[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007020855A1 - 球状化無機物粉末の製造方法 - Google Patents

球状化無機物粉末の製造方法 Download PDF

Info

Publication number
WO2007020855A1
WO2007020855A1 PCT/JP2006/315750 JP2006315750W WO2007020855A1 WO 2007020855 A1 WO2007020855 A1 WO 2007020855A1 JP 2006315750 W JP2006315750 W JP 2006315750W WO 2007020855 A1 WO2007020855 A1 WO 2007020855A1
Authority
WO
WIPO (PCT)
Prior art keywords
spheroidized
product
powder
glass powder
acid
Prior art date
Application number
PCT/JP2006/315750
Other languages
English (en)
French (fr)
Inventor
Shigeo Yamaguchi
Takeo Inoue
Original Assignee
Nitto Boseki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005236450A external-priority patent/JP4941629B2/ja
Priority claimed from JP2006027240A external-priority patent/JP2007204334A/ja
Priority claimed from JP2006027241A external-priority patent/JP2007204335A/ja
Application filed by Nitto Boseki Co., Ltd. filed Critical Nitto Boseki Co., Ltd.
Priority to EP06782566A priority Critical patent/EP1918258A4/en
Priority to US11/990,485 priority patent/US8117867B2/en
Priority to CN2006800297045A priority patent/CN101296874B/zh
Publication of WO2007020855A1 publication Critical patent/WO2007020855A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres

