisture and oxygen to pass through, so it can prevent deterioration due to chemical changes in nanoparticles dispersed in the matrix for a long time. It is excellent because it has advantages such as being able to.
  • the Zorgel method is advantageous for producing glass. In the sol-gel method, glass formation proceeds under mild conditions at room temperature and normal pressure, so that the semiconductor nanoparticles are transparent glass while maintaining the particle size and high luminous efficiency immediately after synthesis by the aqueous solution method. Distributed and fixed inside. Once solid, a material that stably emits high-intensity fluorescent light that is difficult to proceed with aggregation of nanoparticles and deterioration of acidity can be obtained.
  • Fluorescent glass in which semiconductor nanoparticles are dispersed and fixed in glass by a sol-gel method has hitherto been tried as a method for producing Balta-like glass, glass fine particles, and glass thin films.
  • glass fine particles containing dispersed semiconductor nanoparticles are used when deposited on a substrate as a powdered phosphor when producing light emitting devices such as displays and lighting, and bonded to biomolecules. Therefore, it is important when used as a fluorescent probe.
  • the following description is limited to fluorescent glass particles in which semiconductor nanoparticles are dispersed and fixed in glass by a sol-gel method.
  • the first nanoparticle-dispersed glass fine particles are obtained by incorporating semiconductor nanoparticles into glass by a sol-gel method. Fluorescent glass particles dispersed and fixed with a luminous efficiency of about 20% to 20%.
  • the production method is to produce a reverse micelle of a surfactant in a hydrophobic organic solvent, and then add a nanoparticle-dispersed aqueous solution to the solution to produce a reverse micelle containing the nanoparticle aqueous solution.
  • an alkoxide such as tetraethoxysilane (TEOS) is added as a reaction product for glass formation, and the sol-gel reaction proceeds in reverse micelles. Glass fine particles are produced (Patent Document 1 and Non-Patent Documents 1 to 5).
  • the nanoparticles are present separately in each reverse micelle, and it is expected to suppress aggregation of the nanoparticles during the glass formation process by the sol-gel reaction. It was done. In fact, by applying this method, it was possible to produce glass particles in which nanoparticles were dispersed and fixed.
  • the luminous efficiency of the nanoparticle-dispersed glass particles obtained by the first production method is 5-10% in Patent Document 1 and Non-Patent Document 1, 14-20% in Non-Patent Document 2, and Non-Patent Document 3 was 7%, and Non-Patent Document 4 was 1-11%, both of which were as small as 20% or less.
  • the alkoxide When the alkoxide is hydrolyzed during the progress of the sol-gel reaction and the silica network is developed, the alkoxide is gradually hydrolyzed from the low-viscosity mixture of unreacted alkoxide and semiconductor nanoparticles. It turns into a mixture of gel and semiconductor nanoparticles. In the process, the semiconductor nanoparticles are easily eliminated from the silica network structure, and as a result, after the sol-gel reaction is completed and vitrified, the semiconductor nanoparticles are not fixed inside the generated glass particles but near the outer surface. It was speculated that it had been done.
  • nanoparticles were dispersed and fixed in glass by a sol-gel method. Fluorescent glass particles and a method for producing the same have been reported by Babendi et al. (Non-patent Document 6).
  • this second production method nanoparticles synthesized in advance in an organic solvent are dispersed in a solution in which a silane coupling agent or the like and an alcohol having an amino group are dissolved, and the nanoparticles are synthesized on the surface of the nanoparticles during the synthesis process.
  • the coated organic molecule such as thioglycolic acid is substituted with alcohol having an amino group and a silane coupling agent.
  • the nanoparticle dispersion is added to fine silica glass fine particles not containing nanoparticles and an organic high molecular weight alcohol dispersion, and then added with aqueous ammonia and an alkoxide to cause a sol-gel reaction. Is the method.
  • fluorescent glass fine particles having a structure in which the surface of the glass fine particles without the nanoparticles is coated with the sol-gel glass layer containing the nanoparticles can be obtained.
  • nanoparticles exist only in the vicinity of the surface layer of the glass fine particles, and the nanoparticles of the glass fine particles do not contain the nanoparticles, the dispersion concentration of the nanoparticles in the glass fine particles cannot be increased.
  • Non-Patent Documents 7 and 8 A method for producing glass microparticles containing semiconductor nanoparticles by hydrolyzing, etc. has been reported (Non-Patent Documents 7 and 8). However, with this method, it is not possible to include only one semiconductor nanoparticle in one glass microparticle, and therefore, it is possible to obtain bright fluorescence with a very low concentration of nanoparticles in the glass microparticle. However, it is disadvantageous for practical use.
  • Patent Document 1 JP 2002-211935 A
  • Non-Patent Document 1 Selvan, Lee, Ando, Murase, Chemistry Letters, 33 ⁇ , No. 4, 434 (2 004)
  • Non-Patent Document 2 Selvan, Tan, In, Advanced Materials, 17 ⁇ , 1620 (2005)
  • Non-Patent Literature 3 Yang, Gao, Advanced Materials, 17 ⁇ , 2354 (2005)
  • Non-Patent Literature 4 , Cervin, Lee, Papae Fushimiou, Kundaria, IN, Journal of American Chemical Society, 127 ⁇ , 4990 (2005)
  • Non-Patent Document 5 Durbandy, Toman, Nan, Chemistry of Materials, 17 ⁇ , 5720 (2005)
  • Non-Patent Document 6 Chang, Twinmer, Straw, Steckel, Jain, Bavendy, Advanced Materials, 16 ⁇ , 2092 (2004)
  • Non-Patent Document 7 Gerion, Pinault, Williams, Rok, Zancheto, Wyeth, Alibisatos, Journal of Physical Chemistry B, 105 ⁇ , 8861 (2001)
  • Non-Patent Document 8 Nan, Malvar-I, Angelevante Hime International Edison, 43 ⁇ , 5393 (2004)
  • the present invention is a semiconductor nanoparticle-dispersed fine silica-based glass microparticle that emits bright fluorescent light with a visible wavelength at a luminous efficiency and concentration superior to that of conventional semiconductor nanoparticle-dispersed glass microparticles, and has excellent temporal stability of fluorescence intensity, etc. And it aims at providing the manufacturing method.
  • the silica-based glass means a substance having an S-to-Si bond at least partially.
  • the reaction solution is used until the sol-gel reaction sufficiently proceeds to produce glass particles. Although it is necessary to stir for about 3 days, it is considered that the nanoparticles in the solution gradually deteriorate and the fluorescence intensity decreases in such a long stirring process.
  • the semiconductor nanoparticle has a silica network when the silica network structure develops during the progress of the sol-gel reaction. It is presumed that structural power is easily excluded.
  • the semiconductor nanoparticles are collected and fixed near the outer surface, not inside the generated glass particles, and the emission efficiency decreases due to the aggregation of the semiconductor nanoparticles. It was thought that this resulted in a decrease in fluorescence intensity over time due to the ease of contact with the external atmosphere due to the thin glass layer.
  • the nanoparticles are present only in the vicinity of the surface layer of the glass fine particles, and the nanoparticles of the glass fine particles do not contain the nanoparticles. In principle, it was impossible to increase the dispersion concentration of the nanoparticles, and it was difficult to obtain strong light emission and high light emission efficiency.
  • the reaction time can be shortened compared to the conventional method, and it is possible to produce dispersed glass fine particles before the nanoparticles deteriorate. It is difficult to eliminate the network structure of the semiconductor nanoparticles, and it is possible to disperse and fix the semiconductor nanoparticles inside the glass particles without being biased near the outer surface of the glass particles. As a result, it has been found that semiconductor nanoparticle-dispersed glass particles emitting bright fluorescent light having a much higher luminous efficiency (up to 60% or more) than conventional can be produced.
  • the present invention provides the following semiconductor nanoparticle-dispersed glass fine particles and a method for producing the same.
  • Item 1 The average particle diameter of 10 nano-meters or more 5 micrometers silica based glass fine particles containing a hydrolysis product of the alkoxide, semiconductor nanoparticles force ⁇ XlO- 5 mole Z liters or more on 1X10- 2 moles A semiconductor nanoparticle-dispersed glass fine particle dispersed at a concentration of Z liters or less, and the fluorescence of the semiconductor nanoparticle-dispersed glass fine particle Semiconductor nanoparticle-dispersed glass particles having a luminous efficiency (quantum yield) of 25% or more.
  • Item 2 The semiconductor nanoparticle-dispersed glass particles according to Item 1, wherein the silica-based glass particles are included in an average of more than one semiconductor nanoparticle force per average.
  • Item 3 The semiconductor nanoparticle-dispersed glass microparticle according to Item 1 or 2, wherein the emission efficiency (quantum yield) of fluorescence in the solution in which the semiconductor nanoparticle-dispersed glass microparticle is dispersed is 60% or more.
  • Item 4 The semiconductor nanoparticles are at least 1 selected from the group consisting of cadmium sulfate, zinc selenide, cadmium selenide, zinc telluride, cadmium telluride, zinc sulfide, and lead sulfide.
  • Item 4. The semiconductor nanoparticle-dispersed glass particles according to any one of Items 1 to 3, which are seeds.
  • Item 5 The semiconductor nanoparticle-dispersed glass according to any one of Items 1 to 4, wherein the glass fine particle surface has at least one functional group selected from the group consisting of an amino group, a thiol group, and a carboxyl group. Fine particles.
  • Item 6 First step of adding an alkoxide to a semiconductor nanoparticle-dispersed aqueous solution to form a sol-gel reaction solution in which hydrolysis partially proceeds, adding a surfactant to a hydrophobic organic solvent to form a reverse micelle solution A second step of generating, and a third step of mixing the solution obtained in the first step and the solution obtained in the second step to generate glass fine particles containing semiconductor nanoparticles dispersed therein. A method for producing semiconductor nanoparticle-dispersed glass particles.
  • Item 7 The method according to Item 6, wherein an alkaline aqueous solution is further added to the semiconductor nanoparticle-dispersed aqueous solution in the first step.
  • Item 8 The method according to Item 7, wherein the alkaline aqueous solution is aqueous ammonia or sodium hydroxide aqueous solution.
  • Item 9 The manufacturing method according to Item 7 or 8, wherein the alkaline aqueous solution contains a metal ion constituting the semiconductor nanoparticles.
  • Item 11 The method according to Item 10, wherein the surface active agent for semiconductor nanoparticles is thioglycolic acid.
  • the alkoxide has the general formula (I): R 1 -Si (OR 2 ) (I)
  • R 1 and R 2 represent the same or different lower alkyl groups, and r represents 0, 1, 2 or 3)
  • the semiconductor nanoparticle-dispersed aqueous solution is at least one selected from the group consisting of cadmium sulfate, zinc selenide, cadmium selenide, zinc telluride, cadmium telluride, zinc sulfide, and lead sulfide.
  • Item 13 The manufacturing method according to any one of Items 6 to 12, wherein the semiconductor nanoparticles are dispersed in an aqueous solution.
  • Item 14 The method according to any one of Items 6 to 13, wherein the semiconductor nanoparticles are cadmium telluride.
  • Item 15 The production method according to any one of Items 6 to 14, wherein the hydrophobic organic solvent is a hydrocarbon having 4 to 12 carbon atoms.
  • Item 16 The production method according to any one of Items 6 to 14, wherein the hydrophobic organic solvent is cyclohexane.
  • Item 17 The method according to any one of Items 6 to 16, wherein the surfactant is a polyoxyethylene ether type nonionic surfactant.
  • Item 18 The method according to any one of Items 6 to 17, wherein the alkoxide is tetraethoxysilane (TEOS).
  • TEOS tetraethoxysilane
  • the method further comprises a fourth step of adding an alkoxide and an aqueous alkaline solution to the glass fine particle solution produced in the third step and stirring.
  • Item 19 The production method according to any one of Items 6 to 18.
  • Item 20 In addition to the first step to the third step, a fourth step of adding and stirring the alkoxide, the silane coupling agent, and the alkaline aqueous solution to the glass fine particle solution produced in the third step. Item 19. The manufacturing method according to any one of Items 6 to 18, wherein the method is included.
  • Item 21 Semiconductor nanoparticle-dispersed glass particles produced by the production method according to any one of Items 6 to 20.
  • Item 22 A phosphor containing the semiconductor nanoparticle-dispersed glass particles according to Item 1, 2, 3, 4, 5, or 21.
  • Item 23 A sample in which the semiconductor nanoparticle-dispersed glass particles according to Item 1, 2, 3, 4, 5, or 21 are dispersed and fixed on a substrate is placed on a stage, and the sample is irradiated with laser light. Powering the stage little by little and changing the irradiation position of the laser light, one semiconductor nanoparticle-dispersed glass particle force on the substrate Spectral measurement of the emitted fluorescent spacer using a spectroscope And a method for identifying glass fine particles.
  • Semiconductor nanoparticle-dispersed glass fine particles of semiconductor nanoparticles according to the present invention have a form in which semiconductor nanoparticles are dispersed in a spherical silica glass as a matrix.
  • semiconductor nanoparticles include II-VI group semiconductors that emit light in the visible to near infrared region, such as
  • CdS Cadmium sulfide
  • ZnSe zinc selenide
  • CdSe cadmium selenide
  • ZnTe zinc telluride
  • CdTe tellurium cadmium
  • PbS lead sulfate
  • cadmium telluride and selenium zinc are preferred.
  • the semiconductor nanoparticles may have an alloying force of two or more kinds of semiconductors.
  • an alloy of zinc selenide and zinc telluride ZnSe Te zinc selenide and cadmium selenide.
  • the band gap of the semiconductor nanoparticles can be controlled and the emission wavelength of the fluorescence can be adjusted.
  • the particle size and shape of the semiconductor nanoparticles can be made uniform, and as a result, the emission spectrum can be narrowed and fluorescent light with excellent monochromaticity can be obtained.
  • the semiconductor nanoparticles may have a core-shell structure.
  • the combination of core and shell metal is not limited.
  • the core part Z shell part is one kind of ⁇ - ⁇ group semiconductor Zi kind ⁇ - ⁇ group semiconductor, one kind II-VI group semiconductor Z2 kind or more ⁇ - ⁇ group semiconductor alloy, two kinds or more kind II-VI group semiconductor alloy Z1 type II-VI group semiconductor, 2 or more type II-VI group semiconductor alloy Z2 type or more ⁇ - ⁇ group semiconductor alloy, etc.
  • Monodispersed semiconductor nanoparticles have the property of being well dispersed and mixed with water, so when making glass by the sol-gel method, monodisperse in silica-based glass without aggregation under appropriate conditions. be able to.
  • the upper limit of the luminous efficiency of the obtained glass fine particle material generally does not exceed the luminous efficiency of the semiconductor nanoparticles. Therefore, if the luminous efficiency of the semiconductor nanoparticles is as low as less than 25%, it is necessary to increase the intensity of the excitation light in order for the glass fine particle material to exhibit a certain luminance, which is practical. There are few advantages.
  • the fluorescence emission efficiency is the fluorescence with respect to the number of absorbed photons (photon) ( ⁇ ) (photon)
  • Luminous efficiency is a value that is used as standard in this technical field, and is synonymous with “internal quantum yield”. Luminous efficiency is calculated by comparing the absorbance at the excitation light wavelength and the luminescence intensity in the dye molecule solution and the measurement object using a dye molecule having a known luminous efficiency. At the time of measurement, comparison is usually made by matching the absorbance at the excitation wavelength of the dye molecule solution and the measurement object. (For example, see previously reported methods, Dawson et al., Journal of Physical Chemistry, 72, 3251 (1968), Murase et al., Japanese Ceramics Association 2004 Annual Meeting Summary 2K35 and references therein) .
  • Semiconductor nanoparticles that are monodispersed in water and emit bright fluorescence with a luminous efficiency of 25% or more include, for example, Logash et al. It can be prepared by the aqueous solution method according to Lee, Murase, Chemistry Letters, 34, 92 (2005).
  • thioglycolic acid as a surfactant was added to a cadmium perchlorate aqueous solution adjusted to a pH of 11 to 12, particularly preferably 11.4 so that the molar ratio with respect to cadmium was about 1.25.
  • Tellurium-cadmium nanoparticles can be produced by introducing tellurium-hydrogen or sodium tellurium-hydrogenhydrogen under an active atmosphere and then refluxing.
  • the semiconductor nanoparticles also correspond to the composition of the nanoparticles Using the material, it can be manufactured by the same method.
  • the luminous efficiency can be improved by using other surfactants according to the chemical yarns.
  • thioglycerol can be used instead of thioglycolic acid.
  • the surface of the nanoparticles is covered with another semiconductor in order to reduce the surface defects of the nanoparticles and improve the luminous efficiency.
  • II-VI group semiconductor nanoparticles monodispersed in water can be obtained by the methods described in International Publication WO 00/17655 Publication, WO 00/17656 Publication, WO 2004/000971 Publication, etc. It can also be produced in a similar manner. In this method, nanoparticles are first produced by the organometallic method.
  • an organometallic compound specifically, a compound in which an alkyl group and phosphorus are chemically bonded, such as trioctyl phosphate and trioctyl phosphate oxide
  • an organometallic compound dimethyl cadmium, etc.
  • a compound in which a group and a metal are directly bonded to each other is injected at a high temperature of about 300 ° C. to obtain semiconductor nanoparticles. Furthermore, if necessary, the surface is covered with another semiconductor.
  • surface-bonded surfactant molecules having both a hydrophobic group such as thiol and a hydrophilic group such as a carboxyl group can be used to produce semiconductor nanoparticles that are monodispersed in water.
  • the emission color of the semiconductor nanoparticles produced by these methods is determined by the particle size, and the smaller the average particle size force S, the shorter the wavelength.
  • the average particle size is preferably in the range of about 2 to 8 nanometers (particularly about 3 to 7 nanometers).
  • the particle size can be controlled by the reflux time. In order to obtain monochromatic light emission, the reflux time is controlled to be constant so that the standard deviation of the dispersion of the particle size distribution of the semiconductor nanoparticles is 20% or less with respect to the average particle size. If the standard deviation of the dispersion of the particle size distribution exceeds 20%, it is not preferable because various light emissions are mixed and it is difficult to obtain the color tone required for the display material.
  • the method for producing fluorescent glass particles with dispersed semiconductor nanoparticles of the present invention includes a first step of adding a alkoxide to a semiconductor nanoparticles-dispersed aqueous solution to generate a sol-gel reaction solution in which hydrolysis has partially progressed (if necessary)
  • the solution obtained in the 2nd step, the 1st step, and the solution obtained in the 2nd step are mixed by adding a surfactant to a hydrophobic organic solvent to form a reverse micelle solution.
  • Glass particles containing dispersed semiconductor nanoparticles And a fourth step of adding an alkoxide and an alkaline aqueous solution to the solution of the glass fine particles generated in the third step and, if necessary, stirring the solution.
  • an alkoxide is added to the semiconductor nanoparticle-dispersed aqueous solution to produce a sol-gel reaction solution containing alkoxide and semiconductor nanoparticles that have been partially hydrolyzed.
  • an alkaline aqueous solution may be added as necessary.
  • the semiconductor nanoparticle-dispersed aqueous solution used in the first step means an aqueous solution in which semiconductor nanoparticles emitting fluorescence (photoluminescence) are uniformly dispersed.
  • Examples of the semiconductor nanoparticles include the II-VI group semiconductors that emit light in the visible to near-infrared region, and include cadmium sulfate, selenium-zinc, cadmium selenide, zinc telluride, telluride. Examples thereof include cadmium and alloys thereof, and cadmium telluride and selenium zinc are particularly preferable. These may have the core-shell structure described above.
  • the concentration of the semiconductor nanoparticles of the semiconductor nanoparticle dispersion solution used in the first step is usually 5x10- 7 ⁇ lxl0- 3 moles Z l, preferably about 5x10- 7 ⁇ 5xl0- 4 moles Z l about, more preferably 1x10- 6 ⁇ 5xl0- 4 mol / l approximately, and most preferably 1x10- 6 ⁇ 2xl0- 4 moles, of the order of liters.
  • the amount of the semiconductor nanoparticles is finally obtained concentration force 3 ⁇ 4 of the silica based glass fine particles XlO- 5 mole Z l or more 1X10- 2 moles Z liters or less, preferably 2X10- 5 moles Z liters or more on 4X10- 3 moles Z liters or less, more preferably be an amount equal to or less than 2X10- 4 moles Z l or more 4X10- 3 moles Z rates torr Yo,.