Definitions

  • the present invention relates to a method for producing a spheroidized inorganic powder.
  • inorganic powders such as silicon oxide-containing materials have been used as fillers for composite materials such as printed wiring boards and sealing materials for the purpose of improving dimensional stability and heat resistance.
  • a pulverized product of glass fiber is sometimes used because the powder has a uniform composition and can easily reduce a powder having a large particle size.
  • the crushed glass fiber is formed into a columnar shape, and many of them are longer than the diameter. Therefore, increasing the filling amount as a filler increases the melting temperature of the resin. There was a tendency to become a viscosity, and the fluidity of the resin was remarkably lowered, and there was a limit as a high content filler. Further, the dispersibility in the resin was never sufficient.
  • Patent Document 1 As a technique for making the particle size distribution of the inorganic powder uniform, for example, in Patent Document 1, a crushed glass fiber is used as a raw material, and is packed into a container and pressed to obtain an effect. It describes a method for producing glass powder that is less likely to produce extremely large and extremely small ratios. However, according to this method, it is difficult to say that spherical glass powder can be obtained because mechanical glass is pressed and the overlapping portions of the glass fibers are broken by the pressure. Therefore, it is difficult to obtain a spherical glass powder. In terms of sex, it was never enough.
  • Patent Document 2 describes a method for producing glass powder in which tetraalkoxysilane is attached to glass fiber, coated, and then pulverized to have a small particle size and a narrow particle size distribution. I'll do it.
  • Patent Document 1 it is difficult to say that a spherical glass powder can be obtained by this method, so it was not sufficient in terms of high content and fluidity as a filler.
  • Patent Document 3 uses a metal powder such as a metal carbide powder as a raw material and throws it into a chemical flame to form a dust cloud-like metal powder.
  • a method for producing ultrafine oxide particles is described in which an explosion is caused to synthesize oxide ultrafine particles such as silicon dioxide.
  • this method is dangerous and expensive in the manufacturing process.
  • a fiber glass material coated with an organic material such as a binder is used as a raw material, and this is pulverized to form a flame.
  • a method for treating fibrous glass material characterized in that it is put in and the coated organic material is removed by incineration and the vitreous material is spheroidized.
  • organic substances are completely removed by incineration, and since it is not actively cooled, the spherical particles tend to re-agglomerate and become double particles.
  • this method is a technique for regenerating used organic-coated fibrous glass to produce a glass powder recycled raw material for use again as an industrial raw material. Therefore, the glass powder recycled raw material obtained by this method still requires processes such as organic matter treatment in order to be processed into industrial products.
  • Patent Document 5 discloses that molten glass is used as a raw material, and flows out as a continuous flow from an outflow nozzle to change into a drop-like glass lump during the flow. After that, a method of obtaining spherical glass by shifting the dropping trajectory of the glass lump and collecting it in a collecting tank is described.
  • Patent Document 6 discloses a spherical glass powder characterized by introducing a glass raw material into a plasma containing oxygen gas, melting it, and making it spherical. It describes how to get it.
  • Patent Document 7 discloses a final glass having a very specific composition such that the SiO content in the final glass composition is 2 to 15% by weight.
  • the obtained glass sphere is used for specific applications such as the production of an interlayer insulating film of a fluorescent display tube or a glass thin film substrate by a photolithographic technique.
  • Patent Document 8 for improving the fluidity of a resin also describes SiO in the final glass composition. Except that the content is 40 to 70% by weight, a method for producing a glass spherical powder almost the same as in Patent Document 7 is described. Similarly, the obtained glass sphere is a glass thin film substrate. It is used for specific applications such as manufacturing.
  • Patent Document 9 provides a high-strength glass fiber having a short melting time and almost no hollow fiber, and comprising an alkali metal oxide composed of specific amounts of SiO, AlO, and MgO.
  • Patent Document 10 describes the characteristics of E glass fibers by treating E glass fibers with an aqueous solution of acid to form a highly siliceous surface layer. A method for improving the heat resistance without impairing the temperature is described.
  • Patent Document 11 describes that the amount of alkaline earth metal and alkali metal eluted in an acidic solution is reduced by immersing the glass cloth in an acetic acid aqueous solution.
  • the glass cross of E glass composition that is 20ppm or less is described.
  • Patent Document 12 discloses that silicon dioxide powder having an average particle size of 0.01 to 10 / m by burning metal-caine powder in an oxygen-containing gas stream. And a method of removing radioactive element compounds such as uranium adhering to the surface by washing the formed silicon dioxide powder with a low concentration aqueous mineral acid solution such as an aqueous nitric acid solution. .
  • Patent Document 13 discloses that the content of radioactive elements such as uranium and thorium is less than lppb by washing the metal cage powder with a mineral acid aqueous solution. After that, a method for producing a high-purity silicon dioxide powder having an average particle size of 0.01 to 10 microns by burning the metal silicon powder in an oxygen-containing gas stream is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 338133
  • Patent Document 2 JP 2003-192387 A
  • Patent Document 3 Japanese Patent Publication No. 55201
  • Patent Document 4 JP-A-11-228164
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-179145
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-338961
  • Patent Document 7 JP-A-8-310836
  • Patent Document 8 JP-A-8-91874
  • Patent Document 9 JP-A-11 21147
  • Patent Document 10 JP-A-7-172876
  • Patent Document 11 Japanese Unexamined Patent Publication No. 2001-73253
  • Patent Document 12 Japanese Patent Publication No. 7-61855
  • Patent Document 13 Japanese Patent Publication No. 7-61856
  • an inorganic powder as a filler is often silane treated with an organosilane compound in order to improve the properties of the product obtained.
  • an organic silane compound for such silane treatment for example, (1) After immersing the glass fiber of the filler material in an organic silane compound-containing aqueous solution, the glass fiber is taken out and pulverized (2) A method of pulverizing the glass fiber of the filler material into a powder and then immersing it in an organic silane compound-containing aqueous solution, or (3) pulverizing the glass fiber of the filler material to a powder A method of adding and kneading the organic silane compound and the raw material resin after the preparation is considered.
  • the entire surface of the glass fiber after powdering is not treated with the organosilane compound.
  • the glass powder tends to agglomerate into double grains when dried after immersion.
  • the coupling reaction with the organosilane compound is insufficient, the formation of chemical bonds is insufficient, and the addition efficiency tends to deteriorate.
  • glass powder having a glass composition generally referred to as non-alkali glass has few major problems as a filler for laminated boards for printed wiring boards, but contains a small amount of alkali metal. Compared to silica powder that is not included, the sealing material formed by mixing with resin is inferior in electrical insulation, and improvement as a sealing material filler is desired. [0020] Further, since alkali-free glass has a lower melting temperature than silicon dioxide, the spheroidized glass powder obtained by spheroidizing the above glass powder has a round cross section, and the glass powder is a glass fiber powder.
  • the control of the particle size is fine, so that the spheroidized glass powder has a good dispersibility in the resin, and the resin containing the spheroidized glass powder has a good fluidity and has a high filling amount. We can expect to be able to obtain it.
  • the first invention of the present invention solves the above-mentioned problems and disadvantages of the prior art and provides a method for producing a spheroidized inorganic powder more suitable as a filler.
  • the second to fourth inventions of the present invention solve the above-mentioned problems of the prior art.
  • the drawbacks are solved, and a high filling amount of the spheroidized glass powder obtained by spheroidizing the alkali-free glass powder is possible.
  • the electrical insulation property of the sealing material formed by mixing with the resin is improved while maintaining the characteristics, and a method for producing a spheroidized glass powder more suitable for the filler for the sealing material is provided. is there.
  • the first invention of the present invention solves the above-mentioned problems
  • the silicon oxide-containing inorganic substance in the step (al) is preferably a vitreous substance, particularly glass fiber, and is preferably not coated with a coating agent.
  • the water in the above (cl) step contains an organosilane compound.
  • a second invention of the present invention solves the above-mentioned problems
  • step (c2) it is preferable to cool the spheroidized product by spraying water while maintaining the floating state of the spheroidized product.
  • the said silicon oxide containing vitreous substance is a glass fiber.
  • the third and fourth inventions of the present invention solve the above-mentioned problems, and the third invention is that (a3) a silicon oxide-containing glass having an alkali metal oxide content of 1.0% by weight or less.
  • the fourth invention is a first invention.
  • the silicon oxide-containing vitreous material is preferably a glass fiber.
  • the suspended state of the spheroidized product is maintained. It is preferable that the spheroidized product is sprayed with water containing an organosilane compound and cooled to perform silane treatment.
  • the inorganic powder obtained by the production method of the first invention of the present invention is substantially spherical, it has good fluidity as a resin filler, and as a result, uniform and high content filling is possible. . Further, since water is sprayed onto the spheroidized product while the sprayed state of the spheroidized product formed by heating is maintained, it is not necessary to provide a cooling zone in the production apparatus. Further, since the cooling is performed while maintaining the sprayed state (dust state) of the spheroidized product, aggregation of the spheroidized product (double graining) can be suppressed. Furthermore, since water is sprayed at a high temperature, it is already dry at the stage of collecting the cooled spheroids, so there is no need for a separate drying process.
  • a spheroidized inorganic powder having an excellent roundness in cross section can be obtained. Therefore, a vitreous material is preferred, and more preferably by using glass fibers.
  • a spheroidized inorganic powder having a relatively uniform particle size can be obtained. That is, since the size of the fiber in the diameter direction is almost constant, it is sufficient to crush considering only the variation in the fiber length direction.
  • spheroidization has the advantage that the volatile components of the silicon oxide-containing inorganic material are relatively small.
  • the silicon oxide-containing inorganic substance used as a raw material in the production method of the first invention of the present invention is preferably not coated with a coating agent.
  • the coating agent include organic surface coating agents, protective agents, and sizing agents.
  • a shorter pulverization time is required to obtain a predetermined pulverized product.
  • a coating material is obtained in order to obtain a predetermined pulverized material of almost the same size. If the material is not coated with an agent, grinding for about 1 hour is sufficient.
  • the organic silane compound is adhered to the entire surface of the spheroidized powder by spraying water containing the organic silane compound to the spheroid formed after pulverizing the inorganic oxide-containing inorganic substance.
  • the spheroidized product While maintaining this spray state, it is possible to prevent agglomeration of the spheroidized particles and to form a double particle by preferably spraying and cooling water containing an organosilane compound.
  • the inorganic oxide-containing inorganic powder when the inorganic oxide-containing inorganic powder is simply immersed in water containing an organosilane compound without being sprayed, the powder will agglomerate even if dehydrated and dried. As a result, there is a disadvantage that the powder must be pulverized again to secure a predetermined powder diameter.
  • the silicon oxide-containing vitreous material which is a raw material in the production method of the second invention of the present invention has a relatively low melting temperature
  • the spheroidized glass powder obtained by the production method of the second invention of the present invention is Since the cross section is substantially circular, it has good fluidity as a resin filler and can be filled with a high content.
  • the raw material containing the silicon oxide containing glassy material has an alkali metal oxide content of 1.0% by weight or less, and after spheroidizing the powdered material of the silicon oxide containing glassy material, Since metal ions such as alkali metal and alkaline earth metal are dissolved by contacting with acid, the spheroidized glass powder obtained by the production method of the present invention is a mixture of a sealing material formed with a resin. Electrical insulation can be significantly improved.
  • the fiber tends to be pulverized in the cross-sectional direction of the fiber, so the fiber diameter size is almost constant.
  • the ratio of the spheroidized glass powder having a large particle size can be reduced.
  • the spheroidized glass powder obtained by the production method of the present invention is Since the cross section is almost circular, a good flow as a resin filler It has mobility and can be filled with a high content. Furthermore, the silicon oxide-containing vitreous material, which is a raw material, has an alkali metal oxide content of 1.0% by weight or less, and is brought into contact with an acid prior to spheroidization, thereby allowing alkali metal or alkaline earth. Since metal ions such as similar metals have melted out, the spheroidized glass powder obtained by the production method of the present invention can significantly improve the electrical insulation of the sealing material formed by mixing with resin. Become.
  • the glassy material obtained by once melting the oxide-containing inorganic material as a raw material is used to spheroidize, so that the volatilization of the spheroidized glass powder occurs. If there are few ingredients, there is an advantage.
  • the spheroidized product formed by heating is cooled by spraying water containing an organosilane compound while maintaining the floating state of the spheroidized product.
  • the silane treatment can be performed while suppressing the aggregation and double-granulation of the spheroidized material simultaneously with cooling.
  • spraying the water containing the organosilane compound in a high temperature state it is already dried at the stage of collecting the cooled spheroidized material, so there is no need to provide a separate drying step.
  • the oxide containing silicon oxide used as a raw material in the production method of the first invention of the present invention is more preferably an alkali-free glass that is preferably a vitreous substance. Those containing 50% by weight or more of the element are more preferable.
  • the shape of the vitreous material is preferably a glass fiber having a fiber diameter of, for example, about 3 to 30 ⁇ m because of the pulverization.
  • the pulverization may be performed by a known pulverization technique such as a ball mill.
  • the average particle size of the powdered material after pulverization is, for example, about 20 ⁇ m. Fine powder particles with a particle size of 1 ⁇ or less may be formed by the powder cake.
  • the pulverized product obtained in the step (al) can be subjected to steps (bl) to (dl) using the apparatus shown in FIG. This will be described with reference to FIG.
  • the pulverized product 1 obtained by pulverizing the silicon oxide-containing inorganic substance in the step (al) (pulverization step) is converted into a sprayed state (floating state) in the step (bl) (spheroidization step).
  • the pulverized material 1 stored in the storage tank 2 is used with a carrier gas 6 by using a powder feeder 3 such as a table feeder, a screw feeder or an ultrasonic spraying device.
  • a powder feeder 3 such as a table feeder, a screw feeder or an ultrasonic spraying device.
  • the pulverized product can be made into a sprayed state by putting it into the melting zone 9 in the furnace from the upper part of the furnace 8.
  • Nitrogen, air, or oxygen can be used as the carrier gas 6. However, it is preferable to use the same gas as the fuel gas 4 described later from the viewpoint of work efficiency. Masle.
  • the means for heating the pulverized product is, for example, using the combustion gas 4 and the gas fuel 5 and the flame from the burner 7 in a sprayed state.
  • Heat powder 1 Air or oxygen is used as the combustion gas 4, and LPG gas (open pan gas) is preferred as the gas fuel 5.
  • the melting zone 9 in the furnace can be heated at a temperature of about 1500 ° C to 2000 ° C with an air burner (air burner) using air as a combustion gas.
  • air burner air burner
  • oxygen when used as the combustion gas, it can be heated with an oxygen burner at a temperature of about 2400 ° C to 3000 ° C.
  • a water-cooled cooling zone (not shown) is installed around the lower part of furnace 8 and a cooling zone is provided at the bottom of the furnace. (cl) Pre-cooling can be performed before (cooling step).
  • the pulverized product is spheroidized.
  • the means for injecting water in the step (cl) is, for example, an injection port (cooling device) installed in the lower part of the furnace when the spheroidized product heated in the melting zone 9 of the furnace falls into the lower part of the furnace. Spray water from spray 10).
  • the spheroidized material is cooled and the subsequent process ( At the time of collection at dl), for example, it can be cooled to about 160 ° C and the moisture can be dried.
  • the water contains 0.01 to 3.0% by weight of an organosilane compound.
  • the means for containing is not particularly limited, but for example, an organic silane compound can be dissolved in water and water having the dissolved organic silane compound can be sprayed.
  • the type of organosilane compound that can be contained is not particularly limited. For example, it is a silane compound having a hydrolyzable group and a hydrophobic group (organic group), and a known silane coupling agent for glass fibers is used. Can be mentioned.
  • silane coupling agent a silane compound represented by the following formula can be exemplified.
  • R represents an organic group
  • R ′ represents a methyl group, an ethyl group or a propyl group
  • n represents an integer selected from:! To 3
  • R ′ may be the same or different.
  • N is preferably 3.
  • Examples of powerful silane compounds include silane-coupled chiral IJs having unsaturated double bonds such as vinyltriethoxysilane, biertrimethoxysilane, and ⁇ - (methacryloyloxypropyl) trimethoxysilane; Silane coupling agents having an epoxy group such as 3, 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidyloxypropyl trimethoxysilane, ⁇ -glycidyloxypropylmethyl diethoxysilane; ⁇ -mercapto Silane coupling agent having a mercapto group such as propyltrimethoxysilane; ⁇ -aminopropylenotriethoxysilane, ⁇ - ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ - ⁇ - Aminoethyl) -1- ⁇ -aminoprovir trime
  • the spheroidized product cooled by jetting in the step (cl) can be collected by a powder recovery device.
  • a powder recovery device such as a cyclone, bag filter, or wet collector, and if necessary, a means such as a suction fan or blower is used.
  • the powder can be recovered by exhausting the gas outdoors using As a powder recovery device, It is preferable to use a cyclone and a bag filter in combination.
  • the silicon oxide-containing vitreous material used as a raw material in the production method of the present invention has a content of an oxide of an alkali metal such as sodium or potassium, generally called alkali-free glass or E glass, of 0.8. weight. /. It is more preferable that the glass has the following composition. Further, it is generally called S glass, and the content power of the alkali metal oxide is less than that of SE glass, and is 0.1% by weight or less. It is even more preferable that there is. Among the glasses having such a composition, those containing 50 to 70% by weight of silicon oxide are more preferable. When the oxide silicon is outside the above range, it may be difficult to obtain a vitreous substance (particularly glass fiber), or it may be difficult to spheroidize a pulverized product of the vitreous substance. is there.
  • the unit of numerical values for standard values and measured values is% by weight.
  • the measured values were measured for B 2 O 3 , R 20 , and CaO of S glass by wet analysis, and the other components were measured by X-ray fluorescence analysis.
  • the shape of the vitreous material is preferably a glass fiber having a fiber diameter of, for example, about 3 to 30 ⁇ m because of the pulverization.
  • the silicon oxide-containing vitreous substance used as a raw material is not coated with a coating agent.
  • the coating agent include organic surface coating agents, protective agents, and sizing agents. If it is not covered with a coating, When used, it tends to require a shorter powdering time to obtain a predetermined powdered material. For example, in the case of using a silicon oxide-containing vitreous material coated with a coating agent, when a grinding time of 5 hours is required, the coating agent can be obtained to obtain a predetermined pulverized product having substantially the same size. If the material is not coated with, grinding for about 1 hour is sufficient. When using a silicon oxide-containing vitreous substance coated with a coating material as a raw material, it is preferable to remove the coating material by firing or the like and then pulverize it.
  • the pulverization of the silicon oxide-containing vitreous material may be performed by a known pulverization technique such as a ball mill.
  • the average particle size of the pulverized product after pulverization is, for example, about 20 ⁇ m, but it is not limited to such particle size.
  • a fine particle size force S with a particle size of 1 zm or less may be formed.
  • the pulverized product obtained by the pulverization step in the present invention can be subjected to the subsequent spheronization step and, if necessary, cooling with the jet water in step (c2) (cooling step) using the apparatus shown in FIG. .
  • the description of the embodiment based on FIG. 1 is the same as that described in the first invention. In FIG. 1, the acid treatment process is not shown.
  • the collection of the spheroidized product can be performed by collecting the spheroidized product cooled by jetting water with the same collection device, means, and procedure as those shown in the first invention.
  • the cooled spheroidized product is brought into contact with an acid to form a spheroidized glass powder surface-treated with an acid.
  • Contact with acid is preferably done by immersion.
  • the acid to be used include organic acids such as acetic acid and inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, and the type is not particularly limited. Of these, strong acids are preferred.
  • C1 will remain in the spheroidized glass powder if hydrochloric acid is used, and S if sulfuric acid is used. Inappropriate for materials More preferably, nitric acid is used in which no element remains as a residue.
  • the acid concentration, immersion temperature, and immersion time of the immersion liquid may be appropriately selected.
  • the concentration is preferably 0.3 to 2. ON.
  • alkali metal components on the surface of the oxide-containing inorganic substance are eluted, and in some cases, alkaline earth metal components are also eluted.
  • the contact between the spheroidized product and the acid in the present invention is also simply referred to as “acid treatment”.
  • the acid-treated spheroidized glass powder obtained by the production method of the present invention is preferably silane-treated with an organosilane compound after acid treatment.
  • the type of the organic silane compound is not particularly limited.
  • the organic silane compound is a silane compound having a hydrolyzable group and a hydrophobic group (organic group), and examples thereof include known silane coupling agents for glass fibers.
  • Examples of such a silane coupling agent include the same silane compounds as those shown in the first invention.
  • the contact with the acid is carried out by dipping.
  • the acid used include organic acids such as acetic acid and inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid. It is not limited. Of these, strong acids are preferred.
  • hydrochloric acid is used, S1 may remain in the spheroidized material when C1 sulfuric acid is used, and these elements are unsuitable for sealing materials, so they are not suitable for sealing materials. It is further preferred to use nitric acid with no suitable elements remaining as residues.
  • the alkali metal component on the surface of the oxide-containing material is eluted, and in some cases, the alkaline earth metal component is also eluted.
  • the acid concentration, immersion temperature, and immersion time of the immersion liquid may be appropriately selected. In the case of nitric acid, the concentration is preferably 0.3 to 2. ON. It is also preferable to remove the eluted metal ion component from the system by immersing it in acid, followed by dehydration and washing with water.
  • the inorganic oxide-containing inorganic substance is subjected to acid treatment and then powdered. Since it is crushed and the oxide-containing inorganic substance becomes brittle due to acid treatment, there is a merit that it becomes easier to grind and the grinding efficiency is improved.
  • the silicon oxide-containing vitreous substance is pulverized and then acid-treated, and the specific surface area of the inorganic oxide-containing inorganic substance is increased by pulverization.
  • the efficiency of pulverization and acid treatment can be further improved.
  • the pulverized product obtained by the pulverization step in the present invention is subjected to the subsequent spheronization step and, if necessary, the floating spheroidization glass in steps (d3) and (d4) using the apparatus shown in FIG.
  • a process of spraying an organic silane compound aqueous solution (hereinafter, simply referred to as “silane treatment” or “silane treatment process”) may be performed on the powder.
  • silane treatment an organic silane compound aqueous solution
  • the silane treatment step of steps (d3) and (d4) is not essential in the present invention, but the silane treatment step can be carried out as spray cooling following the spheronization step.
  • Means for contacting with water containing such organosilane compound is, for example, installed in the lower part of the furnace when the spheroidized product heated in the melting zone 9 of the furnace falls into the lower part of the furnace.
  • the water containing the organosilane compound is sprayed from the spray port (cooling spray 10).
  • the spheroidized product can be cooled, and when the spheroidized product is subsequently collected, the spheroidized product can be cooled to, for example, about 150 ° C., and the moisture can be dried.
  • the water containing the organosilane compound contains 0.01 to 3.0% by weight of the organosilane compound.
  • the means for containing is not particularly limited.
  • the organic silane compound can be dissolved in water, and water containing the dissolved organic silane compound can be injected.
  • the type of the organic silane compound that can be contained is not particularly limited. For example, it is a silane compound having a hydrolyzable group and a hydrophobic group (organic group), and a known silane coupling agent for glass fiber is used. Can be mentioned.
  • Examples of such a silane coupling agent include the same silane compounds as those shown in the first invention and the second invention described above.
  • the spheroidized glass powder obtained by the present invention can be collected in a subsequent process. For example, it is possible to collect the spheroidized product cooled by spraying in the silane treatment step with the same collection device, means and procedure as those shown in the first and second inventions.
  • the piping may be clogged. Fine particles with a weight average particle size of 1 zm or less may be added before, after or after the process.
  • fine silicon oxide particles having an average primary particle diameter of 5 to:! OOnm:! To 5% by weight based on the weight of the pulverized product.
  • the fine particles of the silicon oxide can be obtained by hydrolyzing the tetrachlorosilane in an oxyhydrogen flame at high temperature and dehydrochlorinating.
  • E glass fiber powder (filament diameter llzm, average fiber length 21 zm) with a soft melting point of 850 ° C as an inorganic substance containing silicon oxide
  • air was used as the carrier gas using the apparatus shown in Fig. 1. Introduced into the furnace at 15 kg / hour, heat-treated with an air burner, and sprayed with water containing 0.1% by weight of glycidyloxypropyltrimethoxysilane while maintaining the spray state, cooled, and bug It was collected with a filter to obtain a spheroidized glass powder.
  • a pulverized product of crystallized silica (average particle size 15 zm) having a soft melting point of 1700 ° C
  • the apparatus shown in Fig. 1 provided with a cooling zone was used.
  • As a carrier gas it is charged into the furnace at 8 kg / hr, heat-treated with an oxygen burner, and cooled by injecting water containing 0.1% by weight of y-glycidinoreoxypropyltrimethoxysilane while maintaining the spray state. And collected with a bag filter to obtain a spheroidized silica powder.
  • FIGS. 2 and 3 Scanning electron micrographs of the spheroidized inorganic powders obtained in Examples 1 and 2 are shown in FIGS. 2 and 3, respectively.
  • (a) is a pulverized product
  • (b) is a spheroidized inorganic powder.
  • the spheroidized E glass powder of Example 1 has an average particle size of about 18 / m and a specific surface area of about 0.4 mVg. A spheroidized product having a high roundness was obtained.
  • FIG. 2 shows that the spheroidized E glass powder of Example 1 has an average particle size of about 18 / m and a specific surface area of about 0.4 mVg.
  • a spheroidized product having a high roundness was obtained.
  • the spheroidized silica powder of Example 2 had a roundness inferior to that of Example 1 with a force average particle size of about 25 ⁇ and a specific surface area of about 1.7 m 2 / g. A spheroidized product was obtained.
  • an E glass fiber chopped strand having a composition as measured in Table 1 and an average length of 25 mm and a softening point of 850 ° C. was used.
  • the pulverization was carried out with a ball mill until the average particle size became 25 ⁇ m to obtain a glass fiber powder.
  • the spheroidization was performed by using the apparatus shown in FIG. 1 and charging the furnace with air as a carrier gas at 15 kg / hour and heating with an air burner.
  • the acid treatment was performed by immersing the sample in an aqueous nitric acid solution at a rate of 500 cc per 20 g of the sample, leaving the sample in a nitric acid aqueous solution for 1 hour at 70 ° C, followed by washing and dehydration.
  • the acid treatment was carried out (1) before pulverization, (2) after pulverization and before spheronization, or (3) after spheronization.
  • Example 3 The same procedure as in Example 3 was performed, except that an S glass fiber chopped strand having the composition of the actual measurement values shown in Table 1 was used instead of the E glass fiber chopped strand as the glassy substance containing silicon oxide. . Table 2 shows the results obtained.
  • the S glass fiber chopped strand used in Example 4 or 5 was used as a raw material and was pulverized as it was (“no acid treatment”). Further, using the same raw material, an acid treatment as described in Example 3 was performed and then pulverized (“acid-treated product”) was obtained. The pulverization was performed by putting 100 kg of glass fiber chopped sardine and 100 kg of Bonore Minore into a 100-liter ball mill and grinding for 3 hours. The average particle size of the pulverized product obtained by pulverization was 9.6 zm for “no acid treatment”, whereas “average for acid-treated product” was 5. This result shows that pulverization became easier by acid treatment before pulverization ("acid-treated product”). However, from the comparison of (1) (corresponding to “acid-treated product”) and (2) (corresponding to “no acid-treated product”) in Table 2, “acid-treated product” shows a slightly higher electrical conductivity. ing.
  • Example 3 after spheronization, a silane compound aqueous solution (0.5% by weight aqueous solution of aminopropyltriethoxysilane) is sprayed onto the spheroidized glass powder that remains floating. Then, the mixture was cooled and silane-treated to obtain spheroidized glass powder. In addition, the acid-treated spheroidized glass powder obtained in (3) of Example 3 was treated with a silane compound water solution (0.5% by weight aqueous solution of aminopropyltriethoxysilane). Silane-treated spheroidized glass powder was obtained.
  • the order of each of the pulverization process, spheroidization process, and acid treatment process must be selected appropriately in consideration of the required characteristics of the product.
  • the spheroidized inorganic powder or spheroidized glass powder obtained by the production method of the present invention can be used as a filler for composite substrates such as printed wiring boards and sealing materials.
  • FIG. 1 shows a schematic diagram of an apparatus used for carrying out an embodiment of the production method of the present invention.
  • the configuration-schematic diagram of the test equipment air furnace
  • FIG. 2 shows an SEM photograph of a spheroidized inorganic powder obtained by one embodiment of the production method of the first invention of the present invention.
  • (A) represents E glass fiber powder
  • (b) represents spheroidized E glass powder.
  • FIG. 3 shows an SEM photograph of a spheroidized inorganic powder obtained by one embodiment of the production method of the first invention of the present invention.
  • (A) represents crystalline silica powder
  • (b) represents spheroidized amorphous silica powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)