  • the semiconductor nanoparticle-dispersed aqueous solution is mixed with an aqueous solution in which an alkoxide is dissolved.
  • the alkoxide used here has the general formula (I):
  • R 1 and R 2 are the same or different and represent a lower alkyl group, and r represents 0, 1, 2 or 3).
  • Examples of the lower alkyl group represented by R 1 and R 2 include a linear or branched alkyl group having 1 to 6 carbon atoms, and specifically include methyl, ethyl, n-propyl, and isopropyl. In particular, methyl and ethyl are preferable.
  • Preferred examples of the compound represented by the general formula (I) include tetramethoxysilane, tetraethoxysilane (TEOS), tetraisopropoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane and the like. Especially preferred TEOS.
  • the compounding amount of the alkoxide may be about 1000: 1 to 1: 1, preferably about 100: 1 to 10: 1, with respect to the number of moles of alkoxide: number of moles of semiconductor nanoparticles.
  • the number of moles of semiconductor nanoparticles means that the value obtained by dividing the number of semiconductor nanoparticles by the Avogadro number is used as the number of moles.
  • Is usually about 1: 5 to 1: 500, preferably about 1:10 to 1: 300, more preferably
  • the alkoxide is partially hydrolyzed in the aqueous solution containing the semiconductor nanoparticles and the alkoxide obtained by the above mixing.
  • Such partial hydrolysis of the alkoxide is achieved by stirring the aqueous solution containing the semiconductor nanoparticles and the alkoxide.
  • An alkaline aqueous solution may be prepared as necessary.
  • the alkaline aqueous solution can be suitably used as a limited alkaline aqueous solution as long as the pH is 8 or more (preferably 9 to 12).
  • an alkaline solution such as sodium hydroxide or potassium hydroxide can be used.
  • An aqueous solution of metal hydroxide is cited. Thereby, partial hydrolysis of the alkoxide can be further promoted.
  • ammonia water or a sodium hydroxide aqueous solution is particularly preferable.
  • the amount of the alkaline aqueous solution added is not limited. For example, if the aqueous solution of the semiconductor nanoparticle dispersion is added to the aqueous solution so that the pH is about 8 to: L 1 (preferably about 8.5 to about LO). Good.
  • the metal that constitutes the semiconductor nanoparticles may be added.
  • Examples of the metal ions constituting the semiconductor nanoparticles include the metal ions of the semiconductor nanoparticles described above, and specific examples include zinc ions and cadmium ions.
  • the surfactant for coating the semiconductor nanoparticles that may be added in the first step is not limited as long as it has the property of coating the surface of the semiconductor nanoparticles.
  • thioglycolic acid thioglycerol, And at least one selected from the group consisting of 2-mercaptoethylamine, glycine and the like. Of these, thioglycolic acid is preferred.
  • the nanoparticle surface force surfactant is peeled off from the semiconductor nanoparticles, or the nanoparticles are dissolved in an aqueous solution. Therefore, degradation of the nanoparticles can be suppressed.
  • the first step it is necessary to obtain a solution in which the alkoxide is partially hydrolyzed rather than completely.
  • the third step by using a partial hydrolysis product of an alkoxide having a viscosity higher than that of an unreacted alkoxide, semiconductor nanoparticles can be taken into reverse micelles, and then the alkoxide hydrolyzed quickly. This is because it can be decomposed and vitrified. If the hydrolysis of the alkoxide proceeds too much in the first step, it will vitrify before being taken into the reverse micelles, so it will not be possible to control the size of the glass particles that will ultimately be generated by the size of the reverse micelles. .
  • the stirring temperature is not particularly limited, but is usually 5 to 50 ° C around room temperature, preferably 10 to 40 ° C.
  • the partial hydrolysis time (stirring time) of the alkoxide in the first step is not particularly limited, but is usually 1 to 6 hours, and preferably 2 to 4 hours. If the temperature of the solution is too high during stirring, the hydrolysis of the alkoxide proceeds too rapidly, and it is difficult to obtain a partially hydrolyzed solution. In addition, if the temperature of the solution is too low during stirring, the hydrolysis rate of the alkoxide is too slow, and it takes a long time to obtain a solution in which the alkoxide is partially hydrolyzed. At this point, the semiconductor nanoparticles are gradually deteriorated and the luminous efficiency of fluorescence is lowered.
  • a reverse micelle solution is formed by adding a surfactant to a hydrophobic organic solvent.
  • hydrophobic organic solvent used in the second step examples include hydrocarbons having 4 to 12 carbon atoms, and specifically, linear, branched or cyclic hydrocarbons having 4 to 12 carbon atoms.
  • hydrocarbons having 4 to 12 carbon atoms examples include aliphatic hydrocarbons and aromatic hydrocarbons having 6 to 12 carbon atoms.
  • the above aliphatic hydrocarbon has a melting point and boiling point in the range of 10 to 35 ° C and is liquid at room temperature, and may be either saturated or unsaturated. A straight or cyclic saturated aliphatic hydrocarbon is preferred.
  • the aromatic hydrocarbon is a monocyclic or bicyclic aromatic hydrocarbon, and may have an aliphatic hydrocarbon group on the aromatic ring. More specifically, benzene, toluene, xylene and the like can be mentioned.
  • the surfactant used in the second step is dissolved in a hydrophobic organic solvent, and in the dissolved state, the hydrophobic group side of the surfactant is oriented outward, and the hydrophilic group side of the surfactant is on the inner side. Any material can be used as long as it can produce so-called reverse micelles.
  • an ionic (cationic, ionic, or amphoteric) surfactant having a hydrophilic group or a hydrophobic group having a charge, and a hydrophilic group or a hydrophobic group having no charge! ⁇ Nonionic surfactants.
  • Examples of the ionic (a-on) surfactant include sodium bis (2-ethylhexyl) sulfosuccinate (trade name "Aerosol OT", manufactured by Wako Pure Chemical Industries, Ltd.), etc. Is illustrated.
  • nonionic surfactant examples include polyoxyethylene ether type nonionic surfactants, and particularly polyoxyethylene alkylphenyl ether type nonionic surfactants.
  • polyoxyethylene (5) nonylphenyl ether (trade name “Igepal CO-520”, manufactured by Aldrich), polyoxyethylene (2) nonylphenol ether (trade name “Igepal CO-210”, manufactured by Aldrich) , Polyoxyethylene (9) Polyurethylene ether (trade name “Igepal CO-630”, manufactured by Aldrich), Polyoxyethylene (12) Polyurethylene ether (trade name “Igepal CO-720”, manufactured by Aldrich) Ruferyl ether type nonionic surfactant, polyoxyethylene (2) Iso-Otatil-Fel ether (trade name “Igepal CA-210”, manufactured by Aldritch), Polyoxyethylene (5) Isooctyl-phenyl ether ( Polyoxyethylene isooctyl phenyl ether, such as “Igepal CA
  • Suitable surfactants are nonionic surfactants, and polyoxyethylene ether type nonionic surfactants, in particular polyoxyethylene nourether ether type nonionic surfactants, In particular, polyoxyethylene (5) nonylphenyl ether. This is because, as described above, since reverse micelles and nanoparticles do not cause electrostatic repulsion, it is considered that nanoparticles are easily incorporated into reverse micelles.
  • Reverse micelles are produced by adding a surfactant to a hydrophobic organic solvent and stirring.
  • the amount of the surfactant used may be about 0.001 to 0.1 mol, preferably about 0.005 to 0.02 mol, per 1 mol of the hydrophobic organic solvent.
  • the temperature at the time of stirring is not particularly limited Force Usually, it may be about 10 to 35 ° C. It is necessary to vigorously stir the solution in order to produce reverse micelles of uniform size. As a result, reverse micelles having an average diameter (outer diameter) of about 10 nanometers to about 5 micrometers are formed.
  • the average diameter (outer diameter) of the reverse micelle can be changed by the mutual ratio of the amount of the surfactant, the amount of water, and the amount of the hydrophobic organic solvent.
  • the stirring temperature is not particularly limited, but is usually 5 to 50 ° C around room temperature, preferably 10 to 40 ° C.
  • the solution containing the reverse micelles obtained in the second step is mixed with the solution containing the partially hydrolyzed alkoxide obtained in the first step and the semiconductor nanoparticles, and the reverse micelles are mixed.
  • the alkoxide is further hydrolyzed to advance the sol-gel reaction to produce glass microparticles containing dispersed semiconductor nanoparticles inside. To do.
  • the alkoxide is partially hydrolyzed and taken into the reverse micelle together with the semiconductor nanoparticles, the alkoxide is hydrolyzed, and the sol-gel reaction is advanced to disperse and contain the semiconductor nanoparticles. Because the glass particles are made, the reaction time is short. As a result, the deterioration of the semiconductor nanoparticles is suppressed, and glass particles with extremely high luminous efficiency can be obtained.
  • vitrification in the reverse micelle is performed in a state where the alkoxide is partially hydrolyzed, that is, a fluid having a certain degree of viscosity in which a silica network structure is partially formed.
  • the state power of low nature goes on. Therefore, during the vitrification process, the semiconductor nanoparticles are pushed out by the silica network structure force and move to the vicinity of the outer surface of the glass microparticles, and the dispersion concentration inside the glass microparticles decreases or the nanoparticles aggregate. Therefore, it is difficult to cause a situation where the luminous efficiency is reduced or the nanoparticles are sufficiently shielded by the external atmosphere by the glass and thus the long-term stability is lowered.
  • the nanoparticles are not biased near the outer surface of the glass microparticles. This is advantageous for incorporating a plurality of particles in a well dispersed state inside.
  • the mixing ratio (molar ratio) of alkoxide to water is usually about 1: 5 to 1: 500, preferably about 1:10 to 1: 300, more preferably 1:15 to 1: About 200. Selecting such a mixing ratio is preferable because there is a sufficient amount of water for hydrolysis, so that the alkoxide can be completely vitrified by the sol-gel reaction, and the rate of vitrification by the sol-gel reaction is appropriate.
  • the stirring temperature is not particularly limited, but is usually 5 to 50 ° C around room temperature, preferably 10 to 40 ° C.
  • the hydrolysis time (stirring time) of the alkoxide in the third step is not particularly limited, but is usually 1 to 6 hours, preferably 2 to 4 hours.
  • the glass fine particle phosphor having the semiconductor nanoparticles fixed therein is dispersed in the hydrophobic organic solvent.
  • the solvent is removed from this, and if necessary, an excess of the surfactant adhering to the surface of the generated fine glass particles can be removed with a suitable solvent, for example, a polyoxyethylene ether type nonionic interface.
  • a suitable solvent for example, a polyoxyethylene ether type nonionic interface.
  • an activator it is removed by washing with acetonitrile, toluene, etc., and if dried, the semiconductor nanoparticles are mostly spherical, with a majority of them fixed inside (partially in the vicinity of the surface) The same shall apply hereinafter).
  • the average particle diameter of the resulting fluorescent glass particles is about 10 nanometers to 5 micrometers.
  • post-processing (fourth step) as described below may be performed as necessary.
  • an alkoxide such as TEOS is further added to the reaction solution after the completion of the third step, and an alkaline aqueous solution is added for hydrolysis of the added alkoxide as necessary. And further stirring for 1 to 6 hours, preferably 3 to 5 hours.
  • the temperature at the time of stirring is not particularly limited, but is usually 5 to 70 ° C, preferably 10 to 60 ° C.
  • an ultrasonic wave may be applied to the solution, or the solution may be warmed to about 35 to 70 ° C.
  • the solution containing the semiconductor nanoparticle-dispersed glass fine particles in such a state is further hydrolyzed by adding an alkoxide represented by the above general formula (I), thereby dispersing the semiconductor nanoparticles immediately after the end of the third step.
  • the surface of the glass fine particles is further hardened and coated with a glass layer.
  • alkaline aqueous solution examples include those described above in the first step.
  • the addition amount of the alkaline aqueous solution is not limited, and may be appropriately determined according to the pH of the alkaline aqueous solution.
  • a metal ion and Z constituting the semiconductor nanoparticles or a surfactant for coating the semiconductor nanoparticles may be added.
  • the metal ions constituting the semiconductor nanoparticles and the surfactant for coating the semiconductor nanoparticles are the same as those described above in the first step.
  • the aqueous alkaline solution is preferably aqueous ammonia or sodium hydroxide aqueous solution
  • the surfactant for coating semiconductor nanoparticles is preferably thioglycolic acid.
  • Examples of the lower alkyl group represented by R 3 include linear or branched alkyl groups having 1 to 6 carbon atoms (particularly 3 carbon atoms), and specifically include methyl, ethyl, and n- Examples include propyl and isopropyl, and n-propyl is particularly preferable.
  • the lower alkyl group represented by R 3 has one of an amino group, a thiol group, and a carboxyl group.
  • Examples of the lower alkyl group represented by R 4 include straight-chain or branched-chain alkyl groups having 1 to 6 carbon atoms, and specific examples include methyl, ethyl, n-propyl, isopropyl and the like. In particular, methyl and ethyl are preferable.
  • the glass fine particles produced using the silane coupling agent represented by the general formula (II) have functional groups such as —OH, —NH, —SH, —COOH on the surface. Have. So
  • the glass fine particles can be bonded to biological molecules using their functional groups and can be used as fluorescent labels.
  • semiconductor nanoparticle-dispersed glass fine particles having a relatively small particle size are obtained, and when the rate of addition of alkoxide in the solution is increased.
  • semiconductor nanoparticle-dispersed glass particles having a relatively large particle size can be obtained. This is because when a alkoxide is slowly added to a solution, each of the core semiconductor nanoparticle-dispersed glass particles is independently coated with a glass layer. When an alkoxide is rapidly added to a solution, It is presumed that the glass layer is coated on the core of the semiconductor nanoparticle-dispersed glass fine particles as a core, and the glass particle finally obtained has a large particle size.
  • the glass fine particle phosphor having the semiconductor nanoparticles fixed therein is dispersed in the hydrophobic organic solvent. Remove the solvent from this, and if necessary, remove the excess surfactant adhering to the surface of the generated fine glass particles with a suitable solvent such as a polyoxyethylene ether type nonionic surface active agent. In the case of an agent, it is removed by washing with acetonitrile or toluene, and dried to obtain a powder of substantially spherical fluorescent glass particles in which the semiconductor nanoparticles are fixed.
  • a suitable solvent such as a polyoxyethylene ether type nonionic surface active agent.
  • an agent it is removed by washing with acetonitrile or toluene, and dried to obtain a powder of substantially spherical fluorescent glass particles in which the semiconductor nanoparticles are fixed.
  • the concentration of semiconductor nanoparticles in silica-based glass particles with a diameter of 10 nanometers is
  • the concentration of semiconductor nanoparticles in silica-based glass particles with a diameter of 60 nanometers is 2x1.
  • Z l is in a state of 1.6 to 320 or so semiconductor nanoparticles on average per glass particles are included.
  • Te is per cent ⁇ silica based glass fine particles having a diameter greater than 90 nanometers, der lower (2x10- 5 mol Z l) or more range concentration of the semiconductor nanoparticles in the glass fine particles of the Then, on average, about 5 or more semiconductor nanoparticles are included per glass particle.
  • the concentration of the semiconductor nanoparticles in the glass microparticles is too lower than the above concentration range, it is not practically suitable because light emission with sufficient brightness cannot be obtained.
  • the average particle size of the obtained fluorescent glass fine particles is about 10 nanometers to 5 micrometers, in particular, 20 nanometers to 1 micrometer. Furthermore, the particle size distribution of the glass fine particle phosphor can be made uniform by centrifugation or filtering.
  • the semiconductor nanoparticle-dispersed glass fine particles obtained as described above have a visible to near-infrared region, particularly a visible wavelength region (usually 360 to 830 nm, particularly 400 ⁇ ! To 760 nm) in a dispersion solution of the glass fine particles.
  • the emission efficiency (quantum yield) of fluorescence in the inter-wavelength range is 25% or more, preferably 35% or more, and more preferably 60% or more.
  • the solvent is usually a hydrophobic organic solvent (for example, cyclohexane or the like). Hydrocarbon solvents) are used. Or you may measure using water as a solvent.
  • the luminous efficiency is usually constant regardless of the concentration of the glass fine particles in the solution.
  • the luminous efficiency is measured by placing a solution in which glass fine particles are dispersed in a quartz cell, and using the fluorescence spectrum and absorption spectrum measured with a normal fluorescence spectrophotometer and absorption spectrophotometer. Is calculated.
  • the production method of the present invention combines the reverse micelle method and the sol-gel method, and incorporates a mixture of a partially hydrolyzed product of alkoxide and semiconductor nanoparticles into a reverse micelle for vitrification. It is a very effective means for obtaining a glass particulate phosphor exhibiting high luminous efficiency.
  • the manufacturing process is simple, and the strength is accommodated inside the glass microparticles without substantially reducing the emission efficiency (quantum yield) of the semiconductor nanoparticles in the semiconductor nanoparticle dispersion aqueous solution used in the first step. There is an advantage that can be.
  • the semiconductor nanoparticles can be fixed not only on the surface of the glass particles but also inside, it is possible to maintain the luminous efficiency of the semiconductor nanoparticles for a long time without being influenced by the external environment. .
  • the fluorescent glass fine particles in which the semiconductor nanoparticles are dispersed and fixed are provided with the powder.
  • a phosphor (fluorescent glass material) in which semiconductor nanoparticles are dispersed and fixed can be obtained by forming into a fixed shape and subjecting to heat treatment (firing) as necessary.
  • a sample in which semiconductor nanoparticle-dispersed glass fine particles are dispersed and fixed on a substrate is placed on a stage, and the sample is irradiated with laser light from a light source as it is or with a lens that is narrowed down by a lens.
  • a lens that is narrowed down by a lens.
  • a sample is prepared by dispersing glass particles containing nanoparticles having different fluorescence spectra on a glass plate made of non-fluorescent quartz so that there are about 10 particles in a 10 ⁇ m square.
  • This sample is irradiated with a short wavelength side light (488 nm) of an argon laser with a 40x objective lens, and the fluorescence emitted from the sample is split using a device that guides it to a spectroscope with a CCD. .
  • glass particles can be confirmed by detecting fluorescence while scanning the irradiation position of the argon laser on the glass plate using a biaxial micrometer of X and Y. This makes it possible to identify glass particles containing semiconductor nanoparticles having different fluorescence emission spectra according to the fluorescence emission color.
  • silane coupling agent represented by the general formula (II) is prepared in the fourth step of glass fine particle production, an amino group, a thiol group, a carboxyl group, etc.
  • the functional group is bonded.
  • it can be used as a fluorescent label by binding to biological molecules such as proteins. It is also possible to selectively sort specific cells including those bound in this way by applying a flow cytometry method.
  • the semiconductor nanoparticle-dispersed glass fine particles according to the present invention are dispersed and contained when irradiated with ultraviolet rays of a single wavelength, either in a state of being dispersed in a solution or in a state of being evaporated to remove a solvent.
  • the nanoparticles shows various emission colors in the visible to near-infrared region, especially in the visible region, and its luminous efficiency is more than 25%, more than 60%, which is much higher than before. Since a plurality of nanoparticles are contained at a high concentration in one glass fine particle, high brightness can be obtained.
  • the semiconductor nanoparticle-dispersed glass fine particles basically exhibit the properties of glass as a whole, and are excellent in chemical stability, mechanical strength, heat resistance, etc. with respect to the external atmosphere. Excellent long-term stability!
  • the glass since a plurality of semiconductor nanoparticles are dispersed and fixed inside the glass fine particles as a matrix as described above, the glass has high fluorescence emission efficiency and excellent long-term stability of fluorescence characteristics.
  • a method for producing a fine particle phosphor is provided.
  • the luminous efficiency of domium nanoparticles was 81%.
  • the semiconductor nanoparticles synthesized in this way could be dispersed and fixed in glass fine particles by a method combining the reverse micelle method and the sol-gel method as described below.
  • Cyclohexane and polyoxyethylene (5) nourphe ether (trade name “Igepal C 0-520”, manufactured by Aldrich) were mixed at a molar ratio of 29: 1, and dissolved by stirring.
  • the tellurium-cadmium nanoparticle-dispersed glass particles were almost spherical.
  • the particle size (diameter) was distributed in the range of about 10 to 300 nanometers in the transparent supernatant, and the average particle size was estimated to be about 20 to 30 nanometers.
  • the brown precipitate it was distributed from about 50 nanometers to about 5 micrometers, and contained glass fine particles having a particle size larger than that in the supernatant.
  • Figure 1 shows a TEM photograph of tellurium-cadmium nanoparticle-dispersed glass particles present in the supernatant.
  • glass particles dark gray circles
  • tellurium cadmium nanoparticles small black dots
  • glass fine particles having a particle size other than this, for example, 20 to 30 nanometers it was observed that tellurium-cadmium nanoparticles were present inside the glass fine particles.
  • Figure 2 shows a TEM photograph of tellurium cadmium nanoparticle-dispersed glass particles present in the brown precipitate.
  • the fluorescence spectrum of the transparent supernatant that emits red fluorescence was almost the same as that of the semiconductor nanoparticle dispersion aqueous solution used as a raw material, and the emission peak wavelength was 642 nanometers.
  • the luminous efficiency was estimated at 75%.
  • the average particle size of the glass fine particles in the supernatant after centrifugation may be increased to around 100 nanometers. did it. In that case, the luminous efficiency was as strong as 75%. Furthermore, the precipitate obtained after centrifugation by the above method can be classified into a glass particle having a large particle diameter and a glass particle having a small particle diameter using a filter having a pore diameter of 450 nanometer (Mirex manufactured by Millipore). did it.
  • the fourth step when the operation of warming the solution at 40 ° C for 30 minutes is added following the above-described ultrasonic application operation for 30 minutes, the same as above.
  • the emission efficiency of red fluorescence of the supernatant obtained after centrifugation was 81%, which was the same value as the emission efficiency of the semiconductor nanoparticle dispersion aqueous solution used as a raw material.
  • the luminous efficiency was calculated using a fluorescence spectrum and an absorption spectrum measured with a normal fluorescence spectrophotometer and absorption spectrophotometer after placing a solution in which glass fine particles were dispersed in a quartz cell.
  • the light emission efficiency value of ultrafine particles is known as absorbance (absorption coefficient X concentration X optical path length) and luminous efficiency! /, Sulfuric acid aqueous solution of ruquinine molecule (sulfuric acid concentration 0.5 mol / liter) )
  • absorbance absorption coefficient X concentration X optical path length
  • luminous efficiency! / Sulfuric acid aqueous solution of ruquinine molecule
  • the tellurium-cadmium nanoparticle-dispersed glass fine particles were superior in stability compared to the tellurium-cadmium nanoparticles that were not dispersed in the glass fine particles.
  • the aqueous dispersion of cadmium telluride nanoparticles exhibiting red light emission was left in the atmosphere at room temperature for 2 months, the nanoparticles aggregated and precipitated in the aqueous solution and no longer emitted light.
  • tellurium-cadmium nanoparticle-dispersed glass particles that emit red light are aggregated and precipitated in a solution even after being left in a cyclohexane dispersion at room temperature in the atmosphere for 2 months. A strong red light was emitted.
  • the glass fine particles were solid powdered, they left a strong red light emission without agglomeration and precipitation in the solution even after being left at room temperature for 2 months.
  • the tellurium-cadmium nanoparticle-dispersed glass particles were spherical.
  • the particle size (diameter) of the transparent supernatant was distributed in the range of about 10 to 300 nanometers, and the average particle size was estimated to be about 20 to 30 nanometers.
  • the brown precipitate it was distributed from about 50 nanometers to about 5 micrometers, and contained fine glass spheres having a particle size larger than that in the supernatant.
  • the fluorescence spectrum of the transparent supernatant that emits green fluorescence was not significantly different from that of the semiconductor nanoparticle-dispersed aqueous solution used as a raw material, and the emission peak wavelength was 539 nanometers.
  • the luminous efficiency was estimated at 28%.
  • the average particle size of the glass fine particles in the supernatant after centrifugation may be increased to around 100 nanometers. did it. In that case, the luminous efficiency was as strong as 28%. Furthermore, the precipitate obtained after centrifugation by the above method can be classified into a glass particle having a large particle diameter and a glass particle having a small particle diameter using a filter having a pore diameter of 450 nanometer (Mirex manufactured by Millipore). did it.
  • Figure 4 shows the green fluorescence vector (b) of the tellurium cadmium nanoparticle-dispersed glass particle dispersion.
  • the green light-emitting tellurium-cadmium nanoparticle-dispersed glass fine particles are not dispersed in the glass fine particles in the same manner as the red light-emitting tellurium-cadmium nanoparticle-dispersed glass fine particles described in Example 1. Excellent stability. When this aqueous dispersion of green light-emitting nanoparticles was left in the atmosphere at room temperature for 2 months, the nanoparticles aggregated and precipitated in the aqueous solution, and almost no light was emitted. On the other hand, under the same conditions, the nanoparticle-dispersed glass fine particles maintained the emission intensity without being aggregated and precipitated in the cyclohexane dispersion, and maintained the emission intensity even in the solid powder state.
  • the selenium-zinc nanoparticles are dispersed in an aqueous solution in which zinc ions and thioglycolic acid are dissolved, and the pH is adjusted to 10-11. Then, post-treatment was performed by irradiating with ultraviolet rays. As a result, core-shell type nanoparticles in which the surface of the selenium-zinc nanoparticle core was coated with a thin sodium sulfate-zinc shell layer were produced. This core-shell type nanoparticle exhibited a blue-violet light emission with an emission peak wavelength of 438 nanometers when excited by ultraviolet light, and its luminous efficiency was 40%.
  • the operations in the first to third steps and the fourth step were performed in the same manner as in Example 1.
  • an aqueous solution of sodium hydroxide and sodium hydroxide containing zinc ions and thiodaricholic acid was used in place of the aqueous ammonia.
  • zinc perchlorate and thioglycolic acid were added to distilled water, and then 1 mol Z liter of sodium hydroxide aqueous solution was gradually added to the distilled water. It was obtained by adjusting the pH to about 10 to ll.
  • Fig. 5 shows a TEM photograph of the zinc selenide Z-sulfurized zinc core-shell nanoparticle-dispersed glass particles present in the supernatant.
  • a large number of selenium-zinc Z-sulfurium-zinc core-shell nanoparticles are present inside spherical glass particles (dark, gray circles) with a particle size of 20-50 nanometers. The situation was recognized.
  • the fluorescence spectrum of the transparent supernatant emitting blue-violet fluorescence was not significantly different from that of the semiconductor nanoparticle-dispersed aqueous solution used as the raw material, and the emission peak wavelength was 432 nanometers.
  • the luminous efficiency was estimated at 27%.
  • the alloy nanoparticles of zinc selenide and selenium-cadmium were placed in an aqueous solution in which zinc ions, cadmium ions, and thioglycolic acid were dissolved. After the dispersion, the pH was adjusted to 10 to 11, and ultraviolet rays were irradiated and then the treatment was performed. As a result, core-shell type nanoparticles in which the surface of the core, which is an alloy particle of zinc selenide and selenium-cadmium, was coated with a thin shell layer having an alloying force of zinc sulfate and cadmium sulfate was produced. .
  • the core-shell type nanoparticles emitted blue light at an emission peak wavelength of 450 nanometers when excited with ultraviolet light, and had a luminous efficiency of 50%.
  • the alloy nanoparticles of selenium-zinc and tellurium-zinc are dispersed in an aqueous solution in which zinc ions and thioglycolic acid are dissolved, and the pH is adjusted to 10 to 11 and irradiated with ultraviolet rays. Went.
  • core-shell-type nanoparticles that emit blue-violet light when excited by ultraviolet light were prepared by coating the surface of the core, which is an alloy particle of zinc selenide and tellurium zinc, with a thin zinc sulfide shell layer.
  • Example 3 Further, in the same manner as in Example 3, strong blue-violet fluorescence is exhibited (the zinc selenide telluride). Zinc fluoride alloy), a glass fine particle powder containing zinc sulfide core-shell type nanoparticles was obtained.
  • Steps 1 to 3 were carried out in the same manner as in Example 1 using tellurium-cadmium nanoparticle semiconductor nanoparticles that were synthesized in the same manner as in Example 1 and that emitted red light and had an average particle size of 4 nanometers.
  • TEOS l.OxlO— 3 mol and aqueous ammonia were added to the above solution and stirred for 4 hours, and then ultrasonic waves were applied for 30 minutes at room temperature. .
  • the Terurui spoon cadmium nanoparticles dispersed glass fine particle dispersion solvent solution then 3 ⁇ amino propyl trimethoxysilane (APS) 3.4x10- 4 moles of aqueous ammonia Karoe, after stirring 1 hour, 30 minutes at room temperature Carved ultrasonic waves.
  • APS amino propyl trimethoxysilane
  • the obtained solution was centrifuged at 4000 revolutions per minute. As a result, the solution was separated into a brown precipitate and a transparent supernatant. Upon excitation with ultraviolet light, both the precipitate and the supernatant showed strong red fluorescence.
  • the shape (spherical shape), particle size (diameter), fluorescence wavelength and luminous efficiency of the tellurium-cadmium nanoparticle-dispersed glass fine particles obtained in this manner were the same as in Example 1.