Abstract

 プリント配線板や封止材などの複合基材の充填材として、流動性が高く、高充填可能な球状化無機物粉末の製造方法を提供する。封止材用の充填材として、流動性が高く、高充填可能で、電気絶縁性の高い封止材が得られる、球状化無機物粉末の製造方法を提供する。  (a1)酸化ケイ素含有無機物を粉砕して粉砕物を形成し;(b1)前記粉砕物を噴霧状態で加熱して前記粉砕物を球状化して球状化物を形成し;(c1)前記球状化物の噴霧状態を維持したまま、前記球状化物に水を噴射して冷却し;そして、(d1)冷却した球状化物を捕集する;ことを包含する、球状化無機物粉末の製造方法。  酸化ケイ素含有ガラス質物質を粉砕して粉砕物を形成する粉砕工程と、酸と接触させる酸処理工程と、粉砕物を浮遊状態で加熱して球状化して球状化物を形成する球状化工程、を包含する、球状化ガラス粉末の製造方法。

Description

明 細 書
球状化無機物粉末の製造方法
技術分野
[0001] 本発明は、球状化無機物粉末の製造方法に関する。
背景技術
[0002] 従来、プリント配線板や封止材など複合材料の充填材として、酸化ケィ素含有物な どの無機物粉末が、寸法安定性及び耐熱性の向上などの目的で使用されている。 無機物粉末としては、組成が均一で、且つ容易に粒度の大きな粉末を少なくすること ができることから、ガラス繊維の粉砕物が使用されることがある。しかし、ガラス繊維の 粉砕物は、形状が円柱状になりやすぐしかも、直径に比べて長さが長いものが多く 存在してしまうため、充填材として充填量を上げると樹脂の溶融温度で高粘度になる 傾向にあり、樹脂の流動性が著しく低下してしまい、高含有量の充填材としては限界 があった。また、樹脂中での分散性も決して十分ではなかった。
[0003] そこで、無機物粉末の粒度分布を均一にする技術として、たとえば、特許文献 1に は、粉砕したガラス繊維を原料として用レ、、容器内に詰めて加圧することにより、ァス ぺクト比の極端に大きなものと極端に小さなものの発生が少ないガラスパウダーの製 造方法が記載されている。しかし、この方法によれば、機械的に加圧してその圧力に よりガラス繊維の重なり合った部分が折れるため、球状のガラスパウダーが得られると は言い難いので、充填材としての高含有量及び流動性の点からは、決して十分では なかった。
[0004] また、特許文献 2には、ガラス繊維にテトラアルコキシシランを付着させて被覆し、そ の後粉砕して、小粒径で粒径分布が狭レ、ガラスパウダーの製造方法が記載されてレ、 る。しかし、この方法によっても、特許文献 1と同様に、球状のガラスパウダーが得ら れるとは言い難いので、充填材としての高含有量及び流動性の点からは、決して十 分ではなかった。
[0005] そこで、球状化金属酸化物を得る方法として、特許文献 3には、原料として金属ケィ 素粉末などの金属粉末を用い、化学炎中に投入して粉塵雲状の金属粉末を形成さ せて爆発を起こさせて、二酸化ケイ素などの酸化物超微粒子を合成する、酸化物超 微粒子の製造方法が記載されている。しかし、この方法によれば、製造工程におい て危険を伴い、コストも高い。
[0006] また、ガラス繊維を球状化する技術としては、例えば、特許文献 4には、バインダー などの有機物で被覆されている繊維状ガラス物を原料として用レ、、これを粉砕して火 炎中に投入し、被覆された有機物を焼却除去するとともに、ガラス質を球状化するこ とを特徴とする、繊維状ガラス物の処理方法が記載されている。しかし、この方法によ れば、有機物の焼却除去が完全に行われるとは言いがたぐまた積極的に冷却して いないので、球状粒子が再凝集して複粒化してしまう傾向にある。また、この方法は、 そもそも、使用済の有機物被覆繊維状ガラス物を再生して、再度工業用原料に用い るためのガラス粉体再生原料を製造する技術である。したがって、この方法により得ら れたガラス粉体再生原料は、工業製品に加工するために、結局、有機物処理などの 工程がまた必要となる。
[0007] また、球状ガラスを製造する方法として、特許文献 5には、原料として溶融ガラスを 用レ、、流出ノズルから連続流として流出させて流下中に液滴状のガラス塊に変化さ せた後に、ガラス塊の落下軌道をずらして回収槽に回収することにより、球状ガラスを 得る方法が記載されている。
[0008] また、球状ガラス粉末を製造する方法として、特許文献 6には、酸素ガスを含有する プラズマに、ガラス原料を導入して溶融し、球面化することを特徴とする、球状ガラス 粉末を得る方法が記載されてレ、る。
[0009] また、ガラス球状粉末を製造する方法として、特許文献 7には、最終ガラス組成中の SiO含有量が 2〜: 15重量%となるなどごく特定の組成を有する最終ガラスが得られ
2
るように、ガラス用原料の様々な混合物を含む溶液またはゾルを原料として用レ、、同 溶液またはゾルを火炎雰囲気中に微細液滴として噴霧した後、急冷することを特徴と する方法が記載されている。この方法によれば、得られたガラス球体は、フォトリソダラ フィー技術による蛍光表示管の層間絶縁膜やガラス薄膜基板などの製造等、特定の 用途に利用される。
[0010] また、樹脂の流動性などを改良すベぐ特許文献 8にも、最終ガラス組成中の SiO 含有量が 40〜70重量%となることを除けば、特許文献 7とほぼ同様なガラス球状粉 末を製造する方法が記載されており、同様に、得られたガラス球体は、ガラス薄膜基 板などの製造等、特定の用途に利用される。
[0011] 一方、特許文献 9には、溶融時間が短くホロ一ファイバーがほとんどない高強度ガ ラス繊維が得られ、特定量の Si〇、 Al O及び MgOからなりアルカリ金属酸化物を
2 2 3
ほとんど含有しない高強度ガラス繊維用組成物が記載されている。
[0012] また、ガラス繊維を酸で処理する技術として、特許文献 10には、 Eガラス繊維を酸 の水溶液で処理して高シリカ質の表面層を形成させることにより、 Eガラス繊維の特 徴を損なうことなしに耐熱性を向上させる方法が記載されている。
[0013] 更に、ガラス繊維を酸で処理する技術として、特許文献 11には、ガラスクロスを酢酸 水溶液に浸漬することにより、酸性溶液中に溶出するアルカリ土類金属及びアルカリ 金属の量がガラスクロスの重量に対して 20ppm以下となる Eガラス組成のガラスクロ スが記載されている。
[0014] また、二酸化ケイ素粉末を酸で処理する技術として、特許文献 12には、金属ケィ素 粉末を酸素含有気流中で燃焼させて平均粒径 0. 01〜: 10 / mの二酸化ケイ素粉末 を形成させ、形成させた二酸化ケイ素粉末を、硝酸水溶液などの低濃度の鉱酸水溶 液などで洗浄して表面に付着しているウランなどの放射性元素化合物を除去する方 法が記載されている。
[0015] また、金属ケィ素粉末を酸で処理する技術として、特許文献 13には、金属ケィ素粉 末を鉱酸水溶液で洗浄してウラン及びトリウムなどの放射性元素の含有量を lppb以 下にした後、該金属ケィ素粉末を酸素含有気流中で燃焼させて平均粒径 0. 01〜1 0ミクロンの高純度の二酸化ケイ素粉末を製造する方法が記載されている。
特許文献 1 :特開平 4一 338133号公報
特許文献 2 :特開 2003— 192387号公報
特許文献 3:特公平 1一 55201号公報
特許文献 4 :特開平 11一 228164号公報
特許文献 5 :特開 2005— 179145号公報
特許文献 6 :特開 2004— 338961号公報 特許文献 7:特開平 8— 310836号公報
特許文献 8:特開平 8— 91874号公報
特許文献 9 :特開平 11 21147号公報
特許文献 10:特開平 7— 172876号公報
特許文献 11:特開 2001— 73253号公報
特許文献 12 :特公平 7— 61855号公報
特許文献 13 :特公平 7— 61856号公報
発明の開示
発明が解決しょうとする課題
[0016] 一方、プリント配線板や封止材など複合材料を製造する際には、得られる製品の特 性向上のため、充填材としての無機物粉末を有機シラン化合物でシラン処理すること が多い。
[0017] そのようなシラン処理のための有機シランィ匕合物の使用方法として、たとえば、 (1) 充填材原料のガラス繊維を、有機シラン化合物含有水溶液に浸漬した後に、ガラス 繊維を取り出して粉砕する方法、 (2)充填材原料のガラス繊維を粉砕して粉末状に した後に、有機シラン化合物含有水溶液に浸漬する方法、あるいは、(3)充填材原 料のガラス繊維を粉砕して粉末状にした後に、有機シラン化合物及び原料樹脂を加 えて混練する方法、などが、考えられる。
[0018] しかし、前記(1)の方法では、粉碎された面は有機シラン化合物で処理されないた め、粉碎後のガラス繊維の全表面が有機シラン化合物で処理されるわけではなぐ不 十分な処理となってしまうという欠点がある。また、前記(2)の方法では、浸漬後の乾 燥時にガラス粉末が凝集し、複粒化してしまう傾向にある。また、前記(3)の方法では 、有機シランィヒ合物によるカップリング反応が不十分となり、化学的な結合の形成が 不十分となって、添加効率が悪くなる傾向にある。
[0019] また、一般に無アルカリガラスと称されるガラス組成のガラス粉末は、プリント配線板 用積層板の充填材としては大きな問題は少ないものの、アルカリ金属が微量含まれ ているので、アルカリ金属が含まれていないシリカ粉末に比べて、樹脂と混合して形 成した封止材の電気絶縁性に劣り、封止材用充填材としては改良が望まれる。 [0020] 更に、無アルカリガラスは二酸化ケイ素に比べ溶融温度が低いので、上記のガラス 粉末を球状化した球状化ガラス粉末は、断面が真円状になり、且つガラス粉末がガラ ス繊維の粉碎物であれば、粒径の制御がしゃすいので、球状化ガラス粉末は樹脂中 での分散性が良ぐ且つ球状化ガラス粉末を配合した樹脂は流動性が良ぐ高充填 量の成形体を得ることが可能となることが期待できる。
[0021] 本発明の第 1の発明は、上記のような従来技術の課題 ·欠点を解決し、充填材とし てより適した球状化無機物粉末の製造方法を提供するものである。
[0022] 本発明の第 2の発明〜第 4の発明は、上記のような従来技術の課題.欠点を解決し 、無アルカリガラス粉末を球状化した球状化ガラス粉末の高充填量が可能であるとレ、 う特性を維持しつつ、樹脂と混合して形成した封止材の電気絶縁性を改良し、封止 材用充填材により適した球状化ガラス粉末の製造方法を提供するものである。
課題を解決するための手段
[0023] 本発明の第 1の発明は前記の課題を解決したものであり、
(al)酸化ケィ素含有無機物を粉砕して粉砕物を形成し;
(bl)前記粉碎物を噴霧状態で加熱して前記粉碎物を球状化して球状化物を形成し
(cl)前記球状化物の噴霧状態を維持したまま、前記球状化物に水を噴射して冷却 し;そして、
(dl)冷却した球状化物を捕集する;
ことを包含する、球状化無機物粉末の製造方法である。
上記(al)工程の酸化ケィ素含有無機物は、ガラス質物質、特にガラス繊維である ことが好ましぐまた、被覆剤で被覆されていないものであるものが好ましい。
さらに、上記(cl)工程の水には有機シラン化合物が含有されていることが好ましい
[0024] 本発明の第 2の発明は前記の課題を解決したものであり、
(a2)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有ガラス質物 質を粉砕して粉砕物を形成し;
(b2)前記粉碎物を浮遊状態で加熱して前記粉碎物を球状化して球状化物を形成し ;そして、
(d2)前記球状化物を酸と接触させて、酸で表面処理した球状化物を形成する; ことを包含する、球状化ガラス粉末の製造方法である。
上記 (b2)と上記(d2)の工程の間に、(c2)工程として、前記球状化物の浮遊状態 を維持したまま、前記球状化物に水を噴射して冷却する、ことが好ましい。
さらに、上記酸化ケィ素含有ガラス質物質がガラス繊維であることが好ましい。 本発明の第 3及び第 4の発明は前記の課題を解決したものであり、第 3の発明は、 (a3)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有ガラス質物 質を酸と接触させて酸で表面処理した酸化ケィ素含有無機物を形成し;
(b3)前記表面処理した酸化ケィ素含有ガラス質物質を粉砕して粉砕物を形成し;そ して
(c3)前記粉砕物を浮遊状態で加熱して前記粉砕物を球状化して球状化物を形成 する;
ことを包含する、球状化ガラス粉末の製造方法である。
また、第 4の発明は、
(a4)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有無機物を粉 砕して粉砕物を形成し;
(b4)前記粉碎物を酸と接触させて、酸で表面処理した粉碎物を形成し;そして (c4)前記表面処理した粉碎物を浮遊状態で加熱して前記表面処理した粉碎物を球 状化して球状化物を形成する;
ことを包含する、球状化ガラス粉末の製造方法である。
上記第 3の発明及び第 4の発明における酸化ケィ素含有ガラス質物質は、ガラス繊 維であることが好ましい。
さらに、上記第 3の発明及び第 4の発明において、それぞれの(c3)工程及び(c4) 工程の後に、(d3)工程及び(d4)工程として、前記球状化物の浮遊状態を維持した まま、前記球状化物に有機シラン化合物含有水を噴射して冷却し、シラン処理する、 ことが好ましい。
発明の効果 [0026] (第 1の発明について)
本発明の第 1の発明の製造方法により得られる無機物粉末はほぼ球状になるので 、樹脂の充填材として良好な流動性を有し、その結果、均一でかつ高含有量の充填 が可能となる。また、加熱により形成された球状化物の噴霧状態を維持したまま球状 化物に水を噴射して冷却するので、製造装置に冷却ゾーンを特に設ける必要がない 。また、球状化物の噴霧状態 (粉塵状態)を維持したまま冷却するので、球状化物の 凝集 (複粒化)を抑制できる。更に、高温状態で水を噴射するので、冷却した球状化 物を捕集する段階では、すでに乾燥しているので、乾燥工程を別途設ける必要がな レ、。