  • the APS added in the fourth step was hydrolyzed and the tellurization power was increased.
  • a glass layer is formed on the outermost surface of the domium nanoparticle-dispersed glass fine particles, and the final outer surface of the tellurium-cadmium nanoparticle-dispersed glass fine particles has both —OH groups and amino groups. Rukoto has been shown.
  • nanoparticle-dispersed glass particles produced by this method exhibit extremely high luminescence, it is possible to separately detect and separate the luminescence of each glass particle force.
  • Example 2 the green light emission (about 3 nanometers in diameter) produced in Example 2 was added to the aqueous solution of cadmium telluride nanoparticles dispersed in red light emission (about 4 nanometers) obtained in the first step of Example 1. An approximately equal amount of the mixture was mixed. Using this mixed aqueous solution of tellurium-cadmium nanoparticles dispersed, nanoparticle-dispersed glass particles were prepared by the method of Example 1. As a result, red and green light emitting nanoparticles are mixed and incorporated into the single glass particle obtained.
  • the glass particles in the first position detected almost only red light emission, and thus many large nanoparticles (about 4 nanometers in diameter) were included. I understood.
  • FIG. 1 shows a TEM photograph of tellurium-cadmium nanoparticle-dispersed glass fine particles present in the supernatant obtained by centrifugation after the fourth step in Example 1.
  • FIG. 2 shows a TEM photograph of cadmium telluride nanoparticle-dispersed glass fine particles present in a precipitate obtained by centrifugation after the fourth step in Example 1.
  • Example 1 the red fluorescence spectrum (a) of the tellurium cadmium nanoparticle dispersion aqueous solution as the raw material and the red color of the tellurium cadmium nanoparticle dispersed glass fine particle dispersion as the supernatant liquid.
  • the fluorescence spectrum of (b) is shown.
  • Example 2 the green fluorescence spectrum (a) exhibited by the raw tellurium cadmium nanoparticle dispersion aqueous solution, and the green indicated by the tellurium cadmium nanoparticle-dispersed glass fine particle dispersion as the supernatant.
  • the fluorescence spectrum of (b) is shown.
  • FIG. 5 shows a TEM photograph of zinc selenide Z-sulfuric acid zinc core-shell nanoparticle-dispersed glass particles present in the supernatant obtained by centrifugation after the fourth step in Example 3.
  • Example 3 the raw material selenium-zinc Z-sulfurium-zinc core-shell nanoparticle dispersion aqueous solution blue-violet fluorescence spectrum (a) and the supernatant liquid selenium-zinc zinc Z-sulfur The blue-violet fluorescent spectrum (b) shown by the zinc fluoride core-shell nanoparticle-dispersed glass particle dispersion is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 本発明は、従来の半導体ナノ粒子分散ガラス微粒子に優る発光効率と濃度で明るい蛍光を発し、蛍光強度の経時安定性等に優れた半導体ナノ粒子分散微小シリカ系ガラス微粒子、及びその作製方法を提供する。 アルコキシドの加水分解生成物を含む平均粒径10ナノメートル以上5マイクロメートル以下の微小なシリカ系ガラス微粒子中に、半導体ナノ粒子が2x10-5モル/リットル以上1x10-2モル/リットル以下の濃度で分散されてなる半導体ナノ粒子分散ガラス微粒子であって、当該半導体ナノ粒子分散ガラス微粒子が分散した溶液における蛍光の発光効率(量子収率)が25%以上(さらに60%以上)である半導体ナノ粒子分散ガラス微粒子、並びにその作製方法。

Description

明 細 書
半導体ナノ粒子分散ガラス微粒子及びその作製方法
技術分野
[0001] 本発明は、半導体ナノ粒子を含有するガラス微粒子に関し、特に蛍光 (フォトルミネ ッセンス)を発する半導体ナノ粒子を分散含有するガラス微粒子とその作製方法に関 する。
背景技術
[0002] 近年、高輝度で高精細、かつ、駆動に要するエネルギー(消費電力)が小さい高性 能かつ省エネタイプのカラーディスプレイが必要となって 、る。このようなディスプレイ を実現する鍵となるのは発光効率及び輝度が高く光の 3原色 RGBのような種々の色 で発光する高性能な蛍光体である。また、需要が高まりつつある新しい省エネタイプ の固体照明にも高性能な蛍光体が不可欠である。
[0003] 従来、希土類イオンや遷移金属イオンを用いた蛍光体が、有機色素等に比べると 耐久性に優れて 、たためディスプレイ等に使用されてきた力 輝度や演色性は必ず しも十分ではな力つた。そのため、それらを凌ぐ高輝度の蛍光体が要望されていた。
[0004] それを実現する可能性が高 、新 、高性能蛍光体として、同一波長の紫外線を照 射した場合でも粒径に応じて様々な波長の明るい蛍光を発する半導体ナノ粒子が注 目されている。さらに、ディスプレイ、照明以外では、生体分子に結合し蛍光プローブ として用いる応用分野があり、ここでも、従来用いられてきた有機色素よりも蛍光強度 が経時的に低下しにく 、半導体ナノ粒子が注目されて 、る。
[0005] このような蛍光体となる半導体は、主に II-VI族半導体 (硫ィ匕カドミウム (CdS)、セレン 化亜鉛 (ZnSe)、セレン化カドミウム (CdSe)、テルル化亜鉛 (ZnTe)、テルル化カドミウム( CdTe)等)であり、これらの半導体は直接遷移を示し、発光寿命が約 10ナノ秒と、従来 の、禁制遷移の性格をもつものが多 、希土類イオンや遷移金属イオンを用いた蛍光 体よりも約 5桁短ぐ励起光の吸収と蛍光の放出を著しく急速に繰り返すことができる ので、はるかに高輝度の蛍光が得られる。発光寿命が短いことは、励起光の ON、 OF Fに対する応答も速いことを意味する。また、有機色素と比較すると、半導体ナノ粒子 ははるかに劣化しにくい。
[0006] これまでに、このような半導体ナノ粒子については、水溶液中で合成する方法と非 水溶液中で合成する方法が開発されている。し力しながら、溶液中で合成した半導 体ナノ粒子は、合成した直後から、次第に粒子の凝集等が起こって発光特性が劣化 し、また、特に非水溶液中で合成したナノ粒子は、水分に弱ぐ微量の水分の共存に よって蛍光が急速に衰え、さらに、ナノ粒子の溶液のままでは材料として工学的に応 用しにくいという問題があった。そのため、半導体ナノ粒子を透明なガラス等のマトリ ックス中に分散固定する形で閉じ込め、種々の環境下で長期にわたって高輝度発光 特性を維持する工学的応用に適した固体材料とする必要がある。
[0007] ナノ粒子を保持する固体マトリックスとしては、ガラスや透明な有機高分子材料があ る。ガラスは、有機高分子と比較して透明性が良ぐ紫外線にも強ぐまた、水分や酸 素等を通しにくいためマトリックス中に分散したナノ粒子の化学変化による劣化を長 期にわたって防ぐことができる等の利点があるので優れている。ガラスの生成にはゾ ルーゲル法が有利である。ゾルーゲル法では、常温常圧と ヽぅ穏やかな条件下でガ ラス化が進むので、半導体ナノ粒子が、水溶液法で合成された直後の粒径と高い発 光効率を保持したまま、透明なガラス中に分散固定される。一旦固体となれば、ナノ 粒子の凝集や酸ィ匕劣化も進みにくぐ高輝度の蛍光を長期にわたり安定に発する材 料ができる。
[0008] 半導体ナノ粒子をゾルーゲル法でガラス中に分散固定した蛍光性ガラスとしては、 これまでに、バルタ状のガラスとガラス微粒子、及び、ガラス薄膜の作製方法力 ^ヽくつ か試みられている。この内、半導体ナノ粒子を分散含有したガラス微粒子は、デイス プレイや照明等の発光デバイスを作製する際に粉体状の蛍光体として基材上に堆積 させて用いる場合、および、生体分子に結合して蛍光プローブとして用いる場合に重 要である。以下では、半導体ナノ粒子をゾルーゲル法でガラス中に分散固定した蛍 光性のガラス微粒子に限定して記述する。
[0009] 従来、半導体ナノ粒子をゾルーゲル法でガラス中に分散固定した蛍光性のガラス 微粒子、及び、その作製方法が以下のようにいくつ力試みられている。
[0010] 第 1のナノ粒子分散ガラス微粒子は、半導体ナノ粒子をゾルーゲル法でガラス中に 分散固定した蛍光性のガラス微粒子であって、その発光効率カ^〜 20%程度のもので ある。その作製方法は、疎水性の有機溶媒中で界面活性剤の逆ミセルを生成させ、 次にその溶液にナノ粒子分散水溶液を添加して、ナノ粒子水溶液を内包した逆ミセ ルを生成させ、その後、反応溶液中にガラス生成のための反応物としてテトラエトキシ シラン (TEOS)等のアルコキシドを加えて、逆ミセルにお ヽてゾルーゲル反応を進行さ せることにより、最終的に、ナノ粒子を分散固定したガラス微粒子を作製するものであ る(特許文献 1及び非特許文献 1〜5)。
[0011] この第 1の作製方法によれば、ナノ粒子は 1個 1個の逆ミセル中に分かれて存在す るので、ゾルーゲル反応によるガラス生成過程において、ナノ粒子の凝集を抑制する ことが期待された。実際に、この方法を適用して、ナノ粒子を分散固定ィ匕したガラス粒 子を作製することができた。
[0012] しかし、第 1の作製方法で得られるナノ粒子分散ガラス微粒子の発光効率は、特許 文献 1および非特許文献 1では 5-10%、非特許文献 2では 14-20%、非特許文献 3では 7%、非特許文献 4では 1-11%であり、いずれも 20%以下と小さぐ実用的には満足でき るものではな力 た。
[0013] また、第 1の作製方法のうち特許文献 1及び非特許文献 1の方法では、半導体ナノ 粒子がガラス粒子の内部ではなく外表面付近に固定されたものであった。半導体ナ ノ粒子がガラス粒子の外表面付近で固定された場合、ガラス内部への固定と比較し て、半導体ナノ粒子の外部雰囲気力もの遮断が不十分であるため、蛍光特性の長期 安定性が不十分になり易 、と 、う問題があった。このように半導体ナノ粒子がガラス 粒子の外表面に偏在する理由の 1つは次のように考えられる。ゾルーゲル反応の進 行過程でアルコキシドが加水分解しシリカの網目構造が発達する際に、粘度の低い 未反応のアルコキシドと半導体ナノ粒子の混合物から、次第にアルコキシドの加水分 解が進み徐々に粘度の高いゲルと半導体ナノ粒子の混合物へと変化する。その過 程において、半導体ナノ粒子がシリカの網目構造力 排除され易ぐその結果、ゾル ゲル反応が完了してガラス化した後に、半導体ナノ粒子は生成したガラス粒子の 内部ではなく外表面付近に固定されてしまったと推測された。
[0014] 第 2の作製方法として、半導体ナノ粒子をゾルーゲル法でガラス中に分散固定した 蛍光性のガラス微粒子、及び、その作製方法が、バベンディらによって報告されてい る (非特許文献 6)。この第 2の作製方法は、予め有機溶媒中で合成したナノ粒子を、 シランカップリング剤等およびアミノ基を有するアルコールを溶解した溶液中に分散さ せ、ナノ粒子の合成過程でナノ粒子表面にコートされているチォグリコール酸等の有 機分子を、アミノ基を有するアルコールおよびシランカップリング剤等に置換する。次 に、このナノ粒子分散液を、ナノ粒子を含まない微小シリカ系ガラス微粒子と有機高 分子のアルコール分散液に加えた後、アンモニア水とアルコキシドを添カ卩し、ゾル— ゲル反応を行わせる方法である。
[0015] この方法によれば、ナノ粒子を含まな 、ガラス微粒子の表面に、ナノ粒子を含有す るゾルーゲルガラス層がコートされた構造の蛍光性ガラス微粒子が得られる。しかし、 ガラス微粒子の表層付近にのみナノ粒子が存在し、ガラス微粒子の核にはナノ粒子 が含まれていないため、ガラス微粒子中のナノ粒子の分散濃度を高めることができず 、そのため強 、発光及び高 、発光効率を得ることが困難であると 、う問題があった。
[0016] 第 3の作製方法として、表面が界面活性剤でコートされた半導体ナノ粒子を用いて 、その表面をシランカップリング剤やアルコキシド等でィ匕学修飾した後、シランカップ リング剤やアルコキシド等を加水分解することにより、半導体ナノ粒子を含有するガラ ス微粒子を作製する方法が報告されている(非特許文献 7及び 8)。しかし、この方法 では、 1個のガラス微粒子の中に 1個の半導体ナノ粒子だけし力含有させることができ ず、したがって、ガラス微粒子中のナノ粒子の濃度が非常に低ぐ明るい蛍光を得る ことが難しぐ実用的には不利である。
特許文献 1:特開 2002-211935号公報
非特許文献 1:セルバン、李、安藤、村瀬、ケミストリー レターズ、 33卷、 4号、 434頁 (2 004)
非特許文献 2 :セルバン、タン、イン、アドバンスド マテリアルズ、 17卷、 1620頁 (2005) 非特許文献 3 :ヤン、ガオ、アドバンスド マテリアルズ、 17卷、 2354頁 (2005) 非特許文献 4:ィ、セルバン、リー、パパエフシミオゥ、クンダリヤ、イン、ジャーナル ォブ アメリカンケミカルソサエティ一、 127卷、 4990頁 (2005)
非特許文献 5 :ダーバンディ、トーマン、ナン、ケミストリー ォブ マテリアルズ、 17卷、 5720頁 (2005)
非特許文献 6 :チャン、ツインマー、ストロー、ステツケル、ジャイン、バベンディ、アドバ ンスド マテリアルズ、 16卷、 2092頁 (2004)
非特許文献 7 :ゲリオン、ピノー、ウイリアムス、ノ《ラック、ザンチェト、ワイス、ァリビサト ス、ジャーナル ォブ フィジカルケミストリー ビー、 105卷、 8861頁 (2001) 非特許文献 8 :ナン、マルバ-一、アンゲバンテ ヒエミー インターナショナル エディ シヨン、 43卷、 5393頁 (2004)
発明の開示
発明が解決しょうとする課題
[0017] 本発明は、従来の半導体ナノ粒子分散ガラス微粒子に優る発光効率と濃度で可視 波長の明るい蛍光を発し、蛍光強度の経時安定性等に優れた半導体ナノ粒子分散 微小シリカ系ガラス微粒子、及びその作製方法を提供することを目的とする。ここで、 シリカ系ガラスとは、少なくとも一部分に Sト 0- Si結合を有する物質のことを意味する。 課題を解決するための手段
[0018] 本発明者は、従来、半導体ナノ粒子分散ガラス微粒子における蛍光の発光効率が 高々 20%程度であった理由は、その作製方法及びその構造に原因があると考えた。
[0019] すなわち、従来の第 1の作製方法では、未反応のアルコキシドと半導体ナノ粒子の 混合物から出発するため、ゾルーゲル反応が十分に進行してガラス微粒子が生成す るまでに、反応溶液を 1〜3日間程度撹拌する必要があるが、そのような長時間の撹 拌過程で、溶液中のナノ粒子が次第に劣化し蛍光強度が低下すると考えられる。
[0020] また、反応初期の未反応のアルコキシドは加水分解が進んだ状態に比べて粘度が 低いため、ゾルーゲル反応の進行過程でシリカの網目構造が発達する際に、半導体 ナノ粒子がシリカの網目構造力 排除され易いと推測される。その結果、ゾルーゲル 反応が完了してガラス化した後に、半導体ナノ粒子は生成したガラス微粒子の内部 ではなく外表面付近に集まって固定され、半導体ナノ粒子同士の凝集による発光効 率の低下や、被覆するガラス層が薄いことによる外部雰囲気との接触し易さから来る 蛍光強度の経時的低下等を招 、たと考えられた。
[0021] また、イオン性の界面活性剤を用いて 、たため、溶液中に生成した逆ミセル中に存 在する電荷が、ナノ粒子表面をコートして ヽる別の界面活性剤の有する電荷と静電 反発を起こし、その結果、ナノ粒子が逆ミセル中に高濃度で取り込まれず、得られた ガラス微粒子の蛍光強度が高まらな力つた可能性も考えられる。
[0022] 一方、従来の第 2の作製方法では、前述のように、ガラス微粒子の表層付近にのみ ナノ粒子が存在し、ガラス微粒子の核にはナノ粒子が含まれていないため、ガラス微 粒子中のナノ粒子の分散濃度を高めることが原理的にできず、そのため強い発光、 高い発光効率を得ることが困難であった。
[0023] また、従来の第 3の作製方法では、 1個のガラス微粒子の中に 1個の半導体ナノ粒 子だけしか含有させることができず、したがって、ガラス微粒子中のナノ粒子の濃度 が非常に低ぐ強い発光、高い発光効率を得ることが困難であった。
[0024] 本発明者は、上記の点を考慮し鋭意研究を行った結果、逆ミセル法を用いると!ヽぅ 点では上記した従来技術第 1と共通点があるが、部分的に加水分解して粘度が高く なった状態のアルコキシドの部分的分解生成物と半導体ナノ粒子を混合してから、 別途、非イオン性の界面活性剤を用いて生成させた逆ミセル中に取り込ませ、さらに アルコキシドの加水分解を進行させてゾルーゲルガラス化させる新しい作製方法を 開発した。
[0025] この方法を用いることにより、従来よりも反応時間を短縮でき、ナノ粒子が劣化する 前に分散したガラス微粒子を作製可能であり、力!]えて、逆ミセル中で半導体ナノ粒子 がシリカの網目構造力 排除されにくく半導体ナノ粒子がガラス微粒子の外表面付 近に偏らず内部に分散固定することが可能である。その結果、従来と比較してはるか に高 ヽ発光効率 (最高 60%以上)を有する明る ヽ蛍光を発する半導体ナノ粒子分散 ガラス微粒子を作製し得ることを見出した。
[0026] すなわち、本発明は、下記の半導体ナノ粒子分散ガラス微粒子とその作製方法を 提供する。
[0027] 項 1.アルコキシドの加水分解生成物を含む平均粒径 10ナノメートル以上 5マイクロ メートル以下のシリカ系ガラス微粒子中に、半導体ナノ粒子力 ^xlO— 5モル Zリットル以 上 1x10— 2モル Zリットル以下の濃度で分散されてなる半導体ナノ粒子分散ガラス微粒 子であって、当該半導体ナノ粒子分散ガラス微粒子が分散した溶液における蛍光の 発光効率 (量子収率)が 25%以上である半導体ナノ粒子分散ガラス微粒子。
[0028] 項 2.前記シリカ系ガラス微粒子 1個当たりに平均して半導体ナノ粒子力 1個を越え て内包されて!ヽる項 1に記載の半導体ナノ粒子分散ガラス微粒子。
[0029] 項 3.前記半導体ナノ粒子分散ガラス微粒子が分散した溶液における蛍光の発光 効率 (量子収率)が 60%以上である項 1又は 2に記載の半導体ナノ粒子分散ガラス微 粒子。
[0030] 項 4.半導体ナノ粒子が、硫ィ匕カドミウム、セレン化亜鉛、セレン化カドミウム、テル ル化亜鉛、テルル化カドミウム、硫化亜鉛、及び硫化鉛からなる群から選ばれた少な くとも 1種である項 1〜3のいずれかに記載の半導体ナノ粒子分散ガラス微粒子。
[0031] 項 5.ガラス微粒子表面に、アミノ基、チオール基、及びカルボキシル基力 なる群 より選ばれる少なくとも 1種の官能基を有する項 1〜4のいずれかに記載の半導体ナ ノ粒子分散ガラス微粒子。
[0032] 項 6.半導体ナノ粒子分散水溶液にアルコキシドを加え、加水分解を一部進行させ たゾルーゲル反応溶液を生成させる第 1工程、疎水性の有機溶媒に界面活性剤を 加えて逆ミセル溶液を生成させる第 2工程、及び、第 1工程で得た溶液と第 2工程で 得た溶液を混合し、半導体ナノ粒子を分散含有したガラス微粒子を生成させる第 3ェ 程、を含むことを特徴とする半導体ナノ粒子分散ガラス微粒子の作製方法。
[0033] 項 7.第 1工程において、半導体ナノ粒子分散水溶液中にさらにアルカリ性水溶液 を加えることを特徴とする、項 6に記載の作製方法。
[0034] 項 8.アルカリ性水溶液がアンモニア水又は水酸ィ匕ナトリウム水溶液である、項 7に 記載の作製方法。
[0035] 項 9.アルカリ性水溶液が、半導体ナノ粒子を構成する金属イオンを含有している 項 7又は 8に記載の作製方法。
[0036] 項 10.第 1工程において、さらに、半導体ナノ粒子被覆用界面活性剤を加える、項
7〜9の 、ずれかに記載の作製方法。
[0037] 項 11.半導体ナノ粒子表面用界面活性剤がチォグリコール酸である、項 10に記載 の作製方法。
[0038] 項 12.アルコキシドが、一般式(I): R1 -Si(OR2) (I)
r 4-r
(式中、 R1及び R2は同一又は異なった低級アルキル基を示し、 rは 0、 1、 2又は 3を示 す)
で表される化合物である項 6〜11の 、ずれかに記載の作製方法。