[0027] 原料の酸化ケィ素含有無機物として、断面が真円性に優れた球状化無機物粉末 が得られるため、ガラス質物質であるのが好ましぐさらに好ましくはガラス繊維を使 用することにより、比較的均一な粒径の球状化無機物粉末が得られる。すなわち、繊 維の直径方向のサイズはほぼ一定なので、繊維の長さ方向のばらつきだけを考慮し て粉砕すれば十分である。また、原料の酸化ケィ素含有無機物を一旦溶融して得た ガラス繊維を使用して球状化することにより、酸化ケィ素含有無機物の揮発成分が比 較的少なレヽとレ、う利点がある。
[0028] さらに、本発明の第 1の発明の製造方法において原料として使用される酸化ケィ素 含有無機物は、被覆剤で被覆されていないのが好ましい。被覆剤は、例えば、有機 物の表面被覆剤、保護剤、サイズ剤などが挙げられる。被覆剤で被覆されていなレ、も のを使用することにより、所定の粉砕物を得るのに、より短時間の粉砕時間ですむ傾 向にある。例えば、一例として、被覆剤で被覆されている酸化ケィ素含有無機物を用 レ、た場合に 5時間の粉砕時間を要する場合、ほぼ同様の大きさの所定の粉砕物を得 るのに、被覆剤で被覆されていないものを用いると約 1時間の粉砕で十分である。
[0029] 酸化ケィ素含有無機物を粉砕後に形成した球状化物に、好ましくは有機シラン化 合物を含有する水を噴射することにより、球状化物粉末表面の全面に有機シランィ匕 合物を付着させることができる。すなわち、有機シラン化合物を含有する水を噴射後 に粉砕などの粒子形成工程を実施すると、有機シラン化合物が付着しなレ、表面が形 成されてしまうという欠点が存在するが、そのような欠点がない。更に、前記球状化物 の噴霧状態を維持したまま、好ましくは有機シラン化合物を含有する水を噴射して冷 却することにより、球状化物の凝集 *複粒化を防止することができる。すなわち、酸化 ケィ素含有無機物の粉末を、噴霧状態にせずに、有機シラン化合物を含有する水中 に単に浸漬させただけでは、たとえその後脱水 *乾燥しても、粉末の凝集'複粒化が 起こってしまい、所定の粉末径を確保するのに、再度粉砕しなければならなくなる、と レ、う欠点が生じる。
[0030] (第 2の発明について)
本発明の第 2の発明の製造方法における原料である酸化ケィ素含有ガラス質物質 は、溶融温度が比較的低いので、本発明の第 2の発明の製造方法により得られる球 状化ガラス粉末は、ほぼ断面が真円状になるので、樹脂の充填材として良好な流動 性を有し、高含有量の充填が可能となる。さらに、原料である酸化ケィ素含有ガラス 質物質は、アルカリ金属酸化物の含有量が 1. 0重量%以下であり、且つこの酸化ケ ィ素含有ガラス質物質の粉碎物を球状化した後、酸と接触させることにより、アルカリ 金属やアルカリ土類金属などの金属イオンが溶け出しているので、本発明の製法に より得られる球状化ガラス粉末は、樹脂と混合して形成した封止材の電気絶縁性を 際立って改良することが可能となる。
また、原料として酸化ケィ素含有無機物を一旦溶融して得たガラス質物質を使用し て球状化するので、球状化ガラス粉末の揮発成分が少ないとレ、う利点がある。
[0031] 本発明の第 2の発明の製造方法において、浮遊状態のまま球状化物に水を噴射 すれば、効率的に冷却することができる。
さらに、本発明の第 2の発明の製造方法において、原料としてガラス繊維を使用す れば、粉砕により繊維の断面方向に粉砕される傾向にあるため、繊維の直径方向の サイズはほぼ一定なので、粒径の大きい球状化ガラス粉末の割合をより少なくするこ とができる。
[0032] (第 3の発明及び第 4の発明について)
本発明の第 3の発明及び第 4の発明の製造方法における原料である酸化ケィ素含 有ガラス質物質は、溶融温度が比較的低いので、本発明の製造方法により得られる 球状化ガラス粉末は、ほぼ断面が真円状になるので、樹脂の充填材として良好な流 動性を有し、高含有量の充填が可能となる。更に、原料である酸化ケィ素含有ガラス 質物質は、アルカリ金属酸化物の含有量が 1. 0重量%以下であり、且つ球状化に先 立ち、酸と接触させることにより、アルカリ金属やアルカリ土類金属などの金属イオン が溶け出しているので、本発明の製法により得られる球状化ガラス粉末は、樹脂と混 合して形成した封止材の電気絶縁性を際立って改良することが可能となる。
本発明の第 3の発明及び第 4の発明の製造方法において、原料として酸化ケィ素 含有無機物を一旦溶融して得たガラス質物質を使用して球状化するので、球状化ガ ラス粉末の揮発成分が少ないとレ、う利点がある。
[0033] また、本発明の第 3の発明及び第 4の発明の製造方法において、原料としてガラス 繊維を使用すれば、粉砕により繊維の断面方向に粉砕される傾向にあるため、繊維 の直径方向のサイズはほぼ一定なので、粒径の大きな球状化ガラス粉末の割合を少 なくすることができる。
[0034] さらに、本発明の第 3の発明及び第 4の発明の製造方法において、加熱により形成 された球状化物の浮遊状態を維持したまま球状化物に有機シラン化合物含有水を 噴射して冷却することにより、冷却と同時に球状化物の凝集 ·複粒化を抑制しながら シラン処理することができる。しかも、高温状態で有機シラン化合物含有水を噴射す ることにより、冷却した球状化物を捕集する段階では、すでに乾燥しているので、乾 燥工程を別途設ける必要がなレ、。
発明を実施するための最良の形態
[0035] (第 1の発明について)
本発明の第 1の発明の製造方法において原料として使用される酸化ケィ素含有無 機物は、ガラス質物質であることが好ましぐ無アルカリガラスであるのがより好ましぐ その中でも酸化ケィ素を 50重量%以上含有するものが更に好ましい。
[0036] 前記ガラス質物質の形状としては、粉砕のしゃすさから、その繊維径は、例えば、 約 3〜30 μ mであるガラス繊維であるのが好ましい。
さらに、本発明の製造方法において、被覆剤で被覆された酸化ケィ素含有無機物 を原料として用いる場合は、焼成するなどして被覆剤を除去してから粉碎するのが好 ましい。 [0037] 工程(al)において粉砕は、ボールミルなどの公知の粉砕技術で実施すればよレ、。 粉砕後の粉碎物の平均粒径は例えば 20 β m程度である力 そのような粒径に限定 されなレ、。粉碎により、粒径 1 μ ΐη以下の細かい粒径が形成されることもある。
[0038] 工程 (al)によって得られた粉砕物は、図 1に示す装置によって、工程 (bl)〜(dl) を施すことができる。以下図 1に基づき説明する。
工程 (al) (粉砕工程)によって酸化ケィ素含有無機物を粉砕して得た粉砕物 1を、 工程 (bl) (球状化工程)において粉砕物を噴霧状態 (浮遊状態)にする。噴霧状態 にするには、例えば、貯蔵タンク 2内に貯蔵された粉砕物 1を、テーブルフィーダ一や スクリューフィーダ一や超音波噴霧装置などの粉体供給装置 3などにより、キャリアガ ス 6を用いて、炉 8の上部から炉中の溶融帯 9中に投入することにより、粉砕物を噴霧 状態にすることができる。
キャリアガス 6としては窒素又は空気又は酸素を使用できるが、作業効率から後述 する燃料用ガス 4と同じものを使用するのが好ましぐ爆発の危険がある場合などは 窒素を使用することが好ましレ、。
[0039] 工程 (bl) (球状化工程)におレ、て粉砕物を加熱する手段は、例えば、燃焼用ガス 4 及びガス燃料 5を用レ、、バーナー 7からの火炎により、噴霧状態の粉碎物 1を加熱す る。燃焼用ガス 4としては空気または酸素を使用し、ガス燃料 5としては、 LPGガス(プ 口パンガス)が好ましい。
炉中の溶融帯 9において、燃焼用ガスとして空気を用いて空気バーナー(エアバー ナー)で約 1500°C〜2000°C程度の温度で加熱することができる。また、燃焼用ガス として酸素を用いる場合には、酸素バーナーで約 2400°C〜3000°Cの温度で加熱 すること力 Sできる。なお、酸素バーナーを使用する場合などで必要であれば、水冷式 の冷却帯(図示せず)を炉 8の下方部分の周辺に設置し、炉の下部に冷却帯を設け て、その後の工程 (cl) (冷却工程)の前に、予備冷却を実施することもできる。
この加熱により、粉砕物を球状化させる。
[0040] 工程 (cl)の水を噴射する手段は、例えば、炉の溶融帯 9で加熱し球状化した球状 化物が炉の下部に落下する際に、炉の下部に設置した噴射口(冷却スプレー 10)か ら、水をスプレー状に噴射する。この噴射により、球状化物を冷却し、その後の工程( dl)での捕集の際に、例えば 160°C程度まで冷却させ、且つ水分を乾燥させることも できる。
[0041] 工程 (cl)において、好ましくは、前記水は有機シラン化合物を 0. 01〜3. 0重量% 含有する。含有させる手段は特に限定されないが、例えば、有機シラン化合物を水 に溶解させ、溶解した有機シラン化合物を有する水を噴射することができる。含有さ せることのできる有機シランィ匕合物の種類は特に限定されないが、例えば、加水分解 性基と疎水基(有機基)を有するシラン化合物であり、周知のガラス繊維用のシラン力 ップリング剤を挙げることができる。
[0042] そのようなシランカップリング剤として、以下の式で表わされるシラン化合物を挙げる こと力 Sできる。
R - Si- (OR' )
(式中、 Rは有機基を表わし、 R'はメチル基、ェチル基またはプロピル基を表わし、 n は:!〜 3から選択される整数を表わす。 )
ここで、 R'は同一でも異なっていてもよぐ nは 3であることが好ましい。
[0043] 力かるシラン化合物としては、ビニルトリエトキシシラン、ビエルトリメトキシシラン、 γ - (メタクリロイルォキシプロピル)トリメトキシシラン等の不飽和二重結合を有するシラ ンカップリング斉 IJ ; β一(3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 γ ーグリシジルォキシプロビルトリメトキシシラン、 γ—グリシジルォキシプロピルメチル ジエトキシシラン等のエポキシ基を有するシランカップリング剤; γ—メルカプトプロピ ルトリメトキシシラン等のメルカプト基を有するシランカップリング剤; γ—ァミノプロピ ノレトリエトキシシラン、 Ν— β (アミノエチル) γ—ァミノプロピルトリメトキシシラン、 Ν— β - (Ν—ビュルべンジルアミノエチル)一 γ—ァミノプロビルトリメトキシシラン等のァ ミノ基を有するシランカップリング剤が挙げられる。
[0044] 工程 (dl)において捕集する手段は、例えば、工程(cl)で噴射により冷却した球状 化物を、粉体回収装置により捕集することができる。粉体回収装置により捕集する場 合、冷却した球状化物を、サイクロン、バグフィルター、あるいは湿式捕集器などの粉 体回収装置に導入して、必要に応じて吸引ファンゃブロワ一などの手段を用いて気 体を屋外排気することにより、粉体を回収することができる。粉体回収装置としては、 サイクロンとバグフィルターを併用するのが好ましい。
[0045] (第 2の発明〜第 4の発明について)
本発明の製法において原料として使用される酸化ケィ素含有ガラス質物質は、一 般に無アルカリガラスあるいは Eガラスと称される、ナトリウムやカリウムなどのアルカリ 金属の酸化物の含有量が 0. 8重量。 /。以下である組成のガラスであるのがより好まし ぐ更に、一般に Sガラスと称される、アルカリ金属酸化物の含有量力 SEガラスよりも更 に少なく 0. 1重量%以下である組成のガラスであるのがより更に好ましレ、。そのような 組成のガラスの中でも酸化ケィ素を 50〜70重量%含有するものが更に好ましい。酸 化ケィ素が上記範囲外の場合は、ガラス質物質 (特にガラス繊維)を得ることが困難 であったり、ガラス質物質の粉砕物を真円状に球状化することが困難になることがあ る。
[0046] 本発明で使用される Eガラス及び Sガラスの代表的なものの構成成分及び特性は、 以下のとおりである。 表 1
Figure imgf000014_0001
規格値及び実測値の数値の単位は、 重量%。
実測値は、 B 2 O 3、 R 2 0、 及び Sガラスの CaOは湿式分析法で測定し、 それ以外の構成成分は、蛍光 X線分析法で測定した。
[0047] 前記ガラス質物質の形状としては、粉砕のしゃすさから、その繊維径は、例えば、 約 3〜30 μ mであるガラス繊維であるのが好ましい。
さらに、本発明の製造方法において、原料として使用される酸化ケィ素含有ガラス 質物質は、被覆剤で被覆されていないのが好ましい。被覆剤は、例えば、有機物の 表面被覆剤、保護剤、サイズ剤などが挙げられる。被覆剤で被覆されていなレ、ものを 使用することにより、所定の粉碎物を得るのに、より短時間の粉碎時間ですむ傾向に ある。例えば、一例として、被覆剤で被覆されている酸化ケィ素含有ガラス質物質を 用いた場合に 5時間の粉砕時間を要する場合、ほぼ同様の大きさの所定の粉砕物を 得るのに、被覆剤で被覆されていないものを用いると約 1時間の粉砕で十分である。 被覆剤で被覆された酸化ケィ素含有ガラス質物質を原料として用いる場合は、焼成 するなどして被覆剤を除去してから粉砕するのが好ましい。
[0048] 本発明において酸化ケィ素含有ガラス質物質の粉砕は、ボールミルなどの公知の 粉砕技術で実施すればよい。粉砕後の粉砕物の平均粒径は例えば 20 μ m程度で あるが、そのような粒径に限定されなレ、。粉砕により、粒径 1 z m以下の細かい粒径 力 S形成されることちある。
[0049] (第 2の発明について)
本発明における粉砕工程によって得られた粉砕物は、図 1に示す装置によって、そ の後の球状化工程及び必要に応じて工程 (c2)の噴射水による冷却(冷却工程)を 施すことができる。図 1に基づく実施形態の説明は、前述の第 1の発明で示したものと 同じである。なお、図 1では、酸処理工程は図示されていない。
[0050] 上記の加熱による球状化工程に引き続き、浮遊状態を維持したまま水を噴霧して 冷却する。すなわち、炉の溶融帯 9で加熱し球状化した球状化物が炉の下部に落下 する際に、炉の下部に設置した噴射口(冷却スプレー 10)から、水をスプレー状に噴 射する。この噴射により、球状化物を冷却し、その後の球状化物の捕集の際に、 150 °C程度まで冷却させ、且つ水分を乾燥させることもできる。