[0039] 項 13.半導体ナノ粒子分散水溶液が、硫ィ匕カドミウム、セレン化亜鉛、セレン化カド ミゥム、テルル化亜鉛、テルル化カドミウム、硫化亜鉛、及び硫化鉛からなる群から選 ばれた少なくとも 1種の半導体ナノ粒子が分散した水溶液である項 6〜 12の 、ずれ かに記載の作製方法。
[0040] 項 14.半導体ナノ粒子がテルル化カドミウムである項 6〜13のいずれかに記載の 作製方法。
[0041] 項 15.疎水性の有機溶媒が炭素数 4〜 12の炭化水素である項 6〜 14のいずれか に記載の作製方法。
[0042] 項 16.疎水性の有機溶媒がシクロへキサンである項 6〜14のいずれかに記載の作 製方法。
[0043] 項 17.界面活性剤がポリオキシエチレンエーテル型非イオン性界面活性剤である 項 6〜 16のいずれかに記載の作製方法。
[0044] 項 18.アルコキシドがテトラエトキシシラン (TEOS)である項 6〜17のいずれかに記 載の作製方法。
[0045] 項 19.前記第 1工程〜第 3工程に加えて、第 3工程で生成したガラス微粒子の溶液 に、さらにアルコキシド及びアルカリ性水溶液を添加して撹拌する第 4工程を含むこと を特徴とする項 6〜18のいずれかに記載の作製方法。
[0046] 項 20.前記第 1工程〜第 3工程に加えて、第 3工程で生成したガラス微粒子の溶液 に、さらにアルコキシド、シランカップリング剤及びアルカリ性水溶液を添加して撹拌 する第 4工程を含むことを特徴とする項 6〜18のいずれかに記載の作製方法。
[0047] 項 21.項 6〜20のいずれかに記載の作製方法により製造される半導体ナノ粒子分 散ガラス微粒子。
[0048] 項 22.項 1、 2、 3、 4、 5又は 21に記載の半導体ナノ粒子分散ガラス微粒子を含む 蛍光体。 [0049] 項 23.項 1、 2、 3、 4、 5又は 21に記載の半導体ナノ粒子分散ガラス微粒子を基板 上に分散固定した試料をステージ上に載せ、レーザー光をこの試料に照射し、ステ ージを少しずつ動力してレーザー光の照射位置を変えながら基板上の 1個 1個の半 導体ナノ粒子分散ガラス微粒子力 出てくる蛍光スぺ外ルを分光器を使って分光測 定することを特徴とするガラス微粒子の識別方法。
[0050] 以下、本発明について詳細に説明する。
[0051] 本発明による半導体ナノ粒子の半導体ナノ粒子分散ガラス微粒子は、球状のシリ 力系ガラスをマトリックスとして、その中に半導体ナノ粒子を分散させた形態を有する
[0052] 半導体ナノ粒子
半導体ナノ粒子としては、可視〜近赤外領域で発光する II-VI族半導体等、例えば
、硫化カドミウム (CdS)、セレン化亜鉛 (ZnSe)、セレン化カドミウム (CdSe)、テルル化亜 鉛 (ZnTe)、テルルイ匕カドミウム (CdTe)、硫化亜鉛 (ZnS)、硫ィ匕鉛 (PbS)などが挙げられる
。特に、テルル化カドミウム、セレンィ匕亜鉛が好適である。
[0053] また、半導体ナノ粒子は、 2種以上の半導体の合金力 なるものであっても良い。例 えば、セレン化亜鉛とテルル化亜鉛の合金 (ZnSe Te セレン化亜鉛とセレン化カド
l-x X
ミゥムの合金 (Zn Cd Se)、硫ィ匕亜鈴と硫ィ匕カドミウムの合金 (Zn Cd S)などを好適に
1-y y 1 z z
用いることができる。ここで、 0〈x〈l,0〈y〈l,0〈z〈lである。このような合金に含まれる 2種 以上の半導体の比率を適宜選択することによって、半導体ナノ粒子のバンドギャップ を制御し、蛍光の発光波長を調節することができる。また、半導体ナノ粒子の粒径や 形状などを均一にでき、その結果、発光スペクトルの幅が狭め、単色性に優れた蛍 光が得ることができる場合もある。
[0054] また、半導体ナノ粒子は、コアシェル構造を有して 、てもよ 、。コア部及びシェル部 の金属の組み合わせは限定的でない。例えば、コア部 Zシェル部が、 1種の π-νι族 半導体 Zi種の π-νι族半導体、 1種の II-VI族半導体 Z2種以上の π-νι族半導体の 合金、 2種以上の II-VI族半導体の合金 Z1種の II-VI族半導体、 2種以上の II-VI族 半導体の合金 Z2種以上の π-νι族半導体の合金等のいずれの組み合わせであって ちょい。 [0055] 本発明では、水に単分散し、かつ発光効率が 25%以上の半導体ナノ粒子を用いる ことが好ましい。単分散性の半導体ナノ粒子は、水と良好に分散混合する性質を有 するので、ゾルーゲル法によるガラス作製の際に、適当な条件下で、凝集することな くシリカ系ガラス中に単分散させることができる。得られたガラス微粒子材料の発光効 率の上限は、一般に半導体ナノ粒子の発光効率を超えることはない。そのため、半 導体ナノ粒子の発光効率が 25%未満と低 、値の場合には、ガラス微粒子材料が一定 の輝度を示すためには、励起光の強度を大きくすることが必要となり、実用的な利点 が少ない。
[0056] ここで、蛍光発光効率とは、吸収された光子 (フオトン)数( Φ )に対する蛍光 (フォト
A
ルミネッセンス)として発光される光子 (フオトン)数(Φ )の割合(Φ / Φ )として定
PL PL A
義される。この発光効率は、当該技術分野において標準的に用いられる値であり、「 内部量子収率」と同義である。発光効率は、発光効率が既知の色素分子を用いて、 該色素分子溶液と測定対象物における励起光波長での吸光度と発光強度とを比較 することにより算出される。測定時には、通常は色素分子溶液と測定対象物の励起 波長での吸光度を一致させて比較する。(例えば、既報の方法、ドーソンら、ジャーナ ル ォブ フィジカル ケミストリー、 72卷、 3251ページ (1968年)、村瀬ら、 日本セラミツ タス協会 2004年年会要旨集 2K35およびその中の文献等を参照)。
[0057] このような水に単分散し 25%以上の発光効率で明るい蛍光を発する半導体ナノ粒子 は、例えば、ロガシュら、ベリヒテ デァ ブンゼン—ゲゼルシャフト フユ了 フイジ力 一リツシェ ヒエミー、 100卷、 1772頁 (1996)をもとに改良をカ卩えた、李、村瀬、ケミストリ 一 レターズ、 34卷、 92頁 (2005)による水溶液法によって作製できる。
[0058] この方法では、 pHを 11〜12、特に好ましくは 11.4に調整した過塩素酸カドミウム水 溶液に界面活性剤としてチォグリコール酸を、カドミウムに対するモル比で 1.25前後 になるように加え、不活性雰囲気下でテルルイ匕水素またはテルルイ匕水素ナトリウムを 導入した後、還流することにより、テルルイ匕カドミウムナノ粒子を作製することができる 。テルルイ匕カドミウム以外のセレンィ匕亜鉛、セレン化カドミウム、テルル化亜鉛等、さら には、これらの合金 (例えばテルルイ匕亜鉛及びセレン化亜鉛の合金、セレン化カドミ ゥム及びセレンィ匕亜鉛の合金)等の半導体ナノ粒子も、ナノ粒子の組成に対応する 材料を用いて、同様の方法により作製できる。
[0059] なお、これらの化学的糸且成の異なる半導体を用いる場合には、化学的糸且成に応じ て、他の界面活性剤を用いることにより、発光効率を向上させることができる。例えば 、セレンィ匕亜鉛ナノ粒子の作製に際しては、チォグリコール酸に代えて、チォグリセ口 ールを用いることもできる。さらに、必要に応じて、ナノ粒子の表面欠陥を減らし発光 効率を向上させるために、ナノ粒子の表面を別の半導体で覆う。
[0060] 水に単分散する II-VI族半導体ナノ粒子は、或いは、国際公開 WO 00/17655号公 報、 WO 00/17656号公報、 WO 2004/000971号公報等に記載されている方法に準じ て作製することもできる。この方法では、まず有機金属法によってナノ粒子を作製す る。すなわち、有機リン化合物(具体的には、トリオクチルリン酸、トリオクチルリン酸ォ キサイド等の、アルキル基とリンが直接ィ匕学結合している化合物)に有機金属化合物 (ジメチルカドミウム等、アルキル基と金属が直接ィ匕学結合している化合物)を 300°C 程度の高温下で注入して、半導体ナノ粒子を得る。さらに、必要に応じて、その表面 を別の半導体で覆う。次いで、チオール等の疎水基とカルボキシル基等の親水基を 併せて有する界面活性剤分子を表面〖こ結合させることにより、水に単分散する半導 体ナノ粒子を作製することができる。
[0061] これらの方法で作製した半導体ナノ粒子の発光色は粒径によって決まり、平均粒径 力 S小さいほど短波長の発光を示す。通常、平均粒径は 2〜8ナノメートル程度 (特に、 3〜7ナノメートル程度)の範囲にあることが好ましい。粒径は還流時間によって制御 することができる。単色の発光を得るためには、還流時間を一定に制御し、半導体ナ ノ粒子の粒径分布の分散の標準偏差が、平均粒径に対して 20%以下となるようにす ればよい。粒径分布の分散の標準偏差が 20%を超えると、各種の発光が混ざり合つ てしまい、表示材料で求められる色調を得難くなるので、好ましくない。
[0062] 本発明の半導体ナノ粒子分散蛍光性ガラス粒子の製造方法は、半導体ナノ粒子 分散水溶液にアルコキシドを加え、加水分解を一部進行させたゾルーゲル反応溶液 を生成させる第 1工程 (必要に応じてアルカリ性水溶液をカ卩えても良い)、疎水性の 有機溶媒に界面活性剤を加えて逆ミセル溶液を生成させる第 2工程、第 1工程で得 た溶液と第 2工程で得た溶液を混合し、半導体ナノ粒子を分散含有したガラス微粒 子を生成させる第 3工程、及び必要に応じて第 3工程で生成したガラス微粒子の溶 液に、さらにアルコキシド及びアルカリ性水溶液を添加して撹拌する第 4工程を含む ことを特徴とする。
[0063] 以下、これら 4つの工程について順次説明する。
[0064] 第 1工程
第 1工程では、半導体ナノ粒子分散水溶液にアルコキシドを加え、加水分解を一部 進行させたアルコキシドと半導体ナノ粒子を含むゾルーゲル反応溶液を生成させる。 また、必要に応じてアルカリ性水溶液を添加してもよ ヽ。
[0065] 第 1工程で用いられる半導体ナノ粒子分散水溶液としては、蛍光 (フォトルミネッセ ンス)を発する半導体ナノ粒子が均一に分散した水溶液を意味する。
[0066] 半導体ナノ粒子としては、上述した可視〜近赤外領域で発光する II-VI族半導体等 が挙げられ、硫ィ匕カドミウム、セレンィ匕亜鉛、セレン化カドミウム、テルル化亜鉛、テル ル化カドミウム等、及びこれらの合金を例示でき、特にテルル化カドミウム、セレンィ匕 亜鉛が好適である。また、これらは上述したコアシェル構造であってもよい。
[0067] 第 1工程で用いられる半導体ナノ粒子分散水溶液における半導体ナノ粒子の濃度 は、通常 5x10— 7〜lxl0— 3モル Zリットル程度、好ましくは 5x10— 7〜5xl0— 4モル Zリットル 程度、より好ましくは 1x10— 6〜5xl0— 4モル/リットル程度、最も好ましくは 1x10— 6〜2xl0— 4モル,リットル程度である。
[0068] 半導体ナノ粒子の配合量は、最終的に得られるシリカ系ガラス微粒子中の濃度力 ¾ xlO— 5モル Zリットル以上 1x10— 2モル Zリットル以下、好ましくは 2x10— 5モル Zリットル以 上 4x10— 3モル Zリットル以下、より好ましくは 2x10— 4モル Zリットル以上 4x10— 3モル Zリツ トル以下となる量とすればょ 、。
[0069] 第 1工程では、上記の半導体ナノ粒子分散水溶液とアルコキシドを溶解した水溶液 とを混合する。ここで用いられるアルコキシドは、一般式 (I):
R1 -Si(OR2) (I)
r 4-r
(式中、 R1及び R2は同一又は異なって低級アルキル基を示し、 rは 0,1,2又は 3を示す) で表されるものである。
[0070] 上記一般式 (I)で表される化合物の中でも、 r=0,l又は 2、特に r=0又は 1のものが好 適に用いられる。
[0071] R1及び R2で示される低級アルキル基としては、炭素数 1〜6の直鎖又は分岐鎖のァ ルキル基があげられ、具体的には、メチル、ェチル、 n—プロピル、イソプロピル等が 挙げられ、特にメチル、ェチルが好ましい。
[0072] 上記一般式 (I)で表される化合物の好ま 、ものとしては、テトラメトキシシラン、テト ラエトキシシラン (TEOS)、テトライソプロポキシシラン、メチルトリメトキシシラン、ェチル トリメトキシシラン等が例示され、特に TEOSが好ま 、。
[0073] アルコキシドの配合量は、アルコキシドのモル数:半導体ナノ粒子の個数のモル数 力 1000:1〜1:1程度、好ましくは 100:1〜10:1程度であればよい。なお、半導体ナノ 粒子の個数のモル数とは、半導体ナノ粒子の個数をァボガドロ数で割った値をモル 数として用いると 、う意味である。
[0074] なお、アルコキシドを溶解した水溶液におけるアルコキシドと水の混合比率 (モル比
)は、通常、 1:5〜1:500程度であり、好ましくは 1:10〜1:300程度であり、より好ましくは
1:15〜1:200程度である。
[0075] 第 1工程では、上記の混合で得た、半導体ナノ粒子とアルコキシドを含む水溶液中 で、アルコキシドを部分的に加水分解させる。このようなアルコキシドの部分的な加水 分解は、半導体ナノ粒子とアルコキシドを含む水溶液を撹拌することによって達成さ れる。
[0076] 必要に応じアルカリ性水溶液をカ卩えても良い。アルカリ性水溶液は、 pHが 8以上( 好ましくは 9〜12)であれば限定的でなぐアルカリ性水溶液として好適に用いうるも のとして、例えば、アンモニア水の他、水酸化ナトリウム、水酸化カリウム等のアルカリ 金属水酸ィ匕物の水溶液が挙げられる。これにより、アルコキシドの部分的加水分解を より促進することができる。これらの中でも、特にアンモニア水又は水酸ィ匕ナトリウム水 溶液が好ましい。
[0077] アルカリ性水溶液の添加量は限定的でなぐ例えば、半導体ナノ粒子分散水溶液 の pHが 8〜: L 1程度 (好ましくは 8. 5〜: LO程度)となるように、当該水溶液に加えれば よい。
[0078] さらに、これらアルカリ性水溶液に加え、さらに、半導体ナノ粒子を構成する金属ィ オン及び z又は半導体ナノ粒子被覆用界面活性剤を加えてもよい。
[0079] 半導体ナノ粒子を構成する金属イオンとしては、上述した半導体ナノ粒子の金属ィ オンが挙げられ、具体的には、亜鉛イオン、カドミウムイオンが挙げられる。
[0080] 第 1工程で加えてもよい半導体ナノ粒子被覆用の界面活性剤は、半導体ナノ粒子 の表面を被覆する性質を有する限り限定的でなぐ具体的には、チォグリコール酸、 チォグリセロール、 2—メルカプトーェチルァミン、グリシン等カゝらなる群より選ばれる 少なくとも 1種が挙げられる。この中でもチォグリコール酸が好ましい。
[0081] これら金属イオン及び Z又は界面活性剤を更に添加することにより、半導体ナノ粒 子に、当該ナノ粒子表面力 界面活性剤が剥離したり、当該ナノ粒子が水溶液に溶 解したりすることを防止できるため、当該ナノ粒子の劣化を抑制することができる。
[0082] この第 1工程では、アルコキシドが完全にではなく部分的に加水分解した状態の溶 液を得ることが必要である。なぜなら、第 3工程において、未反応のアルコキシドよりも 粘度の高まったアルコキシドの部分的加水分解生成物を用いることにより、半導体ナ ノ粒子を逆ミセル中に取り込むことができ、その後速やかにアルコキシドの加水分解 を進めてガラス化することができるからである。もし、第 1工程でアルコキシドの加水分 解が進み過ぎると、逆ミセルに取り込む前にガラス化してしまうので、逆ミセルのサイ ズによって最終的に生成するガラス微粒子のサイズを制御することができなくなる。
[0083] 第 1工程において、撹拌の温度は特に限定されないが、通常、室温前後の 5〜50°C であり、 10〜40°Cが好ましい。また、第 1工程におけるアルコキシドの部分的加水分 解時間 (撹拌時間)は特に限定されないが、通常、 1〜6時間であり、 2〜4時間が好ま しい。撹拌の際に溶液の温度が高過ぎると、アルコキシドの加水分解が急速に進み 過ぎ、部分的に加水分解した状態の溶液を得ることが難しい。また、撹拌の際に溶液 の温度が低過ぎると、アルコキシドの加水分解速度が遅過ぎ、アルコキシドを部分的 に加水分解した状態の溶液を得るまでに長時間かかり、そのような長時間の撹拌過 程において、半導体ナノ粒子が次第に劣化し蛍光の発光効率が低下する。
[0084] また、第 1工程における溶液の撹拌は、溶液中で均一にアルコキシドを加水分解さ せ、かつ、部分的に加水分解したアルコキシドと半導体ナノ粒子を均一に混合させる ために必要である。 [0085] 第 2工程
第 2工程では、疎水性の有機溶媒中に界面活性剤を加えて逆ミセル溶液を生成さ せる。
[0086] 第 2工程で用いられる疎水性の有機溶媒としては、炭素数 4〜12の炭化水素が挙 げられ、具体的には、炭素数 4〜12の直鎖状、分岐状又は環状の脂肪族炭化水素 、或いは炭素数 6〜12の芳香族炭化水素が挙げられる。上記脂肪族炭化水素は、 融点及び沸点が 10〜35°Cの範囲になく常温で液体であれば、飽和又は不飽和の いずれであってもよぐ炭素数 5〜10の直鎖状、分岐状又は環状の飽和脂肪族炭化 水素が好ましい。より具体的には、ペンタン、シクロペンタン、へキサン、シクロへキサ ン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、デカン等が挙げられ、特 にシクロへキサン、イソオクタンが好ましい。上記芳香族炭化水素は、単環又は 2環の 芳香族炭化水素であり、該芳香環上に脂肪族炭化水素基を有していてもよい。より 具体的には、ベンゼン、トルエン、キシレン等が挙げられる。
[0087] 第 2工程で用いられる界面活性剤としては、疎水性有機溶媒に溶解し、溶解した状 態において、界面活性剤の疎水基側が外側に配向し、界面活性剤の親水基側が内 側に配向した、いわゆる逆ミセルを生成することができるものであれば用いることがで きる。
[0088] 例えば、親水基や疎水基が電荷を持つイオン性 (カチオン性、ァ-オン性又は両 性)界面活性剤、親水基や疎水基が電荷を持たな!ヽ非イオン性界面活性剤が挙げ られる。
[0089] イオン性 (ァ-オン性)界面活性剤としては、例えば、ビス(2-ェチルへキシル)スル ホこはく酸ナトリウム (商品名「エーロゾル OT」、和光純薬工業 (株)製)等が例示され る。
[0090] 非イオン性界面活性剤としては、例えば、ポリオキシエチレンエーテル型非イオン 性界面活性剤が挙げられ、特にポリオキシエチレンアルキルフエニルエーテル型非 イオン性界面活性剤が挙げられる。そのうち、ポリオキシエチレン (5)ノニルフエニルェ 一テル (商品名「ィゲパル CO-520」、アルドリッチ社製)、ポリオキシエチレン (2)ノニル フエ-ルエーテル(商品名「ィゲパル CO-210」、アルドリッチ社製)、ポリオキシェチレ ン (9)ノユルフェ-ルエーテル(商品名「ィゲパル CO- 630」、アルドリッチ社製)、ポリオ キシエチレン (12)ノユルフェ-ルエーテル(商品名「ィゲパル CO-720」、アルドリッチ 社製)等のポリオキシエチレンノユルフェ-ルエーテル型非イオン性界面活性剤、ポ リオキシエチレン (2)イソオタチルフエ-ルエーテル(商品名「ィゲパル CA-210」、アル ドリツチ社製)、ポリオキシエチレン (5)イソォクチルフエニルエーテル (商品名「ィゲパ ル CA-520」、アルドリッチ社製)、ポリオキシエチレン (12)イソオタチルフエ-ルエーテ ル (商品名「ィゲパル CA-720」、アルドリッチ社製)等のポリオキシエチレンイソォクチ ルフエニルエーテル型非イオン性界面活性剤などが好ましい。
[0091] なお、上記のポリオキシエチレンの後に記載した括弧内の数字は、ォキシエチレン 単位の繰り返し数を意味する。
[0092] 好適な界面活性剤は、非イオン性界面活性剤であり、さらにポリオキシエチレンェ 一テル型非イオン性界面活性剤、特にポリオキシエチレンノユルフェ-ルエーテル型 非イオン性界面活性剤、とりわけポリオキシエチレン (5)ノニルフエニルエーテルであ る。これは、前述したように、逆ミセルとナノ粒子が静電反発を起こさないため、ナノ粒 子が逆ミセル中に均一に取り込まれ易 、と考えられるからである。
[0093] 逆ミセルは、疎水性の有機溶媒中に界面活性剤を加えて撹拌することにより製造さ れる。界面活性剤の使用量は、疎水性有機溶媒 1モルに対し、 0.001〜0.1モル程度 、好ましくは 0.005〜0.02モル程度であればよい。撹拌時の温度は、特に限定はない 力 通常、 10〜35°C程度であればよい。なお、均一なサイズの逆ミセルを生成するた めに、溶液を激しく撹拌することが必要である。これにより平均径 (外径)が 10ナノメー トル〜 5マイクロメートル程度の逆ミセルが形成される。逆ミセルの平均径(外径)は、 界面活性剤の量、水の量、及び疎水性有機溶媒量の相互の比率によって変えること ができる。
[0094] 第 2工程において、撹拌の温度は特に限定されないが、通常、室温前後の 5〜50°C であり、 10〜40°Cが好ましい。
[0095] 第 3工程
第 3工程では、第 2工程で得られる逆ミセルが分散した溶液と、第 1工程で得られる 部分的に加水分解したアルコキシドと半導体ナノ粒子を含む溶液とを混合し、逆ミセ ル内部に部分的に加水分解したアルコキシドと半導体ナノ粒子を取り込ませた後、さ らにアルコキシドの加水分解を進めゾルーゲル反応を進行させて、内部に半導体ナ ノ粒子を分散含有したガラス微粒子を作製する。
[0096] 逆ミセルの内部に、アルコキシドの部分的加水分解生成物と半導体ナノ粒子を均 一に取り込ませるために、溶液を激しく撹拌することが必要である。これにより、該混 合物は、逆ミセルの界面活性剤(例えば、ポリオキシエチレンエーテル型非イオン性 界面活性剤、特にィゲパル CO-520等)膜内部に浸潤し、逆ミセル内部でゾルーゲル 反応が進行する。
[0097] 前述した従来技術の第 1の作製方法では、逆ミセル中に加水分解が開始する前の アルコキシドと半導体ナノ粒子を取り込ませた後、アルコキシドの加水分解を行 ヽゾ ルーゲル反応を進行させて半導体ナノ粒子を分散含有したガラス微粒子を作製した 。しかし、この方法では、アルコキシドが加水分解してガラス化するまでに 1〜3日間、 溶液を撹拌し続ける必要があり、そのような長時間の撹拌の過程で、半導体ナノ粒子 が劣化し蛍光の発光効率が低下し、その結果、発光効率のあまり高くないガラス微粒 子しか得られなかった。
[0098] しかし、本発明では、アルコキシドが部分的に加水分解した状態で半導体ナノ粒子 と共に逆ミセル中に取り込ませ、アルコキシドの加水分解を行 、ゾルーゲル反応を進 行させて半導体ナノ粒子を分散含有したガラス微粒子を作製するので、反応時間が 短くて済む。その結果、半導体ナノ粒子の劣化が抑制され、発光効率の非常に高い ガラス微粒子が得られるのである。
[0099] また、本発明の作製方法では、逆ミセル中でのガラス化は、アルコキシドが部分的 に加水分解した状態、すなわち、シリカの網目構造が部分的に形成されたある程度 高い粘度を有する流動性の低い状態力 進む。そのため、ガラス化の過程で半導体 ナノ粒子がシリカの網目構造力 押し出されてガラス微粒子の外表面付近へと移動 し固定され、ガラス微粒子内部での分散濃度が低下したり、ナノ粒子同士が凝集して 発光効率の低下を招いたり、ナノ粒子がガラスによって外部雰囲気力 十分に遮断 されて 、な 、ために長期安定性が低くなる等の望ましくな 、状況が発生しにく 、。
[0100] このように、本発明の作製方法は、ナノ粒子がガラス微粒子の外表面付近に偏らず 内部に良く分散した状態で複数個以上取り込ませる上で有利である。
[0101] アルコキシドと水の混合比率 (モル比)は、通常、 1:5〜1:500程度であり、好ましくは 1:10〜1:300程度であり、より好ましくは 1:15〜1:200程度程度である。このような混合 比率を選ぶと、加水分解のための水が十分な量あるためアルコキシドをゾルーゲル 反応で全てガラス化することができ、また、ゾルーゲル反応によるガラス化の速度が 適切となるため好ましい。
[0102] なお、第 3工程において、撹拌の温度は特に限定されないが、通常、室温前後の 5 〜50°Cであり、 10〜40°Cが好ましい。また、第 3工程におけるアルコキシドの加水分 解時間 (撹拌時間)は特に限定されないが、通常、 1〜6時間であり、 2〜4時間が好ま しい。
[0103] その後、反応が完了すると、疎水性有機溶媒中に、半導体ナノ粒子が内部に固定 されたガラス微粒子蛍光体が分散した状態となる。これから溶媒を除去し、また、必 要に応じて、生成したガラス微粒子の表面に付着して ヽる過剰の界面活性剤を適当 な溶媒、例えば界面活性剤がポリオキシエチレンエーテル型非イオン性界面活性剤 の場合はァセトニトリルやトルエン等で洗浄して除去し、乾燥すれば、半導体ナノ粒 子が多くは内部に、一部は表面付近に固定されたほぼ球形 (例えば、真球、楕円球 などを含む。以下同じ。)の蛍光性ガラス微粒子の粉末が得られる。得られる蛍光性 ガラス粒子の平均粒子径は、 10ナノメートル〜 5マイクロメートル程度となる。
[0104] 第 4工程
さらに、第 3工程の後に、必要に応じて以下に述べるような後処理 (第 4工程)を行 つても良い。この後処理は、第 3工程を終了した後の反応溶液に、 TEOS等のアルコ キシドをさらに添カ卩し、必要に応じてその追カ卩したアルコキシドの加水分解のために アルカリ性水溶液を追加してさらに 1〜6時間、好ましくは 3〜5時間撹拌する工程であ る。
[0105] 撹拌時の温度は、特に限定されないが、通常、 5〜70°Cであり、 10〜60°Cが好まし い。この後処理の際に、溶液に超音波を印加したり、溶液を 35〜70°C程度に暖めて も良い。
[0106] このような後処理の工程をカ卩える理由は以下の通りである。すなわち、上記第 3ェ 程終了直後の溶液中で、生成している半導体ナノ粒子分散ガラス微粒子において、 ガラス微粒子の外表面付近に一部の半導体ナノ粒子が固定されていると、そのような 半導体ナノ粒子は被覆しているガラス層が薄く外部雰囲気と接触し易いため経時的 に蛍光強度が低下する恐れがあり、また、第 3工程終了直後にはまだ十分に硬いガ ラス微粒子となって 、な 、可能性がある。
[0107] そのような状態の半導体ナノ粒子分散ガラス微粒子を含む溶液に、さらに上記一般 式 (I)で表されるアルコキシドを加えて加水分解させることにより、第 3工程終了直後 の半導体ナノ粒子分散ガラス微粒子の表面にさらに硬 、ガラス層がコートされる。こ こで、アルコキシドの加水分解の促進のために、アルカリ性水溶液をカ卩えることが好 ましい。
[0108] アルカリ性水溶液としては、第 1工程で上述したものが挙げられる。
[0109] アルカリ性水溶液の添加量は限定的でなぐ当該アルカリ性水溶液の pH等に応じ て適宜決定すればよい。
[0110] また、これらアルカリ性水溶液に加え、さらに、半導体ナノ粒子を構成する金属ィォ ン及び Z又は半導体ナノ粒子被覆用界面活性剤を加えてもよい。
[0111] これら半導体ナノ粒子を構成する金属イオン及び半導体ナノ粒子被覆用の界面活 性剤としては、第 1工程で上述したものと同様である。特にアルカリ性水性溶液として は、特にアンモニア水又は水酸ィ匕ナトリウム水溶液が好ましぐまた、半導体ナノ粒子 被覆用界面活性剤としては、チォグリコール酸が好ましい。これにより、半導体ナノ粒 子が実質的に全てガラス微粒子の内部に分散固定され、蛍光強度が経時的に低下 しにく 、ガラス微粒子が得られる。
[0112] さらに、上記一般式 (I)で表されるアルコキシドに、一般式 (II):
R3 -Si(OR4) (II)
P 4-p
(式中、 R3はァミノ基、チオール基、又はカルボキシル基を有する低級アルキル基、 R4 は低級アルキル基を示し、 pは 1,2又は 3を示す)で表される化合物を加えてガラス層 を形成することもできる。この、一般式 (II)で表される化合物は、 1個の S源子に、上記 R3で表される有機官能基と、上記 OR4で表されるアルコキシ基の両方が結合して 、る ものであり、アルコキシドの中でも、特にシランカップリング剤と総称される。或いは、 一般式 (I)で表されるアルコキシドで処理してガラス層を形成した後、次 、で一般式 (I I)で表されるシランカップリング剤で処理して第 2のガラス層を形成することもできる。 これにより、ガラス微粒子表面に OH基以外の官能基を有するガラス微粒子を作製す ることが出来る。
[0113] この一般式 (II)で表されるシランカップリング剤の中でも、 p=lのものが好適に用いら れる。
[0114] R3で示される低級アルキル基としては、炭素数 1〜6 (特に炭素数 3)の直鎖又は分 岐鎖のアルキル基があげられ、具体的には、メチル、ェチル、 n—プロピル、イソプロ ピル等が挙げられ、特に n—プロピルが好ましい。 R3で示される低級アルキル基には 、アミノ基、チオール基、又はカルボキシル基のいずれ力 1個を有している。
[0115] R4で示される低級アルキル基としては、炭素数 1〜6の直鎖又は分岐鎖のアルキル 基があげられ、具体的には、メチル、ェチル、 n—プロピル、イソプロピル等が挙げら れ、特にメチル、ェチルが好ましい。
[0116] 一般式 (II)で示されるシランカップリング剤のうち、特に、 p= lの 3—ァミノプロビルト リメトキシシラン、 3—メルカプトプロピルトリメトキシシラン等が例示される。
[0117] この様に、一般式 (II)で表されるシランカップリング剤を用いて作製されるガラス微 粒子は、その表面に— OH、 -NH、— SH、— COOH等の官能基を有している。そ
2
のため、該ガラス微粒子は、その官能基を利用して生体由来分子に結合させることが でき、蛍光標識として用いることができる。
[0118] また、後処理の際に、溶液中にアルコキシドを添加する速度を遅くすると、比較的 粒径の小さな半導体ナノ粒子分散ガラス微粒子が得られ、溶液中にアルコキシドを 添加する速度を速くすると、比較的粒径の大きな半導体ナノ粒子分散ガラス微粒子 が得られる。これは、溶液中にアルコキシドをゆっくりと添加すると、核となる半導体ナ ノ粒子分散ガラス微粒子の 1個 1個が独立したままそれぞれにガラス層がコートされる 力 溶液中にアルコキシドを急速に添加すると、核となる半導体ナノ粒子分散ガラス 微粒子が何個力まとまった状態のものにガラス層がコートされ、そのため、最終的に 得られるガラス微粒子の粒径が大きくなるためではないかと推測される。
[0119] また、上記のような後処理を行う際に、溶液に超音波を印加したり溶液を暖めたりす るのは、上記後処理中にアルコキシドが加水分解してガラス化する速度を大きくし、 後処理時間を短縮することによって、後処理中に半導体ナノ粒子が劣化することを防 ぐためである。但し、後処理中に溶液を加熱し過ぎると、第 3工程までに生成した、ま だ十分に硬くなつて 、な 、ナノ粒子分散ガラス微粒子が熱によって分解あるいは凝 集を起こしたり、ナノ粒子そのものも熱によって凝集 ·劣化を起こす恐れがあるので、 溶液を温める場合、その温度は 35〜70°C、好ましくは 40〜60°Cである。
[0120] 上記の後処理後、反応が完了すると、疎水性有機溶媒中に、半導体ナノ粒子が内 部に固定されたガラス微粒子蛍光体が分散した状態となる。これから溶媒を除去し、 また、必要に応じて、生成したガラス微粒子の表面に付着している過剰の界面活性 剤を適当な溶媒、例えば界面活性剤がポリオキシエチレンエーテル型非イオン性界 面活性剤の場合はァセトニトリルやトルエン等で洗浄して除去し、乾燥すれば、半導 体ナノ粒子が内部に固定されたほぼ球形の蛍光性ガラス粒子の粉末が得られる。
[0121] 本発明の半導体ナノ粒子分散ガラス微粒子では、シリカ系ガラス微粒子内の半導 体ナノ粒子の濃度が 2x10— 5モル Zリットル以上 1x10— 2モル Zリットル以下(特に 2x10— 5 モル/リットル以上 4x10— 3モル/リットル以下)の範囲において、シリカ系ガラス微粒 子 1個当たりに平均して半導体ナノ粒子力 ^個を越えて(さらに 1.5個以上、特に 2個以 上)内包されている。
[0122] 例えば、直径 10ナノメートルのシリカ系ガラス微粒子中の半導体ナノ粒子の濃度が
4x10— 3モル Zリットルである場合には、ガラス微粒子 1個当たりに平均して半導体ナノ 粒子 1.5個程度が内包されている状態となる。
[0123] また、直径 30ナノメートルのシリカ系ガラス微粒子中の半導体ナノ粒子の濃度が 2x1
0 4モル Zリットル〜 4x10— 3モル Zリットルである場合には、ガラス微粒子 1個当たりに 平均して半導体ナノ粒子 2〜40個程度が内包されている状態となる。
[0124] また、直径 60ナノメートルのシリカ系ガラス微粒子中の半導体ナノ粒子の濃度が 2x1
0 5モル Zリットル〜 4x10— 3モル Zリットルである場合には、ガラス微粒子 1個当たりに 平均して半導体ナノ粒子 1.6〜320個程度が内包されている状態となる。
[0125] また、直径が 90ナノメートルを超えるシリカ系ガラス微粒子にぉ ヽては、ガラス微粒 子中の半導体ナノ粒子の濃度が上記の範囲の下限 (2x10— 5モル Zリットル)以上であ れば、ガラス微粒子 1個当たりに平均して半導体ナノ粒子 5個程度以上が内包されて いる状態となる。
[0126] ガラス微粒子中の半導体ナノ粒子の濃度が上記の濃度範囲よりも低過ぎると、十分 な明るさの発光が得られないので実用的には不適である。
[0127] 得られる蛍光性ガラス微粒子の平均粒子径は、 10ナノメートル〜 5マイクロメートル 程度、特に 20ナノメートル〜 1マイクロメートルとなる。さらに、遠心分離やフィルタリン グ等により、ガラス微粒子蛍光体の粒径分布を揃えることができる。
[0128] 上記のようにして得られる半導体ナノ粒子分散ガラス微粒子では、該ガラス微粒子 の分散溶液中における可視〜近赤外領域、特に可視波長域 (通常、 360〜830nm、 特に 400ηπ!〜 760nmの間の波長域)の蛍光の発光効率(量子収率)が 25%以上であり 、好ましくは 35%以上であり、より好ましくは 60%以上である。この発光効率を測定する 該ガラス微粒子の分散溶液は、通常、第 3工程乃至第 4工程終了後の溶液が用いら れるため、溶媒としては、通常、疎水性有機溶媒 (例えば、シクロへキサン等の炭化 水素系溶媒)が用いられる。或いは、溶媒として水を用いて測定しても良い。また、発 光効率は、溶液中の該ガラス微粒子の濃度によらず通常一定となる。
[0129] 発光効率の測定方法は、ガラス微粒子が分散した溶液を石英セルに入れ、通常の 蛍光分光光度計および吸光分光光度計で測定した蛍光スペクトルおよび吸収スぺク トルを用いて、発光効率を算出する。
[0130] このように、本発明の製造方法は、逆ミセル法とゾルーゲル法を組み合わせ、アル コキシドの部分的加水分解生成物と半導体ナノ粒子の混合物を逆ミセルに取り込ま せてガラス化するものであり、高い発光効率を示すガラス微粒子蛍光体を得るために 非常に有効な手段である。特に、製造工程が簡便であり、し力も、第 1工程で用いる 半導体ナノ粒子分散水溶液における半導体ナノ粒子の発光効率 (量子収率)をほと んど低下させることなぐガラス微粒子内部に収容することができるという利点がある。
[0131] また、半導体ナノ粒子をガラス粒子の表面だけではなく内部に固定することができ るため、外部環境に左右されることなく長期間半導体ナノ粒子の発光効率を維持す ることがでさる。
[0132] さらに、この半導体ナノ粒子を分散固定した蛍光性ガラス微粒子は、その粉末を所 定の形状に成形し、必要に応じて加熱処理 (焼成)することによって、半導体ナノ粒 子を分散固定した蛍光体 (蛍光性ガラス材料)とすることもできる。
[0133] このようにガラス微粒子が強く光ることを利用して、ガラス微粒子 1個からの光を取り 出して分光することが出来る。その分光結果を元に、赤色発光の半導体ナノ粒子が 多く入った微粒子、緑色発光の半導体ナノ粒子が多く入った微粒子、赤色発光と緑 色発光の両方が入った微粒子の識別等が可能になる。このような識別の方法として は、文献(村瀬、ケミカル フイジタス レターズ、 368卷、 76ページ、 2003年)に示さ れた単一粒子分光の装置と方法が例示される。
[0134] 例えば、半導体ナノ粒子分散ガラス微粒子を基板上に分散固定した試料をステー ジ上に載せ、光源からのレーザー光をそのまま、またはレンズで絞り込んだレーザー 光をこの試料に照射し、ステージを少しずつ動かしてレーザー光の照射位置を変え ながら基板上の 1個 1個の半導体ナノ粒子分散ガラス微粒子から出てくる蛍光スぺタト ルを分光器を使って分光測定することにより、ガラス微粒子を識別することができる。
[0135] 具体的には、蛍光スペクトルの異なるナノ粒子を含むガラス微粒子を、 10 μ m四方 に 10個程度となるように無蛍光石英製ガラス板に分散させて試料を作製する。この 試料に、アルゴンレーザーの短波長側の光(488 nm)を 40倍の対物レンズで絞り込 んで照射し、そこから出てくる蛍光を CCD付きの分光器に導く装置を使って分光す る。観察時には、ガラス板上のアルゴンレーザーの照射位置を X, Yの 2軸のマイクロ メーターを使って走査しながら蛍光を検出することで、ガラス微粒子を確認できる。こ れにより、蛍光の発光色に応じて、蛍光発光スペクトルの異なる半導体ナノ粒子を含 むガラス微粒子の識別が可能となる。
[0136] さらに、ガラス微粒子製造の第 4工程において、一般式 (II)で表されるシランカップ リング剤をカ卩えた場合には、ガラス微粒子の表面にアミノ基、チオール基、カルボキ シル基などの官能基が結合している。これを利用して、タンパク質などの生体由来分 子に結合させて蛍光標識として用いることが出来る。このように結合させたものを含む 特定の細胞などを、フローサイトメトリーの方法を応用することにより、選択的に分取 することも可會である。
発明の効果 [0137] 本発明による半導体ナノ粒子分散ガラス微粒子は、溶液中に分散した状態でも、 溶媒を蒸発除去して粉末とした状態でも、単一波長の紫外線を照射した際に、分散 含有されて!ヽるナノ粒子の組成と粒子径に応じて、可視〜近赤外領域特に可視域の 様々な発光色を示し、その発光効率は 25%以上、さらに 60%以上と、従来よりも格別高 ぐ 1個のガラス微粒子中にナノ粒子を複数個、高濃度で含有するため、高輝度が得 られる。また、半導体ナノ粒子分散ガラス微粒子は、全体として基本的にガラスの性 質を示すものであり、外部雰囲気に対する化学的安定性や機械的強度、耐熱性等 に優れて 、るため、蛍光特性の長期安定性に優れて!/、る。
[0138] 本発明はまた、上記のような、半導体ナノ粒子がマトリックスであるガラス微粒子の 内部に複数個分散固定されているので、蛍光の発光効率が高く蛍光特性の長期安 定性に優れたガラス微粒子蛍光体を作製する方法を提供する。
発明を実施するための最良の形態
[0139] 以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に 限定されるものではない。
[0140] 実施例 1
李、村瀬、ケミストリー レターズ、 34卷、 92頁 (2005)による方法に従って、 II-VI族半 導体であるテルルイ匕カドミウムナノ粒子を合成した。すなわち、アルゴンガス雰囲気 下、界面活性剤としてのチォグリコール酸 (HOOCCH SH)の存在下で pH 11.4に調整
2
した過塩素酸カドミウム水溶液を激しく撹拌しながら、テルルイ匕水素ガスを反応させ た。これにより、テルルイ匕カドミウムのクラスターが生成し、この水溶液を大気雰囲気 下で 6日間還流することにより、紫外線励起での発光ピーク波長力 ¾46ナノメートルで 赤色の発光を示す、平均粒径 4ナノメートルのテルルイ匕カドミウムナノ粒子を得た。こ の赤色発光テルル化力
ドミゥムナノ粒子の発光効率は 81%であった。
[0141] このようにして合成した半導体ナノ粒子を、以下のように逆ミセル法とゾルーゲル法 を組み合わせた方法で、ガラス微粒子中に分散固定することができた。
[第 1工程]
上記のテルル化カドミウムナノ粒子分散水溶液に、アルカリ性水溶液としてアンモ- ァ水をカ卩えた溶液約 2ミリリットルを撹拌しながら、これに、 TEOS 6.7x10— 4モルをカロえ た。この溶液を室温で 2〜3時間激しく撹拌して TEOSを部分的に加水分解した。次に この溶液を毎分 4000回転で遠心処理し、微量の沈殿を除!、た透明な上澄み液だけ を分離した。この上澄み液は、紫外線照射で強い赤色の蛍光を発した。
[第 2工程]
シクロへキサンとポリオキシエチレン (5)ノユルフェ-ルエーテル(商品名「ィゲパル C 0-520」、アルドリッチ社製)を、モル比が 29:1となるように混合し、撹拌して溶解した。
[第 3工程]
第 2工程で調製したポリオキシエチレン (5)ノユルフェ-ルエーテルのシクロへキサン 溶液を室温で撹拌しながら、この溶液に、第 1工程で調製した、 TEOSの部分的加水 分解生成物とナノ粒子を含む上澄み液を滴下して混合した。得られた溶液は、紫外 線照射でやや強!、赤色の蛍光を発した。
[第 4工程 (後処理工程) ]
上記の溶液に、さらに TEOS 1.3x10— 3モルを加え、続いてアルカリ性水溶液として 6. 25%アンモニア水 100マイクロリットルを滴下して混合した。この溶液をさらに 4時間撹 拌した。得られたテルルイ匕カドミウムナノ粒子分散ガラス微粒子分散溶液にさらに室 温で 30分間超音波を印カロした。
[0142] 以上の、第 1〜3工程および第 4工程 (後処理工程)の操作により、テルル化力ドミゥ ムナノ粒子を含有するガラス微粒子を分散した溶液を得た。この溶液を毎分 4000回 転で遠心処理した結果、褐色の沈殿と透明の上澄み液に分離した。紫外線励起によ つて、沈殿と上澄み液共に強い赤色の蛍光を示した。
[0143] TEM観察により、テルルイ匕カドミウムナノ粒子分散ガラス微粒子はほぼ球状であるこ とを確認した。その粒径(直径)は、透明の上澄み液においては 10ナノメートル〜 300 ナノメートル程度に分布しており、平均粒径は約 20〜30ナノメートルと見積もられた。 褐色の沈殿においては 50ナノメートル〜 5マイクロメートル程度まで分布しており、上 澄み液中よりも粒径の大きなガラス微粒子を含んで 、た。
[0144] その上澄み液に存在するテルルイ匕カドミウムナノ粒子分散ガラス微粒子の TEM写 真を図 1に示す。粒径 70〜100ナノメートル程度のガラス微粒子 (濃い灰色の円)の内 部に、テルルイ匕カドミウムナノ粒子(黒色の小さな点)が多数存在している様子が認め られた。これ以外の粒径、例えば粒径 20〜30ナノメートルのガラス微粒子についても 、同様に、ガラス微粒子の内部にテルルイ匕カドミウムナノ粒子が存在している様子が 認められた。
[0145] 褐色の沈殿に存在するテルルイ匕カドミウムナノ粒子分散ガラス微粒子の TEM写真 を図 2に示す。
[0146] 透明の上澄み液におけるテルルイ匕カドミウムナノ粒子分散ガラス微粒子の粒径は、 光散乱式粒径測定装置 (マイクロトラック社製 ナノトラック 150型)でも測定し、 TEM観 察の結果とほぼ同じ値となった。
[0147] 赤色の蛍光を発する透明の上澄み液の蛍光スペクトルは、原料として用いた半導 体ナノ粒子分散水溶液とほぼ同様であり、発光ピーク波長は 642ナノメートルであつ た。発光効率は 75%と見積もられた。
[0148] なお、第 4工程 (後処理工程)で TEOSを添加する速度を速めると、遠心処理後の上 澄み液中におけるガラス微粒子の平均粒径を、 100ナノメートル前後まで大きくするこ とができた。その場合、発光効率は 75%と変わらな力つた。さらに、上記の方法で遠心 処理後に得た沈殿を、細孔径 450ナノメートルのフィルター(ミリポア社製マイレックス) を用いて、粒径の大きなガラス微粒子と粒径の小さなガラス微粒子に分級することが できた。
[0149] また、第 4工程 (後処理工程)にお 、て、上述した 30分間の超音波印加操作に続 ヽ て、溶液を 40°Cで 30分間暖める操作を加えると、上記と同様の遠心処理後に得られ る上澄み液が示す赤色の蛍光の発光効率は 81%となり、原料として用いた半導体ナノ 粒子分散水溶液の発光効率と同じ値となった。
[0150] また、原料のテルルイ匕カドミウムナノ粒子分散水溶液が示す赤色の蛍光スペクトル( a)、及び、 30分超音波印加および 30分 40°C処理を含む第 4工程 (後処理工程)後に 遠心分離して得た上澄み液であるテルルイ匕カドミウムナノ粒子分散ガラス微粒子分 散液が示す赤色の蛍光スペクトル (b)を、図 3に示す。
[0151] 一方、第 4工程 (後処理工程)を行わな力つた場合にも、遠心処理後に赤色発光を 示すテルルィヒカドミウムナノ粒子を含有するガラス微粒子の沈殿と上澄み液が得られ た。ガラス微粒子の輪郭はあまり明確ではなぐ発光効率は 60〜70%程度であり、後 処理工程を行った場合に比べて低 ヽ値となった。
[0152] なお、発光効率は、ガラス微粒子が分散した溶液を石英セルに入れ、通常の蛍光 分光光度計および吸光分光光度計で測定した蛍光スペクトルおよび吸収スペクトル を用いて算出した。具体的には、超微粒子の発光効率の値は、吸光度(吸収係数 X 濃度 X光路長)と発光効率とが知られて!/、るキニーネ分子の硫酸水溶液 (硫酸濃度 0. 5モル/リットル)との比較により既報の方法 (ドーソンら、ジャーナル ォブ フイジ力 ル ケミストリー、 72卷、 3251ページ (1968年》で算出した。以下同じ。
[0153] さらに、上記の、テルルイ匕カドミウムナノ粒子を含有するガラス微粒子の沈殿と上澄 み液をァセトニトリルで洗浄し過剰のポリオキシエチレン (5)ノユルフェ-ルエーテルを 除去した後、溶媒を蒸発乾固させることにより強い赤色の蛍光を示す粉末が得られた
[0154] また、テルルイ匕カドミウムナノ粒子分散ガラス微粒子は、ガラス微粒子に分散しな ヽ テルルイ匕カドミウムナノ粒子に比べて安定性に優れて 、た。赤色発光を示すテルル 化カドミウムナノ粒子の分散水溶液は、大気中、室温で 2ヶ月放置すると、水溶液中 でナノ粒子が凝集沈殿し発光しなくなった。
[0155] これに対して、赤色発光を示すテルルイ匕カドミウムナノ粒子分散ガラス微粒子は、 シクロへキサン分散液の状態で、室温 ·大気中で 2ヶ月放置した後にも、溶液中で凝 集沈殿せずに強い赤色発光を発した。また、このガラス微粒子を固体粉末ィ匕したもの も、大気中、室温で 2ヶ月放置した後にも、溶液中で凝集沈殿せずに強い赤色発光 を発した。
[0156] 実施例 2
李、村瀬、ケミストリー レターズ、 34卷、 92頁 (2005)による方法に従って、 II-VI族半 導体であるテルルイ匕カドミウムナノ粒子を合成した。すなわち、アルゴンガス雰囲気 下、界面活性剤としてのチォグリコール酸 (HOOCCH SH)の存在下で pH 11.4に調整
2
した過塩素酸カドミウム水溶液を激しく撹拌しながら、テルルイ匕水素ガスを反応させ た。これにより、テルルイ匕カドミウムのクラスターが生成し、この水溶液を大気雰囲気 下で 2時間還流することにより、紫外線励起での発光ピーク波長力 48ナノメートルで 緑色の発光を示す、平均粒径 3ナノメートルのテルルイ匕カドミウムナノ粒子を得た。こ の緑色発光テルルイ匕カドミウムナノ粒子の発光効率は 35%であった。