[0051] 球状化物の捕集は、水の噴射により冷却した球状化物を、前述の第 1の発明で示 したものと同じ捕集装置、手段、手順で、捕集すること力 Sできる。
[0052] 本発明の製造方法においては、上記冷却した球状化物を酸と接触させて、酸で表 面処理した球状化ガラス粉末を形成する。酸との接触は浸漬により行うのが好ましレ、 。使用する酸は、酢酸などの有機酸や、硝酸、塩酸、硫酸などの無機酸などが挙げら れ、その種類は特に限定されない。その中でも、強酸が好ましい。また、塩酸を使用 すると C1が、硫酸を使用すると Sが、球状化ガラス粉末に残留する可能性があり、これ らの元素は、封止材用としては不適切な元素であるので、封止材用として不適切な 元素が残留物として残留しない硝酸を用いるのが更に好ましい。浸漬液の酸濃度、 浸漬温度、浸漬時間は適宜選定すればよいが、硝酸の場合は濃度が 0. 3〜2. ON であること好ましい。このような酸との接触により、酸化ケィ素含有無機物表面上のァ ルカリ金属成分が溶出し、また場合によりアルカリ土類金属成分も溶出する。さらに、 酸に浸漬した後に、脱水、水洗を行い、溶出した金属イオン成分を除去することが好 ましい。
なお、以後、本発明における球状化物と酸との接触を、単に「酸処理」とも呼ぶこと とする。
[0053] 本発明の製造方法によって得られた酸処理した球状化ガラス粉末は、酸処理後、 有機シラン化合物でシラン処理することが好ましい。有機シラン化合物の種類は特に 限定されないが、例えば、加水分解性基と疎水基 (有機基)を有するシラン化合物で あり、周知のガラス繊維用のシランカップリング剤を挙げることができる。
[0054] そのようなシランカップリング剤として、前述の第 1の発明で示したものと同じシラン 化合物を挙げることができる。
[0055] (第 3の発明及び第 4の発明について)
本発明の製造方法において、酸との接触は浸漬により行うのが好ましぐ使用する 酸は、酢酸などの有機酸や、硝酸、塩酸、硫酸などの無機酸などが挙げられ、その 種類は特に限定されない。その中でも、強酸が好ましい。また、塩酸を使用すると C1 力 硫酸を使用すると Sが、球状化物に残留する可能性があり、これらの元素は、封 止材用としては不適切な元素であるので、封止材用として不適切な元素が残留物と して残留しない硝酸を用いるのが更に好ましい。このような酸との接触により、酸化ケ ィ素含有物表面上のアルカリ金属成分が溶出し、また場合によりアルカリ土類金属成 分も溶出する。浸漬液の酸濃度、浸漬温度、浸漬時間は適宜選定すればよいが、硝 酸の場合、濃度は 0. 3〜2. ONであることが好ましい。また、酸に浸漬した後、脱水、 水洗を行い、溶出した金属イオン成分を系外に除去することが好ましレ、。
[0056] なお、以後、本発明における酸化ケィ素含有ガラス質物質あるいはその粉砕物と酸 との接触を、単に「酸処理」とも呼ぶこととする。
[0057] 本発明の上記第 3の発明においては、酸化ケィ素含有無機物を酸処理した後に粉 砕しており、酸処理で酸化ケィ素含有無機物が脆ィ匕するので、その後粉砕しやすく なり粉砕効率が向上するというメリットがある。
[0058] 本発明の上記第 4の発明においては、酸化ケィ素含有ガラス質物質を粉砕した後 に酸処理しており、粉砕により酸化ケィ素含有無機物の比表面積が増加しているの で、酸処理の効率が一層向上し、表面全体が処理できるというメリットがある。
なお、本発明において、酸化ケィ素含有ガラス質物質がガラス繊維であれば、粉砕 •酸処理の効率を一層向上させることができる。
[0059] 本発明における粉砕工程によって得られた粉砕物は、図 1に示す装置によって、そ の後の球状化工程及び必要に応じて工程 (d3)及び (d4)の浮遊状態の球状化ガラ ス粉末に、有機シラン化合物水系液を噴射する工程(以後、単に「シラン処理」あるい は「シラン処理工程」と呼ぶことがある)を施すことができる。図 1に基づく実施形態の 説明は、前述の第 1の発明で示したものと同じである。なお、図 1では、酸処理工程 は図示されていない。
[0060] 工程(d3)及び(d4)のシラン処理工程は、本発明においては必須ではないが、球 状化工程に引き続きシラン処理工程を噴霧冷却として実施することができる。そのよう な有機シランィ匕合物を含有する水と接触させるための手段は、例えば、炉の溶融帯 9 で加熱し球状化した球状化物が炉の下部に落下する際に、炉の下部に設置した噴 射口(冷却スプレー 10)から、有機シラン化合物を含有する水をスプレー状に噴射す る。この噴射により、球状化物を冷却し、その後の球状化物の捕集の際に、例えば 1 50°C程度まで冷却させ、且つ水分を乾燥させることもできる。
[0061] 工程 (d3)及び (d4)において、好ましくは、前記有機シラン化合物を含有する水は 有機シラン化合物を 0. 01〜3. 0重量%含有する。含有させる手段は特に限定され ないが、例えば、有機シラン化合物を水に溶解させ、溶解した有機シランィ匕合物を有 する水を噴射することができる。含有させることのできる有機シランィ匕合物の種類は特 に限定されないが、例えば、加水分解性基と疎水基 (有機基)を有するシラン化合物 であり、周知のガラス繊維用のシランカップリング剤を挙げることができる。
[0062] そのようなシランカップリング剤として、前述の第 1の発明及び第 2の発明で示したも のと同じシラン化合物を挙げることができる。 [0063] 本発明により得られた球状化ガラス粉末は、その後の工程で捕集することができる 。例えば、シラン処理工程で噴射により冷却した球状化物を、前述の第 1の発明及び 第 2の発明で示したものと同じ捕集装置、手段、手順で、捕集すること力 Sできる。 なお、第 1〜4の発明における粉砕により、特に粉砕物の重量平均粒子径を数 μ程 度にした際、配管が詰まってしまうことがあるので、このような不具合を抑制するため に、粉砕工程の前、後または粉砕工程において、重量平均粒子径が 1 z m以下の微 粒子を添加してもよレ、。この微粒子として平均一次粒子径が 5〜: !OOnmの酸化ケィ 素微粒子を粉砕物重量に対し:!〜 5重量%添加することが好ましい。この酸化ケィ素 微粒子は四塩化ケィ素を酸水素炎中で高温加水分解させ、脱塩化水素して得ること ができる。
実施例
[0064] 以下に実施例をあげて説明する。
(第 1の発明について)
(実施例 1)
酸化ケィ素含有無機物として、軟ィ匕点 850°Cの Eガラス繊維の粉碎物(フィラメント 直径 l l z m、平均繊維長 21 z m)を得た後、図 1に示す装置を用い、空気をキャリア ガスとして炉に 15kg/時間にて投入し、空気バーナーで加熱処理し、噴霧状態を維 持したまま、 Ί—グリシジルォキシプロピルトリメトキシシランを 0. 1重量%含む水を噴 射させ冷却し、バグフィルターで捕集し、球状化 Εガラス粉末を得た。
[0065] (実施例 2)
酸化ケィ素含有無機物として、軟ィ匕点 1700°Cの結晶化シリカの粉砕物(平均粒径 15 z m)を得た後、冷却帯を設けた図 1に示す装置を用レ、、酸素をキャリアガスとして 炉に 8kg/時間にて投入し、酸素バーナーで加熱処理し、噴霧状態を維持したまま 、 y—グリシジノレォキシプロピルトリメトキシシランを 0. 1重量%含む水を噴射させ冷 却し、バグフィルターで捕集し、球状化シリカ粉末を得た。
[0066] 実施例 1、 2で得られた球状化無機物粉末の走査型電子顕微鏡写真をそれぞれ図 2、図 3に示す。なお、(a)は粉砕物であり、(b)は球状化無機粉末である。図 2 (b)の ごとく実施例 1の球状化 Eガラス粉末は平均粒径約 18 / mで比表面積約 0. 4mVg の真円度が高い球状化物が得られた。また、図 3 (b)のごとく実施例 2の球状化シリカ 粉末は真円度が実施例 1よりも劣っていた力 平均粒径約 25 μ ΐηで比表面積約 1. 7 m2/gの球状化物が得られた。
[0067] (評価)
実施例 1および実施例 2で得られた球状化粉末を、充填材として 85重量%含むェ ポキシ樹脂成形品を作製したところ、寸法安定性、耐湿性に優れた成形品を得ること ができた。なお、実施例 1、 2で用いた粉砕物を 70重量%含有するエポキシ樹脂組 成物でさえも樹脂粘度が高くなり成形不能であった。
[0068] (第 2の発明〜第 4の発明について)
(実施例 3)
酸化ケィ素含有ガラス質物質として、前記表 1の実測値の組成を有し、平均長さが 25mmの軟化点 850°Cの Eガラス繊維チョップドストランドを使用した。
粉砕は、平均粒径 25 β mになるまでボールミルで粉碎し、ガラス繊維の粉碎物を 得た。球状化は、粉砕物を、図 1に示す装置を用い、空気をキャリアガスとして炉に 1 5kg/時間にて投入し、空気バーナーで加熱処理することにより、実施した。
酸処理は、試料 20gに対して 500ccの割合の 1. ON硝酸水溶液で、試料を硝酸水 溶液に浸漬し、 70°Cで 1時間放置し、その後、水洗、脱水を行ない、実施した。
なお、酸処理は、(1)粉砕の前、あるいは、(2)粉碎後で球状化前、あるいは、 (3) 球状化後に実施した。
電気伝導度については、粉砕、酸処理、及び球状化のすべての工程を実施した後 の試料 lOgを、純水 lOOccに撹拌しながら 1時間浸漬し、浸漬液の電気伝導度を測 定した。浸漬液中への溶け出し分がアルカリ金属分と考え、電気伝導度が高いほど、 アルカリ金属分の溶け出し量が高ぐ球状化物中に含まれるアルカリ金属分の量が 多いと考える。得られた結果を表 2に示す。 [0069] 表 2
Figure imgf000020_0001
(1)酸処理→粉碎 →球状化 (第 3の発明)
(2)粉砕 →酸処理→球状化 (第 4の発明)
(3)粉砕 →球状化→酸処理 (第 2の発明)
[0070] (実施例 4)
酸化ケィ素含有ガラス質物質として、 Eガラス繊維チョップドストランドの代わりに前 記表 1の実測値の組成を有する Sガラス繊維チョップドストランドを用い、 1. ON硝酸 水溶液の代わりに 0. 5N硝酸水溶液を用いた以外は、実施例 3と同様の手順を実施 した。得られた結果を表 2に示す。
[0071] (実施例 5)
酸化ケィ素含有ガラス質物質として、 Eガラス繊維チョップドストランドの代わりに前 記表 1の実測値の組成を有する Sガラス繊維チョップドストランドを用いた以外は、実 施例 3と同様の手順を実施した。得られた結果を表 2に示す。
[0072] (比較例 1)
酸処理を実施しなかった以外は、実施例 3と同様の手順を実施した。得られた結果 を表 2に示す。
[0073] (比較例 2)
酸処理を実施しなかった以外は、実施例 4と同様の手順を実施した。得られた結果 を表 2に示す。
[0074] (電気伝導度の評価)
Eガラス及び Sガラスのいずれを使用しても、酸処理(実施例 3〜5)により電気伝導 度が有利に大幅に低下した。この結果から、酸処理により、球状化ガラス粉末中に含 まれるアルカリ金属分の量が有利に大幅に低下したと考えられる。 [0075] (樹脂流動性の評価)
実施例 3〜5及び比較例:!〜 2で、樹脂流動性の有意な相違は見られなかった。こ れは、得られたいずれのガラス粉末も球状であるため、粉末の形状の相違に大きく起 因する樹脂流動性への影響が少なかったためと考えられる。
[0076] (粉砕の容易さの評価)
実施例 4又は 5で使用した Sガラス繊維チョップドストランドを原料として使用し、その まま粉砕したもの(「酸処理なし」)を得た。また、同じ原料を使用して、実施例 3に記 載するような酸処理を行ってから粉砕したもの(「酸処理品」)を得た。粉砕は、ガラス 繊維チョップドス卜ランドを 100kgとボーノレミノレ用のボーノレを 100kgとを、 100Lのボ ールミルに投入し、 3時間の粉砕時間で実施した。粉砕により得られた粉砕物の平均 粒径は、「酸処理なし」が 9. 6 z mであったのに対し、「酸処理品」が 5. であつ た。この結果は、粉砕の前に酸処理することにより(「酸処理品」の方が)、粉砕が容易 になったことを示す。ただ、表 2における(1) (「酸処理品」に相当)と(2) (「酸処理なし 」に相当)の比較から、「酸処理品」の方が、電気伝導度は若干高くなつている。
[0077] (成形体の作製)
実施例 3の、上記(1) (2)において、球状化の後、浮遊状態のままの球状化ガラス 粉末にシラン化合物水系液(ァミノプロピルトリエトキシシラン 0. 5重量%の水溶液) を噴射し冷却しシラン処理した球状化ガラス粉末を得た。また、実施例 3の、上記(3) におレ、て得られた酸処理した球状化ガラス粉末をシランィ匕合物水系液(ァミノプロピ ルトリエトキシシラン 0. 5重量%の水溶液)で処理し、シラン処理した球状化ガラス粉 末を得た。得られたシラン処理した球状化ガラス粉末を充填材として 80重量%含む エポキシ樹脂成形体を作製したところ成形不良の問題を起こすことなく成形体を得る ことができた。なお、実施例 3における酸処理品の粉砕物を 75重量%含むエポキシ 樹脂は溶融温度において流動性が悪ぐ成形体を得ることができなかった。
[0078] (まとめ)
粉砕工程、球状化工程、酸処理工程の各工程の順序は、製品の要求特性を考慮 し、適切に選定する必要がある。
産業上の利用可能性 [0079] 本発明の製造方法により得られる球状化無機物粉末あるいは球状化ガラス粉末は 、プリント配線板や封止材などの複合基材の充填材として利用できる。
図面の簡単な説明
[0080] [図 1]本発明の製造方法の一形態を実施するのに用いた装置の概略図を示す。すな わち、テスト装置 (エア炉)の構成-概略図を示す。
[図 2]本発明の第 1の発明の製造方法の一形態により得られた球状化無機物粉末の SEM写真を示す。 (a)は Eガラス繊維粉碎物を、 (b)は球状化 Eガラス粉末を表す。
[図 3]本発明の第 1の発明の製造方法の一形態により得られた球状化無機物粉末の SEM写真を示す。 (a)は結晶性シリカ粉碎物を、(b)は球状化非結晶性シリカ粉末 を表す。
符号の説明
[0081] 1 粉砕物
2 貯蔵タンク
3 粉体供給装置
4 燃焼用ガス
5 ガス燃料
6 キャリアガス
7 バーナー
8 炉
9 溶融帯
10 冷却スプレー
11 バグフィルター
12 吸引ファン
13 配管