[0157] このようにして合成した半導体ナノ粒子を用い、実施例 1と同様にして第 1〜3工程 および第 4工程 (後処理工程)の操作を行!、、テルルイ匕カドミウムナノ粒子を含有する ガラス微粒子を分散した溶液を得た。得られたテルルイ匕カドミウムナノ粒子分散ガラ ス微粒子分散溶液に、さらに室温で 30分間超音波を印加した。この溶液を毎分 4000 回転で遠心処理した結果、褐色の沈殿と透明の上澄み液に分離した。紫外線励起 によって、沈殿と上澄み液共に強!ヽ緑色の蛍光を示した。
[0158] TEM観察により、テルルイ匕カドミウムナノ粒子分散ガラス微粒子は球状であることを 確認した。その粒径(直径)は、透明の上澄み液においては 10ナノメートル〜 300ナノ メートル程度に分布しており、平均粒径は約 20〜30ナノメートルと見積もられた。褐色 の沈殿においては、 50ナノメートル〜 5マイクロメートル程度まで分布しており、上澄 み液中よりも粒径の大きな微小ガラス球を含んで 、た。
[0159] 透明の上澄み液におけるテルルイ匕カドミウムナノ粒子分散ガラス微粒子の粒径は、 前記の光散乱式粒径測定装置でも測定し、 TEM観察の結果とほぼ同じ値となった。
[0160] 緑色の蛍光を発する透明の上澄み液の蛍光スペクトルは、原料として用いた半導 体ナノ粒子分散水溶液と大きく異ならず、発光ピーク波長は 539ナノメートルであった 。発光効率は 28%と見積もられた。
[0161] なお、第 4工程 (後処理工程)で TEOSを添加する速度を速めると、遠心処理後の上 澄み液中におけるガラス微粒子の平均粒径を、 100ナノメートル前後まで大きくするこ とができた。その場合、発光効率は 28%と変わらな力つた。さらに、上記の方法で遠心 処理後に得た沈殿を、細孔径 450ナノメートルのフィルター(ミリポア社製マイレックス) を用いて、粒径の大きなガラス微粒子と粒径の小さなガラス微粒子に分級することが できた。
[0162] また、第 4工程 (後処理工程)にお 、て、上述した 30分間の超音波印加操作に続 ヽ て、溶液を 40°Cで 30分間暖める操作を加えると、上記と同様の遠心処理後に得られ る上澄み液が示す緑色の蛍光の発光効率は 35%となり、原料として用いた半導体ナノ 粒子分散水溶液と同じ値となった。 [0163] 原料のテルルィヒカドミウムナノ粒子分散水溶液が示す緑色の蛍光スペクトル (a)、及 び、 30分超音波印加および 30分 40°C処理を含む工程後に遠心分離して得た上澄み 液であるテルルイ匕カドミウムナノ粒子分散ガラス微粒子分散液が示す緑色の蛍光ス ベクトル (b)を、図 4に示す。
[0164] 一方、第 4工程 (後処理工程)を行わなカゝつた場合にも、遠心処理後に緑色発光を 示すテルルィヒカドミウムナノ粒子を含有するガラス微粒子の沈殿と上澄み液が得られ た力 TEM写真におけるガラス微粒子の輪郭はあまり明確ではなぐ発光効率は 25 〜30%程度であり、後処理工程を行った場合に比べて低 ヽ値となった。
[0165] さらに、実施例 1と同様の方法で処理することにより、強い緑色の蛍光を示す粉末を 得ることができた。
[0166] また、緑色発光テルルイ匕カドミウムナノ粒子分散ガラス微粒子は、実施例 1に記載し た赤色発光テルルイ匕カドミウムナノ粒子分散ガラス微粒子と同様に、ガラス微粒子に 分散しな 、ナノ粒子に比べて安定性に優れて 、た。この緑色発光ナノ粒子の分散水 溶液は、大気中、室温で 2ヶ月放置すると、水溶液中でナノ粒子が凝集沈殿し、ほと んど発光しなくなった。これに対して、同条件下で、ナノ粒子分散ガラス微粒子は、シ クロへキサン分散液中で凝集沈殿せず発光強度を維持し、固体粉末の状態でも発 光強度を維持した。
[0167] 施例 3
村瀬、ガオ、ガポニック、矢澤、フェルドマン、インターナショナル ジャーナル ォブ モダーン フィジックス ビー、 15卷、 3881頁 (2001)による方法に従って、 II-VI族半 導体であるセレン化亜鉛ナノ粒子を合成した。すなわち、アルゴンガス雰囲気下、界 面活性剤としてのチォグリコール酸 (HOOCCH SH)の存在下で pH6.5に調整した過
2
塩素酸亜鉛水溶液を激しく撹拌しながら、セレン化水素ガスを反応させた。これによ り、セレンィ匕亜鉛のクラスターが生成し、この水溶液を大気雰囲気下で数十時間還流 することにより、紫外線励起で青紫色の発光を示す、平均粒径 3ナノメートルのセレン 化亜鉛ナノ粒子を得た。
[0168] ナノ粒子の表面欠陥を減らし発光効率を高めるために、このセレンィ匕亜鉛ナノ粒子 を、亜鉛イオンとチォグリコール酸を溶解した水溶液中に分散し、 pHを 10〜11に調節 して紫外線を照射する後処理を行った。これにより、セレンィ匕亜鉛ナノ粒子コアの表 面が薄 ヽ硫ィ匕亜鉛シェル層で被覆されたコアシェル型のナノ粒子を作製した。このコ ァシェル型のナノ粒子は、紫外線励起での発光ピーク波長が 438ナノメートルで青紫 色の発光を示し、発光効率は 40%であった。
[0169] このようにして合成した半導体ナノ粒子を用いて、実施例 1と同様にして第 1〜3ェ 程および第 4工程 (後処理工程)の操作を行った。但し、第 1工程および第 4工程に おいて用いるアルカリ性水溶液として、アンモニア水の代わりに、亜鉛イオン及びチ オダリコール酸を含有する水酸ィ匕ナトリウム水溶液を用いた。なお、この水酸ィ匕ナトリ ゥム水溶液は、過塩素酸亜鉛及びチォグリコール酸を蒸留水にカ卩え、次いで、当該 蒸留水に 1モル Zリットルの水酸ィ匕ナトリウム水溶液を徐々にカ卩えて、 pH10〜ll程度 にすることにより得られた。
[0170] その結果、セレン化亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子を含有するガラス微粒 子を分散した溶液を得た。この溶液を毎分 4000回転で遠心処理して得た沈殿と上澄 み液は、共に強い青紫色の蛍光を示した。
[0171] その上澄み液に存在するセレン化亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子分散ガラ ス微粒子の TEM写真を図 5に示す。粒径 20〜50ナノメートル程度の球状のガラス微 粒子 (濃 、灰色の円)の内部に、セレンィ匕亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子(黒 色の小さな点)が多数存在している様子が認められた。
[0172] 青紫色の蛍光を発する透明の上澄み液の蛍光スペクトルは、原料として用いた半 導体ナノ粒子分散水溶液と大きく異ならず、発光ピーク波長は 432ナノメートルであつ た。発光効率は 27%と見積もられた。
[0173] 原料のセレン化亜鉛 Z硫化亜鉛コアシェル型ナノ粒子分散水溶液が示す青紫色 の蛍光スペクトル (a)、及び、遠心分離して得た上澄み液であるセレンィ匕亜鉛 Z硫ィ匕 亜鉛コアシェル型ナノ粒子分散ガラス微粒子分散液が示す青紫色の蛍光スペクトル ( b)を、図 6に示す。
[0174] さら〖こ、上記の、セレンィ匕亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子を含有するガラス 微粒子の沈殿と上澄み液をァセトニトリルで洗浄し過剰のポリオキシエチレン (5)ノ- ルフエニルエーテルを除去した後、溶媒を蒸発乾固させることにより強い青紫色の蛍 光を示す粉末が得られた。
[0175] 実施例 4
李、村瀬、ケミストリー レターズ、 34卷、 92頁 (2005)による方法に従って、 II-VI族半 導体であるセレン化亜鉛及びセレンィ匕カドミウムナノの合金粒子を合成した。すなわ ち、アルゴンガス雰囲気下、界面活性剤としてのチォグリコール酸 (HOOCCH SH)の
2 存在下で PH6.5に調整した、過塩素酸亜鉛と過塩素酸カドミウムの混合物の水溶液 を激しく撹拌しながら、セレン化水素ガスを反応させた。これにより、セレンィ匕亜鉛及 びセレンィ匕カドミウムが添加されたクラスターが生成し、この水溶液を大気雰囲気下 で数十時間還流することにより、紫外線励起で青色の発光を示す、平均粒径 3ナノメ 一トルの、セレンィ匕亜鈴及びセレンィ匕カドミウムの合金ナノ粒子を得た。
[0176] ナノ粒子の表面欠陥を減らし発光効率を高めるために、この、セレン化亜鉛及びセ レンィ匕カドミウムの合金ナノ粒子を、亜鉛イオン、カドミウムイオン、およびチォグリコ 一ル酸を溶解した水溶液中に分散し、 pHを 10〜11に調節して紫外線を照射する後 処理を行った。これにより、セレン化亜鉛及びセレンィ匕カドミウムの合金粒子であるコ ァの表面が、硫ィ匕亜鉛及び硫ィ匕カドミウムの合金力 なる薄 、シェル層で被覆された コアシェル型のナノ粒子を作製した。このコアシェル型のナノ粒子は、紫外線励起で の発光ピーク波長が 450ナノメートルで青色の発光を示し、発光効率は 50%であった。
[0177] このようにして合成した半導体ナノ粒子を用いて、実施例 1と同様にして第 1〜3ェ 程および第 4工程 (後処理工程)の操作を行!、、(セレンィ匕亜鉛及びセレンィ匕カドミゥ ムの合金) / (硫ィ匕亜鉛及び硫ィ匕カドミウムの合金)コアシェル型ナノ粒子を含有する ガラス微粒子を分散した溶液を得た。この溶液を毎分 4000回転で遠心処理して得た 沈殿と上澄み液は、共に強い青色の蛍光を示した。
[0178] 第 1工程および第 4工程において、亜鉛イオン及びチォグリコール酸を含む水酸ィ匕 ナトリウム水溶液を用いたところ、アンモニア水を用いた場合に比べて、より強い蛍光 を示す沈殿および上澄み液が得られた。
[0179] 第 1工程および第 4工程において、亜鉛イオン及びチォグリコール酸を含む水酸ィ匕 ナトリウム水溶液を用いた場合、上澄み液に存在する、(セレンィ匕亜鉛及びセレンィ匕 カドミウムの合金) / (硫ィ匕亜鉛及び硫ィ匕カドミウムの合金)コアシェル型ナノ粒子分 散ガラス微粒子の平均粒径は、光散乱式粒径測定装置で測定したところ、約 30ナノ メートルであった。また、青色の蛍光を発する透明の上澄み液の蛍光スペクトルは、 原料として用いた半導体ナノ粒子分散水溶液と大きく異ならず、発光ピーク波長は 44 9ナノメートルであった。発光効率は 30%と見積もられた。
[0180] さらに、実施例 3と同様の方法で、強い青色の蛍光を示す (セレン化亜鉛及びセレ ン化カドミウムの合金) / (硫ィ匕亜鉛及び硫ィ匕カドミウムの合金)コアシェル型ナノ粒 子を含有するガラス微粒子の粉末が得られた。
[0181] 実施例 5
李、村瀬、ケミストリー レターズ、 34卷、 92頁 (2005)による方法に従って、 II-VI族半 導体であるセレン化亜鉛にテルルイ匕亜鉛が添加されたナノ粒子を合成した。すなわ ち、アルゴンガス雰囲気下、界面活性剤としてのチォグリコール酸 (HOOCCH SH)の
2 存在下で PH6.5に調整した過塩素酸亜鉛の水溶液を激しく撹拌しながら、セレンィ匕 水素ガスおよびテルルイ匕水素ガスを反応させた。これにより、セレン化亜鉛にテルル 化亜鉛が添加されたクラスターが生成し、この水溶液を大気雰囲気下で数十時間還 流することにより、紫外線励起で青紫色の発光を示す、平均粒径 3ナノメートルの、セ レンィ匕亜鈴及びテルルイ匕亜鈴の合金ナノ粒子を得た。
[0182] この、セレンィ匕亜鉛及びテルルイ匕亜鉛の合金ナノ粒子を、亜鉛イオンおよびチォグ リコ一ル酸を溶解した水溶液中に分散し、 pHを 10〜 11に調節して紫外線を照射する 後処理を行った。これにより、セレン化亜鉛及びテルルイ匕亜鉛の合金粒子であるコア の表面が、薄い硫化亜鉛シェル層で被覆された、紫外線励起で青紫色の発光を示 すコアシェル型のナノ粒子を作製した。
[0183] このようにして合成した半導体ナノ粒子を用いて、実施例 4と同様にして第 1〜3ェ 程および第 4工程 (後処理工程)の操作を行った。第 1工程および第 4工程にぉ 、て 、亜鉛イオン、チォグリコール酸を含む水酸ィ匕ナトリウム水溶液を用いた。その結果、 (セレンィ匕亜鉛及びテルルイ匕亜鉛の合金) Z硫ィ匕亜鉛コアシェル型ナノ粒子を含有 するガラス微粒子を分散した溶液を得た。この溶液を毎分 4000回転で遠心処理して 得た沈殿と上澄み液は、共に強!、青紫色の蛍光 (発光波長 430nm)を示した。
[0184] さらに、実施例 3と同様の方法で、強い青紫色の蛍光を示す (セレン化亜鉛のテル ル化亜鉛の合金) ,硫化亜鉛コアシェル型ナノ粒子を含有するガラス微粒子の粉末 が得られた。
[0185] 実施例 6
実施例 1と同様にして合成した、赤色の発光を示す、平均粒径 4ナノメートルのテル ルイ匕カドミウムナノ粒子半導体ナノ粒子を用い、実施例 1と同様にして第 1〜3工程を 行った。続く第 4工程 (後処理工程)を行う際に、上記の溶液に、まず TEOS l.OxlO—3 モルとアンモニア水をカ卩え、 4時間撹拌した後、室温で 30分間超音波を印加した。
[0186] このようにして得られたテルルイ匕カドミウムナノ粒子分散ガラス微粒子の最外表面に 、 OH基だけでなぐガラス微粒子を生体由来分子と結合させるために有効に利用で きるアミノ基を存在させるため、テルルイ匕カドミウムナノ粒子分散ガラス微粒子分散溶 液に、次に 3-ァミノプロピルトリメトキシシラン (APS) 3.4x10— 4モルとアンモニア水をカロえ 、 1時間撹拌した後、室温で 30分間超音波を印カロした。
[0187] この後、得られた溶液を毎分 4000回転で遠心処理した結果、褐色の沈殿と透明の 上澄み液に分離した。紫外線励起によって、沈殿と上澄み液共に強い赤色の蛍光を 示した。これにより得られたテルルイ匕カドミウムナノ粒子分散ガラス微粒子の形状 (球 状)、その粒径 (直径)、および、蛍光波長と発光効率は、実施例 1と同様であった。
[0188] また、 APS添加前に比べて、 APS添加後にはガラス微粒子の粒径が大きくなつたこと から、上記第 4工程 (後処理工程)において加えた APSが加水分解して、テルル化力 ドミゥムナノ粒子分散ガラス微粒子の最外表面にガラス層を形成し、最終的に得られ たテルルイ匕カドミウムナノ粒子分散ガラス微粒子の最外表面には、 -OH基とアミノ基 の両方が存在して 、ることが示された。
[0189] また、上記の第 1〜4工程において、実施例 2と同様にして合成した緑色の発光を 示すテルルイ匕カドミウムナノ粒子を用いた場合には、最外表面層に、 - OH基とアミノ 基の両方が存在し、緑色発光を示すナノ粒子分散ガラス微粒子が得られ、実施例 3 、 4、 5と同様にして合成した青紫色〜青色の発光を示すコアシェル型ナノ粒子を用 いた場合には、最外表面層に、 -OH基とアミノ基の両方が存在し、青紫色〜青色の 発光を示す、セレンィ匕亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子、(セレン化亜鉛及びセ レンィ匕カドミウムの合金) / (硫ィ匕亜鉛及び硫ィ匕カドミウムの合金)コアシェル型ナノ粒 子、および、(セレンィ匕亜鉛及びテルル化亜鉛の合金) Z硫ィ匕亜鉛コアシェル型ナノ 粒子をそれぞれ分散したガラス微粒子が得られた。
[0190] さらに、上記の第 4工程において、 3-ァミノプロピルトリメトキシシラン (APS) 1.7xl0—4 モルに代えて 3-メルカプトプロピルトリメトキシシラン (MPS) 1.7x10— 4モルを用いると、 最外表面層に- OH基とチオール基の両方が存在し、赤色発光、緑色発光および青 紫色〜青色の発光を示す、テルルィヒカドミウムナノ粒子分散ガラス微粒子、および、 セレンィ匕亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子分散ガラス微粒子が得られた。
[0191] 実施例 7
本方法で作製したナノ粒子分散ガラス微粒子は非常に輝度の高い発光を示すの で、 1個 1個のガラス微粒子力もの発光を別々に検出して分光することが出来る。
[0192] まず、実施例 1の第 1工程で得られる赤色発光(直径 4ナノメートル程度)のテルル 化カドミウムナノ粒子分散水溶液に、実施例 2で作製した緑色発光 (直径 3ナノメート ル程度)のものをほぼ等量混合した。この混合したテルルイ匕カドミウムナノ粒子分散 水溶液を用いて、実施例 1の方法によりナノ粒子分散ガラス微粒子を作製した。これ により、得られる 1つのガラス微粒子中には、赤色発光と緑色発光のナノ粒子が混在 して取り込まれることになる。
[0193] 作製後の上澄み液から、直径 30ナノメートル前後のガラス微粒子を取り出して水で 薄め、無蛍光石英製ガラス板に滴下した。これをデシケーター中で乾燥させることで 、表面にガラス微粒子の濃度が 10 m四方に 10個程度存在するガラス板の試料を 作製した。ここでは、特にガラス微粒子の凝集がないように注意した。
[0194] この試料を、文献(村瀬、ケミカル フイジタス レターズ、 368卷、 76ページ、 2003 年)に説明のように、アルゴンレーザーの短波長側の光(488 nm)を 40倍の対物レン ズで絞り込んで、そこ力 出てくる蛍光を CCD付きの分光器に導く装置を使って分光 した。
[0195] 観察時には、ガラス板上のアルゴンレーザーの照射位置を X, Yの 2軸のマイクロメ 一ターを使って走査しながら蛍光を検出することで、微粒子を見つけた。
[0196] その結果、最初の位置 (位置 1)にあるガラス微粒子では、ほとんど赤色の発光のみ が検出されたので、大き ヽナノ粒子(直径 4ナノメートル程度)が数多く含まれて ヽるこ とがわかった。
[0197] 一方、他の位置 (位置 2)のガラス微粒子では、青色発光の強度が著 、ので、小さ
V、ナノ粒子(直径 3ナノメートル程度)が多く含まれて 、ることがわ力つた。
[0198] さらに走査すると別の位置 (位置 3)にある微粒子では、赤色発光と緑色発光の両 方が観察されたので、そのガラス微粒子には、大きいナノ粒子と小さいナノ粒子の両 方が含まれて!/、ることがわかった。
[0199] このような装置を用いて蛍光スペクトルを取ることで、それぞれの位置 (位置 1 3) にあるガラス微粒子をスペクトルに基づいて識別することが出来た。
図面の簡単な説明
[0200] [図 1]実施例 1において、第 4工程後に遠心分離して得た上澄み液中に存在するテ ルルィ匕カドミウムナノ粒子分散ガラス微粒子の TEM写真を示す。
[図 2]実施例 1にお ヽて、第 4工程後に遠心分離して得た沈殿中に存在するテルル 化カドミウムナノ粒子分散ガラス微粒子の TEM写真を示す。
[図 3]実施例 1にお 、て、原料のテルルイ匕カドミウムナノ粒子分散水溶液が示す赤色 の蛍光スペクトル (a)、及び、上澄み液であるテルルイ匕カドミウムナノ粒子分散ガラス 微粒子分散液が示す赤色の蛍光スペクトル (b)を示す。
[図 4]実施例 2にお ヽて、原料のテルルイ匕カドミウムナノ粒子分散水溶液が示す緑色 の蛍光スペクトル (a)、及び、上澄み液であるテルルイ匕カドミウムナノ粒子分散ガラス 微粒子分散液が示す緑色の蛍光スペクトル (b)を示す。
[図 5]実施例 3において、第 4工程後に遠心分離して得た上澄み液中に存在するセレ ン化亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子分散ガラス微粒子の TEM写真を示す。
[図 6]実施例 3にお 、て、原料のセレンィ匕亜鉛 Z硫ィ匕亜鉛コアシェル型ナノ粒子分散 水溶液が示す青紫色の蛍光スペクトル (a)、及び、上澄み液であるセレンィ匕亜鉛 Z硫 化亜鉛コアシェル型ナノ粒子分散ガラス微粒子分散液が示す青紫色の蛍光スぺタト ル (b)を示す。

Claims

請求の範囲
[1] アルコキシドの加水分解生成物を含む平均粒径 10ナノメートル以上 5マイクロメート ル以下のシリカ系ガラス微粒子中に、半導体ナノ粒子が 2x10— 5モル Zリットル以上 1x1 0— 2モル Zリットル以下の濃度で分散されてなる半導体ナノ粒子分散ガラス微粒子で あって、当該半導体ナノ粒子分散ガラス微粒子が分散した溶液における蛍光の発光 効率 (量子収率)が 25%以上である半導体ナノ粒子分散ガラス微粒子。
[2] 前記シリカ系ガラス微粒子 1個当たりに平均して半導体ナノ粒子力 1個を越えて内 包されて!ヽる請求項 1に記載の半導体ナノ粒子分散ガラス微粒子。
[3] 前記半導体ナノ粒子分散ガラス微粒子が分散した溶液における蛍光の発光効率( 量子収率)が 60%以上である請求項 1に記載の半導体ナノ粒子分散ガラス微粒子。
[4] 半導体ナノ粒子が、硫ィ匕カドミウム、セレンィ匕亜鉛、セレン化カドミウム、テルル化亜 鉛、テルル化カドミウム、硫化亜鉛、及び硫ィ匕鉛カゝらなる群カゝら選ばれた少なくとも 1 種である請求項 1に記載の半導体ナノ粒子分散ガラス微粒子。
[5] ガラス微粒子表面に、アミノ基、チオール基、及びカルボキシル基力 なる群より選 ばれる少なくとも 1種の官能基を有する請求項 1に記載の半導体ナノ粒子分散ガラス 微粒子。
[6] 半導体ナノ粒子分散水溶液にアルコキシドを加え、加水分解を一部進行させたゾ ルーゲル反応溶液を生成させる第 1工程、疎水性の有機溶媒に界面活性剤を加え て逆ミセル溶液を生成させる第 2工程、及び、第 1工程で得た溶液と第 2工程で得た 溶液を混合し、半導体ナノ粒子を分散含有したガラス微粒子を生成させる第 3工程、 を含むことを特徴とする半導体ナノ粒子分散ガラス微粒子の作製方法。
[7] 第 1工程において、半導体ナノ粒子分散水溶液中にさらにアルカリ性水溶液を加え ることを特徴とする、請求項 6に記載の作製方法。
[8] アルカリ性水溶液がアンモニア水又は水酸ィ匕ナトリウム水溶液である、請求項 7に 記載の作製方法。
[9] アルカリ性水溶液が、半導体ナノ粒子を構成する金属イオンを含有して!/ゝる請求項 7に記載の作製方法。
[10] 第 1工程において、さらに、半導体ナノ粒子被覆用界面活性剤を加える、請求項 7 に記載の作製方法。
[11] 半導体ナノ粒子表面用界面活性剤がチォグリコール酸である、請求項 10に記載の 作製方法。
[12] アルコキシドが、一般式 (I):
R1 -Si(OR2) (I)
r 4-r
(式中、 R1及び R2は同一又は異なった低級アルキル基を示し、 rは 0、 1、 2又は 3を示 す)
で表される化合物である請求項 6に記載の作製方法。
[13] 半導体ナノ粒子分散水溶液が、硫ィ匕カドミウム、セレンィ匕亜鉛、セレン化カドミウム、 テルル化亜鉛、テルル化カドミウム、硫化亜鉛、及び硫化鉛からなる群から選ばれた 少なくとも 1種の半導体ナノ粒子が分散した水溶液である請求項 6に記載の作製方 法。
[14] 半導体ナノ粒子がテルルイ匕カドミウムである請求項 6に記載の作製方法。
[15] 疎水性の有機溶媒が炭素数 4〜 12の炭化水素である請求項 6に記載の作製方法
[16] 疎水性の有機溶媒がシクロへキサンである請求項 6に記載の作製方法。
[17] 界面活性剤がポリオキシエチレンエーテル型非イオン性界面活性剤である請求項
6に記載の作製方法。
[18] アルコキシドがテトラエトキシシラン (TEOS)である請求項 6に記載の作製方法。
[19] 前記第 1工程〜第 3工程に加えて、第 3工程で生成したガラス微粒子の溶液に、さ らにアルコキシド及びアルカリ性水溶液を添加して撹拌する第 4工程を含むことを特 徴とする請求項 6に記載の作製方法。
[20] 前記第 1工程〜第 3工程に加えて、第 3工程で生成したガラス微粒子の溶液に、さ らにアルコキシド、シランカップリング剤及びアルカリ性水溶液を添加して撹拌する第
4工程を含むことを特徴とする請求項 6に記載の作製方法。
[21] 請求項 6に記載の作製方法により製造される半導体ナノ粒子分散ガラス微粒子。
[22] 請求項 1又は 21に記載の半導体ナノ粒子分散ガラス微粒子を含む蛍光体。
[23] 請求項 1又は 21に記載の半導体ナノ粒子分散ガラス微粒子を基板上に分散固定 した試料をステージ上に載せ、レーザー光をこの試料に照射し、ステージを少しずつ 動かしてレーザー光の照射位置を変えながら基板上の 1個 1個の半導体ナノ粒子分 散ガラス微粒子カゝら出てくる蛍光スペクトルを分光器を使って分光測定することを特 徴とするガラス微粒子の識別方法。
PCT/JP2006/318748 2005-09-22 2006-09-21 半導体ナノ粒子分散ガラス微粒子及びその作製方法 WO2007034877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/992,403 US8585927B2 (en) 2005-09-22 2006-09-21 Semiconductor-nanoparticle-dispersed small glass particles and process for preparing the same
JP2007536555A JP4840823B2 (ja) 2005-09-22 2006-09-21 半導体ナノ粒子分散ガラス微粒子及びその作製方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-275012 2005-09-22
JP2005275012 2005-09-22
JP2006001040 2006-01-06
JP2006-001040 2006-01-06
JP2006-041642 2006-02-17
JP2006041642 2006-02-17
JP2006-077334 2006-03-20
JP2006077334 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007034877A1 true WO2007034877A1 (ja) 2007-03-29

Family

ID=37888920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318748 WO2007034877A1 (ja) 2005-09-22 2006-09-21 半導体ナノ粒子分散ガラス微粒子及びその作製方法

Country Status (3)

Country Link
US (1) US8585927B2 (ja)
JP (1) JP4840823B2 (ja)
WO (1) WO2007034877A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028282A1 (ja) * 2007-08-28 2009-03-05 National Institute Of Advanced Industrial Science And Technology 新規ナノ粒子発光体
JP2010019767A (ja) * 2008-07-14 2010-01-28 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010043934A (ja) * 2008-08-12 2010-02-25 Fujifilm Corp 検出方法、検出用試料セル、検出用キット及び検出装置
WO2010128604A1 (ja) 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 量子ドット内包シリカナノ粒子、その製造方法、およびそれを用いた生体物質標識剤
JP2010285335A (ja) * 2008-10-15 2010-12-24 National Institute Of Advanced Industrial Science & Technology 内部に空洞を有するナノ粒子分散微小ガラスビーズ及びその製造方法
WO2011081037A1 (ja) 2009-12-28 2011-07-07 独立行政法人産業技術総合研究所 ゾル-ゲル法によって作製した半導体ナノ粒子分散蛍光性微粒子
WO2012147429A1 (ja) * 2011-04-26 2012-11-01 コニカミノルタエムジー株式会社 半導体ナノ粒子内包ガラス粒子、半導体ナノ粒子内包ガラス粒子の製造方法
WO2012161065A1 (ja) * 2011-05-23 2012-11-29 独立行政法人産業技術総合研究所 薄膜シリカガラスコート量子ドットからなる蛍光性微粒子及びその製造方法
JPWO2013035362A1 (ja) * 2011-09-09 2015-03-23 コニカミノルタ株式会社 耐イオン溶出性半導体ナノ粒子集積体
JP2015096461A (ja) * 2008-04-23 2015-05-21 国立研究開発法人産業技術総合研究所 ナノ粒子の製造方法及び該方法により製造されたナノ粒子
KR20160086918A (ko) * 2013-11-19 2016-07-20 큐디 비젼, 인크. 발광 입자, 그를 포함하는 물질 및 제품, 및 방법
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
JP2018115315A (ja) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法
WO2018135434A1 (ja) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法
CN108954460A (zh) * 2018-08-03 2018-12-07 广东丰森第五能源科技有限公司 一种壁柜式健康理疗电暖器
WO2019022217A1 (ja) * 2017-07-27 2019-01-31 Nsマテリアルズ株式会社 量子ドット及び、量子ドットを用いた波長変換部材、照明部材、バックライト装置、表示装置、並びに、量子ドットの製造方法
JPWO2019074083A1 (ja) * 2017-10-12 2019-11-14 Nsマテリアルズ株式会社 量子ドットの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2700870T3 (es) 2009-04-15 2019-02-19 Univ Cornell Nanopartículas de sílice fluorescentes mejoradas a través de densificación de sílice
WO2012129107A2 (en) * 2011-03-18 2012-09-27 Syracuse University Nanoparticle array comprising distributed nanoparticles
KR101484462B1 (ko) * 2011-10-20 2015-01-20 코닌클리케 필립스 엔.브이. 양자 점들을 가진 광원
EP3135745B1 (en) 2014-06-11 2021-03-10 Konica Minolta, Inc. Semiconductor nanoparticle assembly and method for producing same
JP6344157B2 (ja) * 2014-09-01 2018-06-20 日本電気硝子株式会社 波長変換部材の製造方法及び波長変換部材
JP6493085B2 (ja) * 2015-08-24 2019-04-03 コニカミノルタ株式会社 蛍光色素内包樹脂粒子溶液の選択方法および濃度調整方法
US11299670B2 (en) * 2016-10-28 2022-04-12 Nexdot Glass composite particles and uses thereof
US11011720B2 (en) 2018-03-09 2021-05-18 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles, production methods thereof, and devices including the same
KR20190106823A (ko) 2018-03-09 2019-09-18 삼성전자주식회사 양자점 및 이를 포함하는 소자
CN110246987B (zh) * 2018-03-09 2024-11-01 三星电子株式会社 量子点、其制造方法、电致发光器件和显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211935A (ja) * 2001-01-16 2002-07-31 National Institute Of Advanced Industrial & Technology 超微粒子分散ガラス及びこれを用いた表示素子
JP2003321226A (ja) * 2002-02-27 2003-11-11 National Institute Of Advanced Industrial & Technology 半導体超微粒子含有シリカ系ガラス粒子材料およびデバイス
WO2004000971A1 (ja) * 2002-06-19 2003-12-31 National Institute Of Advanced Industrial Science And Technology 半導体超微粒子蛍光体および発光デバイス
JP2005189237A (ja) * 2003-12-05 2005-07-14 Sekisui Chem Co Ltd 光学的測定方法
JP2005281019A (ja) * 2004-03-29 2005-10-13 National Institute Of Advanced Industrial & Technology 半導体ナノ粒子を分散した蛍光性ガラスとその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
JP3517698B2 (ja) * 2000-03-03 2004-04-12 独立行政法人産業技術総合研究所 ナノ粒子分散構造体及びその積層体
US20020110180A1 (en) * 2001-02-09 2002-08-15 Barney Alfred A. Temperature-sensing composition
US7405002B2 (en) * 2004-08-04 2008-07-29 Agency For Science, Technology And Research Coated water-soluble nanoparticles comprising semiconductor core and silica coating
US7857993B2 (en) * 2004-09-14 2010-12-28 Ut-Battelle, Llc Composite scintillators for detection of ionizing radiation
JP4604246B2 (ja) * 2005-03-10 2011-01-05 独立行政法人産業技術総合研究所 高濃度に半導体ナノ粒子が分散した蛍光体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211935A (ja) * 2001-01-16 2002-07-31 National Institute Of Advanced Industrial & Technology 超微粒子分散ガラス及びこれを用いた表示素子
JP2003321226A (ja) * 2002-02-27 2003-11-11 National Institute Of Advanced Industrial & Technology 半導体超微粒子含有シリカ系ガラス粒子材料およびデバイス
WO2004000971A1 (ja) * 2002-06-19 2003-12-31 National Institute Of Advanced Industrial Science And Technology 半導体超微粒子蛍光体および発光デバイス
JP2005189237A (ja) * 2003-12-05 2005-07-14 Sekisui Chem Co Ltd 光学的測定方法
JP2005281019A (ja) * 2004-03-29 2005-10-13 National Institute Of Advanced Industrial & Technology 半導体ナノ粒子を分散した蛍光性ガラスとその製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028282A1 (ja) * 2007-08-28 2009-03-05 National Institute Of Advanced Industrial Science And Technology 新規ナノ粒子発光体
JP2015096461A (ja) * 2008-04-23 2015-05-21 国立研究開発法人産業技術総合研究所 ナノ粒子の製造方法及び該方法により製造されたナノ粒子
JP2010019767A (ja) * 2008-07-14 2010-01-28 Fujifilm Corp 検出方法、検出装置、検出用試料セルおよび検出用キット
JP2010043934A (ja) * 2008-08-12 2010-02-25 Fujifilm Corp 検出方法、検出用試料セル、検出用キット及び検出装置
JP2010285335A (ja) * 2008-10-15 2010-12-24 National Institute Of Advanced Industrial Science & Technology 内部に空洞を有するナノ粒子分散微小ガラスビーズ及びその製造方法
US9023659B2 (en) 2009-05-08 2015-05-05 Konica Minolta Medical & Graphic, Inc. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof
WO2010128604A1 (ja) 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 量子ドット内包シリカナノ粒子、その製造方法、およびそれを用いた生体物質標識剤
JP5686096B2 (ja) * 2009-05-08 2015-03-18 コニカミノルタ株式会社 量子ドット内包シリカナノ粒子、その製造方法、およびそれを用いた生体物質標識剤
WO2011081037A1 (ja) 2009-12-28 2011-07-07 独立行政法人産業技術総合研究所 ゾル-ゲル法によって作製した半導体ナノ粒子分散蛍光性微粒子
US10253253B2 (en) 2009-12-28 2019-04-09 National Institute Of Advanced Industrial Science And Technology Fluorescent particle, with semiconductor nanoparticles dispersed therein, fabricated by the sol-gel process
WO2012147429A1 (ja) * 2011-04-26 2012-11-01 コニカミノルタエムジー株式会社 半導体ナノ粒子内包ガラス粒子、半導体ナノ粒子内包ガラス粒子の製造方法
WO2012161065A1 (ja) * 2011-05-23 2012-11-29 独立行政法人産業技術総合研究所 薄膜シリカガラスコート量子ドットからなる蛍光性微粒子及びその製造方法
JP5709188B2 (ja) * 2011-05-23 2015-04-30 独立行政法人産業技術総合研究所 薄膜シリカガラスコート量子ドットからなる蛍光性微粒子及びその製造方法
JPWO2013035362A1 (ja) * 2011-09-09 2015-03-23 コニカミノルタ株式会社 耐イオン溶出性半導体ナノ粒子集積体
US10221354B2 (en) 2013-11-19 2019-03-05 Samsung Electronics Co., Ltd. Luminescent particle, materials and products including same, and methods
KR20160086918A (ko) * 2013-11-19 2016-07-20 큐디 비젼, 인크. 발광 입자, 그를 포함하는 물질 및 제품, 및 방법
JP2016540852A (ja) * 2013-11-19 2016-12-28 キユーデイー・ビジヨン・インコーポレーテツド ルミネッセンス粒子、これを含む材料および製品、ならびに方法
KR102393203B1 (ko) * 2013-11-19 2022-04-29 삼성전자주식회사 발광 입자, 그를 포함하는 물질 및 제품, 및 방법
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
JP2018115315A (ja) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法
WO2018135434A1 (ja) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 可視蛍光を発するCdを含まないコロイダル量子ドット及びその製造方法
WO2019022217A1 (ja) * 2017-07-27 2019-01-31 Nsマテリアルズ株式会社 量子ドット及び、量子ドットを用いた波長変換部材、照明部材、バックライト装置、表示装置、並びに、量子ドットの製造方法
JPWO2019022217A1 (ja) * 2017-07-27 2020-03-19 Nsマテリアルズ株式会社 量子ドット及び、量子ドットを用いた波長変換部材、照明部材、バックライト装置、表示装置、並びに、量子ドットの製造方法
US11257981B2 (en) 2017-07-27 2022-02-22 Ns Materials Inc. Quantum dot and wavelength converting member, lighting member, back light unit, and display device using quantum dot, and method of producing quantum dot
JPWO2019074083A1 (ja) * 2017-10-12 2019-11-14 Nsマテリアルズ株式会社 量子ドットの製造方法
US11124703B2 (en) 2017-10-12 2021-09-21 Ns Materials Inc. Quantum dot and method of producing the same; and wavelength converting member, lighting member, back light unit, and display device using quantum dot
US11845890B2 (en) 2017-10-12 2023-12-19 Ns Materials Inc. Quantum dot and method of producing the same; and wavelength converting member, lighting member, back light unit, and display device using quantum dot
CN108954460A (zh) * 2018-08-03 2018-12-07 广东丰森第五能源科技有限公司 一种壁柜式健康理疗电暖器

Also Published As

Publication number Publication date
JPWO2007034877A1 (ja) 2009-03-26
JP4840823B2 (ja) 2011-12-21
US20090108235A1 (en) 2009-04-30
US8585927B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP4840823B2 (ja) 半導体ナノ粒子分散ガラス微粒子及びその作製方法
Zhai et al. Synthesis of green emissive carbon dots@ montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers
Tang et al. Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles
Li et al. Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs
Kim et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes
JP4366502B2 (ja) 半導体超微粒子蛍光体および発光デバイス
JP5371011B2 (ja) 新規ナノ粒子発光体
JP5709188B2 (ja) 薄膜シリカガラスコート量子ドットからなる蛍光性微粒子及びその製造方法
CN106715643B (zh) 用于在有机硅主体中分散量子点以获得用于led照明的颜色转换器的硅氧烷配体
TWI608076B (zh) 以金屬硫醇聚合物穩定化的量子點
JP2015096461A (ja) ナノ粒子の製造方法及び該方法により製造されたナノ粒子
CN107810250A (zh) 核‑壳纳米片膜和使用其的显示装置
US7824767B2 (en) Fluorescent material with semiconductor nanoparticles dispersed in glass matrix at high concentration and method for manufacturing such fluorescent material
JP2005105244A (ja) 半導体超微粒子及び蛍光体
JP4817298B2 (ja) 半導体ナノ粒子を分散した青色発光蛍光体
Chang et al. Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays
Yoo et al. Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes
JP4403270B2 (ja) 半導体ナノ粒子を分散した蛍光性ガラスとその製造方法
Kong et al. Tunable photoluminescence in monodisperse silica spheres
TWI555234B (zh) 包含非等向性金屬奈米粒子-介電質核殼奈米結構之發光裝置
JP2017110040A (ja) コア/シェル型ナノ粒子の製造方法、及び発光体
Zhang et al. Layer-by-layer assembly of stable aqueous quantum dots for luminescent planar plate
KR101784085B1 (ko) 이방성 금속 나노입자-유전체 코어-쉘 나노구조체를 포함하는 광변환 발광소자
CN109929545A (zh) 一种量子点组合物及其制备方法
TWI797205B (zh) 量子點及其製造方法與樹脂組成物、波長轉換材料、發光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536555

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11992403

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810408

Country of ref document: EP

Kind code of ref document: A1