Claims

請求の範囲
[1] 球状化無機物粉末の製造方法であって:
(al)酸化ケィ素含有無機物を粉砕して粉砕物を形成し;
(bl)前記粉砕物を噴霧状態で加熱して前記粉砕物を球状化して球状化物を形成し
(cl)前記球状化物の噴霧状態を維持したまま、前記球状化物に水を噴射して冷却 し;そして、
(dl)冷却した球状化物を捕集する;
ことを包含する、球状化無機物粉末の製造方法。
[2] 前記酸化ケィ素含有無機物がガラス質物質である、請求項 1に記載の製造方法。
[3] 前記ガラス質物質がガラス繊維である、請求項 2に記載の製造方法。
[4] 前記酸化ケィ素含有無機物が被覆剤で被覆されていない、請求項 1〜3のいずれ 力 1項に記載の製造方法。
[5] 工程 (cl)において、前記水が有機シラン化合物を含有する、請求項:!〜 4のいず れか 1項に記載の製造方法。
[6] 有機シランィ匕合物が、以下の式で表わされるシラン化合物である、請求項 5に記載 の製造方法:
R - Si- (OR' )
(式中、 Rは有機基を表わし、 R'はメチル基、ェチル基またはプロピル基を表わし、 n は:!〜 3から選択される整数を表わす)。
[7] 球状化ガラス粉末の製造方法であって:
(a2)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有ガラス質物 質を粉砕して粉砕物を形成し;
(b2)前記粉砕物を浮遊状態で加熱して前記粉砕物を球状化して球状化物を形成し ;そして、
(d2)前記球状化物を酸と接触させて、酸で表面処理した球状化物を形成する; ことを包含する、球状化ガラス粉末の製造方法。
[8] 球状化ガラス粉末の製造方法であって: (a2)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有ガラス質物 質を粉砕して粉砕物を形成し;
(b2)前記粉碎物を浮遊状態で加熱して前記粉碎物を球状化して球状化物を形成し
(c2)前記球状化物の浮遊状態を維持したまま、前記球状化物に水を噴射して冷却 し;そして、
(d2)前記冷却した球状化物を酸と接触させて、酸で表面処理した球状化物を形成 する;
ことを包含する、球状化ガラス粉末の製造方法。
[9] 前記酸化ケィ素含有ガラス質物質がガラス繊維である請求項 7又は請求項 8に記 載の球状化ガラス粉末の製造方法。
[10] 球状化ガラス粉末の製造方法であって:
(a3)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有ガラス質物 質を、酸と接触させて酸で表面処理した酸化ケィ素含有ガラス質物質を形成し; (b3)前記表面処理した酸化ケィ素含有ガラス質物質を粉砕して粉砕物を形成し;そ して
(c3)前記粉碎物を浮遊状態で加熱して前記粉砕物を球状化して球状化物を形成 する;
ことを包含する、球状化ガラス粉末の製造方法。
[11] 前記酸化ケィ素含有ガラス質物質がガラス繊維である、請求項 10に記載の球状化 ガラス粉末の製造方法。
[12] 工程 (c3)の後に、
(d3)前記球状化ガラス粉末の浮遊状態を維持したまま、前記球状化ガラス粉末に 有機シラン化合物含有水を噴射して冷却する;工程を更に包含する、請求項 10又は 請求項 11に記載の球状化ガラス粉末の製造方法。
[13] 球状化ガラス粉末の製造方法であって:
(a4)アルカリ金属酸化物の含有量が 1. 0重量%以下の酸化ケィ素含有ガラス質物 質を粉砕して粉砕物を形成し; (b4)前記粉碎物を酸と接触させて、酸で表面処理した粉碎物を形成し;そして
(c4)前記表面処理した粉碎物を浮遊状態で加熱して前記表面処理した粉碎物を球 状化して球状化物を形成する;
ことを包含する、球状化ガラス粉末の製造方法。
[14] 前記酸化ケィ素含有ガラス質物質がガラス繊維である、請求項 13に記載の球状化 ガラス粉末の製造方法。
[15] 工程 (c4)の後に、
(d4)前記球状化ガラス粉末の浮遊状態を維持したまま、前記球状化ガラス粉末に 有機シラン化合物含有水を噴射して冷却する;工程を更に包含する、請求項 13又は 請求項 14に記載の球状化ガラス粉末の製造方法。
PCT/JP2006/315750 2005-08-17 2006-08-09 球状化無機物粉末の製造方法 WO2007020855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06782566A EP1918258A4 (en) 2005-08-17 2006-08-09 PROCESS FOR THE PRODUCTION OF SPHERICAL INORGANIC PARTICLES
US11/990,485 US8117867B2 (en) 2005-08-17 2006-08-09 Process for producing spherical inorganic particle
CN2006800297045A CN101296874B (zh) 2005-08-17 2006-08-09 生产球形无机颗粒的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-236450 2005-08-17
JP2005236450A JP4941629B2 (ja) 2005-08-17 2005-08-17 球状化無機物粉末の製造方法
JP2006-027241 2006-02-03
JP2006-027240 2006-02-03
JP2006027240A JP2007204334A (ja) 2006-02-03 2006-02-03 電気絶縁性を改良した球状化ガラス粉末の製造方法
JP2006027241A JP2007204335A (ja) 2006-02-03 2006-02-03 電気絶縁性を改良した球状化ガラス粉末の製造方法

Publications (1)

Publication Number Publication Date
WO2007020855A1 true WO2007020855A1 (ja) 2007-02-22

Family

ID=37757517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315750 WO2007020855A1 (ja) 2005-08-17 2006-08-09 球状化無機物粉末の製造方法

Country Status (3)

Country Link
US (1) US8117867B2 (ja)
EP (1) EP1918258A4 (ja)
WO (1) WO2007020855A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130485B2 (en) * 2008-04-28 2012-03-06 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing the same
JP2012116695A (ja) * 2010-11-30 2012-06-21 Asahi Kasei E-Materials Corp 球状ガラスフィラー及びそれを用いた透明基板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221346A4 (en) * 2007-10-04 2016-01-06 Kenji Nakamura MOLDING COMPOSITION CONTAINING GLASS AND METHOD FOR PRODUCING THE SAME
DE102009029640A1 (de) * 2009-09-21 2011-04-07 Evonik Degussa Gmbh Verfahren zur Oberflächenmodifizierung von Metalloxidpartikeln
JP2011132061A (ja) * 2009-12-24 2011-07-07 Asahi Glass Co Ltd 情報記録媒体用ガラス基板および磁気ディスク
US9033040B2 (en) * 2011-12-16 2015-05-19 Baker Hughes Incorporated Use of composite of lightweight hollow core having adhered or embedded cement in cementing a well

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429318A (en) * 1977-08-08 1979-03-05 Takeo Nakamura Method and apparatus for spherical glass particulates
JPH0717706A (ja) * 1993-06-30 1995-01-20 Shinetsu Quartz Prod Co Ltd 石英ガラス粉の製造方法
JPH1143321A (ja) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd 石英原料粉の製造方法
JP2001261328A (ja) * 2000-03-16 2001-09-26 Denki Kagaku Kogyo Kk 球状無機質粉末及びその製造方法
JP2002068728A (ja) * 2000-08-31 2002-03-08 Shin Etsu Chem Co Ltd 球状シリカ粉末の製造方法
JP2005029425A (ja) * 2003-07-14 2005-02-03 Nippon Electric Glass Co Ltd ガラスビーズ製造方法及び製造装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133821A (en) * 1961-10-13 1964-05-19 Standard Oil Co Method of making silica insulating material
GB1556993A (en) * 1975-07-17 1979-12-05 Sovitec Sa Gas-expansible bodies
DD143898B1 (de) * 1979-05-24 1983-05-18 Greiner Baer Vorrichtung zur herstellung beschichteter und unbeschichteter mikroglaskugeln
GB8320086D0 (en) * 1983-07-26 1983-08-24 Ciba Geigy Ag Spherical fused silica
GB2176774A (en) * 1985-06-21 1987-01-07 Glaverbel Vitreous bead manufacture
JPS63260832A (ja) 1987-04-18 1988-10-27 Sekisui Plastics Co Ltd 粒径の揃つた微細な球形のガラス粒の製造法
US4961770A (en) * 1987-05-22 1990-10-09 Gte Products Corporation Process for producing spherical glass particles
FR2619101A1 (fr) * 1987-08-05 1989-02-10 Saint Gobain Vitrage Technique de production de microspheres en silice
JPS6455201A (en) 1987-08-10 1989-03-02 Ahlstroem Oy Circular sawing machine and method of mounting saw blade to circular sawing machine
JPH04338133A (ja) 1991-05-08 1992-11-25 Nitto Boseki Co Ltd グラスパウダーの製造方法
JPH07172876A (ja) 1991-11-26 1995-07-11 Nichias Corp Eガラス繊維の耐熱性向上法
JP3219873B2 (ja) * 1992-12-16 2001-10-15 昭和電線電纜株式会社 単分散球状ガラス微粒子の製造方法
JPH0761856A (ja) 1993-06-30 1995-03-07 Kurosaki Refract Co Ltd セメント及び石灰焼成キルン内張り用塩基性耐火物
JPH0761855A (ja) 1993-08-26 1995-03-07 Shinagawa Refract Co Ltd 窒化硼素含有耐火物
JPH0891874A (ja) 1994-09-29 1996-04-09 Sumitomo Osaka Cement Co Ltd ガラス球状粉末及びその製造方法
JPH08310836A (ja) 1995-05-11 1996-11-26 Sumitomo Osaka Cement Co Ltd ガラス球状粉末およびその製造方法
US6254981B1 (en) * 1995-11-02 2001-07-03 Minnesota Mining & Manufacturing Company Fused glassy particulates obtained by flame fusion
JPH1121147A (ja) 1997-07-02 1999-01-26 Nitto Boseki Co Ltd 高強度ガラス繊維用組成物
JP3683699B2 (ja) 1998-02-12 2005-08-17 旭ファイバーグラス株式会社 有機物で被覆されている繊維状ガラス物の処理方法
JP2001073253A (ja) 1999-09-02 2001-03-21 Asahi Schwebel Co Ltd ガラスクロス、及びガラスクロス補強合成樹脂積層板
DE10115159A1 (de) * 2001-03-27 2002-11-28 Pur Bauchemie Gmbh Oberflächenbeschichtetes Glasgranulat
JP2003192387A (ja) 2001-12-21 2003-07-09 Nitto Boseki Co Ltd ガラスパウダーの製造方法
JP2004338961A (ja) 2003-05-13 2004-12-02 Hitachi Metals Ltd 球状ガラス粉末の製造方法および球状ガラス粉末
JP4338133B2 (ja) 2003-10-31 2009-10-07 シャープ株式会社 固体撮像装置および電子情報機器
JP4318542B2 (ja) 2003-12-22 2009-08-26 株式会社オハラ 球状ガラス製造装置及び球状ガラスの製造方法
US20070196597A1 (en) * 2006-02-17 2007-08-23 Fujifilm Corporation Inorganic fine particle dispersion, method for forming same, ink jet recording medium and method for manufacturing same
DE102006014875A1 (de) * 2006-03-30 2007-10-04 Wacker Chemie Ag Partikel mit strukturierter Oberfläche

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429318A (en) * 1977-08-08 1979-03-05 Takeo Nakamura Method and apparatus for spherical glass particulates
JPH0717706A (ja) * 1993-06-30 1995-01-20 Shinetsu Quartz Prod Co Ltd 石英ガラス粉の製造方法
JPH1143321A (ja) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd 石英原料粉の製造方法
JP2001261328A (ja) * 2000-03-16 2001-09-26 Denki Kagaku Kogyo Kk 球状無機質粉末及びその製造方法
JP2002068728A (ja) * 2000-08-31 2002-03-08 Shin Etsu Chem Co Ltd 球状シリカ粉末の製造方法
JP2005029425A (ja) * 2003-07-14 2005-02-03 Nippon Electric Glass Co Ltd ガラスビーズ製造方法及び製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130485B2 (en) * 2008-04-28 2012-03-06 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing the same
JP2012116695A (ja) * 2010-11-30 2012-06-21 Asahi Kasei E-Materials Corp 球状ガラスフィラー及びそれを用いた透明基板

Also Published As

Publication number Publication date
EP1918258A4 (en) 2009-09-02
US20090249833A1 (en) 2009-10-08
EP1918258A1 (en) 2008-05-07
US8117867B2 (en) 2012-02-21

Similar Documents

Publication Publication Date Title
CN101296874B (zh) 生产球形无机颗粒的方法
US6531222B1 (en) Fine hollow glass sphere and method for preparing the same
US5849055A (en) Process for producing inorganic microspheres
JP6480863B2 (ja) 解砕シリカ粒子の製造方法
WO2007020855A1 (ja) 球状化無機物粉末の製造方法
KR20120125232A (ko) 합성 비정질 실리카 분말 및 그 제조 방법
JP5724881B2 (ja) 合成非晶質シリカ粉末及びその製造方法
TW201202144A (en) Method for producing spherical alumina powder
TW201221497A (en) Process for production of glass raw material granules, and process for production of glass product
KR102653986B1 (ko) 분말 및 혼합 분말
KR100793503B1 (ko) 비공성 구상 실리카 및 그의 제조 방법
JPH0891874A (ja) ガラス球状粉末及びその製造方法
TW201927971A (zh) 包含至少一第一材料及具有負熱膨脹係數α之粒子的複合材料,及包含該複合材料之黏接材料
JP2001199719A (ja) 球状アルミナ粉末の製造方法
JP2002179409A (ja) 微細球状無機質粉末の製造方法
JP2007204335A (ja) 電気絶縁性を改良した球状化ガラス粉末の製造方法
JP5116968B2 (ja) 球状アルミナ粉末の製造方法
JP2007204334A (ja) 電気絶縁性を改良した球状化ガラス粉末の製造方法
JPH041018B2 (ja)
KR100814479B1 (ko) 비표면적이 향상된 구형 실리카의 제조방법
KR102625963B1 (ko) 구상 산화알루미늄 분말의 제조방법
JP4145855B2 (ja) 球状溶融シリカ粉末の製造方法
JP2955672B2 (ja) 半導体樹脂封止用シリカフィラーおよびその製造方法
JP7480659B2 (ja) 透明ガラスの製造方法
JP2002167214A (ja) 微細球状シリカ粉末の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029704.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006782566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11990485

Country of ref document: US

Ref document number: 2006782566

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE